WorldWideScience

Sample records for values accurate prediction

  1. ROCK I Has More Accurate Prognostic Value than MET in Predicting Patient Survival in Colorectal Cancer.

    Science.gov (United States)

    Li, Jian; Bharadwaj, Shruthi S; Guzman, Grace; Vishnubhotla, Ramana; Glover, Sarah C

    2015-06-01

    Colorectal cancer remains the second leading cause of death in the United States despite improvements in incidence rates and advancements in screening. The present study evaluated the prognostic value of two tumor markers, MET and ROCK I, which have been noted in other cancers to provide more accurate prognoses of patient outcomes than tumor staging alone. We constructed a tissue microarray from surgical specimens of adenocarcinomas from 108 colorectal cancer patients. Using immunohistochemistry, we examined the expression levels of tumor markers MET and ROCK I, with a pathologist blinded to patient identities and clinical outcomes providing the scoring of MET and ROCK I expression. We then used retrospective analysis of patients' survival data to provide correlations with expression levels of MET and ROCK I. Both MET and ROCK I were significantly over-expressed in colorectal cancer tissues, relative to the unaffected adjacent mucosa. Kaplan-Meier survival analysis revealed that patients' 5-year survival was inversely correlated with levels of expression of ROCK I. In contrast, MET was less strongly correlated with five-year survival. ROCK I provides better efficacy in predicting patient outcomes, compared to either tumor staging or MET expression. As a result, ROCK I may provide a less invasive method of assessing patient prognoses and directing therapeutic interventions. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. An application of a relational database system for high-throughput prediction of elemental compositions from accurate mass values.

    Science.gov (United States)

    Sakurai, Nozomu; Ara, Takeshi; Kanaya, Shigehiko; Nakamura, Yukiko; Iijima, Yoko; Enomoto, Mitsuo; Motegi, Takeshi; Aoki, Koh; Suzuki, Hideyuki; Shibata, Daisuke

    2013-01-15

    High-accuracy mass values detected by high-resolution mass spectrometry analysis enable prediction of elemental compositions, and thus are used for metabolite annotations in metabolomic studies. Here, we report an application of a relational database to significantly improve the rate of elemental composition predictions. By searching a database of pre-calculated elemental compositions with fixed kinds and numbers of atoms, the approach eliminates redundant evaluations of the same formula that occur in repeated calculations with other tools. When our approach is compared with HR2, which is one of the fastest tools available, our database search times were at least 109 times shorter than those of HR2. When a solid-state drive (SSD) was applied, the search time was 488 times shorter at 5 ppm mass tolerance and 1833 times at 0.1 ppm. Even if the search by HR2 was performed with 8 threads in a high-spec Windows 7 PC, the database search times were at least 26 and 115 times shorter without and with the SSD. These improvements were enhanced in a low spec Windows XP PC. We constructed a web service 'MFSearcher' to query the database in a RESTful manner. Available for free at http://webs2.kazusa.or.jp/mfsearcher. The web service is implemented in Java, MySQL, Apache and Tomcat, with all major browsers supported. sakurai@kazusa.or.jp Supplementary data are available at Bioinformatics online.

  3. Highly Accurate Prediction of Jobs Runtime Classes

    OpenAIRE

    Reiner-Benaim, Anat; Grabarnick, Anna; Shmueli, Edi

    2016-01-01

    Separating the short jobs from the long is a known technique to improve scheduling performance. In this paper we describe a method we developed for accurately predicting the runtimes classes of the jobs to enable this separation. Our method uses the fact that the runtimes can be represented as a mixture of overlapping Gaussian distributions, in order to train a CART classifier to provide the prediction. The threshold that separates the short jobs from the long jobs is determined during the ev...

  4. Mental models accurately predict emotion transitions.

    Science.gov (United States)

    Thornton, Mark A; Tamir, Diana I

    2017-06-06

    Successful social interactions depend on people's ability to predict others' future actions and emotions. People possess many mechanisms for perceiving others' current emotional states, but how might they use this information to predict others' future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others' emotional dynamics. People could then use these mental models of emotion transitions to predict others' future emotions from currently observable emotions. To test this hypothesis, studies 1-3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants' ratings of emotion transitions predicted others' experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation-valence, social impact, rationality, and human mind-inform participants' mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants' accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone.

  5. Mental models accurately predict emotion transitions

    Science.gov (United States)

    Thornton, Mark A.; Tamir, Diana I.

    2017-01-01

    Successful social interactions depend on people’s ability to predict others’ future actions and emotions. People possess many mechanisms for perceiving others’ current emotional states, but how might they use this information to predict others’ future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others’ emotional dynamics. People could then use these mental models of emotion transitions to predict others’ future emotions from currently observable emotions. To test this hypothesis, studies 1–3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants’ ratings of emotion transitions predicted others’ experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation—valence, social impact, rationality, and human mind—inform participants’ mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants’ accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone. PMID:28533373

  6. The Prediction Value

    NARCIS (Netherlands)

    Koster, M.; Kurz, S.; Lindner, I.; Napel, S.

    2013-01-01

    We introduce the prediction value (PV) as a measure of players’ informational importance in probabilistic TU games. The latter combine a standard TU game and a probability distribution over the set of coalitions. Player i’s prediction value equals the difference between the conditional expectations

  7. Accurate predictions for the LHC made easy

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The data recorded by the LHC experiments is of a very high quality. To get the most out of the data, precise theory predictions, including uncertainty estimates, are needed to reduce as much as possible theoretical bias in the experimental analyses. Recently, significant progress has been made in computing Next-to-Leading Order (NLO) computations, including matching to the parton shower, that allow for these accurate, hadron-level predictions. I shall discuss one of these efforts, the MadGraph5_aMC@NLO program, that aims at the complete automation of predictions at the NLO accuracy within the SM as well as New Physics theories. I’ll illustrate some of the theoretical ideas behind this program, show some selected applications to LHC physics, as well as describe the future plans.

  8. The economic value of accurate wind power forecasting to utilities

    Energy Technology Data Exchange (ETDEWEB)

    Watson, S J [Rutherford Appleton Lab., Oxfordshire (United Kingdom); Giebel, G; Joensen, A [Risoe National Lab., Dept. of Wind Energy and Atmospheric Physics, Roskilde (Denmark)

    1999-03-01

    With increasing penetrations of wind power, the need for accurate forecasting is becoming ever more important. Wind power is by its very nature intermittent. For utility schedulers this presents its own problems particularly when the penetration of wind power capacity in a grid reaches a significant level (>20%). However, using accurate forecasts of wind power at wind farm sites, schedulers are able to plan the operation of conventional power capacity to accommodate the fluctuating demands of consumers and wind farm output. The results of a study to assess the value of forecasting at several potential wind farm sites in the UK and in the US state of Iowa using the Reading University/Rutherford Appleton Laboratory National Grid Model (NGM) are presented. The results are assessed for different types of wind power forecasting, namely: persistence, optimised numerical weather prediction or perfect forecasting. In particular, it will shown how the NGM has been used to assess the value of numerical weather prediction forecasts from the Danish Meteorological Institute model, HIRLAM, and the US Nested Grid Model, which have been `site tailored` by the use of the linearized flow model WA{sup s}P and by various Model output Statistics (MOS) and autoregressive techniques. (au)

  9. Hounsfield unit density accurately predicts ESWL success.

    Science.gov (United States)

    Magnuson, William J; Tomera, Kevin M; Lance, Raymond S

    2005-01-01

    Extracorporeal shockwave lithotripsy (ESWL) is a commonly used non-invasive treatment for urolithiasis. Helical CT scans provide much better and detailed imaging of the patient with urolithiasis including the ability to measure density of urinary stones. In this study we tested the hypothesis that density of urinary calculi as measured by CT can predict successful ESWL treatment. 198 patients were treated at Alaska Urological Associates with ESWL between January 2002 and April 2004. Of these 101 met study inclusion with accessible CT scans and stones ranging from 5-15 mm. Follow-up imaging demonstrated stone freedom in 74.2%. The overall mean Houndsfield density value for stone-free compared to residual stone groups were significantly different ( 93.61 vs 122.80 p ESWL for upper tract calculi between 5-15mm.

  10. A new, accurate predictive model for incident hypertension

    DEFF Research Database (Denmark)

    Völzke, Henry; Fung, Glenn; Ittermann, Till

    2013-01-01

    Data mining represents an alternative approach to identify new predictors of multifactorial diseases. This work aimed at building an accurate predictive model for incident hypertension using data mining procedures.......Data mining represents an alternative approach to identify new predictors of multifactorial diseases. This work aimed at building an accurate predictive model for incident hypertension using data mining procedures....

  11. Can Selforganizing Maps Accurately Predict Photometric Redshifts?

    Science.gov (United States)

    Way, Michael J.; Klose, Christian

    2012-01-01

    We present an unsupervised machine-learning approach that can be employed for estimating photometric redshifts. The proposed method is based on a vector quantization called the self-organizing-map (SOM) approach. A variety of photometrically derived input values were utilized from the Sloan Digital Sky Survey's main galaxy sample, luminous red galaxy, and quasar samples, along with the PHAT0 data set from the Photo-z Accuracy Testing project. Regression results obtained with this new approach were evaluated in terms of root-mean-square error (RMSE) to estimate the accuracy of the photometric redshift estimates. The results demonstrate competitive RMSE and outlier percentages when compared with several other popular approaches, such as artificial neural networks and Gaussian process regression. SOM RMSE results (using delta(z) = z(sub phot) - z(sub spec)) are 0.023 for the main galaxy sample, 0.027 for the luminous red galaxy sample, 0.418 for quasars, and 0.022 for PHAT0 synthetic data. The results demonstrate that there are nonunique solutions for estimating SOM RMSEs. Further research is needed in order to find more robust estimation techniques using SOMs, but the results herein are a positive indication of their capabilities when compared with other well-known methods

  12. Accurate Holdup Calculations with Predictive Modeling & Data Integration

    Energy Technology Data Exchange (ETDEWEB)

    Azmy, Yousry [North Carolina State Univ., Raleigh, NC (United States). Dept. of Nuclear Engineering; Cacuci, Dan [Univ. of South Carolina, Columbia, SC (United States). Dept. of Mechanical Engineering

    2017-04-03

    Bayes’ Theorem, one must have a model y(x) that maps the state variables x (the solution in this case) to the measurements y. In this case, the unknown state variables are the configuration and composition of the heldup SNM. The measurements are the detector readings. Thus, the natural model is neutral-particle radiation transport where a wealth of computational tools exists for performing these simulations accurately and efficiently. The combination of predictive model and Bayesian inference forms the Data Integration with Modeled Predictions (DIMP) method that serves as foundation for this project. The cost functional describing the model-to-data misfit is computed via a norm created by the inverse of the covariance matrix of the model parameters and responses. Since the model y(x) for the holdup problem is nonlinear, a nonlinear optimization on Q is conducted via Newton-type iterative methods to find the optimal values of the model parameters x. This project comprised a collaboration between NC State University (NCSU), the University of South Carolina (USC), and Oak Ridge National Laboratory (ORNL). The project was originally proposed in seven main tasks with an eighth contingency task to be performed if time and funding permitted; in fact time did not permit commencement of the contingency task and it was not performed. The remaining tasks involved holdup analysis with gamma detection strategies and separately with neutrons based on coincidence counting. Early in the project, and upon consultation with experts in coincidence counting it became evident that this approach is not viable for holdup applications and this task was replaced with an alternative, but valuable investigation that was carried out by the USC partner. Nevertheless, the experimental 4 measurements at ORNL of both gamma and neutron sources for the purpose of constructing Detector Response Functions (DRFs) with the associated uncertainties were indeed completed.

  13. Accurate Multisteps Traffic Flow Prediction Based on SVM

    Directory of Open Access Journals (Sweden)

    Zhang Mingheng

    2013-01-01

    Full Text Available Accurate traffic flow prediction is prerequisite and important for realizing intelligent traffic control and guidance, and it is also the objective requirement for intelligent traffic management. Due to the strong nonlinear, stochastic, time-varying characteristics of urban transport system, artificial intelligence methods such as support vector machine (SVM are now receiving more and more attentions in this research field. Compared with the traditional single-step prediction method, the multisteps prediction has the ability that can predict the traffic state trends over a certain period in the future. From the perspective of dynamic decision, it is far important than the current traffic condition obtained. Thus, in this paper, an accurate multi-steps traffic flow prediction model based on SVM was proposed. In which, the input vectors were comprised of actual traffic volume and four different types of input vectors were compared to verify their prediction performance with each other. Finally, the model was verified with actual data in the empirical analysis phase and the test results showed that the proposed SVM model had a good ability for traffic flow prediction and the SVM-HPT model outperformed the other three models for prediction.

  14. Predictive value of diminutive colonic adenoma trial: the PREDICT trial.

    Science.gov (United States)

    Schoenfeld, Philip; Shad, Javaid; Ormseth, Eric; Coyle, Walter; Cash, Brooks; Butler, James; Schindler, William; Kikendall, Walter J; Furlong, Christopher; Sobin, Leslie H; Hobbs, Christine M; Cruess, David; Rex, Douglas

    2003-05-01

    Diminutive adenomas (1-9 mm in diameter) are frequently found during colon cancer screening with flexible sigmoidoscopy (FS). This trial assessed the predictive value of these diminutive adenomas for advanced adenomas in the proximal colon. In a multicenter, prospective cohort trial, we matched 200 patients with normal FS and 200 patients with diminutive adenomas on FS for age and gender. All patients underwent colonoscopy. The presence of advanced adenomas (adenoma >or= 10 mm in diameter, villous adenoma, adenoma with high grade dysplasia, and colon cancer) and adenomas (any size) was recorded. Before colonoscopy, patients completed questionnaires about risk factors for adenomas. The prevalence of advanced adenomas in the proximal colon was similar in patients with diminutive adenomas and patients with normal FS (6% vs. 5.5%, respectively) (relative risk, 1.1; 95% confidence interval [CI], 0.5-2.6). Diminutive adenomas on FS did not accurately predict advanced adenomas in the proximal colon: sensitivity, 52% (95% CI, 32%-72%); specificity, 50% (95% CI, 49%-51%); positive predictive value, 6% (95% CI, 4%-8%); and negative predictive value, 95% (95% CI, 92%-97%). Male gender (odds ratio, 1.63; 95% CI, 1.01-2.61) was associated with an increased risk of proximal colon adenomas. Diminutive adenomas on sigmoidoscopy may not accurately predict advanced adenomas in the proximal colon.

  15. Bayesian calibration of power plant models for accurate performance prediction

    International Nuclear Information System (INIS)

    Boksteen, Sowande Z.; Buijtenen, Jos P. van; Pecnik, Rene; Vecht, Dick van der

    2014-01-01

    Highlights: • Bayesian calibration is applied to power plant performance prediction. • Measurements from a plant in operation are used for model calibration. • A gas turbine performance model and steam cycle model are calibrated. • An integrated plant model is derived. • Part load efficiency is accurately predicted as a function of ambient conditions. - Abstract: Gas turbine combined cycles are expected to play an increasingly important role in the balancing of supply and demand in future energy markets. Thermodynamic modeling of these energy systems is frequently applied to assist in decision making processes related to the management of plant operation and maintenance. In most cases, model inputs, parameters and outputs are treated as deterministic quantities and plant operators make decisions with limited or no regard of uncertainties. As the steady integration of wind and solar energy into the energy market induces extra uncertainties, part load operation and reliability are becoming increasingly important. In the current study, methods are proposed to not only quantify various types of uncertainties in measurements and plant model parameters using measured data, but to also assess their effect on various aspects of performance prediction. The authors aim to account for model parameter and measurement uncertainty, and for systematic discrepancy of models with respect to reality. For this purpose, the Bayesian calibration framework of Kennedy and O’Hagan is used, which is especially suitable for high-dimensional industrial problems. The article derives a calibrated model of the plant efficiency as a function of ambient conditions and operational parameters, which is also accurate in part load. The article shows that complete statistical modeling of power plants not only enhances process models, but can also increases confidence in operational decisions

  16. Accurate Q value measurements for fundamental physics studies at JYFLTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Eronen, T., E-mail: tommi.o.eronen@jyu.fi; Kolhinen, V. S. [University of Jyvaeskylae (Finland); Collaboration: JYFLTRAP collaboration

    2011-07-15

    We have measured several Q values at JYFLTRAP for superallowed {beta} decays that contribute to testing the Standard Model and candidate nuclei that one could use for the search of neutrinoless double-{beta} decay. These results play important roles in the research of fundamental physics that have scopes beyond Standard Model.

  17. A new, accurate predictive model for incident hypertension.

    Science.gov (United States)

    Völzke, Henry; Fung, Glenn; Ittermann, Till; Yu, Shipeng; Baumeister, Sebastian E; Dörr, Marcus; Lieb, Wolfgang; Völker, Uwe; Linneberg, Allan; Jørgensen, Torben; Felix, Stephan B; Rettig, Rainer; Rao, Bharat; Kroemer, Heyo K

    2013-11-01

    Data mining represents an alternative approach to identify new predictors of multifactorial diseases. This work aimed at building an accurate predictive model for incident hypertension using data mining procedures. The primary study population consisted of 1605 normotensive individuals aged 20-79 years with 5-year follow-up from the population-based study, that is the Study of Health in Pomerania (SHIP). The initial set was randomly split into a training and a testing set. We used a probabilistic graphical model applying a Bayesian network to create a predictive model for incident hypertension and compared the predictive performance with the established Framingham risk score for hypertension. Finally, the model was validated in 2887 participants from INTER99, a Danish community-based intervention study. In the training set of SHIP data, the Bayesian network used a small subset of relevant baseline features including age, mean arterial pressure, rs16998073, serum glucose and urinary albumin concentrations. Furthermore, we detected relevant interactions between age and serum glucose as well as between rs16998073 and urinary albumin concentrations [area under the receiver operating characteristic (AUC 0.76)]. The model was confirmed in the SHIP validation set (AUC 0.78) and externally replicated in INTER99 (AUC 0.77). Compared to the established Framingham risk score for hypertension, the predictive performance of the new model was similar in the SHIP validation set and moderately better in INTER99. Data mining procedures identified a predictive model for incident hypertension, which included innovative and easy-to-measure variables. The findings promise great applicability in screening settings and clinical practice.

  18. Accurate prediction of the enthalpies of formation for xanthophylls.

    Science.gov (United States)

    Lii, Jenn-Huei; Liao, Fu-Xing; Hu, Ching-Han

    2011-11-30

    This study investigates the applications of computational approaches in the prediction of enthalpies of formation (ΔH(f)) for C-, H-, and O-containing compounds. Molecular mechanics (MM4) molecular mechanics method, density functional theory (DFT) combined with the atomic equivalent (AE) and group equivalent (GE) schemes, and DFT-based correlation corrected atomization (CCAZ) were used. We emphasized on the application to xanthophylls, C-, H-, and O-containing carotenoids which consist of ∼ 100 atoms and extended π-delocaization systems. Within the training set, MM4 predictions are more accurate than those obtained using AE and GE; however a systematic underestimation was observed in the extended systems. ΔH(f) for the training set molecules predicted by CCAZ combined with DFT are in very good agreement with the G3 results. The average absolute deviations (AADs) of CCAZ combined with B3LYP and MPWB1K are 0.38 and 0.53 kcal/mol compared with the G3 data, and are 0.74 and 0.69 kcal/mol compared with the available experimental data, respectively. Consistency of the CCAZ approach for the selected xanthophylls is revealed by the AAD of 2.68 kcal/mol between B3LYP-CCAZ and MPWB1K-CCAZ. Copyright © 2011 Wiley Periodicals, Inc.

  19. Towards accurate T-3He Q-value

    Energy Technology Data Exchange (ETDEWEB)

    Eronen, Tommi; Hoecker, Martin; Ketter, Jochen; Streubel, Sebastian; Blaum, Klaus [Max-Planck Institut fuer Kernphysik, Heidelberg (Germany); Van Dyck, Robert S. Jr. [Department of Physics, University of Washington, Seattle, WA (United States)

    2013-07-01

    Great efforts have been put forward to determine the neutrino mass from tritium β decay. The most prominent experimental setup, KATRIN, is expected to deliver an upper limit to the neutrino mass that is one order of magnitude more stringent than the current value by measuring the endpoint and the shape of the β spectrum of the tritium decay. The endpoint energy (assuming zero neutrino mass) can also be deduced from the Q-value of the decay by measuring the mass difference of tritium and the daughter {sup 3}He using high-resolution mass spectrometry. Such a measurement would give an excellent, independent calibration point for the KATRIN experiment to deduce its systematics. Our mass-difference measurement utilizes the Tritium- Helium double Penning trap (THe-Trap) setup. Based on the anharmonic cyclotron frequency determination method pioneered at the University of Washington, Seattle, precision at the level of 1 part in 10{sup 11} in the T/{sup 3}He mass ratio is expected. In this contribution, I describe the motivation, the principle, current status, and expectations of the experiment.

  20. Simple Mathematical Models Do Not Accurately Predict Early SIV Dynamics

    Directory of Open Access Journals (Sweden)

    Cecilia Noecker

    2015-03-01

    Full Text Available Upon infection of a new host, human immunodeficiency virus (HIV replicates in the mucosal tissues and is generally undetectable in circulation for 1–2 weeks post-infection. Several interventions against HIV including vaccines and antiretroviral prophylaxis target virus replication at this earliest stage of infection. Mathematical models have been used to understand how HIV spreads from mucosal tissues systemically and what impact vaccination and/or antiretroviral prophylaxis has on viral eradication. Because predictions of such models have been rarely compared to experimental data, it remains unclear which processes included in these models are critical for predicting early HIV dynamics. Here we modified the “standard” mathematical model of HIV infection to include two populations of infected cells: cells that are actively producing the virus and cells that are transitioning into virus production mode. We evaluated the effects of several poorly known parameters on infection outcomes in this model and compared model predictions to experimental data on infection of non-human primates with variable doses of simian immunodifficiency virus (SIV. First, we found that the mode of virus production by infected cells (budding vs. bursting has a minimal impact on the early virus dynamics for a wide range of model parameters, as long as the parameters are constrained to provide the observed rate of SIV load increase in the blood of infected animals. Interestingly and in contrast with previous results, we found that the bursting mode of virus production generally results in a higher probability of viral extinction than the budding mode of virus production. Second, this mathematical model was not able to accurately describe the change in experimentally determined probability of host infection with increasing viral doses. Third and finally, the model was also unable to accurately explain the decline in the time to virus detection with increasing viral

  1. Examining predictive relationships among consumer values: factors ...

    African Journals Online (AJOL)

    Examining predictive relationships among consumer values: factors influencing behavioural intentions in retail purchase in Ghana. ... Journal of Business Research ... effects of age and gender differentials on values among retail consumers.

  2. An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions.

    Science.gov (United States)

    Deng, Xin; Gumm, Jordan; Karki, Suman; Eickholt, Jesse; Cheng, Jianlin

    2015-07-07

    Protein disordered regions are segments of a protein chain that do not adopt a stable structure. Thus far, a variety of protein disorder prediction methods have been developed and have been widely used, not only in traditional bioinformatics domains, including protein structure prediction, protein structure determination and function annotation, but also in many other biomedical fields. The relationship between intrinsically-disordered proteins and some human diseases has played a significant role in disorder prediction in disease identification and epidemiological investigations. Disordered proteins can also serve as potential targets for drug discovery with an emphasis on the disordered-to-ordered transition in the disordered binding regions, and this has led to substantial research in drug discovery or design based on protein disordered region prediction. Furthermore, protein disorder prediction has also been applied to healthcare by predicting the disease risk of mutations in patients and studying the mechanistic basis of diseases. As the applications of disorder prediction increase, so too does the need to make quick and accurate predictions. To fill this need, we also present a new approach to predict protein residue disorder using wide sequence windows that is applicable on the genomic scale.

  3. An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions

    Directory of Open Access Journals (Sweden)

    Xin Deng

    2015-07-01

    Full Text Available Protein disordered regions are segments of a protein chain that do not adopt a stable structure. Thus far, a variety of protein disorder prediction methods have been developed and have been widely used, not only in traditional bioinformatics domains, including protein structure prediction, protein structure determination and function annotation, but also in many other biomedical fields. The relationship between intrinsically-disordered proteins and some human diseases has played a significant role in disorder prediction in disease identification and epidemiological investigations. Disordered proteins can also serve as potential targets for drug discovery with an emphasis on the disordered-to-ordered transition in the disordered binding regions, and this has led to substantial research in drug discovery or design based on protein disordered region prediction. Furthermore, protein disorder prediction has also been applied to healthcare by predicting the disease risk of mutations in patients and studying the mechanistic basis of diseases. As the applications of disorder prediction increase, so too does the need to make quick and accurate predictions. To fill this need, we also present a new approach to predict protein residue disorder using wide sequence windows that is applicable on the genomic scale.

  4. Feedforward signal prediction for accurate motion systems using digital filters

    NARCIS (Netherlands)

    Butler, H.

    2012-01-01

    A positioning system that needs to accurately track a reference can benefit greatly from using feedforward. When using a force actuator, the feedforward needs to generate a force proportional to the reference acceleration, which can be measured by means of an accelerometer or can be created by

  5. Fast and Accurate Prediction of Stratified Steel Temperature During Holding Period of Ladle

    Science.gov (United States)

    Deodhar, Anirudh; Singh, Umesh; Shukla, Rishabh; Gautham, B. P.; Singh, Amarendra K.

    2017-04-01

    Thermal stratification of liquid steel in a ladle during the holding period and the teeming operation has a direct bearing on the superheat available at the caster and hence on the caster set points such as casting speed and cooling rates. The changes in the caster set points are typically carried out based on temperature measurements at the end of tundish outlet. Thermal prediction models provide advance knowledge of the influence of process and design parameters on the steel temperature at various stages. Therefore, they can be used in making accurate decisions about the caster set points in real time. However, this requires both fast and accurate thermal prediction models. In this work, we develop a surrogate model for the prediction of thermal stratification using data extracted from a set of computational fluid dynamics (CFD) simulations, pre-determined using design of experiments technique. Regression method is used for training the predictor. The model predicts the stratified temperature profile instantaneously, for a given set of process parameters such as initial steel temperature, refractory heat content, slag thickness, and holding time. More than 96 pct of the predicted values are within an error range of ±5 K (±5 °C), when compared against corresponding CFD results. Considering its accuracy and computational efficiency, the model can be extended for thermal control of casting operations. This work also sets a benchmark for developing similar thermal models for downstream processes such as tundish and caster.

  6. Accurate Prediction of Coronary Artery Disease Using Bioinformatics Algorithms

    Directory of Open Access Journals (Sweden)

    Hajar Shafiee

    2016-06-01

    Full Text Available Background and Objectives: Cardiovascular disease is one of the main causes of death in developed and Third World countries. According to the statement of the World Health Organization, it is predicted that death due to heart disease will rise to 23 million by 2030. According to the latest statistics reported by Iran’s Minister of health, 3.39% of all deaths are attributed to cardiovascular diseases and 19.5% are related to myocardial infarction. The aim of this study was to predict coronary artery disease using data mining algorithms. Methods: In this study, various bioinformatics algorithms, such as decision trees, neural networks, support vector machines, clustering, etc., were used to predict coronary heart disease. The data used in this study was taken from several valid databases (including 14 data. Results: In this research, data mining techniques can be effectively used to diagnose different diseases, including coronary artery disease. Also, for the first time, a prediction system based on support vector machine with the best possible accuracy was introduced. Conclusion: The results showed that among the features, thallium scan variable is the most important feature in the diagnosis of heart disease. Designation of machine prediction models, such as support vector machine learning algorithm can differentiate between sick and healthy individuals with 100% accuracy.

  7. Towards more accurate and reliable predictions for nuclear applications

    International Nuclear Information System (INIS)

    Goriely, S.

    2015-01-01

    The need for nuclear data far from the valley of stability, for applications such as nuclear astrophysics or future nuclear facilities, challenges the robustness as well as the predictive power of present nuclear models. Most of the nuclear data evaluation and prediction are still performed on the basis of phenomenological nuclear models. For the last decades, important progress has been achieved in fundamental nuclear physics, making it now feasible to use more reliable, but also more complex microscopic or semi-microscopic models in the evaluation and prediction of nuclear data for practical applications. In the present contribution, the reliability and accuracy of recent nuclear theories are discussed for most of the relevant quantities needed to estimate reaction cross sections and beta-decay rates, namely nuclear masses, nuclear level densities, gamma-ray strength, fission properties and beta-strength functions. It is shown that nowadays, mean-field models can be tuned at the same level of accuracy as the phenomenological models, renormalized on experimental data if needed, and therefore can replace the phenomenogical inputs in the prediction of nuclear data. While fundamental nuclear physicists keep on improving state-of-the-art models, e.g. within the shell model or ab initio models, nuclear applications could make use of their most recent results as quantitative constraints or guides to improve the predictions in energy or mass domain that will remain inaccessible experimentally. (orig.)

  8. PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations.

    Directory of Open Access Journals (Sweden)

    Jaroslav Bendl

    2014-01-01

    Full Text Available Single nucleotide variants represent a prevalent form of genetic variation. Mutations in the coding regions are frequently associated with the development of various genetic diseases. Computational tools for the prediction of the effects of mutations on protein function are very important for analysis of single nucleotide variants and their prioritization for experimental characterization. Many computational tools are already widely employed for this purpose. Unfortunately, their comparison and further improvement is hindered by large overlaps between the training datasets and benchmark datasets, which lead to biased and overly optimistic reported performances. In this study, we have constructed three independent datasets by removing all duplicities, inconsistencies and mutations previously used in the training of evaluated tools. The benchmark dataset containing over 43,000 mutations was employed for the unbiased evaluation of eight established prediction tools: MAPP, nsSNPAnalyzer, PANTHER, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT and SNAP. The six best performing tools were combined into a consensus classifier PredictSNP, resulting into significantly improved prediction performance, and at the same time returned results for all mutations, confirming that consensus prediction represents an accurate and robust alternative to the predictions delivered by individual tools. A user-friendly web interface enables easy access to all eight prediction tools, the consensus classifier PredictSNP and annotations from the Protein Mutant Database and the UniProt database. The web server and the datasets are freely available to the academic community at http://loschmidt.chemi.muni.cz/predictsnp.

  9. Can numerical simulations accurately predict hydrodynamic instabilities in liquid films?

    Science.gov (United States)

    Denner, Fabian; Charogiannis, Alexandros; Pradas, Marc; van Wachem, Berend G. M.; Markides, Christos N.; Kalliadasis, Serafim

    2014-11-01

    Understanding the dynamics of hydrodynamic instabilities in liquid film flows is an active field of research in fluid dynamics and non-linear science in general. Numerical simulations offer a powerful tool to study hydrodynamic instabilities in film flows and can provide deep insights into the underlying physical phenomena. However, the direct comparison of numerical results and experimental results is often hampered by several reasons. For instance, in numerical simulations the interface representation is problematic and the governing equations and boundary conditions may be oversimplified, whereas in experiments it is often difficult to extract accurate information on the fluid and its behavior, e.g. determine the fluid properties when the liquid contains particles for PIV measurements. In this contribution we present the latest results of our on-going, extensive study on hydrodynamic instabilities in liquid film flows, which includes direct numerical simulations, low-dimensional modelling as well as experiments. The major focus is on wave regimes, wave height and wave celerity as a function of Reynolds number and forcing frequency of a falling liquid film. Specific attention is paid to the differences in numerical and experimental results and the reasons for these differences. The authors are grateful to the EPSRC for their financial support (Grant EP/K008595/1).

  10. Predicting accurate absolute binding energies in aqueous solution

    DEFF Research Database (Denmark)

    Jensen, Jan Halborg

    2015-01-01

    Recent predictions of absolute binding free energies of host-guest complexes in aqueous solution using electronic structure theory have been encouraging for some systems, while other systems remain problematic. In this paper I summarize some of the many factors that could easily contribute 1-3 kcal......-represented by continuum models. While I focus on binding free energies in aqueous solution the approach also applies (with minor adjustments) to any free energy difference such as conformational or reaction free energy differences or activation free energies in any solvent....

  11. Predictive Values of Electroencephalography (EEG) in Epilepsy ...

    African Journals Online (AJOL)

    Predictive Values of Electroencephalography (EEG) in Epilepsy Patients with Abnormal Behavioural Symptoms. OR Obiako, SO Adeyemi, TL Sheikh, LF Owolabi, MA Majebi, MO Gomina, F Adebayo, EU Iwuozo ...

  12. Affective Value in the Predictive Mind

    OpenAIRE

    Van de Cruys, Sander

    2017-01-01

    Although affective value is fundamental in explanations of behavior, it is still a somewhat alien concept in cognitive science. It implies a normativity or directionality that mere information processing models cannot seem to provide. In this paper we trace how affective value can emerge from information processing in the brain, as described by predictive processing. We explain the grounding of predictive processing in homeostasis, and articulate the implications this has for the concept of r...

  13. CFD-FEM coupling for accurate prediction of thermal fatigue

    International Nuclear Information System (INIS)

    Hannink, M.H.C.; Kuczaj, A.K.; Blom, F.J.; Church, J.M.; Komen, E.M.J.

    2009-01-01

    Thermal fatigue is a safety related issue in primary pipework systems of nuclear power plants. Life extension of current reactors and the design of a next generation of new reactors lead to growing importance of research in this direction. The thermal fatigue degradation mechanism is induced by temperature fluctuations in a fluid, which arise from mixing of hot and cold flows. Accompanied physical phenomena include thermal stratification, thermal striping, and turbulence [1]. Current plant instrumentation systems allow monitoring of possible causes as stratification and temperature gradients at fatigue susceptible locations [1]. However, high-cycle temperature fluctuations associated with turbulent mixing cannot be adequately detected by common thermocouple instrumentations. For a proper evaluation of thermal fatigue, therefore, numerical simulations are necessary that couple instantaneous fluid and solid interactions. In this work, a strategy for the numerical prediction of thermal fatigue is presented. The approach couples Computational Fluid Dynamics (CFD) and the Finite Element Method (FEM). For the development of the computational approach, a classical test case for the investigation of thermal fatigue problems is studied, i.e. mixing in a T-junction. Due to turbulent mixing of hot and cold fluids in two perpendicularly connected pipes, temperature fluctuations arise in the mixing zone downstream in the flow. Subsequently, these temperature fluctuations are also induced in the pipes. The stresses that arise due to the fluctuations may eventually lead to thermal fatigue. In the first step of the applied procedure, the temperature fluctuations in both fluid and structure are calculated using the CFD method. Subsequently, the temperature fluctuations in the structure are imposed as thermal loads in a FEM model of the pipes. A mechanical analysis is then performed to determine the thermal stresses, which are used to predict the fatigue lifetime of the structure

  14. Change in BMI accurately predicted by social exposure to acquaintances.

    Science.gov (United States)

    Oloritun, Rahman O; Ouarda, Taha B M J; Moturu, Sai; Madan, Anmol; Pentland, Alex Sandy; Khayal, Inas

    2013-01-01

    Research has mostly focused on obesity and not on processes of BMI change more generally, although these may be key factors that lead to obesity. Studies have suggested that obesity is affected by social ties. However these studies used survey based data collection techniques that may be biased toward select only close friends and relatives. In this study, mobile phone sensing techniques were used to routinely capture social interaction data in an undergraduate dorm. By automating the capture of social interaction data, the limitations of self-reported social exposure data are avoided. This study attempts to understand and develop a model that best describes the change in BMI using social interaction data. We evaluated a cohort of 42 college students in a co-located university dorm, automatically captured via mobile phones and survey based health-related information. We determined the most predictive variables for change in BMI using the least absolute shrinkage and selection operator (LASSO) method. The selected variables, with gender, healthy diet category, and ability to manage stress, were used to build multiple linear regression models that estimate the effect of exposure and individual factors on change in BMI. We identified the best model using Akaike Information Criterion (AIC) and R(2). This study found a model that explains 68% (pchange in BMI. The model combined social interaction data, especially from acquaintances, and personal health-related information to explain change in BMI. This is the first study taking into account both interactions with different levels of social interaction and personal health-related information. Social interactions with acquaintances accounted for more than half the variation in change in BMI. This suggests the importance of not only individual health information but also the significance of social interactions with people we are exposed to, even people we may not consider as close friends.

  15. Change in BMI accurately predicted by social exposure to acquaintances.

    Directory of Open Access Journals (Sweden)

    Rahman O Oloritun

    Full Text Available Research has mostly focused on obesity and not on processes of BMI change more generally, although these may be key factors that lead to obesity. Studies have suggested that obesity is affected by social ties. However these studies used survey based data collection techniques that may be biased toward select only close friends and relatives. In this study, mobile phone sensing techniques were used to routinely capture social interaction data in an undergraduate dorm. By automating the capture of social interaction data, the limitations of self-reported social exposure data are avoided. This study attempts to understand and develop a model that best describes the change in BMI using social interaction data. We evaluated a cohort of 42 college students in a co-located university dorm, automatically captured via mobile phones and survey based health-related information. We determined the most predictive variables for change in BMI using the least absolute shrinkage and selection operator (LASSO method. The selected variables, with gender, healthy diet category, and ability to manage stress, were used to build multiple linear regression models that estimate the effect of exposure and individual factors on change in BMI. We identified the best model using Akaike Information Criterion (AIC and R(2. This study found a model that explains 68% (p<0.0001 of the variation in change in BMI. The model combined social interaction data, especially from acquaintances, and personal health-related information to explain change in BMI. This is the first study taking into account both interactions with different levels of social interaction and personal health-related information. Social interactions with acquaintances accounted for more than half the variation in change in BMI. This suggests the importance of not only individual health information but also the significance of social interactions with people we are exposed to, even people we may not consider as

  16. Accurate Estimation of Low Fundamental Frequencies from Real-Valued Measurements

    DEFF Research Database (Denmark)

    Christensen, Mads Græsbøll

    2013-01-01

    In this paper, the difficult problem of estimating low fundamental frequencies from real-valued measurements is addressed. The methods commonly employed do not take the phenomena encountered in this scenario into account and thus fail to deliver accurate estimates. The reason for this is that the......In this paper, the difficult problem of estimating low fundamental frequencies from real-valued measurements is addressed. The methods commonly employed do not take the phenomena encountered in this scenario into account and thus fail to deliver accurate estimates. The reason...... for this is that they employ asymptotic approximations that are violated when the harmonics are not well-separated in frequency, something that happens when the observed signal is real-valued and the fundamental frequency is low. To mitigate this, we analyze the problem and present some exact fundamental frequency estimators...

  17. Towards accurate performance prediction of a vertical axis wind turbine operating at different tip speed ratios

    NARCIS (Netherlands)

    Rezaeiha, A.; Kalkman, I.; Blocken, B.J.E.

    2017-01-01

    Accurate prediction of the performance of a vertical-axis wind turbine (VAWT) using CFD simulation requires the employment of a sufficiently fine azimuthal increment (dθ) combined with a mesh size at which essential flow characteristics can be accurately resolved. Furthermore, the domain size needs

  18. In vitro transcription accurately predicts lac repressor phenotype in vivo in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Matthew Almond Sochor

    2014-07-01

    Full Text Available A multitude of studies have looked at the in vivo and in vitro behavior of the lac repressor binding to DNA and effector molecules in order to study transcriptional repression, however these studies are not always reconcilable. Here we use in vitro transcription to directly mimic the in vivo system in order to build a self consistent set of experiments to directly compare in vivo and in vitro genetic repression. A thermodynamic model of the lac repressor binding to operator DNA and effector is used to link DNA occupancy to either normalized in vitro mRNA product or normalized in vivo fluorescence of a regulated gene, YFP. An accurate measurement of repressor, DNA and effector concentrations were made both in vivo and in vitro allowing for direct modeling of the entire thermodynamic equilibrium. In vivo repression profiles are accurately predicted from the given in vitro parameters when molecular crowding is considered. Interestingly, our measured repressor–operator DNA affinity differs significantly from previous in vitro measurements. The literature values are unable to replicate in vivo binding data. We therefore conclude that the repressor-DNA affinity is much weaker than previously thought. This finding would suggest that in vitro techniques that are specifically designed to mimic the in vivo process may be necessary to replicate the native system.

  19. Prediction of Accurate Mixed Mode Fatigue Crack Growth Curves using the Paris' Law

    Science.gov (United States)

    Sajith, S.; Krishna Murthy, K. S. R.; Robi, P. S.

    2017-12-01

    Accurate information regarding crack growth times and structural strength as a function of the crack size is mandatory in damage tolerance analysis. Various equivalent stress intensity factor (SIF) models are available for prediction of mixed mode fatigue life using the Paris' law. In the present investigation these models have been compared to assess their efficacy in prediction of the life close to the experimental findings as there are no guidelines/suggestions available on selection of these models for accurate and/or conservative predictions of fatigue life. Within the limitations of availability of experimental data and currently available numerical simulation techniques, the results of present study attempts to outline models that would provide accurate and conservative life predictions.

  20. Accurate Prediction of Motor Failures by Application of Multi CBM Tools: A Case Study

    Science.gov (United States)

    Dutta, Rana; Singh, Veerendra Pratap; Dwivedi, Jai Prakash

    2018-02-01

    Motor failures are very difficult to predict accurately with a single condition-monitoring tool as both electrical and the mechanical systems are closely related. Electrical problem, like phase unbalance, stator winding insulation failures can, at times, lead to vibration problem and at the same time mechanical failures like bearing failure, leads to rotor eccentricity. In this case study of a 550 kW blower motor it has been shown that a rotor bar crack was detected by current signature analysis and vibration monitoring confirmed the same. In later months in a similar motor vibration monitoring predicted bearing failure and current signature analysis confirmed the same. In both the cases, after dismantling the motor, the predictions were found to be accurate. In this paper we will be discussing the accurate predictions of motor failures through use of multi condition monitoring tools with two case studies.

  1. Measuring solar reflectance - Part I: Defining a metric that accurately predicts solar heat gain

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul [Heat Island Group, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2010-09-15

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective ''cool colored'' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland US latitudes, this metric R{sub E891BN} can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {<=} 5:12 [23 ]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool roof net energy savings by as much as 23%. We define clear sky air mass one global horizontal (''AM1GH'') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer. (author)

  2. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  3. Influential Factors for Accurate Load Prediction in a Demand Response Context

    DEFF Research Database (Denmark)

    Wollsen, Morten Gill; Kjærgaard, Mikkel Baun; Jørgensen, Bo Nørregaard

    2016-01-01

    Accurate prediction of a buildings electricity load is crucial to respond to Demand Response events with an assessable load change. However, previous work on load prediction lacks to consider a wider set of possible data sources. In this paper we study different data scenarios to map the influence....... Next, the time of day that is being predicted greatly influence the prediction which is related to the weather pattern. By presenting these results we hope to improve the modeling of building loads and algorithms for Demand Response planning.......Accurate prediction of a buildings electricity load is crucial to respond to Demand Response events with an assessable load change. However, previous work on load prediction lacks to consider a wider set of possible data sources. In this paper we study different data scenarios to map the influence...

  4. Heart rate during basketball game play and volleyball drills accurately predicts oxygen uptake and energy expenditure.

    Science.gov (United States)

    Scribbans, T D; Berg, K; Narazaki, K; Janssen, I; Gurd, B J

    2015-09-01

    There is currently little information regarding the ability of metabolic prediction equations to accurately predict oxygen uptake and exercise intensity from heart rate (HR) during intermittent sport. The purpose of the present study was to develop and, cross-validate equations appropriate for accurately predicting oxygen cost (VO2) and energy expenditure from HR during intermittent sport participation. Eleven healthy adult males (19.9±1.1yrs) were recruited to establish the relationship between %VO2peak and %HRmax during low-intensity steady state endurance (END), moderate-intensity interval (MOD) and high intensity-interval exercise (HI), as performed on a cycle ergometer. Three equations (END, MOD, and HI) for predicting %VO2peak based on %HRmax were developed. HR and VO2 were directly measured during basketball games (6 male, 20.8±1.0 yrs; 6 female, 20.0±1.3yrs) and volleyball drills (12 female; 20.8±1.0yrs). Comparisons were made between measured and predicted VO2 and energy expenditure using the 3 equations developed and 2 previously published equations. The END and MOD equations accurately predicted VO2 and energy expenditure, while the HI equation underestimated, and the previously published equations systematically overestimated VO2 and energy expenditure. Intermittent sport VO2 and energy expenditure can be accurately predicted from heart rate data using either the END (%VO2peak=%HRmax x 1.008-17.17) or MOD (%VO2peak=%HRmax x 1.2-32) equations. These 2 simple equations provide an accessible and cost-effective method for accurate estimation of exercise intensity and energy expenditure during intermittent sport.

  5. Accurate and dynamic predictive model for better prediction in medicine and healthcare.

    Science.gov (United States)

    Alanazi, H O; Abdullah, A H; Qureshi, K N; Ismail, A S

    2018-05-01

    Information and communication technologies (ICTs) have changed the trend into new integrated operations and methods in all fields of life. The health sector has also adopted new technologies to improve the systems and provide better services to customers. Predictive models in health care are also influenced from new technologies to predict the different disease outcomes. However, still, existing predictive models have suffered from some limitations in terms of predictive outcomes performance. In order to improve predictive model performance, this paper proposed a predictive model by classifying the disease predictions into different categories. To achieve this model performance, this paper uses traumatic brain injury (TBI) datasets. TBI is one of the serious diseases worldwide and needs more attention due to its seriousness and serious impacts on human life. The proposed predictive model improves the predictive performance of TBI. The TBI data set is developed and approved by neurologists to set its features. The experiment results show that the proposed model has achieved significant results including accuracy, sensitivity, and specificity.

  6. The determination of the pressure-viscosity coefficient of a lubricant through an accurate film thickness formula and accurate film thickness measurements : part 2 : high L values

    NARCIS (Netherlands)

    Leeuwen, van H.J.

    2011-01-01

    The pressure-viscosity coefficient of a traction fluid is determined by fitting calculation results on accurate film thickness measurements, obtained at different speeds, loads, and temperatures. Through experiments, covering a range of 5.6 values are

  7. NNLOPS accurate predictions for $W^+W^-$ production arXiv

    CERN Document Server

    Re, Emanuele; Zanderighi, Giulia

    We present novel predictions for the production of $W^+W^-$ pairs in hadron collisions that are next-to-next-to-leading order accurate and consistently matched to a parton shower (NNLOPS). All diagrams that lead to the process $pp\\to e^- \\bar \

  8. Towards cycle-accurate performance predictions for real-time embedded systems

    NARCIS (Netherlands)

    Triantafyllidis, K.; Bondarev, E.; With, de P.H.N.; Arabnia, H.R.; Deligiannidis, L.; Jandieri, G.

    2013-01-01

    In this paper we present a model-based performance analysis method for component-based real-time systems, featuring cycle-accurate predictions of latencies and enhanced system robustness. The method incorporates the following phases: (a) instruction-level profiling of SW components, (b) modeling the

  9. ASTRAL, DRAGON and SEDAN scores predict stroke outcome more accurately than physicians.

    Science.gov (United States)

    Ntaios, G; Gioulekas, F; Papavasileiou, V; Strbian, D; Michel, P

    2016-11-01

    ASTRAL, SEDAN and DRAGON scores are three well-validated scores for stroke outcome prediction. Whether these scores predict stroke outcome more accurately compared with physicians interested in stroke was investigated. Physicians interested in stroke were invited to an online anonymous survey to provide outcome estimates in randomly allocated structured scenarios of recent real-life stroke patients. Their estimates were compared to scores' predictions in the same scenarios. An estimate was considered accurate if it was within 95% confidence intervals of actual outcome. In all, 244 participants from 32 different countries responded assessing 720 real scenarios and 2636 outcomes. The majority of physicians' estimates were inaccurate (1422/2636, 53.9%). 400 (56.8%) of physicians' estimates about the percentage probability of 3-month modified Rankin score (mRS) > 2 were accurate compared with 609 (86.5%) of ASTRAL score estimates (P DRAGON score estimates (P DRAGON score estimates (P DRAGON and SEDAN scores predict outcome of acute ischaemic stroke patients with higher accuracy compared to physicians interested in stroke. © 2016 EAN.

  10. Accurate wavelength prediction of photonic crystal resonant reflection and applications in refractive index measurement

    DEFF Research Database (Denmark)

    Hermannsson, Pétur Gordon; Vannahme, Christoph; Smith, Cameron L. C.

    2014-01-01

    and superstrate materials. The importance of accounting for material dispersion in order to obtain accurate simulation results is highlighted, and a method for doing so using an iterative approach is demonstrated. Furthermore, an application for the model is demonstrated, in which the material dispersion......In the past decade, photonic crystal resonant reflectors have been increasingly used as the basis for label-free biochemical assays in lab-on-a-chip applications. In both designing and interpreting experimental results, an accurate model describing the optical behavior of such structures...... is essential. Here, an analytical method for precisely predicting the absolute positions of resonantly reflected wavelengths is presented. The model is experimentally verified to be highly accurate using nanoreplicated, polymer-based photonic crystal grating reflectors with varying grating periods...

  11. A highly accurate predictive-adaptive method for lithium-ion battery remaining discharge energy prediction in electric vehicle applications

    International Nuclear Information System (INIS)

    Liu, Guangming; Ouyang, Minggao; Lu, Languang; Li, Jianqiu; Hua, Jianfeng

    2015-01-01

    Highlights: • An energy prediction (EP) method is introduced for battery E RDE determination. • EP determines E RDE through coupled prediction of future states, parameters, and output. • The PAEP combines parameter adaptation and prediction to update model parameters. • The PAEP provides improved E RDE accuracy compared with DC and other EP methods. - Abstract: In order to estimate the remaining driving range (RDR) in electric vehicles, the remaining discharge energy (E RDE ) of the applied battery system needs to be precisely predicted. Strongly affected by the load profiles, the available E RDE varies largely in real-world applications and requires specific determination. However, the commonly-used direct calculation (DC) method might result in certain energy prediction errors by relating the E RDE directly to the current state of charge (SOC). To enhance the E RDE accuracy, this paper presents a battery energy prediction (EP) method based on the predictive control theory, in which a coupled prediction of future battery state variation, battery model parameter change, and voltage response, is implemented on the E RDE prediction horizon, and the E RDE is subsequently accumulated and real-timely optimized. Three EP approaches with different model parameter updating routes are introduced, and the predictive-adaptive energy prediction (PAEP) method combining the real-time parameter identification and the future parameter prediction offers the best potential. Based on a large-format lithium-ion battery, the performance of different E RDE calculation methods is compared under various dynamic profiles. Results imply that the EP methods provide much better accuracy than the traditional DC method, and the PAEP could reduce the E RDE error by more than 90% and guarantee the relative energy prediction error under 2%, proving as a proper choice in online E RDE prediction. The correlation of SOC estimation and E RDE calculation is then discussed to illustrate the

  12. Improving medical decisions for incapacitated persons: does focusing on "accurate predictions" lead to an inaccurate picture?

    Science.gov (United States)

    Kim, Scott Y H

    2014-04-01

    The Patient Preference Predictor (PPP) proposal places a high priority on the accuracy of predicting patients' preferences and finds the performance of surrogates inadequate. However, the quest to develop a highly accurate, individualized statistical model has significant obstacles. First, it will be impossible to validate the PPP beyond the limit imposed by 60%-80% reliability of people's preferences for future medical decisions--a figure no better than the known average accuracy of surrogates. Second, evidence supports the view that a sizable minority of persons may not even have preferences to predict. Third, many, perhaps most, people express their autonomy just as much by entrusting their loved ones to exercise their judgment than by desiring to specifically control future decisions. Surrogate decision making faces none of these issues and, in fact, it may be more efficient, accurate, and authoritative than is commonly assumed.

  13. LocARNA-P: Accurate boundary prediction and improved detection of structural RNAs

    DEFF Research Database (Denmark)

    Will, Sebastian; Joshi, Tejal; Hofacker, Ivo L.

    2012-01-01

    Current genomic screens for noncoding RNAs (ncRNAs) predict a large number of genomic regions containing potential structural ncRNAs. The analysis of these data requires highly accurate prediction of ncRNA boundaries and discrimination of promising candidate ncRNAs from weak predictions. Existing...... methods struggle with these goals because they rely on sequence-based multiple sequence alignments, which regularly misalign RNA structure and therefore do not support identification of structural similarities. To overcome this limitation, we compute columnwise and global reliabilities of alignments based...... on sequence and structure similarity; we refer to these structure-based alignment reliabilities as STARs. The columnwise STARs of alignments, or STAR profiles, provide a versatile tool for the manual and automatic analysis of ncRNAs. In particular, we improve the boundary prediction of the widely used nc...

  14. Multi-fidelity machine learning models for accurate bandgap predictions of solids

    International Nuclear Information System (INIS)

    Pilania, Ghanshyam; Gubernatis, James E.; Lookman, Turab

    2016-01-01

    Here, we present a multi-fidelity co-kriging statistical learning framework that combines variable-fidelity quantum mechanical calculations of bandgaps to generate a machine-learned model that enables low-cost accurate predictions of the bandgaps at the highest fidelity level. Additionally, the adopted Gaussian process regression formulation allows us to predict the underlying uncertainties as a measure of our confidence in the predictions. In using a set of 600 elpasolite compounds as an example dataset and using semi-local and hybrid exchange correlation functionals within density functional theory as two levels of fidelities, we demonstrate the excellent learning performance of the method against actual high fidelity quantum mechanical calculations of the bandgaps. The presented statistical learning method is not restricted to bandgaps or electronic structure methods and extends the utility of high throughput property predictions in a significant way.

  15. Can phenological models predict tree phenology accurately under climate change conditions?

    Science.gov (United States)

    Chuine, Isabelle; Bonhomme, Marc; Legave, Jean Michel; García de Cortázar-Atauri, Inaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry

    2014-05-01

    The onset of the growing season of trees has been globally earlier by 2.3 days/decade during the last 50 years because of global warming and this trend is predicted to continue according to climate forecast. The effect of temperature on plant phenology is however not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud dormancy, and on the other hand higher temperatures are necessary to promote bud cells growth afterwards. Increasing phenological changes in temperate woody species have strong impacts on forest trees distribution and productivity, as well as crops cultivation areas. Accurate predictions of trees phenology are therefore a prerequisite to understand and foresee the impacts of climate change on forests and agrosystems. Different process-based models have been developed in the last two decades to predict the date of budburst or flowering of woody species. They are two main families: (1) one-phase models which consider only the ecodormancy phase and make the assumption that endodormancy is always broken before adequate climatic conditions for cell growth occur; and (2) two-phase models which consider both the endodormancy and ecodormancy phases and predict a date of dormancy break which varies from year to year. So far, one-phase models have been able to predict accurately tree bud break and flowering under historical climate. However, because they do not consider what happens prior to ecodormancy, and especially the possible negative effect of winter temperature warming on dormancy break, it seems unlikely that they can provide accurate predictions in future climate conditions. It is indeed well known that a lack of low temperature results in abnormal pattern of bud break and development in temperate fruit trees. An accurate modelling of the dormancy break date has thus become a major issue in phenology modelling. Two-phases phenological models predict that global warming should delay

  16. Rapid and accurate prediction and scoring of water molecules in protein binding sites.

    Directory of Open Access Journals (Sweden)

    Gregory A Ross

    Full Text Available Water plays a critical role in ligand-protein interactions. However, it is still challenging to predict accurately not only where water molecules prefer to bind, but also which of those water molecules might be displaceable. The latter is often seen as a route to optimizing affinity of potential drug candidates. Using a protocol we call WaterDock, we show that the freely available AutoDock Vina tool can be used to predict accurately the binding sites of water molecules. WaterDock was validated using data from X-ray crystallography, neutron diffraction and molecular dynamics simulations and correctly predicted 97% of the water molecules in the test set. In addition, we combined data-mining, heuristic and machine learning techniques to develop probabilistic water molecule classifiers. When applied to WaterDock predictions in the Astex Diverse Set of protein ligand complexes, we could identify whether a water molecule was conserved or displaced to an accuracy of 75%. A second model predicted whether water molecules were displaced by polar groups or by non-polar groups to an accuracy of 80%. These results should prove useful for anyone wishing to undertake rational design of new compounds where the displacement of water molecules is being considered as a route to improved affinity.

  17. Accurate prediction of the dew points of acidic combustion gases by using an artificial neural network model

    International Nuclear Information System (INIS)

    ZareNezhad, Bahman; Aminian, Ali

    2011-01-01

    This paper presents a new approach based on using an artificial neural network (ANN) model for predicting the acid dew points of the combustion gases in process and power plants. The most important acidic combustion gases namely, SO 3 , SO 2 , NO 2 , HCl and HBr are considered in this investigation. Proposed Network is trained using the Levenberg-Marquardt back propagation algorithm and the hyperbolic tangent sigmoid activation function is applied to calculate the output values of the neurons of the hidden layer. According to the network's training, validation and testing results, a three layer neural network with nine neurons in the hidden layer is selected as the best architecture for accurate prediction of the acidic combustion gases dew points over wide ranges of acid and moisture concentrations. The proposed neural network model can have significant application in predicting the condensation temperatures of different acid gases to mitigate the corrosion problems in stacks, pollution control devices and energy recovery systems.

  18. A Weibull statistics-based lignocellulose saccharification model and a built-in parameter accurately predict lignocellulose hydrolysis performance.

    Science.gov (United States)

    Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu

    2015-09-01

    Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Combining first-principles and data modeling for the accurate prediction of the refractive index of organic polymers

    Science.gov (United States)

    Afzal, Mohammad Atif Faiz; Cheng, Chong; Hachmann, Johannes

    2018-06-01

    Organic materials with a high index of refraction (RI) are attracting considerable interest due to their potential application in optic and optoelectronic devices. However, most of these applications require an RI value of 1.7 or larger, while typical carbon-based polymers only exhibit values in the range of 1.3-1.5. This paper introduces an efficient computational protocol for the accurate prediction of RI values in polymers to facilitate in silico studies that can guide the discovery and design of next-generation high-RI materials. Our protocol is based on the Lorentz-Lorenz equation and is parametrized by the polarizability and number density values of a given candidate compound. In the proposed scheme, we compute the former using first-principles electronic structure theory and the latter using an approximation based on van der Waals volumes. The critical parameter in the number density approximation is the packing fraction of the bulk polymer, for which we have devised a machine learning model. We demonstrate the performance of the proposed RI protocol by testing its predictions against the experimentally known RI values of 112 optical polymers. Our approach to combine first-principles and data modeling emerges as both a successful and a highly economical path to determining the RI values for a wide range of organic polymers.

  20. The relative value of operon predictions

    NARCIS (Netherlands)

    Brouwer, Rutger W. W.; Kuipers, Oscar P.; van Hijum, Sacha A. F. T.

    For most organisms, computational operon predictions are the only source of genome-wide operon information. Operon prediction methods described in literature are based on (a combination of) the following five criteria: (i) intergenic distance, (ii) conserved gene clusters, (iii) functional relation,

  1. An accurate model for numerical prediction of piezoelectric energy harvesting from fluid structure interaction problems

    International Nuclear Information System (INIS)

    Amini, Y; Emdad, H; Farid, M

    2014-01-01

    Piezoelectric energy harvesting (PEH) from ambient energy sources, particularly vibrations, has attracted considerable interest throughout the last decade. Since fluid flow has a high energy density, it is one of the best candidates for PEH. Indeed, a piezoelectric energy harvesting process from the fluid flow takes the form of natural three-way coupling of the turbulent fluid flow, the electromechanical effect of the piezoelectric material and the electrical circuit. There are some experimental and numerical studies about piezoelectric energy harvesting from fluid flow in literatures. Nevertheless, accurate modeling for predicting characteristics of this three-way coupling has not yet been developed. In the present study, accurate modeling for this triple coupling is developed and validated by experimental results. A new code based on this modeling in an openFOAM platform is developed. (paper)

  2. Predicting media appeal from instinctive moral values

    NARCIS (Netherlands)

    Tamborini, R.; Eden, A.L.; Bowman, N.D.; Grizzard, M.; Weber, R.; Lewis, R.

    2013-01-01

    Zillmann's moral sanction theory defines morality subcultures for entertainment as groups of media viewers who evaluate character actions with shared value systems. However, the theory provides no a priori means to identify these shared value systems. The model of intuitive morality and exemplars

  3. Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space

    International Nuclear Information System (INIS)

    Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan; Pronobis, Wiktor; Lilienfeld, O. Anatole von; Müller, Klaus-Robert; Tkatchenko, Alexandre

    2015-01-01

    Simultaneously accurate and efficient prediction of molecular properties throughout chemical compound space is a critical ingredient toward rational compound design in chemical and pharmaceutical industries. Aiming toward this goal, we develop and apply a systematic hierarchy of efficient empirical methods to estimate atomization and total energies of molecules. These methods range from a simple sum over atoms, to addition of bond energies, to pairwise interatomic force fields, reaching to the more sophisticated machine learning approaches that are capable of describing collective interactions between many atoms or bonds. In the case of equilibrium molecular geometries, even simple pairwise force fields demonstrate prediction accuracy comparable to benchmark energies calculated using density functional theory with hybrid exchange-correlation functionals; however, accounting for the collective many-body interactions proves to be essential for approaching the 'holy grail' of chemical accuracy of 1 kcal/mol for both equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved by a vectorized representation of molecules (so-called Bag of Bonds model) that exhibits strong nonlocality in chemical space. The same representation allows us to predict accurate electronic properties of molecules, such as their polarizability and molecular frontier orbital energies

  4. Accurate cut-offs for predicting endoscopic activity and mucosal healing in Crohn's disease with fecal calprotectin

    Directory of Open Access Journals (Sweden)

    Juan María Vázquez-Morón

    Full Text Available Background: Fecal biomarkers, especially fecal calprotectin, are useful for predicting endoscopic activity in Crohn's disease; however, the cut-off point remains unclear. The aim of this paper was to analyze whether faecal calprotectin and M2 pyruvate kinase are good tools for generating highly accurate scores for the prediction of the state of endoscopic activity and mucosal healing. Methods: The simple endoscopic score for Crohn's disease and the Crohn's disease activity index was calculated for 71 patients diagnosed with Crohn's. Fecal calprotectin and M2-PK were measured by the enzyme-linked immunosorbent assay test. Results: A fecal calprotectin cut-off concentration of ≥ 170 µg/g (sensitivity 77.6%, specificity 95.5% and likelihood ratio +17.06 predicts a high probability of endoscopic activity, and a fecal calprotectin cut-off of ≤ 71 µg/g (sensitivity 95.9%, specificity 52.3% and likelihood ratio -0.08 predicts a high probability of mucosal healing. Three clinical groups were identified according to the data obtained: endoscopic activity (calprotectin ≥ 170, mucosal healing (calprotectin ≤ 71 and uncertainty (71 > calprotectin < 170, with significant differences in endoscopic values (F = 26.407, p < 0.01. Clinical activity or remission modified the probabilities of presenting endoscopic activity (100% vs 89% or mucosal healing (75% vs 87% in the diagnostic scores generated. M2-PK was insufficiently accurate to determine scores. Conclusions: The highly accurate scores for fecal calprotectin provide a useful tool for interpreting the probabilities of presenting endoscopic activity or mucosal healing, and are valuable in the specific clinical context.

  5. Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers

    DEFF Research Database (Denmark)

    Lundegaard, Claus; Lund, Ole; Nielsen, Morten

    2008-01-01

    Several accurate prediction systems have been developed for prediction of class I major histocompatibility complex (MHC):peptide binding. Most of these are trained on binding affinity data of primarily 9mer peptides. Here, we show how prediction methods trained on 9mer data can be used for accurate...

  6. Development and Validation of a Multidisciplinary Tool for Accurate and Efficient Rotorcraft Noise Prediction (MUTE)

    Science.gov (United States)

    Liu, Yi; Anusonti-Inthra, Phuriwat; Diskin, Boris

    2011-01-01

    A physics-based, systematically coupled, multidisciplinary prediction tool (MUTE) for rotorcraft noise was developed and validated with a wide range of flight configurations and conditions. MUTE is an aggregation of multidisciplinary computational tools that accurately and efficiently model the physics of the source of rotorcraft noise, and predict the noise at far-field observer locations. It uses systematic coupling approaches among multiple disciplines including Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and high fidelity acoustics. Within MUTE, advanced high-order CFD tools are used around the rotor blade to predict the transonic flow (shock wave) effects, which generate the high-speed impulsive noise. Predictions of the blade-vortex interaction noise in low speed flight are also improved by using the Particle Vortex Transport Method (PVTM), which preserves the wake flow details required for blade/wake and fuselage/wake interactions. The accuracy of the source noise prediction is further improved by utilizing a coupling approach between CFD and CSD, so that the effects of key structural dynamics, elastic blade deformations, and trim solutions are correctly represented in the analysis. The blade loading information and/or the flow field parameters around the rotor blade predicted by the CFD/CSD coupling approach are used to predict the acoustic signatures at far-field observer locations with a high-fidelity noise propagation code (WOPWOP3). The predicted results from the MUTE tool for rotor blade aerodynamic loading and far-field acoustic signatures are compared and validated with a variation of experimental data sets, such as UH60-A data, DNW test data and HART II test data.

  7. The MIDAS touch for Accurately Predicting the Stress-Strain Behavior of Tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-02

    Testing the behavior of metals in extreme environments is not always feasible, so material scientists use models to try and predict the behavior. To achieve accurate results it is necessary to use the appropriate model and material-specific parameters. This research evaluated the performance of six material models available in the MIDAS database [1] to determine at which temperatures and strain-rates they perform best, and to determine to which experimental data their parameters were optimized. Additionally, parameters were optimized for the Johnson-Cook model using experimental data from Lassila et al [2].

  8. Mini-Mental Status Examination: a short form of MMSE was as accurate as the original MMSE in predicting dementia

    DEFF Research Database (Denmark)

    Schultz-Larsen, Kirsten; Lomholt, Rikke Kirstine; Kreiner, Svend

    2006-01-01

    .4%), and positive predictive value (71.0%) but equal area under the receiver operating characteristic curve. Cross-validation on follow-up data confirmed the results. CONCLUSION: A short, valid MMSE, which is as sensitive and specific as the original MMSE for the screening of cognitive impairments and dementia......OBJECTIVES: This study assesses the properties of the Mini-Mental State Examination (MMSE) with the purpose of improving the efficiencies of the methods of screening for cognitive impairment and dementia. A specific purpose was to determine whether an abbreviated version would be as accurate...... is attractive for research and clinical practice, particularly if predictive power can be enhanced by combining the short MMSE with neuropsychological tests or informant reports....

  9. Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network

    Science.gov (United States)

    Ben Ali, Jaouher; Chebel-Morello, Brigitte; Saidi, Lotfi; Malinowski, Simon; Fnaiech, Farhat

    2015-05-01

    Accurate remaining useful life (RUL) prediction of critical assets is an important challenge in condition based maintenance to improve reliability and decrease machine's breakdown and maintenance's cost. Bearing is one of the most important components in industries which need to be monitored and the user should predict its RUL. The challenge of this study is to propose an original feature able to evaluate the health state of bearings and to estimate their RUL by Prognostics and Health Management (PHM) techniques. In this paper, the proposed method is based on the data-driven prognostic approach. The combination of Simplified Fuzzy Adaptive Resonance Theory Map (SFAM) neural network and Weibull distribution (WD) is explored. WD is used just in the training phase to fit measurement and to avoid areas of fluctuation in the time domain. SFAM training process is based on fitted measurements at present and previous inspection time points as input. However, the SFAM testing process is based on real measurements at present and previous inspections. Thanks to the fuzzy learning process, SFAM has an important ability and a good performance to learn nonlinear time series. As output, seven classes are defined; healthy bearing and six states for bearing degradation. In order to find the optimal RUL prediction, a smoothing phase is proposed in this paper. Experimental results show that the proposed method can reliably predict the RUL of rolling element bearings (REBs) based on vibration signals. The proposed prediction approach can be applied to prognostic other various mechanical assets.

  10. Accurate prediction of severe allergic reactions by a small set of environmental parameters (NDVI, temperature).

    Science.gov (United States)

    Notas, George; Bariotakis, Michail; Kalogrias, Vaios; Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Theodoropoulou, Katerina; Lavrentaki, Katerina; Kastrinakis, Stelios; Kampa, Marilena; Agouridakis, Panagiotis; Pirintsos, Stergios; Castanas, Elias

    2015-01-01

    Severe allergic reactions of unknown etiology,necessitating a hospital visit, have an important impact in the life of affected individuals and impose a major economic burden to societies. The prediction of clinically severe allergic reactions would be of great importance, but current attempts have been limited by the lack of a well-founded applicable methodology and the wide spatiotemporal distribution of allergic reactions. The valid prediction of severe allergies (and especially those needing hospital treatment) in a region, could alert health authorities and implicated individuals to take appropriate preemptive measures. In the present report we have collecterd visits for serious allergic reactions of unknown etiology from two major hospitals in the island of Crete, for two distinct time periods (validation and test sets). We have used the Normalized Difference Vegetation Index (NDVI), a satellite-based, freely available measurement, which is an indicator of live green vegetation at a given geographic area, and a set of meteorological data to develop a model capable of describing and predicting severe allergic reaction frequency. Our analysis has retained NDVI and temperature as accurate identifiers and predictors of increased hospital severe allergic reactions visits. Our approach may contribute towards the development of satellite-based modules, for the prediction of severe allergic reactions in specific, well-defined geographical areas. It could also probably be used for the prediction of other environment related diseases and conditions.

  11. XenoSite: accurately predicting CYP-mediated sites of metabolism with neural networks.

    Science.gov (United States)

    Zaretzki, Jed; Matlock, Matthew; Swamidass, S Joshua

    2013-12-23

    Understanding how xenobiotic molecules are metabolized is important because it influences the safety, efficacy, and dose of medicines and how they can be modified to improve these properties. The cytochrome P450s (CYPs) are proteins responsible for metabolizing 90% of drugs on the market, and many computational methods can predict which atomic sites of a molecule--sites of metabolism (SOMs)--are modified during CYP-mediated metabolism. This study improves on prior methods of predicting CYP-mediated SOMs by using new descriptors and machine learning based on neural networks. The new method, XenoSite, is faster to train and more accurate by as much as 4% or 5% for some isozymes. Furthermore, some "incorrect" predictions made by XenoSite were subsequently validated as correct predictions by revaluation of the source literature. Moreover, XenoSite output is interpretable as a probability, which reflects both the confidence of the model that a particular atom is metabolized and the statistical likelihood that its prediction for that atom is correct.

  12. The predictive value of cerebrovascular studies

    International Nuclear Information System (INIS)

    Hershey, F.B.; Auer, A.I.; Binnington, H.B.; Hurley, J.J.; Brown, D.K.

    1984-01-01

    The primary message of this paper is that a combination of conflicting test results may be interpreted more accurately by use of the Bayes theorem. Interpretation is easy when all test agree, but when the results conflict it is difficult to know which tests to trust. Each test has its strengths and weaknesses for different degrees of stenosis. The Bayes theorem permits the authors to calculate the likelihood of disease when faced with various combinations of positive and negative noninvasive tests. Formerly, their interpretation was a hopeful, possibly enlightened hunch about the conflicting results. Now, with the Bayes theorem, the guiding principle is always to avoid unnecessary arteriograms and not to overread the tests

  13. An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU.

    Science.gov (United States)

    Nemati, Shamim; Holder, Andre; Razmi, Fereshteh; Stanley, Matthew D; Clifford, Gari D; Buchman, Timothy G

    2018-04-01

    Sepsis is among the leading causes of morbidity, mortality, and cost overruns in critically ill patients. Early intervention with antibiotics improves survival in septic patients. However, no clinically validated system exists for real-time prediction of sepsis onset. We aimed to develop and validate an Artificial Intelligence Sepsis Expert algorithm for early prediction of sepsis. Observational cohort study. Academic medical center from January 2013 to December 2015. Over 31,000 admissions to the ICUs at two Emory University hospitals (development cohort), in addition to over 52,000 ICU patients from the publicly available Medical Information Mart for Intensive Care-III ICU database (validation cohort). Patients who met the Third International Consensus Definitions for Sepsis (Sepsis-3) prior to or within 4 hours of their ICU admission were excluded, resulting in roughly 27,000 and 42,000 patients within our development and validation cohorts, respectively. None. High-resolution vital signs time series and electronic medical record data were extracted. A set of 65 features (variables) were calculated on hourly basis and passed to the Artificial Intelligence Sepsis Expert algorithm to predict onset of sepsis in the proceeding T hours (where T = 12, 8, 6, or 4). Artificial Intelligence Sepsis Expert was used to predict onset of sepsis in the proceeding T hours and to produce a list of the most significant contributing factors. For the 12-, 8-, 6-, and 4-hour ahead prediction of sepsis, Artificial Intelligence Sepsis Expert achieved area under the receiver operating characteristic in the range of 0.83-0.85. Performance of the Artificial Intelligence Sepsis Expert on the development and validation cohorts was indistinguishable. Using data available in the ICU in real-time, Artificial Intelligence Sepsis Expert can accurately predict the onset of sepsis in an ICU patient 4-12 hours prior to clinical recognition. A prospective study is necessary to determine the

  14. An Extrapolation of a Radical Equation More Accurately Predicts Shelf Life of Frozen Biological Matrices.

    Science.gov (United States)

    De Vore, Karl W; Fatahi, Nadia M; Sass, John E

    2016-08-01

    Arrhenius modeling of analyte recovery at increased temperatures to predict long-term colder storage stability of biological raw materials, reagents, calibrators, and controls is standard practice in the diagnostics industry. Predicting subzero temperature stability using the same practice is frequently criticized but nevertheless heavily relied upon. We compared the ability to predict analyte recovery during frozen storage using 3 separate strategies: traditional accelerated studies with Arrhenius modeling, and extrapolation of recovery at 20% of shelf life using either ordinary least squares or a radical equation y = B1x(0.5) + B0. Computer simulations were performed to establish equivalence of statistical power to discern the expected changes during frozen storage or accelerated stress. This was followed by actual predictive and follow-up confirmatory testing of 12 chemistry and immunoassay analytes. Linear extrapolations tended to be the most conservative in the predicted percent recovery, reducing customer and patient risk. However, the majority of analytes followed a rate of change that slowed over time, which was fit best to a radical equation of the form y = B1x(0.5) + B0. Other evidence strongly suggested that the slowing of the rate was not due to higher-order kinetics, but to changes in the matrix during storage. Predicting shelf life of frozen products through extrapolation of early initial real-time storage analyte recovery should be considered the most accurate method. Although in this study the time required for a prediction was longer than a typical accelerated testing protocol, there are less potential sources of error, reduced costs, and a lower expenditure of resources. © 2016 American Association for Clinical Chemistry.

  15. Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Katherine J.; Patrick, Denis R.; Bissell, Mina J.; Fournier, Marcia V.

    2008-10-20

    One of the major tenets in breast cancer research is that early detection is vital for patient survival by increasing treatment options. To that end, we have previously used a novel unsupervised approach to identify a set of genes whose expression predicts prognosis of breast cancer patients. The predictive genes were selected in a well-defined three dimensional (3D) cell culture model of non-malignant human mammary epithelial cell morphogenesis as down-regulated during breast epithelial cell acinar formation and cell cycle arrest. Here we examine the ability of this gene signature (3D-signature) to predict prognosis in three independent breast cancer microarray datasets having 295, 286, and 118 samples, respectively. Our results show that the 3D-signature accurately predicts prognosis in three unrelated patient datasets. At 10 years, the probability of positive outcome was 52, 51, and 47 percent in the group with a poor-prognosis signature and 91, 75, and 71 percent in the group with a good-prognosis signature for the three datasets, respectively (Kaplan-Meier survival analysis, p<0.05). Hazard ratios for poor outcome were 5.5 (95% CI 3.0 to 12.2, p<0.0001), 2.4 (95% CI 1.6 to 3.6, p<0.0001) and 1.9 (95% CI 1.1 to 3.2, p = 0.016) and remained significant for the two larger datasets when corrected for estrogen receptor (ER) status. Hence the 3D-signature accurately predicts breast cancer outcome in both ER-positive and ER-negative tumors, though individual genes differed in their prognostic ability in the two subtypes. Genes that were prognostic in ER+ patients are AURKA, CEP55, RRM2, EPHA2, FGFBP1, and VRK1, while genes prognostic in ER patients include ACTB, FOXM1 and SERPINE2 (Kaplan-Meier p<0.05). Multivariable Cox regression analysis in the largest dataset showed that the 3D-signature was a strong independent factor in predicting breast cancer outcome. The 3D-signature accurately predicts breast cancer outcome across multiple datasets and holds prognostic

  16. Microbiome Data Accurately Predicts the Postmortem Interval Using Random Forest Regression Models

    Directory of Open Access Journals (Sweden)

    Aeriel Belk

    2018-02-01

    Full Text Available Death investigations often include an effort to establish the postmortem interval (PMI in cases in which the time of death is uncertain. The postmortem interval can lead to the identification of the deceased and the validation of witness statements and suspect alibis. Recent research has demonstrated that microbes provide an accurate clock that starts at death and relies on ecological change in the microbial communities that normally inhabit a body and its surrounding environment. Here, we explore how to build the most robust Random Forest regression models for prediction of PMI by testing models built on different sample types (gravesoil, skin of the torso, skin of the head, gene markers (16S ribosomal RNA (rRNA, 18S rRNA, internal transcribed spacer regions (ITS, and taxonomic levels (sequence variants, species, genus, etc.. We also tested whether particular suites of indicator microbes were informative across different datasets. Generally, results indicate that the most accurate models for predicting PMI were built using gravesoil and skin data using the 16S rRNA genetic marker at the taxonomic level of phyla. Additionally, several phyla consistently contributed highly to model accuracy and may be candidate indicators of PMI.

  17. Predicting Falls in People with Multiple Sclerosis: Fall History Is as Accurate as More Complex Measures

    Directory of Open Access Journals (Sweden)

    Michelle H. Cameron

    2013-01-01

    Full Text Available Background. Many people with MS fall, but the best method for identifying those at increased fall risk is not known. Objective. To compare how accurately fall history, questionnaires, and physical tests predict future falls and injurious falls in people with MS. Methods. 52 people with MS were asked if they had fallen in the past 2 months and the past year. Subjects were also assessed with the Activities-specific Balance Confidence, Falls Efficacy Scale-International, and Multiple Sclerosis Walking Scale-12 questionnaires, the Expanded Disability Status Scale, Timed 25-Foot Walk, and computerized dynamic posturography and recorded their falls daily for the following 6 months with calendars. The ability of baseline assessments to predict future falls was compared using receiver operator curves and logistic regression. Results. All tests individually provided similar fall prediction (area under the curve (AUC 0.60–0.75. A fall in the past year was the best predictor of falls (AUC 0.75, sensitivity 0.89, specificity 0.56 or injurious falls (AUC 0.69, sensitivity 0.96, specificity 0.41 in the following 6 months. Conclusion. Simply asking people with MS if they have fallen in the past year predicts future falls and injurious falls as well as more complex, expensive, or time-consuming approaches.

  18. ILT based defect simulation of inspection images accurately predicts mask defect printability on wafer

    Science.gov (United States)

    Deep, Prakash; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2016-05-01

    At advanced technology nodes mask complexity has been increased because of large-scale use of resolution enhancement technologies (RET) which includes Optical Proximity Correction (OPC), Inverse Lithography Technology (ILT) and Source Mask Optimization (SMO). The number of defects detected during inspection of such mask increased drastically and differentiation of critical and non-critical defects are more challenging, complex and time consuming. Because of significant defectivity of EUVL masks and non-availability of actinic inspection, it is important and also challenging to predict the criticality of defects for printability on wafer. This is one of the significant barriers for the adoption of EUVL for semiconductor manufacturing. Techniques to decide criticality of defects from images captured using non actinic inspection images is desired till actinic inspection is not available. High resolution inspection of photomask images detects many defects which are used for process and mask qualification. Repairing all defects is not practical and probably not required, however it's imperative to know which defects are severe enough to impact wafer before repair. Additionally, wafer printability check is always desired after repairing a defect. AIMSTM review is the industry standard for this, however doing AIMSTM review for all defects is expensive and very time consuming. Fast, accurate and an economical mechanism is desired which can predict defect printability on wafer accurately and quickly from images captured using high resolution inspection machine. Predicting defect printability from such images is challenging due to the fact that the high resolution images do not correlate with actual mask contours. The challenge is increased due to use of different optical condition during inspection other than actual scanner condition, and defects found in such images do not have correlation with actual impact on wafer. Our automated defect simulation tool predicts

  19. Evaluating the Predictive Value of Growth Prediction Models

    Science.gov (United States)

    Murphy, Daniel L.; Gaertner, Matthew N.

    2014-01-01

    This study evaluates four growth prediction models--projection, student growth percentile, trajectory, and transition table--commonly used to forecast (and give schools credit for) middle school students' future proficiency. Analyses focused on vertically scaled summative mathematics assessments, and two performance standards conditions (high…

  20. Differential contribution of visual and auditory information to accurately predict the direction and rotational motion of a visual stimulus.

    Science.gov (United States)

    Park, Seoung Hoon; Kim, Seonjin; Kwon, MinHyuk; Christou, Evangelos A

    2016-03-01

    Vision and auditory information are critical for perception and to enhance the ability of an individual to respond accurately to a stimulus. However, it is unknown whether visual and auditory information contribute differentially to identify the direction and rotational motion of the stimulus. The purpose of this study was to determine the ability of an individual to accurately predict the direction and rotational motion of the stimulus based on visual and auditory information. In this study, we recruited 9 expert table-tennis players and used table-tennis service as our experimental model. Participants watched recorded services with different levels of visual and auditory information. The goal was to anticipate the direction of the service (left or right) and the rotational motion of service (topspin, sidespin, or cut). We recorded their responses and quantified the following outcomes: (i) directional accuracy and (ii) rotational motion accuracy. The response accuracy was the accurate predictions relative to the total number of trials. The ability of the participants to predict the direction of the service accurately increased with additional visual information but not with auditory information. In contrast, the ability of the participants to predict the rotational motion of the service accurately increased with the addition of auditory information to visual information but not with additional visual information alone. In conclusion, this finding demonstrates that visual information enhances the ability of an individual to accurately predict the direction of the stimulus, whereas additional auditory information enhances the ability of an individual to accurately predict the rotational motion of stimulus.

  1. Improvement of a land surface model for accurate prediction of surface energy and water balances

    International Nuclear Information System (INIS)

    Katata, Genki

    2009-02-01

    In order to predict energy and water balances between the biosphere and atmosphere accurately, sophisticated schemes to calculate evaporation and adsorption processes in the soil and cloud (fog) water deposition on vegetation were implemented in the one-dimensional atmosphere-soil-vegetation model including CO 2 exchange process (SOLVEG2). Performance tests in arid areas showed that the above schemes have a significant effect on surface energy and water balances. The framework of the above schemes incorporated in the SOLVEG2 and instruction for running the model are documented. With further modifications of the model to implement the carbon exchanges between the vegetation and soil, deposition processes of materials on the land surface, vegetation stress-growth-dynamics etc., the model is suited to evaluate an effect of environmental loads to ecosystems by atmospheric pollutants and radioactive substances under climate changes such as global warming and drought. (author)

  2. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties

    Science.gov (United States)

    Xie, Tian; Grossman, Jeffrey C.

    2018-04-01

    The use of machine learning methods for accelerating the design of crystalline materials usually requires manually constructed feature vectors or complex transformation of atom coordinates to input the crystal structure, which either constrains the model to certain crystal types or makes it difficult to provide chemical insights. Here, we develop a crystal graph convolutional neural networks framework to directly learn material properties from the connection of atoms in the crystal, providing a universal and interpretable representation of crystalline materials. Our method provides a highly accurate prediction of density functional theory calculated properties for eight different properties of crystals with various structure types and compositions after being trained with 1 04 data points. Further, our framework is interpretable because one can extract the contributions from local chemical environments to global properties. Using an example of perovskites, we show how this information can be utilized to discover empirical rules for materials design.

  3. Watershed area ratio accurately predicts daily streamflow in nested catchments in the Catskills, New York

    Directory of Open Access Journals (Sweden)

    Chris C. Gianfagna

    2015-09-01

    New hydrological insights for the region: Watershed area ratio was the most important basin parameter for estimating flow at upstream sites based on downstream flow. The area ratio alone explained 93% of the variance in the slopes of relationships between upstream and downstream flows. Regression analysis indicated that flow at any upstream point can be estimated by multiplying the flow at a downstream reference gage by the watershed area ratio. This method accurately predicted upstream flows at area ratios as low as 0.005. We also observed a very strong relationship (R2 = 0.79 between area ratio and flow–flow slopes in non-nested catchments. Our results indicate that a simple flow estimation method based on watershed area ratios is justifiable, and indeed preferred, for the estimation of daily streamflow in ungaged watersheds in the Catskills region.

  4. A Machine Learned Classifier That Uses Gene Expression Data to Accurately Predict Estrogen Receptor Status

    Science.gov (United States)

    Bastani, Meysam; Vos, Larissa; Asgarian, Nasimeh; Deschenes, Jean; Graham, Kathryn; Mackey, John; Greiner, Russell

    2013-01-01

    Background Selecting the appropriate treatment for breast cancer requires accurately determining the estrogen receptor (ER) status of the tumor. However, the standard for determining this status, immunohistochemical analysis of formalin-fixed paraffin embedded samples, suffers from numerous technical and reproducibility issues. Assessment of ER-status based on RNA expression can provide more objective, quantitative and reproducible test results. Methods To learn a parsimonious RNA-based classifier of hormone receptor status, we applied a machine learning tool to a training dataset of gene expression microarray data obtained from 176 frozen breast tumors, whose ER-status was determined by applying ASCO-CAP guidelines to standardized immunohistochemical testing of formalin fixed tumor. Results This produced a three-gene classifier that can predict the ER-status of a novel tumor, with a cross-validation accuracy of 93.17±2.44%. When applied to an independent validation set and to four other public databases, some on different platforms, this classifier obtained over 90% accuracy in each. In addition, we found that this prediction rule separated the patients' recurrence-free survival curves with a hazard ratio lower than the one based on the IHC analysis of ER-status. Conclusions Our efficient and parsimonious classifier lends itself to high throughput, highly accurate and low-cost RNA-based assessments of ER-status, suitable for routine high-throughput clinical use. This analytic method provides a proof-of-principle that may be applicable to developing effective RNA-based tests for other biomarkers and conditions. PMID:24312637

  5. A machine learned classifier that uses gene expression data to accurately predict estrogen receptor status.

    Directory of Open Access Journals (Sweden)

    Meysam Bastani

    Full Text Available BACKGROUND: Selecting the appropriate treatment for breast cancer requires accurately determining the estrogen receptor (ER status of the tumor. However, the standard for determining this status, immunohistochemical analysis of formalin-fixed paraffin embedded samples, suffers from numerous technical and reproducibility issues. Assessment of ER-status based on RNA expression can provide more objective, quantitative and reproducible test results. METHODS: To learn a parsimonious RNA-based classifier of hormone receptor status, we applied a machine learning tool to a training dataset of gene expression microarray data obtained from 176 frozen breast tumors, whose ER-status was determined by applying ASCO-CAP guidelines to standardized immunohistochemical testing of formalin fixed tumor. RESULTS: This produced a three-gene classifier that can predict the ER-status of a novel tumor, with a cross-validation accuracy of 93.17±2.44%. When applied to an independent validation set and to four other public databases, some on different platforms, this classifier obtained over 90% accuracy in each. In addition, we found that this prediction rule separated the patients' recurrence-free survival curves with a hazard ratio lower than the one based on the IHC analysis of ER-status. CONCLUSIONS: Our efficient and parsimonious classifier lends itself to high throughput, highly accurate and low-cost RNA-based assessments of ER-status, suitable for routine high-throughput clinical use. This analytic method provides a proof-of-principle that may be applicable to developing effective RNA-based tests for other biomarkers and conditions.

  6. Highly accurate prediction of food challenge outcome using routinely available clinical data.

    Science.gov (United States)

    DunnGalvin, Audrey; Daly, Deirdre; Cullinane, Claire; Stenke, Emily; Keeton, Diane; Erlewyn-Lajeunesse, Mich; Roberts, Graham C; Lucas, Jane; Hourihane, Jonathan O'B

    2011-03-01

    Serum specific IgE or skin prick tests are less useful at levels below accepted decision points. We sought to develop and validate a model to predict food challenge outcome by using routinely collected data in a diverse sample of children considered suitable for food challenge. The proto-algorithm was generated by using a limited data set from 1 service (phase 1). We retrospectively applied, evaluated, and modified the initial model by using an extended data set in another center (phase 2). Finally, we prospectively validated the model in a blind study in a further group of children undergoing food challenge for peanut, milk, or egg in the second center (phase 3). Allergen-specific models were developed for peanut, egg, and milk. Phase 1 (N = 429) identified 5 clinical factors associated with diagnosis of food allergy by food challenge. In phase 2 (N = 289), we examined the predictive ability of 6 clinical factors: skin prick test, serum specific IgE, total IgE minus serum specific IgE, symptoms, sex, and age. In phase 3 (N = 70), 97% of cases were accurately predicted as positive and 94% as negative. Our model showed an advantage in clinical prediction compared with serum specific IgE only, skin prick test only, and serum specific IgE and skin prick test (92% accuracy vs 57%, and 81%, respectively). Our findings have implications for the improved delivery of food allergy-related health care, enhanced food allergy-related quality of life, and economized use of health service resources by decreasing the number of food challenges performed. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  7. An automated A-value measurement tool for accurate cochlear duct length estimation.

    Science.gov (United States)

    Iyaniwura, John E; Elfarnawany, Mai; Ladak, Hanif M; Agrawal, Sumit K

    2018-01-22

    There has been renewed interest in the cochlear duct length (CDL) for preoperative cochlear implant electrode selection and postoperative generation of patient-specific frequency maps. The CDL can be estimated by measuring the A-value, which is defined as the length between the round window and the furthest point on the basal turn. Unfortunately, there is significant intra- and inter-observer variability when these measurements are made clinically. The objective of this study was to develop an automated A-value measurement algorithm to improve accuracy and eliminate observer variability. Clinical and micro-CT images of 20 cadaveric cochleae specimens were acquired. The micro-CT of one sample was chosen as the atlas, and A-value fiducials were placed onto that image. Image registration (rigid affine and non-rigid B-spline) was applied between the atlas and the 19 remaining clinical CT images. The registration transform was applied to the A-value fiducials, and the A-value was then automatically calculated for each specimen. High resolution micro-CT images of the same 19 specimens were used to measure the gold standard A-values for comparison against the manual and automated methods. The registration algorithm had excellent qualitative overlap between the atlas and target images. The automated method eliminated the observer variability and the systematic underestimation by experts. Manual measurement of the A-value on clinical CT had a mean error of 9.5 ± 4.3% compared to micro-CT, and this improved to an error of 2.7 ± 2.1% using the automated algorithm. Both the automated and manual methods correlated significantly with the gold standard micro-CT A-values (r = 0.70, p value measurement tool using atlas-based registration methods was successfully developed and validated. The automated method eliminated the observer variability and improved accuracy as compared to manual measurements by experts. This open-source tool has the potential to benefit

  8. ChIP-seq Accurately Predicts Tissue-Specific Activity of Enhancers

    Energy Technology Data Exchange (ETDEWEB)

    Visel, Axel; Blow, Matthew J.; Li, Zirong; Zhang, Tao; Akiyama, Jennifer A.; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Wright, Crystal; Chen, Feng; Afzal, Veena; Ren, Bing; Rubin, Edward M.; Pennacchio, Len A.

    2009-02-01

    A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover since they are scattered amongst the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here, we performed chromatin immunoprecipitation with the enhancer-associated protein p300, followed by massively-parallel sequencing, to map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain, and limb tissue. We tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases revealed reproducible enhancer activity in those tissues predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities and suggest that such datasets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.

  9. Accurate and Reliable Prediction of the Binding Affinities of Macrocycles to Their Protein Targets.

    Science.gov (United States)

    Yu, Haoyu S; Deng, Yuqing; Wu, Yujie; Sindhikara, Dan; Rask, Amy R; Kimura, Takayuki; Abel, Robert; Wang, Lingle

    2017-12-12

    Macrocycles have been emerging as a very important drug class in the past few decades largely due to their expanded chemical diversity benefiting from advances in synthetic methods. Macrocyclization has been recognized as an effective way to restrict the conformational space of acyclic small molecule inhibitors with the hope of improving potency, selectivity, and metabolic stability. Because of their relatively larger size as compared to typical small molecule drugs and the complexity of the structures, efficient sampling of the accessible macrocycle conformational space and accurate prediction of their binding affinities to their target protein receptors poses a great challenge of central importance in computational macrocycle drug design. In this article, we present a novel method for relative binding free energy calculations between macrocycles with different ring sizes and between the macrocycles and their corresponding acyclic counterparts. We have applied the method to seven pharmaceutically interesting data sets taken from recent drug discovery projects including 33 macrocyclic ligands covering a diverse chemical space. The predicted binding free energies are in good agreement with experimental data with an overall root-mean-square error (RMSE) of 0.94 kcal/mol. This is to our knowledge the first time where the free energy of the macrocyclization of linear molecules has been directly calculated with rigorous physics-based free energy calculation methods, and we anticipate the outstanding accuracy demonstrated here across a broad range of target classes may have significant implications for macrocycle drug discovery.

  10. Do Dual-Route Models Accurately Predict Reading and Spelling Performance in Individuals with Acquired Alexia and Agraphia?

    OpenAIRE

    Rapcsak, Steven Z.; Henry, Maya L.; Teague, Sommer L.; Carnahan, Susan D.; Beeson, Pélagie M.

    2007-01-01

    Coltheart and colleagues (Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; Castles, Bates, & Coltheart, 2006) have demonstrated that an equation derived from dual-route theory accurately predicts reading performance in young normal readers and in children with reading impairment due to developmental dyslexia or stroke. In this paper we present evidence that the dual-route equation and a related multiple regression model also accurately predict both reading and spelling performance in adult...

  11. Corrosion pit depth extreme value prediction from limited inspection data

    International Nuclear Information System (INIS)

    Najjar, D.; Bigerelle, M.; Iost, A.; Bourdeau, L.; Guillou, D.

    2004-01-01

    Passive alloys like stainless steels are prone to localized corrosion in chlorides containing environments. The greater the depth of the localized corrosion phenomenon, the more dramatic the related damage that can lead to a structure weakening by fast perforation. In practical situations, because measurements are time consuming and expensive, the challenge is usually to predict the maximum pit depth that could be found in a large scale installation from the processing of a limited inspection data. As far as the parent distribution of pit depths is assumed to be of exponential type, the most successful method was found in the application of the statistical extreme-value analysis developed by Gumbel. This study aims to present a new and alternative methodology to the Gumbel approach with a view towards accurately estimating the maximum pit depth observed on a ferritic stainless steel AISI 409 subjected to an accelerated corrosion test (ECC1) used in automotive industry. This methodology consists in characterising and modelling both the morphology of pits and the statistical distribution of their depths from a limited inspection dataset. The heart of the data processing is based on the combination of two recent statistical methods that avoid making any choice about the type of the theoretical underlying parent distribution of pit depths: the Generalized Lambda Distribution (GLD) is used to model the distribution of pit depths and the Bootstrap technique to determine a confidence interval on the maximum pit depth. (authors)

  12. Accurate First-Principles Spectra Predictions for Planetological and Astrophysical Applications at Various T-Conditions

    Science.gov (United States)

    Rey, M.; Nikitin, A. V.; Tyuterev, V.

    2014-06-01

    Knowledge of near infrared intensities of rovibrational transitions of polyatomic molecules is essential for the modeling of various planetary atmospheres, brown dwarfs and for other astrophysical applications 1,2,3. For example, to analyze exoplanets, atmospheric models have been developed, thus making the need to provide accurate spectroscopic data. Consequently, the spectral characterization of such planetary objects relies on the necessity of having adequate and reliable molecular data in extreme conditions (temperature, optical path length, pressure). On the other hand, in the modeling of astrophysical opacities, millions of lines are generally involved and the line-by-line extraction is clearly not feasible in laboratory measurements. It is thus suggested that this large amount of data could be interpreted only by reliable theoretical predictions. There exists essentially two theoretical approaches for the computation and prediction of spectra. The first one is based on empirically-fitted effective spectroscopic models. Another way for computing energies, line positions and intensities is based on global variational calculations using ab initio surfaces. They do not yet reach the spectroscopic accuracy stricto sensu but implicitly account for all intramolecular interactions including resonance couplings in a wide spectral range. The final aim of this work is to provide reliable predictions which could be quantitatively accurate with respect to the precision of available observations and as complete as possible. All this thus requires extensive first-principles quantum mechanical calculations essentially based on three necessary ingredients which are (i) accurate intramolecular potential energy surface and dipole moment surface components well-defined in a large range of vibrational displacements and (ii) efficient computational methods combined with suitable choices of coordinates to account for molecular symmetry properties and to achieve a good numerical

  13. Respiratory variation in peak aortic velocity accurately predicts fluid responsiveness in children undergoing neurosurgery under general anesthesia.

    Science.gov (United States)

    Morparia, Kavita G; Reddy, Srijaya K; Olivieri, Laura J; Spaeder, Michael C; Schuette, Jennifer J

    2018-04-01

    The determination of fluid responsiveness in the critically ill child is of vital importance, more so as fluid overload becomes increasingly associated with worse outcomes. Dynamic markers of volume responsiveness have shown some promise in the pediatric population, but more research is needed before they can be adopted for widespread use. Our aim was to investigate effectiveness of respiratory variation in peak aortic velocity and pulse pressure variation to predict fluid responsiveness, and determine their optimal cutoff values. We performed a prospective, observational study at a single tertiary care pediatric center. Twenty-one children with normal cardiorespiratory status undergoing general anesthesia for neurosurgery were enrolled. Respiratory variation in peak aortic velocity (ΔVpeak ao) was measured both before and after volume expansion using a bedside ultrasound device. Pulse pressure variation (PPV) value was obtained from the bedside monitor. All patients received a 10 ml/kg fluid bolus as volume expansion, and were qualified as responders if stroke volume increased >15% as a result. Utility of ΔVpeak ao and PPV and to predict responsiveness to volume expansion was investigated. A baseline ΔVpeak ao value of greater than or equal to 12.3% best predicted a positive response to volume expansion, with a sensitivity of 77%, specificity of 89% and area under receiver operating characteristic curve of 0.90. PPV failed to demonstrate utility in this patient population. Respiratory variation in peak aortic velocity is a promising marker for optimization of perioperative fluid therapy in the pediatric population and can be accurately measured using bedside ultrasonography. More research is needed to evaluate the lack of effectiveness of pulse pressure variation for this purpose.

  14. Does the emergency surgery score accurately predict outcomes in emergent laparotomies?

    Science.gov (United States)

    Peponis, Thomas; Bohnen, Jordan D; Sangji, Naveen F; Nandan, Anirudh R; Han, Kelsey; Lee, Jarone; Yeh, D Dante; de Moya, Marc A; Velmahos, George C; Chang, David C; Kaafarani, Haytham M A

    2017-08-01

    The emergency surgery score is a mortality-risk calculator for emergency general operation patients. We sought to examine whether the emergency surgery score predicts 30-day morbidity and mortality in a high-risk group of patients undergoing emergent laparotomy. Using the 2011-2012 American College of Surgeons National Surgical Quality Improvement Program database, we identified all patients who underwent emergent laparotomy using (1) the American College of Surgeons National Surgical Quality Improvement Program definition of "emergent," and (2) all Current Procedural Terminology codes denoting a laparotomy, excluding aortic aneurysm rupture. Multivariable logistic regression analyses were performed to measure the correlation (c-statistic) between the emergency surgery score and (1) 30-day mortality, and (2) 30-day morbidity after emergent laparotomy. As sensitivity analyses, the correlation between the emergency surgery score and 30-day mortality was also evaluated in prespecified subgroups based on Current Procedural Terminology codes. A total of 26,410 emergent laparotomy patients were included. Thirty-day mortality and morbidity were 10.2% and 43.8%, respectively. The emergency surgery score correlated well with mortality (c-statistic = 0.84); scores of 1, 11, and 22 correlated with mortalities of 0.4%, 39%, and 100%, respectively. Similarly, the emergency surgery score correlated well with morbidity (c-statistic = 0.74); scores of 0, 7, and 11 correlated with complication rates of 13%, 58%, and 79%, respectively. The morbidity rates plateaued for scores higher than 11. Sensitivity analyses demonstrated that the emergency surgery score effectively predicts mortality in patients undergoing emergent (1) splenic, (2) gastroduodenal, (3) intestinal, (4) hepatobiliary, or (5) incarcerated ventral hernia operation. The emergency surgery score accurately predicts outcomes in all types of emergent laparotomy patients and may prove valuable as a bedside decision

  15. Combining multiple regression and principal component analysis for accurate predictions for column ozone in Peninsular Malaysia

    Science.gov (United States)

    Rajab, Jasim M.; MatJafri, M. Z.; Lim, H. S.

    2013-06-01

    This study encompasses columnar ozone modelling in the peninsular Malaysia. Data of eight atmospheric parameters [air surface temperature (AST), carbon monoxide (CO), methane (CH4), water vapour (H2Ovapour), skin surface temperature (SSKT), atmosphere temperature (AT), relative humidity (RH), and mean surface pressure (MSP)] data set, retrieved from NASA's Atmospheric Infrared Sounder (AIRS), for the entire period (2003-2008) was employed to develop models to predict the value of columnar ozone (O3) in study area. The combined method, which is based on using both multiple regressions combined with principal component analysis (PCA) modelling, was used to predict columnar ozone. This combined approach was utilized to improve the prediction accuracy of columnar ozone. Separate analysis was carried out for north east monsoon (NEM) and south west monsoon (SWM) seasons. The O3 was negatively correlated with CH4, H2Ovapour, RH, and MSP, whereas it was positively correlated with CO, AST, SSKT, and AT during both the NEM and SWM season periods. Multiple regression analysis was used to fit the columnar ozone data using the atmospheric parameter's variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to acquire subsets of the predictor variables to be comprised in the linear regression model of the atmospheric parameter's variables. It was found that the increase in columnar O3 value is associated with an increase in the values of AST, SSKT, AT, and CO and with a drop in the levels of CH4, H2Ovapour, RH, and MSP. The result of fitting the best models for the columnar O3 value using eight of the independent variables gave about the same values of the R (≈0.93) and R2 (≈0.86) for both the NEM and SWM seasons. The common variables that appeared in both regression equations were SSKT, CH4 and RH, and the principal precursor of the columnar O3 value in both the NEM and SWM seasons was SSKT.

  16. THE EVALUATION OF METHODS FOR CREATING DEFENSIBLE, REPEATABLE, OBJECTIVE AND ACCURATE TOLERANCE VALUES

    Science.gov (United States)

    In the field of bioassessment, tolerance has traditionally referred to the degree to which organisms can withstand environmental degradation. This concept has been around for many years and its use is widespread. In numerous cases, tolerance values (TVs) have been assigned to i...

  17. Depth Value Pre-Processing for Accurate Transfer Learning Based RGB-D Object Recognition

    DEFF Research Database (Denmark)

    Aakerberg, Andreas; Nasrollahi, Kamal; Rasmussen, Christoffer Bøgelund

    2017-01-01

    of an existing deeplearning based RGB-D object recognition model, namely the FusionNet proposed by Eitel et al. First, we showthat encoding the depth values as colorized surface normals is beneficial, when the model is initialized withweights learned from training on ImageNet data. Additionally, we show...

  18. Establishing traceability of photometric absorbance values for accurate measurements of the haemoglobin concentration in blood

    Science.gov (United States)

    Witt, K.; Wolf, H. U.; Heuck, C.; Kammel, M.; Kummrow, A.; Neukammer, J.

    2013-10-01

    Haemoglobin concentration in blood is one of the most frequently measured analytes in laboratory medicine. Reference and routine methods for the determination of the haemoglobin concentration in blood are based on the conversion of haeme, haemoglobin and haemiglobin species into uniform end products. The total haemoglobin concentration in blood is measured using the absorbance of the reaction products. Traceable absorbance measurement values on the highest metrological level are a prerequisite for the calibration and evaluation of procedures with respect to their suitability for routine measurements and their potential as reference measurement procedures. For this purpose, we describe a procedure to establish traceability of spectral absorbance measurements for the haemiglobincyanide (HiCN) method and for the alkaline haematin detergent (AHD) method. The latter is characterized by a higher stability of the reaction product. In addition, the toxic hazard of cyanide, which binds to the iron ion of the haem group and thus inhibits the oxygen transport, is avoided. Traceability is established at different wavelengths by applying total least-squares analysis to derive the conventional quantity values for the absorbance from the measured values. Extrapolation and interpolation are applied to get access to the spectral regions required to characterize the Q-absorption bands of the HiCN and AHD methods, respectively. For absorbance values between 0.3 and 1.8, the contributions of absorbance measurements to the total expanded uncertainties (95% level of confidence) of absorbance measurements range from 1% to 0.4%.

  19. High-order accurate numerical algorithm for three-dimensional transport prediction

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D W [Savannah River Lab., Aiken, SC; Baker, A J

    1980-01-01

    The numerical solution of the three-dimensional pollutant transport equation is obtained with the method of fractional steps; advection is solved by the method of moments and diffusion by cubic splines. Topography and variable mesh spacing are accounted for with coordinate transformations. First estimate wind fields are obtained by interpolation to grid points surrounding specific data locations. Numerical results agree with results obtained from analytical Gaussian plume relations for ideal conditions. The numerical model is used to simulate the transport of tritium released from the Savannah River Plant on 2 May 1974. Predicted ground level air concentration 56 km from the release point is within 38% of the experimentally measured value.

  20. Enhance the Value of a Research Paper: Choosing the Right References and Writing them Accurately.

    Science.gov (United States)

    Bavdekar, Sandeep B

    2016-03-01

    References help readers identify and locate sources used for justifying the need for conducting the research study, verify methods employed in the study and for discussing the interpretation of results and implications of the study. It is extremely essential that references are accurate and complete. This article provides suggestions regarding choosing references and writing reference list. References are a list of sources that are selected by authors to represent the best documents concerning the research study.1 They constitute the foundation of any research paper. Although generally written towards the end of the article-writing process, they are nevertheless extremely important. They provide the context for the hypothesis and help justify the need for conducting the research study. Authors use references to inform readers about the techniques used for conducting the study and convince them about the appropriateness of methodology used. References help provide appropriate perspective in which the research findings should be seen and interpreted. This communication will discuss the purpose of citations, how to select quality sources for citing and the importance of accuracy while writing the reference list. © Journal of the Association of Physicians of India 2011.

  1. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    International Nuclear Information System (INIS)

    Wong, Sharon; Back, Michael; Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun; Lu, Jaide Jay

    2012-01-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio® treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  2. A fast algorithm for determining bounds and accurate approximate p-values of the rank product statistic for replicate experiments.

    Science.gov (United States)

    Heskes, Tom; Eisinga, Rob; Breitling, Rainer

    2014-11-21

    The rank product method is a powerful statistical technique for identifying differentially expressed molecules in replicated experiments. A critical issue in molecule selection is accurate calculation of the p-value of the rank product statistic to adequately address multiple testing. Both exact calculation and permutation and gamma approximations have been proposed to determine molecule-level significance. These current approaches have serious drawbacks as they are either computationally burdensome or provide inaccurate estimates in the tail of the p-value distribution. We derive strict lower and upper bounds to the exact p-value along with an accurate approximation that can be used to assess the significance of the rank product statistic in a computationally fast manner. The bounds and the proposed approximation are shown to provide far better accuracy over existing approximate methods in determining tail probabilities, with the slightly conservative upper bound protecting against false positives. We illustrate the proposed method in the context of a recently published analysis on transcriptomic profiling performed in blood. We provide a method to determine upper bounds and accurate approximate p-values of the rank product statistic. The proposed algorithm provides an order of magnitude increase in throughput as compared with current approaches and offers the opportunity to explore new application domains with even larger multiple testing issue. The R code is published in one of the Additional files and is available at http://www.ru.nl/publish/pages/726696/rankprodbounds.zip .

  3. Prediction of cereal feed value by near infrared spectroscopy

    DEFF Research Database (Denmark)

    Jørgensen, Johannes Ravn

    . NIRS is therefore appropriate as a quick method for the determination of FEsv and FEso, since it is rapid (approximately 1 minute per measurement of a ground test) and cheap. The aim is to develop a rapid method to analyse grain feed value. This will contribute to highlight the opportunities...... feed, a possible tool to assess the feed value of new varieties in the variety testing and a useful, cheap and rapid tool for cereal breeders. A bank of 1213 grain samples of wheat, triticale, barley and rye, and related chemical reference analyses to describe the feed value have been established...... with the error in the chemical analysis. Prediction error by NIRS prediction of feed value has been shown to be above the error of the chemical measurement. The conclusion is that it has proved possible to predict the feed value in cereals with NIRS quickly and cheaply, but prediction error with this method...

  4. Prediction of cereal feed value using spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Jørgensen, Johannes Ravn; Gislum, René

    2009-01-01

    of EDOM, EDOMi, FEso and FEsv. The outcome of a successful NIRS calibration will be a relatively cheap tool to monitor, diversify and evaluate the quality of cereals for animal feed, a possible tool to assess the feed value of new varieties in the variety testing and a useful, cheap and rapid tool...... for cereal breeders. A collection of 1213 grain samples of wheat, triticale, barley and rye, and related chemical reference analyses to describe the feed value have been established. The samples originate from available field trials over a three-year period. The chemical reference analyses are dry matter...... value, the prediction error has to be compared with the error in the chemical analysis. Prediction error by NIRS prediction of feed value is above the error of the chemical measurement. The conclusion is that it is possible to predict the feed value in cereals with NIRS quickly and cheaply...

  5. Can tritiated water-dilution space accurately predict total body water in chukar partridges

    International Nuclear Information System (INIS)

    Crum, B.G.; Williams, J.B.; Nagy, K.A.

    1985-01-01

    Total body water (TBW) volumes determined from the dilution space of injected tritiated water have consistently overestimated actual water volumes (determined by desiccation to constant mass) in reptiles and mammals, but results for birds are controversial. We investigated potential errors in both the dilution method and the desiccation method in an attempt to resolve this controversy. Tritiated water dilution yielded an accurate measurement of water mass in vitro. However, in vivo, this method yielded a 4.6% overestimate of the amount of water (3.1% of live body mass) in chukar partridges, apparently largely because of loss of tritium from body water to sites of dissociable hydrogens on body solids. An additional source of overestimation (approximately 2% of body mass) was loss of tritium to the solids in blood samples during distillation of blood to obtain pure water for tritium analysis. Measuring tritium activity in plasma samples avoided this problem but required measurement of, and correction for, the dry matter content in plasma. Desiccation to constant mass by lyophilization or oven-drying also overestimated the amount of water actually in the bodies of chukar partridges by 1.4% of body mass, because these values included water adsorbed onto the outside of feathers. When desiccating defeathered carcasses, oven-drying at 70 degrees C yielded TBW values identical to those obtained from lyophilization, but TBW was overestimated (0.5% of body mass) by drying at 100 degrees C due to loss of organic substances as well as water

  6. How accurate is anatomic limb alignment in predicting mechanical limb alignment after total knee arthroplasty?

    Science.gov (United States)

    Lee, Seung Ah; Choi, Sang-Hee; Chang, Moon Jong

    2015-10-27

    Anatomic limb alignment often differs from mechanical limb alignment after total knee arthroplasty (TKA). We sought to assess the accuracy, specificity, and sensitivity for each of three commonly used ranges for anatomic limb alignment (3-9°, 5-10° and 2-10°) in predicting an acceptable range (neutral ± 3°) for mechanical limb alignment after TKA. We also assessed whether the accuracy of anatomic limb alignment was affected by anatomic variation. This retrospective study included 314 primary TKAs. The alignment of the limb was measured with both anatomic and mechanical methods of measurement. We also measured anatomic variation, including the femoral bowing angle, tibial bowing angle, and neck-shaft angle of the femur. All angles were measured on the same full-length standing anteroposterior radiographs. The accuracy, specificity, and sensitivity for each range of anatomic limb alignment were calculated and compared using mechanical limb alignment as the reference standard. The associations between the accuracy of anatomic limb alignment and anatomic variation were also determined. The range of 2-10° for anatomic limb alignment showed the highest accuracy, but it was only 73 % (3-9°, 65 %; 5-10°, 67 %). The specificity of the 2-10° range was 81 %, which was higher than that of the other ranges (3-9°, 69 %; 5-10°, 67 %). However, the sensitivity of the 2-10° range to predict varus malalignment was only 16 % (3-9°, 35 %; 5-10°, 68 %). In addition, the sensitivity of the 2-10° range to predict valgus malalignment was only 43 % (3-9°, 71 %; 5-10°, 43 %). The accuracy of anatomical limb alignment was lower for knees with greater femoral (odds ratio = 1.2) and tibial (odds ratio = 1.2) bowing. Anatomic limb alignment did not accurately predict mechanical limb alignment after TKA, and its accuracy was affected by anatomic variation. Thus, alignment after TKA should be assessed by measuring mechanical alignment rather than anatomic

  7. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry

    DEFF Research Database (Denmark)

    Mollerup, Christian Brinch; Mardal, Marie; Dalsgaard, Petur Weihe

    2018-01-01

    artificial neural networks (ANNs). Prediction was based on molecular descriptors, 827 RTs, and 357 CCS values from pharmaceuticals, drugs of abuse, and their metabolites. ANN models for the prediction of RT or CCS separately were examined, and the potential to predict both from a single model......Exact mass, retention time (RT), and collision cross section (CCS) are used as identification parameters in liquid chromatography coupled to ion mobility high resolution accurate mass spectrometry (LC-IM-HRMS). Targeted screening analyses are now more flexible and can be expanded for suspect...

  8. Accurate and Fast Convergent Initial-Value Belief Propagation for Stereo Matching.

    Science.gov (United States)

    Wang, Xiaofeng; Liu, Yiguang

    2015-01-01

    The belief propagation (BP) algorithm has some limitations, including ambiguous edges and textureless regions, and slow convergence speed. To address these problems, we present a novel algorithm that intrinsically improves both the accuracy and the convergence speed of BP. First, traditional BP generally consumes time due to numerous iterations. To reduce the number of iterations, inspired by the crucial importance of the initial value in nonlinear problems, a novel initial-value belief propagation (IVBP) algorithm is presented, which can greatly improve both convergence speed and accuracy. Second, .the majority of the existing research on BP concentrates on the smoothness term or other energy terms, neglecting the significance of the data term. In this study, a self-adapting dissimilarity data term (SDDT) is presented to improve the accuracy of the data term, which incorporates an additional gradient-based measure into the traditional data term, with the weight determined by the robust measure-based control function. Finally, this study explores the effective combination of local methods and global methods. The experimental results have demonstrated that our method performs well compared with the state-of-the-art BP and simultaneously holds better edge-preserving smoothing effects with fast convergence speed in the Middlebury and new 2014 Middlebury datasets.

  9. A Novel Fibrosis Index Comprising a Non-Cholesterol Sterol Accurately Predicts HCV-Related Liver Cirrhosis

    DEFF Research Database (Denmark)

    Ydreborg, Magdalena; Lisovskaja, Vera; Lagging, Martin

    2014-01-01

    of the present study was to create a model for accurate prediction of liver cirrhosis based on patient characteristics and biomarkers of liver fibrosis, including a panel of non-cholesterol sterols reflecting cholesterol synthesis and absorption and secretion. We evaluated variables with potential predictive...

  10. Predictive performance of universal termination of resuscitation rules in an Asian community: are they accurate enough?

    Science.gov (United States)

    Chiang, Wen-Chu; Ko, Patrick Chow-In; Chang, Anna Marie; Liu, Sot Shih-Hung; Wang, Hui-Chih; Yang, Chih-Wei; Hsieh, Ming-Ju; Chen, Shey-Ying; Lai, Mei-Shu; Ma, Matthew Huei-Ming

    2015-04-01

    Prehospital termination of resuscitation (TOR) rules have not been widely validated outside of Western countries. This study evaluated the performance of TOR rules in an Asian metropolitan with a mixed-tier emergency medical service (EMS). We analysed the Utstein registry of adult, non-traumatic out-of-hospital cardiac arrests (OHCAs) in Taipei to test the performance of TOR rules for advanced life support (ALS) or basic life support (BLS) providers. ALS and BLS-TOR rules were tested in OHCAs among three subgroups: (1) resuscitated by ALS, (2) by BLS and (3) by mixed ALS and BLS. Outcome definition was in-hospital death. Sensitivity, specificity, positive predictive value (PPV), negative predictive value and decreased transport rate (DTR) among various provider combinations were calculated. Of the 3489 OHCAs included, 240 were resuscitated by ALS, 1727 by BLS and 1522 by ALS and BLS. Overall survival to hospital discharge was 197 patients (5.6%). Specificity and PPV of ALS-TOR and BLS-TOR for identifying death ranged from 70.7% to 81.8% and 95.1% to 98.1%, respectively. Applying the TOR rules would have a DTR of 34.2-63.9%. BLS rules had better predictive accuracy and DTR than ALS rules among all subgroups. Application of the ALS and BLS TOR rules would have decreased OHCA transported to the hospital, and BLS rules are reasonable as the universal criteria in a mixed-tier EMS. However, 1.9-4.9% of those who survived would be misclassified as non-survivors, raising concern of compromising patient safety for the implementation of the rules. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Microvascular remodelling in preeclampsia: quantifying capillary rarefaction accurately and independently predicts preeclampsia.

    Science.gov (United States)

    Antonios, Tarek F T; Nama, Vivek; Wang, Duolao; Manyonda, Isaac T

    2013-09-01

    Preeclampsia is a major cause of maternal and neonatal mortality and morbidity. The incidence of preeclampsia seems to be rising because of increased prevalence of predisposing disorders, such as essential hypertension, diabetes, and obesity, and there is increasing evidence to suggest widespread microcirculatory abnormalities before the onset of preeclampsia. We hypothesized that quantifying capillary rarefaction could be helpful in the clinical prediction of preeclampsia. We measured skin capillary density according to a well-validated protocol at 5 consecutive predetermined visits in 322 consecutive white women, of whom 16 subjects developed preeclampsia. We found that structural capillary rarefaction at 20-24 weeks of gestation yielded a sensitivity of 0.87 with a specificity of 0.50 at the cutoff of 2 capillaries/field with the area under the curve of the receiver operating characteristic value of 0.70, whereas capillary rarefaction at 27-32 weeks of gestation yielded a sensitivity of 0.75 and a higher specificity of 0.77 at the cutoff of 8 capillaries/field with area under the curve of the receiver operating characteristic value of 0.82. Combining capillary rarefaction with uterine artery Doppler pulsatility index increased the sensitivity and specificity of the prediction. Multivariable analysis shows that the odds of preeclampsia are increased in women with previous history of preeclampsia or chronic hypertension and in those with increased uterine artery Doppler pulsatility index, but the most powerful and independent predictor of preeclampsia was capillary rarefaction at 27-32 weeks. Quantifying structural rarefaction of skin capillaries in pregnancy is a potentially useful clinical marker for the prediction of preeclampsia.

  12. A Robust Statistical Model to Predict the Future Value of the Milk Production of Dairy Cows Using Herd Recording Data

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Kirkeby, Carsten Thure; Nielsen, Søren Saxmose

    2017-01-01

    The future value of an individual dairy cow depends greatly on its projected milk yield. In developed countries with developed dairy industry infrastructures, facilities exist to record individual cow production and reproduction outcomes consistently and accurately. Accurate prediction of the fut...

  13. Cluster abundance in chameleon f ( R ) gravity I: toward an accurate halo mass function prediction

    Energy Technology Data Exchange (ETDEWEB)

    Cataneo, Matteo; Rapetti, David [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen (Denmark); Lombriser, Lucas [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Li, Baojiu, E-mail: matteoc@dark-cosmology.dk, E-mail: drapetti@dark-cosmology.dk, E-mail: llo@roe.ac.uk, E-mail: baojiu.li@durham.ac.uk [Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2016-12-01

    We refine the mass and environment dependent spherical collapse model of chameleon f ( R ) gravity by calibrating a phenomenological correction inspired by the parameterized post-Friedmann framework against high-resolution N -body simulations. We employ our method to predict the corresponding modified halo mass function, and provide fitting formulas to calculate the enhancement of the f ( R ) halo abundance with respect to that of General Relativity (GR) within a precision of ∼< 5% from the results obtained in the simulations. Similar accuracy can be achieved for the full f ( R ) mass function on the condition that the modeling of the reference GR abundance of halos is accurate at the percent level. We use our fits to forecast constraints on the additional scalar degree of freedom of the theory, finding that upper bounds competitive with current Solar System tests are within reach of cluster number count analyses from ongoing and upcoming surveys at much larger scales. Importantly, the flexibility of our method allows also for this to be applied to other scalar-tensor theories characterized by a mass and environment dependent spherical collapse.

  14. Fast and Accurate Prediction of Numerical Relativity Waveforms from Binary Black Hole Coalescences Using Surrogate Models.

    Science.gov (United States)

    Blackman, Jonathan; Field, Scott E; Galley, Chad R; Szilágyi, Béla; Scheel, Mark A; Tiglio, Manuel; Hemberger, Daniel A

    2015-09-18

    Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. Using reduced order modeling techniques, we construct an accurate surrogate model, which is evaluated in a millisecond to a second, for numerical relativity (NR) waveforms from nonspinning binary black hole coalescences with mass ratios in [1, 10] and durations corresponding to about 15 orbits before merger. We assess the model's uncertainty and show that our modeling strategy predicts NR waveforms not used for the surrogate's training with errors nearly as small as the numerical error of the NR code. Our model includes all spherical-harmonic _{-2}Y_{ℓm} waveform modes resolved by the NR code up to ℓ=8. We compare our surrogate model to effective one body waveforms from 50M_{⊙} to 300M_{⊙} for advanced LIGO detectors and find that the surrogate is always more faithful (by at least an order of magnitude in most cases).

  15. A machine learning approach to the accurate prediction of monitor units for a compact proton machine.

    Science.gov (United States)

    Sun, Baozhou; Lam, Dao; Yang, Deshan; Grantham, Kevin; Zhang, Tiezhi; Mutic, Sasa; Zhao, Tianyu

    2018-05-01

    Clinical treatment planning systems for proton therapy currently do not calculate monitor units (MUs) in passive scatter proton therapy due to the complexity of the beam delivery systems. Physical phantom measurements are commonly employed to determine the field-specific output factors (OFs) but are often subject to limited machine time, measurement uncertainties and intensive labor. In this study, a machine learning-based approach was developed to predict output (cGy/MU) and derive MUs, incorporating the dependencies on gantry angle and field size for a single-room proton therapy system. The goal of this study was to develop a secondary check tool for OF measurements and eventually eliminate patient-specific OF measurements. The OFs of 1754 fields previously measured in a water phantom with calibrated ionization chambers and electrometers for patient-specific fields with various range and modulation width combinations for 23 options were included in this study. The training data sets for machine learning models in three different methods (Random Forest, XGBoost and Cubist) included 1431 (~81%) OFs. Ten-fold cross-validation was used to prevent "overfitting" and to validate each model. The remaining 323 (~19%) OFs were used to test the trained models. The difference between the measured and predicted values from machine learning models was analyzed. Model prediction accuracy was also compared with that of the semi-empirical model developed by Kooy (Phys. Med. Biol. 50, 2005). Additionally, gantry angle dependence of OFs was measured for three groups of options categorized on the selection of the second scatters. Field size dependence of OFs was investigated for the measurements with and without patient-specific apertures. All three machine learning methods showed higher accuracy than the semi-empirical model which shows considerably large discrepancy of up to 7.7% for the treatment fields with full range and full modulation width. The Cubist-based solution

  16. Predicting Customer Lifetime Value in Multi-Service Industries

    NARCIS (Netherlands)

    A.C.D. Donkers (Bas); P.C. Verhoef (Peter); M.G. de Jong (Martijn)

    2003-01-01

    textabstractCustomer lifetime value (CLV) is a key-metric within CRM. Although, a large number of marketing scientists and practitioners argue in favor of this metric, there are only a few studies that consider the predictive modeling of CLV. In this study we focus on the prediction of CLV in

  17. Deep Learning Accurately Predicts Estrogen Receptor Status in Breast Cancer Metabolomics Data.

    Science.gov (United States)

    Alakwaa, Fadhl M; Chaudhary, Kumardeep; Garmire, Lana X

    2018-01-05

    Metabolomics holds the promise as a new technology to diagnose highly heterogeneous diseases. Conventionally, metabolomics data analysis for diagnosis is done using various statistical and machine learning based classification methods. However, it remains unknown if deep neural network, a class of increasingly popular machine learning methods, is suitable to classify metabolomics data. Here we use a cohort of 271 breast cancer tissues, 204 positive estrogen receptor (ER+), and 67 negative estrogen receptor (ER-) to test the accuracies of feed-forward networks, a deep learning (DL) framework, as well as six widely used machine learning models, namely random forest (RF), support vector machines (SVM), recursive partitioning and regression trees (RPART), linear discriminant analysis (LDA), prediction analysis for microarrays (PAM), and generalized boosted models (GBM). DL framework has the highest area under the curve (AUC) of 0.93 in classifying ER+/ER- patients, compared to the other six machine learning algorithms. Furthermore, the biological interpretation of the first hidden layer reveals eight commonly enriched significant metabolomics pathways (adjusted P-value learning methods. Among them, protein digestion and absorption and ATP-binding cassette (ABC) transporters pathways are also confirmed in integrated analysis between metabolomics and gene expression data in these samples. In summary, deep learning method shows advantages for metabolomics based breast cancer ER status classification, with both the highest prediction accuracy (AUC = 0.93) and better revelation of disease biology. We encourage the adoption of feed-forward networks based deep learning method in the metabolomics research community for classification.

  18. Can magnetic resonance imaging accurately predict concordant pain provocation during provocative disc injection?

    International Nuclear Information System (INIS)

    Kang, Chang Ho; Kim, Yun Hwan; Kim, Jung Hyuk; Chung, Kyoo Byung; Sung, Deuk Jae; Lee, Sang-Heon; Derby, Richard

    2009-01-01

    To correlate magnetic resonance (MR) image findings with pain response by provocation discography in patients with discogenic low back pain, with an emphasis on the combination analysis of a high intensity zone (HIZ) and disc contour abnormalities. Sixty-two patients (aged 17-68 years) with axial low back pain that was likely to be disc related underwent lumbar discography (178 discs tested). The MR images were evaluated for disc degeneration, disc contour abnormalities, HIZ, and endplate abnormalities. Based on the combination of an HIZ and disc contour abnormalities, four classes were determined: (1) normal or bulging disc without HIZ; (2) normal or bulging disc with HIZ; (3) disc protrusion without HIZ; (4) disc protrusion with HIZ. These MR image findings and a new combined MR classification were analyzed in the base of concordant pain determined by discography. Disc protrusion with HIZ [sensitivity 45.5%; specificity 97.8%; positive predictive value (PPV), 87.0%] correlated significantly with concordant pain provocation (P < 0.01). A normal or bulging disc with HIZ was not associated with reproduction of pain. Disc degeneration (sensitivity 95.4%; specificity 38.8%; PPV 33.9%), disc protrusion (sensitivity 68.2%; specificity 80.6%; PPV 53.6%), and HIZ (sensitivity 56.8%; specificity 83.6%; PPV 53.2%) were not helpful in the identification of a disc with concordant pain. The proposed MR classification is useful to predict a disc with concordant pain. Disc protrusion with HIZ on MR imaging predicted positive discography in patients with discogenic low back pain. (orig.)

  19. Absolute Hounsfield unit measurement on noncontrast computed tomography cannot accurately predict struvite stone composition.

    Science.gov (United States)

    Marchini, Giovanni Scala; Gebreselassie, Surafel; Liu, Xiaobo; Pynadath, Cindy; Snyder, Grace; Monga, Manoj

    2013-02-01

    The purpose of our study was to determine, in vivo, whether single-energy noncontrast computed tomography (NCCT) can accurately predict the presence/percentage of struvite stone composition. We retrospectively searched for all patients with struvite components on stone composition analysis between January 2008 and March 2012. Inclusion criteria were NCCT prior to stone analysis and stone size ≥4 mm. A single urologist, blinded to stone composition, reviewed all NCCT to acquire stone location, dimensions, and Hounsfield unit (HU). HU density (HUD) was calculated by dividing mean HU by the stone's largest transverse diameter. Stone analysis was performed via Fourier transform infrared spectrometry. Independent sample Student's t-test and analysis of variance (ANOVA) were used to compare HU/HUD among groups. Spearman's correlation test was used to determine the correlation between HU and stone size and also HU/HUD to % of each component within the stone. Significance was considered if pR=0.017; p=0.912) and negative with HUD (R=-0.20; p=0.898). Overall, 3 (6.8%) had stones (n=5) with other miscellaneous stones (n=39), no difference was found for HU (p=0.09) but HUD was significantly lower for pure stones (27.9±23.6 v 72.5±55.9, respectively; p=0.006). Again, significant overlaps were seen. Pure struvite stones have significantly lower HUD than mixed struvite stones, but overlap exists. A low HUD may increase the suspicion for a pure struvite calculus.

  20. Unilateral Prostate Cancer Cannot be Accurately Predicted in Low-Risk Patients

    International Nuclear Information System (INIS)

    Isbarn, Hendrik; Karakiewicz, Pierre I.; Vogel, Susanne

    2010-01-01

    Purpose: Hemiablative therapy (HAT) is increasing in popularity for treatment of patients with low-risk prostate cancer (PCa). The validity of this therapeutic modality, which exclusively treats PCa within a single prostate lobe, rests on accurate staging. We tested the accuracy of unilaterally unremarkable biopsy findings in cases of low-risk PCa patients who are potential candidates for HAT. Methods and Materials: The study population consisted of 243 men with clinical stage ≤T2a, a prostate-specific antigen (PSA) concentration of <10 ng/ml, a biopsy-proven Gleason sum of ≤6, and a maximum of 2 ipsilateral positive biopsy results out of 10 or more cores. All men underwent a radical prostatectomy, and pathology stage was used as the gold standard. Univariable and multivariable logistic regression models were tested for significant predictors of unilateral, organ-confined PCa. These predictors consisted of PSA, %fPSA (defined as the quotient of free [uncomplexed] PSA divided by the total PSA), clinical stage (T2a vs. T1c), gland volume, and number of positive biopsy cores (2 vs. 1). Results: Despite unilateral stage at biopsy, bilateral or even non-organ-confined PCa was reported in 64% of all patients. In multivariable analyses, no variable could clearly and independently predict the presence of unilateral PCa. This was reflected in an overall accuracy of 58% (95% confidence interval, 50.6-65.8%). Conclusions: Two-thirds of patients with unilateral low-risk PCa, confirmed by clinical stage and biopsy findings, have bilateral or non-organ-confined PCa at radical prostatectomy. This alarming finding questions the safety and validity of HAT.

  1. ABC/2 Method Does not Accurately Predict Cerebral Arteriovenous Malformation Volume.

    Science.gov (United States)

    Roark, Christopher; Vadlamudi, Venu; Chaudhary, Neeraj; Gemmete, Joseph J; Seinfeld, Joshua; Thompson, B Gregory; Pandey, Aditya S

    2018-02-01

    Stereotactic radiosurgery (SRS) is a treatment option for cerebral arteriovenous malformations (AVMs) to prevent intracranial hemorrhage. The decision to proceed with SRS is usually based on calculated nidal volume. Physicians commonly use the ABC/2 formula, based on digital subtraction angiography (DSA), when counseling patients for SRS. To determine whether AVM volume calculated using the ABC/2 method on DSA is accurate when compared to the exact volume calculated from thin-cut axial sections used for SRS planning. Retrospective search of neurovascular database to identify AVMs treated with SRS from 1995 to 2015. Maximum nidal diameters in orthogonal planes on DSA images were recorded to determine volume using ABC/2 formula. Nidal target volume was extracted from operative reports of SRS. Volumes were then compared using descriptive statistics and paired t-tests. Ninety intracranial AVMs were identified. Median volume was 4.96 cm3 [interquartile range (IQR) 1.79-8.85] with SRS planning methods and 6.07 cm3 (IQR 1.3-13.6) with ABC/2 methodology. Moderate correlation was seen between SRS and ABC/2 (r = 0.662; P ABC/2 (t = -3.2; P = .002). When AVMs were dichotomized based on ABC/2 volume, significant differences remained (t = 3.1, P = .003 for ABC/2 volume ABC/2 volume > 7 cm3). The ABC/2 method overestimates cerebral AVM volume when compared to volumetric analysis from SRS planning software. For AVMs > 7 cm3, the overestimation is even greater. SRS planning techniques were also significantly different than values derived from equations for cones and cylinders. Copyright © 2017 by the Congress of Neurological Surgeons

  2. Large arterial occlusive strokes as a medical emergency: need to accurately predict clot location.

    Science.gov (United States)

    Vanacker, Peter; Faouzi, Mohamed; Eskandari, Ashraf; Maeder, Philippe; Meuli, Reto; Michel, Patrik

    2017-10-01

    Endovascular treatment for acute ischemic stroke with a large intracranial occlusion was recently shown to be effective. Timely knowledge of the presence, site, and extent of arterial occlusions in the ischemic territory has the potential to influence patient selection for endovascular treatment. We aimed to find predictors of large vessel occlusive strokes, on the basis of available demographic, clinical, radiological, and laboratory data in the emergency setting. Patients enrolled in ASTRAL registry with acute ischemic stroke and computed tomography (CT)-angiography within 12 h of stroke onset were selected and categorized according to occlusion site. Easily accessible variables were used in a multivariate analysis. Of 1645 patients enrolled, a significant proportion (46.2%) had a large vessel occlusion in the ischemic territory. The main clinical predictors of any arterial occlusion were in-hospital stroke [odd ratios (OR) 2.1, 95% confidence interval 1.4-3.1], higher initial National Institute of Health Stroke Scale (OR 1.1, 1.1-1.2), presence of visual field defects (OR 1.9, 1.3-2.6), dysarthria (OR 1.4, 1.0-1.9), or hemineglect (OR 2.0, 1.4-2.8) at admission and atrial fibrillation (OR 1.7, 1.2-2.3). Further, the following radiological predictors were identified: time-to-imaging (OR 0.9, 0.9-1.0), early ischemic changes (OR 2.3, 1.7-3.2), and silent lesions on CT (OR 0.7, 0.5-1.0). The area under curve for this analysis was 0.85. Looking at different occlusion sites, National Institute of Health Stroke Scale and early ischemic changes on CT were independent predictors in all subgroups. Neurological deficits, stroke risk factors, and CT findings accurately identify acute ischemic stroke patients at risk of symptomatic vessel occlusion. Predicting the presence of these occlusions may impact emergency stroke care in regions with limited access to noninvasive vascular imaging.

  3. Combining structural modeling with ensemble machine learning to accurately predict protein fold stability and binding affinity effects upon mutation.

    Directory of Open Access Journals (Sweden)

    Niklas Berliner

    Full Text Available Advances in sequencing have led to a rapid accumulation of mutations, some of which are associated with diseases. However, to draw mechanistic conclusions, a biochemical understanding of these mutations is necessary. For coding mutations, accurate prediction of significant changes in either the stability of proteins or their affinity to their binding partners is required. Traditional methods have used semi-empirical force fields, while newer methods employ machine learning of sequence and structural features. Here, we show how combining both of these approaches leads to a marked boost in accuracy. We introduce ELASPIC, a novel ensemble machine learning approach that is able to predict stability effects upon mutation in both, domain cores and domain-domain interfaces. We combine semi-empirical energy terms, sequence conservation, and a wide variety of molecular details with a Stochastic Gradient Boosting of Decision Trees (SGB-DT algorithm. The accuracy of our predictions surpasses existing methods by a considerable margin, achieving correlation coefficients of 0.77 for stability, and 0.75 for affinity predictions. Notably, we integrated homology modeling to enable proteome-wide prediction and show that accurate prediction on modeled structures is possible. Lastly, ELASPIC showed significant differences between various types of disease-associated mutations, as well as between disease and common neutral mutations. Unlike pure sequence-based prediction methods that try to predict phenotypic effects of mutations, our predictions unravel the molecular details governing the protein instability, and help us better understand the molecular causes of diseases.

  4. Using Bronson Equation to Accurately Predict the Dog Brain Weight Based on Body Weight Parameter

    Directory of Open Access Journals (Sweden)

    L. Miguel Carreira

    2016-12-01

    Full Text Available The study used 69 brains (n = 69 from adult dog cadavers, divided by their skull type into three groups, brachi (B, dolicho (D and mesaticephalic (M (n = 23 each, and aimed: (1 to determine whether the Bronson equation may be applied, without reservation, to estimate brain weight (BW in brachy (B, dolicho (D, and mesaticephalic (M dog breeds; and (2 to evaluate which breeds are more closely related to each other in an evolutionary scenario. All subjects were identified by sex, age, breed, and body weight (bw. An oscillating saw was used for a circumferential craniotomy to open the skulls; the brains were removed and weighed using a digital scale. For statistical analysis, p-values < 0.05 were considered significant. The work demonstrated a strong relationship between the observed and predicted BW by using the Bronson equation. It was possible to hypothesize that groups B and D present a greater encephalization level than M breeds, that B and D dog breeds are more closely related to each other than to M, and from the three groups, the D individuals presented the highest brain mass mean.

  5. Genomic value prediction for quantitative traits under the epistatic model

    Directory of Open Access Journals (Sweden)

    Xu Shizhong

    2011-01-01

    Full Text Available Abstract Background Most quantitative traits are controlled by multiple quantitative trait loci (QTL. The contribution of each locus may be negligible but the collective contribution of all loci is usually significant. Genome selection that uses markers of the entire genome to predict the genomic values of individual plants or animals can be more efficient than selection on phenotypic values and pedigree information alone for genetic improvement. When a quantitative trait is contributed by epistatic effects, using all markers (main effects and marker pairs (epistatic effects to predict the genomic values of plants can achieve the maximum efficiency for genetic improvement. Results In this study, we created 126 recombinant inbred lines of soybean and genotyped 80 makers across the genome. We applied the genome selection technique to predict the genomic value of somatic embryo number (a quantitative trait for each line. Cross validation analysis showed that the squared correlation coefficient between the observed and predicted embryo numbers was 0.33 when only main (additive effects were used for prediction. When the interaction (epistatic effects were also included in the model, the squared correlation coefficient reached 0.78. Conclusions This study provided an excellent example for the application of genome selection to plant breeding.

  6. Towards Accurate Prediction of Unbalance Response, Oil Whirl and Oil Whip of Flexible Rotors Supported by Hydrodynamic Bearings

    Directory of Open Access Journals (Sweden)

    Rob Eling

    2016-09-01

    Full Text Available Journal bearings are used to support rotors in a wide range of applications. In order to ensure reliable operation, accurate analyses of these rotor-bearing systems are crucial. Coupled analysis of the rotor and the journal bearing is essential in the case that the rotor is flexible. The accuracy of prediction of the model at hand depends on its comprehensiveness. In this study, we construct three bearing models of increasing modeling comprehensiveness and use these to predict the response of two different rotor-bearing systems. The main goal is to evaluate the correlation with measurement data as a function of modeling comprehensiveness: 1D versus 2D pressure prediction, distributed versus lumped thermal model, Newtonian versus non-Newtonian fluid description and non-mass-conservative versus mass-conservative cavitation description. We conclude that all three models predict the existence of critical speeds and whirl for both rotor-bearing systems. However, the two more comprehensive models in general show better correlation with measurement data in terms of frequency and amplitude. Furthermore, we conclude that a thermal network model comprising temperature predictions of the bearing surroundings is essential to obtain accurate predictions. The results of this study aid in developing accurate and computationally-efficient models of flexible rotors supported by plain journal bearings.

  7. Accurate diffraction data integration by the EVAL15 profile prediction method : Application in chemical and biological crystallography

    NARCIS (Netherlands)

    Xian, X.

    2009-01-01

    Accurate integration of reflection intensities plays an essential role in structure determination of the crystallized compound. A new diffraction data integration method, EVAL15, is presented in this thesis. This method uses the principle of general impacts to predict ab inito three-dimensional

  8. Searching for an Accurate Marker-Based Prediction of an Individual Quantitative Trait in Molecular Plant Breeding

    Science.gov (United States)

    Fu, Yong-Bi; Yang, Mo-Hua; Zeng, Fangqin; Biligetu, Bill

    2017-01-01

    Molecular plant breeding with the aid of molecular markers has played an important role in modern plant breeding over the last two decades. Many marker-based predictions for quantitative traits have been made to enhance parental selection, but the trait prediction accuracy remains generally low, even with the aid of dense, genome-wide SNP markers. To search for more accurate trait-specific prediction with informative SNP markers, we conducted a literature review on the prediction issues in molecular plant breeding and on the applicability of an RNA-Seq technique for developing function-associated specific trait (FAST) SNP markers. To understand whether and how FAST SNP markers could enhance trait prediction, we also performed a theoretical reasoning on the effectiveness of these markers in a trait-specific prediction, and verified the reasoning through computer simulation. To the end, the search yielded an alternative to regular genomic selection with FAST SNP markers that could be explored to achieve more accurate trait-specific prediction. Continuous search for better alternatives is encouraged to enhance marker-based predictions for an individual quantitative trait in molecular plant breeding. PMID:28729875

  9. Searching for an Accurate Marker-Based Prediction of an Individual Quantitative Trait in Molecular Plant Breeding

    Directory of Open Access Journals (Sweden)

    Yong-Bi Fu

    2017-07-01

    Full Text Available Molecular plant breeding with the aid of molecular markers has played an important role in modern plant breeding over the last two decades. Many marker-based predictions for quantitative traits have been made to enhance parental selection, but the trait prediction accuracy remains generally low, even with the aid of dense, genome-wide SNP markers. To search for more accurate trait-specific prediction with informative SNP markers, we conducted a literature review on the prediction issues in molecular plant breeding and on the applicability of an RNA-Seq technique for developing function-associated specific trait (FAST SNP markers. To understand whether and how FAST SNP markers could enhance trait prediction, we also performed a theoretical reasoning on the effectiveness of these markers in a trait-specific prediction, and verified the reasoning through computer simulation. To the end, the search yielded an alternative to regular genomic selection with FAST SNP markers that could be explored to achieve more accurate trait-specific prediction. Continuous search for better alternatives is encouraged to enhance marker-based predictions for an individual quantitative trait in molecular plant breeding.

  10. Searching for an Accurate Marker-Based Prediction of an Individual Quantitative Trait in Molecular Plant Breeding.

    Science.gov (United States)

    Fu, Yong-Bi; Yang, Mo-Hua; Zeng, Fangqin; Biligetu, Bill

    2017-01-01

    Molecular plant breeding with the aid of molecular markers has played an important role in modern plant breeding over the last two decades. Many marker-based predictions for quantitative traits have been made to enhance parental selection, but the trait prediction accuracy remains generally low, even with the aid of dense, genome-wide SNP markers. To search for more accurate trait-specific prediction with informative SNP markers, we conducted a literature review on the prediction issues in molecular plant breeding and on the applicability of an RNA-Seq technique for developing function-associated specific trait (FAST) SNP markers. To understand whether and how FAST SNP markers could enhance trait prediction, we also performed a theoretical reasoning on the effectiveness of these markers in a trait-specific prediction, and verified the reasoning through computer simulation. To the end, the search yielded an alternative to regular genomic selection with FAST SNP markers that could be explored to achieve more accurate trait-specific prediction. Continuous search for better alternatives is encouraged to enhance marker-based predictions for an individual quantitative trait in molecular plant breeding.

  11. Diagnostic value of newborn foot length to predict gestational age

    Directory of Open Access Journals (Sweden)

    Mutia Farah Fawziah

    2017-08-01

    Full Text Available Background  Identification of gestational age, especially within 48 hours of birth, is crucial for newborns, as the earlier preterm status is detected, the earlier the child can receive optimal management. Newborn foot length is an anthropometric measurement which is easy to perform, inexpensive, and potentially efficient for predicting gestational age. Objective  To analyze the diagnostic value of newborn foot length in predicting gestational age. Methods  This diagnostic study was performed between October 2016 and February 2017 in the High Care Unit of Neonates at Dr. Moewardi General Hospital, Surakarta. A total of 152 newborns were consecutively selected and underwent right foot length measurements before 96 hours of age. The correlation between newborn foot length to classify as full term and gestational age was analyzed with Spearman’s correlation test because of non-normal data distribution. The cut-off point of newborn foot length was calculated by receiver operating characteristic (ROC curve and diagnostic values of newborn foot length were analyzed by 2 x 2 table with SPSS 21.0 software. Results There were no significant differences between male and female newborns in terms of gestational age, birth weight, choronological age, and newborn foot length (P>0.05. Newborn foot length and gestational age had a significant correlation (r=0.53; P=0.000. The optimal cut-off newborn foot length to predict full term status was 7.1 cm. Newborn foot length below 7.1 cm had sensitivity 75%, specificity 98%, positive predictive value 94.3%, negative predictive value 90.6%, positive likelihood ratio 40.5, negative likelihood ratio 0.25, and post-test probability 94.29%, to predict preterm status in newborns. Conclusion  Newborn foot length can be used to predict gestational age, especially for the purpose of differentiating between preterm and full term newborns.

  12. Partial volume correction and image segmentation for accurate measurement of standardized uptake value of grey matter in the brain.

    Science.gov (United States)

    Bural, Gonca; Torigian, Drew; Basu, Sandip; Houseni, Mohamed; Zhuge, Ying; Rubello, Domenico; Udupa, Jayaram; Alavi, Abass

    2015-12-01

    Our aim was to explore a novel quantitative method [based upon an MRI-based image segmentation that allows actual calculation of grey matter, white matter and cerebrospinal fluid (CSF) volumes] for overcoming the difficulties associated with conventional techniques for measuring actual metabolic activity of the grey matter. We included four patients with normal brain MRI and fluorine-18 fluorodeoxyglucose (F-FDG)-PET scans (two women and two men; mean age 46±14 years) in this analysis. The time interval between the two scans was 0-180 days. We calculated the volumes of grey matter, white matter and CSF by using a novel segmentation technique applied to the MRI images. We measured the mean standardized uptake value (SUV) representing the whole metabolic activity of the brain from the F-FDG-PET images. We also calculated the white matter SUV from the upper transaxial slices (centrum semiovale) of the F-FDG-PET images. The whole brain volume was calculated by summing up the volumes of the white matter, grey matter and CSF. The global cerebral metabolic activity was calculated by multiplying the mean SUV with total brain volume. The whole brain white matter metabolic activity was calculated by multiplying the mean SUV for the white matter by the white matter volume. The global cerebral metabolic activity only reflects those of the grey matter and the white matter, whereas that of the CSF is zero. We subtracted the global white matter metabolic activity from that of the whole brain, resulting in the global grey matter metabolism alone. We then divided the grey matter global metabolic activity by grey matter volume to accurately calculate the SUV for the grey matter alone. The brain volumes ranged between 1546 and 1924 ml. The mean SUV for total brain was 4.8-7. Total metabolic burden of the brain ranged from 5565 to 9617. The mean SUV for white matter was 2.8-4.1. On the basis of these measurements we generated the grey matter SUV, which ranged from 8.1 to 11.3. The

  13. Towards more accurate wind and solar power prediction by improving NWP model physics

    Science.gov (United States)

    Steiner, Andrea; Köhler, Carmen; von Schumann, Jonas; Ritter, Bodo

    2014-05-01

    The growing importance and successive expansion of renewable energies raise new challenges for decision makers, economists, transmission system operators, scientists and many more. In this interdisciplinary field, the role of Numerical Weather Prediction (NWP) is to reduce the errors and provide an a priori estimate of remaining uncertainties associated with the large share of weather-dependent power sources. For this purpose it is essential to optimize NWP model forecasts with respect to those prognostic variables which are relevant for wind and solar power plants. An improved weather forecast serves as the basis for a sophisticated power forecasts. Consequently, a well-timed energy trading on the stock market, and electrical grid stability can be maintained. The German Weather Service (DWD) currently is involved with two projects concerning research in the field of renewable energy, namely ORKA*) and EWeLiNE**). Whereas the latter is in collaboration with the Fraunhofer Institute (IWES), the project ORKA is led by energy & meteo systems (emsys). Both cooperate with German transmission system operators. The goal of the projects is to improve wind and photovoltaic (PV) power forecasts by combining optimized NWP and enhanced power forecast models. In this context, the German Weather Service aims to improve its model system, including the ensemble forecasting system, by working on data assimilation, model physics and statistical post processing. This presentation is focused on the identification of critical weather situations and the associated errors in the German regional NWP model COSMO-DE. First steps leading to improved physical parameterization schemes within the NWP-model are presented. Wind mast measurements reaching up to 200 m height above ground are used for the estimation of the (NWP) wind forecast error at heights relevant for wind energy plants. One particular problem is the daily cycle in wind speed. The transition from stable stratification during

  14. Use of multiple genetic markers in prediction of breeding values.

    NARCIS (Netherlands)

    Arendonk, van J.A.M.; Tier, B.; Kinghorn, B.P.

    1994-01-01

    Genotypes at a marker locus give information on transmission of genes from parents to offspring and that information can be used in predicting the individuals' additive genetic value at a linked quantitative trait locus (MQTL). In this paper a recursive method is presented to build the gametic

  15. Predicting Breeding Values in Animals by Kalman Filter

    DEFF Research Database (Denmark)

    Karacaoren, B; Janss, L L G; Kadarmideen, H N

    2012-01-01

    The aim of this study was to investigate usefulness of Kalman Filter (KF) Random Walk methodology (KF-RW) for prediction of breeding values in animals. We used body condition score (BCS) from dairy cattle for illustrating use of KF-RW. BCS was measured by Swiss Holstein Breeding Association during...

  16. The value of computed tomography-urography in predicting the ...

    African Journals Online (AJOL)

    Background The natural course of pelviureteric junction (PUJ) obstruction is variable. Of those who require surgical intervention, there is no definite reliable preoperative predictor of the likely postoperative outcome. We evaluated the value of preoperative computed tomography (CT)-urography in predicting the ...

  17. Determinants of work ability and its predictive value for disability

    NARCIS (Netherlands)

    Alavinia, S. M.; de Boer, A. G. E. M.; Van Duivenbooden, J. C.; Frings-Dresen, M. H. W.; Burdorf, A.

    2009-01-01

    Background Maintaining the ability of workers to cope with physical and psychosocial demands at work becomes increasingly important in prolonging working life. Aims To analyse the effects of work-related factors and individual characteristics on work ability and to determine the predictive value of

  18. Predicting quantitative and qualitative values of recreation participation

    Science.gov (United States)

    Elwood L., Jr. Shafer; George Moeller

    1971-01-01

    If future recreation consumption and associated intangible values can be predicted, the problem of rapid decision making in recreation-resource management can be reduced, and the problems of implementing those decisions can be anticipated. Management and research responsibilities for meeting recreation demand are discussed, and proved methods for forecasting recreation...

  19. The Economic Value of Predicting Stock Index Returns and Volatility

    NARCIS (Netherlands)

    Marquering, W.; Verbeek, M.J.C.M.

    2000-01-01

    In this paper, we analyze the economic value of predicting index returns as well as volatility. On the basis of fairly simple linear models, estimated recursively, we produce genuine out-of-sample forecasts for the return on the S&P 500 index and its volatility. Using monthly data from 1954-1998, we

  20. Predictive Value of Respiratory Rate Thresholds in Pneumonia ...

    African Journals Online (AJOL)

    A study was carried out to determine the predictive value of respiratory rate in the clinical diagnosis of pneumonia in 101 children with respiratory symptoms of <28 days duration. Clinical, demographic and anthropometric variables were obtained at presentation while confirmation of the diagnosis was by a chest x-ray in ...

  1. Genomic breeding value prediction:methods and procedures

    NARCIS (Netherlands)

    Calus, M.P.L.

    2010-01-01

    Animal breeding faces one of the most significant changes of the past decades – the implementation of genomic selection. Genomic selection uses dense marker maps to predict the breeding value of animals with reported accuracies that are up to 0.31 higher than those of pedigree indexes, without the

  2. The Economic Value of Predicting Bond Risk Premia

    DEFF Research Database (Denmark)

    Sarno, Lucio; Schneider, Paul; Wagner, Christian

    2016-01-01

    evaluation. More specifically, the model mostly generates positive (negative) economic value during times of high (low) macroeconomic uncertainty. Overall, the expectations hypothesis remains a useful benchmark for investment decisions in bond markets, especially in low uncertainty states.......This paper studies whether the evident statistical predictability of bond risk premia translates into economic gains for investors. We propose a novel estimation strategy for affine term structure models that jointly fits yields and bond excess returns, thereby capturing predictive information...... otherwise hidden to standard estimations. The model predicts excess returns with high regression R2s and high forecast accuracy but cannot outperform the expectations hypothesis out-of-sample in terms of economic value, showing a general contrast between statistical and economic metrics of forecast...

  3. The Economic Value of Predicting Bond Risk Premia

    DEFF Research Database (Denmark)

    Sarno, Lucio; Schneider, Paul; Wagner, Christian

    the expectations hypothesis (EH) out-ofsample: the forecasts do not add economic value compared to using the average historical excess return as an EH-consistent estimate of constant risk premia. We show that in general statistical signicance does not necessarily translate into economic signicance because EH...... deviations mainly matter at short horizons and standard predictability metrics are not compatible with common measures of economic value. Overall, the EH remains the benchmark for investment decisions and should be considered an economic prior in models of bond risk premia.......This paper studies whether the evident statistical predictability of bond risk premia translates into economic gains for bond investors. We show that ane term structure models (ATSMs) estimated by jointly tting yields and bond excess returns capture this predictive information otherwise hidden...

  4. Prediction of pKa Values for Druglike Molecules Using Semiempirical Quantum Chemical Methods.

    Science.gov (United States)

    Jensen, Jan H; Swain, Christopher J; Olsen, Lars

    2017-01-26

    Rapid yet accurate pK a prediction for druglike molecules is a key challenge in computational chemistry. This study uses PM6-DH+/COSMO, PM6/COSMO, PM7/COSMO, PM3/COSMO, AM1/COSMO, PM3/SMD, AM1/SMD, and DFTB3/SMD to predict the pK a values of 53 amine groups in 48 druglike compounds. The approach uses an isodesmic reaction where the pK a value is computed relative to a chemically related reference compound for which the pK a value has been measured experimentally or estimated using a standard empirical approach. The AM1- and PM3-based methods perform best with RMSE values of 1.4-1.6 pH units that have uncertainties of ±0.2-0.3 pH units, which make them statistically equivalent. However, for all but PM3/SMD and AM1/SMD the RMSEs are dominated by a single outlier, cefadroxil, caused by proton transfer in the zwitterionic protonation state. If this outlier is removed, the RMSE values for PM3/COSMO and AM1/COSMO drop to 1.0 ± 0.2 and 1.1 ± 0.3, whereas PM3/SMD and AM1/SMD remain at 1.5 ± 0.3 and 1.6 ± 0.3/0.4 pH units, making the COSMO-based predictions statistically better than the SMD-based predictions. For pK a calculations where a zwitterionic state is not involved or proton transfer in a zwitterionic state is not observed, PM3/COSMO or AM1/COSMO is the best pK a prediction method; otherwise PM3/SMD or AM1/SMD should be used. Thus, fast and relatively accurate pK a prediction for 100-1000s of druglike amines is feasible with the current setup and relatively modest computational resources.

  5. A machine learning approach to the accurate prediction of multi-leaf collimator positional errors

    Science.gov (United States)

    Carlson, Joel N. K.; Park, Jong Min; Park, So-Yeon; In Park, Jong; Choi, Yunseok; Ye, Sung-Joon

    2016-03-01

    Discrepancies between planned and delivered movements of multi-leaf collimators (MLCs) are an important source of errors in dose distributions during radiotherapy. In this work we used machine learning techniques to train models to predict these discrepancies, assessed the accuracy of the model predictions, and examined the impact these errors have on quality assurance (QA) procedures and dosimetry. Predictive leaf motion parameters for the models were calculated from the plan files, such as leaf position and velocity, whether the leaf was moving towards or away from the isocenter of the MLC, and many others. Differences in positions between synchronized DICOM-RT planning files and DynaLog files reported during QA delivery were used as a target response for training of the models. The final model is capable of predicting MLC positions during delivery to a high degree of accuracy. For moving MLC leaves, predicted positions were shown to be significantly closer to delivered positions than were planned positions. By incorporating predicted positions into dose calculations in the TPS, increases were shown in gamma passing rates against measured dose distributions recorded during QA delivery. For instance, head and neck plans with 1%/2 mm gamma criteria had an average increase in passing rate of 4.17% (SD  =  1.54%). This indicates that the inclusion of predictions during dose calculation leads to a more realistic representation of plan delivery. To assess impact on the patient, dose volumetric histograms (DVH) using delivered positions were calculated for comparison with planned and predicted DVHs. In all cases, predicted dose volumetric parameters were in closer agreement to the delivered parameters than were the planned parameters, particularly for organs at risk on the periphery of the treatment area. By incorporating the predicted positions into the TPS, the treatment planner is given a more realistic view of the dose distribution as it will truly be

  6. Geometric constraints in semiclassical initial value representation calculations in Cartesian coordinates: accurate reduction in zero-point energy.

    Science.gov (United States)

    Issack, Bilkiss B; Roy, Pierre-Nicholas

    2005-08-22

    An approach for the inclusion of geometric constraints in semiclassical initial value representation calculations is introduced. An important aspect of the approach is that Cartesian coordinates are used throughout. We devised an algorithm for the constrained sampling of initial conditions through the use of multivariate Gaussian distribution based on a projected Hessian. We also propose an approach for the constrained evaluation of the so-called Herman-Kluk prefactor in its exact log-derivative form. Sample calculations are performed for free and constrained rare-gas trimers. The results show that the proposed approach provides an accurate evaluation of the reduction in zero-point energy. Exact basis set calculations are used to assess the accuracy of the semiclassical results. Since Cartesian coordinates are used, the approach is general and applicable to a variety of molecular and atomic systems.

  7. Dynamics of Flexible MLI-type Debris for Accurate Orbit Prediction

    Science.gov (United States)

    2014-09-01

    debris for accurate propagation under perturbations”, in Proceedings of 65th International Astronautical Congress (IAC 2014), Toronto, Canada , 2014...Surveillance Network ( SSN ) was able to detect more than 900 pieces of debris that were at risk to damage operational spacecraft. In February 10, 2009...created two large debris clouds and the SSN reported that 382 pieces of debris from Iridium 33 and 893 pieces from Cosmos 2251 were created, and

  8. Determinants of work ability and its predictive value for disability.

    Science.gov (United States)

    Alavinia, S M; de Boer, A G E M; van Duivenbooden, J C; Frings-Dresen, M H W; Burdorf, A

    2009-01-01

    Maintaining the ability of workers to cope with physical and psychosocial demands at work becomes increasingly important in prolonging working life. To analyse the effects of work-related factors and individual characteristics on work ability and to determine the predictive value of work ability on receiving a work-related disability pension. A longitudinal study was conducted among 850 construction workers aged 40 years and older, with average follow-up period of 23 months. Disability was defined as receiving a disability pension, granted to workers unable to continue working in their regular job. Work ability was assessed using the work ability index (WAI). Associations between work-related factors and individual characteristics with work ability at baseline were evaluated using linear regression analysis, and Cox regression analysis was used to evaluate the predictive value of work ability for disability. Work-related factors were associated with a lower work ability at baseline, but had little prognostic value for disability during follow-up. The hazard ratios for disability among workers with a moderate and poor work ability at baseline were 8 and 32, respectively. All separate scales in the WAI had predictive power for future disability with the highest influence of current work ability in relation to job demands and lowest influence of diseases diagnosed by a physician. A moderate or poor work ability was highly predictive for receiving a disability pension. Preventive measures should facilitate a good balance between work performance and health in order to prevent quitting labour participation.

  9. Accurate microRNA target prediction correlates with protein repression levels

    Directory of Open Access Journals (Sweden)

    Simossis Victor A

    2009-09-01

    Full Text Available Abstract Background MicroRNAs are small endogenously expressed non-coding RNA molecules that regulate target gene expression through translation repression or messenger RNA degradation. MicroRNA regulation is performed through pairing of the microRNA to sites in the messenger RNA of protein coding genes. Since experimental identification of miRNA target genes poses difficulties, computational microRNA target prediction is one of the key means in deciphering the role of microRNAs in development and disease. Results DIANA-microT 3.0 is an algorithm for microRNA target prediction which is based on several parameters calculated individually for each microRNA and combines conserved and non-conserved microRNA recognition elements into a final prediction score, which correlates with protein production fold change. Specifically, for each predicted interaction the program reports a signal to noise ratio and a precision score which can be used as an indication of the false positive rate of the prediction. Conclusion Recently, several computational target prediction programs were benchmarked based on a set of microRNA target genes identified by the pSILAC method. In this assessment DIANA-microT 3.0 was found to achieve the highest precision among the most widely used microRNA target prediction programs reaching approximately 66%. The DIANA-microT 3.0 prediction results are available online in a user friendly web server at http://www.microrna.gr/microT

  10. Sensor Data Fusion for Accurate Cloud Presence Prediction Using Dempster-Shafer Evidence Theory

    Directory of Open Access Journals (Sweden)

    Jesse S. Jin

    2010-10-01

    Full Text Available Sensor data fusion technology can be used to best extract useful information from multiple sensor observations. It has been widely applied in various applications such as target tracking, surveillance, robot navigation, signal and image processing. This paper introduces a novel data fusion approach in a multiple radiation sensor environment using Dempster-Shafer evidence theory. The methodology is used to predict cloud presence based on the inputs of radiation sensors. Different radiation data have been used for the cloud prediction. The potential application areas of the algorithm include renewable power for virtual power station where the prediction of cloud presence is the most challenging issue for its photovoltaic output. The algorithm is validated by comparing the predicted cloud presence with the corresponding sunshine occurrence data that were recorded as the benchmark. Our experiments have indicated that comparing to the approaches using individual sensors, the proposed data fusion approach can increase correct rate of cloud prediction by ten percent, and decrease unknown rate of cloud prediction by twenty three percent.

  11. Accurate Predictions of Mean Geomagnetic Dipole Excursion and Reversal Frequencies, Mean Paleomagnetic Field Intensity, and the Radius of Earth's Core Using McLeod's Rule

    Science.gov (United States)

    Voorhies, Coerte V.; Conrad, Joy

    1996-01-01

    The geomagnetic spatial power spectrum R(sub n)(r) is the mean square magnetic induction represented by degree n spherical harmonic coefficients of the internal scalar potential averaged over the geocentric sphere of radius r. McLeod's Rule for the magnetic field generated by Earth's core geodynamo says that the expected core surface power spectrum (R(sub nc)(c)) is inversely proportional to (2n + 1) for 1 less than n less than or equal to N(sub E). McLeod's Rule is verified by locating Earth's core with main field models of Magsat data; the estimated core radius of 3485 kn is close to the seismologic value for c of 3480 km. McLeod's Rule and similar forms are then calibrated with the model values of R(sub n) for 3 less than or = n less than or = 12. Extrapolation to the degree 1 dipole predicts the expectation value of Earth's dipole moment to be about 5.89 x 10(exp 22) Am(exp 2)rms (74.5% of the 1980 value) and the expected geomagnetic intensity to be about 35.6 (mu)T rms at Earth's surface. Archeo- and paleomagnetic field intensity data show these and related predictions to be reasonably accurate. The probability distribution chi(exp 2) with 2n+1 degrees of freedom is assigned to (2n + 1)R(sub nc)/(R(sub nc). Extending this to the dipole implies that an exceptionally weak absolute dipole moment (less than or = 20% of the 1980 value) will exist during 2.5% of geologic time. The mean duration for such major geomagnetic dipole power excursions, one quarter of which feature durable axial dipole reversal, is estimated from the modern dipole power time-scale and the statistical model of excursions. The resulting mean excursion duration of 2767 years forces us to predict an average of 9.04 excursions per million years, 2.26 axial dipole reversals per million years, and a mean reversal duration of 5533 years. Paleomagnetic data show these predictions to be quite accurate. McLeod's Rule led to accurate predictions of Earth's core radius, mean paleomagnetic field

  12. Do dual-route models accurately predict reading and spelling performance in individuals with acquired alexia and agraphia?

    Science.gov (United States)

    Rapcsak, Steven Z; Henry, Maya L; Teague, Sommer L; Carnahan, Susan D; Beeson, Pélagie M

    2007-06-18

    Coltheart and co-workers [Castles, A., Bates, T. C., & Coltheart, M. (2006). John Marshall and the developmental dyslexias. Aphasiology, 20, 871-892; Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108, 204-256] have demonstrated that an equation derived from dual-route theory accurately predicts reading performance in young normal readers and in children with reading impairment due to developmental dyslexia or stroke. In this paper, we present evidence that the dual-route equation and a related multiple regression model also accurately predict both reading and spelling performance in adult neurological patients with acquired alexia and agraphia. These findings provide empirical support for dual-route theories of written language processing.

  13. Predicting Malaysian palm oil price using Extreme Value Theory

    OpenAIRE

    Chuangchid, K; Sriboonchitta, S; Rahman, S; Wiboonpongse, A

    2013-01-01

    This paper uses the extreme value theory (EVT) to predict extreme price events of Malaysian palm oil in the future, based on monthly futures price data for a 25 year period (mid-1986 to mid-2011). Model diagnostic has confirmed non-normal distribution of palm oil price data, thereby justifying the use of EVT. Two principal approaches to model extreme values – the Block Maxima (BM) and Peak-Over- Threshold (POT) models – were used. Both models revealed that the palm oil price will peak at ...

  14. Accurate Determination of the Values of Fundamental Physical Constants: The Basis of the New "Quantum" SI Units

    Science.gov (United States)

    Karshenboim, S. G.

    2018-03-01

    The metric system appeared as the system of units designed for macroscopic (laboratory scale) measurements. The progress in accurate determination of the values of quantum constants (such as the Planck constant) in SI units shows that the capabilities in high-precision measurement of microscopic and macroscopic quantities in terms of the same units have increased substantially recently. At the same time, relative microscopic measurements (for example, the comparison of atomic transition frequencies or atomic masses) are often much more accurate than relative measurements of macroscopic quantities. This is the basis for the strategy to define units in microscopic phenomena and then use them on the laboratory scale, which plays a crucial role in practical methodological applications determined by everyday life and technologies. The international CODATA task group on fundamental constants regularly performs an overall analysis of the precision world data (the so-called Adjustment of the Fundamental Constants) and publishes their recommended values. The most recent evaluation was based on the data published by the end of 2014; here, we review the corresponding data and results. The accuracy in determination of the Boltzmann constant has increased, the consistency of the data on determination of the Planck constant has improved; it is these two dimensional constants that will be used in near future as the basis for the new definition of the kelvin and kilogram, respectively. The contradictions in determination of the Rydberg constant and the proton charge radius remain. The accuracy of determination of the fine structure constant and relative atomic weight of the electron has improved. Overall, we give a detailed review of the state of the art in precision determination of the values of fundamental constants. The mathematical procedure of the Adjustment, the new data and results are considered in detail. The limitations due to macroscopic properties of material

  15. NESmapper: accurate prediction of leucine-rich nuclear export signals using activity-based profiles.

    Directory of Open Access Journals (Sweden)

    Shunichi Kosugi

    2014-09-01

    Full Text Available The nuclear export of proteins is regulated largely through the exportin/CRM1 pathway, which involves the specific recognition of leucine-rich nuclear export signals (NESs in the cargo proteins, and modulates nuclear-cytoplasmic protein shuttling by antagonizing the nuclear import activity mediated by importins and the nuclear import signal (NLS. Although the prediction of NESs can help to define proteins that undergo regulated nuclear export, current methods of predicting NESs, including computational tools and consensus-sequence-based searches, have limited accuracy, especially in terms of their specificity. We found that each residue within an NES largely contributes independently and additively to the entire nuclear export activity. We created activity-based profiles of all classes of NESs with a comprehensive mutational analysis in mammalian cells. The profiles highlight a number of specific activity-affecting residues not only at the conserved hydrophobic positions but also in the linker and flanking regions. We then developed a computational tool, NESmapper, to predict NESs by using profiles that had been further optimized by training and combining the amino acid properties of the NES-flanking regions. This tool successfully reduced the considerable number of false positives, and the overall prediction accuracy was higher than that of other methods, including NESsential and Wregex. This profile-based prediction strategy is a reliable way to identify functional protein motifs. NESmapper is available at http://sourceforge.net/projects/nesmapper.

  16. Probabilistic maximum-value wind prediction for offshore environments

    DEFF Research Database (Denmark)

    Staid, Andrea; Pinson, Pierre; Guikema, Seth D.

    2015-01-01

    statistical models to predict the full distribution of the maximum-value wind speeds in a 3 h interval. We take a detailed look at the performance of linear models, generalized additive models and multivariate adaptive regression splines models using meteorological covariates such as gust speed, wind speed......, convective available potential energy, Charnock, mean sea-level pressure and temperature, as given by the European Center for Medium-Range Weather Forecasts forecasts. The models are trained to predict the mean value of maximum wind speed, and the residuals from training the models are used to develop...... the full probabilistic distribution of maximum wind speed. Knowledge of the maximum wind speed for an offshore location within a given period can inform decision-making regarding turbine operations, planned maintenance operations and power grid scheduling in order to improve safety and reliability...

  17. Predictive values of symptoms in relation to cancer diagnosis

    DEFF Research Database (Denmark)

    Krasnik, Ivan; Andersen, John Sahl

    a manual describing the symptoms that should engender reasonable suspicion of malignancy (“alarm symptoms”) to the general practitioner. Objectives: To investigate the evidence in the literature of the predictive value (PPV) placed on the”alarm symptoms” for colon cancer, breast cancer, prostate cancer...... years (6,6%-21,2%), but much lower in younger age groups. ”Change in bowel habits” and ”Significant general symptoms” are more uncertain (3,5%-8,5%). Breast cancer: ”Palpable suspect tumor” is well supported (8,1%-24%). The predictive value of ”Pitting of the skin”, ”Papil-areola eczema......Background/significance: Poorer prognosis for cancer patients in Denmark than in comparable countries has been shown and contributed to the introduction of accelerated diagnostic trajectories for patients suspicious for cancer in 2008. For all types of cancers the National Board of Health developed...

  18. Predicting community sensitivity to ozone, using Ellenberg Indicator values

    Energy Technology Data Exchange (ETDEWEB)

    Jones, M. Laurence M. [Centre for Ecology and Hydrology Bangor, Orton Building, Deiniol Road, Bangor, Gwynedd LL57 2UP (United Kingdom)]. E-mail: lj@ceh.ac.uk; Hayes, Felicity [Centre for Ecology and Hydrology Bangor, Orton Building, Deiniol Road, Bangor, Gwynedd LL57 2UP (United Kingdom)]. E-mail: fhay@ceh.ac.uk; Mills, Gina [Centre for Ecology and Hydrology Bangor, Orton Building, Deiniol Road, Bangor, Gwynedd LL57 2UP (United Kingdom)]. E-mail: gmi@ceh.ac.uk; Sparks, Tim H. [Centre for Ecology and Hydrology Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom)]. E-mail: ths@ceh.ac.uk; Fuhrer, Juerg [Swiss Federal Research Station for Agroecology and Agriculture (FAL), Air Pollution/Climate Group, Reckenholzstrasse 191, CH-8046 Zurich (Switzerland)]. E-mail: juerg.fuhrer@fal.admin.ch

    2007-04-15

    This paper develops a regression-based model for predicting changes in biomass of individual species exposed to ozone (RS{sub p}), based on their Ellenberg Indicator values. The equation (RS{sub p}=1.805-0.118Light-0.135Salinity) underpredicts observed sensitivity but has the advantage of widespread applicability to almost 3000 European species. The model was applied to grassland communities to develop two further predictive tools. The first tool, percentage change in biomass (ORI%) was tested on data from a field-based ozone exposure experiment and predicted a 27% decrease in biomass over 5 years compared with an observed decrease of 23%. The second tool, an index of community sensitivity to ozone (CORI), was applied to 48 grassland communities and suggests that community sensitivity to ozone is primarily species-driven. A repeat-sampling routine showed that nine species were the minimum requirement to estimate CORI within 5%.

  19. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry.

    Science.gov (United States)

    Mollerup, Christian Brinch; Mardal, Marie; Dalsgaard, Petur Weihe; Linnet, Kristian; Barron, Leon Patrick

    2018-03-23

    Exact mass, retention time (RT), and collision cross section (CCS) are used as identification parameters in liquid chromatography coupled to ion mobility high resolution accurate mass spectrometry (LC-IM-HRMS). Targeted screening analyses are now more flexible and can be expanded for suspect and non-targeted screening. These allow for tentative identification of new compounds, and in-silico predicted reference values are used for improving confidence and filtering false-positive identifications. In this work, predictions of both RT and CCS values are performed with machine learning using artificial neural networks (ANNs). Prediction was based on molecular descriptors, 827 RTs, and 357 CCS values from pharmaceuticals, drugs of abuse, and their metabolites. ANN models for the prediction of RT or CCS separately were examined, and the potential to predict both from a single model was investigated for the first time. The optimized combined RT-CCS model was a four-layered multi-layer perceptron ANN, and the 95th prediction error percentiles were within 2 min RT error and 5% relative CCS error for the external validation set (n = 36) and the full RT-CCS dataset (n = 357). 88.6% (n = 733) of predicted RTs were within 2 min error for the full dataset. Overall, when using 2 min RT error and 5% relative CCS error, 91.9% (n = 328) of compounds were retained, while 99.4% (n = 355) were retained when using at least one of these thresholds. This combined prediction approach can therefore be useful for rapid suspect/non-targeted screening involving HRMS, and will support current workflows. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Predictive value of early near-infrared spectroscopy monitoring of patients with traumatic brain injury.

    Science.gov (United States)

    Vilkė, Alina; Bilskienė, Diana; Šaferis, Viktoras; Gedminas, Martynas; Bieliauskaitė, Dalia; Tamašauskas, Arimantas; Macas, Andrius

    2014-01-01

    Traumatic brain injury (TBI) is the leading cause of death and disability in young adults. Study aimed to define the predictive value of early near-infrared spectroscopy (NIRS) monitoring of TBI patients in a Lithuanian clinical setting. Data of 61 patients was analyzed. Predictive value of early NIRS monitoring, computed tomography data and regular intensive care unit (ICU) parameters was investigated. Twenty-six patients expressed clinically severe TBI; 14 patients deceased. Patients who survived expressed higher NIRS values at the periods of admission to operative room (75.4%±9.8% vs. 71.0%±20.5%; P=0.013) and 1h after admission to ICU (74.7%±1.5% vs. 61.9%±19.4%; P=0.029). The NIRS values discriminated hospital mortality groups more accurately than admission GCS score, blood sugar or hemoglobin levels. Admission INR value and NIRS value at 1h after admission to ICU were selected by discriminant analysis into the optimal set of features when classifying hospital mortality groups. Average efficiency of classification using this method was 88.9%. When rsO2 values at 1h after admission to ICU did not exceed 68.0% in the left hemisphere and 68.3% in the right hemisphere, the hazard ratio for death increased by 17.7 times (Pbrain saturation monitoring provides accurate predictive data, which can improve the allocation of scarce medical resources, set the treatment goals and alleviate the early communication with patients' relatives. Copyright © 2014 Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  1. Accurate prediction of the ammonia probes of a variable proton-to-electron mass ratio

    Science.gov (United States)

    Owens, A.; Yurchenko, S. N.; Thiel, W.; Špirko, V.

    2015-07-01

    A comprehensive study of the mass sensitivity of the vibration-rotation-inversion transitions of 14NH3, 15NH3, 14ND3 and 15ND3 is carried out variationally using the TROVE approach. Variational calculations are robust and accurate, offering a new way to compute sensitivity coefficients. Particular attention is paid to the Δk = ±3 transitions between the accidentally coinciding rotation-inversion energy levels of the ν2 = 0+, 0-, 1+ and 1- states, and the inversion transitions in the ν4 = 1 state affected by the `giant' l-type doubling effect. These transitions exhibit highly anomalous sensitivities, thus appearing as promising probes of a possible cosmological variation of the proton-to-electron mass ratio μ. Moreover, a simultaneous comparison of the calculated sensitivities reveals a sizeable isotopic dependence which could aid an exclusive ammonia detection.

  2. Reliable and accurate point-based prediction of cumulative infiltration using soil readily available characteristics: A comparison between GMDH, ANN, and MLR

    Science.gov (United States)

    Rahmati, Mehdi

    2017-08-01

    Developing accurate and reliable pedo-transfer functions (PTFs) to predict soil non-readily available characteristics is one of the most concerned topic in soil science and selecting more appropriate predictors is a crucial factor in PTFs' development. Group method of data handling (GMDH), which finds an approximate relationship between a set of input and output variables, not only provide an explicit procedure to select the most essential PTF input variables, but also results in more accurate and reliable estimates than other mostly applied methodologies. Therefore, the current research was aimed to apply GMDH in comparison with multivariate linear regression (MLR) and artificial neural network (ANN) to develop several PTFs to predict soil cumulative infiltration point-basely at specific time intervals (0.5-45 min) using soil readily available characteristics (RACs). In this regard, soil infiltration curves as well as several soil RACs including soil primary particles (clay (CC), silt (Si), and sand (Sa)), saturated hydraulic conductivity (Ks), bulk (Db) and particle (Dp) densities, organic carbon (OC), wet-aggregate stability (WAS), electrical conductivity (EC), and soil antecedent (θi) and field saturated (θfs) water contents were measured at 134 different points in Lighvan watershed, northwest of Iran. Then, applying GMDH, MLR, and ANN methodologies, several PTFs have been developed to predict cumulative infiltrations using two sets of selected soil RACs including and excluding Ks. According to the test data, results showed that developed PTFs by GMDH and MLR procedures using all soil RACs including Ks resulted in more accurate (with E values of 0.673-0.963) and reliable (with CV values lower than 11 percent) predictions of cumulative infiltrations at different specific time steps. In contrast, ANN procedure had lower accuracy (with E values of 0.356-0.890) and reliability (with CV values up to 50 percent) compared to GMDH and MLR. The results also revealed

  3. Neural networks for predicting breeding values and genetic gains

    Directory of Open Access Journals (Sweden)

    Gabi Nunes Silva

    2014-12-01

    Full Text Available Analysis using Artificial Neural Networks has been described as an approach in the decision-making process that, although incipient, has been reported as presenting high potential for use in animal and plant breeding. In this study, we introduce the procedure of using the expanded data set for training the network. Wealso proposed using statistical parameters to estimate the breeding value of genotypes in simulated scenarios, in addition to the mean phenotypic value in a feed-forward back propagation multilayer perceptron network. After evaluating artificial neural network configurations, our results showed its superiority to estimates based on linear models, as well as its applicability in the genetic value prediction process. The results further indicated the good generalization performance of the neural network model in several additional validation experiments.

  4. Are predictive equations for estimating resting energy expenditure accurate in Asian Indian male weightlifters?

    Directory of Open Access Journals (Sweden)

    Mini Joseph

    2017-01-01

    Full Text Available Background: The accuracy of existing predictive equations to determine the resting energy expenditure (REE of professional weightlifters remains scarcely studied. Our study aimed at assessing the REE of male Asian Indian weightlifters with indirect calorimetry and to compare the measured REE (mREE with published equations. A new equation using potential anthropometric variables to predict REE was also evaluated. Materials and Methods: REE was measured on 30 male professional weightlifters aged between 17 and 28 years using indirect calorimetry and compared with the eight formulas predicted by Harris–Benedicts, Mifflin-St. Jeor, FAO/WHO/UNU, ICMR, Cunninghams, Owen, Katch-McArdle, and Nelson. Pearson correlation coefficient, intraclass correlation coefficient, and multiple linear regression analysis were carried out to study the agreement between the different methods, association with anthropometric variables, and to formulate a new prediction equation for this population. Results: Pearson correlation coefficients between mREE and the anthropometric variables showed positive significance with suprailiac skinfold thickness, lean body mass (LBM, waist circumference, hip circumference, bone mineral mass, and body mass. All eight predictive equations underestimated the REE of the weightlifters when compared with the mREE. The highest mean difference was 636 kcal/day (Owen, 1986 and the lowest difference was 375 kcal/day (Cunninghams, 1980. Multiple linear regression done stepwise showed that LBM was the only significant determinant of REE in this group of sportspersons. A new equation using LBM as the independent variable for calculating REE was computed. REE for weightlifters = −164.065 + 0.039 (LBM (confidence interval −1122.984, 794.854]. This new equation reduced the mean difference with mREE by 2.36 + 369.15 kcal/day (standard error = 67.40. Conclusion: The significant finding of this study was that all the prediction equations

  5. Safe surgery: how accurate are we at predicting intra-operative blood loss?

    LENUS (Irish Health Repository)

    2012-02-01

    Introduction Preoperative estimation of intra-operative blood loss by both anaesthetist and operating surgeon is a criterion of the World Health Organization\\'s surgical safety checklist. The checklist requires specific preoperative planning when anticipated blood loss is greater than 500 mL. The aim of this study was to assess the accuracy of surgeons and anaesthetists at predicting intra-operative blood loss. Methods A 6-week prospective study of intermediate and major operations in an academic medical centre was performed. An independent observer interviewed surgical and anaesthetic consultants and registrars, preoperatively asking each to predict expected blood loss in millilitre. Intra-operative blood loss was measured and compared with these predictions. Parameters including the use of anticoagulation and anti-platelet therapy as well as intra-operative hypothermia and hypotension were recorded. Results One hundred sixty-eight operations were included in the study, including 142 elective and 26 emergency operations. Blood loss was predicted to within 500 mL of measured blood loss in 89% of cases. Consultant surgeons tended to underestimate blood loss, doing so in 43% of all cases, while consultant anaesthetists were more likely to overestimate (60% of all operations). Twelve patients (7%) had underestimation of blood loss of more than 500 mL by both surgeon and anaesthetist. Thirty per cent (n = 6\\/20) of patients requiring transfusion of a blood product within 24 hours of surgery had blood loss underestimated by more than 500 mL by both surgeon and anaesthetist. There was no significant difference in prediction between patients on anti-platelet or anticoagulation therapy preoperatively and those not on the said therapies. Conclusion Predicted intra-operative blood loss was within 500 mL of measured blood loss in 89% of operations. In 30% of patients who ultimately receive a blood transfusion, both the surgeon and anaesthetist significantly underestimate

  6. Fast and accurate covalent bond predictions using perturbation theory in chemical space

    Science.gov (United States)

    Chang, Kuang-Yu; von Lilienfeld, Anatole

    I will discuss the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among systems of different chemical composition. We have investigated single, double, and triple bonds occurring in small sets of iso-valence-electronic molecular species with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order estimates of covalent bonding potentials can achieve chemical accuracy (within 1 kcal/mol) if the alchemical interpolation is vertical (fixed geometry) among chemical elements from third and fourth row of the periodic table. When applied to nonbonded systems of molecular dimers or solids such as III-V semiconductors, alanates, alkali halides, and transition metals, similar observations hold, enabling rapid predictions of van der Waals energies, defect energies, band-structures, crystal structures, and lattice constants.

  7. Beating Heart Motion Accurate Prediction Method Based on Interactive Multiple Model: An Information Fusion Approach

    Science.gov (United States)

    Xie, Weihong; Yu, Yang

    2017-01-01

    Robot-assisted motion compensated beating heart surgery has the advantage over the conventional Coronary Artery Bypass Graft (CABG) in terms of reduced trauma to the surrounding structures that leads to shortened recovery time. The severe nonlinear and diverse nature of irregular heart rhythm causes enormous difficulty for the robot to realize the clinic requirements, especially under arrhythmias. In this paper, we propose a fusion prediction framework based on Interactive Multiple Model (IMM) estimator, allowing each model to cover a distinguishing feature of the heart motion in underlying dynamics. We find that, at normal state, the nonlinearity of the heart motion with slow time-variant changing dominates the beating process. When an arrhythmia occurs, the irregularity mode, the fast uncertainties with random patterns become the leading factor of the heart motion. We deal with prediction problem in the case of arrhythmias by estimating the state with two behavior modes which can adaptively “switch” from one to the other. Also, we employed the signal quality index to adaptively determine the switch transition probability in the framework of IMM. We conduct comparative experiments to evaluate the proposed approach with four distinguished datasets. The test results indicate that the new proposed approach reduces prediction errors significantly. PMID:29124062

  8. Beating Heart Motion Accurate Prediction Method Based on Interactive Multiple Model: An Information Fusion Approach

    Directory of Open Access Journals (Sweden)

    Fan Liang

    2017-01-01

    Full Text Available Robot-assisted motion compensated beating heart surgery has the advantage over the conventional Coronary Artery Bypass Graft (CABG in terms of reduced trauma to the surrounding structures that leads to shortened recovery time. The severe nonlinear and diverse nature of irregular heart rhythm causes enormous difficulty for the robot to realize the clinic requirements, especially under arrhythmias. In this paper, we propose a fusion prediction framework based on Interactive Multiple Model (IMM estimator, allowing each model to cover a distinguishing feature of the heart motion in underlying dynamics. We find that, at normal state, the nonlinearity of the heart motion with slow time-variant changing dominates the beating process. When an arrhythmia occurs, the irregularity mode, the fast uncertainties with random patterns become the leading factor of the heart motion. We deal with prediction problem in the case of arrhythmias by estimating the state with two behavior modes which can adaptively “switch” from one to the other. Also, we employed the signal quality index to adaptively determine the switch transition probability in the framework of IMM. We conduct comparative experiments to evaluate the proposed approach with four distinguished datasets. The test results indicate that the new proposed approach reduces prediction errors significantly.

  9. Prediction of strain values in reinforcements and concrete of a RC frame using neural networks

    Science.gov (United States)

    Vafaei, Mohammadreza; Alih, Sophia C.; Shad, Hossein; Falah, Ali; Halim, Nur Hajarul Falahi Abdul

    2018-03-01

    The level of strain in structural elements is an important indicator for the presence of damage and its intensity. Considering this fact, often structural health monitoring systems employ strain gauges to measure strains in critical elements. However, because of their sensitivity to the magnetic fields, inadequate long-term durability especially in harsh environments, difficulties in installation on existing structures, and maintenance cost, installation of strain gauges is not always possible for all structural components. Therefore, a reliable method that can accurately estimate strain values in critical structural elements is necessary for damage identification. In this study, a full-scale test was conducted on a planar RC frame to investigate the capability of neural networks for predicting the strain values. Two neural networks each of which having a single hidden layer was trained to relate the measured rotations and vertical displacements of the frame to the strain values measured at different locations of the frame. Results of trained neural networks indicated that they accurately estimated the strain values both in reinforcements and concrete. In addition, the trained neural networks were capable of predicting strains for the unseen input data set.

  10. Meta-analytic approach to the accurate prediction of secreted virulence effectors in gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Sato Yoshiharu

    2011-11-01

    Full Text Available Abstract Background Many pathogens use a type III secretion system to translocate virulence proteins (called effectors in order to adapt to the host environment. To date, many prediction tools for effector identification have been developed. However, these tools are insufficiently accurate for producing a list of putative effectors that can be applied directly for labor-intensive experimental verification. This also suggests that important features of effectors have yet to be fully characterized. Results In this study, we have constructed an accurate approach to predicting secreted virulence effectors from Gram-negative bacteria. This consists of a support vector machine-based discriminant analysis followed by a simple criteria-based filtering. The accuracy was assessed by estimating the average number of true positives in the top-20 ranking in the genome-wide screening. In the validation, 10 sets of 20 training and 20 testing examples were randomly selected from 40 known effectors of Salmonella enterica serovar Typhimurium LT2. On average, the SVM portion of our system predicted 9.7 true positives from 20 testing examples in the top-20 of the prediction. Removal of the N-terminal instability, codon adaptation index and ProtParam indices decreased the score to 7.6, 8.9 and 7.9, respectively. These discrimination features suggested that the following characteristics of effectors had been uncovered: unstable N-terminus, non-optimal codon usage, hydrophilic, and less aliphathic. The secondary filtering process represented by coexpression analysis and domain distribution analysis further refined the average true positive counts to 12.3. We further confirmed that our system can correctly predict known effectors of P. syringae DC3000, strongly indicating its feasibility. Conclusions We have successfully developed an accurate prediction system for screening effectors on a genome-wide scale. We confirmed the accuracy of our system by external validation

  11. Predictive values of thermal and electrical dental pulp tests: a clinical study.

    Science.gov (United States)

    Villa-Chávez, Carlos E; Patiño-Marín, Nuria; Loyola-Rodríguez, Juan P; Zavala-Alonso, Norma V; Martínez-Castañón, Gabriel A; Medina-Solís, Carlo E

    2013-08-01

    For a diagnostic test to be useful, it is necessary to determine the probability that the test will provide the correct diagnosis. Therefore, it is necessary to calculate the predictive value of diagnostics. The aim of the present study was to identify the sensitivity, specificity, positive and negative predictive values, accuracy, and reproducibility of thermal and electrical tests of pulp sensitivity. The thermal tests studied were the 1, 1, 1, 2-tetrafluoroethane (cold) and hot gutta-percha (hot) tests. For the electrical test, the Analytic Technology Pulp Tester (Analytic Technology, Redmond, WA) was used. A total of 110 teeth were tested: 60 teeth with vital pulp and 50 teeth with necrotic pulps (disease prevalence of 45%). The ideal standard was established by direct pulp inspection. The sensitivities of the diagnostic tests were 0.88 for the cold test, 0.86 for the heat test, and 0.76 for the electrical test, and the specificity was 1.0 for all 3 tests. The negative predictive value was 0.90 for the cold test, 0.89 for the heat test, and 0.83 for the electrical test, and the positive predictive value was 1.0 for all 3 tests. The highest accuracy (0.94) and reproducibility (0.88) were observed for the cold test. The cold test was the most accurate method for diagnostic testing. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Predictive value of ventilatory inflection points determined under field conditions.

    Science.gov (United States)

    Heyde, Christian; Mahler, Hubert; Roecker, Kai; Gollhofer, Albert

    2016-01-01

    The aim of this study was to evaluate the predictive potential provided by two ventilatory inflection points (VIP1 and VIP2) examined in field without using gas analysis systems and uncomfortable facemasks. A calibrated respiratory inductance plethysmograph (RIP) and a computerised routine were utilised, respectively, to derive ventilation and to detect VIP1 and VIP2 during a standardised field ramp test on a 400 m running track on 81 participants. In addition, average running speed of a competitive 1000 m run (S1k) was observed as criterion. The predictive value of running speed at VIP1 (SVIP1) and the speed range between VIP1 and VIP2 in relation to VIP2 (VIPSPAN) was analysed via regression analysis. VIPSPAN rather than running speed at VIP2 (SVIP2) was operationalised as a predictor to consider the covariance between SVIP1 and SVIP2. SVIP1 and VIPSPAN, respectively, provided 58.9% and 22.9% of explained variance in regard to S1k. Considering covariance, the timing of two ventilatory inflection points provides predictive value in regard to a competitive 1000 m run. This is the first study to apply computerised detection of ventilatory inflection points in a field setting independent on measurements of the respiratory gas exchange and without using any facemasks.

  13. Predictive value of impaired evacuation at proctography in diagnosing anismus.

    Science.gov (United States)

    Halligan, S; Malouf, A; Bartram, C I; Marshall, M; Hollings, N; Kamm, M A

    2001-09-01

    We aimed to determine the positive predictive value of impaired evacuation during evacuation proctography for the subsequent diagnosis of anismus. Thirty-one adults with signs of impaired evacuation (defined as the inability to evacuate two thirds of a 120 mL contrast enema within 30 sec) during evacuation proctography underwent subsequent anorectal physiologic testing for anismus. A physiologic diagnosis of anismus was based on a typical clinical history of the condition combined with impaired rectal balloon expulsion or abnormal surface electromyogram. Twenty-eight (90%) of the 31 patients with impaired proctographic evacuation were found to have anismus at subsequent physiologic testing. Among the 28 were all 10 patients who evacuated no contrast medium and all 11 patients with inadequate pelvic floor descent, giving evacuation proctography a positive predictive value of 90% for the diagnosis of anismus. A prominent puborectal impression was seen in only three subjects during proctography, one of whom subsequently showed no physiologic sign of anismus. Impaired evacuation during evacuation proctography is highly predictive for diagnosis of anismus.

  14. Suboptimal Choice in Pigeons: Stimulus Value Predicts Choice over Frequencies.

    Directory of Open Access Journals (Sweden)

    Aaron P Smith

    Full Text Available Pigeons have shown suboptimal gambling-like behavior when preferring a stimulus that infrequently signals reliable reinforcement over alternatives that provide greater reinforcement overall. As a mechanism for this behavior, recent research proposed that the stimulus value of alternatives with more reliable signals for reinforcement will be preferred relatively independently of their frequencies. The present study tested this hypothesis using a simplified design of a Discriminative alternative that, 50% of the time, led to either a signal for 100% reinforcement or a blackout period indicative of 0% reinforcement against a Nondiscriminative alternative that always led to a signal that predicted 50% reinforcement. Pigeons showed a strong preference for the Discriminative alternative that remained despite reducing the frequency of the signal for reinforcement in subsequent phases to 25% and then 12.5%. In Experiment 2, using the original design of Experiment 1, the stimulus following choice of the Nondiscriminative alternative was increased to 75% and then to 100%. Results showed that preference for the Discriminative alternative decreased only when the signals for reinforcement for the two alternatives predicted the same probability of reinforcement. The ability of several models to predict this behavior are discussed, but the terminal link stimulus value offers the most parsimonious account of this suboptimal behavior.

  15. Does resident ranking during recruitment accurately predict subsequent performance as a surgical resident?

    Science.gov (United States)

    Fryer, Jonathan P; Corcoran, Noreen; George, Brian; Wang, Ed; Darosa, Debra

    2012-01-01

    While the primary goal of ranking applicants for surgical residency training positions is to identify the candidates who will subsequently perform best as surgical residents, the effectiveness of the ranking process has not been adequately studied. We evaluated our general surgery resident recruitment process between 2001 and 2011 inclusive, to determine if our recruitment ranking parameters effectively predicted subsequent resident performance. We identified 3 candidate ranking parameters (United States Medical Licensing Examination [USMLE] Step 1 score, unadjusted ranking score [URS], and final adjusted ranking [FAR]), and 4 resident performance parameters (American Board of Surgery In-Training Examination [ABSITE] score, PGY1 resident evaluation grade [REG], overall REG, and independent faculty rating ranking [IFRR]), and assessed whether the former were predictive of the latter. Analyses utilized Spearman correlation coefficient. We found that the URS, which is based on objective and criterion based parameters, was a better predictor of subsequent performance than the FAR, which is a modification of the URS based on subsequent determinations of the resident selection committee. USMLE score was a reliable predictor of ABSITE scores only. However, when we compared our worst residence performances with the performances of the other residents in this evaluation, the data did not produce convincing evidence that poor resident performances could be reliably predicted by any of the recruitment ranking parameters. Finally, stratifying candidates based on their rank range did not effectively define a ranking cut-off beyond which resident performance would drop off. Based on these findings, we recommend surgery programs may be better served by utilizing a more structured resident ranking process and that subsequent adjustments to the rank list generated by this process should be undertaken with caution. Copyright © 2012 Association of Program Directors in Surgery

  16. Surface temperatures in New York City: Geospatial data enables the accurate prediction of radiative heat transfer.

    Science.gov (United States)

    Ghandehari, Masoud; Emig, Thorsten; Aghamohamadnia, Milad

    2018-02-02

    Despite decades of research seeking to derive the urban energy budget, the dynamics of thermal exchange in the densely constructed environment is not yet well understood. Using New York City as a study site, we present a novel hybrid experimental-computational approach for a better understanding of the radiative heat transfer in complex urban environments. The aim of this work is to contribute to the calculation of the urban energy budget, particularly the stored energy. We will focus our attention on surface thermal radiation. Improved understanding of urban thermodynamics incorporating the interaction of various bodies, particularly in high rise cities, will have implications on energy conservation at the building scale, and for human health and comfort at the urban scale. The platform presented is based on longwave hyperspectral imaging of nearly 100 blocks of Manhattan, in addition to a geospatial radiosity model that describes the collective radiative heat exchange between multiple buildings. Despite assumptions in surface emissivity and thermal conductivity of buildings walls, the close comparison of temperatures derived from measurements and computations is promising. Results imply that the presented geospatial thermodynamic model of urban structures can enable accurate and high resolution analysis of instantaneous urban surface temperatures.

  17. Improving the description of sunglint for accurate prediction of remotely sensed radiances

    Energy Technology Data Exchange (ETDEWEB)

    Ottaviani, Matteo [Light and Life Laboratory, Department of Physics and Engineering Physics, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030 (United States)], E-mail: mottavia@stevens.edu; Spurr, Robert [RT Solutions Inc., 9 Channing Street, Cambridge, MA 02138 (United States); Stamnes, Knut; Li Wei [Light and Life Laboratory, Department of Physics and Engineering Physics, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030 (United States); Su Wenying [Science Systems and Applications Inc., 1 Enterprise Parkway, Hampton, VA 23666 (United States); Wiscombe, Warren [NASA GSFC, Greenbelt, MD 20771 (United States)

    2008-09-15

    The bidirectional reflection distribution function (BRDF) of the ocean is a critical boundary condition for radiative transfer calculations in the coupled atmosphere-ocean system. Existing models express the extent of the glint-contaminated region and its contribution to the radiance essentially as a function of the wind speed. An accurate treatment of the glint contribution and its propagation in the atmosphere would improve current correction schemes and hence rescue a significant portion of data presently discarded as 'glint contaminated'. In current satellite imagery, a correction to the sensor-measured radiances is limited to the region at the edge of the glint, where the contribution is below a certain threshold. This correction assumes the sunglint radiance to be directly transmitted through the atmosphere. To quantify the error introduced by this approximation we employ a radiative transfer code that allows for a user-specified BRDF at the atmosphere-ocean interface and rigorously accounts for multiple scattering. We show that the errors incurred by ignoring multiple scattering are very significant and typically lie in the range 10-90%. Multiple reflections and shadowing at the surface can also be accounted for, and we illustrate the importance of such processes at grazing geometries.

  18. Developing Metamodels for Fast and Accurate Prediction of the Draping of Physical Surfaces

    DEFF Research Database (Denmark)

    Christensen, Esben Toke; Forrester, AIJ.; Lund, Erik

    2018-01-01

    In this paper, the use of methods from the meta- or surrogate modeling literature, for building models predicting the draping of physical surfaces, is examined. An example application concerning modeling of the behavior of a variable shape mold is treated. Four different methods are considered...... and local variants, are compared in terms of accuracy and numerical efficiency on data sets of different sizes for the treated application. It is shown that the POD-based methods are vastly superior to models based on kriging alone, and that the use of a difference model structure is advantageous...

  19. Can Hounsfield Unit Value Predict Type of Urinary Stones?

    Directory of Open Access Journals (Sweden)

    Alper Gok

    2014-03-01

    Full Text Available Aim: Aim of this study is to determine the role of Hounsfield unit (HU in predicting results of stone analysis. Material and Method: This study included 199 patients to whom percutaneous nephrolithotomy (PNL procedures were applied between January 2008 and May 2011 in our clinic. Before the procedure HU values of kidney stones were measured using non-contrast computed tomography. After the operation, obtained stone samples were analysed using X-ray diffraction technique. HU values were compared with stone analysis results. Results: Stone analysis revealed eight different stone types. Distribution of stone types and HU value ranges were as follows: 85% calcium oxalate monohydrate, 730-1130 HU; 38% calcium oxalate dihydrate, 510-810 HU; 21% uric acid, 320-550 HU; 23% struvite, 614-870 HU; 7% calcium hydrogene phosphate, 1100-1365 HU; 3% cystine, 630-674 HU; 15% mixed uric acid plus calcium oxalate, 499-840 HU; and 7% mixed cystine plus calcium phosphate, 430-520 HU. HU values of all stone types ranged between 320 and 1365. There was a statistically significant relation between HU values of uric acid and non uric acid stones (p

  20. A fast EM algorithm for BayesA-like prediction of genomic breeding values.

    Directory of Open Access Journals (Sweden)

    Xiaochen Sun

    Full Text Available Prediction accuracies of estimated breeding values for economically important traits are expected to benefit from genomic information. Single nucleotide polymorphism (SNP panels used in genomic prediction are increasing in density, but the Markov Chain Monte Carlo (MCMC estimation of SNP effects can be quite time consuming or slow to converge when a large number of SNPs are fitted simultaneously in a linear mixed model. Here we present an EM algorithm (termed "fastBayesA" without MCMC. This fastBayesA approach treats the variances of SNP effects as missing data and uses a joint posterior mode of effects compared to the commonly used BayesA which bases predictions on posterior means of effects. In each EM iteration, SNP effects are predicted as a linear combination of best linear unbiased predictions of breeding values from a mixed linear animal model that incorporates a weighted marker-based realized relationship matrix. Method fastBayesA converges after a few iterations to a joint posterior mode of SNP effects under the BayesA model. When applied to simulated quantitative traits with a range of genetic architectures, fastBayesA is shown to predict GEBV as accurately as BayesA but with less computing effort per SNP than BayesA. Method fastBayesA can be used as a computationally efficient substitute for BayesA, especially when an increasing number of markers bring unreasonable computational burden or slow convergence to MCMC approaches.

  1. Diagnostic value of apparent diffusion coefficient value in prediction of grade for neuroepithelial tumors

    International Nuclear Information System (INIS)

    Chen Zhiye; Ma Lin

    2009-01-01

    Objective: To investigate the predictive value of ADC value in grading of neuroepithelial tumors. Methods: The clinical data and images of 70 patients with neuroepithelial tumors pathologically proven were collected and analyzed retrospectively. All the patients were classified into low (WHO I or II) and high (WHO III or IV) grade groups which included 40 and 30 cases respectively according to the 2007 WHO classification of tumours of the central nervous system. All the patients underwent plain and contrast-enhanced MR scan and DWI before surgery. The minimum ADC (MinADC) value was measured postoperatively on ADC maps. The Ki-67 labeling index (Ki-67 LI) of tumor tissue was determined by immunohistochemistry. MinADC values for two groups were analyzed using student t test, while the age and Ki-67 LI for the two groups was analyzed using Mann-Whitney test (P -3 mm 2 /s] of the low grade group was significantly higher than that [(0.74±0.18) x 10 -3 mm 2 /s] of the high grade group (t=5.42, P -3 mm 2 /s for the differentiation between high and low grade neuroepithelial tumors provided the best combination of sensitivity (90.0%) and specificity (77.5%) (receiver operating characteristic analysis). Conclusion: MinADC value is helpful for prediction of neuroepithelial tumor grade.. (authors)

  2. DisoMCS: Accurately Predicting Protein Intrinsically Disordered Regions Using a Multi-Class Conservative Score Approach.

    Directory of Open Access Journals (Sweden)

    Zhiheng Wang

    Full Text Available The precise prediction of protein intrinsically disordered regions, which play a crucial role in biological procedures, is a necessary prerequisite to further the understanding of the principles and mechanisms of protein function. Here, we propose a novel predictor, DisoMCS, which is a more accurate predictor of protein intrinsically disordered regions. The DisoMCS bases on an original multi-class conservative score (MCS obtained by sequence-order/disorder alignment. Initially, near-disorder regions are defined on fragments located at both the terminus of an ordered region connecting a disordered region. Then the multi-class conservative score is generated by sequence alignment against a known structure database and represented as order, near-disorder and disorder conservative scores. The MCS of each amino acid has three elements: order, near-disorder and disorder profiles. Finally, the MCS is exploited as features to identify disordered regions in sequences. DisoMCS utilizes a non-redundant data set as the training set, MCS and predicted secondary structure as features, and a conditional random field as the classification algorithm. In predicted near-disorder regions a residue is determined as an order or a disorder according to the optimized decision threshold. DisoMCS was evaluated by cross-validation, large-scale prediction, independent tests and CASP (Critical Assessment of Techniques for Protein Structure Prediction tests. All results confirmed that DisoMCS was very competitive in terms of accuracy of prediction when compared with well-established publicly available disordered region predictors. It also indicated our approach was more accurate when a query has higher homologous with the knowledge database.The DisoMCS is available at http://cal.tongji.edu.cn/disorder/.

  3. Accurate prediction of hot spot residues through physicochemical characteristics of amino acid sequences

    KAUST Repository

    Chen, Peng

    2013-07-23

    Hot spot residues of proteins are fundamental interface residues that help proteins perform their functions. Detecting hot spots by experimental methods is costly and time-consuming. Sequential and structural information has been widely used in the computational prediction of hot spots. However, structural information is not always available. In this article, we investigated the problem of identifying hot spots using only physicochemical characteristics extracted from amino acid sequences. We first extracted 132 relatively independent physicochemical features from a set of the 544 properties in AAindex1, an amino acid index database. Each feature was utilized to train a classification model with a novel encoding schema for hot spot prediction by the IBk algorithm, an extension of the K-nearest neighbor algorithm. The combinations of the individual classifiers were explored and the classifiers that appeared frequently in the top performing combinations were selected. The hot spot predictor was built based on an ensemble of these classifiers and to work in a voting manner. Experimental results demonstrated that our method effectively exploited the feature space and allowed flexible weights of features for different queries. On the commonly used hot spot benchmark sets, our method significantly outperformed other machine learning algorithms and state-of-the-art hot spot predictors. The program is available at http://sfb.kaust.edu.sa/pages/software.aspx. © 2013 Wiley Periodicals, Inc.

  4. Neural network and SVM classifiers accurately predict lipid binding proteins, irrespective of sequence homology.

    Science.gov (United States)

    Bakhtiarizadeh, Mohammad Reza; Moradi-Shahrbabak, Mohammad; Ebrahimi, Mansour; Ebrahimie, Esmaeil

    2014-09-07

    Due to the central roles of lipid binding proteins (LBPs) in many biological processes, sequence based identification of LBPs is of great interest. The major challenge is that LBPs are diverse in sequence, structure, and function which results in low accuracy of sequence homology based methods. Therefore, there is a need for developing alternative functional prediction methods irrespective of sequence similarity. To identify LBPs from non-LBPs, the performances of support vector machine (SVM) and neural network were compared in this study. Comprehensive protein features and various techniques were employed to create datasets. Five-fold cross-validation (CV) and independent evaluation (IE) tests were used to assess the validity of the two methods. The results indicated that SVM outperforms neural network. SVM achieved 89.28% (CV) and 89.55% (IE) overall accuracy in identification of LBPs from non-LBPs and 92.06% (CV) and 92.90% (IE) (in average) for classification of different LBPs classes. Increasing the number and the range of extracted protein features as well as optimization of the SVM parameters significantly increased the efficiency of LBPs class prediction in comparison to the only previous report in this field. Altogether, the results showed that the SVM algorithm can be run on broad, computationally calculated protein features and offers a promising tool in detection of LBPs classes. The proposed approach has the potential to integrate and improve the common sequence alignment based methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Accurate prediction of hot spot residues through physicochemical characteristics of amino acid sequences

    KAUST Repository

    Chen, Peng; Li, Jinyan; Limsoon, Wong; Kuwahara, Hiroyuki; Huang, Jianhua Z.; Gao, Xin

    2013-01-01

    Hot spot residues of proteins are fundamental interface residues that help proteins perform their functions. Detecting hot spots by experimental methods is costly and time-consuming. Sequential and structural information has been widely used in the computational prediction of hot spots. However, structural information is not always available. In this article, we investigated the problem of identifying hot spots using only physicochemical characteristics extracted from amino acid sequences. We first extracted 132 relatively independent physicochemical features from a set of the 544 properties in AAindex1, an amino acid index database. Each feature was utilized to train a classification model with a novel encoding schema for hot spot prediction by the IBk algorithm, an extension of the K-nearest neighbor algorithm. The combinations of the individual classifiers were explored and the classifiers that appeared frequently in the top performing combinations were selected. The hot spot predictor was built based on an ensemble of these classifiers and to work in a voting manner. Experimental results demonstrated that our method effectively exploited the feature space and allowed flexible weights of features for different queries. On the commonly used hot spot benchmark sets, our method significantly outperformed other machine learning algorithms and state-of-the-art hot spot predictors. The program is available at http://sfb.kaust.edu.sa/pages/software.aspx. © 2013 Wiley Periodicals, Inc.

  6. Accurate prediction of hot spot residues through physicochemical characteristics of amino acid sequences.

    Science.gov (United States)

    Chen, Peng; Li, Jinyan; Wong, Limsoon; Kuwahara, Hiroyuki; Huang, Jianhua Z; Gao, Xin

    2013-08-01

    Hot spot residues of proteins are fundamental interface residues that help proteins perform their functions. Detecting hot spots by experimental methods is costly and time-consuming. Sequential and structural information has been widely used in the computational prediction of hot spots. However, structural information is not always available. In this article, we investigated the problem of identifying hot spots using only physicochemical characteristics extracted from amino acid sequences. We first extracted 132 relatively independent physicochemical features from a set of the 544 properties in AAindex1, an amino acid index database. Each feature was utilized to train a classification model with a novel encoding schema for hot spot prediction by the IBk algorithm, an extension of the K-nearest neighbor algorithm. The combinations of the individual classifiers were explored and the classifiers that appeared frequently in the top performing combinations were selected. The hot spot predictor was built based on an ensemble of these classifiers and to work in a voting manner. Experimental results demonstrated that our method effectively exploited the feature space and allowed flexible weights of features for different queries. On the commonly used hot spot benchmark sets, our method significantly outperformed other machine learning algorithms and state-of-the-art hot spot predictors. The program is available at http://sfb.kaust.edu.sa/pages/software.aspx. Copyright © 2013 Wiley Periodicals, Inc.

  7. Size matters. The width and location of a ureteral stone accurately predict the chance of spontaneous passage

    Energy Technology Data Exchange (ETDEWEB)

    Jendeberg, Johan; Geijer, Haakan; Alshamari, Muhammed; Liden, Mats [Oerebro University Hospital, Department of Radiology, Faculty of Medicine and Health, Oerebro (Sweden); Cierzniak, Bartosz [Oerebro University, Department of Surgery, Faculty of Medicine and Health, Oerebro (Sweden)

    2017-11-15

    To determine how to most accurately predict the chance of spontaneous passage of a ureteral stone using information in the diagnostic non-enhanced computed tomography (NECT) and to create predictive models with smaller stone size intervals than previously possible. Retrospectively 392 consecutive patients with ureteric stone on NECT were included. Three radiologists independently measured the stone size. Stone location, side, hydronephrosis, CRP, medical expulsion therapy (MET) and all follow-up radiology until stone expulsion or 26 weeks were recorded. Logistic regressions were performed with spontaneous stone passage in 4 weeks and 20 weeks as the dependent variable. The spontaneous passage rate in 20 weeks was 312 out of 392 stones, 98% in 0-2 mm, 98% in 3 mm, 81% in 4 mm, 65% in 5 mm, 33% in 6 mm and 9% in ≥6.5 mm wide stones. The stone size and location predicted spontaneous ureteric stone passage. The side and the grade of hydronephrosis only predicted stone passage in specific subgroups. Spontaneous passage of a ureteral stone can be predicted with high accuracy with the information available in the NECT. We present a prediction method based on stone size and location. (orig.)

  8. Disturbance observer based model predictive control for accurate atmospheric entry of spacecraft

    Science.gov (United States)

    Wu, Chao; Yang, Jun; Li, Shihua; Li, Qi; Guo, Lei

    2018-05-01

    Facing the complex aerodynamic environment of Mars atmosphere, a composite atmospheric entry trajectory tracking strategy is investigated in this paper. External disturbances, initial states uncertainties and aerodynamic parameters uncertainties are the main problems. The composite strategy is designed to solve these problems and improve the accuracy of Mars atmospheric entry. This strategy includes a model predictive control for optimized trajectory tracking performance, as well as a disturbance observer based feedforward compensation for external disturbances and uncertainties attenuation. 500-run Monte Carlo simulations show that the proposed composite control scheme achieves more precise Mars atmospheric entry (3.8 km parachute deployment point distribution error) than the baseline control scheme (8.4 km) and integral control scheme (5.8 km).

  9. nuMap: a web platform for accurate prediction of nucleosome positioning.

    Science.gov (United States)

    Alharbi, Bader A; Alshammari, Thamir H; Felton, Nathan L; Zhurkin, Victor B; Cui, Feng

    2014-10-01

    Nucleosome positioning is critical for gene expression and of major biological interest. The high cost of experimentally mapping nucleosomal arrangement signifies the need for computational approaches to predict nucleosome positions at high resolution. Here, we present a web-based application to fulfill this need by implementing two models, YR and W/S schemes, for the translational and rotational positioning of nucleosomes, respectively. Our methods are based on sequence-dependent anisotropic bending that dictates how DNA is wrapped around a histone octamer. This application allows users to specify a number of options such as schemes and parameters for threading calculation and provides multiple layout formats. The nuMap is implemented in Java/Perl/MySQL and is freely available for public use at http://numap.rit.edu. The user manual, implementation notes, description of the methodology and examples are available at the site. Copyright © 2014 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  10. nuMap: A Web Platform for Accurate Prediction of Nucleosome Positioning

    Directory of Open Access Journals (Sweden)

    Bader A. Alharbi

    2014-10-01

    Full Text Available Nucleosome positioning is critical for gene expression and of major biological interest. The high cost of experimentally mapping nucleosomal arrangement signifies the need for computational approaches to predict nucleosome positions at high resolution. Here, we present a web-based application to fulfill this need by implementing two models, YR and W/S schemes, for the translational and rotational positioning of nucleosomes, respectively. Our methods are based on sequence-dependent anisotropic bending that dictates how DNA is wrapped around a histone octamer. This application allows users to specify a number of options such as schemes and parameters for threading calculation and provides multiple layout formats. The nuMap is implemented in Java/Perl/MySQL and is freely available for public use at http://numap.rit.edu. The user manual, implementation notes, description of the methodology and examples are available at the site.

  11. How Accurately Do Consecutive Cohort Audits Predict Phase III Multisite Clinical Trial Recruitment in Palliative Care?

    Science.gov (United States)

    McCaffrey, Nikki; Fazekas, Belinda; Cutri, Natalie; Currow, David C

    2016-04-01

    Audits have been proposed for estimating possible recruitment rates to randomized controlled trials (RCTs), but few studies have compared audit data with subsequent recruitment rates. To compare the accuracy of estimates of potential recruitment from a retrospective consecutive cohort audit of actual participating sites and recruitment to four Phase III multisite clinical RCTs. The proportion of potentially eligible study participants estimated from an inpatient chart review of people with life-limiting illnesses referred to six Australian specialist palliative care services was compared with recruitment data extracted from study prescreening information from three sites that participated fully in four Palliative Care Clinical Studies Collaborative RCTs. The predominant reasons for ineligibility in the audit and RCTs were analyzed. The audit overestimated the proportion of people referred to the palliative care services who could participate in the RCTs (pain 17.7% vs. 1.2%, delirium 5.8% vs. 0.6%, anorexia 5.1% vs. 0.8%, and bowel obstruction 2.8% vs. 0.5%). Approximately 2% of the referral base was potentially eligible for these effectiveness studies. Ineligibility for general criteria (language, cognition, and geographic proximity) varied between studies, whereas the reasons for exclusion were similar between the audit and pain and anorexia studies but not for delirium or bowel obstruction. The retrospective consecutive case note audit in participating sites did not predict realistic recruitment rates, mostly underestimating the impact of study-specific inclusion criteria. These findings have implications for the applicability of the results of RCTs. Prospective pilot studies are more likely to predict actual recruitment. Copyright © 2016 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  12. Simplified versus geometrically accurate models of forefoot anatomy to predict plantar pressures: A finite element study.

    Science.gov (United States)

    Telfer, Scott; Erdemir, Ahmet; Woodburn, James; Cavanagh, Peter R

    2016-01-25

    Integration of patient-specific biomechanical measurements into the design of therapeutic footwear has been shown to improve clinical outcomes in patients with diabetic foot disease. The addition of numerical simulations intended to optimise intervention design may help to build on these advances, however at present the time and labour required to generate and run personalised models of foot anatomy restrict their routine clinical utility. In this study we developed second-generation personalised simple finite element (FE) models of the forefoot with varying geometric fidelities. Plantar pressure predictions from barefoot, shod, and shod with insole simulations using simplified models were compared to those obtained from CT-based FE models incorporating more detailed representations of bone and tissue geometry. A simplified model including representations of metatarsals based on simple geometric shapes, embedded within a contoured soft tissue block with outer geometry acquired from a 3D surface scan was found to provide pressure predictions closest to the more complex model, with mean differences of 13.3kPa (SD 13.4), 12.52kPa (SD 11.9) and 9.6kPa (SD 9.3) for barefoot, shod, and insole conditions respectively. The simplified model design could be produced in 3h in the case of the more detailed model, and solved on average 24% faster. FE models of the forefoot based on simplified geometric representations of the metatarsal bones and soft tissue surface geometry from 3D surface scans may potentially provide a simulation approach with improved clinical utility, however further validity testing around a range of therapeutic footwear types is required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The Predictive Value of Germline Polymorphisms in Patients with NSCLC

    DEFF Research Database (Denmark)

    Nygaard, Anneli Dowler; Spindler, Karen-Lise Garm; Andersen, Rikke Fredslund

    2010-01-01

    urgently needed. Single Nucleotide Polymorphisms (SNPs) are stable markers of potential clinical value and the study aimed at evaluating their use in lung cancer patients given standard chemotherapy. Genomic DNA was extracted from a pre-treatment blood sample drawn from patients with advanced Non....... Haplotypes were estimated and analyzed when relevant. There were no significant associations between SNPs in the EGF system or the DNA-repair system and RR, PFS or OS. In contrast, the VEGF+405, VEGF-460 and VEGF-2579, heterozygous patients had a higher response rate and longer PFS than homozygous patients....... Haplotype analysis of the VEGF+405 and VEGF- 460 supported our findings. These results were, however, not confirmed in the validation cohort. Although significant results regarding VEGF related SNPs, in the primary analysis, no predictive value of a broad panel of SNPs in NSCLC was found in the validation...

  14. Predicting blood transfusion using automated analysis of pulse oximetry signals and laboratory values.

    Science.gov (United States)

    Shackelford, Stacy; Yang, Shiming; Hu, Peter; Miller, Catriona; Anazodo, Amechi; Galvagno, Samuel; Wang, Yulei; Hartsky, Lauren; Fang, Raymond; Mackenzie, Colin

    2015-10-01

    Identification of hemorrhaging trauma patients and prediction of blood transfusion needs in near real time will expedite care of the critically injured. We hypothesized that automated analysis of pulse oximetry signals in combination with laboratory values and vital signs obtained at the time of triage would predict the need for blood transfusion with accuracy greater than that of triage vital signs or pulse oximetry analysis alone. Continuous pulse oximetry signals were recorded for directly admitted trauma patients with abnormal prehospital shock index (heart rate [HR] / systolic blood pressure) of 0.62 or greater. Predictions of blood transfusion within 24 hours were compared using Delong's method for area under the receiver operating characteristic (AUROC) curves to determine the optimal combination of triage vital signs (prehospital HR + systolic blood pressure), pulse oximetry features (40 waveform features, O2 saturation, HR), and laboratory values (hematocrit, electrolytes, bicarbonate, prothrombin time, international normalization ratio, lactate) in multivariate logistic regression models. We enrolled 1,191 patients; 339 were excluded because of incomplete data; 40 received blood within 3 hours; and 14 received massive transfusion. Triage vital signs predicted need for transfusion within 3 hours (AUROC, 0.59) and massive transfusion (AUROC, 0.70). Pulse oximetry for 15 minutes predicted transfusion more accurately than triage vital signs for both time frames (3-hour AUROC, 0.74; p = 0.004) (massive transfusion AUROC, 0.88; p transfusion prediction (3-hour AUROC, 0.84; p transfusion AUROC, 0.91; p blood transfusion during trauma resuscitation more accurately than triage vital signs or pulse oximetry analysis alone. Results suggest automated calculations from a noninvasive vital sign monitor interfaced with a point-of-care laboratory device may support clinical decisions by recognizing patients with hemorrhage sufficient to need transfusion. Epidemiologic

  15. A New Approach for Accurate Prediction of Liquid Loading of Directional Gas Wells in Transition Flow or Turbulent Flow

    Directory of Open Access Journals (Sweden)

    Ruiqing Ming

    2017-01-01

    Full Text Available Current common models for calculating continuous liquid-carrying critical gas velocity are established based on vertical wells and laminar flow without considering the influence of deviation angle and Reynolds number on liquid-carrying. With the increase of the directional well in transition flow or turbulent flow, the current common models cannot accurately predict the critical gas velocity of these wells. So we built a new model to predict continuous liquid-carrying critical gas velocity for directional well in transition flow or turbulent flow. It is shown from sensitivity analysis that the correction coefficient is mainly influenced by Reynolds number and deviation angle. With the increase of Reynolds number, the critical liquid-carrying gas velocity increases first and then decreases. And with the increase of deviation angle, the critical liquid-carrying gas velocity gradually decreases. It is indicated from the case calculation analysis that the calculation error of this new model is less than 10%, where accuracy is much higher than those of current common models. It is demonstrated that the continuous liquid-carrying critical gas velocity of directional well in transition flow or turbulent flow can be predicted accurately by using this new model.

  16. The human skin/chick chorioallantoic membrane model accurately predicts the potency of cosmetic allergens.

    Science.gov (United States)

    Slodownik, Dan; Grinberg, Igor; Spira, Ram M; Skornik, Yehuda; Goldstein, Ronald S

    2009-04-01

    The current standard method for predicting contact allergenicity is the murine local lymph node assay (LLNA). Public objection to the use of animals in testing of cosmetics makes the development of a system that does not use sentient animals highly desirable. The chorioallantoic membrane (CAM) of the chick egg has been extensively used for the growth of normal and transformed mammalian tissues. The CAM is not innervated, and embryos are sacrificed before the development of pain perception. The aim of this study was to determine whether the sensitization phase of contact dermatitis to known cosmetic allergens can be quantified using CAM-engrafted human skin and how these results compare with published EC3 data obtained with the LLNA. We studied six common molecules used in allergen testing and quantified migration of epidermal Langerhans cells (LC) as a measure of their allergic potency. All agents with known allergic potential induced statistically significant migration of LC. The data obtained correlated well with published data for these allergens generated using the LLNA test. The human-skin CAM model therefore has great potential as an inexpensive, non-radioactive, in vivo alternative to the LLNA, which does not require the use of sentient animals. In addition, this system has the advantage of testing the allergic response of human, rather than animal skin.

  17. Towards Relaxing the Spherical Solar Radiation Pressure Model for Accurate Orbit Predictions

    Science.gov (United States)

    Lachut, M.; Bennett, J.

    2016-09-01

    The well-known cannonball model has been used ubiquitously to capture the effects of atmospheric drag and solar radiation pressure on satellites and/or space debris for decades. While it lends itself naturally to spherical objects, its validity in the case of non-spherical objects has been debated heavily for years throughout the space situational awareness community. One of the leading motivations to improve orbit predictions by relaxing the spherical assumption, is the ongoing demand for more robust and reliable conjunction assessments. In this study, we explore the orbit propagation of a flat plate in a near-GEO orbit under the influence of solar radiation pressure, using a Lambertian BRDF model. Consequently, this approach will account for the spin rate and orientation of the object, which is typically determined in practice using a light curve analysis. Here, simulations will be performed which systematically reduces the spin rate to demonstrate the point at which the spherical model no longer describes the orbital elements of the spinning plate. Further understanding of this threshold would provide insight into when a higher fidelity model should be used, thus resulting in improved orbit propagations. Therefore, the work presented here is of particular interest to organizations and researchers that maintain their own catalog, and/or perform conjunction analyses.

  18. [Evaluation of thermal comfort in a student population: predictive value of an integrated index (Fanger's predicted mean value].

    Science.gov (United States)

    Catenacci, G; Terzi, R; Marcaletti, G; Tringali, S

    1989-01-01

    Practical applications and predictive values of a thermal comfort index (Fanger's PRV) were verified on a sample school population (1236 subjects) by studying the relationships between thermal sensations (subjective analysis), determined by means of an individual questionnaire, and the values of thermal comfort index (objective analysis) obtained by calculating the PMV index individually in the subjects under study. In homogeneous conditions of metabolic expenditure rate and thermal impedence from clothing, significant differences were found between the two kinds of analyses. At 22 degrees C mean radiant and operative temperature, the PMV values averaged 0 and the percentage of subjects who experienced thermal comfort did not exceed 60%. The high level of subjects who were dissatisfied with their environmental thermal conditions confirms the doubts regarding the use of the PMV index as a predictive indicator of thermal comfort, especially considering that the negative answers were not homogeneous nor attributable to the small thermal fluctuations (less than 0.5 degree C) measured in the classrooms.

  19. Developing hybrid approaches to predict pKa values of ionizable groups

    Science.gov (United States)

    Witham, Shawn; Talley, Kemper; Wang, Lin; Zhang, Zhe; Sarkar, Subhra; Gao, Daquan; Yang, Wei

    2011-01-01

    Accurate predictions of pKa values of titratable groups require taking into account all relevant processes associated with the ionization/deionization. Frequently, however, the ionization does not involve significant structural changes and the dominating effects are purely electrostatic in origin allowing accurate predictions to be made based on the electrostatic energy difference between ionized and neutral forms alone using a static structure. On another hand, if the change of the charge state is accompanied by a structural reorganization of the target protein, then the relevant conformational changes have to be taken into account in the pKa calculations. Here we report a hybrid approach that first predicts the titratable groups, which ionization is expected to cause conformational changes, termed “problematic” residues, then applies a special protocol on them, while the rest of the pKa’s are predicted with rigid backbone approach as implemented in multi-conformation continuum electrostatics (MCCE) method. The backbone representative conformations for “problematic” groups are generated with either molecular dynamics simulations with charged and uncharged amino acid or with ab-initio local segment modeling. The corresponding ensembles are then used to calculate the pKa of the “problematic” residues and then the results are averaged. PMID:21744395

  20. Quasi-closed phase forward-backward linear prediction analysis of speech for accurate formant detection and estimation.

    Science.gov (United States)

    Gowda, Dhananjaya; Airaksinen, Manu; Alku, Paavo

    2017-09-01

    Recently, a quasi-closed phase (QCP) analysis of speech signals for accurate glottal inverse filtering was proposed. However, the QCP analysis which belongs to the family of temporally weighted linear prediction (WLP) methods uses the conventional forward type of sample prediction. This may not be the best choice especially in computing WLP models with a hard-limiting weighting function. A sample selective minimization of the prediction error in WLP reduces the effective number of samples available within a given window frame. To counter this problem, a modified quasi-closed phase forward-backward (QCP-FB) analysis is proposed, wherein each sample is predicted based on its past as well as future samples thereby utilizing the available number of samples more effectively. Formant detection and estimation experiments on synthetic vowels generated using a physical modeling approach as well as natural speech utterances show that the proposed QCP-FB method yields statistically significant improvements over the conventional linear prediction and QCP methods.

  1. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery

    International Nuclear Information System (INIS)

    Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A.; Sheng, Ke

    2015-01-01

    attributed to phantom setup errors due to the slightly deformable and flexible phantom extremities. The estimated site-specific safety buffer distance with 0.001% probability of collision for (gantry-to-couch, gantry-to-phantom) was (1.23 cm, 3.35 cm), (1.01 cm, 3.99 cm), and (2.19 cm, 5.73 cm) for treatment to the head, lung, and prostate, respectively. Automated delivery to all three treatment sites was completed in 15 min and collision free using a digital Linac. Conclusions: An individualized collision prediction model for the purpose of noncoplanar beam delivery was developed and verified. With the model, the study has demonstrated the feasibility of predicting deliverable beams for an individual patient and then guiding fully automated noncoplanar treatment delivery. This work motivates development of clinical workflows and quality assurance procedures to allow more extensive use and automation of noncoplanar beam geometries

  2. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Victoria Y.; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A.; Sheng, Ke, E-mail: ksheng@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90024 (United States)

    2015-11-15

    attributed to phantom setup errors due to the slightly deformable and flexible phantom extremities. The estimated site-specific safety buffer distance with 0.001% probability of collision for (gantry-to-couch, gantry-to-phantom) was (1.23 cm, 3.35 cm), (1.01 cm, 3.99 cm), and (2.19 cm, 5.73 cm) for treatment to the head, lung, and prostate, respectively. Automated delivery to all three treatment sites was completed in 15 min and collision free using a digital Linac. Conclusions: An individualized collision prediction model for the purpose of noncoplanar beam delivery was developed and verified. With the model, the study has demonstrated the feasibility of predicting deliverable beams for an individual patient and then guiding fully automated noncoplanar treatment delivery. This work motivates development of clinical workflows and quality assurance procedures to allow more extensive use and automation of noncoplanar beam geometries.

  3. The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery.

    Science.gov (United States)

    Yu, Victoria Y; Tran, Angelia; Nguyen, Dan; Cao, Minsong; Ruan, Dan; Low, Daniel A; Sheng, Ke

    2015-11-01

    errors due to the slightly deformable and flexible phantom extremities. The estimated site-specific safety buffer distance with 0.001% probability of collision for (gantry-to-couch, gantry-to-phantom) was (1.23 cm, 3.35 cm), (1.01 cm, 3.99 cm), and (2.19 cm, 5.73 cm) for treatment to the head, lung, and prostate, respectively. Automated delivery to all three treatment sites was completed in 15 min and collision free using a digital Linac. An individualized collision prediction model for the purpose of noncoplanar beam delivery was developed and verified. With the model, the study has demonstrated the feasibility of predicting deliverable beams for an individual patient and then guiding fully automated noncoplanar treatment delivery. This work motivates development of clinical workflows and quality assurance procedures to allow more extensive use and automation of noncoplanar beam geometries.

  4. [Predictive value of Hodgkin's lymphoma tumor burden in present].

    Science.gov (United States)

    Kulyova, S A; Karitsky, A P

    2014-01-01

    Today approximately 70% of patients with Hodgkin lymphoma can be cured with the combined-modality therapy. Tumor burden, the importance of which was demonstrated 15 years ago for the first time, is a powerful prognostic factor. Data of literature of representations on predictive value of Hodgkin's lymphoma tumor burden are shown in the article. The difficult immunological relations between tumor cells and reactive ones lead to development of the main symptoms. Nevertheless, the collective sign of tumor burden shows the greatest influence on survival and on probability of resistance, which relative risk can be predicted on this variable and treatment program. Patients with bulky disease need escalated therapy with high-dose chemotherapy. Integration into predictive models of the variable will change an expected contribution of clinical and laboratory parameters in the regression analyses constructed on patients with Hodgkin's lymphoma. Today the role of diagnostic functional methods, in particular a positron emission tomography, for metabolic active measurement is conducted which allows excluding a reactive component.

  5. Predictive value of prostate-specific antigen for prostate cancer

    DEFF Research Database (Denmark)

    Shepherd, Leah; Borges, Alvaro Humberto; Ravn, Lene

    2014-01-01

    INTRODUCTION: Although prostate cancer (PCa) incidence is lower in HIV+ men than in HIV- men, the usefulness of prostate-specific antigen (PSA) screening in this population is not well defined and may have higher false negative rates than in HIV- men. We aimed to describe the kinetics and predict......INTRODUCTION: Although prostate cancer (PCa) incidence is lower in HIV+ men than in HIV- men, the usefulness of prostate-specific antigen (PSA) screening in this population is not well defined and may have higher false negative rates than in HIV- men. We aimed to describe the kinetics...... and predictive value of PSA in HIV+ men. METHODS: Men with PCa (n=21) and up to two matched controls (n=40) with prospectively stored plasma samples before PCa (or matched date in controls) were selected. Cases and controls were matched on date of first and last sample, age, region of residence and CD4 count...... at first sample date. Total PSA (tPSA), free PSA (fPSA), testosterone and sex hormone binding globulin (SHBG) were measured. Conditional logistic regression models investigated associations between markers and PCa. Sensitivity and specificity of using tPSA >4 µg/L to predict PCa was calculated. Mixed...

  6. Interpretation of Spirometry: Selection of Predicted Values and Defining Abnormality.

    Science.gov (United States)

    Chhabra, S K

    2015-01-01

    Spirometry is the most frequently performed investigation to evaluate pulmonary function. It provides clinically useful information on the mechanical properties of the lung and the thoracic cage and aids in taking management-related decisions in a wide spectrum of diseases and disorders. Few measurements in medicine are so dependent on factors related to equipment, operator and the patient. Good spirometry requires quality assured measurements and a systematic approach to interpretation. Standard guidelines on the technical aspects of equipment and their calibration as well as the test procedure have been developed and revised from time-to-time. Strict compliance with standardisation guidelines ensures quality control. Interpretation of spirometry data is based only on two basic measurements--the forced vital capacity (FVC) and the forced expiratory volume in 1 second (FEV1) and their ratio, FEV1/FVC. A meaningful and clinically useful interpretation of the measured data requires a systematic approach and consideration of several important issues. Central to interpretation is the understanding of the development and application of prediction equations. Selection of prediction equations that are appropriate for the ethnic origin of the patient is vital to avoid erroneous interpretation. Defining abnormal values is a debatable but critical aspect of spirometry. A statistically valid definition of the lower limits of normal has been advocated as the better method over the more commonly used approach of defining abnormality as a fixed percentage of the predicted value. Spirometry rarely provides a specific diagnosis. Examination of the flow-volume curve and the measured data provides information to define patterns of ventilatory impairment. Spirometry must be interpreted in conjunction with clinical information including results of other investigations.

  7. Structural features that predict real-value fluctuations of globular proteins.

    Science.gov (United States)

    Jamroz, Michal; Kolinski, Andrzej; Kihara, Daisuke

    2012-05-01

    It is crucial to consider dynamics for understanding the biological function of proteins. We used a large number of molecular dynamics (MD) trajectories of nonhomologous proteins as references and examined static structural features of proteins that are most relevant to fluctuations. We examined correlation of individual structural features with fluctuations and further investigated effective combinations of features for predicting the real value of residue fluctuations using the support vector regression (SVR). It was found that some structural features have higher correlation than crystallographic B-factors with fluctuations observed in MD trajectories. Moreover, SVR that uses combinations of static structural features showed accurate prediction of fluctuations with an average Pearson's correlation coefficient of 0.669 and a root mean square error of 1.04 Å. This correlation coefficient is higher than the one observed in predictions by the Gaussian network model (GNM). An advantage of the developed method over the GNMs is that the former predicts the real value of fluctuation. The results help improve our understanding of relationships between protein structure and fluctuation. Furthermore, the developed method provides a convienient practial way to predict fluctuations of proteins using easily computed static structural features of proteins. Copyright © 2012 Wiley Periodicals, Inc.

  8. Industrial Compositional Streamline Simulation for Efficient and Accurate Prediction of Gas Injection and WAG Processes

    Energy Technology Data Exchange (ETDEWEB)

    Margot Gerritsen

    2008-10-31

    Gas-injection processes are widely and increasingly used for enhanced oil recovery (EOR). In the United States, for example, EOR production by gas injection accounts for approximately 45% of total EOR production and has tripled since 1986. The understanding of the multiphase, multicomponent flow taking place in any displacement process is essential for successful design of gas-injection projects. Due to complex reservoir geometry, reservoir fluid properties and phase behavior, the design of accurate and efficient numerical simulations for the multiphase, multicomponent flow governing these processes is nontrivial. In this work, we developed, implemented and tested a streamline based solver for gas injection processes that is computationally very attractive: as compared to traditional Eulerian solvers in use by industry it computes solutions with a computational speed orders of magnitude higher and a comparable accuracy provided that cross-flow effects do not dominate. We contributed to the development of compositional streamline solvers in three significant ways: improvement of the overall framework allowing improved streamline coverage and partial streamline tracing, amongst others; parallelization of the streamline code, which significantly improves wall clock time; and development of new compositional solvers that can be implemented along streamlines as well as in existing Eulerian codes used by industry. We designed several novel ideas in the streamline framework. First, we developed an adaptive streamline coverage algorithm. Adding streamlines locally can reduce computational costs by concentrating computational efforts where needed, and reduce mapping errors. Adapting streamline coverage effectively controls mass balance errors that mostly result from the mapping from streamlines to pressure grid. We also introduced the concept of partial streamlines: streamlines that do not necessarily start and/or end at wells. This allows more efficient coverage and avoids

  9. Predictive value of proteinuria in adult dengue severity.

    Directory of Open Access Journals (Sweden)

    Farhad F Vasanwala

    2014-02-01

    Full Text Available BACKGROUND: Dengue is an important viral infection with different presentations. Predicting disease severity is important in triaging patients requiring hospital care. We aim to study the value of proteinuria in predicting the development of dengue hemorrhagic fever (DHF, utility of urine dipstick test as a rapid prognostic tool. METHODOLOGY AND PRINCIPAL FINDINGS: Adult patients with undifferentiated fever (n = 293 were prospectively enrolled at the Infectious Disease Research Clinic at Tan Tock Seng Hospital, Singapore from January to August 2012. Dengue infection was confirmed in 168 (57% by dengue RT-PCR or NS1 antigen detection. Dengue cases had median fever duration of 6 days at enrollment. DHF was diagnosed in 34 cases according to the WHO 1997 guideline. Dengue fever (DF patients were predominantly younger and were mostly seen in the outpatient setting with higher platelet level. Compared to DF, DHF cases had significantly higher peak urine protein creatinine ratio (UPCR during clinical course (26 vs. 40 mg/mmol; p<0.001. We obtained a UPCR cut-off value of 29 mg/mmol based on maximum AUC in ROC curves of peak UPCR for DF versus DHF, corresponding to 76% sensitivity and 60% specificity. Multivariate analysis with other readily available clinical and laboratory variables increased the AUC to 0.91 with 92% sensitivity and 80% specificity. Neither urine dipstick at initial presentation nor peak urine dipstick value during the entire illness was able to discriminate between DF and DHF. CONCLUSIONS: Proteinuria measured by a laboratory-based UPCR test may be sensitive and specific in prognosticating adult dengue patients.

  10. Deformation, Failure, and Fatigue Life of SiC/Ti-15-3 Laminates Accurately Predicted by MAC/GMC

    Science.gov (United States)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2002-01-01

    NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) (ref.1) has been extended to enable fully coupled macro-micro deformation, failure, and fatigue life predictions for advanced metal matrix, ceramic matrix, and polymer matrix composites. Because of the multiaxial nature of the code's underlying micromechanics model, GMC--which allows the incorporation of complex local inelastic constitutive models--MAC/GMC finds its most important application in metal matrix composites, like the SiC/Ti-15-3 composite examined here. Furthermore, since GMC predicts the microscale fields within each constituent of the composite material, submodels for local effects such as fiber breakage, interfacial debonding, and matrix fatigue damage can and have been built into MAC/GMC. The present application of MAC/GMC highlights the combination of these features, which has enabled the accurate modeling of the deformation, failure, and life of titanium matrix composites.

  11. How to accurately assess the clinical value of isometric exercise radionuclide ventriculography in diagnosis of coronary artery disease

    International Nuclear Information System (INIS)

    Yang Shunfang; Zhu Huiping; Zeng Jun; Xie Wenhui; Yu Zhichang

    2001-01-01

    To assess the influence of isometric handgrip exercise on left ventricular function by radionuclide ventriculography in patients with coronary artery disease (CAD). Using gated equilibrium radionuclide ventriculography, parameters of left ventricular function were analyzed at rest and during 30% sustained handgrip (HNG) for 5 - 10 minuets in 8 normal control subjects and 38 consecutive CAD patients. All investigated subjects were also performed coronary arteriography within 2 weeks. Results showed that at rest, left ventricular ejection fraction (LVEF), peak filling rate (PFR), end-diastolic volume (EDV), end-systolic volume (ESV) and heart rate (HR) were reduced in one-vessel, two-vessel and three-vessel of stenosis patient group (53.67 +- 5.0)%, (52.47 +- 8.26)%, (52.81 +- 8.89)%; 2.87 +- 0.29, 2.71 +- 0.88, 3.07 +- 0.71 end-diastolic volume per second (EDV/s); 1.36 +- 0.05, 1.34 +- 0.06, 1.34 +- 0.06; 0.62 +-0.06, 0.66 +- 0.06, 0.65 +- 0.1; 69.67 +- 8.14, 72.85 +- 10.5, 76.56 +- 18.04 (min -1 ), respectively, as compared with controls (57 +- 10.45)%, p = NS; 2.94 +- 0.44 (EDV/s), p = NS; 1.38 +- 0.15, p = NS; 0.59 +- 0.11, p = NS; 72.88 +- 8.25 (min -1 ), p = NS, respectively. During HNG exercise using both hands, the indexes were reduced in CAD patients (54.44 +- 5.66)%, (48.84 +- 8.70)%, (45.25 +- 8.69)%; 2.75 +- 0.39, 2.50 +- 0.68, 2.22 +- 0.58 (EDV/s); 1.36 +- 0.05, 1.31 +- 0.06, 1.26 +- 0.07; 0.61 +- 0.07, 0.69 +- 0.06, 0.71 +- 0.09; 81.33 +- 8.92, 84.46 +- 14.29, 90.56 +- 26.54 (min -1 ), respectively, as compared with controls (59.38 +- 9.44)%, p = NS; -1 ), p = NS, respectively. The four protocols of CAD diagnosis were 1. LVEF <55% and ΔPFR < 0 EDV/s at rest (Δ value = during HNG value-rest value); 2. LVEF <55% during HNG and ΔPFR <0 EDV/s; 3. ΔLVEF <0% and ΔPFR <0 EDV/s; 4. ΔEF <0%. Their sensitivity, specificity and accuracy were 45%, 53%, 66%, 76%, 100%, 100%, 87.5%, 87.5%, 54%, 61%, 70%, 78%, respectively. The isomeric exercise radionuclide

  12. Combining Mean and Standard Deviation of Hounsfield Unit Measurements from Preoperative CT Allows More Accurate Prediction of Urinary Stone Composition Than Mean Hounsfield Units Alone.

    Science.gov (United States)

    Tailly, Thomas; Larish, Yaniv; Nadeau, Brandon; Violette, Philippe; Glickman, Leonard; Olvera-Posada, Daniel; Alenezi, Husain; Amann, Justin; Denstedt, John; Razvi, Hassan

    2016-04-01

    The mineral composition of a urinary stone may influence its surgical and medical treatment. Previous attempts at identifying stone composition based on mean Hounsfield Units (HUm) have had varied success. We aimed to evaluate the additional use of standard deviation of HU (HUsd) to more accurately predict stone composition. We identified patients from two centers who had undergone urinary stone treatment between 2006 and 2013 and had mineral stone analysis and a computed tomography (CT) available. HUm and HUsd of the stones were compared with ANOVA. Receiver operative characteristic analysis with area under the curve (AUC), Youden index, and likelihood ratio calculations were performed. Data were available for 466 patients. The major components were calcium oxalate monohydrate (COM), uric acid, hydroxyapatite, struvite, brushite, cystine, and CO dihydrate (COD) in 41.4%, 19.3%, 12.4%, 7.5%, 5.8%, 5.4%, and 4.7% of patients, respectively. The HUm of UA and Br was significantly lower and higher than the HUm of any other stone type, respectively. HUm and HUsd were most accurate in predicting uric acid with an AUC of 0.969 and 0.851, respectively. The combined use of HUm and HUsd resulted in increased positive predictive value and higher likelihood ratios for identifying a stone's mineral composition for all stone types but COM. To the best of our knowledge, this is the first report of CT data aiding in the prediction of brushite stone composition. Both HUm and HUsd can help predict stone composition and their combined use results in higher likelihood ratios influencing probability.

  13. Estimating Time-Varying PCB Exposures Using Person-Specific Predictions to Supplement Measured Values: A Comparison of Observed and Predicted Values in Two Cohorts of Norwegian Women

    Science.gov (United States)

    Nøst, Therese Haugdahl; Breivik, Knut; Wania, Frank; Rylander, Charlotta; Odland, Jon Øyvind; Sandanger, Torkjel Manning

    2015-01-01

    Background Studies on the health effects of polychlorinated biphenyls (PCBs) call for an understanding of past and present human exposure. Time-resolved mechanistic models may supplement information on concentrations in individuals obtained from measurements and/or statistical approaches if they can be shown to reproduce empirical data. Objectives Here, we evaluated the capability of one such mechanistic model to reproduce measured PCB concentrations in individual Norwegian women. We also assessed individual life-course concentrations. Methods Concentrations of four PCB congeners in pregnant (n = 310, sampled in 2007–2009) and postmenopausal (n = 244, 2005) women were compared with person-specific predictions obtained using CoZMoMAN, an emission-based environmental fate and human food-chain bioaccumulation model. Person-specific predictions were also made using statistical regression models including dietary and lifestyle variables and concentrations. Results CoZMoMAN accurately reproduced medians and ranges of measured concentrations in the two study groups. Furthermore, rank correlations between measurements and predictions from both CoZMoMAN and regression analyses were strong (Spearman’s r > 0.67). Precision in quartile assignments from predictions was strong overall as evaluated by weighted Cohen’s kappa (> 0.6). Simulations indicated large inter-individual differences in concentrations experienced in the past. Conclusions The mechanistic model reproduced all measurements of PCB concentrations within a factor of 10, and subject ranking and quartile assignments were overall largely consistent, although they were weak within each study group. Contamination histories for individuals predicted by CoZMoMAN revealed variation between study subjects, particularly in the timing of peak concentrations. Mechanistic models can provide individual PCB exposure metrics that could serve as valuable supplements to measurements. Citation Nøst TH, Breivik K, Wania F

  14. Suitability of faecal near-infrared reflectance spectroscopy (NIRS) predictions for estimating gross calorific value

    Energy Technology Data Exchange (ETDEWEB)

    De la Roza-Delgado, B.; Modroño, S.; Vicente, F.; Martínez-Fernández, A.; Soldado, A.

    2015-07-01

    A total of 220 faecal pig and poultry samples, collected from different experimental trials were employed with the aim to demonstrate the suitability of Near Infrared Reflectance Spectroscopy (NIRS) technology for estimation of gross calorific value on faeces as output products in energy balances studies. NIR spectra from dried and grounded faeces samples were analyzed using a Foss NIRSystem 6500 instrument, scanning over the wavelength range 400-2500 nm. Validation studies for quantitative analytical models were carried out to estimate the relevance of method performance associated to reference values to obtain an appropriate, accuracy and precision. The results for prediction of gross calorific value (GCV) of NIRS calibrations obtained for individual species showed high correlation coefficients comparing chemical analysis and NIRS predictions, ranged from 0.92 to 0.97 for poultry and pig. For external validation, the ratio between the standard error of cross validation (SECV) and the standard error of prediction (SEP) varied between 0.73 and 0.86 for poultry and pig respectively, indicating a sufficiently precision of calibrations. In addition a global model to estimate GCV in both species was developed and externally validated. It showed correlation coefficients of 0.99 for calibration, 0.98 for cross-validation and 0.97 for external validation. Finally, relative uncertainty was calculated for NIRS developed prediction models with the final value when applying individual NIRS species model of 1.3% and 1.5% for NIRS global prediction. This study suggests that NIRS is a suitable and accurate method for the determination of GCV in faeces, decreasing cost, timeless and for convenient handling of unpleasant samples.. (Author)

  15. Predictive value of the present-on-admission indicator for hospital-acquired venous thromboembolism.

    Science.gov (United States)

    Khanna, Raman R; Kim, Sharon B; Jenkins, Ian; El-Kareh, Robert; Afsarmanesh, Nasim; Amin, Alpesh; Sand, Heather; Auerbach, Andrew; Chia, Catherine Y; Maynard, Gregory; Romano, Patrick S; White, Richard H

    2015-04-01

    Hospital-acquired venous thromboembolic (HA-VTE) events are an important, preventable cause of morbidity and death, but accurately identifying HA-VTE events requires labor-intensive chart review. Administrative diagnosis codes and their associated "present-on-admission" (POA) indicator might allow automated identification of HA-VTE events, but only if VTE codes are accurately flagged "not present-on-admission" (POA=N). New codes were introduced in 2009 to improve accuracy. We identified all medical patients with at least 1 VTE "other" discharge diagnosis code from 5 academic medical centers over a 24-month period. We then sampled, within each center, patients with VTE codes flagged POA=N or POA=U (insufficient documentation) and POA=Y or POA=W (timing clinically uncertain) and abstracted each chart to clarify VTE timing. All events that were not clearly POA were classified as HA-VTE. We then calculated predictive values of the POA=N/U flags for HA-VTE and the POA=Y/W flags for non-HA-VTE. Among 2070 cases with at least 1 "other" VTE code, we found 339 codes flagged POA=N/U and 1941 flagged POA=Y/W. Among 275 POA=N/U abstracted codes, 75.6% (95% CI, 70.1%-80.6%) were HA-VTE; among 291 POA=Y/W abstracted events, 73.5% (95% CI, 68.0%-78.5%) were non-HA-VTE. Extrapolating from this sample, we estimated that 59% of actual HA-VTE codes were incorrectly flagged POA=Y/W. POA indicator predictive values did not improve after new codes were introduced in 2009. The predictive value of VTE events flagged POA=N/U for HA-VTE was 75%. However, sole reliance on this flag may substantially underestimate the incidence of HA-VTE.

  16. Predicted osteotomy planes are accurate when using patient-specific instrumentation for total knee arthroplasty in cadavers: a descriptive analysis.

    Science.gov (United States)

    Kievit, A J; Dobbe, J G G; Streekstra, G J; Blankevoort, L; Schafroth, M U

    2018-06-01

    Malalignment of implants is a major source of failure during total knee arthroplasty. To achieve more accurate 3D planning and execution of the osteotomy cuts during surgery, the Signature (Biomet, Warsaw) patient-specific instrumentation (PSI) was used to produce pin guides for the positioning of the osteotomy blocks by means of computer-aided manufacture based on CT scan images. The research question of this study is: what is the transfer accuracy of osteotomy planes predicted by the Signature PSI system for preoperative 3D planning and intraoperative block-guided pin placement to perform total knee arthroplasty procedures? The transfer accuracy achieved by using the Signature PSI system was evaluated by comparing the osteotomy planes predicted preoperatively with the osteotomy planes seen intraoperatively in human cadaveric legs. Outcomes were measured in terms of translational and rotational errors (varus, valgus, flexion, extension and axial rotation) for both tibia and femur osteotomies. Average translational errors between the osteotomy planes predicted using the Signature system and the actual osteotomy planes achieved was 0.8 mm (± 0.5 mm) for the tibia and 0.7 mm (± 4.0 mm) for the femur. Average rotational errors in relation to predicted and achieved osteotomy planes were 0.1° (± 1.2°) of varus and 0.4° (± 1.7°) of anterior slope (extension) for the tibia, and 2.8° (± 2.0°) of varus and 0.9° (± 2.7°) of flexion and 1.4° (± 2.2°) of external rotation for the femur. The similarity between osteotomy planes predicted using the Signature system and osteotomy planes actually achieved was excellent for the tibia although some discrepancies were seen for the femur. The use of 3D system techniques in TKA surgery can provide accurate intraoperative guidance, especially for patients with deformed bone, tailored to individual patients and ensure better placement of the implant.

  17. A Robust Statistical Model to Predict the Future Value of the Milk Production of Dairy Cows Using Herd Recording Data

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Kirkeby, Carsten Thure; Nielsen, Søren Saxmose

    2017-01-01

    of the future value of a dairy cow requires further detailed knowledge of the costs associated with feed, management practices, production systems, and disease. Here, we present a method to predict the future value of the milk production of a dairy cow based on herd recording data only. The method consists......The future value of an individual dairy cow depends greatly on its projected milk yield. In developed countries with developed dairy industry infrastructures, facilities exist to record individual cow production and reproduction outcomes consistently and accurately. Accurate prediction...... of somatic cell count. We conclude that estimates of future average production can be used on a day-to-day basis to rank cows for culling, or can be implemented in simulation models of within-herd disease spread to make operational decisions, such as culling versus treatment. An advantage of the approach...

  18. New and Accurate Predictive Model for the Efficacy of Extracorporeal Shock Wave Therapy in Managing Patients With Chronic Plantar Fasciitis.

    Science.gov (United States)

    Yin, Mengchen; Chen, Ni; Huang, Quan; Marla, Anastasia Sulindro; Ma, Junming; Ye, Jie; Mo, Wen

    2017-12-01

    Youden index was .4243, .3003, and .7189, respectively. The Hosmer-Lemeshow test showed a good fitting of the predictive model, with an overall accuracy of 89.6%. This study establishes a new and accurate predictive model for the efficacy of ESWT in managing patients with chronic plantar fasciitis. The use of these parameters, in the form of a predictive model for ESWT efficacy, has the potential to improve decision-making in the application of ESWT. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. Limited Sampling Strategy for Accurate Prediction of Pharmacokinetics of Saroglitazar: A 3-point Linear Regression Model Development and Successful Prediction of Human Exposure.

    Science.gov (United States)

    Joshi, Shuchi N; Srinivas, Nuggehally R; Parmar, Deven V

    2018-03-01

    Our aim was to develop and validate the extrapolative performance of a regression model using a limited sampling strategy for accurate estimation of the area under the plasma concentration versus time curve for saroglitazar. Healthy subject pharmacokinetic data from a well-powered food-effect study (fasted vs fed treatments; n = 50) was used in this work. The first 25 subjects' serial plasma concentration data up to 72 hours and corresponding AUC 0-t (ie, 72 hours) from the fasting group comprised a training dataset to develop the limited sampling model. The internal datasets for prediction included the remaining 25 subjects from the fasting group and all 50 subjects from the fed condition of the same study. The external datasets included pharmacokinetic data for saroglitazar from previous single-dose clinical studies. Limited sampling models were composed of 1-, 2-, and 3-concentration-time points' correlation with AUC 0-t of saroglitazar. Only models with regression coefficients (R 2 ) >0.90 were screened for further evaluation. The best R 2 model was validated for its utility based on mean prediction error, mean absolute prediction error, and root mean square error. Both correlations between predicted and observed AUC 0-t of saroglitazar and verification of precision and bias using Bland-Altman plot were carried out. None of the evaluated 1- and 2-concentration-time points models achieved R 2 > 0.90. Among the various 3-concentration-time points models, only 4 equations passed the predefined criterion of R 2 > 0.90. Limited sampling models with time points 0.5, 2, and 8 hours (R 2 = 0.9323) and 0.75, 2, and 8 hours (R 2 = 0.9375) were validated. Mean prediction error, mean absolute prediction error, and root mean square error were prediction of saroglitazar. The same models, when applied to the AUC 0-t prediction of saroglitazar sulfoxide, showed mean prediction error, mean absolute prediction error, and root mean square error model predicts the exposure of

  20. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis.

    Science.gov (United States)

    Masso, Majid; Vaisman, Iosif I

    2008-09-15

    Accurate predictive models for the impact of single amino acid substitutions on protein stability provide insight into protein structure and function. Such models are also valuable for the design and engineering of new proteins. Previously described methods have utilized properties of protein sequence or structure to predict the free energy change of mutants due to thermal (DeltaDeltaG) and denaturant (DeltaDeltaG(H2O)) denaturations, as well as mutant thermal stability (DeltaT(m)), through the application of either computational energy-based approaches or machine learning techniques. However, accuracy associated with applying these methods separately is frequently far from optimal. We detail a computational mutagenesis technique based on a four-body, knowledge-based, statistical contact potential. For any mutation due to a single amino acid replacement in a protein, the method provides an empirical normalized measure of the ensuing environmental perturbation occurring at every residue position. A feature vector is generated for the mutant by considering perturbations at the mutated position and it's ordered six nearest neighbors in the 3-dimensional (3D) protein structure. These predictors of stability change are evaluated by applying machine learning tools to large training sets of mutants derived from diverse proteins that have been experimentally studied and described. Predictive models based on our combined approach are either comparable to, or in many cases significantly outperform, previously published results. A web server with supporting documentation is available at http://proteins.gmu.edu/automute.

  1. A NEW CLINICAL PREDICTION CRITERION ACCURATELY DETERMINES A SUBSET OF PATIENTS WITH BILATERAL PRIMARY ALDOSTERONISM BEFORE ADRENAL VENOUS SAMPLING.

    Science.gov (United States)

    Kocjan, Tomaz; Janez, Andrej; Stankovic, Milenko; Vidmar, Gaj; Jensterle, Mojca

    2016-05-01

    Adrenal venous sampling (AVS) is the only available method to distinguish bilateral from unilateral primary aldosteronism (PA). AVS has several drawbacks, so it is reasonable to avoid this procedure when the results would not affect clinical management. Our objective was to identify a clinical criterion that can reliably predict nonlateralized AVS as a surrogate for bilateral PA that is not treated surgically. A retrospective diagnostic cross-sectional study conducted at Slovenian national endocrine referral center included 69 consecutive patients (mean age 56 ± 8 years, 21 females) with PA who underwent AVS. PA was confirmed with the saline infusion test (SIT). AVS was performed sequentially during continuous adrenocorticotrophic hormone (ACTH) infusion. The main outcome measures were variables associated with nonlateralized AVS to derive a clinical prediction rule. Sixty-seven (97%) patients had a successful AVS and were included in the statistical analysis. A total of 39 (58%) patients had nonlateralized AVS. The combined criterion of serum potassium ≥3.5 mmol/L, post-SIT aldosterone AVS. The best overall classification accuracy (50/67 = 75%) was achieved using the post-SIT aldosterone level AVS. Our clinical prediction criterion appears to accurately determine a subset of patients with bilateral PA who could avoid unnecessary AVS and immediately commence with medical treatment.

  2. A Bayesian method and its variational approximation for prediction of genomic breeding values in multiple traits

    Directory of Open Access Journals (Sweden)

    Hayashi Takeshi

    2013-01-01

    Full Text Available Abstract Background Genomic selection is an effective tool for animal and plant breeding, allowing effective individual selection without phenotypic records through the prediction of genomic breeding value (GBV. To date, genomic selection has focused on a single trait. However, actual breeding often targets multiple correlated traits, and, therefore, joint analysis taking into consideration the correlation between traits, which might result in more accurate GBV prediction than analyzing each trait separately, is suitable for multi-trait genomic selection. This would require an extension of the prediction model for single-trait GBV to multi-trait case. As the computational burden of multi-trait analysis is even higher than that of single-trait analysis, an effective computational method for constructing a multi-trait prediction model is also needed. Results We described a Bayesian regression model incorporating variable selection for jointly predicting GBVs of multiple traits and devised both an MCMC iteration and variational approximation for Bayesian estimation of parameters in this multi-trait model. The proposed Bayesian procedures with MCMC iteration and variational approximation were referred to as MCBayes and varBayes, respectively. Using simulated datasets of SNP genotypes and phenotypes for three traits with high and low heritabilities, we compared the accuracy in predicting GBVs between multi-trait and single-trait analyses as well as between MCBayes and varBayes. The results showed that, compared to single-trait analysis, multi-trait analysis enabled much more accurate GBV prediction for low-heritability traits correlated with high-heritability traits, by utilizing the correlation structure between traits, while the prediction accuracy for uncorrelated low-heritability traits was comparable or less with multi-trait analysis in comparison with single-trait analysis depending on the setting for prior probability that a SNP has zero

  3. Non-isothermal kinetics model to predict accurate phase transformation and hardness of 22MnB5 boron steel

    Energy Technology Data Exchange (ETDEWEB)

    Bok, H.-H.; Kim, S.N.; Suh, D.W. [Graduate Institute of Ferrous Technology, POSTECH, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongsangbuk-do (Korea, Republic of); Barlat, F., E-mail: f.barlat@postech.ac.kr [Graduate Institute of Ferrous Technology, POSTECH, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongsangbuk-do (Korea, Republic of); Lee, M.-G., E-mail: myounglee@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul (Korea, Republic of)

    2015-02-25

    A non-isothermal phase transformation kinetics model obtained by modifying the well-known JMAK approach is proposed for application to a low carbon boron steel (22MnB5) sheet. In the modified kinetics model, the parameters are functions of both temperature and cooling rate, and can be identified by a numerical optimization method. Moreover, in this approach the transformation start and finish temperatures are variable instead of the constants that depend on chemical composition. These variable reference temperatures are determined from the measured CCT diagram using dilatation experiments. The kinetics model developed in this work captures the complex transformation behavior of the boron steel sheet sample accurately. In particular, the predicted hardness and phase fractions in the specimens subjected to a wide range of cooling rates were validated by experiments.

  4. Accurate density functional prediction of molecular electron affinity with the scaling corrected Kohn–Sham frontier orbital energies

    Science.gov (United States)

    Zhang, DaDi; Yang, Xiaolong; Zheng, Xiao; Yang, Weitao

    2018-04-01

    Electron affinity (EA) is the energy released when an additional electron is attached to an atom or a molecule. EA is a fundamental thermochemical property, and it is closely pertinent to other important properties such as electronegativity and hardness. However, accurate prediction of EA is difficult with density functional theory methods. The somewhat large error of the calculated EAs originates mainly from the intrinsic delocalisation error associated with the approximate exchange-correlation functional. In this work, we employ a previously developed non-empirical global scaling correction approach, which explicitly imposes the Perdew-Parr-Levy-Balduz condition to the approximate functional, and achieve a substantially improved accuracy for the calculated EAs. In our approach, the EA is given by the scaling corrected Kohn-Sham lowest unoccupied molecular orbital energy of the neutral molecule, without the need to carry out the self-consistent-field calculation for the anion.

  5. Effect of computational grid on accurate prediction of a wind turbine rotor using delayed detached-eddy simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bangga, Galih; Weihing, Pascal; Lutz, Thorsten; Krämer, Ewald [University of Stuttgart, Stuttgart (Germany)

    2017-05-15

    The present study focuses on the impact of grid for accurate prediction of the MEXICO rotor under stalled conditions. Two different blade mesh topologies, O and C-H meshes, and two different grid resolutions are tested for several time step sizes. The simulations are carried out using Delayed detached-eddy simulation (DDES) with two eddy viscosity RANS turbulence models, namely Spalart- Allmaras (SA) and Menter Shear stress transport (SST) k-ω. A high order spatial discretization, WENO (Weighted essentially non- oscillatory) scheme, is used in these computations. The results are validated against measurement data with regards to the sectional loads and the chordwise pressure distributions. The C-H mesh topology is observed to give the best results employing the SST k-ω turbulence model, but the computational cost is more expensive as the grid contains a wake block that increases the number of cells.

  6. Predictive value of nailfold capillaroscopy in patients with Raynaud's phenomenon.

    Science.gov (United States)

    Meli, Madeleine; Gitzelmann, Gabriela; Koppensteiner, Renate; Amann-Vesti, Beatrice R

    2006-03-01

    The objective of this study was to evaluate the long-term follow-up of patients with Raynaud's phenomenon (RP) and pathological nailfold capillaroscopy (NC) in order to analyse the predictive value of specific features of capillaroscopy for the development of a connective tissue disease (CTD). From 1992 to 2002, NC alone or combined with fluorescence videomicroscopy with sodium fluorescein (NaF) was performed in 1024 consecutive patients because of RP. We analysed the follow-up and pathological features of NC in all patients who had neither clinical nor serological signs of a CTD at the time of NC. Of 308 patients with neither serological findings nor clinical signs of CTD but with RP and pathological features in NC suspicious for CTD, follow-up data were available for 133 patients. An additional NaF test had been performed in 51 (38.4%) patients. After a mean follow-up of 6.5 years (range: 1-15 years), 109 patients had developed a CTD and 24 patients did not show any clinical signs or serological markers for a CTD after a mean follow-up of 8.5 years (range: 2-15 years). There were no differences in age, duration of RP or of follow-up in patients who developed a CTD compared to patients who did not. Significantly more giant capillaries (p=0.0001), avascular fields (p=0.02) and irregular architecture (p=0.0001) had been observed in patients who had developed a CTD during the follow-up of 6.5 years. The presence of giant capillaries, avascular fields and irregular architecture of nailfold capillaries is predictive for the development of a CTD in patients with RP.

  7. Value of multiple risk factors in predicting coronary artery disease

    International Nuclear Information System (INIS)

    Zhu Zhengbin; Zhang Ruiyan; Zhang Qi; Yang Zhenkun; Hu Jian; Zhang Jiansheng; Shen Weifeng

    2008-01-01

    Objective: This study sought to assess the relationship between correlative comprehension risk factors and coronary arterial disease and to build up a simple mathematical model to evaluate the extension of coronary artery lesion in patients with stable angina. Methods: A total of 1024 patients with chest pain who underwent coronary angiography were divided into CAD group(n=625)and control group(n=399) based on at least one significant coronary artery narrowing more than 50% in diameter. Independent risk factors for CAD were evaluated and multivariate logistic regression model and receiver-operating characteristic(ROC) curves were used to estimate the independent influence factor for CAD and built up a simple formula for clinical use. Results: Multivariate regression analysis revealed that UACR > 7.25 μg/mg(OR=3.6; 95% CI 2.6-4.9; P 20 mmol/L(OR=3.2; 95% CI 2.3-4.4; P 2 (OR=2.3; 95% CI 1.4-3.8; P 2.6 mmol/L (OR 2.141; 95% CI 1.586-2.890; P 7.25 μg/mg + 1.158 x hsCRP > 20 mmol/L + 0.891 GFR 2 + 0.831 x LVEF 2.6 mmol/L + 0.676 x smoking history + 0.594 x male + 0.459 x diabetes + 0.425 x hypertension). Area under the curve was 0.811 (P < 0.01), and the optimal probability value for predicting severe stage of CAD was 0.977 (sensitivity 49.0%, specificity 92.7% ). Conclusions: Risk factors including renal insufficiency were the main predictors for CAD. The logistic regression model is the non-invasive method of choice for predicting the extension of coronary artery lesion in patients with stable agiana. (authors)

  8. Development of a method to accurately calculate the Dpb and quickly predict the strength of a chemical bond

    International Nuclear Information System (INIS)

    Du, Xia; Zhao, Dong-Xia; Yang, Zhong-Zhi

    2013-01-01

    Highlights: ► A method from new respect to characterize and measure the bond strength is proposed. ► We calculate the D pb of a series of various bonds to justify our approach. ► A quite good linear relationship of the D pb with the bond lengths for series of various bonds is shown. ► Take the prediction of strengths of C–H and N–H bonds for base pairs in DNA as a practical application of our method. - Abstract: A new approach to characterize and measure bond strength has been developed. First, we propose a method to accurately calculate the potential acting on an electron in a molecule (PAEM) at the saddle point along a chemical bond in situ, denoted by D pb . Then, a direct method to quickly evaluate bond strength is established. We choose some familiar molecules as models for benchmarking this method. As a practical application, the D pb of base pairs in DNA along C–H and N–H bonds are obtained for the first time. All results show that C 7 –H of A–T and C 8 –H of G–C are the relatively weak bonds that are the injured positions in DNA damage. The significance of this work is twofold: (i) A method is developed to calculate D pb of various sizable molecules in situ quickly and accurately; (ii) This work demonstrates the feasibility to quickly predict the bond strength in macromolecules

  9. A novel fibrosis index comprising a non-cholesterol sterol accurately predicts HCV-related liver cirrhosis.

    Directory of Open Access Journals (Sweden)

    Magdalena Ydreborg

    Full Text Available Diagnosis of liver cirrhosis is essential in the management of chronic hepatitis C virus (HCV infection. Liver biopsy is invasive and thus entails a risk of complications as well as a potential risk of sampling error. Therefore, non-invasive diagnostic tools are preferential. The aim of the present study was to create a model for accurate prediction of liver cirrhosis based on patient characteristics and biomarkers of liver fibrosis, including a panel of non-cholesterol sterols reflecting cholesterol synthesis and absorption and secretion. We evaluated variables with potential predictive significance for liver fibrosis in 278 patients originally included in a multicenter phase III treatment trial for chronic HCV infection. A stepwise multivariate logistic model selection was performed with liver cirrhosis, defined as Ishak fibrosis stage 5-6, as the outcome variable. A new index, referred to as Nordic Liver Index (NoLI in the paper, was based on the model: Log-odds (predicting cirrhosis = -12.17+ (age × 0.11 + (BMI (kg/m(2 × 0.23 + (D7-lathosterol (μg/100 mg cholesterol×(-0.013 + (Platelet count (x10(9/L × (-0.018 + (Prothrombin-INR × 3.69. The area under the ROC curve (AUROC for prediction of cirrhosis was 0.91 (95% CI 0.86-0.96. The index was validated in a separate cohort of 83 patients and the AUROC for this cohort was similar (0.90; 95% CI: 0.82-0.98. In conclusion, the new index may complement other methods in diagnosing cirrhosis in patients with chronic HCV infection.

  10. A Deep Learning Framework for Robust and Accurate Prediction of ncRNA-Protein Interactions Using Evolutionary Information.

    Science.gov (United States)

    Yi, Hai-Cheng; You, Zhu-Hong; Huang, De-Shuang; Li, Xiao; Jiang, Tong-Hai; Li, Li-Ping

    2018-06-01

    The interactions between non-coding RNAs (ncRNAs) and proteins play an important role in many biological processes, and their biological functions are primarily achieved by binding with a variety of proteins. High-throughput biological techniques are used to identify protein molecules bound with specific ncRNA, but they are usually expensive and time consuming. Deep learning provides a powerful solution to computationally predict RNA-protein interactions. In this work, we propose the RPI-SAN model by using the deep-learning stacked auto-encoder network to mine the hidden high-level features from RNA and protein sequences and feed them into a random forest (RF) model to predict ncRNA binding proteins. Stacked assembling is further used to improve the accuracy of the proposed method. Four benchmark datasets, including RPI2241, RPI488, RPI1807, and NPInter v2.0, were employed for the unbiased evaluation of five established prediction tools: RPI-Pred, IPMiner, RPISeq-RF, lncPro, and RPI-SAN. The experimental results show that our RPI-SAN model achieves much better performance than other methods, with accuracies of 90.77%, 89.7%, 96.1%, and 99.33%, respectively. It is anticipated that RPI-SAN can be used as an effective computational tool for future biomedical researches and can accurately predict the potential ncRNA-protein interacted pairs, which provides reliable guidance for biological research. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value

    Energy Technology Data Exchange (ETDEWEB)

    Callejon-Ferre, A.J.; Lopez-Martinez, J.A.; Manzano-Agugliaro, F. [Departamento de Ingenieria Rural, Universidad de Almeria, Ctra. Sacramento s/n, La Canada de San Urbano, 04120 Almeria (Spain); Velazquez-Marti, B. [Departamento de Ingenieria Rural y Agroalimentaria, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2011-02-15

    Almeria, in southeastern Spain, generates some 1,086,261 t year{sup -1} (fresh weight) of greenhouse crop (Cucurbita pepo L., Cucumis sativus L., Solanum melongena L., Solanum lycopersicum L., Phaseoulus vulgaris L., Capsicum annuum L., Citrillus vulgaris Schrad. and Cucumis melo L.) residues. The energy potential of this biomass is unclear. The aim of the present work was to accurately quantify this variable, differentiating between crop species while taking into consideration the area they each occupy. This, however, required the direct analysis of the higher heating value (HHV) of these residues, involving very expensive and therefore not commonly available equipment. Thus, a further aim was to develop models for predicting the HHV of these residues, taking into account variables measured by elemental and/or proximate analysis, thus providing an economically attractive alternative to direct analysis. All the analyses in this work involved the use of worldwide-recognised standards and methods. The total energy potential for these plant residues, as determined by direct analysis, was 1,003,497.49 MW h year{sup -1}. Twenty univariate and multivariate equations were developed to predict the HHV. The R{sup 2} and adjusted R{sup 2} values obtained for the univariate and multivariate models were 0.909 and 0.946 or above respectively. In all cases, the mean absolute percentage error varied between 0.344 and 2.533. These results show that any of these 20 equations could be used to accurately predict the HHV of crop residues. The residues produced by the Almeria greenhouse industry would appear to be an interesting source of renewable energy. (author)

  12. Predicting suitable optoelectronic properties of monoclinic VON semiconductor crystals for photovoltaics using accurate first-principles computations

    KAUST Repository

    Harb, Moussab

    2015-01-01

    Using accurate first-principles quantum calculations based on DFT (including the perturbation theory DFPT) with the range-separated hybrid HSE06 exchange-correlation functional, we predict essential fundamental properties (such as bandgap, optical absorption coefficient, dielectric constant, charge carrier effective masses and exciton binding energy) of two stable monoclinic vanadium oxynitride (VON) semiconductor crystals for solar energy conversion applications. In addition to the predicted band gaps in the optimal range for making single-junction solar cells, both polymorphs exhibit relatively high absorption efficiencies in the visible range, high dielectric constants, high charge carrier mobilities and much lower exciton binding energies than the thermal energy at room temperature. Moreover, their optical absorption, dielectric and exciton dissociation properties are found to be better than those obtained for semiconductors frequently utilized in photovoltaic devices like Si, CdTe and GaAs. These novel results offer a great opportunity for this stoichiometric VON material to be properly synthesized and considered as a new good candidate for photovoltaic applications.

  13. Predicting suitable optoelectronic properties of monoclinic VON semiconductor crystals for photovoltaics using accurate first-principles computations

    KAUST Repository

    Harb, Moussab

    2015-08-26

    Using accurate first-principles quantum calculations based on DFT (including the perturbation theory DFPT) with the range-separated hybrid HSE06 exchange-correlation functional, we predict essential fundamental properties (such as bandgap, optical absorption coefficient, dielectric constant, charge carrier effective masses and exciton binding energy) of two stable monoclinic vanadium oxynitride (VON) semiconductor crystals for solar energy conversion applications. In addition to the predicted band gaps in the optimal range for making single-junction solar cells, both polymorphs exhibit relatively high absorption efficiencies in the visible range, high dielectric constants, high charge carrier mobilities and much lower exciton binding energies than the thermal energy at room temperature. Moreover, their optical absorption, dielectric and exciton dissociation properties are found to be better than those obtained for semiconductors frequently utilized in photovoltaic devices like Si, CdTe and GaAs. These novel results offer a great opportunity for this stoichiometric VON material to be properly synthesized and considered as a new good candidate for photovoltaic applications.

  14. Accurate X-Ray Spectral Predictions: An Advanced Self-Consistent-Field Approach Inspired by Many-Body Perturbation Theory.

    Science.gov (United States)

    Liang, Yufeng; Vinson, John; Pemmaraju, Sri; Drisdell, Walter S; Shirley, Eric L; Prendergast, David

    2017-03-03

    Constrained-occupancy delta-self-consistent-field (ΔSCF) methods and many-body perturbation theories (MBPT) are two strategies for obtaining electronic excitations from first principles. Using the two distinct approaches, we study the O 1s core excitations that have become increasingly important for characterizing transition-metal oxides and understanding strong electronic correlation. The ΔSCF approach, in its current single-particle form, systematically underestimates the pre-edge intensity for chosen oxides, despite its success in weakly correlated systems. By contrast, the Bethe-Salpeter equation within MBPT predicts much better line shapes. This motivates one to reexamine the many-electron dynamics of x-ray excitations. We find that the single-particle ΔSCF approach can be rectified by explicitly calculating many-electron transition amplitudes, producing x-ray spectra in excellent agreement with experiments. This study paves the way to accurately predict x-ray near-edge spectral fingerprints for physics and materials science beyond the Bethe-Salpether equation.

  15. Estimating the state of a geophysical system with sparse observations: time delay methods to achieve accurate initial states for prediction

    Science.gov (United States)

    An, Zhe; Rey, Daniel; Ye, Jingxin; Abarbanel, Henry D. I.

    2017-01-01

    The problem of forecasting the behavior of a complex dynamical system through analysis of observational time-series data becomes difficult when the system expresses chaotic behavior and the measurements are sparse, in both space and/or time. Despite the fact that this situation is quite typical across many fields, including numerical weather prediction, the issue of whether the available observations are "sufficient" for generating successful forecasts is still not well understood. An analysis by Whartenby et al. (2013) found that in the context of the nonlinear shallow water equations on a β plane, standard nudging techniques require observing approximately 70 % of the full set of state variables. Here we examine the same system using a method introduced by Rey et al. (2014a), which generalizes standard nudging methods to utilize time delayed measurements. We show that in certain circumstances, it provides a sizable reduction in the number of observations required to construct accurate estimates and high-quality predictions. In particular, we find that this estimate of 70 % can be reduced to about 33 % using time delays, and even further if Lagrangian drifter locations are also used as measurements.

  16. Accurate prediction of complex free surface flow around a high speed craft using a single-phase level set method

    Science.gov (United States)

    Broglia, Riccardo; Durante, Danilo

    2017-11-01

    This paper focuses on the analysis of a challenging free surface flow problem involving a surface vessel moving at high speeds, or planing. The investigation is performed using a general purpose high Reynolds free surface solver developed at CNR-INSEAN. The methodology is based on a second order finite volume discretization of the unsteady Reynolds-averaged Navier-Stokes equations (Di Mascio et al. in A second order Godunov—type scheme for naval hydrodynamics, Kluwer Academic/Plenum Publishers, Dordrecht, pp 253-261, 2001; Proceedings of 16th international offshore and polar engineering conference, San Francisco, CA, USA, 2006; J Mar Sci Technol 14:19-29, 2009); air/water interface dynamics is accurately modeled by a non standard level set approach (Di Mascio et al. in Comput Fluids 36(5):868-886, 2007a), known as the single-phase level set method. In this algorithm the governing equations are solved only in the water phase, whereas the numerical domain in the air phase is used for a suitable extension of the fluid dynamic variables. The level set function is used to track the free surface evolution; dynamic boundary conditions are enforced directly on the interface. This approach allows to accurately predict the evolution of the free surface even in the presence of violent breaking waves phenomena, maintaining the interface sharp, without any need to smear out the fluid properties across the two phases. This paper is aimed at the prediction of the complex free-surface flow field generated by a deep-V planing boat at medium and high Froude numbers (from 0.6 up to 1.2). In the present work, the planing hull is treated as a two-degree-of-freedom rigid object. Flow field is characterized by the presence of thin water sheets, several energetic breaking waves and plungings. The computational results include convergence of the trim angle, sinkage and resistance under grid refinement; high-quality experimental data are used for the purposes of validation, allowing to

  17. Efficacy and predictive value of clinical stage in non-surgical patients with esophageal cancer

    International Nuclear Information System (INIS)

    Liu Xiao; Wang Guiqi; He Shun

    2014-01-01

    Objective: To investigate the efficacy and predictive value of clinical stage in non-surgical patients with esophageal cancer (EC). Methods: A retrospective study was conducted in 358 EC patients who underwent radical surgery in our hospital from April 2003 to October 2010 and who had preoperative work-up including endoscopic esophageal ultrasound (EUS), esophagoscopy, thoracic CT scans,and contrast esophagography and had detailed information on postoperative pathological stages. The predictive value of preoperative clinical T/N stage based on EUS + CT for postoperative pathological stage was analyzed. The disease free survival (DFS) and overall survival (OS) were analyzed according to the UICC TNM classification (2002/ 2009) and the clinical stage based on imaging findings. Results: The median follow-up was 47 months.A total of 305 (85.2%) of all patients were analyzed by clinical stage based on EUS + CT.Among them, the predictive value of clinical T stage for pathological T stage was 0-88.6%, highest (88.6%) for T1 stage and lowest for T4 stage. The predictive value of clinical N stage (N 0 /N1) was 62.5-100%. The significant differences in OS and DFS rates based on both 2002 and 2009 UICC TNM classifications were noted (P=0.000 and 0.000). There were significant differences in OS between stage groups, except the comparison between two stage Ⅳ patients and other groups, according to 2002 UICC TNM classification. There were usually insignificant differences in OS between stage groups, according to 2009 UICC TNM classification. For the 305 patients staged clinically based on EUS and CT according to 2002 UICC TNM classification, significant differences in OS and DFS rates were noted (P=0.000 and 0.000). Conclusions: Imaging modalities show good predictive value for N stage (N0/N1),even though they cannot accurately provide the number of metastatic lymph nodes. The clinical stage based on EUS + CT can effectively predict the prognosis of non-surgical EC patients

  18. A Real-Time Accurate Model and Its Predictive Fuzzy PID Controller for Pumped Storage Unit via Error Compensation

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhou

    2017-12-01

    Full Text Available Model simulation and control of pumped storage unit (PSU are essential to improve the dynamic quality of power station. Only under the premise of the PSU models reflecting the actual transient process, the novel control method can be properly applied in the engineering. The contributions of this paper are that (1 a real-time accurate equivalent circuit model (RAECM of PSU via error compensation is proposed to reconcile the conflict between real-time online simulation and accuracy under various operating conditions, and (2 an adaptive predicted fuzzy PID controller (APFPID based on RAECM is put forward to overcome the instability of conventional control under no-load conditions with low water head. Respectively, all hydraulic factors in pipeline system are fully considered based on equivalent lumped-circuits theorem. The pretreatment, which consists of improved Suter-transformation and BP neural network, and online simulation method featured by two iterative loops are synthetically proposed to improve the solving accuracy of the pump-turbine. Moreover, the modified formulas for compensating error are derived with variable-spatial discretization to improve the accuracy of the real-time simulation further. The implicit RadauIIA method is verified to be more suitable for PSUGS owing to wider stable domain. Then, APFPID controller is constructed based on the integration of fuzzy PID and the model predictive control. Rolling prediction by RAECM is proposed to replace rolling optimization with its computational speed guaranteed. Finally, the simulation and on-site measurements are compared to prove trustworthy of RAECM under various running conditions. Comparative experiments also indicate that APFPID controller outperforms other controllers in most cases, especially low water head conditions. Satisfying results of RAECM have been achieved in engineering and it provides a novel model reference for PSUGS.

  19. Cultural Values Predicting Acculturation Orientations: Operationalizing a Quantitative Measure

    Science.gov (United States)

    Ehala, Martin

    2012-01-01

    This article proposes that acculturation orientations are related to two sets of cultural values: utilitarianism (Ut) and traditionalism (Tr). While utilitarian values enhance assimilation, traditional values support language and identity maintenance. It is proposed that the propensity to either end of this value opposition can be measured by an…

  20. Accuration of Time Series and Spatial Interpolation Method for Prediction of Precipitation Distribution on the Geographical Information System

    Science.gov (United States)

    Prasetyo, S. Y. J.; Hartomo, K. D.

    2018-01-01

    The Spatial Plan of the Province of Central Java 2009-2029 identifies that most regencies or cities in Central Java Province are very vulnerable to landslide disaster. The data are also supported by other data from Indonesian Disaster Risk Index (In Indonesia called Indeks Risiko Bencana Indonesia) 2013 that suggest that some areas in Central Java Province exhibit a high risk of natural disasters. This research aims to develop an application architecture and analysis methodology in GIS to predict and to map rainfall distribution. We propose our GIS architectural application of “Multiplatform Architectural Spatiotemporal” and data analysis methods of “Triple Exponential Smoothing” and “Spatial Interpolation” as our significant scientific contribution. This research consists of 2 (two) parts, namely attribute data prediction using TES method and spatial data prediction using Inverse Distance Weight (IDW) method. We conduct our research in 19 subdistricts in the Boyolali Regency, Central Java Province, Indonesia. Our main research data is the biweekly rainfall data in 2000-2016 Climatology, Meteorology, and Geophysics Agency (In Indonesia called Badan Meteorologi, Klimatologi, dan Geofisika) of Central Java Province and Laboratory of Plant Disease Observations Region V Surakarta, Central Java. The application architecture and analytical methodology of “Multiplatform Architectural Spatiotemporal” and spatial data analysis methodology of “Triple Exponential Smoothing” and “Spatial Interpolation” can be developed as a GIS application framework of rainfall distribution for various applied fields. The comparison between the TES and IDW methods show that relative to time series prediction, spatial interpolation exhibit values that are approaching actual. Spatial interpolation is closer to actual data because computed values are the rainfall data of the nearest location or the neighbour of sample values. However, the IDW’s main weakness is that some

  1. 21 CFR 868.1890 - Predictive pulmonary-function value calculator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Predictive pulmonary-function value calculator... SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1890 Predictive pulmonary-function value calculator. (a) Identification. A predictive pulmonary-function value calculator is...

  2. Predicting Customer Potential Value: an application in the insurance industry

    NARCIS (Netherlands)

    P.C. Verhoef (Peter); A.C.D. Donkers (Bas)

    2001-01-01

    textabstractFor effective Customer Relationship Management (CRM), it is essential to have information on the potential value of customers. Based on the interplay between potential value and realized value, managers can devise customer specific strategies. In this article we introduce a model for

  3. Accurate electrostatic and van der Waals pull-in prediction for fully clamped nano/micro-beams using linear universal graphs of pull-in instability

    Science.gov (United States)

    Tahani, Masoud; Askari, Amir R.

    2014-09-01

    In spite of the fact that pull-in instability of electrically actuated nano/micro-beams has been investigated by many researchers to date, no explicit formula has been presented yet which can predict pull-in voltage based on a geometrically non-linear and distributed parameter model. The objective of present paper is to introduce a simple and accurate formula to predict this value for a fully clamped electrostatically actuated nano/micro-beam. To this end, a non-linear Euler-Bernoulli beam model is employed, which accounts for the axial residual stress, geometric non-linearity of mid-plane stretching, distributed electrostatic force and the van der Waals (vdW) attraction. The non-linear boundary value governing equation of equilibrium is non-dimensionalized and solved iteratively through single-term Galerkin based reduced order model (ROM). The solutions are validated thorough direct comparison with experimental and other existing results reported in previous studies. Pull-in instability under electrical and vdW loads are also investigated using universal graphs. Based on the results of these graphs, non-dimensional pull-in and vdW parameters, which are defined in the text, vary linearly versus the other dimensionless parameters of the problem. Using this fact, some linear equations are presented to predict pull-in voltage, the maximum allowable length, the so-called detachment length, and the minimum allowable gap for a nano/micro-system. These linear equations are also reduced to a couple of universal pull-in formulas for systems with small initial gap. The accuracy of the universal pull-in formulas are also validated by comparing its results with available experimental and some previous geometric linear and closed-form findings published in the literature.

  4. Predictive value of c-reactive protein for thrombolytic therapy in acute myocardial infarction

    International Nuclear Information System (INIS)

    Majeed, N.; Bashir, F.

    2014-01-01

    The serum levels of C-reactive protein on admission may predict the efficacy of reperfusion in patients with acute myocardial infarction. Objectives: This study was conducted to know the predictive value of CRP for success of thrombolysis and to know the prognostic value of C-reactive protein in patients having acute myocardial infarction. Study Design: It was single center, open labeled cross sectional study. Materials and Methods: Sixty patients of acute myocardial infarction diagnosed on clinical and ECG criteria, who received thrombolytic therapy with strepto- kinase, were included in the study. The diagnosis of acute rnyocardial infarction was made on clinical para meters and ECG criteria. The ECG changes were noted before starting thrombolysis. The baseline sample for C-reactive protein (CRP,) was taken before starting thrombolysis. The time duration between onset of symptoms and start of thrombolysis was also noted. The thrombolysis was done with streptokinase infusion, 1.5 million units diluted in 100ml normal saline, intravenously over one hour. The ECG was repeated after six hours of completion of thrombolysis and, changes were noted and compared with ECG changes before thrombolysis. Now second sample for C-reactive protein (CRP2) was taken after six hours of completion of thrombolysis. CRP was measured by a high sensitivity assay which can accurately measure basal levels of CRP throughout the currently accepted cardiovascular risk assessment range (0.20 - 10.0 mg/L). According to ECG findings after thrombolysis, all patients were divided into two groups. Group A was considered as successful group to thrombolysis, in whom ECG changes were settled. Group B was considered as unsuccessful group to thrombolysis, in whom ECG changes remained same as before thrombolysis. Both values of C-reactive protein, CRP, and CRP2 were compared in both groups group A and group B. Results: Plasma CRP values before and after thrombolysis had strong predictive value for

  5. A rapid and accurate approach for prediction of interactomes from co-elution data (PrInCE).

    Science.gov (United States)

    Stacey, R Greg; Skinnider, Michael A; Scott, Nichollas E; Foster, Leonard J

    2017-10-23

    An organism's protein interactome, or complete network of protein-protein interactions, defines the protein complexes that drive cellular processes. Techniques for studying protein complexes have traditionally applied targeted strategies such as yeast two-hybrid or affinity purification-mass spectrometry to assess protein interactions. However, given the vast number of protein complexes, more scalable methods are necessary to accelerate interaction discovery and to construct whole interactomes. We recently developed a complementary technique based on the use of protein correlation profiling (PCP) and stable isotope labeling in amino acids in cell culture (SILAC) to assess chromatographic co-elution as evidence of interacting proteins. Importantly, PCP-SILAC is also capable of measuring protein interactions simultaneously under multiple biological conditions, allowing the detection of treatment-specific changes to an interactome. Given the uniqueness and high dimensionality of co-elution data, new tools are needed to compare protein elution profiles, control false discovery rates, and construct an accurate interactome. Here we describe a freely available bioinformatics pipeline, PrInCE, for the analysis of co-elution data. PrInCE is a modular, open-source library that is computationally inexpensive, able to use label and label-free data, and capable of detecting tens of thousands of protein-protein interactions. Using a machine learning approach, PrInCE offers greatly reduced run time, more predicted interactions at the same stringency, prediction of protein complexes, and greater ease of use over previous bioinformatics tools for co-elution data. PrInCE is implemented in Matlab (version R2017a). Source code and standalone executable programs for Windows and Mac OSX are available at https://github.com/fosterlab/PrInCE , where usage instructions can be found. An example dataset and output are also provided for testing purposes. PrInCE is the first fast and easy

  6. Accurate prediction of retention in hydrophilic interaction chromatography by back calculation of high pressure liquid chromatography gradient profiles.

    Science.gov (United States)

    Wang, Nu; Boswell, Paul G

    2017-10-20

    Gradient retention times are difficult to project from the underlying retention factor (k) vs. solvent composition (φ) relationships. A major reason for this difficulty is that gradients produced by HPLC pumps are imperfect - gradient delay, gradient dispersion, and solvent mis-proportioning are all difficult to account for in calculations. However, we recently showed that a gradient "back-calculation" methodology can measure these imperfections and take them into account. In RPLC, when the back-calculation methodology was used, error in projected gradient retention times is as low as could be expected based on repeatability in the k vs. φ relationships. HILIC, however, presents a new challenge: the selectivity of HILIC columns drift strongly over time. Retention is repeatable in short time, but selectivity frequently drifts over the course of weeks. In this study, we set out to understand if the issue of selectivity drift can be avoid by doing our experiments quickly, and if there any other factors that make it difficult to predict gradient retention times from isocratic k vs. φ relationships when gradient imperfections are taken into account with the back-calculation methodology. While in past reports, the accuracy of retention projections was >5%, the back-calculation methodology brought our error down to ∼1%. This result was 6-43 times more accurate than projections made using ideal gradients and 3-5 times more accurate than the same retention projections made using offset gradients (i.e., gradients that only took gradient delay into account). Still, the error remained higher in our HILIC projections than in RPLC. Based on the shape of the back-calculated gradients, we suspect the higher error is a result of prominent gradient distortion caused by strong, preferential water uptake from the mobile phase into the stationary phase during the gradient - a factor our model did not properly take into account. It appears that, at least with the stationary phase

  7. Albumin-Bilirubin and Platelet-Albumin-Bilirubin Grades Accurately Predict Overall Survival in High-Risk Patients Undergoing Conventional Transarterial Chemoembolization for Hepatocellular Carcinoma.

    Science.gov (United States)

    Hansmann, Jan; Evers, Maximilian J; Bui, James T; Lokken, R Peter; Lipnik, Andrew J; Gaba, Ron C; Ray, Charles E

    2017-09-01

    To evaluate albumin-bilirubin (ALBI) and platelet-albumin-bilirubin (PALBI) grades in predicting overall survival in high-risk patients undergoing conventional transarterial chemoembolization for hepatocellular carcinoma (HCC). This single-center retrospective study included 180 high-risk patients (142 men, 59 y ± 9) between April 2007 and January 2015. Patients were considered high-risk based on laboratory abnormalities before the procedure (bilirubin > 2.0 mg/dL, albumin 1.2 mg/dL); presence of ascites, encephalopathy, portal vein thrombus, or transjugular intrahepatic portosystemic shunt; or Model for End-Stage Liver Disease score > 15. Serum albumin, bilirubin, and platelet values were used to determine ALBI and PALBI grades. Overall survival was stratified by ALBI and PALBI grades with substratification by Child-Pugh class (CPC) and Barcelona Liver Clinic Cancer (BCLC) stage using Kaplan-Meier analysis. C-index was used to determine discriminatory ability and survival prediction accuracy. Median survival for 79 ALBI grade 2 patients and 101 ALBI grade 3 patients was 20.3 and 10.7 months, respectively (P  .05). ALBI and PALBI grades are accurate survival metrics in high-risk patients undergoing conventional transarterial chemoembolization for HCC. Use of these scores allows for more refined survival stratification within CPC and BCLC stage. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.

  8. Negative predictive value of ultrasound in predicting tumor-free margins in specimen sonography

    International Nuclear Information System (INIS)

    Naz, S.; Hafeez, S.; Hussain, Z.; Hilal, K.

    2017-01-01

    Objective: To evaluate the success of ultrasound in post-excision specimen visualization, and negative predictive value of ultrasound for estimation of tumor-free margins using histopathology as the gold standard. Study Design: Cross-sectional analytical study. Place and Duration of Study: The Aga Khan University Hospital, Karachi, Pakistan, from May 2010 till January 2013. Methodology: Sonography of all breast nodules was done before and after exicision by two female radiologists with at least five years clinical experience. All surgeries were performed by the same referring breast surgeons. All nodules were non-palpable and had histopathology as well as specimen sonography performed at AKUH. Subjects were excluded, if histopathology was not available, post-procedure sonogram not done or done in another hospital and nodules that were not seen on ultrasound. After needle localization in 47 patients using ultrasound and in 7 patients using mammogram was done, sonogram was conducted in all 54 lesions. These were then assessed by ultrasound for detection of lesion and tumor-free margins in malignant lesion. Post-excision ultrasound was performed for the evaluation of lesion whether visualized or absent with localizing needle in situ, lesion dimensions, depth measurement between the superior margin of the lesion and its edge. Results: All 54 lesions were present on post-exicison scan, out of which 28 were documented as malignant and 26 as benign. Ultrasound declared all specimens as tumor-free. On histopathology, two lesions were documented as having tumor-positive margins and were proven to be invasive lobular carcinoma. Therefore, the negative predictive value of the specimen sonography for margin detection was 26/28 (92.8%). Conclusion: Ultrasound of the excised breast tumor specimen is a simple and reliable technique for confirmation of the tumor-free margins in non-palpable breast lesions. (author)

  9. Predictive Value Of Biochemical Markers In Pregnancy Induced ...

    African Journals Online (AJOL)

    Hypertensive disorders of pregnancy complicate 10% of all pregnancies. They include gestational hypertension, preeclampsia, eclampsia, and chronic hypertension. The aim of this study was to identify predictive markers for early diagnosis of women who are at risk of gestational hypertension or preeclampsia. This study ...

  10. Predictive value of parenting styles on the academic achievement of ...

    African Journals Online (AJOL)

    This study investigated the relationship between parenting styles and the academic achievement level of secondary school students in Benin City. A correlational ... of the Ministry of Education. The findings revealed that authoritative parenting significantly predict the academic achievement of students in English Language.

  11. Episodic memories predict adaptive value-based decision-making

    Science.gov (United States)

    Murty, Vishnu; FeldmanHall, Oriel; Hunter, Lindsay E.; Phelps, Elizabeth A; Davachi, Lila

    2016-01-01

    Prior research illustrates that memory can guide value-based decision-making. For example, previous work has implicated both working memory and procedural memory (i.e., reinforcement learning) in guiding choice. However, other types of memories, such as episodic memory, may also influence decision-making. Here we test the role for episodic memory—specifically item versus associative memory—in supporting value-based choice. Participants completed a task where they first learned the value associated with trial unique lotteries. After a short delay, they completed a decision-making task where they could choose to re-engage with previously encountered lotteries, or new never before seen lotteries. Finally, participants completed a surprise memory test for the lotteries and their associated values. Results indicate that participants chose to re-engage more often with lotteries that resulted in high versus low rewards. Critically, participants not only formed detailed, associative memories for the reward values coupled with individual lotteries, but also exhibited adaptive decision-making only when they had intact associative memory. We further found that the relationship between adaptive choice and associative memory generalized to more complex, ecologically valid choice behavior, such as social decision-making. However, individuals more strongly encode experiences of social violations—such as being treated unfairly, suggesting a bias for how individuals form associative memories within social contexts. Together, these findings provide an important integration of episodic memory and decision-making literatures to better understand key mechanisms supporting adaptive behavior. PMID:26999046

  12. Coal Calorific Value Prediction Based on Projection Pursuit Principle

    OpenAIRE

    QI Minfang; FU Zhongguang; JING Yuan

    2012-01-01

    The calorific value of coal is an important factor for the economic operation of coal-fired power plant. However, calorific value is tremendous difference between the different coal, and even if coal is from the same mine. Restricted by the coal market, most of coal fired power plants can not burn the designed-coal by now in China. The properties of coal as received are changing so frequently that pulverized coal firing is always with the unexpected condition. Therefore, the researches on the...

  13. The predictive value of bronchial histamine challenge in the diagnosis of bronchial asthma

    DEFF Research Database (Denmark)

    Madsen, F; Holstein-Rathlou, N H; Mosbech, H

    1985-01-01

    as asthmatics (n = 97) or non-asthmatics (n = 54). The diagnostic properties of the challenge were calculated using the statement of Baye. Considering PC20 values below 4.00 mg/ml as positive, the predictive value of a positive test was about 0.80 and the predictive value of a negative about 0.76. When PC20...

  14. Burnout in radiation therapists: the predictive value of selected stressors

    International Nuclear Information System (INIS)

    Akroyd, Duane; Caison, Amy; Adams, Robert D.

    2002-01-01

    Purpose: As cancer caregivers, radiation therapists experience a variety of stresses that may develop into burnout, which has been demonstrated to impact patient care, employee health, and organizational effectiveness. The purpose of the study was to assess the levels of radiation therapists' burnout at three stages. Additionally, the ability of selected workplace variables to predict each of the three stages of burnout was examined. Methods and Materials: We used descriptive and inferential statistical analyses on reliable and valid instruments, which measured stress, burnout, and social support. Results: Radiation therapists have high levels of the first two stages of burnout: emotional exhaustion and depersonalization. Although personal stress, organizational stress, guidance, reassurance of worth, and work load predicted 50% or more of the variance in emotional exhaustion and depersonalization, their predictive ability for personal accomplishment was low. Conclusion: Efforts to alleviate burnout among radiation therapists within an organization should have positive effects, including increased quality of patient care, improved quality of work life, higher levels of job satisfaction, and commitment and lower staff turnover

  15. Real estate value prediction using multivariate regression models

    Science.gov (United States)

    Manjula, R.; Jain, Shubham; Srivastava, Sharad; Rajiv Kher, Pranav

    2017-11-01

    The real estate market is one of the most competitive in terms of pricing and the same tends to vary significantly based on a lot of factors, hence it becomes one of the prime fields to apply the concepts of machine learning to optimize and predict the prices with high accuracy. Therefore in this paper, we present various important features to use while predicting housing prices with good accuracy. We have described regression models, using various features to have lower Residual Sum of Squares error. While using features in a regression model some feature engineering is required for better prediction. Often a set of features (multiple regressions) or polynomial regression (applying a various set of powers in the features) is used for making better model fit. For these models are expected to be susceptible towards over fitting ridge regression is used to reduce it. This paper thus directs to the best application of regression models in addition to other techniques to optimize the result.

  16. Prediction of the comparative reinforcement values of running and drinking.

    Science.gov (United States)

    PREMACK, D

    1963-03-15

    The probability of free drinking and running in rats was controlled by sucrose concentration and force requirements on an activity wheel. Drinking and running were then made contingent on pressing a bar. Barpressing increased monotonically with the associated response probability, and equally for drinking and running. The results support the assumption that different responses of equal probability have equal reinforcement value.

  17. Prediction of Interests from Values: A Longitudinal Investigation.

    Science.gov (United States)

    Mason, Avonne; And Others

    Interest in the attitude-behavior relationship has generated much research since the concept was introduced into research in 1934. This study examined the relationship between values and behavioral intentions, specifically in regard to interest in entering a particular medical specialization. Using structural equation techniques and a longitudinal…

  18. Species richness alone does not predict cultural ecosystem service value

    Science.gov (United States)

    Graves, Rose A.; Pearson, Scott M.; Turner, Monica G.

    2017-01-01

    Many biodiversity-ecosystem services studies omit cultural ecosystem services (CES) or use species richness as a proxy and assume that more species confer greater CES value. We studied wildflower viewing, a key biodiversity-based CES in amenity-based landscapes, in Southern Appalachian Mountain forests and asked (i) How do aesthetic preferences for wildflower communities vary with components of biodiversity, including species richness?; (ii) How do aesthetic preferences for wildflower communities vary across psychographic groups?; and (iii) How well does species richness perform as an indicator of CES value compared with revealed social preferences for wildflower communities? Public forest visitors (n = 293) were surveyed during the summer of 2015 and asked to choose among images of wildflower communities in which flower species richness, flower abundance, species evenness, color diversity, and presence of charismatic species had been digitally manipulated. Aesthetic preferences among images were unrelated to species richness but increased with more abundant flowers, greater species evenness, and greater color diversity. Aesthetic preferences were consistent across psychographic groups and unaffected by knowledge of local flora or value placed on wildflower viewing. When actual wildflower communities (n = 54) were ranked based on empirically measured flower species richness or wildflower viewing utility based on multinomial logit models of revealed preferences, rankings were broadly similar. However, designation of hotspots (CES values above the median) based on species richness alone missed 27% of wildflower viewing utility hotspots. Thus, conservation priorities for sustaining CES should incorporate social preferences and consider multiple dimensions of biodiversity that underpin CES supply. PMID:28320953

  19. Species richness alone does not predict cultural ecosystem service value

    Science.gov (United States)

    Rose A. Graves; Scott M. Pearson; Monica G. Turner

    2017-01-01

    Sustaining biodiversity and ecosystem services are common conservation goals. However, understanding relationships between biodiversity and cultural ecosystem services (CES) and determining the best indicators to represent CES remain crucial challenges. We combined ecological and social data to compare CES value of wildflower communities based on observed...

  20. Predictive equations for spirometric reference values in a healthy ...

    African Journals Online (AJOL)

    men and 98 women were selected to the reference value group. ... adult population in Dar es Salaam, Tanzania, and compare these equations to already ... which has proven to be suitable in field work as it operates on batteries and requires no ..... thought to be partly due to difference in body build and that Blacks have ...

  1. The reliability, validity, sensitivity, specificity and predictive values of the Chinese version of the Rowland Universal Dementia Assessment Scale.

    Science.gov (United States)

    Chen, Chia-Wei; Chu, Hsin; Tsai, Chia-Fen; Yang, Hui-Ling; Tsai, Jui-Chen; Chung, Min-Huey; Liao, Yuan-Mei; Chi, Mei-Ju; Chou, Kuei-Ru

    2015-11-01

    The purpose of this study was to translate the Rowland Universal Dementia Assessment Scale into Chinese and to evaluate the psychometric properties (reliability and validity) and the diagnostic properties (sensitivity, specificity and predictive values) of the Chinese version of the Rowland Universal Dementia Assessment Scale. The accurate detection of early dementia requires screening tools with favourable cross-cultural linguistic and appropriate sensitivity, specificity, and predictive values, particularly for Chinese-speaking populations. This was a cross-sectional, descriptive study. Overall, 130 participants suspected to have cognitive impairment were enrolled in the study. A test-retest for determining reliability was scheduled four weeks after the initial test. Content validity was determined by five experts, whereas construct validity was established by using contrasted group technique. The participants' clinical diagnoses were used as the standard in calculating the sensitivity, specificity, positive predictive value and negative predictive value. The study revealed that the Chinese version of the Rowland Universal Dementia Assessment Scale exhibited a test-retest reliability of 0.90, an internal consistency reliability of 0.71, an inter-rater reliability (kappa value) of 0.88 and a content validity index of 0.97. Both the patients and healthy contrast group exhibited significant differences in their cognitive ability. The optimal cut-off points for the Chinese version of the Rowland Universal Dementia Assessment Scale in the test for mild cognitive impairment and dementia were 24 and 22, respectively; moreover, for these two conditions, the sensitivities of the scale were 0.79 and 0.76, the specificities were 0.91 and 0.81, the areas under the curve were 0.85 and 0.78, the positive predictive values were 0.99 and 0.83 and the negative predictive values were 0.96 and 0.91 respectively. The Chinese version of the Rowland Universal Dementia Assessment Scale

  2. Estimating patient dose from CT exams that use automatic exposure control: Development and validation of methods to accurately estimate tube current values.

    Science.gov (United States)

    McMillan, Kyle; Bostani, Maryam; Cagnon, Christopher H; Yu, Lifeng; Leng, Shuai; McCollough, Cynthia H; McNitt-Gray, Michael F

    2017-08-01

    The vast majority of body CT exams are performed with automatic exposure control (AEC), which adapts the mean tube current to the patient size and modulates the tube current either angularly, longitudinally or both. However, most radiation dose estimation tools are based on fixed tube current scans. Accurate estimates of patient dose from AEC scans require knowledge of the tube current values, which is usually unavailable. The purpose of this work was to develop and validate methods to accurately estimate the tube current values prescribed by one manufacturer's AEC system to enable accurate estimates of patient dose. Methods were developed that took into account available patient attenuation information, user selected image quality reference parameters and x-ray system limits to estimate tube current values for patient scans. Methods consistent with AAPM Report 220 were developed that used patient attenuation data that were: (a) supplied by the manufacturer in the CT localizer radiograph and (b) based on a simulated CT localizer radiograph derived from image data. For comparison, actual tube current values were extracted from the projection data of each patient. Validation of each approach was based on data collected from 40 pediatric and adult patients who received clinically indicated chest (n = 20) and abdomen/pelvis (n = 20) scans on a 64 slice multidetector row CT (Sensation 64, Siemens Healthcare, Forchheim, Germany). For each patient dataset, the following were collected with Institutional Review Board (IRB) approval: (a) projection data containing actual tube current values at each projection view, (b) CT localizer radiograph (topogram) and (c) reconstructed image data. Tube current values were estimated based on the actual topogram (actual-topo) as well as the simulated topogram based on image data (sim-topo). Each of these was compared to the actual tube current values from the patient scan. In addition, to assess the accuracy of each method in estimating

  3. Markovian prediction of future values for food grains in the economic survey

    Science.gov (United States)

    Sathish, S.; Khadar Babu, S. K.

    2017-11-01

    Now-a-days prediction and forecasting are plays a vital role in research. For prediction, regression is useful to predict the future value and current value on production process. In this paper, we assume food grain production exhibit Markov chain dependency and time homogeneity. The economic generative performance evaluation the balance time artificial fertilization different level in Estrusdetection using a daily Markov chain model. Finally, Markov process prediction gives better performance compare with Regression model.

  4. The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes.

    Science.gov (United States)

    Clark, Samuel A; Hickey, John M; Daetwyler, Hans D; van der Werf, Julius H J

    2012-02-09

    The theory of genomic selection is based on the prediction of the effects of genetic markers in linkage disequilibrium with quantitative trait loci. However, genomic selection also relies on relationships between individuals to accurately predict genetic value. This study aimed to examine the importance of information on relatives versus that of unrelated or more distantly related individuals on the estimation of genomic breeding values. Simulated and real data were used to examine the effects of various degrees of relationship on the accuracy of genomic selection. Genomic Best Linear Unbiased Prediction (gBLUP) was compared to two pedigree based BLUP methods, one with a shallow one generation pedigree and the other with a deep ten generation pedigree. The accuracy of estimated breeding values for different groups of selection candidates that had varying degrees of relationships to a reference data set of 1750 animals was investigated. The gBLUP method predicted breeding values more accurately than BLUP. The most accurate breeding values were estimated using gBLUP for closely related animals. Similarly, the pedigree based BLUP methods were also accurate for closely related animals, however when the pedigree based BLUP methods were used to predict unrelated animals, the accuracy was close to zero. In contrast, gBLUP breeding values, for animals that had no pedigree relationship with animals in the reference data set, allowed substantial accuracy. An animal's relationship to the reference data set is an important factor for the accuracy of genomic predictions. Animals that share a close relationship to the reference data set had the highest accuracy from genomic predictions. However a baseline accuracy that is driven by the reference data set size and the overall population effective population size enables gBLUP to estimate a breeding value for unrelated animals within a population (breed), using information previously ignored by pedigree based BLUP methods.

  5. Predictive value of radioculography in patients with lumbago-sciatica

    International Nuclear Information System (INIS)

    Espersen, J.O.; Kosteljanetz, M.; Halaburt, H.; Miletic, T.

    1984-01-01

    One hundred patients with symptoms of lumbo-sacral root compression were prospectively and consecutively assigned to operation based alone on clinical findings. A preoperative myelogram was performed in all patients and described without a knowledge of the clinical features. All patients were explored for the clinically and myelographically relevant disc. When the myelogram was normal (16 patients) both lower lumbar interspaces were exposed. In 58 patients a herniated disc was revealed at surgery. Only 'myelographic herniation' with indentation of the contrast column was accompanied by a high frequency of disc herniation at surgery (73-87%). In cases with normal myelograms only 5% had a disc herniation. The severity of the myelographic finding was clearly correlated to the frequency of positive surgical findings and good outcomes. The preoperative radiculogram gives a high degree of certainty in the preoperative evaluation whether a surgical lesion is present or not and reveals a precise prediction of the outcome of surgery. (Author)

  6. Positive predictive value of cholescintigraphy in common bile duct obstruction

    International Nuclear Information System (INIS)

    Lecklitner, M.L.; Austin, A.R.; Benedetto, A.R.; Growcock, G.W.

    1986-01-01

    Technetium-99m DISIDA imaging was employed in 400 patients to differentiate obstruction of the common bile duct from medical and other surgical causes of hyperbilirubinemia. Sequential anterior images demonstrated variable degrees of liver uptake, yet there was no evidence of intrabiliary or extrabiliary radioactivity for at least 4 hr after injection in 25 patients. Twenty-three patients were surgically documented to have complete obstruction of the common bile duct. One patient had hepatitis, and another had sickle cell crisis without bile duct obstruction. The remaining patients had either partial or no obstruction of the common bile duct. We conclude that the presence of liver uptake without evident biliary excretion by 4 hr on cholescintigraphy is highly sensitive and predictive of total obstruction of the common bile duct

  7. Do Skilled Elementary Teachers Hold Scientific Conceptions and Can They Accurately Predict the Type and Source of Students' Preconceptions of Electric Circuits?

    Science.gov (United States)

    Lin, Jing-Wen

    2016-01-01

    Holding scientific conceptions and having the ability to accurately predict students' preconceptions are a prerequisite for science teachers to design appropriate constructivist-oriented learning experiences. This study explored the types and sources of students' preconceptions of electric circuits. First, 438 grade 3 (9 years old) students were…

  8. Does 99mTc MAA study accurately predict the Hepatopulmonary shunt fraction of 90Y theraspheres?

    International Nuclear Information System (INIS)

    Jha, Ashish; Zade, A.; Monteiro, P.; Shah, S.; Purandare, N.C.; Rangarajan, V.; Kulkarni, S.; Kulkarni, A.; Shetty, Nitin

    2010-01-01

    localization. IMAGE PROCESSING and DATA ANALYSIS: Both the sets pre and post therapeutic images were analyzed on dedicated workstation (Xeleris 1.1, GE Medical Systems). Hepatopulmonary shunt was calculated by self customized software developed on Xeleris workstation. Results: 13 patients undergoing - 90 Y Theraspheres therapy for radioembolisation of hepatic neoplasm were evaluated. The HPS fraction calculated from pre therapeutic 99m Tc MAA study and post therapeutic - 90 Y Bremsstrahlung images were 4.09% and 4.28% respectively. There is good correlation in the HPS fraction values by both methods (coefficient of correlation=0.973) CONCLUSION: The accuracy of Pre therapeutic 99m Tc MAA study is high in predicting the HPS of 90 Y-Theraspheres

  9. Getting off on the right foot: subjective value versus economic value in predicting longitudinal job outcomes from job offer negotiations.

    Science.gov (United States)

    Curhan, Jared R; Elfenbein, Hillary Anger; Kilduff, Gavin J

    2009-03-01

    Although negotiation experiences can affect a negotiator's ensuing attitudes and behavior, little is known about their long-term consequences. Using a longitudinal survey design, the authors tested the degree to which economic and subjective value achieved in job offer negotiations predicts employees' subsequent job attitudes and intentions concerning turnover. Results indicate that subjective value predicts greater compensation satisfaction and job satisfaction and lower turnover intention measured 1 year later. Surprisingly, the economic outcomes that negotiators achieved had no apparent effects on these factors. Implications, limitations, and future directions are discussed. (c) 2009 APA, all rights reserved.

  10. Automatic Earthquake Shear Stress Measurement Method Developed for Accurate Time- Prediction Analysis of Forthcoming Major Earthquakes Along Shallow Active Faults

    Science.gov (United States)

    Serata, S.

    2006-12-01

    The Serata Stressmeter has been developed to measure and monitor earthquake shear stress build-up along shallow active faults. The development work made in the past 25 years has established the Stressmeter as an automatic stress measurement system to study timing of forthcoming major earthquakes in support of the current earthquake prediction studies based on statistical analysis of seismological observations. In early 1982, a series of major Man-made earthquakes (magnitude 4.5-5.0) suddenly occurred in an area over deep underground potash mine in Saskatchewan, Canada. By measuring underground stress condition of the mine, the direct cause of the earthquake was disclosed. The cause was successfully eliminated by controlling the stress condition of the mine. The Japanese government was interested in this development and the Stressmeter was introduced to the Japanese government research program for earthquake stress studies. In Japan the Stressmeter was first utilized for direct measurement of the intrinsic lateral tectonic stress gradient G. The measurement, conducted at the Mt. Fuji Underground Research Center of the Japanese government, disclosed the constant natural gradients of maximum and minimum lateral stresses in an excellent agreement with the theoretical value, i.e., G = 0.25. All the conventional methods of overcoring, hydrofracturing and deformation, which were introduced to compete with the Serata method, failed demonstrating the fundamental difficulties of the conventional methods. The intrinsic lateral stress gradient determined by the Stressmeter for the Japanese government was found to be the same with all the other measurements made by the Stressmeter in Japan. The stress measurement results obtained by the major international stress measurement work in the Hot Dry Rock Projects conducted in USA, England and Germany are found to be in good agreement with the Stressmeter results obtained in Japan. Based on this broad agreement, a solid geomechanical

  11. The predictive value of quantitative fibronectin testing in combination with cervical length measurement in symptomatic women

    NARCIS (Netherlands)

    Bruijn, Merel M. C.; Kamphuis, Esme I.; Hoesli, Irene M.; Martinez de Tejada, Begoña; Loccufier, Anne R.; Kühnert, Maritta; Helmer, Hanns; Franz, Marie; Porath, Martina M.; Oudijk, Martijn A.; Jacquemyn, Yves; Schulzke, Sven M.; Vetter, Grit; Hoste, Griet; Vis, Jolande Y.; Kok, Marjolein; Mol, Ben W. J.; van Baaren, Gert-Jan

    2016-01-01

    The combination of the qualitative fetal fibronectin test and cervical length measurement has a high negative predictive value for preterm birth within 7 days; however, positive prediction is poor. A new bedside quantitative fetal fibronectin test showed potential additional value over the

  12. Towards accurate prediction of unbalance response, oil whirl and oil whip of flexible rotors supported by hydrodynamic bearings

    NARCIS (Netherlands)

    Eling, R.P.T.; te Wierik, M.; van Ostayen, R.A.J.; Rixen, D.J.

    2016-01-01

    Journal bearings are used to support rotors in a wide range of applications. In order to ensure reliable operation, accurate analyses of these rotor-bearing systems are crucial. Coupled analysis of the rotor and the journal bearing is essential in the case that the rotor is flexible. The accuracy of

  13. Total reference air kerma can accurately predict isodose surface volumes in cervix cancer brachytherapy. A multicenter study

    DEFF Research Database (Denmark)

    Nkiwane, Karen S; Andersen, Else; Champoudry, Jerome

    2017-01-01

    PURPOSE: To demonstrate that V60 Gy, V75 Gy, and V85 Gy isodose surface volumes can be accurately estimated from total reference air kerma (TRAK) in cervix cancer MRI-guided brachytherapy (BT). METHODS AND MATERIALS: 60 Gy, 75 Gy, and 85 Gy isodose surface volumes levels were obtained from treatm...

  14. Accurate particle speed prediction by improved particle speed measurement and 3-dimensional particle size and shape characterization technique

    DEFF Research Database (Denmark)

    Cernuschi, Federico; Rothleitner, Christian; Clausen, Sønnik

    2017-01-01

    Accurate particle mass and velocity measurement is needed for interpreting test results in erosion tests of materials and coatings. The impact and damage of a surface is influenced by the kinetic energy of a particle, i.e. particle mass and velocity. Particle mass is usually determined with optic...

  15. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Karosiene, Edita; Rasmussen, Michael

    2015-01-01

    with known binding registers, the new method NetMHCIIpan-3.1 significantly outperformed the earlier 3.0 version. We illustrate the impact of accurate binding core identification for the interpretation of T cell cross-reactivity using tetramer double staining with a CMV epitope and its variants mapped...

  16. Virtual World Currency Value Fluctuation Prediction System Based on User Sentiment Analysis.

    Directory of Open Access Journals (Sweden)

    Young Bin Kim

    Full Text Available In this paper, we present a method for predicting the value of virtual currencies used in virtual gaming environments that support multiple users, such as massively multiplayer online role-playing games (MMORPGs. Predicting virtual currency values in a virtual gaming environment has rarely been explored; it is difficult to apply real-world methods for predicting fluctuating currency values or shares to the virtual gaming world on account of differences in domains between the two worlds. To address this issue, we herein predict virtual currency value fluctuations by collecting user opinion data from a virtual community and analyzing user sentiments or emotions from the opinion data. The proposed method is straightforward and applicable to predicting virtual currencies as well as to gaming environments, including MMORPGs. We test the proposed method using large-scale MMORPGs and demonstrate that virtual currencies can be effectively and efficiently predicted with it.

  17. Virtual World Currency Value Fluctuation Prediction System Based on User Sentiment Analysis

    Science.gov (United States)

    Kim, Young Bin; Lee, Sang Hyeok; Kang, Shin Jin; Choi, Myung Jin; Lee, Jung; Kim, Chang Hun

    2015-01-01

    In this paper, we present a method for predicting the value of virtual currencies used in virtual gaming environments that support multiple users, such as massively multiplayer online role-playing games (MMORPGs). Predicting virtual currency values in a virtual gaming environment has rarely been explored; it is difficult to apply real-world methods for predicting fluctuating currency values or shares to the virtual gaming world on account of differences in domains between the two worlds. To address this issue, we herein predict virtual currency value fluctuations by collecting user opinion data from a virtual community and analyzing user sentiments or emotions from the opinion data. The proposed method is straightforward and applicable to predicting virtual currencies as well as to gaming environments, including MMORPGs. We test the proposed method using large-scale MMORPGs and demonstrate that virtual currencies can be effectively and efficiently predicted with it. PMID:26241496

  18. Computational Techniques for Model Predictive Control of Large-Scale Systems with Continuous-Valued and Discrete-Valued Inputs

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2013-01-01

    Full Text Available We propose computational techniques for model predictive control of large-scale systems with both continuous-valued control inputs and discrete-valued control inputs, which are a class of hybrid systems. In the proposed method, we introduce the notion of virtual control inputs, which are obtained by relaxing discrete-valued control inputs to continuous variables. In online computation, first, we find continuous-valued control inputs and virtual control inputs minimizing a cost function. Next, using the obtained virtual control inputs, only discrete-valued control inputs at the current time are computed in each subsystem. In addition, we also discuss the effect of quantization errors. Finally, the effectiveness of the proposed method is shown by a numerical example. The proposed method enables us to reduce and decentralize the computation load.

  19. Predictive value of early near-infrared spectroscopy monitoring of patients with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Alina Vilkė

    2014-01-01

    Conclusions: NIRS plays an important role in the clinical care of TBI patients. Regional brain saturation monitoring provides accurate predictive data, which can improve the allocation of scarce medical resources, set the treatment goals and alleviate the early communication with patients’ relatives.

  20. Predictive error dependencies when using pilot points and singular value decomposition in groundwater model calibration

    DEFF Research Database (Denmark)

    Christensen, Steen; Doherty, John

    2008-01-01

    super parameters), and that the structural errors caused by using pilot points and super parameters to parameterize the highly heterogeneous log-transmissivity field can be significant. For the test case much effort is put into studying how the calibrated model's ability to make accurate predictions...

  1. Accurate and computationally efficient prediction of thermochemical properties of biomolecules using the generalized connectivity-based hierarchy.

    Science.gov (United States)

    Sengupta, Arkajyoti; Ramabhadran, Raghunath O; Raghavachari, Krishnan

    2014-08-14

    In this study we have used the connectivity-based hierarchy (CBH) method to derive accurate heats of formation of a range of biomolecules, 18 amino acids and 10 barbituric acid/uracil derivatives. The hierarchy is based on the connectivity of the different atoms in a large molecule. It results in error-cancellation reaction schemes that are automated, general, and can be readily used for a broad range of organic molecules and biomolecules. Herein, we first locate stable conformational and tautomeric forms of these biomolecules using an accurate level of theory (viz. CCSD(T)/6-311++G(3df,2p)). Subsequently, the heats of formation of the amino acids are evaluated using the CBH-1 and CBH-2 schemes and routinely employed density functionals or wave function-based methods. The calculated heats of formation obtained herein using modest levels of theory and are in very good agreement with those obtained using more expensive W1-F12 and W2-F12 methods on amino acids and G3 results on barbituric acid derivatives. Overall, the present study (a) highlights the small effect of including multiple conformers in determining the heats of formation of biomolecules and (b) in concurrence with previous CBH studies, proves that use of the more effective error-cancelling isoatomic scheme (CBH-2) results in more accurate heats of formation with modestly sized basis sets along with common density functionals or wave function-based methods.

  2. The predictive value of hunger score on gastric evacuation after oral intake of carbohydrate solution.

    Science.gov (United States)

    Weiji, Qiu; Shitong, Li; Yu, Luo; Tianfang, Hua; Ning, Kong; Lina, Zhang

    2018-01-12

    Surgical patients are asked to fast for a sufficient duration to ensure that the amount of residual liquid in the stomach is within the safe range, thereby reducing the risk of gastric reflux perioperatively. The authors hypothesized that subjective hunger numerical rating scale (NRS) score could also help assess the process of gastric emptying and determine the amount of fluid remaining in the stomach. The current study consisted of healthy volunteers recruited by advertisement and mutual introduction. Participants were asked to rate their subjective hunger feeling every 30 min after oral administration of 8 mL/kg carbohydrate nutrient solution that contained 10% maltodextrin and 2.5% sucrose. Consecutively, the gastric residual fluid was measured by magnetic resonance imagining (MRI). The Spearman's correlation coefficient, the ROC curves and the stepwise regression were used to analyze the predictive value of NRS for the gastric emptying process. The cohort consisted of 29 healthy volunteers enrolled in this study. The area under ROC curves estimated by the NRS score for the gastric residual volume of 2 mL/kg, 1 mL/kg, and 0.5 mL/kg were AUC 2.0  = 0.78, AUC 1.0  = 0.76, and AUC 0.5  = 0.72, respectively. The correlation coefficient between the NRS score and the residual liquid in the stomach was -0.57 (P hunger NRS score can not accurately predict the gastric residual volume, but it can provide a reference for clinicians to judge the gastric emptying process and it should be used as a second check after oral intake of clear fluids before surgery according to the new fasting protocol.

  3. An Improved Cambridge Filter Pad Extraction Methodology to Obtain More Accurate Water and “Tar” Values: In Situ Cambridge Filter Pad Extraction Methodology

    Directory of Open Access Journals (Sweden)

    Ghosh David

    2014-07-01

    Full Text Available Previous investigations by others and internal investigations at Philip Morris International (PMI have shown that the standard trapping and extraction procedure used for conventional cigarettes, defined in the International Standard ISO 4387 (Cigarettes -- Determination of total and nicotine-free dry particulate matter using a routine analytical smoking machine, is not suitable for high-water content aerosols. Errors occur because of water losses during the opening of the Cambridge filter pad holder to remove the filter pad as well as during the manual handling of the filter pad, and because the commercially available filter pad holder, which is constructed out of plastic, may adsorb water. This results in inaccurate values for the water content, and erroneous and overestimated values for Nicotine Free Dry Particulate Matter (NFDPM. A modified 44 mm Cambridge filter pad holder and extraction equipment which supports in situ extraction methodology has been developed and tested. The principle of the in situ extraction methodology is to avoid any of the above mentioned water losses by extracting the loaded filter pad while kept in the Cambridge filter pad holder which is hermetically sealed by two caps. This is achieved by flushing the extraction solvent numerous times through the hermetically sealed Cambridge filter pad holder by means of an in situ extractor. The in situ methodology showed a significantly more complete water recovery, resulting in more accurate NFDPM values for high-water content aerosols compared to the standard ISO methodology. The work presented in this publication demonstrates that the in situ extraction methodology applies to a wider range of smoking products and smoking regimens, whereas the standard ISO methodology only applies to a limited range of smoking products and smoking regimens, e.g., conventional cigarettes smoked under ISO smoking regimen. In cases where a comparison of yields between the PMI HTP and

  4. Predictive value of stroke discharge diagnoses in the Danish National Patient Register.

    Science.gov (United States)

    Lühdorf, Pernille; Overvad, Kim; Schmidt, Erik B; Johnsen, Søren P; Bach, Flemming W

    2017-08-01

    To determine the positive predictive values for stroke discharge diagnoses, including subarachnoidal haemorrhage, intracerebral haemorrhage and cerebral infarction in the Danish National Patient Register. Participants in the Danish cohort study Diet, Cancer and Health with a stroke discharge diagnosis in the National Patient Register between 1993 and 2009 were identified and their medical records were retrieved for validation of the diagnoses. A total of 3326 records of possible cases of stroke were reviewed. The overall positive predictive value for stroke was 69.3% (95% confidence interval (CI) 67.8-70.9%). The predictive values differed according to hospital characteristics, with the highest predictive value of 87.8% (95% CI 85.5-90.1%) found in departments of neurology and the lowest predictive value of 43.0% (95% CI 37.6-48.5%) found in outpatient clinics. The overall stroke diagnosis in the Danish National Patient Register had a limited predictive value. We therefore recommend the critical use of non-validated register data for research on stroke. The possibility of optimising the predictive values based on more advanced algorithms should be considered.

  5. Accurate prediction of the functional significance of single nucleotide polymorphisms and mutations in the ABCA1 gene.

    Directory of Open Access Journals (Sweden)

    Liam R Brunham

    2005-12-01

    Full Text Available The human genome contains an estimated 100,000 to 300,000 DNA variants that alter an amino acid in an encoded protein. However, our ability to predict which of these variants are functionally significant is limited. We used a bioinformatics approach to define the functional significance of genetic variation in the ABCA1 gene, a cholesterol transporter crucial for the metabolism of high density lipoprotein cholesterol. To predict the functional consequence of each coding single nucleotide polymorphism and mutation in this gene, we calculated a substitution position-specific evolutionary conservation score for each variant, which considers site-specific variation among evolutionarily related proteins. To test the bioinformatics predictions experimentally, we evaluated the biochemical consequence of these sequence variants by examining the ability of cell lines stably transfected with the ABCA1 alleles to elicit cholesterol efflux. Our bioinformatics approach correctly predicted the functional impact of greater than 94% of the naturally occurring variants we assessed. The bioinformatics predictions were significantly correlated with the degree of functional impairment of ABCA1 mutations (r2 = 0.62, p = 0.0008. These results have allowed us to define the impact of genetic variation on ABCA1 function and to suggest that the in silico evolutionary approach we used may be a useful tool in general for predicting the effects of DNA variation on gene function. In addition, our data suggest that considering patterns of positive selection, along with patterns of negative selection such as evolutionary conservation, may improve our ability to predict the functional effects of amino acid variation.

  6. A hybrid solution using computational prediction and measured data to accurately determine process corrections with reduced overlay sampling

    Science.gov (United States)

    Noyes, Ben F.; Mokaberi, Babak; Mandoy, Ram; Pate, Alex; Huijgen, Ralph; McBurney, Mike; Chen, Owen

    2017-03-01

    Reducing overlay error via an accurate APC feedback system is one of the main challenges in high volume production of the current and future nodes in the semiconductor industry. The overlay feedback system directly affects the number of dies meeting overlay specification and the number of layers requiring dedicated exposure tools through the fabrication flow. Increasing the former number and reducing the latter number is beneficial for the overall efficiency and yield of the fabrication process. An overlay feedback system requires accurate determination of the overlay error, or fingerprint, on exposed wafers in order to determine corrections to be automatically and dynamically applied to the exposure of future wafers. Since current and future nodes require correction per exposure (CPE), the resolution of the overlay fingerprint must be high enough to accommodate CPE in the overlay feedback system, or overlay control module (OCM). Determining a high resolution fingerprint from measured data requires extremely dense overlay sampling that takes a significant amount of measurement time. For static corrections this is acceptable, but in an automated dynamic correction system this method creates extreme bottlenecks for the throughput of said system as new lots have to wait until the previous lot is measured. One solution is using a less dense overlay sampling scheme and employing computationally up-sampled data to a dense fingerprint. That method uses a global fingerprint model over the entire wafer; measured localized overlay errors are therefore not always represented in its up-sampled output. This paper will discuss a hybrid system shown in Fig. 1 that combines a computationally up-sampled fingerprint with the measured data to more accurately capture the actual fingerprint, including local overlay errors. Such a hybrid system is shown to result in reduced modelled residuals while determining the fingerprint, and better on-product overlay performance.

  7. An evolutionary model-based algorithm for accurate phylogenetic breakpoint mapping and subtype prediction in HIV-1.

    Directory of Open Access Journals (Sweden)

    Sergei L Kosakovsky Pond

    2009-11-01

    Full Text Available Genetically diverse pathogens (such as Human Immunodeficiency virus type 1, HIV-1 are frequently stratified into phylogenetically or immunologically defined subtypes for classification purposes. Computational identification of such subtypes is helpful in surveillance, epidemiological analysis and detection of novel variants, e.g., circulating recombinant forms in HIV-1. A number of conceptually and technically different techniques have been proposed for determining the subtype of a query sequence, but there is not a universally optimal approach. We present a model-based phylogenetic method for automatically subtyping an HIV-1 (or other viral or bacterial sequence, mapping the location of breakpoints and assigning parental sequences in recombinant strains as well as computing confidence levels for the inferred quantities. Our Subtype Classification Using Evolutionary ALgorithms (SCUEAL procedure is shown to perform very well in a variety of simulation scenarios, runs in parallel when multiple sequences are being screened, and matches or exceeds the performance of existing approaches on typical empirical cases. We applied SCUEAL to all available polymerase (pol sequences from two large databases, the Stanford Drug Resistance database and the UK HIV Drug Resistance Database. Comparing with subtypes which had previously been assigned revealed that a minor but substantial (approximately 5% fraction of pure subtype sequences may in fact be within- or inter-subtype recombinants. A free implementation of SCUEAL is provided as a module for the HyPhy package and the Datamonkey web server. Our method is especially useful when an accurate automatic classification of an unknown strain is desired, and is positioned to complement and extend faster but less accurate methods. Given the increasingly frequent use of HIV subtype information in studies focusing on the effect of subtype on treatment, clinical outcome, pathogenicity and vaccine design, the importance

  8. Predictive value and construct validity of the work functioning screener-healthcare (WFS-H).

    Science.gov (United States)

    Boezeman, Edwin J; Nieuwenhuijsen, Karen; Sluiter, Judith K

    2016-05-25

    To test the predictive value and convergent construct validity of a 6-item work functioning screener (WFS-H). Healthcare workers (249 nurses) completed a questionnaire containing the work functioning screener (WFS-H) and a work functioning instrument (NWFQ) measuring the following: cognitive aspects of task execution and general incidents, avoidance behavior, conflicts and irritation with colleagues, impaired contact with patients and their family, and level of energy and motivation. Productivity and mental health were also measured. Negative and positive predictive values, AUC values, and sensitivity and specificity were calculated to examine the predictive value of the screener. Correlation analysis was used to examine the construct validity. The screener had good predictive value, since the results showed that a negative screener score is a strong indicator of work functioning not hindered by mental health problems (negative predictive values: 94%-98%; positive predictive values: 21%-36%; AUC:.64-.82; sensitivity: 42%-76%; and specificity 85%-87%). The screener has good construct validity due to moderate, but significant (ppredictive value and good construct validity. Its score offers occupational health professionals a helpful preliminary insight into the work functioning of healthcare workers.

  9. MFPred: Rapid and accurate prediction of protein-peptide recognition multispecificity using self-consistent mean field theory.

    Directory of Open Access Journals (Sweden)

    Aliza B Rubenstein

    2017-06-01

    Full Text Available Multispecificity-the ability of a single receptor protein molecule to interact with multiple substrates-is a hallmark of molecular recognition at protein-protein and protein-peptide interfaces, including enzyme-substrate complexes. The ability to perform structure-based prediction of multispecificity would aid in the identification of novel enzyme substrates, protein interaction partners, and enable design of novel enzymes targeted towards alternative substrates. The relatively slow speed of current biophysical, structure-based methods limits their use for prediction and, especially, design of multispecificity. Here, we develop a rapid, flexible-backbone self-consistent mean field theory-based technique, MFPred, for multispecificity modeling at protein-peptide interfaces. We benchmark our method by predicting experimentally determined peptide specificity profiles for a range of receptors: protease and kinase enzymes, and protein recognition modules including SH2, SH3, MHC Class I and PDZ domains. We observe robust recapitulation of known specificities for all receptor-peptide complexes, and comparison with other methods shows that MFPred results in equivalent or better prediction accuracy with a ~10-1000-fold decrease in computational expense. We find that modeling bound peptide backbone flexibility is key to the observed accuracy of the method. We used MFPred for predicting with high accuracy the impact of receptor-side mutations on experimentally determined multispecificity of a protease enzyme. Our approach should enable the design of a wide range of altered receptor proteins with programmed multispecificities.

  10. Accurate Traffic Flow Prediction in Heterogeneous Vehicular Networks in an Intelligent Transport System Using a Supervised Non-Parametric Classifier

    Directory of Open Access Journals (Sweden)

    Hesham El-Sayed

    2018-05-01

    Full Text Available Heterogeneous vehicular networks (HETVNETs evolve from vehicular ad hoc networks (VANETs, which allow vehicles to always be connected so as to obtain safety services within intelligent transportation systems (ITSs. The services and data provided by HETVNETs should be neither interrupted nor delayed. Therefore, Quality of Service (QoS improvement of HETVNETs is one of the topics attracting the attention of researchers and the manufacturing community. Several methodologies and frameworks have been devised by researchers to address QoS-prediction service issues. In this paper, to improve QoS, we evaluate various traffic characteristics of HETVNETs and propose a new supervised learning model to capture knowledge on all possible traffic patterns. This model is a refinement of support vector machine (SVM kernels with a radial basis function (RBF. The proposed model produces better results than SVMs, and outperforms other prediction methods used in a traffic context, as it has lower computational complexity and higher prediction accuracy.

  11. Is demography destiny? Application of machine learning techniques to accurately predict population health outcomes from a minimal demographic dataset.

    Directory of Open Access Journals (Sweden)

    Wei Luo

    Full Text Available For years, we have relied on population surveys to keep track of regional public health statistics, including the prevalence of non-communicable diseases. Because of the cost and limitations of such surveys, we often do not have the up-to-date data on health outcomes of a region. In this paper, we examined the feasibility of inferring regional health outcomes from socio-demographic data that are widely available and timely updated through national censuses and community surveys. Using data for 50 American states (excluding Washington DC from 2007 to 2012, we constructed a machine-learning model to predict the prevalence of six non-communicable disease (NCD outcomes (four NCDs and two major clinical risk factors, based on population socio-demographic characteristics from the American Community Survey. We found that regional prevalence estimates for non-communicable diseases can be reasonably predicted. The predictions were highly correlated with the observed data, in both the states included in the derivation model (median correlation 0.88 and those excluded from the development for use as a completely separated validation sample (median correlation 0.85, demonstrating that the model had sufficient external validity to make good predictions, based on demographics alone, for areas not included in the model development. This highlights both the utility of this sophisticated approach to model development, and the vital importance of simple socio-demographic characteristics as both indicators and determinants of chronic disease.

  12. Is demography destiny? Application of machine learning techniques to accurately predict population health outcomes from a minimal demographic dataset.

    Science.gov (United States)

    Luo, Wei; Nguyen, Thin; Nichols, Melanie; Tran, Truyen; Rana, Santu; Gupta, Sunil; Phung, Dinh; Venkatesh, Svetha; Allender, Steve

    2015-01-01

    For years, we have relied on population surveys to keep track of regional public health statistics, including the prevalence of non-communicable diseases. Because of the cost and limitations of such surveys, we often do not have the up-to-date data on health outcomes of a region. In this paper, we examined the feasibility of inferring regional health outcomes from socio-demographic data that are widely available and timely updated through national censuses and community surveys. Using data for 50 American states (excluding Washington DC) from 2007 to 2012, we constructed a machine-learning model to predict the prevalence of six non-communicable disease (NCD) outcomes (four NCDs and two major clinical risk factors), based on population socio-demographic characteristics from the American Community Survey. We found that regional prevalence estimates for non-communicable diseases can be reasonably predicted. The predictions were highly correlated with the observed data, in both the states included in the derivation model (median correlation 0.88) and those excluded from the development for use as a completely separated validation sample (median correlation 0.85), demonstrating that the model had sufficient external validity to make good predictions, based on demographics alone, for areas not included in the model development. This highlights both the utility of this sophisticated approach to model development, and the vital importance of simple socio-demographic characteristics as both indicators and determinants of chronic disease.

  13. Microdosing of a Carbon-14 Labeled Protein in Healthy Volunteers Accurately Predicts Its Pharmacokinetics at Therapeutic Dosages

    NARCIS (Netherlands)

    Vlaming, M.L.; Duijn, E. van; Dillingh, M.R.; Brands, R.; Windhorst, A.D.; Hendrikse, N.H.; Bosgra, S.; Burggraaf, J.; Koning, M.C. de; Fidder, A.; Mocking, J.A.; Sandman, H.; Ligt, R.A. de; Fabriek, B.O.; Pasman, W.J.; Seinen, W.; Alves, T.; Carrondo, M.; Peixoto, C.; Peeters, P.A.; Vaes, W.H.

    2015-01-01

    Preclinical development of new biological entities (NBEs), such as human protein therapeutics, requires considerable expenditure of time and costs. Poor prediction of pharmacokinetics in humans further reduces net efficiency. In this study, we show for the first time that pharmacokinetic data of

  14. Accurate prediction of the toxicity of benzoic acid compounds in mice via oral without using any computer codes

    International Nuclear Information System (INIS)

    Keshavarz, Mohammad Hossein; Gharagheizi, Farhad; Shokrolahi, Arash; Zakinejad, Sajjad

    2012-01-01

    Highlights: ► A novel method is introduced for desk calculation of toxicity of benzoic acid derivatives. ► There is no need to use QSAR and QSTR methods, which are based on computer codes. ► The predicted results of 58 compounds are more reliable than those predicted by QSTR method. ► The present method gives good predictions for further 324 benzoic acid compounds. - Abstract: Most of benzoic acid derivatives are toxic, which may cause serious public health and environmental problems. Two novel simple and reliable models are introduced for desk calculations of the toxicity of benzoic acid compounds in mice via oral LD 50 with more reliance on their answers as one could attach to the more complex outputs. They require only elemental composition and molecular fragments without using any computer codes. The first model is based on only the number of carbon and hydrogen atoms, which can be improved by several molecular fragments in the second model. For 57 benzoic compounds, where the computed results of quantitative structure–toxicity relationship (QSTR) were recently reported, the predicted results of two simple models of present method are more reliable than QSTR computations. The present simple method is also tested with further 324 benzoic acid compounds including complex molecular structures, which confirm good forecasting ability of the second model.

  15. Predictive value of pulse pressure variation for fluid responsiveness in septic patients using lung-protective ventilation strategies.

    Science.gov (United States)

    Freitas, F G R; Bafi, A T; Nascente, A P M; Assunção, M; Mazza, B; Azevedo, L C P; Machado, F R

    2013-03-01

    The applicability of pulse pressure variation (ΔPP) to predict fluid responsiveness using lung-protective ventilation strategies is uncertain in clinical practice. We designed this study to evaluate the accuracy of this parameter in predicting the fluid responsiveness of septic patients ventilated with low tidal volumes (TV) (6 ml kg(-1)). Forty patients after the resuscitation phase of severe sepsis and septic shock who were mechanically ventilated with 6 ml kg(-1) were included. The ΔPP was obtained automatically at baseline and after a standardized fluid challenge (7 ml kg(-1)). Patients whose cardiac output increased by more than 15% were considered fluid responders. The predictive values of ΔPP and static variables [right atrial pressure (RAP) and pulmonary artery occlusion pressure (PAOP)] were evaluated through a receiver operating characteristic (ROC) curve analysis. Thirty-four patients had characteristics consistent with acute lung injury or acute respiratory distress syndrome and were ventilated with high levels of PEEP [median (inter-quartile range) 10.0 (10.0-13.5)]. Nineteen patients were considered fluid responders. The RAP and PAOP significantly increased, and ΔPP significantly decreased after volume expansion. The ΔPP performance [ROC curve area: 0.91 (0.82-1.0)] was better than that of the RAP [ROC curve area: 0.73 (0.59-0.90)] and pulmonary artery occlusion pressure [ROC curve area: 0.58 (0.40-0.76)]. The ROC curve analysis revealed that the best cut-off for ΔPP was 6.5%, with a sensitivity of 0.89, specificity of 0.90, positive predictive value of 0.89, and negative predictive value of 0.90. Automatized ΔPP accurately predicted fluid responsiveness in septic patients ventilated with low TV.

  16. Predictive value and construct validity of the work functioning screener-healthcare (WFS-H)

    Science.gov (United States)

    Boezeman, Edwin J.; Nieuwenhuijsen, Karen; Sluiter, Judith K.

    2016-01-01

    Objectives: To test the predictive value and convergent construct validity of a 6-item work functioning screener (WFS-H). Methods: Healthcare workers (249 nurses) completed a questionnaire containing the work functioning screener (WFS-H) and a work functioning instrument (NWFQ) measuring the following: cognitive aspects of task execution and general incidents, avoidance behavior, conflicts and irritation with colleagues, impaired contact with patients and their family, and level of energy and motivation. Productivity and mental health were also measured. Negative and positive predictive values, AUC values, and sensitivity and specificity were calculated to examine the predictive value of the screener. Correlation analysis was used to examine the construct validity. Results: The screener had good predictive value, since the results showed that a negative screener score is a strong indicator of work functioning not hindered by mental health problems (negative predictive values: 94%-98%; positive predictive values: 21%-36%; AUC:.64-.82; sensitivity: 42%-76%; and specificity 85%-87%). The screener has good construct validity due to moderate, but significant (pvalue and good construct validity. Its score offers occupational health professionals a helpful preliminary insight into the work functioning of healthcare workers. PMID:27010085

  17. Positive predictive value of infective endocarditis in the Danish National Patient Registry: a validation study.

    Science.gov (United States)

    Østergaard, Lauge; Adelborg, Kasper; Sundbøll, Jens; Pedersen, Lars; Loldrup Fosbøl, Emil; Schmidt, Morten

    2018-05-30

    The positive predictive value of an infective endocarditis diagnosis is approximately 80% in the Danish National Patient Registry. However, since infective endocarditis is a heterogeneous disease implying long-term intravenous treatment, we hypothesiszed that the positive predictive value varies by length of hospital stay. A total of 100 patients with first-time infective endocarditis in the Danish National Patient Registry were identified from January 2010 - December 2012 at the University hospital of Aarhus and regional hospitals of Herning and Randers. Medical records were reviewed. We calculated the positive predictive value according to admission length, and separately for patients with a cardiac implantable electronic device and a prosthetic heart valve using the Wilson score method. Among the 92 medical records available for review, the majority of the patients had admission length ⩾2 weeks. The positive predictive value increased with length of admission. In patients with admission length value was 65% while it was 90% for admission length ⩾2 weeks. The positive predictive value was 81% for patients with a cardiac implantable electronic device and 87% for patients with a prosthetic valve. The positive predictive value of the infective endocarditis diagnosis in the Danish National Patient Registry is high for patients with admission length ⩾2 weeks. Using this algorithm, the Danish National Patient Registry provides a valid source for identifying infective endocarditis for research.

  18. Exchange-Hole Dipole Dispersion Model for Accurate Energy Ranking in Molecular Crystal Structure Prediction II: Nonplanar Molecules.

    Science.gov (United States)

    Whittleton, Sarah R; Otero-de-la-Roza, A; Johnson, Erin R

    2017-11-14

    The crystal structure prediction (CSP) of a given compound from its molecular diagram is a fundamental challenge in computational chemistry with implications in relevant technological fields. A key component of CSP is the method to calculate the lattice energy of a crystal, which allows the ranking of candidate structures. This work is the second part of our investigation to assess the potential of the exchange-hole dipole moment (XDM) dispersion model for crystal structure prediction. In this article, we study the relatively large, nonplanar, mostly flexible molecules in the first five blind tests held by the Cambridge Crystallographic Data Centre. Four of the seven experimental structures are predicted as the energy minimum, and thermal effects are demonstrated to have a large impact on the ranking of at least another compound. As in the first part of this series, delocalization error affects the results for a single crystal (compound X), in this case by detrimentally overstabilizing the π-conjugated conformation of the monomer. Overall, B86bPBE-XDM correctly predicts 16 of the 21 compounds in the five blind tests, a result similar to the one obtained using the best CSP method available to date (dispersion-corrected PW91 by Neumann et al.). Perhaps more importantly, the systems for which B86bPBE-XDM fails to predict the experimental structure as the energy minimum are mostly the same as with Neumann's method, which suggests that similar difficulties (absence of vibrational free energy corrections, delocalization error,...) are not limited to B86bPBE-XDM but affect GGA-based DFT-methods in general. Our work confirms B86bPBE-XDM as an excellent option for crystal energy ranking in CSP and offers a guide to identify crystals (organic salts, conjugated flexible systems) where difficulties may appear.

  19. Prediction of pKa values for druglike molecules using semiempirical quantum chemical methods

    DEFF Research Database (Denmark)

    Jensen, Jan Halborg; Swain, Christopher J; Olsen, Lars

    2017-01-01

    Rapid yet accurate pKa prediction for druglike molecules is a key challenge in computational chemistry. This study uses PM6-DH+/COSMO, PM6/COSMO, PM7/COSMO, PM3/COSMO, AM1/COSMO, PM3/SMD, AM1/SMD, and DFTB3/SMD to predict the pKa values of 53 amine groups in 48 druglike compounds. The approach uses...... uncertainties of ±0.2-0.3 pH units, which make them statistically equivalent. However, for all but PM3/SMD and AM1/SMD the RMSEs are dominated by a single outlier, cefadroxil, caused by proton transfer in the zwitterionic protonation state. If this outlier is removed, the RMSE values for PM3/COSMO and AM1/COSMO...... drop to 1.0 ± 0.2 and 1.1 ± 0.3, whereas PM3/SMD and AM1/SMD remain at 1.5 ± 0.3 and 1.6 ± 0.3/0.4 pH units, making the COSMO-based predictions statistically better than the SMD-based predictions. For pKa calculations where a zwitterionic state is not involved or proton transfer in a zwitterionic state...

  20. The prognostic and predictive value of sstr_2-immunohistochemistry and sstr_2-targeted imaging in neuroendocrine tumors

    International Nuclear Information System (INIS)

    Brunner, Philippe; Joerg, Ann-Catherine; Mueller-Brand, Jan; Glatz, Katharina; Bubendorf, Lukas; Radojewski, Piotr; Umlauft, Maria; Spanjol, Petar-Marko; Krause, Thomas; Dumont, Rebecca A.; Walter, Martin A.; Marincek, Nicolas; Maecke, Helmut R.; Briel, Matthias; Schmitt, Anja; Perren, Aurel

    2017-01-01

    Our aim was to assess the prognostic and predictive value of somatostatin receptor 2 (sstr_2) in neuroendocrine tumors (NETs). We established a tissue microarray and imaging database from NET patients that received sstr_2-targeted radiopeptide therapy with yttrium-90-DOTATOC, lutetium-177-DOTATOC or alternative treatment. We used univariate and multivariate analyses to identify prognostic and predictive markers for overall survival, including sstr_2-imaging and sstr_2-immunohistochemistry. We included a total of 279 patients. In these patients, sstr_2-immunohistochemistry was an independent prognostic marker for overall survival (HR: 0.82, 95 % CI: 0.67 - 0.99, n = 279, p = 0.037). In DOTATOC patients, sstr_2-expression on immunohistochemistry correlated with tumor uptake on sstr_2-imaging (n = 170, p < 0.001); however, sstr_2-imaging showed a higher prognostic accuracy (positive predictive value: +27 %, 95 % CI: 3 - 56 %, p = 0.025). Sstr_2-expression did not predict a benefit of DOTATOC over alternative treatment (p = 0.93). Our results suggest sstr_2 as an independent prognostic marker in NETs. Sstr_2-immunohistochemistry correlates with sstr_2-imaging; however, sstr_2-imaging is more accurate for determining the individual prognosis. (orig.)

  1. Predictive value of sperm morphology and progressively motile sperm count for pregnancy outcomes in intrauterine insemination

    NARCIS (Netherlands)

    Lemmens, L.; Kos, S.; Beijer, C.; Brinkman, J.W.; Horst, F.A. van der; Hoven, L. van den; Kieslinger, D.C.; Trooyen-van Vrouwerff, N.J.; Wolthuis, A.; Hendriks, J.C.M.; Wetzels, A.M.M.

    2016-01-01

    OBJECTIVE: To investigate the value of sperm parameters to predict an ongoing pregnancy outcome in couples treated with intrauterine insemination (IUI), during a methodologically stable period of time. DESIGN: Retrospective, observational study with logistic regression analyses. SETTING: University

  2. Characterization and Predictive Value of Segmental Curve Flexibility in Adolescent Idiopathic Scoliosis Patients

    DEFF Research Database (Denmark)

    Yao, Guanfeng; Cheung, Jason P Y; Shigematsu, Hideki

    2017-01-01

    STUDY DESIGN: A prospective radiographic analysis of adolescent idiopathic scoliosis (AIS) patients managed with alternate-level pedicle screw fixation was performed. OBJECTIVE: The objective of this study was to characterize segmental curve flexibility and to determine its predictive value...

  3. Evaluation of preoperative predictive values of serum CA15-3 and ...

    African Journals Online (AJOL)

    Evaluation of preoperative predictive values of serum CA15-3 and CEA within Sudanese ... Sudan Journal of Medical Sciences ... Design and setting: This case control study was conducted in Khartoum Teaching Hospital, Khartoum, Sudan.

  4. Predictive value of noninvasive measures of atherosclerosis for incident myocardial infarction - The Rotterdam study

    NARCIS (Netherlands)

    van der Meer, IM; Bots, ML; Hofman, A; del Sol, AI; van der Kuip, DAM; Witteman, JCM

    2004-01-01

    Background - Several noninvasive methods are available to investigate the severity of extracoronary atherosclerotic disease. No population- based study has yet examined whether differences exist between these measures with regard to their predictive value for myocardial infarction (MI) or whether a

  5. Prognostic value of tissue Doppler imaging for predicting ventricular arrhythmias and cardiovascular mortality in ischaemic cardiomyopathy

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor; Olsen, Flemming Javier; Storm, Katrine

    2016-01-01

    AIMS: Only 30% of patients receiving an implantable cardioverter defibrillator (ICD) for primary prevention receive appropriately therapy. We sought to investigate the value of tissue Doppler imaging (TDI) to predict ventricular tachycardia (VT), ventricular fibrillation (VF), and cardiovascular...

  6. Can Vrancea earthquakes be accurately predicted from unusual bio-system behavior and seismic-electromagnetic records?

    International Nuclear Information System (INIS)

    Enescu, D.; Chitaru, C.; Enescu, B.D.

    1999-01-01

    The relevance of bio-seismic research for the short-term prediction of strong Vrancea earthquakes is underscored. An unusual animal behavior before and during Vrancea earthquakes is described and illustrated in the individual case of the major earthquake of March 4, 1977. Several hypotheses to account for the uncommon behavior of bio-systems in relation to earthquakes in general and strong Vrancea earthquakes in particular are discussed in the second section. It is reminded that promising preliminary results concerning the identification of seismic-electromagnetic precursor signals have been obtained in the Vrancea seismogenic area using special, highly sensitive equipment. The need to correlate bio-seismic and seismic-electromagnetic researches is evident. Further investigations are suggested and urgent steps are proposed in order to achieve a successful short-term prediction of strong Vrancea earthquakes. (authors)

  7. Value of routine blood tests for prediction of mortality risk in hip fracture patients

    DEFF Research Database (Denmark)

    Mosfeldt, Mathias; Pedersen, Ole Birger Vesterager; Riis, Troels

    2012-01-01

    There is a 5- to 8-fold increased risk of mortality during the first 3 months after a hip fracture. Several risk factors are known. We studied the predictive value (for mortality) of routine blood tests taken on admission.......There is a 5- to 8-fold increased risk of mortality during the first 3 months after a hip fracture. Several risk factors are known. We studied the predictive value (for mortality) of routine blood tests taken on admission....

  8. Does Spontaneous Favorability to Power (vs. Universalism) Values Predict Spontaneous Prejudice and Discrimination?

    Science.gov (United States)

    Souchon, Nicolas; Maio, Gregory R; Hanel, Paul H P; Bardin, Brigitte

    2017-10-01

    We conducted five studies testing whether an implicit measure of favorability toward power over universalism values predicts spontaneous prejudice and discrimination. Studies 1 (N = 192) and 2 (N = 86) examined correlations between spontaneous favorability toward power (vs. universalism) values, achievement (vs. benevolence) values, and a spontaneous measure of prejudice toward ethnic minorities. Study 3 (N = 159) tested whether conditioning participants to associate power values with positive adjectives and universalism values with negative adjectives (or inversely) affects spontaneous prejudice. Study 4 (N = 95) tested whether decision bias toward female handball players could be predicted by spontaneous attitude toward power (vs. universalism) values. Study 5 (N = 123) examined correlations between spontaneous attitude toward power (vs. universalism) values, spontaneous importance toward power (vs. universalism) values, and spontaneous prejudice toward Black African people. Spontaneous positivity toward power (vs. universalism) values was associated with spontaneous negativity toward minorities and predicted gender bias in a decision task, whereas the explicit measures did not. These results indicate that the implicit assessment of evaluative responses attached to human values helps to model value-attitude-behavior relations. © 2016 The Authors. Journal of Personality Published by Wiley Periodicals, Inc.

  9. Predictive value of upper-limb accelerometry in acute stroke with hemiparesis

    NARCIS (Netherlands)

    Gebruers, Nick; Truijen, Steven; Engelborghs, Sebastiaan; De Deyn, Peter P.

    2013-01-01

    Few studies have investigated how well early activity measurements by accelerometers predict recovery after stroke. First, we assessed the predictive value of accelerometer-based measurements of upper-limb activity in patients with acute stroke with a hemiplegic arm. Second, we established the

  10. The predictive value of diagnostic sonography for the effectiveness of conservative treatment of tennis elbow

    NARCIS (Netherlands)

    Struijs, P. A. A.; Spruyt, M.; Assendelft, W. J. J.; van Dijk, C. N.

    2005-01-01

    OBJECTIVE. Tennis elbow is a common complaint. Several treatment strategies have been described, but an optimal strategy has not been identified. Sonographic imaging as a predictive,factor has never been studied. The aim of our study was to determine the value of sonographic findings in predicting

  11. Methods of developing core collections based on the predicted genotypic value of rice ( Oryza sativa L.).

    Science.gov (United States)

    Li, C T; Shi, C H; Wu, J G; Xu, H M; Zhang, H Z; Ren, Y L

    2004-04-01

    The selection of an appropriate sampling strategy and a clustering method is important in the construction of core collections based on predicted genotypic values in order to retain the greatest degree of genetic diversity of the initial collection. In this study, methods of developing rice core collections were evaluated based on the predicted genotypic values for 992 rice varieties with 13 quantitative traits. The genotypic values of the traits were predicted by the adjusted unbiased prediction (AUP) method. Based on the predicted genotypic values, Mahalanobis distances were calculated and employed to measure the genetic similarities among the rice varieties. Six hierarchical clustering methods, including the single linkage, median linkage, centroid, unweighted pair-group average, weighted pair-group average and flexible-beta methods, were combined with random, preferred and deviation sampling to develop 18 core collections of rice germplasm. The results show that the deviation sampling strategy in combination with the unweighted pair-group average method of hierarchical clustering retains the greatest degree of genetic diversities of the initial collection. The core collections sampled using predicted genotypic values had more genetic diversity than those based on phenotypic values.

  12. Waist-to-height ratio: an accurate anthropometric index of abdominal adiposity and a predictor of high HOMA-IR values in nondialyzed chronic kidney disease patients.

    Science.gov (United States)

    Silva, Maria Inês Barreto; Lemos, Carla Cavalheiro da Silva; Torres, Márcia Regina Simas Gonçalves; Bregman, Rachel

    2014-03-01

    Chronic kidney disease (CKD) is associated with metabolic disorders, including insulin resistance (IR), mainly when associated with obesity and characterized by high abdominal adiposity (AbAd). Anthropometric measures are recommended for assessing AbAd in clinical settings, but their accuracies need to be evaluated. The aim of this study was to evaluate the precision of different anthropometric measures of AbAd in patients with CKD. We also sought to determine the AbAd association with high homeostasis model assessment index of insulin resistance (HOMA-IR) values and the cutoff point for AbAd index to predict high HOMA-IR values. A subset of clinically stable nondialyzed patients with CKD followed at a multidisciplinary outpatient clinic was enrolled in this cross-sectional study. The accuracy of the following anthropometric indices: waist circumference, waist-to-hip ratio, conicity index and waist-to-height ratio (WheiR) to assess AbAd, was evaluated using trunk fat, by dual x-ray absorptiometry (DXA), as a reference method. HOMA-IR was estimated to stratify patients in high and low HOMA-IR groups. The total area under the receiver-operating characteristic curves (AUC-ROC; sensitivity/specificity) was calculated: AbAd with high HOMA-IR values (95% confidence interval [CI]). We studied 134 patients (55% males; 54% overweight/obese, body mass index ≥ 25 kg/m(2), age 64.9 ± 12.5 y, estimated glomerular filtration rate 29.0 ± 12.7 mL/min). Among studied AbAd indices, WheiR was the only one to show correlation with DXA trunk fat after adjusting for confounders (P HOMA-IR values (r = 0.47; P HOMA-IR values was 0.55 (AUC-ROC = 0.69 ± 0.05; 95% CI, 0.60-0.77; sensitivity/specificity, 68.9/61.9). WheiR is recommended as an effective and precise anthropometric index to assess AbAd and to predict high HOMA-IR values in nondialyzed patients with CKD. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Value of a new multiparametric score for prediction of microvascular obstruction lesions in ST-segment elevation myocardial infarction revascularized by percutaneous coronary intervention.

    Science.gov (United States)

    Amabile, Nicolas; Jacquier, Alexis; Gaudart, Jean; Sarran, Anthony; Shuaib, Anes; Panuel, Michel; Moulin, Guy; Bartoli, Jean-Michel; Paganelli, Franck

    2010-10-01

    Despite improvement in revascularization strategies, microvascular obstruction (MO) lesions remain associated with poor outcome after ST-segment elevation myocardial infarction (STEMI). To establish a bedside-available score for predicting MO lesions in STEMI, with cardiac magnetic resonance imaging (CMR) as the reference standard, and to test its prognostic value for clinical outcome. Patients with STEMI of4 accurately identified microcirculatory injuries (sensitivity 84%; specificity 82%) and independently predicted the presence of MO lesions on CMR. MO score>4 predicted adverse cardiovascular events during the first year after STEMI (relative risk 2.60 [1.10-6.60], p=0.03). MO lesions are frequent in PCI-treated STEMI and are associated with larger MIs. MO score accurately predicted MO lesions and identified patients with poor outcome post-STEMI. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  14. Estimating Time-Varying PCB Exposures Using Person-Specific Predictions to Supplement Measured Values: A Comparison of Observed and Predicted Values in Two Cohorts of Norwegian Women.

    Science.gov (United States)

    Nøst, Therese Haugdahl; Breivik, Knut; Wania, Frank; Rylander, Charlotta; Odland, Jon Øyvind; Sandanger, Torkjel Manning

    2016-03-01

    Studies on the health effects of polychlorinated biphenyls (PCBs) call for an understanding of past and present human exposure. Time-resolved mechanistic models may supplement information on concentrations in individuals obtained from measurements and/or statistical approaches if they can be shown to reproduce empirical data. Here, we evaluated the capability of one such mechanistic model to reproduce measured PCB concentrations in individual Norwegian women. We also assessed individual life-course concentrations. Concentrations of four PCB congeners in pregnant (n = 310, sampled in 2007-2009) and postmenopausal (n = 244, 2005) women were compared with person-specific predictions obtained using CoZMoMAN, an emission-based environmental fate and human food-chain bioaccumulation model. Person-specific predictions were also made using statistical regression models including dietary and lifestyle variables and concentrations. CoZMoMAN accurately reproduced medians and ranges of measured concentrations in the two study groups. Furthermore, rank correlations between measurements and predictions from both CoZMoMAN and regression analyses were strong (Spearman's r > 0.67). Precision in quartile assignments from predictions was strong overall as evaluated by weighted Cohen's kappa (> 0.6). Simulations indicated large inter-individual differences in concentrations experienced in the past. The mechanistic model reproduced all measurements of PCB concentrations within a factor of 10, and subject ranking and quartile assignments were overall largely consistent, although they were weak within each study group. Contamination histories for individuals predicted by CoZMoMAN revealed variation between study subjects, particularly in the timing of peak concentrations. Mechanistic models can provide individual PCB exposure metrics that could serve as valuable supplements to measurements.

  15. Unsteady Reynolds averaged Navier-Stokes: toward accurate predictions in fuel-bundles and T-junctions

    International Nuclear Information System (INIS)

    Merzari, E.; Ninokata, H.; Baglietto, E.

    2008-01-01

    Traditional steady-state simulation and turbulence modelling are not always reliable. Even in simple flows, the results can be not accurate when particular conditions occur. Examples are buoyancy, flow oscillations, and turbulent mixing. Often, unsteady simulations are necessary, but they tend to be computationally not affordable. The Unsteady Reynolds Averaged Navier-Stokes (URANS) approach holds promise to be less computational expensive than Large Eddy Simulation (LES) or Direct Numerical Simulation (DNS), reaching a considerable degree of accuracy. Moreover, URANS methodologies do not need complex boundary formulations for the inlet and the outlet like LES or DNS. The Test cases for this methodology will be Fuel Bundles and T-junctions. Tight-Fuel Rod-Bundles present large scale coherent structures than cannot be taken into account by a simple steady-state simulation. T-junctions where a hot fluid and a cold fluid mix present temperature fluctuations and therefore thermal fatigue. For both cases the capacity of the methodology to reproduce the flow field are assessed and it is evaluated that URANS holds promise to be the industrial standard in nuclear engineering applications that do not involve buoyancy. The codes employed are STAR-CD 3.26 and 4.06. (author)

  16. Analysis of the value of post-radiation prostate biopsy in predicting subsequent disease progression

    International Nuclear Information System (INIS)

    Benda, R.; Shamsa, F.; Meetze, K.; Bolton, S.; Littrup, P.; Grignon, D.; Washington, T.; Forman, J.D.

    1997-01-01

    Purpose: To analyze the value of Transrectal ultrasound(TRUS), Color flow doppler(CFD) and Prostate specific antigen(PSA) in identifying residual disease in the prostate status post external beam radiation therapy and to determine the value of this pathologic information in predicting subsequent disease progression. Materials and Methods: As part of four prospective protocols, 146 patients had scheduled TRUS guided prostate biopsies 6-25 months status post radiation therapy. The stage distribution was: 13% T1, 51% T2, and 36% T3/T4. Fifty six percent had neo-adjuvant hormones. Conformal photon or mixed neutron/photon irradiation was given to a median 2 Gy/fraction equivalent dose of 77 Gy(range 74 to 84 Gy). Following treatment, patients were assessed by digital rectal exam (DRE), PSA and TRUS guided biopsies at 6, 12 and/or 18 months. The ultrasound and CFD results were scored as normal, suspicious or abnormal. Sextant biopsies were obtained as well as ultrasound guided biopsies from any abnormal ultrasound or doppler area. The biopsies, all read by one pathologist (DG), were graded as negative, marked, moderate, minimal therapeutic effect or positive. The median followup post radiation therapy was 33.6 months and post biopsy was 25.3 months. Comparisons were done by Kappa index with corresponding 95% CI, chi square and Fisher's exact tests. Results: Twenty-eight patients had biopsies at both six and 12-18 months. Overall 35% of patients had all negative cores, 30% had at least one core showing a marked therapeutic effect, and 35% had at least one core showing moderate or minimal therapeutic effect or were positive. Although CFD correlated with a positive biopsy in 9% and a suspicious doppler identified cancer in 15% of cases, an abnormal TRUS identified cancer in 29.5% biopsies ((49(166))). However, a serum PSA >1.5ng/ml at the time of biopsy predicted 61% of positive biopsies ((23(38))). A negative biopsy was associated with low stage (≤T2c, p=0.001), low pre

  17. A Simple PB/LIE Free Energy Function Accurately Predicts the Peptide Binding Specificity of the Tiam1 PDZ Domain.

    Science.gov (United States)

    Panel, Nicolas; Sun, Young Joo; Fuentes, Ernesto J; Simonson, Thomas

    2017-01-01

    PDZ domains generally bind short amino acid sequences at the C-terminus of target proteins, and short peptides can be used as inhibitors or model ligands. Here, we used experimental binding assays and molecular dynamics simulations to characterize 51 complexes involving the Tiam1 PDZ domain and to test the performance of a semi-empirical free energy function. The free energy function combined a Poisson-Boltzmann (PB) continuum electrostatic term, a van der Waals interaction energy, and a surface area term. Each term was empirically weighted, giving a Linear Interaction Energy or "PB/LIE" free energy. The model yielded a mean unsigned deviation of 0.43 kcal/mol and a Pearson correlation of 0.64 between experimental and computed free energies, which was superior to a Null model that assumes all complexes have the same affinity. Analyses of the models support several experimental observations that indicate the orientation of the α 2 helix is a critical determinant for peptide specificity. The models were also used to predict binding free energies for nine new variants, corresponding to point mutants of the Syndecan1 and Caspr4 peptides. The predictions did not reveal improved binding; however, they suggest that an unnatural amino acid could be used to increase protease resistance and peptide lifetimes in vivo . The overall performance of the model should allow its use in the design of new PDZ ligands in the future.

  18. A Simple PB/LIE Free Energy Function Accurately Predicts the Peptide Binding Specificity of the Tiam1 PDZ Domain

    Directory of Open Access Journals (Sweden)

    Nicolas Panel

    2017-09-01

    Full Text Available PDZ domains generally bind short amino acid sequences at the C-terminus of target proteins, and short peptides can be used as inhibitors or model ligands. Here, we used experimental binding assays and molecular dynamics simulations to characterize 51 complexes involving the Tiam1 PDZ domain and to test the performance of a semi-empirical free energy function. The free energy function combined a Poisson-Boltzmann (PB continuum electrostatic term, a van der Waals interaction energy, and a surface area term. Each term was empirically weighted, giving a Linear Interaction Energy or “PB/LIE” free energy. The model yielded a mean unsigned deviation of 0.43 kcal/mol and a Pearson correlation of 0.64 between experimental and computed free energies, which was superior to a Null model that assumes all complexes have the same affinity. Analyses of the models support several experimental observations that indicate the orientation of the α2 helix is a critical determinant for peptide specificity. The models were also used to predict binding free energies for nine new variants, corresponding to point mutants of the Syndecan1 and Caspr4 peptides. The predictions did not reveal improved binding; however, they suggest that an unnatural amino acid could be used to increase protease resistance and peptide lifetimes in vivo. The overall performance of the model should allow its use in the design of new PDZ ligands in the future.

  19. A 3D-CFD code for accurate prediction of fluid flows and fluid forces in seals

    Science.gov (United States)

    Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.

    1994-01-01

    Current and future turbomachinery requires advanced seal configurations to control leakage, inhibit mixing of incompatible fluids and to control the rotodynamic response. In recognition of a deficiency in the existing predictive methodology for seals, a seven year effort was established in 1990 by NASA's Office of Aeronautics Exploration and Technology, under the Earth-to-Orbit Propulsion program, to develop validated Computational Fluid Dynamics (CFD) concepts, codes and analyses for seals. The effort will provide NASA and the U.S. Aerospace Industry with advanced CFD scientific codes and industrial codes for analyzing and designing turbomachinery seals. An advanced 3D CFD cylindrical seal code has been developed, incorporating state-of-the-art computational methodology for flow analysis in straight, tapered and stepped seals. Relevant computational features of the code include: stationary/rotating coordinates, cylindrical and general Body Fitted Coordinates (BFC) systems, high order differencing schemes, colocated variable arrangement, advanced turbulence models, incompressible/compressible flows, and moving grids. This paper presents the current status of code development, code demonstration for predicting rotordynamic coefficients, numerical parametric study of entrance loss coefficients for generic annular seals, and plans for code extensions to labyrinth, damping, and other seal configurations.

  20. Predicting entrepreneurial career intentions: Values and the theory of planned behavior.

    NARCIS (Netherlands)

    M.J. Gorgievski-Duijvesteijn (Marjan); U. Stephan (Ute); M. Laguna (Mariola); J.A. Moriano (Juan)

    2017-01-01

    textabstractIntegrating predictions from the theory of human values with the theory of planned behavior (TPB), our primary goal is to investigate mechanisms through which individual values are related to entrepreneurial career intentions using a sample of 823 students from four European countries.

  1. Predicting Success in an Online Course Using Expectancies, Values, and Typical Mode of Instruction

    Science.gov (United States)

    Zimmerman, Whitney Alicia

    2017-01-01

    Expectancies of success and values were used to predict success in an online undergraduate-level introductory statistics course. Students who identified as primarily face-to-face learners were compared to students who identified as primarily online learners. Expectancy value theory served as a model. Expectancies of success were operationalized as…

  2. Genomic inference accurately predicts the timing and severity of a recent bottleneck in a non-model insect population

    Science.gov (United States)

    McCoy, Rajiv C.; Garud, Nandita R.; Kelley, Joanna L.; Boggs, Carol L.; Petrov, Dmitri A.

    2015-01-01

    The analysis of molecular data from natural populations has allowed researchers to answer diverse ecological questions that were previously intractable. In particular, ecologists are often interested in the demographic history of populations, information that is rarely available from historical records. Methods have been developed to infer demographic parameters from genomic data, but it is not well understood how inferred parameters compare to true population history or depend on aspects of experimental design. Here we present and evaluate a method of SNP discovery using RNA-sequencing and demographic inference using the program δaδi, which uses a diffusion approximation to the allele frequency spectrum to fit demographic models. We test these methods in a population of the checkerspot butterfly Euphydryas gillettii. This population was intentionally introduced to Gothic, Colorado in 1977 and has since experienced extreme fluctuations including bottlenecks of fewer than 25 adults, as documented by nearly annual field surveys. Using RNA-sequencing of eight individuals from Colorado and eight individuals from a native population in Wyoming, we generate the first genomic resources for this system. While demographic inference is commonly used to examine ancient demography, our study demonstrates that our inexpensive, all-in-one approach to marker discovery and genotyping provides sufficient data to accurately infer the timing of a recent bottleneck. This demographic scenario is relevant for many species of conservation concern, few of which have sequenced genomes. Our results are remarkably insensitive to sample size or number of genomic markers, which has important implications for applying this method to other non-model systems. PMID:24237665

  3. Number of bodily symptoms predicts outcome more accurately than health anxiety in patients attending neurology, cardiology, and gastroenterology clinics.

    Science.gov (United States)

    Jackson, Judy; Fiddler, Maggie; Kapur, Navneet; Wells, Adrian; Tomenson, Barbara; Creed, Francis

    2006-04-01

    In consecutive new outpatients, we aimed to assess whether somatization and health anxiety predicted health care use and quality of life 6 months later in all patients or in those without demonstrable abnormalities. On the first clinic visit, participants completed the Illness Perception Questionnaire (IPQ), the Health Anxiety Questionnaire (HAQ), and the Hospital Anxiety and Depression Scale (HADS). Outcome was assessed as: (a) the number of medical consultations over the subsequent 6 months, extracted from medical records, and (b) Short-Form Health Survey 36 (SF36) physical component score 6 months after index clinic visit. A total of 295 patients were recruited (77% response rate), and medical consultation data were available for 275. The number of bodily symptoms was associated with both outcomes in linear fashion (Psomatization and hypochondriasis.

  4. Fast and simultaneous prediction of animal feed nutritive values using near infrared reflectance spectroscopy

    Science.gov (United States)

    Samadi; Wajizah, S.; Munawar, A. A.

    2018-02-01

    Feed plays an important factor in animal production. The purpose of this study is to apply NIRS method in determining feed values. NIRS spectra data were acquired for feed samples in wavelength range of 1000 - 2500 nm with 32 scans and 0.2 nm wavelength. Spectral data were corrected by de-trending (DT) and standard normal variate (SNV) methods. Prediction of in vitro dry matter digestibility (IVDMD) and in vitro organic matter digestibility (IVOMD) were established as model by using principal component regression (PCR) and validated using leave one out cross validation (LOOCV). Prediction performance was quantified using coefficient correlation (r) and residual predictive deviation (RPD) index. The results showed that IVDMD and IVOMD can be predicted by using SNV spectra data with r and RPD index: 0.93 and 2.78 for IVDMD ; 0.90 and 2.35 for IVOMD respectively. In conclusion, NIRS technique appears feasible to predict animal feed nutritive values.

  5. Tailoring the implementation of new biomarkers based on their added predictive value in subgroups of individuals.

    Directory of Open Access Journals (Sweden)

    A van Giessen

    Full Text Available The value of new biomarkers or imaging tests, when added to a prediction model, is currently evaluated using reclassification measures, such as the net reclassification improvement (NRI. However, these measures only provide an estimate of improved reclassification at population level. We present a straightforward approach to characterize subgroups of reclassified individuals in order to tailor implementation of a new prediction model to individuals expected to benefit from it.In a large Dutch population cohort (n = 21,992 we classified individuals to low (< 5% and high (≥ 5% fatal cardiovascular disease risk by the Framingham risk score (FRS and reclassified them based on the systematic coronary risk evaluation (SCORE. Subsequently, we characterized the reclassified individuals and, in case of heterogeneity, applied cluster analysis to identify and characterize subgroups. These characterizations were used to select individuals expected to benefit from implementation of SCORE.Reclassification after applying SCORE in all individuals resulted in an NRI of 5.00% (95% CI [-0.53%; 11.50%] within the events, 0.06% (95% CI [-0.08%; 0.22%] within the nonevents, and a total NRI of 0.051 (95% CI [-0.004; 0.116]. Among the correctly downward reclassified individuals cluster analysis identified three subgroups. Using the characterizations of the typically correctly reclassified individuals, implementing SCORE only in individuals expected to benefit (n = 2,707,12.3% improved the NRI to 5.32% (95% CI [-0.13%; 12.06%] within the events, 0.24% (95% CI [0.10%; 0.36%] within the nonevents, and a total NRI of 0.055 (95% CI [0.001; 0.123]. Overall, the risk levels for individuals reclassified by tailored implementation of SCORE were more accurate.In our empirical example the presented approach successfully characterized subgroups of reclassified individuals that could be used to improve reclassification and reduce implementation burden. In particular when newly

  6. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming.

    Science.gov (United States)

    Magozzi, Sarah; Calosi, Piero

    2015-01-01

    Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increasing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation. Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade-off between acute and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to increasing

  7. Extreme value modeling for the analysis and prediction of time series of extreme tropospheric ozone levels: a case study.

    Science.gov (United States)

    Escarela, Gabriel

    2012-06-01

    The occurrence of high concentrations of tropospheric ozone is considered as one of the most important issues of air management programs. The prediction of dangerous ozone levels for the public health and the environment, along with the assessment of air quality control programs aimed at reducing their severity, is of considerable interest to the scientific community and to policy makers. The chemical mechanisms of tropospheric ozone formation are complex, and highly variable meteorological conditions contribute additionally to difficulties in accurate study and prediction of high levels of ozone. Statistical methods offer an effective approach to understand the problem and eventually improve the ability to predict maximum levels of ozone. In this paper an extreme value model is developed to study data sets that consist of periodically collected maxima of tropospheric ozone concentrations and meteorological variables. The methods are applied to daily tropospheric ozone maxima in Guadalajara City, Mexico, for the period January 1997 to December 2006. The model adjusts the daily rate of change in ozone for concurrent impacts of seasonality and present and past meteorological conditions, which include surface temperature, wind speed, wind direction, relative humidity, and ozone. The results indicate that trend, annual effects, and key meteorological variables along with some interactions explain the variation in daily ozone maxima. Prediction performance assessments yield reasonably good results.

  8. Predicting College Students' First Year Success: Should Soft Skills Be Taken into Consideration to More Accurately Predict the Academic Achievement of College Freshmen?

    Science.gov (United States)

    Powell, Erica Dion

    2013-01-01

    This study presents a survey developed to measure the skills of entering college freshmen in the areas of responsibility, motivation, study habits, literacy, and stress management, and explores the predictive power of this survey as a measure of academic performance during the first semester of college. The survey was completed by 334 incoming…

  9. The predictive value of microbiological findings on teeth, internal and external implant portions in clinical decision making.

    Science.gov (United States)

    Canullo, Luigi; Radovanović, Sandro; Delibasic, Boris; Blaya, Juan Antonio; Penarrocha, David; Rakic, Mia

    2017-05-01

    The primary aim of this study was to evaluate 23 pathogens associated with peri-implantitis at inner part of implant connections, in peri-implant and periodontal pockets between patients suffering peri-implantitis and participants with healthy peri-implant tissues; the secondary aim was to estimate the predictive value of microbiological profile in patients wearing dental implants using data mining methods. Fifty participants included in the present case─control study were scheduled for collection of plaque samples from the peri-implant pockets, internal connection, and periodontal pocket. Real-time polymerase chain reaction was performed to quantify 23 pathogens. Three predictive models were developed using C4.5 decision trees to estimate the predictive value of microbiological profile between three experimental sites. The final sample included 47 patients (22 healthy controls and 25 diseased cases), 90 implants (43 with healthy peri-implant tissues and 47 affected by peri-implantitis). Total and mean pathogen counts at inner portions of the implant connection, in peri-implant and periodontal pockets were generally increased in peri-implantitis patients when compared to healthy controls. The inner portion of the implant connection, the periodontal pocket and peri-implant pocket, respectively, presented a predictive value of microbiologic profile of 82.78%, 94.31%, and 97.5% of accuracy. This study showed that microbiological profile at all three experimental sites is differently characterized between patients suffering peri-implantitis and healthy controls. Data mining analysis identified Parvimonas micra as a highly accurate predictor of peri-implantitis when present in peri-implant pocket while this method generally seems to be promising for diagnosis of such complex infections. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Noncontrast computed tomography can predict the outcome of shockwave lithotripsy via accurate stone measurement and abdominal fat distribution determination

    Directory of Open Access Journals (Sweden)

    Jiun-Hung Geng

    2015-01-01

    Full Text Available Urolithiasis is a common disease of the urinary system. Extracorporeal shockwave lithotripsy (SWL has become one of the standard treatments for renal and ureteral stones; however, the success rates range widely and failure of stone disintegration may cause additional outlay, alternative procedures, and even complications. We used the data available from noncontrast abdominal computed tomography (NCCT to evaluate the impact of stone parameters and abdominal fat distribution on calculus-free rates following SWL. We retrospectively reviewed 328 patients who had urinary stones and had undergone SWL from August 2012 to August 2013. All of them received pre-SWL NCCT; 1 month after SWL, radiography was arranged to evaluate the condition of the fragments. These patients were classified into stone-free group and residual stone group. Unenhanced computed tomography variables, including stone attenuation, abdominal fat area, and skin-to-stone distance (SSD were analyzed. In all, 197 (60% were classified as stone-free and 132 (40% as having residual stone. The mean ages were 49.35 ± 13.22 years and 55.32 ± 13.52 years, respectively. On univariate analysis, age, stone size, stone surface area, stone attenuation, SSD, total fat area (TFA, abdominal circumference, serum creatinine, and the severity of hydronephrosis revealed statistical significance between these two groups. From multivariate logistic regression analysis, the independent parameters impacting SWL outcomes were stone size, stone attenuation, TFA, and serum creatinine. [Adjusted odds ratios and (95% confidence intervals: 9.49 (3.72–24.20, 2.25 (1.22–4.14, 2.20 (1.10–4.40, and 2.89 (1.35–6.21 respectively, all p < 0.05]. In the present study, stone size, stone attenuation, TFA and serum creatinine were four independent predictors for stone-free rates after SWL. These findings suggest that pretreatment NCCT may predict the outcomes after SWL. Consequently, we can use these

  11. Noncontrast computed tomography can predict the outcome of shockwave lithotripsy via accurate stone measurement and abdominal fat distribution determination.

    Science.gov (United States)

    Geng, Jiun-Hung; Tu, Hung-Pin; Shih, Paul Ming-Chen; Shen, Jung-Tsung; Jang, Mei-Yu; Wu, Wen-Jen; Li, Ching-Chia; Chou, Yii-Her; Juan, Yung-Shun

    2015-01-01

    Urolithiasis is a common disease of the urinary system. Extracorporeal shockwave lithotripsy (SWL) has become one of the standard treatments for renal and ureteral stones; however, the success rates range widely and failure of stone disintegration may cause additional outlay, alternative procedures, and even complications. We used the data available from noncontrast abdominal computed tomography (NCCT) to evaluate the impact of stone parameters and abdominal fat distribution on calculus-free rates following SWL. We retrospectively reviewed 328 patients who had urinary stones and had undergone SWL from August 2012 to August 2013. All of them received pre-SWL NCCT; 1 month after SWL, radiography was arranged to evaluate the condition of the fragments. These patients were classified into stone-free group and residual stone group. Unenhanced computed tomography variables, including stone attenuation, abdominal fat area, and skin-to-stone distance (SSD) were analyzed. In all, 197 (60%) were classified as stone-free and 132 (40%) as having residual stone. The mean ages were 49.35 ± 13.22 years and 55.32 ± 13.52 years, respectively. On univariate analysis, age, stone size, stone surface area, stone attenuation, SSD, total fat area (TFA), abdominal circumference, serum creatinine, and the severity of hydronephrosis revealed statistical significance between these two groups. From multivariate logistic regression analysis, the independent parameters impacting SWL outcomes were stone size, stone attenuation, TFA, and serum creatinine. [Adjusted odds ratios and (95% confidence intervals): 9.49 (3.72-24.20), 2.25 (1.22-4.14), 2.20 (1.10-4.40), and 2.89 (1.35-6.21) respectively, all p < 0.05]. In the present study, stone size, stone attenuation, TFA and serum creatinine were four independent predictors for stone-free rates after SWL. These findings suggest that pretreatment NCCT may predict the outcomes after SWL. Consequently, we can use these predictors for selecting

  12. In 'big bang' major incidents do triage tools accurately predict clinical priority?: a systematic review of the literature.

    Science.gov (United States)

    Kilner, T M; Brace, S J; Cooke, M W; Stallard, N; Bleetman, A; Perkins, G D

    2011-05-01

    The term "big bang" major incidents is used to describe sudden, usually traumatic,catastrophic events, involving relatively large numbers of injured individuals, where demands on clinical services rapidly outstrip the available resources. Triage tools support the pre-hospital provider to prioritise which patients to treat and/or transport first based upon clinical need. The aim of this review is to identify existing triage tools and to determine the extent to which their reliability and validity have been assessed. A systematic review of the literature was conducted to identify and evaluate published data validating the efficacy of the triage tools. Studies using data from trauma patients that report on the derivation, validation and/or reliability of the specific pre-hospital triage tools were eligible for inclusion.Purely descriptive studies, reviews, exercises or reports (without supporting data) were excluded. The search yielded 1982 papers. After initial scrutiny of title and abstract, 181 papers were deemed potentially applicable and from these 11 were identified as relevant to this review (in first figure). There were two level of evidence one studies, three level of evidence two studies and six level of evidence three studies. The two level of evidence one studies were prospective validations of Clinical Decision Rules (CDR's) in children in South Africa, all the other studies were retrospective CDR derivation, validation or cohort studies. The quality of the papers was rated as good (n=3), fair (n=7), poor (n=1). There is limited evidence for the validity of existing triage tools in big bang major incidents.Where evidence does exist it focuses on sensitivity and specificity in relation to prediction of trauma death or severity of injury based on data from single or small number patient incidents. The Sacco system is unique in combining survivability modelling with the degree by which the system is overwhelmed in the triage decision system. The

  13. Prediction of postoperative pulmonary function following thoracic operations. Value of ventilation-perfusion scanning

    International Nuclear Information System (INIS)

    Bria, W.F.; Kanarek, D.J.; Kazemi, H.

    1983-01-01

    Surgical resection of lung cancer is frequently required in patients with severely impaired lung function resulting from chronic obstructive pulmonary disease. Twenty patients with obstructive lung disease and cancer (mean preoperative forced expiratory volume in 1 second [FEV1] . 1.73 L) were studied preoperatively and postoperatively by spirometry and radionuclide perfusion, single-breath ventilation, and washout techniques to test the ability of these methods to predict preoperatively the partial loss of lung function by the resection. Postoperative FEV1 and forced vital capacity (FVC) were accurately predicted by the formula: postoperative FEV1 (or FVC) . preoperative FEV1 X percent function of regions of lung not to be resected (r . 0.88 and 0.95, respectively). Ventilation and perfusion scans are equally effective in prediction. Washout data add to the sophistication of the method by permitting the qualitative evaluation of ventilation during tidal breathing. Criteria for patients requiring the study are suggested

  14. Perceived Physician-informed Weight Status Predicts Accurate Weight Self-Perception and Weight Self-Regulation in Low-income, African American Women.

    Science.gov (United States)

    Harris, Charlie L; Strayhorn, Gregory; Moore, Sandra; Goldman, Brian; Martin, Michelle Y

    2016-01-01

    Obese African American women under-appraise their body mass index (BMI) classification and report fewer weight loss attempts than women who accurately appraise their weight status. This cross-sectional study examined whether physician-informed weight status could predict weight self-perception and weight self-regulation strategies in obese women. A convenience sample of 118 low-income women completed a survey assessing demographic characteristics, comorbidities, weight self-perception, and weight self-regulation strategies. BMI was calculated during nurse triage. Binary logistic regression models were performed to test hypotheses. The odds of obese accurate appraisers having been informed about their weight status were six times greater than those of under-appraisers. The odds of those using an "approach" self-regulation strategy having been physician-informed were four times greater compared with those using an "avoidance" strategy. Physicians are uniquely positioned to influence accurate weight self-perception and adaptive weight self-regulation strategies in underserved women, reducing their risk for obesity-related morbidity.

  15. Laser-assisted indocyanine green dye angiography accurately predicts the split-thickness graft timing of integra artificial dermis.

    Science.gov (United States)

    Fourman, Mitchell S; Phillips, Brett T; Fritz, Jason R; Conkling, Nicole; McClain, Steve A; Simon, Marcia; Dagum, Alexander B

    2014-08-01

    The use of an artificial dermal substitute such as Integra-a bilaminate combination of thin silicone and cross-linked bovine tendon collagen and chondroitin-6-sulfate-has become a popular method to address large surface area wounds or smaller, complex wounds devoid of a vascular bed. The incorporation of Integra depends on a vascular wound bed or periphery and can take 4 weeks or longer to occur. If the Integra has not fully incorporated at the time of placement of the split-thickness graft, complete graft loss may result. The availability of a minimally invasive method to assess the incorporation of Integra would be of great value. Two 5 × 10-cm paraspinal full-thickness wounds were created on 3 female swine. Wounds were randomly assigned full-thickness skin graft or Integra (Plainsboro, NJ) treatment. Both types of grafts were placed after the application of fibrin glue (Tisseel, Deerfield, Ill) to the wound bed. Laser Doppler imaging (LDI) (Moor), indocyanine green dye (ICG) angiography (LifeCell SPY), and clinical scoring were performed weekly for a period of 8 weeks after grafting. At 4 weeks, the silicone layer of the Integra was removed, and a culture of autologous keratinocytes was applied. A 4-mm punch biopsy sample of each graft was taken 1, 2, 4, 6, 7, and 8 weeks postoperatively for histologic analysis. Both ICG angiography and LDI perfusion measurements noted an increase in perfusion at the Integra graft site that peaked 3 weeks after grafting, corresponding with the start of neovascularization and the optimal time for the application of a split-thickness skin graft. indocyanine green dye angiography measurements exhibit greater reproducibility between animals at late time points as compared with LDI. This decrease in LDI precision is directly related to increases in scar tissue thickness of greater than 5 mm as determined via histologic analysis and corresponds with the accepted maximum penetration depth of the LDI laser. Indocyanine green dye

  16. PREDICTION OF BULLS’ SLAUGHTER VALUE FROM GROWTH DATA USING ARTIFICIAL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    Krzysztof ADAMCZYK

    2006-02-01

    Full Text Available The objective of this research was to investigate the usefulness of artifi cial neural network (ANN in the prediction of slaughter value of young crossbred bulls based on growth data. The studies were carried out on 104 bulls fattened from 120 days of life until the weight of 500 kg. The bulls were group fed using mainly farm feeds. After slaughter the carcasses were dissected and meat was subjected to physico-chemical and organoleptic analyses. The obtained data were used for the development of an artifi cial neural network model of slaughter value prediction. It was found that some slaughter value traits (hot carcass, cold half-carcass, neck and round weights, bone content in dissected elements in half-carcass, meat pH, dry-matter and protein contents in meat and meat tenderness and juiciness can be predicted with a considerably high accuracy using the artifi cial neural network.

  17. Prediction of textural attributes using color values of banana (Musa sapientum) during ripening.

    Science.gov (United States)

    Jaiswal, Pranita; Jha, Shyam Narayan; Kaur, Poonam Preet; Bhardwaj, Rishi; Singh, Ashish Kumar; Wadhawan, Vishakha

    2014-06-01

    Banana is an important sub-tropical fruit in international trade. It undergoes significant textural and color transformations during ripening process, which in turn influence the eating quality of the fruit. In present study, color ('L', 'a' and 'b' value) and textural attributes of bananas (peel, fruit and pulp firmness; pulp toughness; stickiness) were studied simultaneously using Hunter Color Lab and Texture Analyser, respectively, during ripening period of 10 days at ambient atmosphere. There was significant effect of ripening period on all the considered textural characteristics and color properties of bananas except color value 'b'. In general, textural descriptors (peel, fruit and pulp firmness; and pulp toughness) decreased during ripening except stickiness, while color values viz 'a' and 'b' increased with ripening barring 'L' value. Among various textural attributes, peel toughness and pulp firmness showed highest correlation (r) with 'a' value of banana peel. In order to predict textural properties using color values of banana, five types of equations (linear/polynomial/exponential/logarithmic/power) were fitted. Among them, polynomial equation was found to be the best fit (highest coefficient of determination, R(2)) for prediction of texture using color properties for bananas. The pulp firmness, peel toughness and pulp toughness showed R(2) above 0.84 with indicating its potentiality of the fitted equations for prediction of textural profile of bananas non-destructively using 'a' value.

  18. Implicit Theories, Expectancies, and Values Predict Mathematics Motivation and Behavior across High School and College.

    Science.gov (United States)

    Priess-Groben, Heather A; Hyde, Janet Shibley

    2017-06-01

    Mathematics motivation declines for many adolescents, which limits future educational and career options. The present study sought to identify predictors of this decline by examining whether implicit theories assessed in ninth grade (incremental/entity) predicted course-taking behaviors and utility value in college. The study integrated implicit theory with variables from expectancy-value theory to examine potential moderators and mediators of the association of implicit theories with college mathematics outcomes. Implicit theories and expectancy-value variables were assessed in 165 American high school students (47 % female; 92 % White), who were then followed into their college years, at which time mathematics courses taken, course-taking intentions, and utility value were assessed. Implicit theories predicted course-taking intentions and utility value, but only self-concept of ability predicted courses taken, course-taking intentions, and utility value after controlling for prior mathematics achievement and baseline values. Expectancy for success in mathematics mediated associations between self-concept of ability and college outcomes. This research identifies self-concept of ability as a stronger predictor than implicit theories of mathematics motivation and behavior across several years: math self-concept is critical to sustained engagement in mathematics.

  19. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints.

    Science.gov (United States)

    Wang, Shiyao; Deng, Zhidong; Yin, Gang

    2016-02-24

    A high-performance differential global positioning system (GPS)  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS-inertial measurement unit (IMU)/dead reckoning (DR) data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA) equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car.

  20. An Accurate GPS-IMU/DR Data Fusion Method for Driverless Car Based on a Set of Predictive Models and Grid Constraints

    Directory of Open Access Journals (Sweden)

    Shiyao Wang

    2016-02-01

    Full Text Available A high-performance differential global positioning system (GPS  receiver with real time kinematics provides absolute localization for driverless cars. However, it is not only susceptible to multipath effect but also unable to effectively fulfill precise error correction in a wide range of driving areas. This paper proposes an accurate GPS–inertial measurement unit (IMU/dead reckoning (DR data fusion method based on a set of predictive models and occupancy grid constraints. First, we employ a set of autoregressive and moving average (ARMA equations that have different structural parameters to build maximum likelihood models of raw navigation. Second, both grid constraints and spatial consensus checks on all predictive results and current measurements are required to have removal of outliers. Navigation data that satisfy stationary stochastic process are further fused to achieve accurate localization results. Third, the standard deviation of multimodal data fusion can be pre-specified by grid size. Finally, we perform a lot of field tests on a diversity of real urban scenarios. The experimental results demonstrate that the method can significantly smooth small jumps in bias and considerably reduce accumulated position errors due to DR. With low computational complexity, the position accuracy of our method surpasses existing state-of-the-arts on the same dataset and the new data fusion method is practically applied in our driverless car.

  1. [Value of PUSSOM and P-POSSUM for the prediction of surgical operative risk in patients undergoing pancreaticoduodenectomy for periampullary tumors].

    Science.gov (United States)

    Chen, Yingtai; Chu, Yunmian; Che, Xu; Lan, Zhongmin; Zhang, Jianwei; Wang, Chengfeng

    2015-06-01

    To investigate the value of Physiological and Operative Severity Score for the enUmeration of Mortality and morbidity (POSSUM) and a modification of the POSSUM system (P-P0SSUM) scoring system in predicting the surgical operative risk of pancreaticoduodenectomy for periampullary tumors. POSSUM and P-POSSUM scoring systems were used to retrospectively evaluate the clinical data of 432 patients with periampullar tumors who underwent pancreaticoduodenectomy in the Department of Abdominal Surgery, Cancer Hospital, Chinese Academy of Medical Sciences from January 1985 to December 2010. The predictive occurrence of postoperative complications and mortality rate were calculated according to the formula. ROC curve analysis and different group of risk factors were used to determine the discrimination ability of the two score systems, and to determine their predictive efficacy by comparing the actual and predictive complications and mortality rates, using Hosmer-Lemeshow test to determine the goodness of fit of the two scoring systems. The average physiological score of the 432 patients was 16.1 ± 3.5, and the average surgical severity score was 19.6 ± 2.7. ROC curve analysis showed that the area under ROC curve for mortality predicted by POSSUM and P-POSSUM were 0.893 and 0.888, showing a non-significant difference (P > 0.05) between them. The area under ROC curve for operative complications predicted by POSSUM scoring system was 0.575. The POSSUM score system was most accurate for the prediction of complication rates of 20%-40%, showing the O/E value of 0.81. Compared with the POSSUM score system, P-POSSUM had better ability in the prediction of postoperative mortality, when the predicted value of mortality was greater than 15%, the predictive result was more accurate, and the O/E value was 1.00. POSSUM and P-POSSUM scoring system have good value in predicting the mortality of patients with periampullary tumors undergoing pancreaticoduodenectomy, but a poorer value of

  2. Predictive value of brain perfusion SPECT for rTMS response in pharmacoresistant depression

    International Nuclear Information System (INIS)

    Richieri, Raphaelle; Lancon, Christophe; Boyer, Laurent; Farisse, Jean; Colavolpe, Cecile; Mundler, Olivier; Guedj, Eric

    2011-01-01

    The aim of this study was to determine the predictive value of whole-brain voxel-based regional cerebral blood flow (rCBF) for repetitive transcranial magnetic stimulation (rTMS) response in patients with pharmacoresistant depression. Thirty-three right-handed patients who met DSM-IV criteria for major depressive disorder (unipolar or bipolar depression) were included before rTMS. rTMS response was defined as at least 50% reduction in the baseline Beck Depression Inventory scores. The predictive value of 99m Tc-ethyl cysteinate dimer (ECD) single photon emission computed tomography (SPECT) for rTMS response was studied before treatment by comparing rTMS responders to non-responders at voxel level using Statistical Parametric Mapping (SPM) (p 0.10). In comparison to responders, non-responders showed significant hypoperfusions (p < 0.001, uncorrected) in the left medial and bilateral superior frontal cortices (BA10), the left uncus/parahippocampal cortex (BA20/BA35) and the right thalamus. The area under the curve for the combination of SPECT clusters to predict rTMS response was 0.89 (p < 0.001). Sensitivity, specificity, positive predictive value and negative predictive value for the combination of clusters were: 94, 73, 81 and 92%, respectively. This study shows that, in pharmacoresistant depression, pretreatment rCBF of specific brain regions is a strong predictor for response to rTMS in patients with homogeneous demographic/clinical features. (orig.)

  3. Enhancement of a Turbulence Sub-Model for More Accurate Predictions of Vertical Stratifications in 3D Coastal and Estuarine Modeling

    Directory of Open Access Journals (Sweden)

    Wenrui Huang

    2010-03-01

    Full Text Available This paper presents an improvement of the Mellor and Yamada's 2nd order turbulence model in the Princeton Ocean Model (POM for better predictions of vertical stratifications of salinity in estuaries. The model was evaluated in the strongly stratified estuary, Apalachicola River, Florida, USA. The three-dimensional hydrodynamic model was applied to study the stratified flow and salinity intrusion in the estuary in response to tide, wind, and buoyancy forces. Model tests indicate that model predictions over estimate the stratification when using the default turbulent parameters. Analytic studies of density-induced and wind-induced flows indicate that accurate estimation of vertical eddy viscosity plays an important role in describing vertical profiles. Initial model revision experiments show that the traditional approach of modifying empirical constants in the turbulence model leads to numerical instability. In order to improve the performance of the turbulence model while maintaining numerical stability, a stratification factor was introduced to allow adjustment of the vertical turbulent eddy viscosity and diffusivity. Sensitivity studies indicate that the stratification factor, ranging from 1.0 to 1.2, does not cause numerical instability in Apalachicola River. Model simulations show that increasing the turbulent eddy viscosity by a stratification factor of 1.12 results in an optimal agreement between model predictions and observations in the case study presented in this study. Using the proposed stratification factor provides a useful way for coastal modelers to improve the turbulence model performance in predicting vertical turbulent mixing in stratified estuaries and coastal waters.

  4. Prevalence and predictive value of islet cell antibodies and insulin autoantibodies in women with gestational diabetes

    DEFF Research Database (Denmark)

    Damm, P; Kühl, C; Buschard, K

    1994-01-01

    The objective of the present study was to investigate the predictive value of islet cell antibodies (ICA) and insulin autoantibodies (IAA) for development of diabetes in women with previous gestational diabetes (GDM). Two hundred and forty-one previous diet-treated GDM patients and 57 women without...... for ICA were ICA-positive and three of these had Type 1 diabetes at follow-up, as well as three ICA-negative patients. The sensitivity, specificity, and predictive value of ICA-positivity for later development of diabetes were 50%, 99%, and 75%, respectively. None of the women was IAA-positive during...

  5. The value of nodal information in predicting lung cancer relapse using 4DPET/4DCT

    Energy Technology Data Exchange (ETDEWEB)

    Li, Heyse, E-mail: heyse.li@mail.utoronto.ca [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8 (Canada); Becker, Nathan; Raman, Srinivas [Radiation Oncology, UHN Princess Margaret Cancer Centre, 610 University of Avenue, Toronto, Ontario M5T 2M9 (Canada); Chan, Timothy C. Y. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada and Techna Institute for the Advancement of Technology for Health, 124 - 100 College Street, Toronto, Ontario M5G 1P5 (Canada); Bissonnette, Jean-Pierre [Radiation Oncology, UHN Princess Margaret Cancer Centre, 610 University of Avenue, Toronto, Ontario M5T 2M9, Canada and Techna Institute for the Advancement of Technology for Health, 124 - 100 College Street, Toronto, Ontario M5G 1P5 (Canada)

    2015-08-15

    Purpose: There is evidence that computed tomography (CT) and positron emission tomography (PET) imaging metrics are prognostic and predictive in nonsmall cell lung cancer (NSCLC) treatment outcomes. However, few studies have explored the use of standardized uptake value (SUV)-based image features of nodal regions as predictive features. The authors investigated and compared the use of tumor and node image features extracted from the radiotherapy target volumes to predict relapse in a cohort of NSCLC patients undergoing chemoradiation treatment. Methods: A prospective cohort of 25 patients with locally advanced NSCLC underwent 4DPET/4DCT imaging for radiation planning. Thirty-seven image features were derived from the CT-defined volumes and SUVs of the PET image from both the tumor and nodal target regions. The machine learning methods of logistic regression and repeated stratified five-fold cross-validation (CV) were used to predict local and overall relapses in 2 yr. The authors used well-known feature selection methods (Spearman’s rank correlation, recursive feature elimination) within each fold of CV. Classifiers were ranked on their Matthew’s correlation coefficient (MCC) after CV. Area under the curve, sensitivity, and specificity values are also presented. Results: For predicting local relapse, the best classifier found had a mean MCC of 0.07 and was composed of eight tumor features. For predicting overall relapse, the best classifier found had a mean MCC of 0.29 and was composed of a single feature: the volume greater than 0.5 times the maximum SUV (N). Conclusions: The best classifier for predicting local relapse had only tumor features. In contrast, the best classifier for predicting overall relapse included a node feature. Overall, the methods showed that nodes add value in predicting overall relapse but not local relapse.

  6. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11.

    Science.gov (United States)

    Lundegaard, Claus; Lamberth, Kasper; Harndahl, Mikkel; Buus, Søren; Lund, Ole; Nielsen, Morten

    2008-07-01

    NetMHC-3.0 is trained on a large number of quantitative peptide data using both affinity data from the Immune Epitope Database and Analysis Resource (IEDB) and elution data from SYFPEITHI. The method generates high-accuracy predictions of major histocompatibility complex (MHC): peptide binding. The predictions are based on artificial neural networks trained on data from 55 MHC alleles (43 Human and 12 non-human), and position-specific scoring matrices (PSSMs) for additional 67 HLA alleles. As only the MHC class I prediction server is available, predictions are possible for peptides of length 8-11 for all 122 alleles. artificial neural network predictions are given as actual IC(50) values whereas PSSM predictions are given as a log-odds likelihood scores. The output is optionally available as download for easy post-processing. The training method underlying the server is the best available, and has been used to predict possible MHC-binding peptides in a series of pathogen viral proteomes including SARS, Influenza and HIV, resulting in an average of 75-80% confirmed MHC binders. Here, the performance is further validated and benchmarked using a large set of newly published affinity data, non-redundant to the training set. The server is free of use and available at: http://www.cbs.dtu.dk/services/NetMHC.

  7. Extreme value prediction of the wave-induced vertical bending moment in large container ships

    DEFF Research Database (Denmark)

    Andersen, Ingrid Marie Vincent; Jensen, Jørgen Juncher

    2015-01-01

    increase the extreme hull girder response significantly. Focus in the present paper is on the influence of the hull girder flexibility on the extreme response amidships, namely the wave-induced vertical bending moment (VBM) in hogging, and the prediction of the extreme value of the same. The analysis...... in the present paper is based on time series of full scale measurements from three large container ships of 8600, 9400 and 14000 TEU. When carrying out the extreme value estimation the peak-over-threshold (POT) method combined with an appropriate extreme value distribution is applied. The choice of a proper...... threshold level as well as the statistical correlation between clustered peaks influence the extreme value prediction and are taken into consideration in the present paper....

  8. Predictive value of MSH2 gene expression in colorectal cancer treated with capecitabine

    DEFF Research Database (Denmark)

    Jensen, Lars H; Danenberg, Kathleen D; Danenberg, Peter V

    2007-01-01

    was associated with a hazard ratio of 0.5 (95% confidence interval, 0.23-1.11; P = 0.083) in survival analysis. CONCLUSION: The higher gene expression of MSH2 in responders and the trend for predicting overall survival indicates a predictive value of this marker in the treatment of advanced CRC with capecitabine.......PURPOSE: The objective of the present study was to evaluate the gene expression of the DNA mismatch repair gene MSH2 as a predictive marker in advanced colorectal cancer (CRC) treated with first-line capecitabine. PATIENTS AND METHODS: Microdissection of paraffin-embedded tumor tissue, RNA...

  9. Cultural values predict coping using culture as an individual difference variable in multi-cultural samples.

    OpenAIRE

    Bardi, Anat; Guerra, V. M.

    2011-01-01

    Three studies establish the relations between cultural values and coping using multicultural samples of international students. Study 1 established the cross-cultural measurement invariance of subscales of the Cope inventory (Carver, Scheier, & Weintraub, 1989) used in the paper. The cultural value dimensions of embeddedness vs. autonomy and hierarchy vs. egalitarianism predicted how international students from 28 (Study 2) and 38 (Study 3) countries coped with adapting to living in a new cou...

  10. Predictive value of IgE/IgG4 antibody ratio in children with egg allergy

    Directory of Open Access Journals (Sweden)

    Okamoto Shindou

    2012-06-01

    Full Text Available Abstract Background The aim of this study was to investigate the role of specific IgG4 antibodies to hen’s egg white and determine their utility as a marker for the outcome of oral challenge test in children sensitized to hen’s egg Methods The hen’s egg oral food challenge test was performed in 105 sensitized children without atopic dermatitis, and the titers of egg white-specific immunoglobulin G4 (IgG4 and immunoglobulin E (IgE antibodies were measured. To set the cut-off values of IgG4, IgE, and the IgE/IgG4 ratio for predicting positive results in oral challenges, receiver operating characteristic curves were plotted and the area under the curves (AUC were calculated. Results Sixty-four of 105 oral challenges with whole eggs were assessed as positive. The AUC for IgE, IgG4, and IgE/IgG4 for the prediction of positive results were 0.609, 0.724, and 0.847, respectively. Thus, the IgE/IgG4 ratio generated significantly higher specificity, sensitivity, positive predictive value (%, and negative predictive value (% than the individual IgE and IgG4. The negative predictive value of the IgE/IgG4 ratio was 90% at a value of 1. Conclusions We have demonstrated that the egg white-specific serum IgE/IgG4 ratio is important for predicting reactivity to egg during food challenges.

  11. Estimating cross-validatory predictive p-values with integrated importance sampling for disease mapping models.

    Science.gov (United States)

    Li, Longhai; Feng, Cindy X; Qiu, Shi

    2017-06-30

    An important statistical task in disease mapping problems is to identify divergent regions with unusually high or low risk of disease. Leave-one-out cross-validatory (LOOCV) model assessment is the gold standard for estimating predictive p-values that can flag such divergent regions. However, actual LOOCV is time-consuming because one needs to rerun a Markov chain Monte Carlo analysis for each posterior distribution in which an observation is held out as a test case. This paper introduces a new method, called integrated importance sampling (iIS), for estimating LOOCV predictive p-values with only Markov chain samples drawn from the posterior based on a full data set. The key step in iIS is that we integrate away the latent variables associated the test observation with respect to their conditional distribution without reference to the actual observation. By following the general theory for importance sampling, the formula used by iIS can be proved to be equivalent to the LOOCV predictive p-value. We compare iIS and other three existing methods in the literature with two disease mapping datasets. Our empirical results show that the predictive p-values estimated with iIS are almost identical to the predictive p-values estimated with actual LOOCV and outperform those given by the existing three methods, namely, the posterior predictive checking, the ordinary importance sampling, and the ghosting method by Marshall and Spiegelhalter (2003). Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Learning a weighted sequence model of the nucleosome core and linker yields more accurate predictions in Saccharomyces cerevisiae and Homo sapiens.

    Directory of Open Access Journals (Sweden)

    Sheila M Reynolds

    2010-07-01

    Full Text Available DNA in eukaryotes is packaged into a chromatin complex, the most basic element of which is the nucleosome. The precise positioning of the nucleosome cores allows for selective access to the DNA, and the mechanisms that control this positioning are important pieces of the gene expression puzzle. We describe a large-scale nucleosome pattern that jointly characterizes the nucleosome core and the adjacent linkers and is predominantly characterized by long-range oscillations in the mono, di- and tri-nucleotide content of the DNA sequence, and we show that this pattern can be used to predict nucleosome positions in both Homo sapiens and Saccharomyces cerevisiae more accurately than previously published methods. Surprisingly, in both H. sapiens and S. cerevisiae, the most informative individual features are the mono-nucleotide patterns, although the inclusion of di- and tri-nucleotide features results in improved performance. Our approach combines a much longer pattern than has been previously used to predict nucleosome positioning from sequence-301 base pairs, centered at the position to be scored-with a novel discriminative classification approach that selectively weights the contributions from each of the input features. The resulting scores are relatively insensitive to local AT-content and can be used to accurately discriminate putative dyad positions from adjacent linker regions without requiring an additional dynamic programming step and without the attendant edge effects and assumptions about linker length modeling and overall nucleosome density. Our approach produces the best dyad-linker classification results published to date in H. sapiens, and outperforms two recently published models on a large set of S. cerevisiae nucleosome positions. Our results suggest that in both genomes, a comparable and relatively small fraction of nucleosomes are well-positioned and that these positions are predictable based on sequence alone. We believe that the

  13. Learning a weighted sequence model of the nucleosome core and linker yields more accurate predictions in Saccharomyces cerevisiae and Homo sapiens.

    Science.gov (United States)

    Reynolds, Sheila M; Bilmes, Jeff A; Noble, William Stafford

    2010-07-08

    DNA in eukaryotes is packaged into a chromatin complex, the most basic element of which is the nucleosome. The precise positioning of the nucleosome cores allows for selective access to the DNA, and the mechanisms that control this positioning are important pieces of the gene expression puzzle. We describe a large-scale nucleosome pattern that jointly characterizes the nucleosome core and the adjacent linkers and is predominantly characterized by long-range oscillations in the mono, di- and tri-nucleotide content of the DNA sequence, and we show that this pattern can be used to predict nucleosome positions in both Homo sapiens and Saccharomyces cerevisiae more accurately than previously published methods. Surprisingly, in both H. sapiens and S. cerevisiae, the most informative individual features are the mono-nucleotide patterns, although the inclusion of di- and tri-nucleotide features results in improved performance. Our approach combines a much longer pattern than has been previously used to predict nucleosome positioning from sequence-301 base pairs, centered at the position to be scored-with a novel discriminative classification approach that selectively weights the contributions from each of the input features. The resulting scores are relatively insensitive to local AT-content and can be used to accurately discriminate putative dyad positions from adjacent linker regions without requiring an additional dynamic programming step and without the attendant edge effects and assumptions about linker length modeling and overall nucleosome density. Our approach produces the best dyad-linker classification results published to date in H. sapiens, and outperforms two recently published models on a large set of S. cerevisiae nucleosome positions. Our results suggest that in both genomes, a comparable and relatively small fraction of nucleosomes are well-positioned and that these positions are predictable based on sequence alone. We believe that the bulk of the

  14. Learning a Weighted Sequence Model of the Nucleosome Core and Linker Yields More Accurate Predictions in Saccharomyces cerevisiae and Homo sapiens

    Science.gov (United States)

    Reynolds, Sheila M.; Bilmes, Jeff A.; Noble, William Stafford

    2010-01-01

    DNA in eukaryotes is packaged into a chromatin complex, the most basic element of which is the nucleosome. The precise positioning of the nucleosome cores allows for selective access to the DNA, and the mechanisms that control this positioning are important pieces of the gene expression puzzle. We describe a large-scale nucleosome pattern that jointly characterizes the nucleosome core and the adjacent linkers and is predominantly characterized by long-range oscillations in the mono, di- and tri-nucleotide content of the DNA sequence, and we show that this pattern can be used to predict nucleosome positions in both Homo sapiens and Saccharomyces cerevisiae more accurately than previously published methods. Surprisingly, in both H. sapiens and S. cerevisiae, the most informative individual features are the mono-nucleotide patterns, although the inclusion of di- and tri-nucleotide features results in improved performance. Our approach combines a much longer pattern than has been previously used to predict nucleosome positioning from sequence—301 base pairs, centered at the position to be scored—with a novel discriminative classification approach that selectively weights the contributions from each of the input features. The resulting scores are relatively insensitive to local AT-content and can be used to accurately discriminate putative dyad positions from adjacent linker regions without requiring an additional dynamic programming step and without the attendant edge effects and assumptions about linker length modeling and overall nucleosome density. Our approach produces the best dyad-linker classification results published to date in H. sapiens, and outperforms two recently published models on a large set of S. cerevisiae nucleosome positions. Our results suggest that in both genomes, a comparable and relatively small fraction of nucleosomes are well-positioned and that these positions are predictable based on sequence alone. We believe that the bulk of the

  15. The accurate definition of metabolic volumes on 18F-FDG-PET before treatment allows the response to chemoradiotherapy to be predicted in the case of oesophagus cancers

    International Nuclear Information System (INIS)

    Hatt, M.; Cheze-Le Rest, C.; Visvikis, D.; Pradier, O.

    2011-01-01

    This study aims at assessing the possibility of prediction of the response of locally advanced oesophagus cancers, even before the beginning of treatment, by using metabolic volume measurements performed on 18 F-FDG PET images made before the treatment. Medical files of 50 patients have been analyzed. According to the observed responses, and to metabolic volume and Total Lesion Glycosis (TLG) values, it appears that the images allow the extraction of parameters, such as the TLG, which are criteria for the prediction of the therapeutic response. Short communication

  16. A Fisher’s Criterion-Based Linear Discriminant Analysis for Predicting the Critical Values of Coal and Gas Outbursts Using the Initial Gas Flow in a Borehole

    Directory of Open Access Journals (Sweden)

    Xiaowei Li

    2017-01-01

    Full Text Available The risk of coal and gas outbursts can be predicted using a method that is linear and continuous and based on the initial gas flow in the borehole (IGFB; this method is significantly superior to the traditional point prediction method. Acquiring accurate critical values is the key to ensuring accurate predictions. Based on ideal rock cross-cut coal uncovering model, the IGFB measurement device was developed. The present study measured the data of the initial gas flow over 3 min in a 1 m long borehole with a diameter of 42 mm in the laboratory. A total of 48 sets of data were obtained. These data were fuzzy and chaotic. Fisher’s discrimination method was able to transform these spatial data, which were multidimensional due to the factors influencing the IGFB, into a one-dimensional function and determine its critical value. Then, by processing the data into a normal distribution, the critical values of the outbursts were analyzed using linear discriminant analysis with Fisher’s criterion. The weak and strong outbursts had critical values of 36.63 L and 80.85 L, respectively, and the accuracy of the back-discriminant analysis for the weak and strong outbursts was 94.74% and 92.86%, respectively. Eight outburst tests were simulated in the laboratory, the reverse verification accuracy was 100%, and the accuracy of the critical value was verified.

  17. Development of a tool for prediction of ovarian cancer in patients with adnexal masses: Value of plasma fibrinogen.

    Directory of Open Access Journals (Sweden)

    Veronika Seebacher

    Full Text Available To develop a tool for individualized risk estimation of presence of cancer in women with adnexal masses, and to assess the added value of plasma fibrinogen.We performed a retrospective analysis of a prospectively maintained database of 906 patients with adnexal masses who underwent cystectomy or oophorectomy. Uni- and multivariate logistic regression analyses including pre-operative plasma fibrinogen levels and established predictors were performed. A nomogram was generated to predict the probability of ovarian cancer. Internal validation with split-sample analysis was performed. Decision curve analysis (DCA was then used to evaluate the clinical net benefit of the prediction model.Ovarian cancer including borderline tumours was found in 241 (26.6% patients. In multivariate analysis, elevated plasma fibrinogen, elevated CA-125, suspicion for malignancy on ultrasound, and postmenopausal status were associated with ovarian cancer and formed the basis for the nomogram. The overall predictive accuracy of the model, as measured by AUC, was 0.91 (95% CI 0.87-0.94. DCA revealed a net benefit for using this model for predicting ovarian cancer presence compared to a strategy of treat all or treat none.We confirmed the value of plasma fibrinogen as a strong predictor for ovarian cancer in a large cohort of patients with adnexal masses. We developed a highly accurate multivariable model to help in the clinical decision-making regarding the presence of ovarian cancer. This model provided net benefit for a wide range of threshold probabilities. External validation is needed before a recommendation for its use in routine practice can be given.

  18. Statistical analysis of accurate prediction of local atmospheric optical attenuation with a new model according to weather together with beam wandering compensation system: a season-wise experimental investigation

    Science.gov (United States)

    Arockia Bazil Raj, A.; Padmavathi, S.

    2016-07-01

    Atmospheric parameters strongly affect the performance of Free Space Optical Communication (FSOC) system when the optical wave is propagating through the inhomogeneous turbulent medium. Developing a model to get an accurate prediction of optical attenuation according to meteorological parameters becomes significant to understand the behaviour of FSOC channel during different seasons. A dedicated free space optical link experimental set-up is developed for the range of 0.5 km at an altitude of 15.25 m. The diurnal profile of received power and corresponding meteorological parameters are continuously measured using the developed optoelectronic assembly and weather station, respectively, and stored in a data logging computer. Measured meteorological parameters (as input factors) and optical attenuation (as response factor) of size [177147 × 4] are used for linear regression analysis and to design the mathematical model that is more suitable to predict the atmospheric optical attenuation at our test field. A model that exhibits the R2 value of 98.76% and average percentage deviation of 1.59% is considered for practical implementation. The prediction accuracy of the proposed model is investigated along with the comparative results obtained from some of the existing models in terms of Root Mean Square Error (RMSE) during different local seasons in one-year period. The average RMSE value of 0.043-dB/km is obtained in the longer range dynamic of meteorological parameters variations.

  19. Assessing cutoff values for increased exercise blood pressure to predict incident hypertension in a general population.

    Science.gov (United States)

    Lorbeer, Roberto; Ittermann, Till; Völzke, Henry; Gläser, Sven; Ewert, Ralf; Felix, Stephan B; Dörr, Marcus

    2015-07-01

    Cutoff values for increased exercise blood pressure (BP) are not established in hypertension guidelines. The aim of the study was to assess optimal cutoff values for increased exercise BP to predict incident hypertension. Data of 661 normotensive participants (386 women) aged 25-77 years from the Study of Health in Pomerania (SHIP-1) with a 5-year follow-up were used. Exercise BP was measured at a submaximal level of 100 W and at maximum level of a symptom-limited cycle ergometry test. Cutoff values for increased exercise BP were defined at the maximum sum of sensitivity and specificity for the prediction of incident hypertension. The area under the receiver-operating characteristic curve (AUC) and net reclassification index (NRI) were calculated to investigate whether increased exercise BP adds predictive value for incident hypertension beyond established cardiovascular risk factors. In men, values of 160  mmHg (100  W level; AUC = 0.7837; NRI = 0.534, P AUC = 0.7677; NRI = 0.340, P = 0.003) were detected as optimal cutoff values for the definition of increased exercise SBP. A value of 190  mmHg (AUC = 0.8347; NRI = 0.519, P < 0.001) showed relevance for the definition of increased exercise SBP in women at the maximum level. According to our analyses, 190 and 210  mmHg are clinically relevant cutoff values for increased exercise SBP at the maximum exercise level of cycle ergometry test for women and men, respectively. In addition, for men, our analyses provided a cutoff value of 160  mmHg for increased exercise SBP at the 100  W level.

  20. Predictive value of brain perfusion SPECT for ketamine response in hyperalgesic fibromyalgia

    Energy Technology Data Exchange (ETDEWEB)

    Guedj, Eric; Cammilleri, Serge; Colavolpe, Cecile; Taieb, David; Laforte, Catherine de; Mundler, Olivier [Centre Hospitalo-Universitaire de la Timone, Service Central de Biophysique et de Medecine Nucleaire, Assistance Publique des Hopitaux de Marseille, Marseille Cedex 5 (France); Niboyet, Jean [Clinique La Phoceanne, Unite d' Etude et de Traitement de la Douleur, Marseille (France)

    2007-08-15

    Ketamine has been used successfully in various proportions of fibromyalgia (FM) patients. However, the response to this specific treatment remains largely unpredictable. We evaluated brain SPECT perfusion before treatment with ketamine, using voxel-based analysis. The objective was to determine the predictive value of brain SPECT for ketamine response. Seventeen women with FM (48 {+-} 11 years; ACR criteria) were enrolled in the study. Brain SPECT was performed before any change was made in therapy in the pain care unit. We considered that a patient was a good responder to ketamine if the VAS score for pain decreased by at least 50% after treatment. A voxel-by-voxel group analysis was performed using SPM2, in comparison to a group of ten healthy women matched for age. The VAS score for pain was 81.8 {+-} 4.2 before ketamine and 31.8 {+-} 27.1 after ketamine. Eleven patients were considered ''good responders'' to ketamine. Responder and non-responder subgroups were similar in terms of pain intensity before ketamine. In comparison to responding patients and healthy subjects, non-responding patients exhibited a significant reduction in bilateral perfusion of the medial frontal gyrus. This cluster of hypoperfusion was highly predictive of non-response to ketamine (positive predictive value 100%, negative predictive value 91%). Brain perfusion SPECT may predict response to ketamine in hyperalgesic FM patients. (orig.)

  1. Predictive value of brain perfusion SPECT for ketamine response in hyperalgesic fibromyalgia

    International Nuclear Information System (INIS)

    Guedj, Eric; Cammilleri, Serge; Colavolpe, Cecile; Taieb, David; Laforte, Catherine de; Mundler, Olivier; Niboyet, Jean

    2007-01-01

    Ketamine has been used successfully in various proportions of fibromyalgia (FM) patients. However, the response to this specific treatment remains largely unpredictable. We evaluated brain SPECT perfusion before treatment with ketamine, using voxel-based analysis. The objective was to determine the predictive value of brain SPECT for ketamine response. Seventeen women with FM (48 ± 11 years; ACR criteria) were enrolled in the study. Brain SPECT was performed before any change was made in therapy in the pain care unit. We considered that a patient was a good responder to ketamine if the VAS score for pain decreased by at least 50% after treatment. A voxel-by-voxel group analysis was performed using SPM2, in comparison to a group of ten healthy women matched for age. The VAS score for pain was 81.8 ± 4.2 before ketamine and 31.8 ± 27.1 after ketamine. Eleven patients were considered ''good responders'' to ketamine. Responder and non-responder subgroups were similar in terms of pain intensity before ketamine. In comparison to responding patients and healthy subjects, non-responding patients exhibited a significant reduction in bilateral perfusion of the medial frontal gyrus. This cluster of hypoperfusion was highly predictive of non-response to ketamine (positive predictive value 100%, negative predictive value 91%). Brain perfusion SPECT may predict response to ketamine in hyperalgesic FM patients. (orig.)

  2. Prediction of Breeding Values for Dairy Cattle Using Artificial Neural Networks and Neuro-Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Saleh Shahinfar

    2012-01-01

    Full Text Available Developing machine learning and soft computing techniques has provided many opportunities for researchers to establish new analytical methods in different areas of science. The objective of this study is to investigate the potential of two types of intelligent learning methods, artificial neural networks and neuro-fuzzy systems, in order to estimate breeding values (EBV of Iranian dairy cattle. Initially, the breeding values of lactating Holstein cows for milk and fat yield were estimated using conventional best linear unbiased prediction (BLUP with an animal model. Once that was established, a multilayer perceptron was used to build ANN to predict breeding values from the performance data of selection candidates. Subsequently, fuzzy logic was used to form an NFS, a hybrid intelligent system that was implemented via a local linear model tree algorithm. For milk yield the correlations between EBV and EBV predicted by the ANN and NFS were 0.92 and 0.93, respectively. Corresponding correlations for fat yield were 0.93 and 0.93, respectively. Correlations between multitrait predictions of EBVs for milk and fat yield when predicted simultaneously by ANN were 0.93 and 0.93, respectively, whereas corresponding correlations with reference EBV for multitrait NFS were 0.94 and 0.95, respectively, for milk and fat production.

  3. The predictive value of the extensor grip test for the effectiveness of bracing for tennis elbow

    NARCIS (Netherlands)

    Struijs, Peter A. A.; Assendelft, Willem J. J.; Kerkhoffs, Gino M. M. J.; Souer, Sebastiaan; van Dijk, C. Niek

    2005-01-01

    Background: Tennis elbow is a common complaint. Several treatment strategies, such as corticosteroid injections and physical therapy and braces, have been described. Hypothesis: The extensor grip test has predictive value in assessing the effectiveness of bracing in tennis elbow. Study Design:

  4. Value of admission electrocardiogram in predicting outcome of thrombolytic therapy in acute myocardial infarction

    NARCIS (Netherlands)

    F.W.H.M. Bär (Frits); C. de Zwaan (Chris); S.H. Braat (Simon); M.L. Simoons (Maarten); W.T. Hermens (Wim); A. van der Laarse (Arnoud); W.T. Wellens; M. Ramentol; F.W.A. Verheugt (Freek); F. Vermeer (Frank); X.H. Krauss

    1987-01-01

    textabstractTo determine the value of the admission 12-lead electrocardiogram to predict infarct size limitation by thrombolytic therapy, data were analyzed in 488 of 533 patients with acute myocardial infarction (AMI) from a randomized multicenter study. All patients had typical

  5. Predictive value of the official cancer alarm symptoms in general practice

    DEFF Research Database (Denmark)

    Krasnik Huggenberger, Ivan; Andersen, John Sahl

    2015-01-01

    Introduction: The objective of this study was to investigate the evidence for positive predictive value (PPV) of alarm symptoms and combinations of symptoms for colorectal cancer, breast cancer, prostate cancer and lung cancer in general practice. Methods: This study is based on a literature search...

  6. Added value of pharmacogenetic testing in predicting statin response: Results from the REGRESS trial

    NARCIS (Netherlands)

    Van Der Baan, F.H.; Knol, M.J.; Maitland-Van Der Zee, A.H.; Regieli, J.J.; Van Iperen, E.P.A.; Egberts, A.C.G.; Klungel, O.H.; Grobbee, D.E.; Jukema, J.W.

    2013-01-01

    It was investigated whether pharmacogenetic factors, both as single polymorphism and as gene-gene interactions, have an added value over non-genetic factors in predicting statin response. Five common polymorphisms were selected in apolipoprotein E, angiotensin-converting enzyme, hepatic lipase and

  7. Prognostic and predictive value of cathepsin X in serum from colorectal cancer patients

    DEFF Research Database (Denmark)

    Vižin, Tjaša; Christensen, Ib Jarle; Wilhelmsen, Michael

    2014-01-01

    , but for patients in stages I-III with local resectable disease. The significant association of cathepsin X with survival in a group of patients who received no chemotherapy and the absence of this association in the group who received chemotherapy, suggest the possible predictive value for response to chemotherapy...

  8. The predictive value of different infant attachment measures for socioemotional development at age 5 years

    NARCIS (Netherlands)

    Smeekens, S.; Riksen-Walraven, J.M.A.; Bakel, H.J.A. van

    2009-01-01

    The predictive value of different infant attachment measures was examined in a community-based sample of 111 healthy children (59 boys, 52 girls). Two procedures to assess infant attachment, the Attachment Q-Set (applied on a relatively short observation period) and a shortened version of the

  9. Predictive Value of Serum HER-2/neu in Breast Cancer Patients Treated with HERCEPTIN

    Czech Academy of Sciences Publication Activity Database

    Šimíčková, M.; Petráková, K.; Pecen, Ladislav; Nekulová, M.; Nenutil, R.

    2004-01-01

    Roč. 8, - (2004), s. 87 ISSN 1211-8869. [CECHTUMA 2004. 01.10.2004-03.10.2004, Prague] Institutional research plan: CEZ:AV0Z1030915 Keywords : predictive value * HER-2 * breast cancer Subject RIV: BB - Applied Statistics, Operational Research

  10. Interests, Work Values, and Occupations: Predicting Work Outcomes with the WorkKeys Fit Assessment

    Science.gov (United States)

    Swaney, Kyle B.; Allen, Jeff; Casillas, Alex; Hanson, Mary Ann; Robbins, Steven B.

    2012-01-01

    This study examined whether a measure of person-environment (P-E) fit predicted worker ratings of work attitudes and supervisor ratings of performance. After combining extant data elements and expert ratings of interest and work value characteristics for each occupation in the O*NET system, the authors generated a "Fit Index"--involving profile…

  11. The Predictive Value of Selection Criteria in an Urban Magnet School

    Science.gov (United States)

    Lohmeier, Jill Hendrickson; Raad, Jennifer

    2012-01-01

    The predictive value of selection criteria on outcome data from two cohorts of students (Total N = 525) accepted to an urban magnet high school were evaluated. Regression analyses of typical screening variables (suspensions, absences, metropolitan achievement tests, middle school grade point averages [GPAs], Matrix Analogies test scores, and…

  12. The predictive value of the 70-gene signature for adjuvant chemotherapy in early breast cancer

    NARCIS (Netherlands)

    Knauer, Michael; Mook, Stella; Rutgers, Emiel J. T.; Bender, Richard A.; Hauptmann, Michael; van de Vijver, Marc J.; Koornstra, Rutger H. T.; Bueno-de-Mesquita, Jolien M.; Linn, Sabine C.; van 't Veer, Laura J.

    2010-01-01

    Multigene assays have been developed and validated to determine the prognosis of breast cancer. In this study, we assessed the additional predictive value of the 70-gene MammaPrint signature for chemotherapy (CT) benefit in addition to endocrine therapy (ET) from pooled study series. For 541

  13. Impact of the endoscopist's experience on the negative predictive value of capsule endoscopy.

    Science.gov (United States)

    Velayos Jiménez, Benito; Alcaide Suárez, Noelia; González Redondo, Guillermo; Fernández Salazar, Luis; Aller de la Fuente, Rocío; Del Olmo Martínez, Lourdes; Ruiz Rebollo, Lourdes; González Hernández, José Manuel

    2017-01-01

    The impact of the accumulated experience of the capsule endoscopy (CE) reader on the accuracy of this test is discussed. To determine whether the negative predictive value of CE findings changes along the learning curve. We reviewed the first 900 CE read by 3 gastroenterologists experienced in endoscopy over 8 years. These 900 CE were divided into 3 groups (300 CE each): group 1 consisted of the sum of the first 100 CE read by each of the 3 endoscopists; group 2, the sum of the second 100 and groups 3, the sum of the third 100. Patients with normal CE were monitored for at least 28 months to estimate the negative predictive value. A total of 54 (18%) CE in group 1, 58 (19.3%) in group 2 and 47 (15.6%) in group 3 were normal, although only 34 patients in group 1, 38 in group 2 and 36 in group 3 with normal CE completed follow up and were eventually studied. The negative predictive value was 88.2% in group 1, 89.5% in group 2 and 97% in group 3 (P>.05). The negative predictive value tended to increase, but remained high and did not change significantly after the first 100 when readers are experienced in conventional endoscopy and have preliminary specific training. Copyright © 2016 Elsevier España, S.L.U., AEEH y AEG. All rights reserved.

  14. Prediction of main factors’ values of air transportation system safety based on system dynamics

    Science.gov (United States)

    Spiridonov, A. Yu; Rezchikov, A. F.; Kushnikov, V. A.; Ivashchenko, V. A.; Bogomolov, A. S.; Filimonyuk, L. Yu; Dolinina, O. N.; Kushnikova, E. V.; Shulga, T. E.; Tverdokhlebov, V. A.; Kushnikov, O. V.; Fominykh, D. S.

    2018-05-01

    On the basis of the system-dynamic approach [1-8], a set of models has been developed that makes it possible to analyse and predict the values of the main safety indicators for the operation of aviation transport systems.

  15. Predictive value of acute coronary syndrome discharge diagnoses in the Danish national patioent registry

    DEFF Research Database (Denmark)

    Joensen, Albert Marni; Jensen, Majken K.; Overvad, Kim

    Background: Updated data on the predictive value of acute coronary syndrome (ACS) diagnoses, including unstable angina pectoris, myocardial infarction and cardiac arrest, in hospital discharge registries are sparse. Design: Validation study. Methods: All first-time ACS diagnoses in the Danish...

  16. Satisfaction of psychotic patients with care and its value to predict outcomes

    NARCIS (Netherlands)

    Vermeulen, J. M.; Schirmbeck, N. F.; Van Tricht, M. J.; de Haan, L.

    2018-01-01

    Background: A key indicator of quality of treatment from the patient's perspective is expressed by satisfaction with care. Our aim was to (i) explore satisfaction and its relation to clinical outcome measures; and (ii) explore the predictive value of satisfaction for the course of outcomes over

  17. What Is the Predictive Value of Animal Models for Vaccine Efficacy in Humans? Consideration of Strategies to Improve the Value of Animal Models.

    Science.gov (United States)

    Herati, Ramin Sedaghat; Wherry, E John

    2018-04-02

    Animal models are an essential feature of the vaccine design toolkit. Although animal models have been invaluable in delineating the mechanisms of immune function, their precision in predicting how well specific vaccines work in humans is often suboptimal. There are, of course, many obvious species differences that may limit animal models from predicting all details of how a vaccine works in humans. However, careful consideration of which animal models may have limitations should also allow more accurate interpretations of animal model data and more accurate predictions of what is to be expected in clinical trials. In this article, we examine some of the considerations that might be relevant to cross-species extrapolation of vaccine-related immune responses for the prediction of how vaccines will perform in humans. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  18. Predictive value of cognition for different domains of outcome in recent-onset schizophrenia.

    Science.gov (United States)

    Holthausen, Esther A E; Wiersma, Durk; Cahn, Wiepke; Kahn, René S; Dingemans, Peter M; Schene, Aart H; van den Bosch, Robert J

    2007-01-15

    The aim of this study was to see whether and how cognition predicts outcome in recent-onset schizophrenia in a large range of domains such as course of illness, self-care, interpersonal functioning, vocational functioning and need for care. At inclusion, 115 recent-onset patients were tested on a cognitive battery and 103 patients participated in the follow-up 2 years after inclusion. Differences in outcome between cognitively normal and cognitively impaired patients were also analysed. Cognitive measures at inclusion did not predict number of relapses, activities of daily living and interpersonal functioning. Time in psychosis or in full remission, as well as need for care, were partly predicted by specific cognitive measures. Although statistically significant, the predictive value of cognition with regard to clinical outcome was limited. There was a significant difference between patients with and without cognitive deficits in competitive employment status and vocational functioning. The predictive value of cognition for different social outcome domains varies. It seems that cognition most strongly predicts work performance, where having a cognitive deficit, regardless of the nature of the deficit, acts as a rate-limiting factor.

  19. A weighted generalized score statistic for comparison of predictive values of diagnostic tests.

    Science.gov (United States)

    Kosinski, Andrzej S

    2013-03-15

    Positive and negative predictive values are important measures of a medical diagnostic test performance. We consider testing equality of two positive or two negative predictive values within a paired design in which all patients receive two diagnostic tests. The existing statistical tests for testing equality of predictive values are either Wald tests based on the multinomial distribution or the empirical Wald and generalized score tests within the generalized estimating equations (GEE) framework. As presented in the literature, these test statistics have considerably complex formulas without clear intuitive insight. We propose their re-formulations that are mathematically equivalent but algebraically simple and intuitive. As is clearly seen with a new re-formulation we presented, the generalized score statistic does not always reduce to the commonly used score statistic in the independent samples case. To alleviate this, we introduce a weighted generalized score (WGS) test statistic that incorporates empirical covariance matrix with newly proposed weights. This statistic is simple to compute, always reduces to the score statistic in the independent samples situation, and preserves type I error better than the other statistics as demonstrated by simulations. Thus, we believe that the proposed WGS statistic is the preferred statistic for testing equality of two predictive values and for corresponding sample size computations. The new formulas of the Wald statistics may be useful for easy computation of confidence intervals for difference of predictive values. The introduced concepts have potential to lead to development of the WGS test statistic in a general GEE setting. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Numerical Weather Prediction and Relative Economic Value framework to improve Integrated Urban Drainage- Wastewater management

    DEFF Research Database (Denmark)

    Courdent, Vianney Augustin Thomas

    domains during which the IUDWS can be coupled with the electrical smart grid to optimise its energy consumption. The REV framework was used to determine which decision threshold of the EPS (i.e. number of ensemble members predicting an event) provides the highest benefit for a given situation...... in cities where space is scarce and large-scale construction work a nuisance. This the-sis focuses on flow domain predictions of IUDWS from numerical weather prediction (NWP) to select relevant control objectives for the IUDWS and develops a framework based on the relative economic value (REV) approach...... to evaluate when acting on the forecast is beneficial or not. Rainfall forecasts are extremely valuable for estimating near future storm-water-related impacts on the IUDWS. Therefore, weather radar extrapolation “nowcasts” provide valuable predictions for RTC. However, radar nowcasts are limited...

  1. The energy and protein value of wheat, maize and blend DDGS for cattle and evaluation of prediction methods.

    Science.gov (United States)

    De Boever, J L; Blok, M C; Millet, S; Vanacker, J; De Campeneere, S

    2014-11-01

    The chemical composition inclusive amino acids (AAs) and the energy and protein value of three wheat, three maize and seven blend (mainly wheat) dried distillers grains and solubles (DDGS) were determined. The net energy for lactation (NEL) was derived from digestion coefficients obtained with sheep. The digestible protein in the intestines (DVE) and the degraded protein balance (OEB) were determined by nylon bag incubations in the rumen and the intestines of cannulated cows. Additional chemical parameters like acid-detergent insoluble CP (ADICP), protein solubility in water, in borate-phosphate buffer and in pepsin-HCl, in vitro digestibility (cellulase, protease, rumen fluid) and colour scores (L*, a*, b*) were evaluated as potential predictors of the energy and protein value. Compared to wheat DDGS (WDDGS), maize DDGS (MDDGS) had a higher NEL-value (8.49 v. 7.38 MJ/kg DM), a higher DVE-content (216 v. 198 g/kg DM) and a lower OEB-value (14 v. 66 g/kg DM). The higher energy value of MDDGS was mainly due to the higher crude fat (CFA) content (145 v. 76 g/kg DM) and also to better digestible cell-walls, whereas the higher protein value was mainly due to the higher percentage of rumen bypass protein (RBP: 69.8 v. 55.6%). The NEL-value of blend DDGS (BDDGS) was in between that of the pure DDGS-types, whereas its DVE-value was similar to MDDGS. Although lower in CP and total AAs, MDDGS provided a similar amount of essential AAs as the other DDGS-types. Lysine content was most reduced in the production of WDDGS and cysteine in MDDGS. Fat content explained 68.6% of the variation in NEL, with hemicellulose and crude ash as extra explaining variables. The best predictor for RBP as well as for OEB was the protein solubility in pepsin-HCl (R 2=77.3% and 83.5%). Intestinal digestibility of RBP could best be predicted by ADF (R 3=73.6%) and the combination of CFA and NDF could explain 60.2% of the variation in the content of absorbable microbial protein. The availability of

  2. Sensitivity, specificity, predictive value and accuracy of ultrasonography in pregnancy rate prediction in Sahelian goats after progesterone impregnated sponge synchronization

    Directory of Open Access Journals (Sweden)

    Justin Kouamo

    2014-09-01

    Full Text Available Aim: This study was aimed to evaluate the sensitivity, specificity, predictive value and accuracy of ultrasonography in pregnancy rate (PR prediction in Sahelian goats after progesterone impregnated sponge synchronization within the framework of caprine artificial insemination (AI program in Fatick (Senegal. Materials and Methods: Of 193 candidate goats in AI program, 167 were selected (day 50 in six villages. Estrus was synchronized by progesterone impregnated sponges installed for 11 days. Two days before the time of sponge removal (day 4, each goat was treated with 500 IU of equine chorionic gonadotropin and 50 μg of dcloprostenol. All goats were inseminated (day 0 with alpine goat semen from France at 45±3 h after sponge removal (day 2. Real-time B-mode ultrasonography was performed at day 50, day 13, day 0, day 40 and day 60 post-AI. Results: Selection rate, estrus response rate, AI rate, PR at days 40 and days 60 were 86.53%; 71.85%; 83.34%; 51% and 68% (p<0.05 respectively. Value of sensitivity, specificity, positive and negative predictive value, accuracy, total conformity, conformity of correct positive, conformity of correct negative and discordance of pregnancy diagnosis by trans-abdominal ultrasonography (TU were 98.03%; 63.26%; 73.52%; 3.12%; 81%; 81%; 50%; 31% and 19%, respectively. Conclusion: These results indicate that the TU can be performed in goats under traditional condition and emphasized the importance of re-examination of goats with negative or doubtful TU diagnoses performed at day 40 post-AI.

  3. Can pretreatment ADC values predict recurrence of bladder cancer after transurethral resection?

    Energy Technology Data Exchange (ETDEWEB)

    Funatsu, Hiroyuki, E-mail: hirofunatsu999@hotmail.com [Division of Diagnostic Imaging, Chiba Cancer Center, 666-2 Nitona-cho, Chuo-ku, Chiba 260-8717 (Japan); Imamura, Akihiro; Takano, Hideyuki [Division of Diagnostic Imaging, Chiba Cancer Center, 666-2 Nitona-cho, Chuo-ku, Chiba 260-8717 (Japan); Ueda, Takeshi [Division of Urology, Chiba Cancer Center, 666-2 Nitona-cho, Chuo-ku, Chiba 260-8717 (Japan); Uno, Takashi [Department of Radiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba 260-8670 (Japan)

    2012-11-15

    Objective: The aim of this retrospective study was to investigate the association between the pretreatment apparent diffusion coefficient (ADC) value and recurrence of bladder cancer after transurethral resection. Methods: Patients with superficial bladder cancer were identified. Mean ADC values of the tumors were compared between patients with and without recurrence following trans-urethral resection. A receiver-operator characteristic curve was used for determining the optimal cutoff ADC value. Univariate and multivariate analyses were used to determine the effect of ADC values and other factors. Results: With a mean follow-up period of 25 months, bladder cancer recurred in 14 of 44 patients (32%). The mean ADC value of tumors in patients with recurrence was lower than in those without recurrence (1.08 mm{sup 2}/s vs. 1.28 Multiplication-Sign 10{sup -3} mm{sup 2}/s; p = 0.003). The optimal cutoff ADC value for predicting recurrence was determined to be 1.12 Multiplication-Sign 10{sup -3} mm{sup 2}/s. A modest and significant negative correlation was observed between the ADC values and tumor size (r = -0.436, p = 0.008). After adjustment for size and risk groups, an ADC value equal to or less than the optimal cutoff remained a significant predictor of recurrence (odds ratio 6.3, 95% CI 1.23-32.2, p = 0.027). Conclusion: Pretreatment ADC values may be an independent predictor of bladder cancer recurrence.

  4. Can pretreatment ADC values predict recurrence of bladder cancer after transurethral resection?

    International Nuclear Information System (INIS)

    Funatsu, Hiroyuki; Imamura, Akihiro; Takano, Hideyuki; Ueda, Takeshi; Uno, Takashi

    2012-01-01

    Objective: The aim of this retrospective study was to investigate the association between the pretreatment apparent diffusion coefficient (ADC) value and recurrence of bladder cancer after transurethral resection. Methods: Patients with superficial bladder cancer were identified. Mean ADC values of the tumors were compared between patients with and without recurrence following trans-urethral resection. A receiver–operator characteristic curve was used for determining the optimal cutoff ADC value. Univariate and multivariate analyses were used to determine the effect of ADC values and other factors. Results: With a mean follow-up period of 25 months, bladder cancer recurred in 14 of 44 patients (32%). The mean ADC value of tumors in patients with recurrence was lower than in those without recurrence (1.08 mm 2 /s vs. 1.28 × 10 −3 mm 2 /s; p = 0.003). The optimal cutoff ADC value for predicting recurrence was determined to be 1.12 × 10 −3 mm 2 /s. A modest and significant negative correlation was observed between the ADC values and tumor size (r = −0.436, p = 0.008). After adjustment for size and risk groups, an ADC value equal to or less than the optimal cutoff remained a significant predictor of recurrence (odds ratio 6.3, 95% CI 1.23–32.2, p = 0.027). Conclusion: Pretreatment ADC values may be an independent predictor of bladder cancer recurrence.

  5. Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour 'rules'

    Directory of Open Access Journals (Sweden)

    Snowdon Stuart

    2009-07-01

    Full Text Available Abstract Background Metabolomics experiments using Mass Spectrometry (MS technology measure the mass to charge ratio (m/z and intensity of ionised molecules in crude extracts of complex biological samples to generate high dimensional metabolite 'fingerprint' or metabolite 'profile' data. High resolution MS instruments perform routinely with a mass accuracy of Results Metabolite 'structures' harvested from publicly accessible databases were converted into a common format to generate a comprehensive archive in MZedDB. 'Rules' were derived from chemical information that allowed MZedDB to generate a list of adducts and neutral loss fragments putatively able to form for each structure and calculate, on the fly, the exact molecular weight of every potential ionisation product to provide targets for annotation searches based on accurate mass. We demonstrate that data matrices representing populations of ionisation products generated from different biological matrices contain a large proportion (sometimes > 50% of molecular isotopes, salt adducts and neutral loss fragments. Correlation analysis of ESI-MS data features confirmed the predicted relationships of m/z signals. An integrated isotope enumerator in MZedDB allowed verification of exact isotopic pattern distributions to corroborate experimental data. Conclusion We conclude that although ultra-high accurate mass instruments provide major insight into the chemical diversity of biological extracts, the facile annotation of a large proportion of signals is not possible by simple, automated query of current databases using computed molecular formulae. Parameterising MZedDB to take into account predicted ionisation behaviour and the biological source of any sample improves greatly both the frequency and accuracy of potential annotation 'hits' in ESI-MS data.

  6. PredictSNP2: A Unified Platform for Accurately Evaluating SNP Effects by Exploiting the Different Characteristics of Variants in Distinct Genomic Regions.

    Science.gov (United States)

    Bendl, Jaroslav; Musil, Miloš; Štourač, Jan; Zendulka, Jaroslav; Damborský, Jiří; Brezovský, Jan

    2016-05-01

    An important message taken from human genome sequencing projects is that the human population exhibits approximately 99.9% genetic similarity. Variations in the remaining parts of the genome determine our identity, trace our history and reveal our heritage. The precise delineation of phenotypically causal variants plays a key role in providing accurate personalized diagnosis, prognosis, and treatment of inherited diseases. Several computational methods for achieving such delineation have been reported recently. However, their ability to pinpoint potentially deleterious variants is limited by the fact that their mechanisms of prediction do not account for the existence of different categories of variants. Consequently, their output is biased towards the variant categories that are most strongly represented in the variant databases. Moreover, most such methods provide numeric scores but not binary predictions of the deleteriousness of variants or confidence scores that would be more easily understood by users. We have constructed three datasets covering different types of disease-related variants, which were divided across five categories: (i) regulatory, (ii) splicing, (iii) missense, (iv) synonymous, and (v) nonsense variants. These datasets were used to develop category-optimal decision thresholds and to evaluate six tools for variant prioritization: CADD, DANN, FATHMM, FitCons, FunSeq2 and GWAVA. This evaluation revealed some important advantages of the category-based approach. The results obtained with the five best-performing tools were then combined into a consensus score. Additional comparative analyses showed that in the case of missense variations, protein-based predictors perform better than DNA sequence-based predictors. A user-friendly web interface was developed that provides easy access to the five tools' predictions, and their consensus scores, in a user-understandable format tailored to the specific features of different categories of variations. To

  7. Predictive value of sperm morphology and progressively motile sperm count for pregnancy outcomes in intrauterine insemination.

    Science.gov (United States)

    Lemmens, Louise; Kos, Snjezana; Beijer, Cornelis; Brinkman, Jacoline W; van der Horst, Frans A L; van den Hoven, Leonie; Kieslinger, Dorit C; van Trooyen-van Vrouwerff, Netty J; Wolthuis, Albert; Hendriks, Jan C M; Wetzels, Alex M M

    2016-06-01

    To investigate the value of sperm parameters to predict an ongoing pregnancy outcome in couples treated with intrauterine insemination (IUI), during a methodologically stable period of time. Retrospective, observational study with logistic regression analyses. University hospital. A total of 1,166 couples visiting the fertility laboratory for their first IUI episode, including 4,251 IUI cycles. None. Sperm morphology, total progressively motile sperm count (TPMSC), and number of inseminated progressively motile spermatozoa (NIPMS); odds ratios (ORs) of the sperm parameters after the first IUI cycle and the first finished IUI episode; discriminatory accuracy of the multivariable model. None of the sperm parameters was of predictive value for pregnancy after the first IUI cycle. In the first finished IUI episode, a positive relationship was found for ≤4% of morphologically normal spermatozoa (OR 1.39) and a moderate NIPMS (5-10 million; OR 1.73). Low NIPMS showed a negative relation (≤1 million; OR 0.42). The TPMSC had no predictive value. The multivariable model (i.e., sperm morphology, NIPMS, female age, male age, and the number of cycles in the episode) had a moderate discriminatory accuracy (area under the curve 0.73). Intrauterine insemination is especially relevant for couples with moderate male factor infertility (sperm morphology ≤4%, NIPMS 5-10 million). In the multivariable model, however, the predictive power of these sperm parameters is rather low. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  8. Cardiovascular disease prediction: do pulmonary disease-related chest CT features have added value?

    International Nuclear Information System (INIS)

    Jairam, Pushpa M.; Jong, Pim A. de; Mali, Willem P.T.M.; Isgum, Ivana; Graaf, Yolanda van der

    2015-01-01

    Certain pulmonary diseases are associated with cardiovascular disease (CVD). Therefore we investigated the incremental predictive value of pulmonary, mediastinal and pleural features over cardiovascular imaging findings. A total of 10,410 patients underwent diagnostic chest CT for non-cardiovascular indications. Using a case-cohort approach, we visually graded CTs from the cases and from an approximately 10 % random sample of the baseline cohort (n = 1,203) for cardiovascular, pulmonary, mediastinal and pleural findings. The incremental value of pulmonary disease-related CT findings above cardiovascular imaging findings in cardiovascular event risk prediction was quantified by comparing discrimination and reclassification. During a mean follow-up of 3.7 years (max. 7.0 years), 1,148 CVD events (cases) were identified. Addition of pulmonary, mediastinal and pleural features to a cardiovascular imaging findings-based prediction model led to marginal improvement of discrimination (increase in c-index from 0.72 (95 % CI 0.71-0.74) to 0.74 (95 % CI 0.72-0.75)) and reclassification measures (net reclassification index 6.5 % (p < 0.01)). Pulmonary, mediastinal and pleural features have limited predictive value in the identification of subjects at high risk of CVD events beyond cardiovascular findings on diagnostic chest CT scans. (orig.)

  9. Cardiovascular disease prediction: do pulmonary disease-related chest CT features have added value?

    Energy Technology Data Exchange (ETDEWEB)

    Jairam, Pushpa M. [University Medical Center Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht (Netherlands); University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Jong, Pim A. de; Mali, Willem P.T.M. [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Isgum, Ivana [University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands); Graaf, Yolanda van der [University Medical Center Utrecht, Julius Center for Health Sciences and Primary Care, Utrecht (Netherlands); Collaboration: PROVIDI study-group

    2015-06-01

    Certain pulmonary diseases are associated with cardiovascular disease (CVD). Therefore we investigated the incremental predictive value of pulmonary, mediastinal and pleural features over cardiovascular imaging findings. A total of 10,410 patients underwent diagnostic chest CT for non-cardiovascular indications. Using a case-cohort approach, we visually graded CTs from the cases and from an approximately 10 % random sample of the baseline cohort (n = 1,203) for cardiovascular, pulmonary, mediastinal and pleural findings. The incremental value of pulmonary disease-related CT findings above cardiovascular imaging findings in cardiovascular event risk prediction was quantified by comparing discrimination and reclassification. During a mean follow-up of 3.7 years (max. 7.0 years), 1,148 CVD events (cases) were identified. Addition of pulmonary, mediastinal and pleural features to a cardiovascular imaging findings-based prediction model led to marginal improvement of discrimination (increase in c-index from 0.72 (95 % CI 0.71-0.74) to 0.74 (95 % CI 0.72-0.75)) and reclassification measures (net reclassification index 6.5 % (p < 0.01)). Pulmonary, mediastinal and pleural features have limited predictive value in the identification of subjects at high risk of CVD events beyond cardiovascular findings on diagnostic chest CT scans. (orig.)

  10. Angiogenic Markers Predict Pregnancy Complications and Prolongation in Preeclampsia: Continuous Versus Cutoff Values.

    Science.gov (United States)

    Saleh, Langeza; Vergouwe, Yvonne; van den Meiracker, Anton H; Verdonk, Koen; Russcher, Henk; Bremer, Henk A; Versendaal, Hans J; Steegers, Eric A P; Danser, A H Jan; Visser, Willy

    2017-11-01

    To assess the incremental value of a single determination of the serum levels of sFlt-1 (soluble Fms-like tyrosine kinase 1) and PlGF (placental growth factor) or their ratio, without using cutoff values, for the prediction of maternal and fetal/neonatal complications and pregnancy prolongation, 620 women with suspected/confirmed preeclampsia, aged 18 to 48 years, were included in a prospective, multicenter, observational cohort study. Women had singleton pregnancies and a median pregnancy duration of 34 (range, 20-41) weeks. Complications occurred in 118 women and 248 fetuses. The median duration between admission and delivery was 12 days. To predict prolongation, PlGF showed the highest incremental value ( R 2 =0.72) on top of traditional predictors (gestational age at inclusion, diastolic blood pressure, proteinuria, creatinine, uric acid, alanine transaminase, lactate dehydrogenase, and platelets) compared with R 2 =0.53 for the traditional predictors only. sFlt-1 showed the highest value to discriminate women with and without maternal complications (C-index=0.83 versus 0.72 for the traditional predictors only), and the sFlt-1/PlGF ratio showed the highest value to discriminate fetal/neonatal complications (C-index=0.86 versus 0.78 for the traditional predictors only). Applying previously suggested cutoff values for the sFlt-1/PlGF ratio yielded lower incremental values than applying continuous values. In conclusion, sFlt-1 and PlGF are strong and independent predictors for days until delivery along with maternal and fetal/neonatal complications on top of the traditional criteria. Their use as continuous variables (instead of applying cutoff values for different gestational ages) should now be tested in a prospective manner, making use of an algorithm calculating the risk of an individual woman with suspected/confirmed preeclampsia to develop complications. © 2017 American Heart Association, Inc.

  11. Predictive value of brain perfusion SPECT for rTMS response in pharmacoresistant depression

    Energy Technology Data Exchange (ETDEWEB)

    Richieri, Raphaelle; Lancon, Christophe [Sainte-Marguerite University Hospital, Department of Psychiatry, Marseille (France); La Timone University, EA 3279 - Self-perceived Health Assessment Research Unit, School of Medicine, Marseille (France); Boyer, Laurent [La Timone University, EA 3279 - Self-perceived Health Assessment Research Unit, School of Medicine, Marseille (France); La Timone University Hospital, Assistance Publique - Hopitaux de Marseille, Department of Public Health, Marseille (France); Farisse, Jean [Sainte-Marguerite University Hospital, Department of Psychiatry, Marseille (France); Colavolpe, Cecile; Mundler, Olivier [La Timone University Hospital, Assistance Publique - Hopitaux de Marseille, Service Central de Biophysique et Medecine Nucleaire, Marseille (France); Universite de la Mediterranee, Centre Europeen de Recherche en Imagerie Medicale (CERIMED), Marseille (France); Guedj, Eric [La Timone University Hospital, Assistance Publique - Hopitaux de Marseille, Service Central de Biophysique et Medecine Nucleaire, Marseille (France); Universite de la Mediterranee, Centre Europeen de Recherche en Imagerie Medicale (CERIMED), Marseille (France); Hopital de la Timone, Service Central de Biophysique et de Medecine Nucleaire, Marseille Cedex 5 (France)

    2011-09-15

    The aim of this study was to determine the predictive value of whole-brain voxel-based regional cerebral blood flow (rCBF) for repetitive transcranial magnetic stimulation (rTMS) response in patients with pharmacoresistant depression. Thirty-three right-handed patients who met DSM-IV criteria for major depressive disorder (unipolar or bipolar depression) were included before rTMS. rTMS response was defined as at least 50% reduction in the baseline Beck Depression Inventory scores. The predictive value of {sup 99m}Tc-ethyl cysteinate dimer (ECD) single photon emission computed tomography (SPECT) for rTMS response was studied before treatment by comparing rTMS responders to non-responders at voxel level using Statistical Parametric Mapping (SPM) (p < 0.001, uncorrected). Of the patients, 18 (54.5%) were responders to rTMS and 15 were non-responders (45.5%). There were no statistically significant differences in demographic and clinical characteristics (p > 0.10). In comparison to responders, non-responders showed significant hypoperfusions (p < 0.001, uncorrected) in the left medial and bilateral superior frontal cortices (BA10), the left uncus/parahippocampal cortex (BA20/BA35) and the right thalamus. The area under the curve for the combination of SPECT clusters to predict rTMS response was 0.89 (p < 0.001). Sensitivity, specificity, positive predictive value and negative predictive value for the combination of clusters were: 94, 73, 81 and 92%, respectively. This study shows that, in pharmacoresistant depression, pretreatment rCBF of specific brain regions is a strong predictor for response to rTMS in patients with homogeneous demographic/clinical features. (orig.)

  12. Differential encoding of factors influencing predicted reward value in monkey rostral anterior cingulate cortex.

    Science.gov (United States)

    Toda, Koji; Sugase-Miyamoto, Yasuko; Mizuhiki, Takashi; Inaba, Kiyonori; Richmond, Barry J; Shidara, Munetaka

    2012-01-01

    The value of a predicted reward can be estimated based on the conjunction of both the intrinsic reward value and the length of time to obtain it. The question we addressed is how the two aspects, reward size and proximity to reward, influence the responses of neurons in rostral anterior cingulate cortex (rACC), a brain region thought to play an important role in reward processing. We recorded from single neurons while two monkeys performed a multi-trial reward schedule task. The monkeys performed 1-4 sequential color discrimination trials to obtain a reward of 1-3 liquid drops. There were two task conditions, a valid cue condition, where the number of trials and reward amount were associated with visual cues, and a random cue condition, where the cue was picked from the cue set at random. In the valid cue condition, the neuronal firing is strongly modulated by the predicted reward proximity during the trials. Information about the predicted reward amount is almost absent at those times. In substantial subpopulations, the neuronal responses decreased or increased gradually through schedule progress to the predicted outcome. These two gradually modulating signals could be used to calculate the effect of time on the perception of reward value. In the random cue condition, little information about the reward proximity or reward amount is encoded during the course of the trial before reward delivery, but when the reward is actually delivered the responses reflect both the reward proximity and reward amount. Our results suggest that the rACC neurons encode information about reward proximity and amount in a manner that is dependent on utility of reward information. The manner in which the information is represented could be used in the moment-to-moment calculation of the effect of time and amount on predicted outcome value.

  13. Comparative values of medical school assessments in the prediction of internship performance.

    Science.gov (United States)

    Lee, Ming; Vermillion, Michelle

    2018-02-01

    Multiple undergraduate achievements have been used for graduate admission consideration. Their relative values in the prediction of residency performance are not clear. This study compared the contributions of major undergraduate assessments to the prediction of internship performance. Internship performance ratings of the graduates of a medical school were collected from 2012 to 2015. Hierarchical multiple regression analyses were used to examine the predictive values of undergraduate measures assessing basic and clinical sciences knowledge and clinical performances, after controlling for differences in the Medical College Admission Test (MCAT). Four hundred eighty (75%) graduates' archived data were used in the study. Analyses revealed that clinical competencies, assessed by the USMLE Step 2 CK, NBME medicine exam, and an eight-station objective structured clinical examination (OSCE), were strong predictors of internship performance. Neither the USMLE Step 1 nor the inpatient internal medicine clerkship evaluation predicted internship performance. The undergraduate assessments as a whole showed a significant collective relationship with internship performance (ΔR 2  = 0.12, p < 0.001). The study supports the use of clinical competency assessments, instead of pre-clinical measures, in graduate admission consideration. It also provides validity evidence for OSCE scores in the prediction of workplace performance.

  14. Hemostatic system changes predictive value in patients with ischemic brain disorders

    Directory of Open Access Journals (Sweden)

    Raičević Ranko

    2002-01-01

    Full Text Available The aim of this research was to determine the importance of tracking the dynamics of changes of the hemostatic system factors (aggregation of thrombocytes, D-dimer, PAI-1, antithrombin III, protein C and protein S, factor VII and factor VIII, fibrin degradation products, euglobulin test and the activated partial thromboplastin time – aPTPV in relation to the level of the severity of ischemic brain disorders (IBD and the level of neurological and functional deficiency in the beginning of IBD manifestation from 7 to 10 days, 19 to 21 day, and after 3 to 6 months. The research results confirmed significant predictive value of changes of hemostatic system with the predomination of procoagulant factors, together with the insufficiency of fibrinolysis. Concerning the IBD severity and it's outcome, the significant predictive value was shown in the higher levels of PAI-1 and the lower level of antithrombin III, and borderline significant value was shown in the accelerated aggregation of thrombocytes and the increased concentration of D-dimer. It could be concluded that the tracking of the dynamics of changes in parameters of hemostatic system proved to be an easily accessible method with the significant predictive value regarding the development of more severe. IBD cases and the outcome of the disease itself.

  15. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.

    Science.gov (United States)

    Nakatsuji, Hiroshi

    2012-09-18

    Just as Newtonian law governs classical physics, the Schrödinger equation (SE) and the relativistic Dirac equation (DE) rule the world of chemistry. So, if we can solve these equations accurately, we can use computation to predict chemistry precisely. However, for approximately 80 years after the discovery of these equations, chemists believed that they could not solve SE and DE for atoms and molecules that included many electrons. This Account reviews ideas developed over the past decade to further the goal of predictive quantum chemistry. Between 2000 and 2005, I discovered a general method of solving the SE and DE accurately. As a first inspiration, I formulated the structure of the exact wave function of the SE in a compact mathematical form. The explicit inclusion of the exact wave function's structure within the variational space allows for the calculation of the exact wave function as a solution of the variational method. Although this process sounds almost impossible, it is indeed possible, and I have published several formulations and applied them to solve the full configuration interaction (CI) with a very small number of variables. However, when I examined analytical solutions for atoms and molecules, the Hamiltonian integrals in their secular equations diverged. This singularity problem occurred in all atoms and molecules because it originates from the singularity of the Coulomb potential in their Hamiltonians. To overcome this problem, I first introduced the inverse SE and then the scaled SE. The latter simpler idea led to immediate and surprisingly accurate solution for the SEs of the hydrogen atom, helium atom, and hydrogen molecule. The free complement (FC) method, also called the free iterative CI (free ICI) method, was efficient for solving the SEs. In the FC method, the basis functions that span the exact wave function are produced by the Hamiltonian of the system and the zeroth-order wave function. These basis functions are called complement

  16. Developing risk prediction models for kidney injury and assessing incremental value for novel biomarkers.

    Science.gov (United States)

    Kerr, Kathleen F; Meisner, Allison; Thiessen-Philbrook, Heather; Coca, Steven G; Parikh, Chirag R

    2014-08-07

    The field of nephrology is actively involved in developing biomarkers and improving models for predicting patients' risks of AKI and CKD and their outcomes. However, some important aspects of evaluating biomarkers and risk models are not widely appreciated, and statistical methods are still evolving. This review describes some of the most important statistical concepts for this area of research and identifies common pitfalls. Particular attention is paid to metrics proposed within the last 5 years for quantifying the incremental predictive value of a new biomarker. Copyright © 2014 by the American Society of Nephrology.

  17. Predictive value of the transtheoretical model to smoking cessation in hospitalized patients with cardiovascular disease.

    Science.gov (United States)

    Chouinard, Maud-Christine; Robichaud-Ekstrand, Sylvie

    2007-02-01

    Several authors have questioned the transtheoretical model. Determining the predictive value of each cognitive-behavioural element within this model could explain the multiple successes reported in smoking cessation programmes. The purpose of this study was to predict point-prevalent smoking abstinence at 2 and 6 months, using the constructs of the transtheoretical model, when applied to a pooled sample of individuals who were hospitalized for a cardiovascular event. The study follows a predictive correlation design. Recently hospitalized patients (n=168) with cardiovascular disease were pooled from a randomized, controlled trial. Independent variables of the predictive transtheoretical model comprise stages and processes of change, pros and cons to quit smoking (decisional balance), self-efficacy, and social support. These were evaluated at baseline, 2 and 6 months. Compared to smokers, individuals who abstained from smoking at 2 and 6 months were more confident at baseline to remain non-smokers, perceived less pros and cons to continue smoking, utilized less consciousness raising and self-re-evaluation experiential processes of change, and received more positive reinforcement from their social network with regard to their smoke-free behaviour. Self-efficacy and stages of change at baseline were predictive of smoking abstinence after 6 months. Other variables found to be predictive of smoking abstinence at 6 months were an increase in self-efficacy; an increase in positive social support behaviour and a decrease of the pros within the decisional balance. The results partially support the predictive value of the transtheoretical model constructs in smoking cessation for cardiovascular disease patients.

  18. Ethnic differences in antepartum glucose values that predict postpartum dysglycemia and neonatal macrosomia.

    Science.gov (United States)

    Ajala, Olubukola; Chik, Constance

    2018-03-31

    Gestational diabetes (GDM) occurs more often in women from certain ethnic groups and is also associated with fetal macrosomia. In this study, we investigated the ability of a gestational diabetes screening test (GDS), the 2 h 75 g-Oral Glucose Tolerance Test (OGTT), and glycated hemoglobin (HbA1c) in predicting postpartum dysglycemia and fetal macrosomia in women of Caucasian, Filipino, Chinese and South-Asian descent. 848 women diagnosed with carbohydrate intolerance in pregnancy who completed a 2 h 75 g- OGTT within 6 months postpartum, were included in the study. Receiver Operating Characteristic curve analysis was used to test the ability of antepartum GDS, HbA1c and OGTT in predicting postpartum hyperglycemia, type 2 diabetes (T2D) and neonatal macrosomia (birth weight >4000 g). 20.2% had postpartum hyperglycemia while 3.8% had T2D. Those with postpartum dysglycemia were more likely to be non-Caucasian (South-Asian > Filipino > Chinese), have higher antepartum glucose values, require insulin during pregnancy and have cesarean births. Of HbA1c and the antepartum glucose values, a fasting glucose of ≥5.25 mmol/L was predictive of fetal macrosomia in Caucasians. 1 h glucose of ≥11.05 mmol/L was predictive of postpartum hyperglycemia, while 2 h glucose of ≥9.75 mmol/L was predictive of T2D; ethnicity influenced the predictive ability of these tests. Ethnicity influences the ability of antepartum glucose and HbA1c to predict the risk of macrosomia and postpartum dysglycemia. This information will help detect those most at risk of T2D. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. [Prediction of SPAD value in oilseed rape leaves using hyperspectral imaging technique].

    Science.gov (United States)

    Ding, Xi-bin; Liu, Fei; Zhang, Chu; He, Yong

    2015-02-01

    In the present work, prediction models of SPAD value (Soil and Plant Analyzer Development, often used as a parameter to indicate chlorophyll content) in oilseed rape leaves were successfully built using hyperspectral imaging technique. The hy perspectral images of 160 oilseed rape leaf samples in the spectral range of 380-1030 nm were acquired. Average spectrum was extracted from the region of interest (ROI) of each sample. We chose spectral data in the spectral range of 500-900 nm for analysis. Using Monte Carlo partial least squares(MC-PLS) algorithm, 13 samples were identified as outliers and eliminated. Based on the spectral information and measured SPAD values of the rest 147 samples, several estimation models have been built based on different parameters using different algorithms for comparison, including: (1) a SPAD value estimation model based on partial least squares(PLS) in the whole wavelength region of 500-900 nm; (2) a SPAD value estimation model based on successive projections algorithmcombined with PLS(SPA-PLS); (3) 4 kind of simple experience SPAD value estimation models in which red edge position was used as an argument; (4) 4 kind of simple experience SPAD value estimation models in which three vegetation indexes R710/R760, (R750-R705)/(R750-R705) and R860/(R550 x R708), which all have been proved to have a good relevance with chlorophyll content, were used as an argument respectively; (5) a SPAD value estimation model based on PLS using the 3 vegetation indexes mentioned above. The results indicate that the optimal prediction performance is achieved by PLS model in the whole wavelength region of 500-900 nm, which has a correlation coefficient(r(p)) of 0.8339 and a root mean squares error of predicted (RMSEP) of 1.52. The SPA-PLS model can provide avery close prediction result while the calibration computation has been significantly reduced and the calibration speed has been accelerated sharply. For simple experience models based on red edge

  20. Prognostic value of tumor size in patients with remnant gastric cancer: is the seventh UICC stage sufficient for predicting prognosis?

    Directory of Open Access Journals (Sweden)

    Jun Lu

    Full Text Available The 7th UICC N stage may be unsuitable for remnant gastric cancer (RGC because the original disease and previous operation usually cause abnormal lymphatic drainage. However, the prognostic significance of the current TNM staging system in RGC has not been studied.Prospective data from 153 RGC patients who underwent curative gastrectomy from Jan 1995 to Aug 2009 were reviewed. All patients were classified according to tumor size (3&≤5 cm as N1;>5&≤7 cm as N2; and>7 cm as N3. The overall survival was estimated using the Kaplan-Meier method, and hazard ratios (HRs were calculated using the Cox proportional hazard model.Tumor sizes ranged from 1.0 to 15.0 cm (median 5.0 cm. Tumor size, depth of invasion and lymph node (LN metastasis were significant prognostic factors based on both the univariate and multivariate analyses (P<0.05. In the survival analysis, the seventh edition UICC-TNM classification provided a detailed classification; however, some subgroups of the UICC-TNM classification did not have significantly different survival rates. The combination of the seventh edition T classification and the suggested N classification, with ideal relative risk (RR results and P value, was distinctive for subgrouping the survival rates except for the IA versus IB and II A versus IIB. A modified staging system based on tumor size, predicted survival more accurately than the conventional TNM staging system.In RGCs, tumor size is an independent prognostic factor and a modified TNM system based on tumor size accurately predicts survival.

  1. Normal Tissue Complication Probability Estimation by the Lyman-Kutcher-Burman Method Does Not Accurately Predict Spinal Cord Tolerance to Stereotactic Radiosurgery

    International Nuclear Information System (INIS)

    Daly, Megan E.; Luxton, Gary; Choi, Clara Y.H.; Gibbs, Iris C.; Chang, Steven D.; Adler, John R.; Soltys, Scott G.

    2012-01-01

    Purpose: To determine whether normal tissue complication probability (NTCP) analyses of the human spinal cord by use of the Lyman-Kutcher-Burman (LKB) model, supplemented by linear–quadratic modeling to account for the effect of fractionation, predict the risk of myelopathy from stereotactic radiosurgery (SRS). Methods and Materials: From November 2001 to July 2008, 24 spinal hemangioblastomas in 17 patients were treated with SRS. Of the tumors, 17 received 1 fraction with a median dose of 20 Gy (range, 18–30 Gy) and 7 received 20 to 25 Gy in 2 or 3 sessions, with cord maximum doses of 22.7 Gy (range, 17.8–30.9 Gy) and 22.0 Gy (range, 20.2–26.6 Gy), respectively. By use of conventional values for α/β, volume parameter n, 50% complication probability dose TD 50 , and inverse slope parameter m, a computationally simplified implementation of the LKB model was used to calculate the biologically equivalent uniform dose and NTCP for each treatment. Exploratory calculations were performed with alternate values of α/β and n. Results: In this study 1 case (4%) of myelopathy occurred. The LKB model using radiobiological parameters from Emami and the logistic model with parameters from Schultheiss overestimated complication rates, predicting 13 complications (54%) and 18 complications (75%), respectively. An increase in the volume parameter (n), to assume greater parallel organization, improved the predictive value of the models. Maximum-likelihood LKB fitting of α/β and n yielded better predictions (0.7 complications), with n = 0.023 and α/β = 17.8 Gy. Conclusions: The spinal cord tolerance to the dosimetry of SRS is higher than predicted by the LKB model using any set of accepted parameters. Only a high α/β value in the LKB model and only a large volume effect in the logistic model with Schultheiss data could explain the low number of complications observed. This finding emphasizes that radiobiological models traditionally used to estimate spinal cord NTCP

  2. Genome-Scale Metabolic Model for the Green Alga Chlorella vulgaris UTEX 395 Accurately Predicts Phenotypes under Autotrophic, Heterotrophic, and Mixotrophic Growth Conditions.

    Science.gov (United States)

    Zuñiga, Cristal; Li, Chien-Ting; Huelsman, Tyler; Levering, Jennifer; Zielinski, Daniel C; McConnell, Brian O; Long, Christopher P; Knoshaug, Eric P; Guarnieri, Michael T; Antoniewicz, Maciek R; Betenbaugh, Michael J; Zengler, Karsten

    2016-09-01

    The green microalga Chlorella vulgaris has been widely recognized as a promising candidate for biofuel production due to its ability to store high lipid content and its natural metabolic versatility. Compartmentalized genome-scale metabolic models constructed from genome sequences enable quantitative insight into the transport and metabolism of compounds within a target organism. These metabolic models have long been utilized to generate optimized design strategies for an improved production process. Here, we describe the reconstruction, validation, and application of a genome-scale metabolic model for C. vulgaris UTEX 395, iCZ843. The reconstruction represents the most comprehensive model for any eukaryotic photosynthetic organism to date, based on the genome size and number of genes in the reconstruction. The highly curated model accurately predicts phenotypes under photoautotrophic, heterotrophic, and mixotrophic conditions. The model was validated against experimental data and lays the foundation for model-driven strain design and medium alteration to improve yield. Calculated flux distributions under different trophic conditions show that a number of key pathways are affected by nitrogen starvation conditions, including central carbon metabolism and amino acid, nucleotide, and pigment biosynthetic pathways. Furthermore, model prediction of growth rates under various medium compositions and subsequent experimental validation showed an increased growth rate with the addition of tryptophan and methionine. © 2016 American Society of Plant Biologists. All rights reserved.

  3. Genome-Scale Metabolic Model for the Green Alga Chlorella vulgaris UTEX 395 Accurately Predicts Phenotypes under Autotrophic, Heterotrophic, and Mixotrophic Growth Conditions1

    Science.gov (United States)

    Zuñiga, Cristal; Li, Chien-Ting; Zielinski, Daniel C.; Guarnieri, Michael T.; Antoniewicz, Maciek R.; Zengler, Karsten

    2016-01-01

    The green microalga Chlorella vulgaris has been widely recognized as a promising candidate for biofuel production due to its ability to store high lipid content and its natural metabolic versatility. Compartmentalized genome-scale metabolic models constructed from genome sequences enable quantitative insight into the transport and metabolism of compounds within a target organism. These metabolic models have long been utilized to generate optimized design strategies for an improved production process. Here, we describe the reconstruction, validation, and application of a genome-scale metabolic model for C. vulgaris UTEX 395, iCZ843. The reconstruction represents the most comprehensive model for any eukaryotic photosynthetic organism to date, based on the genome size and number of genes in the reconstruction. The highly curated model accurately predicts phenotypes under photoautotrophic, heterotrophic, and mixotrophic conditions. The model was validated against experimental data and lays the foundation for model-driven strain design and medium alteration to improve yield. Calculated flux distributions under different trophic conditions show that a number of key pathways are affected by nitrogen starvation conditions, including central carbon metabolism and amino acid, nucleotide, and pigment biosynthetic pathways. Furthermore, model prediction of growth rates under various medium compositions and subsequent experimental validation showed an increased growth rate with the addition of tryptophan and methionine. PMID:27372244

  4. Improved predictive modeling of white LEDs with accurate luminescence simulation and practical inputs with TracePro opto-mechanical design software

    Science.gov (United States)

    Tsao, Chao-hsi; Freniere, Edward R.; Smith, Linda

    2009-02-01

    The use of white LEDs for solid-state lighting to address applications in the automotive, architectural and general illumination markets is just emerging. LEDs promise greater energy efficiency and lower maintenance costs. However, there is a significant amount of design and cost optimization to be done while companies continue to improve semiconductor manufacturing processes and begin to apply more efficient and better color rendering luminescent materials such as phosphor and quantum dot nanomaterials. In the last decade, accurate and predictive opto-mechanical software modeling has enabled adherence to performance, consistency, cost, and aesthetic criteria without the cost and time associated with iterative hardware prototyping. More sophisticated models that include simulation of optical phenomenon, such as luminescence, promise to yield designs that are more predictive - giving design engineers and materials scientists more control over the design process to quickly reach optimum performance, manufacturability, and cost criteria. A design case study is presented where first, a phosphor formulation and excitation source are optimized for a white light. The phosphor formulation, the excitation source and other LED components are optically and mechanically modeled and ray traced. Finally, its performance is analyzed. A blue LED source is characterized by its relative spectral power distribution and angular intensity distribution. YAG:Ce phosphor is characterized by relative absorption, excitation and emission spectra, quantum efficiency and bulk absorption coefficient. Bulk scatter properties are characterized by wavelength dependent scatter coefficients, anisotropy and bulk absorption coefficient.

  5. Sensation and perception of sucrose and fat stimuli predict the reinforcing value of food.

    Science.gov (United States)

    Panek-Scarborough, Leah M; Dewey, Amber M; Temple, Jennifer L

    2012-03-20

    Chronic overeating can lead to weight gain and obesity. Sensory system function may play a role in the types of foods people select and the amount of food people eat. Several studies have shown that the orosensory components of eating play a strong role in driving food intake and food selection. In addition, previous work has shown that motivation to get food, or the reinforcing value of food, is a predictor of energy intake. The purpose of this study was to test the hypothesis that higher detection thresholds and lower suprathreshold intensity ratings of sweet and fat stimuli are associated with greater reinforcing value of food. In addition, we sought to determine if the sensory ratings of the stimuli would differ depending on whether they were expectorated or swallowed. The reinforcing value of food was measured by having participants perform operant responses for food on progressive ratio schedules of reinforcement. Taste detection thresholds and suprathresholds for solutions containing varied concentrations of sucrose and fat were also measured in two different Experiments. In Experiment 1, we found that sucrose, but not fat, detection predicted the reinforcing value of food with the reinforcing value of food increasing as sucrose detection threshold increased (indicating poorer detection). In Experiment 2, we found that lower suprathreshold ratings of expectorated fat and sucrose predicted greater reinforcing value of food. In addition, higher detection thresholds for fat stimuli (indicating poorer detection) were associated with greater reinforcing value of food. When taken together, these studies suggest that there is a relationship between taste detection and perception and reinforcing value of food and that these relationships vary based on whether the stimulus is swallowed or expectorated. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Prediction of heating value of straw by proximate data, and near infrared spectroscopy

    International Nuclear Information System (INIS)

    Huang Caijin; Han Lujia; Yang Zengling; Liu Xian

    2008-01-01

    Exploration of straw resources for energy production has been attracting agricultural scientists and engineers for decades. And the heating value of straw has always been the focus when initiating a straw-based biomass energy project. Nevertheless determination of heating values of straw needs delicate and expensive calorimeter, and is time-consuming. It's quite desirable to develop quick and easy model predicting heating values of straw. In this study, we proposed three applicable models, first two are multiple linear regression (MLR) equations by contents of moisture, ash, and volatile matter, the other one is based on the near infrared spectroscopy (NIRS) technology. All the models provide satisfactory estimations of heating values of straw samples. The adjusted determination coefficients for MLR models were 0.9049 and 0.9039, and determination coefficients of calibration for NIRS model was 0.9604; When evaluated on independent validation, the determination coefficients were 0.8595, 0.8524 and 0.8946, respectively. The results indicated that both MLR models and NIRS model have the potential to predict the heating values of straw, while the NIRS model presented better accuracy

  7. Positive predictive value of abnormal mammographic findings and role of assessment procedures

    International Nuclear Information System (INIS)

    Menna, S.; Marra, V.; Di Virgilio, M.R.; Macchia, G.; Frigerio, A.

    1999-01-01

    To investigate the positive predictive value for cancer of abnormal mammographic findings and the role of assessment, the authors reviewed a series of 962 patients recalled and examined in the first breast screening center of Turin (Italy), out of 18996 women aged 50-59 from 1991 to 1995, within a population-based mammography program. The results of this study confirm the accuracy of mammography in the early detection of breast cancer and the different role of assessment procedures in the various abnormal mammographic findings. The improvement in positive predictive value for screening demonstrates the importance of the learning curve within the screening team. Most of this improvement could be referred to refined diagnostic criteria for calcifications [it

  8. Breast calcifications. A standardized mammographic reporting and data system to improve positive predictive value

    International Nuclear Information System (INIS)

    Perugini, G.; Bonzanini, B.; Valentino, C.

    1999-01-01

    The purpose of this work is to investigate the usefulness of a standardized reporting and data system in improving the positive predictive value of mammography in breast calcifications. Using the Breast Imaging Reporting and Data System lexicon developed by the American College of Radiology, it is defined 5 descriptive categories of breast calcifications and classified diagnostic suspicion of malignancy on a 3-grade scale (low, intermediate and high). Two radiologists reviewed 117 mammographic studies selected from those of the patients submitted to surgical biopsy for mammographically detected calcifications from January 1993 to December 1997, and classified them according to the above criteria. The positive predictive value was calculated for all examinations and for the stratified groups. Defining a standardized system for assessing and describing breast calcifications helps improve the diagnostic accuracy of mammography in clinical practice [it

  9. The Prognostic and Predictive Value of Soluble Type IV Collagen in Colorectal Cancer

    DEFF Research Database (Denmark)

    Rolff, Hans Christian; Christensen, Ib Jarle; Vainer, Ben

    2016-01-01

    PURPOSE: To investigate the prognostic and predictive biomarker value of type IV collagen in colorectal cancer. EXPERIMENTAL DESIGN: Retrospective evaluation of two independent cohorts of patients with colorectal cancer included prospectively in 2004-2005 (training set) and 2006-2008 (validation....... RESULTS: High levels of type IV collagen showed independent prognostic significance in both cohorts with hazard ratios (HRs; for a one-unit change on the log base 2 scale) of 2.25 [95% confidence intervals (CIs), 1.78-2.84; P ... and validation set, respectively. The prognostic impact was present both in patients with metastatic and nonmetastatic disease. The predictive value of the marker was investigated in stage II and III patients. In the training set, type IV collagen was prognostic both in the subsets of patients receiving...

  10. Sensitivity, specificity and predictive value of blood cultures from cattle clinically suspected of bacterial endocarditis

    DEFF Research Database (Denmark)

    Houe, Hans; Eriksen, L.; Jungersen, Gregers

    1993-01-01

    This study investigated the number of blood culture-positive cattle among 215 animals clinically suspected of having bacterial endocarditis. For animals that were necropsied, the sensitivity, specificity and predictive value of the diagnosis of endocarditis were calculated on the basis...... of the isolation of the causative bacteria from blood. Furthermore, it was investigated whether the glutaraldehyde coagulation time, total leucocyte count, per cent neutrophil granulocytes, pulse rate and duration of disease could help to discriminate endocarditis from other diseases. Among 138 animals necropsied...... the sensitivity, specificity and predictive value of blood cultivation were 70.7 per cent, 93.8 per cent and 89.1 per cent, respectively. None of the other measurements could be used to discriminate between endocarditis and non-endocarditis cases....

  11. Predictive value of late decelerations for fetal acidemia in unselective low-risk pregnancies.

    Science.gov (United States)

    Sameshima, Hiroshi; Ikenoue, Tsuyomu

    2005-01-01

    We evaluated the clinical significance of late decelerations (LD) of intrapartum fetal heart rate (FHR) monitoring to detect low pH (LD (occasional, 50%; recurrent, > or = 50%) and severity (reduced baseline FHR accelerations and variability) of LD, and low pH (test, and one-way analysis of variance with the Bonferroni/Dunn test. In the 5522 low-risk pregnancies, 301 showed occasional LD and 99 showed recurrent LD. Blood gases and pH values deteriorated as the incidence of LD increased and as baseline accelerations or variability was decreased. Positive predictive value for low pH (LD, and > 50% in recurrent LD with no baseline FHR accelerations and reduced variability. In low-risk pregnancies, information on LD combined with acceleration and baseline variability enables us to predict the potential incidence of fetal acidemia.

  12. SOFTWARE EFFORT PREDICTION: AN EMPIRICAL EVALUATION OF METHODS TO TREAT MISSING VALUES WITH RAPIDMINER ®

    OpenAIRE

    OLGA FEDOTOVA; GLADYS CASTILLO; LEONOR TEIXEIRA; HELENA ALVELOS

    2011-01-01

    Missing values is a common problem in the data analysis in all areas, being software engineering not an exception. Particularly, missing data is a widespread phenomenon observed during the elaboration of effort prediction models (EPMs) required for budget, time and functionalities planning. Current work presents the results of a study carried out on a Portuguese medium-sized software development organization in order to obtain a formal method for EPMs elicitation in development processes. Thi...

  13. Predictive value of brain 18F-FDG PET/CT in macrophagic myofasciitis?

    OpenAIRE

    Van Der Gucht, Axel; Abulizi, Mukedaisi; Blanc-Durand, Paul; Aoun-Sebaiti, Mehdi; Emsen, Berivan; Gherardi, Romain K.; Verger, Antoine; Authier, François-Jérôme; Itti, Emmanuel

    2017-01-01

    Abstract Rationale: Although several functional studies have demonstrated that positron emission tomography/computed tomography with 18F-fluorodeoxyglucose (18F-FDG PET/CT) appears to be efficient to identify a cerebral substrate in patients with known macrophagic myofasciitis (MMF), the predictive value of this imaging technique for MMF remains unclear. Patient concerns: We presented data and images of a 46-year-old woman. Diagnoses: The patient was referred to our center for suspected MMF d...

  14. Predictive value of plasma human chorionic gonadotropin measured 14 days after Day-2 single embryo transfer

    DEFF Research Database (Denmark)

    Løssl, Kristine; Oldenburg, Anna; Toftager, Mette

    2017-01-01

    Introduction: Prediction of pregnancy outcome after in vitro fertilization is important for patients and clinicians. Early plasma human chorionic gonadotropin (p-hCG) levels are the best known predictor of pregnancy outcome, but no studies have been restricted to single embryo transfer (SET) of Day......-2 embryos. The aim of the present study was to investigate the predictive value of p-hCG measured exactly 14 days after the most commonly used Day-2 SET on pregnancy, delivery, and perinatal outcome. Material and methods: A retrospective analysis of prospectively collected data on 466 women who had...... p-hCG measured exactly 14 days after Day-2 SET during a randomized trial including 1050 unselected women (aged 18–40 years) undergoing their first in vitro fertilization/ intracytoplasmic sperm injection treatment. Results: The p-hCG predicted clinical pregnancy [area under the curve (AUC) 0.953; 95...

  15. An accurate density functional theory based estimation of pK(a) values of polar residues combined with experimental data: from amino acids to minimal proteins.

    Science.gov (United States)

    Matsui, Toru; Baba, Takeshi; Kamiya, Katsumasa; Shigeta, Yasuteru

    2012-03-28

    We report a scheme for estimating the acid dissociation constant (pK(a)) based on quantum-chemical calculations combined with a polarizable continuum model, where a parameter is determined for small reference molecules. We calculated the pK(a) values of variously sized molecules ranging from an amino acid to a protein consisting of 300 atoms. This scheme enabled us to derive a semiquantitative pK(a) value of specific chemical groups and discuss the influence of the surroundings on the pK(a) values. As applications, we have derived the pK(a) value of the side chain of an amino acid and almost reproduced the experimental value. By using our computing schemes, we showed the influence of hydrogen bonds on the pK(a) values in the case of tripeptides, which decreases the pK(a) value by 3.0 units for serine in comparison with those of the corresponding monopeptides. Finally, with some assumptions, we derived the pK(a) values of tyrosines and serines in chignolin and a tryptophan cage. We obtained quite different pK(a) values of adjacent serines in the tryptophan cage; the pK(a) value of the OH group of Ser13 exposed to bulk water is 14.69, whereas that of Ser14 not exposed to bulk water is 20.80 because of the internal hydrogen bonds.

  16. Echocardiography and risk prediction in advanced heart failure: incremental value over clinical markers.

    Science.gov (United States)

    Agha, Syed A; Kalogeropoulos, Andreas P; Shih, Jeffrey; Georgiopoulou, Vasiliki V; Giamouzis, Grigorios; Anarado, Perry; Mangalat, Deepa; Hussain, Imad; Book, Wendy; Laskar, Sonjoy; Smith, Andrew L; Martin, Randolph; Butler, Javed

    2009-09-01

    Incremental value of echocardiography over clinical parameters for outcome prediction in advanced heart failure (HF) is not well established. We evaluated 223 patients with advanced HF receiving optimal therapy (91.9% angiotensin-converting enzyme inhibitor/angiotensin receptor blocker, 92.8% beta-blockers, 71.8% biventricular pacemaker, and/or defibrillator use). The Seattle Heart Failure Model (SHFM) was used as the reference clinical risk prediction scheme. The incremental value of echocardiographic parameters for event prediction (death or urgent heart transplantation) was measured by the improvement in fit and discrimination achieved by addition of standard echocardiographic parameters to the SHFM. After a median follow-up of 2.4 years, there were 38 (17.0%) events (35 deaths; 3 urgent transplants). The SHFM had likelihood ratio (LR) chi(2) 32.0 and C statistic 0.756 for event prediction. Left ventricular end-systolic volume, stroke volume, and severe tricuspid regurgitation were independent echocardiographic predictors of events. The addition of these parameters to SHFM improved LR chi(2) to 72.0 and C statistic to 0.866 (P advanced HF.

  17. Predictive value of lidocaine for treatment success of oxcarbazepine in patients with neuropathic pain syndrome.

    Science.gov (United States)

    Schipper, Sivan; Gantenbein, Andreas R; Maurer, Konrad; Alon, Eli; Sándor, Peter S

    2013-06-01

    Pharmacotherapy in patients with neuropathic pain syndromes (NPS) can be associated with long periods of trial and error before reaching satisfactory analgesia. The aim of this study was to investigate whether a short intravenous (i.v.) infusion of lidocaine may have a predictive value for the efficacy of oxcarbazepine. In total, 16 consecutive patients with NPS were studied in a prospective, uncontrolled, open-label study design. Each patient received i.v. lidocaine (5 mg/kg) within 30 min followed by a long-term oral oxcarbazepine treatment (900-1,500 mg/day). During an observation period of 28 days, treatment response was documented by a questionnaire including the average daily pain score documented on a numeric rating scale (NRS). A total of 6 out of 16 patients (38%) were lidocaine responders (defined as pain reduction >50% during the infusion), and 4 of 16 (25%) were oxcarbazepine responders. In total, 6 out of 16 participants (38%) discontinued oxcarbazepine treatment due to side effects. In an interim analysis predictive value of the lidocaine infusion was low with a Kendall's tau correlation coefficient of 0.29 and coefficient of determination R(2) of 0.119 (95% confidence interval -0.29 to 0.72). As a consequence of this low correlation, the study was discontinued for ethical reasons. In conclusion, lidocaine infusion has a low predictive value for effectiveness of oxcarbazepine-if at all.

  18. Predictive value of digital subtraction angiography in patients with tuberculous meningitis

    International Nuclear Information System (INIS)

    Rojas-Echeverri, L.A.; Soto-Hernandez, J.L.; Garza, S.; Martinez-Zubieta, R.; Miranda, L.I.; Garcia-Ramos, G.; Zenteno, M.

    1996-01-01

    Digital subtraction angiography (DSA) was performed in 24 adults with tuberculous meningitis (TBM) and results were correlated with 24 admission and 16 follow-up CT examinations. 19 MRI studies and clinical outcome at a mean follow-up of 44 weeks. DSA was abnormal in 11 patients. Abnormal DSA was associated with advenced clinical stages of the Medical Research Council classification, admission CT with hydrocephalus or gyral cortical enhancement. MRI disclosed brain infarcts not seen on initial CT in 8 cases. Of seven patients who died, 4 had abnormal and 3 normal DSA. Among patients who survived, those with normal DSA had a better functional outcome by Karnofsky scores. During follow-up infarcts were evident in 16 patients. Abnormal DSA in relation to brain infarcts had a sensitivity of 0.56, specificity 0.75, positive predictive value 0.82 and negative predictive value 0.46. A single arteriogram does not predict the outcome in patients with TBM and its value is limited in the assessment of vascular complications of TBM. Angiography in TBM is justified only in specific clinical trials to assess new therapeutic modalities against infarcts. (orig.)

  19. Predictive value of the korean academy of family medicine in-training examination for certifying examination.

    Science.gov (United States)

    Cho, Jung-Jin; Kim, Ji-Yong

    2011-09-01

    In-training examination (ITE) is a cognitive examination similar to the written test, but it is different from the Clinical Practice Examination of the Korean Academy of Family Medicine (KAFM) Certification Examination (CE). The objective of this is to estimate the positive predictive value of the KAFM-ITE for identifying residents at risk for poor performance on the three types of KAFM-CE. 372 residents who completed the KAFM-CE in 2011 were included. We compared the mean KAFM-CE scores with ITE experience. We evaluated the correlation and the positive predictive value (PPV) of ITE for the multiple choice question (MCQ) scores of 1st written test & 2nd slide examination, the total clinical practice examination scores, and the total sum of 2nd test. 275 out of 372 residents completed ITE. Those who completed ITE had significantly higher MCQ scores of 1st written test than those who did not. The correlation of ITE scores with 1st written MCQ (0.627) was found to be the highest among the other kinds of CE. The PPV of the ITE score for 1st written MCQ scores was 0.672. The PPV of the ITE score ranged from 0.376 to 0.502. The score of the KAFM ITE has acceptable positive predictive value that could be used as a part of comprehensive evaluation system for residents in cognitive field.

  20. The predictive value of MR diffusion weighted imaging on the delayed encephalopathy after carbon monoxide poisoning

    International Nuclear Information System (INIS)

    Xiao Xinlan; Fu Lihui; Xi Weimin; Yin Jianhua; Gong Liangeng; Yuan Aimei; Yang Xinyue; Liu Zhiyong

    2007-01-01

    Objective: To investigate the value of diffusion weighted imaging (DWI)in predicting delayed encephalopathy of the rabbits brain after carbon monoxide (CO)poisoning. Methods: Sixty healthy rabbits were put into self-made poisoning cabinet and were poisoned by inhalation of CO. Aeration of CO was stopped when the rabbits became comatous, and the cabinet was kept airpoof for 6 h. The rabbits underwent MRI before poisoning , at 1 h, 3 d, 5 d, 7 d, 15 d, 30 d ,45 d, and 60 d after poisoning respectively. Axial and sagittal T 2 WI, axial T 1 WI and DWI were performed. In the rabbits that did not show symptoms of delayed encephalopathy, the observation was discontinued on the 60th day. In the rabbit that showed the symptoms, the observation was discontinued on the 30th-45th day. The changing pattern of cortical ADC values before and after CO poisoning was observed and its relationship with delayed encephalopathy was investigated. Results: In the group without delayed encephalopathy (15 rabbits), the ADC value at 1 h after poisoning [(7.58±0.36) x 10 -4 mm 2 /s] decreased significantly compared with the pre- poisoning value [(8.02±0.35) x 10 -4 mm 2 /s] (q=0.4441, P -4 mm 2 /s], and maintained at the same level as pre- poisoning at 60 d after poisoning (P >0.05). In the group with delayed encephalopathy (15 rabbits), the ADC value at 1 h after poisoning [(7.40±0.32) x 10 -4 mm 2 /s] decreased significantly compared with the pre- poisoning value [(8.08± 0.32) x 10 -4 mm 2 /s] (q=0.6728, P -4 mm 2 /s], secondly significantly decreased at 15 d [(7.29±0.93) x 10 -4 mm 2 /s] without further recovery. The ADC value decrease at 15d alter poisoning [(7.29±0.93) x 10 -4 mm 2 /s] was significant compared with the prepoisoning ADC value (q=0.7850, P<0.01). Conclusions: There is a correlation between the decrease of the ADC value and the degree of tissue damage. The decrease of the ADC value in acute stage can predict the delayed encephalopathy. The second significant decrease

  1. [Clinical value of angiogenin in predicting the prognosis of patients with idiopathic pulmonary fibrosis].

    Science.gov (United States)

    Bai, Yanling; Zhu, Haiyan; Sun, Qiyu; Gu, Guozhong; Zhang, Lingyu; Li, Ying; Yang, Baofeng

    2017-09-01

    To explore the relationship between angiogenin-1/2 (Ang-1/2) and clinical parameters of idiopathic pulmonary fibrosis (IPF), and to assess the value of Ang-1/2 in predicting the prognosis of patients with IPF. A retrospective analysis was conducted. Ninety-one patients diagnosed as IPF by high resolution CT (HRCT) and lung biopsy admitted to Daqing Oil Field General Hospital from March 2014 to January 2015 were enrolled. The general data, serum parameters and pulmonary function parameters of all patients were collected. After treatment, all of the 91 patients were followed-up to 2 years. The patients were divided into favorable prognosis group and unfavorable prognosis group according to follow-up results. The differences in all parameters between the two groups were compared. The relationship between Ang-1, Ang-2 and lung function parameters was analyzed by Pearson correlation analysis. Cox proportional hazard regression model was used to evaluate the effect of clinical parameters on the prognosis of patients with IPF. The effect of Ang-2 in predicting prognosis of patients with IPF was analyzed by receiver operating characteristic (ROC) curve. During the 2-year follow-up period, 30 of 91 patients showed a favorable prognosis, and 55 showed an unfavorable prognosis with a poor prognosis rate of 64.71%, and 6 patients withdrew from the study due to loss of follow-up and death. Compared with the favorable prognosis group, Ang-2 level in the unfavorable prognosis group was significantly increased (μg/L: 2.88±1.63 vs. 1.89±1.22, t = 2.909, P = 0.005), but Ang-1 only showed a slight increase (μg/L: 28.70±14.26 vs. 25.62±11.95, t = 1.005, P = 0.318). The results of Pearson correlation analysis showed that Ang-2 level was negatively correlated with forced expiratory volume in 1 second (FVC1) and the percentage of carbon monoxide diffusing capacity accounting for the expected value (DLCO%: r value was -0.227 and -0.206, and P value was 0.147 and 0.253, respectively

  2. [Value of sepsis single-disease manage system in predicting mortality in patients with sepsis].

    Science.gov (United States)

    Chen, J; Wang, L H; Ouyang, B; Chen, M Y; Wu, J F; Liu, Y J; Liu, Z M; Guan, X D

    2018-04-03

    Objective: To observe the effect of sepsis single-disease manage system on the improvement of sepsis treatment and the value in predicting mortality in patients with sepsis. Methods: A retrospective study was conducted. Patients with sepsis admitted to the Department of Surgical Intensive Care Unit of Sun Yat-Sen University First Affiliated Hospital from September 22, 2013 to May 5, 2015 were enrolled in this study. Sepsis single-disease manage system (Rui Xin clinical data manage system, China data, China) was used to monitor 25 clinical quality parameters, consisting of timeliness, normalization and outcome parameters. Based on whether these quality parameters could be completed or not, the clinical practice was evaluated by the system. The unachieved quality parameter was defined as suspicious parameters, and these suspicious parameters were used to predict mortality of patients with receiver operating characteristic curve (ROC). Results: A total of 1 220 patients with sepsis were enrolled, included 805 males and 415 females. The mean age was (59±17) years, and acute physiology and chronic health evaluation (APACHE Ⅱ) scores was 19±8. The area under ROC curve of total suspicious numbers for predicting 28-day mortality was 0.70; when the suspicious parameters number was more than 6, the sensitivity was 68.0% and the specificity was 61.0% for predicting 28-day mortality. In addition, the area under ROC curve of outcome suspicious number for predicting 28-day mortality was 0.89; when the suspicious outcome parameters numbers was more than 1, the sensitivity was 88.0% and the specificity was 78.0% for predicting 28-day mortality. Moreover, the area under ROC curve of total suspicious number for predicting 90-day mortality was 0.73; when the total suspicious parameters number was more than 7, the sensitivity was 60.0% and the specificity was 74.0% for predicting 90-day mortality. Finally, the area under ROC curve of outcome suspicious numbers for predicting 90

  3. A simple, fast, and accurate thermodynamic-based approach for transfer and prediction of gas chromatography retention times between columns and instruments Part III: Retention time prediction on target column.

    Science.gov (United States)

    Hou, Siyuan; Stevenson, Keisean A J M; Harynuk, James J

    2018-03-27

    This is the third part of a three-part series of papers. In Part I, we presented a method for determining the actual effective geometry of a reference column as well as the thermodynamic-based parameters of a set of probe compounds in an in-house mixture. Part II introduced an approach for estimating the actual effective geometry of a target column by collecting retention data of the same mixture of probe compounds on the target column and using their thermodynamic parameters, acquired on the reference column, as a bridge between both systems. Part III, presented here, demonstrates the retention time transfer and prediction from the reference column to the target column using experimental data for a separate mixture of compounds. To predict the retention time of a new compound, we first estimate its thermodynamic-based parameters on the reference column (using geometric parameters determined previously). The compound's retention time on a second column (of previously determined geometry) is then predicted. The models and the associated optimization algorithms were tested using simulated and experimental data. The accuracy of predicted retention times shows that the proposed approach is simple, fast, and accurate for retention time transfer and prediction between gas chromatography columns. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Dynamic divisive normalization predicts time-varying value coding in decision-related circuits.

    Science.gov (United States)

    Louie, Kenway; LoFaro, Thomas; Webb, Ryan; Glimcher, Paul W

    2014-11-26

    Normalization is a widespread neural computation, mediating divisive gain control in sensory processing and implementing a context-dependent value code in decision-related frontal and parietal cortices. Although decision-making is a dynamic process with complex temporal characteristics, most models of normalization are time-independent and little is known about the dynamic interaction of normalization and choice. Here, we show that a simple differential equation model of normalization explains the characteristic phasic-sustained pattern of cortical decision activity and predicts specific normalization dynamics: value coding during initial transients, time-varying value modulation, and delayed onset of contextual information. Empirically, we observe these predicted dynamics in saccade-related neurons in monkey lateral intraparietal cortex. Furthermore, such models naturally incorporate a time-weighted average of past activity, implementing an intrinsic reference-dependence in value coding. These results suggest that a single network mechanism can explain both transient and sustained decision activity, emphasizing the importance of a dynamic view of normalization in neural coding. Copyright © 2014 the authors 0270-6474/14/3416046-12$15.00/0.

  5. The Functional Movement Screen and Injury Risk: Association and Predictive Value in Active Men.

    Science.gov (United States)

    Bushman, Timothy T; Grier, Tyson L; Canham-Chervak, Michelle; Anderson, Morgan K; North, William J; Jones, Bruce H

    2016-02-01

    The Functional Movement Screen (FMS) is a series of 7 tests used to assess the injury risk in active populations. To determine the association of the FMS with the injury risk, assess predictive values, and identify optimal cut points using 3 injury types. Cohort study; Level of evidence, 2. Physically active male soldiers aged 18 to 57 years (N = 2476) completed the FMS. Demographic and fitness data were collected by survey. Medical record data for overuse injuries, traumatic injuries, and any injury 6 months after the FMS assessment were obtained. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated along with the receiver operating characteristic (ROC) to determine the area under the curve (AUC) and identify optimal cut points for the risk assessment. Risks, risk ratios (RRs), odds ratios (ORs), and 95% CIs were calculated to assess injury risks. Soldiers who scored ≤14 were at a greater risk for injuries compared with those who scored >14 using the composite score for overuse injuries (RR, 1.84; 95% CI, 1.63-2.09), traumatic injuries (RR, 1.26; 95% CI, 1.03-1.54), and any injury (RR, 1.60; 95% CI, 1.45-1.77). When controlling for other known injury risk factors, multivariate logistic regression analysis identified poor FMS performance (OR [score ≤14/19-21], 2.00; 95% CI, 1.42-2.81) as an independent risk factor for injuries. A cut point of ≤14 registered low measures of predictive value for all 3 injury types (sensitivity, 28%-37%; PPV, 19%-52%; AUC, 54%-61%). Shifting the injury risk cut point of ≤14 to the optimal cut points indicated by the ROC did not appreciably improve sensitivity or the PPV. Although poor FMS performance was associated with a higher risk of injuries, it displayed low sensitivity, PPV, and AUC. On the basis of these findings, the use of the FMS to screen for the injury risk is not recommended in this population because of the low predictive value and misclassification of the

  6. Reflow Process Parameters Analysis and Reliability Prediction Considering Multiple Characteristic Values

    Directory of Open Access Journals (Sweden)

    Guo Yu

    2016-01-01

    Full Text Available As a major step surface mount technology, reflow process is the key factor affecting the quality of the final product. The setting parameters and characteristic value of temperature curve shows a nonlinear relationship. So parameter impacts on characteristic values are analyzed and the parameters adjustment process based on orthogonal experiment is proposed in the paper. First, setting parameters are determined and the orthogonal test is designed according to production conditions. Then each characteristic value for temperature profile is calculated. Further, multi-index orthogonal experiment is analyzed for acquiring the setting parameters which impacts the PCBA product quality greater. Finally, reliability prediction is carried out considering the main influencing parameters for providing a theoretical basis of parameters adjustment and product quality evaluation in engineering process.

  7. Prediction of pKa values using the PM6 semiempirical method

    Directory of Open Access Journals (Sweden)

    Jimmy C. Kromann

    2016-08-01

    Full Text Available The PM6 semiempirical method and the dispersion and hydrogen bond-corrected PM6-D3H+ method are used together with the SMD and COSMO continuum solvation models to predict pKa values of pyridines, alcohols, phenols, benzoic acids, carboxylic acids, and phenols using isodesmic reactions and compared to published ab initio results. The pKa values of pyridines, alcohols, phenols, and benzoic acids considered in this study can generally be predicted with PM6 and ab initio methods to within the same overall accuracy, with average mean absolute differences (MADs of 0.6–0.7 pH units. For carboxylic acids, the accuracy (0.7–1.0 pH units is also comparable to ab initio results if a single outlier is removed. For primary, secondary, and tertiary amines the accuracy is, respectively, similar (0.5–0.6, slightly worse (0.5–1.0, and worse (1.0–2.5, provided that di- and tri-ethylamine are used as reference molecules for secondary and tertiary amines. When applied to a drug-like molecule where an empirical pKa predictor exhibits a large (4.9 pH unit error, we find that the errors for PM6-based predictions are roughly the same in magnitude but opposite in sign. As a result, most of the PM6-based methods predict the correct protonation state at physiological pH, while the empirical predictor does not. The computational cost is around 2–5 min per conformer per core processor, making PM6-based pKa prediction computationally efficient enough to be used for high-throughput screening using on the order of 100 core processors.

  8. Positive Predictive Value of BI-RADS Categorization in an Asian Population

    Directory of Open Access Journals (Sweden)

    Yah-Yuen Tan

    2004-07-01

    Full Text Available The Breast Imaging Reporting And Data System (BI-RADS categorization of mammograms is useful in estimating the risk of malignancy, thereby guiding management decisions. However, in Asian women, in whom breast density is increased, the sensitivity of mammography is correspondingly lower. We sought to determine the positive predictive value of BI-RADS categorization for malignancy in our Asian population and, hence, its value in helping us to choose between the various modalities for breast biopsy. We retrospectively reviewed all patients with occult breast lesions detected on mammography or ultrasound who underwent needle-localization open breast biopsy (NLOB in our institution over a 6-year period. There were 470 biopsies in 427 patients; 16% of lesions were malignant. The positive predictive value of BI-RADS 4 and 5 lesions for cancer was 0.27 and 0.84, respectively. While most BI-RADS 5 mass lesions were invasive cancers, the majority of calcifications in this category were in situ carcinomas. We conclude that BI-RADS remains useful in aiding decision-making for biopsy in our Asian population. Based on positive predictive values, we recommend percutaneous breast biopsy for initial evaluation of lesions categorized as BI-RADS 4 or less. For BI-RADS 5 lesions with microcalcifications, open surgical biopsy as a diagnostic and therapeutic procedure may be more appropriate. In the case of a BI-RADS 5 lesion associated with a mass, initial percutaneous biopsy may be useful for diagnosis, followed by a planned single-stage surgical procedure as necessary.

  9. The predictive diagnostic value of serial daily bedside ultrasonography for severe dengue in Indonesian adults.

    Directory of Open Access Journals (Sweden)

    Meta Michels

    Full Text Available BACKGROUND: Identification of dengue patients at risk for progressing to severe disease is difficult. Significant plasma leakage is a hallmark of severe dengue infection which can suddenly lead to hypovolemic shock around the time of defervescence. We hypothesized that the detection of subclinical plasma leakage may identify those at risk for severe dengue. The aim of the study was to determine the predictive diagnostic value of serial ultrasonography for severe dengue. METHODOLOGY/PRINCIPAL FINDINGS: Daily bedside ultrasounds were performed with a handheld ultrasound device in a prospective cohort of adult Indonesians with dengue. Timing, localization and relation to dengue severity of the ultrasonography findings were determined, as well as the relation with serial hematocrit and albumin values. The severity of dengue was retrospectively determined by WHO 2009 criteria. A total of 66 patients with proven dengue infection were included in the study of whom 11 developed severe dengue. Presence of subclinical plasma leakage at enrollment had a positive predictive value of 35% and a negative predictive value of 90% for severe dengue. At enrollment, 55% of severe dengue cases already had subclinical plasma leakage, which increased to 91% during the subsequent days. Gallbladder wall edema was more pronounced in severe than in non-severe dengue patients and often preceded ascites/pleural effusion. Serial hematocrit and albumin measurements failed to identify plasma leakage and patients at risk for severe dengue. CONCLUSIONS/SIGNIFICANCE: Serial ultrasonography, in contrast to existing markers such as hematocrit, may better identify patients at risk for development of severe dengue. Patients with evidence of subclinical plasma leakage and/or an edematous gallbladder wall by ultrasonography merit intensive monitoring for development of complications.

  10. Concordance and predictive value of two adverse drug event data sets.

    Science.gov (United States)

    Cami, Aurel; Reis, Ben Y

    2014-08-22

    Accurate prediction of adverse drug events (ADEs) is an important means of controlling and reducing drug-related morbidity and mortality. Since no single "gold standard" ADE data set exists, a range of different drug safety data sets are currently used for developing ADE prediction models. There is a critical need to assess the degree of concordance between these various ADE data sets and to validate ADE prediction models against multiple reference standards. We systematically evaluated the concordance of two widely used ADE data sets - Lexi-comp from 2010 and SIDER from 2012. The strength of the association between ADE (drug) counts in Lexi-comp and SIDER was assessed using Spearman rank correlation, while the differences between the two data sets were characterized in terms of drug categories, ADE categories and ADE frequencies. We also performed a comparative validation of the Predictive Pharmacosafety Networks (PPN) model using both ADE data sets. The predictive power of PPN using each of the two validation sets was assessed using the area under Receiver Operating Characteristic curve (AUROC). The correlations between the counts of ADEs and drugs in the two data sets were 0.84 (95% CI: 0.82-0.86) and 0.92 (95% CI: 0.91-0.93), respectively. Relative to an earlier snapshot of Lexi-comp from 2005, Lexi-comp 2010 and SIDER 2012 introduced a mean of 1,973 and 4,810 new drug-ADE associations per year, respectively. The difference between these two data sets was most pronounced for Nervous System and Anti-infective drugs, Gastrointestinal and Nervous System ADEs, and postmarketing ADEs. A minor difference of 1.1% was found in the AUROC of PPN when SIDER 2012 was used for validation instead of Lexi-comp 2010. In conclusion, the ADE and drug counts in Lexi-comp and SIDER data sets were highly correlated and the choice of validation set did not greatly affect the overall prediction performance of PPN. Our results also suggest that it is important to be aware of the

  11. Simultaneous modeling of visual saliency and value computation improves predictions of economic choice.

    Science.gov (United States)

    Towal, R Blythe; Mormann, Milica; Koch, Christof

    2013-10-01

    Many decisions we make require visually identifying and evaluating numerous alternatives quickly. These usually vary in reward, or value, and in low-level visual properties, such as saliency. Both saliency and value influence the final decision. In particular, saliency affects fixation locations and durations, which are predictive of choices. However, it is unknown how saliency propagates to the final decision. Moreover, the relative influence of saliency and value is unclear. Here we address these questions with an integrated model that combines a perceptual decision process about where and when to look with an economic decision process about what to choose. The perceptual decision process is modeled as a drift-diffusion model (DDM) process for each alternative. Using psychophysical data from a multiple-alternative, forced-choice task, in which subjects have to pick one food item from a crowded display via eye movements, we test four models where each DDM process is driven by (i) saliency or (ii) value alone or (iii) an additive or (iv) a multiplicative combination of both. We find that models including both saliency and value weighted in a one-third to two-thirds ratio (saliency-to-value) significantly outperform models based on either quantity alone. These eye fixation patterns modulate an economic decision process, also described as a DDM process driven by value. Our combined model quantitatively explains fixation patterns and choices with similar or better accuracy than previous models, suggesting that visual saliency has a smaller, but significant, influence than value and that saliency affects choices indirectly through perceptual decisions that modulate economic decisions.

  12. Does Enjoying Friendship Help or Impede Academic Achievement? Academic and Social Intrinsic Value Profiles Predict Academic Achievement

    Science.gov (United States)

    Seo, Eunjin; Lee, You-kyung

    2018-01-01

    We examine the intrinsic value students placed on schoolwork (i.e. academic intrinsic value) and social relationships (i.e. social intrinsic value). We then look at how these values predict middle and high school achievement. To do this, we came up with four profiles based on cluster analyses of 6,562 South Korean middle school students. The four…

  13. Genome-Enabled Prediction of Breeding Values for Feedlot Average Daily Weight Gain in Nelore Cattle

    Directory of Open Access Journals (Sweden)

    Adriana L. Somavilla

    2017-06-01

    Full Text Available Nelore is the most economically important cattle breed in Brazil, and the use of genetically improved animals has contributed to increased beef production efficiency. The Brazilian beef feedlot industry has grown considerably in the last decade, so the selection of animals with higher growth rates on feedlot has become quite important. Genomic selection (GS could be used to reduce generation intervals and improve the rate of genetic gains. The aim of this study was to evaluate the prediction of genomic-estimated breeding values (GEBV for average daily weight gain (ADG in 718 feedlot-finished Nelore steers. Analyses of three Bayesian model specifications [Bayesian GBLUP (BGBLUP, BayesA, and BayesCπ] were performed with four genotype panels [Illumina BovineHD BeadChip, TagSNPs, and GeneSeek High- and Low-density indicus (HDi and LDi, respectively]. Estimates of Pearson correlations, regression coefficients, and mean squared errors were used to assess accuracy and bias of predictions. Overall, the BayesCπ model resulted in less biased predictions. Accuracies ranged from 0.18 to 0.27, which are reasonable values given the heritability estimates (from 0.40 to 0.44 and sample size (568 animals in the training population. Furthermore, results from Bos taurus indicus panels were as informative as those from Illumina BovineHD, indicating that they could be used to implement GS at lower costs.

  14. Predictive values of psychiatric symptoms for internet addiction in adolescents: a 2-year prospective study.

    Science.gov (United States)

    Ko, Chih-Hung; Yen, Ju-Yu; Chen, Cheng-Sheng; Yeh, Yi-Chun; Yen, Cheng-Fang

    2009-10-01

    To evaluate the predictive values of psychiatric symptoms for the occurrence of Internet addiction and to determine the sex differences in the predictive value of psychiatric symptoms for the occurrence of Internet addiction in adolescents. Internet addiction, depression, attention-deficit/hyperactivity disorder, social phobia, and hostility were assessed by self-reported questionnaires. Participants were then invited to be assessed for Internet addiction 6, 12, and 24 months later (the second, third, and fourth assessments, respectively). Ten junior high schools in southern Taiwan. A total of 2293 (1179 boys and 1114 girls) adolescents participated in the initial investigation. The course of time. Internet addiction as assessed using the Chen Internet Addiction Scale. Depression, attention-deficit/hyperactivity disorder, social phobia, and hostility were found to predict the occurrence of Internet addiction in the 2-year follow-up, and hostility and attention-deficit/hyperactivity disorder were the most significant predictors of Internet addiction in male and female adolescents, respectively. These results suggest that attention-deficit/hyperactivity disorder, hostility, depression, and social phobia should be detected early on and intervention carried out to prevent Internet addiction in adolescents. Also, sex differences in psychiatric comorbidity should be taken into consideration when developing prevention and intervention strategies for Internet addiction.

  15. Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers.

    Science.gov (United States)

    Crossa, José; Campos, Gustavo de Los; Pérez, Paulino; Gianola, Daniel; Burgueño, Juan; Araus, José Luis; Makumbi, Dan; Singh, Ravi P; Dreisigacker, Susanne; Yan, Jianbing; Arief, Vivi; Banziger, Marianne; Braun, Hans-Joachim

    2010-10-01

    The availability of dense molecular markers has made possible the use of genomic selection (GS) for plant breeding. However, the evaluation of models for GS in real plant populations is very limited. This article evaluates the performance of parametric and semiparametric models for GS using wheat (Triticum aestivum L.) and maize (Zea mays) data in which different traits were measured in several environmental conditions. The findings, based on extensive cross-validations, indicate that models including marker information had higher predictive ability than pedigree-based models. In the wheat data set, and relative to a pedigree model, gains in predictive ability due to inclusion of markers ranged from 7.7 to 35.7%. Correlation between observed and predictive values in the maize data set achieved values up to 0.79. Estimates of marker effects were different across environmental conditions, indicating that genotype × environment interaction is an important component of genetic variability. These results indicate that GS in plant breeding can be an effective strategy for selecting among lines whose phenotypes have yet to be observed.

  16. Prediction of genetic values of quantitative traits with epistatic effects in plant breeding populations.

    Science.gov (United States)

    Wang, D; Salah El-Basyoni, I; Stephen Baenziger, P; Crossa, J; Eskridge, K M; Dweikat, I

    2012-11-01

    Though epistasis has long been postulated to have a critical role in genetic regulation of important pathways as well as provide a major source of variation in the process of speciation, the importance of epistasis for genomic selection in the context of plant breeding is still being debated. In this paper, we report the results on the prediction of genetic values with epistatic effects for 280 accessions in the Nebraska Wheat Breeding Program using adaptive mixed least absolute shrinkage and selection operator (LASSO). The development of adaptive mixed LASSO, originally designed for association mapping, for the context of genomic selection is reported. The results show that adaptive mixed LASSO can be successfully applied to the prediction of genetic values while incorporating both marker main effects and epistatic effects. Especially, the prediction accuracy is substantially improved by the inclusion of two-locus epistatic effects (more than onefold in some cases as measured by cross-validation correlation coefficient), which is observed for multiple traits and planting locations. This points to significant potential in using non-additive genetic effects for genomic selection in crop breeding practices.

  17. Demographic Factors and Hospital Size Predict Patient Satisfaction Variance- Implications for Hospital Value-Based Purchasing

    Science.gov (United States)

    McFarland, Daniel C.; Ornstein, Katherine; Holcombe, Randall F.

    2016-01-01

    Background Hospital Value-Based Purchasing (HVBP) incentivizes quality performance based healthcare by linking payments directly to patient satisfaction scores obtained from Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) surveys. Lower HCAHPS scores appear to cluster in heterogeneous population dense areas and could bias CMS reimbursement. Objective Assess nonrandom variation in patient satisfaction as determined by HCAHPS. Design Multivariate regression modeling was performed for individual dimensions of HCAHPS and aggregate scores. Standardized partial regression coefficients assessed strengths of predictors. Weighted Individual (hospital) Patient Satisfaction Adjusted Score (WIPSAS) utilized four highly predictive variables and hospitals were re-ranked accordingly. Setting 3,907 HVBP-participating hospitals. Patients 934,800 patient surveys, by most conservative estimate. Measurements 3,144 county demographics (U.S. Census), and HCAHPS. Results Hospital size and primary language (‘non-English speaking’) most strongly predicted unfavorable HCAHPS scores while education and white ethnicity most strongly predicted favorable HCAHPS scores. The average adjusted patient satisfaction scores calculated by WIPSAS approximated the national average of HCAHPS scores. However, WIPSAS changed hospital rankings by variable amounts depending on the strength of the predictive variables in the hospitals’ locations. Structural and demographic characteristics that predict lower scores were accounted for by WIPSAS that also improved rankings of many safety-net hospitals and academic medical centers in diverse areas. Conclusions Demographic and structural factors (e.g., hospital beds) predict patient satisfaction scores even after CMS adjustments. CMS should consider WIPSAS or a similar adjustment to account for the severity of patient satisfaction inequities that hospitals could strive to correct. PMID:25940305

  18. Predictive value of ocular trauma score in open globe combat eye injuries

    International Nuclear Information System (INIS)

    Islam, Q.

    2016-01-01

    Prediction of final visual outcome in ocular injuries is of paramount importance and various prognostic models have been proposed to predict final visual outcome. The objective of this study was to validate the predictive value of ocular trauma score (OTS) in patients with combat related open globe injuries and to evaluate the factors affecting the final visual outcome. Methods: Data of 93 patients admitted in AFIO Rawalpindi between Jan 2010 to June 2014 with combat related open globe ocular injuries was analysed. Initial and final best corrected visual acuity (BCVA) was categorized as No Light Perception (NLP), Light Perception (LP) to Hand Movement (HM), 1/200-19/200, 20/200-20/50, and =20/40. OTS was calculated for each eye by assigning numerical raw points to six variables and then scores were stratified into five OTS categories. Results: Mean age of study population was 28.77 ± 8.37 years. Presenting visual acuity was <20/200 (6/60) in 103 (96.23%) eyes. However, final BCVA of =20/40 (6/12) was achieved in 18 (16.82%) eyes, while 72 (67.28%) eyes had final BCVA of <20/200 (6/60). Final visual outcome in our study were similar to those in OTS study, except for NLP in category 1 (81% vs. 74%) and =20/40 in category 3 (30% vs. 41%). The OTS model predicted visual survival (LP or better) with a sensitivity of 94.80% and predicted no vision (NLP) with a specificity of 100%. Conclusion: OTS is a reliable tool for assessment of ocular injuries and predicting final visual outcome at the outset. (author)

  19. [Value of the albumin to globulin ratio in predicting severity and prognosis in myasthenia gravis patients].

    Science.gov (United States)

    Yang, D H; Su, Z Q; Chen, Y; Chen, Z B; Ding, Z N; Weng, Y Y; Li, J; Li, X; Tong, Q L; Han, Y X; Zhang, X

    2016-03-08

    To assess the predictive value of the albumin to globulin ratio (AGR) in evaluation of disease severity and prognosis in myasthenia gravis patients. A total of 135 myasthenia gravis (MG) patients were enrolled between February 2009 and March 2015. The AGR was detected on the first day of hospitalization and ranked from lowest to highest, and the patients were divided into three equal tertiles according to the AGR values, which were T1 (AGR 1.53). The Kaplan-Meier curve was used to evaluate the prognostic value of AGR. Cox model analysis was used to evaluate the relevant factors. Multivariate Logistic regression analysis was used to find the predictors of myasthenia crisis during hospitalization. The median length of hospital stay for each tertile was: for the T1 21 days (15-35.5), T2 18 days (14-27.5), and T3 16 days (12-22.5) (Pmyasthenia gravis. At the multivariate Cox regression analysis, the AGR (Pmyasthenia gravis patients. Respectively, the hazard ratio (HR) were 4.655 (95% CI: 2.355-9.202) and 0.596 (95% CI: 0.492-0.723). Multivariate Logistic regression analysis showed the AGR (Pmyasthenia crisis. The AGR may represent a simple, potentially useful predictive biomarker for evaluating the disease severity and prognosis of patients with myasthenia gravis.

  20. The predictive value of the baseline Oswestry Disability Index in lumbar disc arthroplasty.

    Science.gov (United States)

    Deutsch, Harel

    2010-06-01

    The goal of the study was to determine patient factors predictive of good outcome after lumbar disc arthroplasty. Specifically, the paper examines the relationship of the preoperative Oswestry Disability Index (ODI) to patient outcome at 1 year. The study is a retrospective review of 20 patients undergoing a 1-level lumbar disc arthroplasty at the author's institution between 2004 and 2008. All data were collected prospectively. Data included the ODI, visual analog scale scores, and patient demographics. All patients underwent a 1-level disc arthroplasty at L4-5 or L5-S1. The patients were divided into 2 groups based on their baseline ODI. Patients with an ODI between 38 and 59 demonstrated better outcomes with lumbar disc arthroplasty. Only 1 (20%) of 5 patients with a baseline ODI higher than 60 reported a good outcome. In contrast, 13 (87%) of 15 patients with an ODI between 38 and 59 showed a good outcome (p = 0.03). The negative predictive value of using ODI > 60 is 60% in patients who are determined to be candidates for lumbar arthroplasty. Lumbar arthroplasty is very effective in some patients. Other patients do not improve after surgery. The baseline ODI results are predictive of outcome in patients selected for lumbar disc arthroplasty. A baseline ODI > 60 is predictive of poor outcome. A high ODI may be indicative of psychosocial overlay.

  1. Increased tumour ADC value during chemotherapy predicts improved survival in unresectable pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nishiofuku, Hideyuki; Tanaka, Toshihiro; Kichikawa, Kimihiko [Nara Medical University, Department of Radiology and IVR Center, Kashihara-city, Nara (Japan); Marugami, Nagaaki [Nara Medical University, Department of Endoscopy and Ultrasound, Kashihara-city, Nara (Japan); Sho, Masayuki; Akahori, Takahiro; Nakajima, Yoshiyuki [Nara Medical University, Department of Surgery, Kashihara-city, Nara (Japan)

    2016-06-15

    To investigate whether changes to the apparent diffusion coefficient (ADC) of primary tumour in the early period after starting chemotherapy can predict progression-free survival (PFS) or overall survival (OS) in patients with unresectable pancreatic adenocarcinoma. Subjects comprised 43 patients with histologically confirmed unresectable pancreatic cancer treated with first-line chemotherapy. Minimum ADC values in primary tumour were measured using the selected area ADC (sADC), which excluded cystic and necrotic areas and vessels, and the whole tumour ADC (wADC), which included whole tumour components. Relative changes in ADC were calculated from baseline to 4 weeks after initiation of chemotherapy. Relationships between ADC and both PFS and OS were modelled by Cox proportional hazards regression. Median PFS and OS were 6.1 and 11.0 months, respectively. In multivariate analysis, sADC change was the strongest predictor of PFS (hazard ratio (HR), 4.5; 95 % confidence interval (CI), 1.7-11.9; p = 0.002). Multivariate Cox regression analysis for OS revealed sADC change and CRP as independent predictive markers, with sADC change as the strongest predictive biomarker (HR, 6.7; 95 % CI, 2.7-16.6; p = 0.001). Relative changes in sADC could provide a useful imaging biomarker to predict PFS and OS with chemotherapy for unresectable pancreatic adenocarcinoma. (orig.)

  2. [The value of 5-HTT gene polymorphism for the assessment and prediction of male adolescence violence].

    Science.gov (United States)

    Yu, Yue; Liu, Xiang; Yang, Zhen-xing; Qiu, Chang-jian; Ma, Xiao-hong

    2012-08-01

    To establish an adolescent violence crime prediction model, and to assess the value of serotonin transporter (5-HTT) gene polymorphism for the assessment and prediction of violent crime. Investigative tools were used to analyze the difference in personality dimensions, social support, coping styles, aggressiveness, impulsivity, and family condition scale between 223 adolescents with violence behavior and 148 adolescents without violence behavior. The distribution of 5-HTT gene polymorphisms (5-HTTLPR and 5-HTTVNTR) was compared between the two groups. The role of 5-HTT gene polymorphism on adolescent personality, impulsion and aggression scale also was also analyzed. Stepwise logistic regression was used to establish a predictive model for adolescent violent crime. Significant difference was found between the violence group and the control group on multiple dimensions of psychology and environment scales. However, no statistical difference was found with regard to the 5-HTT genotypes and alleles between adolescents with violent behaviors and normal controls. The rate of prediction accuracy was not significantly improved when 5-HTT gene polymorphism was taken into the model. The violent crime of adolescents was closely related with social and environmental factors. No association was found between 5-HTT polymorphisms and adolescent violence criminal behavior.

  3. Prognostic and predictive value of liver volume on colorectal cancer patients with unresectable liver metastases

    International Nuclear Information System (INIS)

    Park, Jun Su; Park, Hee Chul; Choi, Doo Ho; Park, Won; Yu, Jeong Il; Park, Young Suk; Kang, Won Ki; Park, Joon Oh

    2014-01-01

    To determine the prognostic and predictive value of liver volume in colorectal cancer patients with unresectable liver metastases. Sixteen patients received whole liver radiotherapy (WLRT) between January 1997 and June 2013. A total dose of 21 Gy was delivered in 7 fractions. The median survival time after WLRT was 9 weeks. In univariate analysis, performance status, serum albumin and total bilirubin level, liver volume and extrahepatic metastases were associated with survival. The mean liver volume was significantly different between subgroups with and without pain relief (3,097 and 4,739 mL, respectively; p = 0.002). A larger liver volume is a poor prognostic factor for survival and also a negative predictive factor for response to WLRT. If patients who are referred for WLRT have large liver volume, they should be informed of the poor prognosis and should be closely observed during and after WLRT.

  4. Prognostic and predictive value of liver volume on colorectal cancer patients with unresectable liver metastases

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Su; Park, Hee Chul; Choi, Doo Ho; Park, Won; Yu, Jeong Il; Park, Young Suk; Kang, Won Ki; Park, Joon Oh [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2014-06-15

    To determine the prognostic and predictive value of liver volume in colorectal cancer patients with unresectable liver metastases. Sixteen patients received whole liver radiotherapy (WLRT) between January 1997 and June 2013. A total dose of 21 Gy was delivered in 7 fractions. The median survival time after WLRT was 9 weeks. In univariate analysis, performance status, serum albumin and total bilirubin level, liver volume and extrahepatic metastases were associated with survival. The mean liver volume was significantly different between subgroups with and without pain relief (3,097 and 4,739 mL, respectively; p = 0.002). A larger liver volume is a poor prognostic factor for survival and also a negative predictive factor for response to WLRT. If patients who are referred for WLRT have large liver volume, they should be informed of the poor prognosis and should be closely observed during and after WLRT.

  5. Endometrial Receptivity and its Predictive Value for IVF/ICSI-Outcome.

    Science.gov (United States)

    Heger, A; Sator, M; Pietrowski, D

    2012-08-01

    Endometrial receptivity plays a crucial role in the establishment of a healthy pregnancy in cycles of assisted reproduction. The endometrium as a key factor during reproduction can be assessed in multiple ways, most commonly through transvaginal grey-scale or 3-D ultrasound. It has been shown that controlled ovarian hyperstimulation has a great impact on the uterine lining, which leads to different study results for the predictive value of endometrial factors measured on different cycle days. There is no clear consensus on whether endometrial factors are appropriate to predict treatment outcome and if so, which one is suited best. The aim of this review is to summarize recent findings of studies about the influence of endometrial thickness, volume and pattern on IVF- and ICSI-treatment outcome and provide an overview of future developments in the field.

  6. Predictive value of prostate specific antigen in a European HIV-positive cohort

    DEFF Research Database (Denmark)

    Shepherd, Leah; Borges, Álvaro H; Ravn, Lene

    2016-01-01

    BACKGROUND: It is common practice to use prostate specific antigen (PSA) ≥4.0 ng/ml as a clinical indicator for men at risk of prostate cancer (PCa), however, this is unverified in HIV+ men. We aimed to describe kinetics and predictive value of PSA for PCa in HIV+ men. METHODS: A nested case...... control study of 21 men with PCa and 40 matched-controls within EuroSIDA was conducted. Prospectively stored plasma samples before PCa (or matched date in controls) were measured for the following markers: total PSA (tPSA), free PSA (fPSA), testosterone and sex hormone binding globulin (SHBG). Conditional...... logistic regression models investigated associations between markers and PCa. Mixed models were used to describe kinetics. Sensitivity and specificity of using tPSA >4 ng/ml to predict PCa was calculated. Receiver operating characteristic curves were used to identify optimal cutoffs in HIV+ men for total...

  7. A two step Bayesian approach for genomic prediction of breeding values.

    Science.gov (United States)

    Shariati, Mohammad M; Sørensen, Peter; Janss, Luc

    2012-05-21

    In genomic models that assign an individual variance to each marker, the contribution of one marker to the posterior distribution of the marker variance is only one degree of freedom (df), which introduces many variance parameters with only little information per variance parameter. A better alternative could be to form clusters of markers with similar effects where markers in a cluster have a common variance. Therefore, the influence of each marker group of size p on the posterior distribution of the marker variances will be p df. The simulated data from the 15th QTL-MAS workshop were analyzed such that SNP markers were ranked based on their effects and markers with similar estimated effects were grouped together. In step 1, all markers with minor allele frequency more than 0.01 were included in a SNP-BLUP prediction model. In step 2, markers were ranked based on their estimated variance on the trait in step 1 and each 150 markers were assigned to one group with a common variance. In further analyses, subsets of 1500 and 450 markers with largest effects in step 2 were kept in the prediction model. Grouping markers outperformed SNP-BLUP model in terms of accuracy of predicted breeding values. However, the accuracies of predicted breeding values were lower than Bayesian methods with marker specific variances. Grouping markers is less flexible than allowing each marker to have a specific marker variance but, by grouping, the power to estimate marker variances increases. A prior knowledge of the genetic architecture of the trait is necessary for clustering markers and appropriate prior parameterization.

  8. [Predictive value of Ages & Stages Questionnaires for cognitive performance at early years of schooling].

    Science.gov (United States)

    Schonhaut B, Luisa; Pérez R, Marcela; Castilla F, Ana María; Castro M, Sonia; Salinas A, Patricia; Armijo R, Iván

    2016-10-13

    The Ages and Stages questionnaires (ASQ) has been recently validated in our country for developmental screening. The objective of this study is evaluate the validity of ASQ to predict low cognitive performance in the early years of schooling. Diagnostic test studies conducted on a sample of children of medium-high socioeconomic level were evaluated using ASQ at least once at 8, 18 and/or 30 months old, and later, between 6 and 9 years old, reevaluated using the Wechsler Intelligence Scale for Children-third edition (WISC-III). Each ASQ evaluation was recorded independently. WISC-III was standardized, considering underperformance when the total score were under -1 standard deviation RESULTS: 123 children, corresponding to 174 ASQ assessments (42 of them were 8 months old, 55 were 18 months and 77 were 30 months of age) were included. An area under the ROC curve of 80.7% was obtained, showing higher values at 8 months (98.0%) compared to 18 and 30 months old (78.1 and 79.3%, respectively). Considering different ASQ scoring criteria, a low sensitivity (27.8 to 50.0%), but a high specificity (78.8 to 96.2%) were obtained; the positive predictive value ranged between 21 and 46%, while the negative value was 92.0-93.2%. ASQ has low sensitivity but excellent specificity to predict a low cognitive performance during the first years of schooling, being a good alternative to monitor psychomotor development in children who attend the private sector healthcare in our country. Copyright © 2016 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Reliable prediction and determination of Norwegian lamb carcass composition and value

    International Nuclear Information System (INIS)

    Kongsro, Jørgen

    2008-01-01

    The main objective of this work was to study prediction and determination of Norwegian lamb carcass composition with different techniques spanning from subjective appraisal to computer-intensive methods. There is an increasing demand, both from farmers and processors of meats, for a more objective and reliable system for prediction of muscle (lean meat), fat, bone and value of a lamb carcass. When introducing new technologies for determination of lamb carcass composition, the reference method used for calibration must be precise and reliable. The precision and reliability of the current dissection reference for lamb carcass classification and grading has never been quantified. A poor reference method will not benefit even the most optimal system for prediction and determination of lamb carcasses. To help achieve reliable systems, the uncertainty or errors in the reference method and measuring systems needs to be quantified. Using proper calibration methods for the measuring systems, the uncertainty and modeling power can be determined for lamb carcasses. The results of the work presented in this thesis show that the current classification system using subjective appraisal (EUROP) is reliable; however the accuracy with respect to carcass composition, especially for lean meat or muscle and carcass value, is poor. The reference method used for determining lamb carcass composition with respect to lamb carcass classification and grading is precise and reliable for carcass composition. For the composition and yield of sub-primal cuts, the reliability varied, and was especially poor for the breast cut. Further attention is needed for jointing and cutting of sub-primals to achieve even higher precision and reliability of the reference method. As an alternative to butcher or manual dissection, Computer Tomography (CT) showed promising results with respect to prediction of lamb carcass composition. This method is nicknamed “virtual dissection”. By utilizing the

  10. Comparison of LOFT zero power physics testing measurement results with predicted values

    International Nuclear Information System (INIS)

    Rushton, B.L.; Howe, T.M.

    1978-01-01

    The results of zero power physics testing measurements in LOFT have been evaluated to assess the adequacy of the physics data used in the safety analyses performed for the LOFT FSAR and Technical Specifications. Comparisons of measured data with computed data were made for control rod worths, temperature coefficients, boron worths, and pressure coefficients. Measured boron concentrations at exact critical points were compared with predicted concentrations. Based on these comparisons, the reactivity parameter values used in the LOFT safety analyses were assessed for conservatism

  11. The Predictive Value of Inflammation-Related Peripheral Blood Measurements in Cancer Staging and Prognosis

    Directory of Open Access Journals (Sweden)

    Joanna L. Sylman

    2018-03-01

    Full Text Available In this review, we discuss the interaction between cancer and markers of inflammation (such as levels of inflammatory cells and proteins in the circulation, and the potential benefits of routinely monitoring these markers in peripheral blood measurement assays. Next, we discuss the prognostic value and limitations of using inflammatory markers such as neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios and C-reactive protein measurements. Furthermore, the review discusses the benefits of combining multiple types of measurements and longitudinal tracking to improve staging and prognosis prediction of patients with cancer, and the ability of novel in silico frameworks to leverage this high-dimensional data.

  12. Fair value versus historical cost-based valuation for biological assets: predictability of financial information

    Directory of Open Access Journals (Sweden)

    Josep M. Argilés

    2011-08-01

    This paper performs an empirical study with a sample of Spanish farms valuing biological assets at HC and a sample applying FV, finding no significant differences between both valuation methods to assess future cash flows. However, most tests reveal more predictive power of future earnings under fair valuation of biological assets, which is not explained by differences in volatility of earnings and profitability. The study also evidences the existence of flawed HC accounting practices for biological assets in agriculture, which suggests scarce information content of this valuation method in the predominant small business units existing in the agricultural sector in advanced Western countries.

  13. Microbiology of liver abscesses and the predictive value of abscess gram stain and associated blood cultures.

    Science.gov (United States)

    Chemaly, Roy F; Hall, Gerri S; Keys, Thomas F; Procop, Gary W

    2003-08-01

    Although rare, pyogenic liver abscesses are potentially fatal. We evaluated the predictive value of Gram stain of liver abscess aspirates and temporally associated blood cultures. Gram stains detected bacteria in 79% of the liver abscesses tested. The sensitivity and specificity of Gram stain of the liver abscesses were 90% and 100% for Gram-positive cocci (GPC) and 52% and 94% for Gram-negative bacilli (GNB). The sensitivities of the blood cultures for any GPC and GNB present in the liver abscess were 30% and 39%, respectively. Although, Gram stains and blood cultures offer incomplete detection of the microbial contents of pyogenic liver abscesses, both tests should always accompany liver abscess cultures.

  14. Extreme value predictions and critical wave episodes for marine structures by FORM

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2007-01-01

    The aim of the present paper is to advocate for a very effective stochastic procedure, based on the First Order Reliability Method (FORM), for extreme value predictions related to wave induced loads. Three different applications will be illustrated. The first deals with a jack-up rig where second...... order stochastic waves are included in the analysis. The second application is parametric roll motions of ships. Finally, the motion of a TLP floating foundation for an offshore wind turbine is analysed taking into account large motions....

  15. Extreme value predictions and critical wave episodes for marine structures by FORM

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2008-01-01

    The aim of the present paper is to advocate for a very effective stochastic procedure, based on the First Order Reliability Method (FORM), for extreme value predictions related to wave induced loads. Three different applications will be illustrated. The first deals with a jack-up rig where second...... order stochastic waves are included in the analysis. The second application is parametric roll motions of ships. Finally, the motion of a TLP floating foundation for an offshore wind turbine is analysed taking into account large motions....

  16. The predictive value of microalbuminuria in IDDM. A five-year follow-up study

    DEFF Research Database (Denmark)

    Almdal, T; Nörgaard, K; Feldt-Rasmussen, B

    1994-01-01

    OBJECTIVE: To investigate the predictive value of microalbuminuria and the annual increase of albumin excretion as risk factors for diabetic nephropathy. RESEARCH DESIGN AND METHODS: A 5-year follow-up of patients with microalbuminuria (urinary albumin excretion [UAE] = 30-299 mg/24 h) and matched...... patients with normoalbuminuria (UAE classification was based on one single 24-h urine collection. The annual increase in UAE was calculated by linear regression analysis of log-transformed UAE on time. This study was conducted at the outpatient clinic of the Steno Diabetes Center...

  17. Spectrally accurate contour dynamics

    International Nuclear Information System (INIS)

    Van Buskirk, R.D.; Marcus, P.S.

    1994-01-01

    We present an exponentially accurate boundary integral method for calculation the equilibria and dynamics of piece-wise constant distributions of potential vorticity. The method represents contours of potential vorticity as a spectral sum and solves the Biot-Savart equation for the velocity by spectrally evaluating a desingularized contour integral. We use the technique in both an initial-value code and a newton continuation method. Our methods are tested by comparing the numerical solutions with known analytic results, and it is shown that for the same amount of computational work our spectral methods are more accurate than other contour dynamics methods currently in use

  18. Accurate Evaluation of Quantum Integrals

    Science.gov (United States)

    Galant, D. C.; Goorvitch, D.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    Combining an appropriate finite difference method with Richardson's extrapolation results in a simple, highly accurate numerical method for solving a Schrodinger's equation. Important results are that error estimates are provided, and that one can extrapolate expectation values rather than the wavefunctions to obtain highly accurate expectation values. We discuss the eigenvalues, the error growth in repeated Richardson's extrapolation, and show that the expectation values calculated on a crude mesh can be extrapolated to obtain expectation values of high accuracy.

  19. Predictive value of plasma β2-microglobulin on human body function and senescence.

    Science.gov (United States)

    Dong, X-M; Cai, R; Yang, F; Zhang, Y-Y; Wang, X-G; Fu, S-L; Zhang, J-R

    2016-06-01

    To explore the correlation between plasma β2-microglobulin (β2-MG) as senescence factor with age, heart, liver and kidney function as well as the predictive value of β2-MG in human metabolism function and senescence. 387 cases of healthy people of different ages were selected and the automatic biochemical analyzer was used to test β2-MG in plasma based on immunoturbidimetry and also all biochemical indexes. The correlation between β2-MG and age, gender and all biochemical indexes was analyzed. β2-MG was positively correlated to age, r = 0.373; and the difference was of statistical significance (p human body function and anti-senescence and have significant basic research and clinical guidance values.

  20. Prediction of bakery products nutritive value based on mathematical modeling of biochemical reactions

    Directory of Open Access Journals (Sweden)

    E. I. Ponomareva

    2013-01-01

    Full Text Available Researches are devoted to identifying changes in the chemical composition of whole-grain wheat bread during baking and to forecasting of food value of bakery products by mathematical modeling of biochemical transformations. The received model represents the invariant composition, considering speed of biochemical reactions at a batch of bakery products, and allowing conduct virtual experiments to develop new types of bread for various categories of the population, including athletes. The offered way of modeling of biochemical transformations at a stage of heat treatment allows to predict food value of bakery products, without spending funds for raw materials and large volume of experiment that will provide possibility of economy of material resources at a stage of development of new types of bakery products and possibility of production efficiency increase.

  1. Value of supervised learning events in predicting doctors in difficulty.

    Science.gov (United States)

    Patel, Mumtaz; Agius, Steven; Wilkinson, Jack; Patel, Leena; Baker, Paul

    2016-07-01

    In the UK, supervised learning events (SLE) replaced traditional workplace-based assessments for foundation-year trainees in 2012. A key element of SLEs was to incorporate trainee reflection and assessor feedback in order to drive learning and identify training issues early. Few studies, however, have investigated the value of SLEs in predicting doctors in difficulty. This study aimed to identify principles that would inform understanding about how and why SLEs work or not in identifying doctors in difficulty (DiD). A retrospective case-control study of North West Foundation School trainees' electronic portfolios was conducted. Cases comprised all known DiD. Controls were randomly selected from the same cohort. Free-text supervisor comments from each SLE were assessed for the four domains defined in the General Medical Council's Good Medical Practice Guidelines and each scored blindly for level of concern using a three-point ordinal scale. Cumulative scores for each SLE were then analysed quantitatively for their predictive value of actual DiD. A qualitative thematic analysis was also conducted. The prevalence of DiD in this sample was 6.5%. Receiver operator characteristic curve analysis showed that Team Assessment of Behaviour (TAB) was the only SLE strongly predictive of actual DiD status. The Educational Supervisor Report (ESR) was also strongly predictive of DiD status. Fisher's test showed significant associations of TAB and ESR for both predicted and actual DiD status and also the health and performance subtypes. None of the other SLEs showed significant associations. Qualitative data analysis revealed inadequate completion and lack of constructive, particularly negative, feedback. This indicated that SLEs were not used to their full potential. TAB and the ESR are strongly predictive of DiD. However, SLEs are not being used to their full potential, and the quality of completion of reports on SLEs and feedback needs to be improved in order to better identify

  2. Predictive value of skin perfusion pressure after endovascular therapy for wound healing in critical limb ischemia.

    Science.gov (United States)

    Utsunomiya, Makoto; Nakamura, Masato; Nagashima, Yoshinori; Sugi, Kaoru

    2014-10-01

    To determine the predictive value of skin perfusion pressure (SPP) for wound healing after endovascular therapy (EVT). Between May 2004 and March 2011, 113 consecutive patients (84 men; mean age 71.5±12.5 years) with CLI (123 limbs) underwent successful balloon angioplasty ± stenting (flow from >1 vessel to the foot without bypass) and were physically able to undergo SPP measurement before and within 48 hours after EVT. The status of wound healing was recorded over a mean follow-up of 17.4±12.4 months. The wound healing rate was 78.9% (97 limbs of 89 patients). SPP values after EVT were significantly higher in these patients than in the 24 patients (26 limbs) without wound healing (44.2±15.6 mmHg vs. 27.5±10.4 mmHg, pwound healing had an area under the curve of 0.81 (95% CI 0.723 to 0.899, pwound healing was 30 mmHg, with a sensitivity of 81.4% and a specificity of 69.2%. Binary logistic regression analysis demonstrated SPP after EVT to be an independent predictor of wound healing (pwound healing with SPP values >30 mmHg, 40 mmHg, and 50 mmHg were 69.8%, 86.3%, and 94.5%, respectively. SPP after EVT is an independent predictor of wound healing in patients with CLI. In our study, an SPP value of 30 mmHg was shown to be the best cutoff for prediction of wound healing after EVT.

  3. Modelo de previsão de value at risk utilizando volatilidade de longo prazo = Value at Risk prediction model using long term volatility

    Directory of Open Access Journals (Sweden)

    Vinicius Mothé Maia

    2016-07-01

    Full Text Available Tendo em vista a importância do Value at Risk (VaR como medida de risco para instituições financeiras e agências de risco, o presente estudo avaliou se o modelo ARLS é mais preciso no cálculo do VaR de longo prazo que os modelos tradicionais, dada sua maior adequação para a previsão da volatilidade. Considerando a utilização do VaR pelos agentes de mercado como medida de risco para o gerenciamento de portfólios é importante sua adequada mensuração. A partir de dados diários dos mercados de ações e cambial dos BRICS (Brasil, Rússia, Índia, China e África do Sul foram calculadas as volatilidades futuras para 15 dias, 1 mês e 3 meses. Em seguida, calculou-se as medidas tradicionais de avaliação da precisão do VaR. Os resultados sugerem a superioridade do modelo ARLS para a previsão da volatilidade cambial, capaz de prever corretamente o número de violações em 33% dos casos, enquanto os modelos tradicionais não obtiveram um bom desempenho. Com relação ao mercado acionário, os modelos GARCH e ARLS apresentaram desempenho similar. O modelo GARCH é superior considerando a perda média quadrática. Esses resultados apontam para a escolha do modelo ARLS no cálculo do VaR de portfólios cambiais devido a maior precisão alcançada. Ajuda assim os agentes de mercado a melhor gerirem o risco de suas carteiras. Em relação ao mercado acionário, em função do desempenho similar dos modelos GARCH e ARLS, o modelo GARCH é o mais indicado devido a sua maior simplicidade e fácil implementação computacional. Having in mind the importance of Value at Risk (VaR as a risk measure for financial institutions and rating agencies, this study evaluated whether the ARLS model is more accurate in the calculation of the long term VaR than the traditional models, considering it is more appropriate for predicting the long-term volatility. Due to the fact that VaR s being used for market players as a measure of risk for the portfolio

  4. [Limitations and controversies in determining the predictive value of oocyte and embryo morphology criteria].

    Science.gov (United States)

    Figueira, Rita de Cássia Savio; Aoki, Tsutomu; Borges Junior, Edson

    2015-11-01

    In order to increase the success rate of in vitro fertilization cycles, several studies have focused on the identification of the embryo with higher implantation potential. Despite recent advances in the reproductive medicine, based on the OMICs technology, routinely applicable methodologies are still needed. Thus, in most fertilization centers embryo selection for transfer is still based on morphological parameters evaluated under light microscopy. Several morphological parameters may be evaluated, ranging from the pronuclear to blastocyst stage. In general, despite the day of transfer, some criteria are suggested to present a predictive value for embryo viability when analyzed independently or combined. However, the subjectivity of morphological evaluation, as well as the wide diversity of embryo classification systems used by different fertilization centers shows contrasting results, making the implementation of a consensus regarding different morphological criteria and their predictive value a difficult task. The optimization of embryo selection represents a large potential to increase treatment success rates, allowing the transfer of a reduced number of embryos and minimizing the risks of multiple pregnancy.

  5. A CBR-Based and MAHP-Based Customer Value Prediction Model for New Product Development

    Science.gov (United States)

    Zhao, Yu-Jie; Luo, Xin-xing; Deng, Li

    2014-01-01

    In the fierce market environment, the enterprise which wants to meet customer needs and boost its market profit and share must focus on the new product development. To overcome the limitations of previous research, Chan et al. proposed a dynamic decision support system to predict the customer lifetime value (CLV) for new product development. However, to better meet the customer needs, there are still some deficiencies in their model, so this study proposes a CBR-based and MAHP-based customer value prediction model for a new product (C&M-CVPM). CBR (case based reasoning) can reduce experts' workload and evaluation time, while MAHP (multiplicative analytic hierarchy process) can use actual but average influencing factor's effectiveness in stimulation, and at same time C&M-CVPM uses dynamic customers' transition probability which is more close to reality. This study not only introduces the realization of CBR and MAHP, but also elaborates C&M-CVPM's three main modules. The application of the proposed model is illustrated and confirmed to be sensible and convincing through a stimulation experiment. PMID:25162050

  6. Outcome prediction value of determination of cord blood ADM concentrations in neonates with perinatal asphyxia events

    International Nuclear Information System (INIS)

    Zhang Shifa; Zhou Mingxiong; Zhang Xinlu

    2006-01-01

    Objective: To investigate the clinical value of determination of cord blood adrenomedullin (ADM) concentration for predicting development of hypoxic ischemic encephalopathy (HIE) in neonates suffered from perinatal asphyxia. Methods: Cord blood plasma ADM concentrations were measured with RIA in 77 full-ferm neonates with perinatal asphyxia and 30 controls. Results: In the 77 neonates with perinatal asphyxia, 32 developed clinical evidence of HIE within 7 days after birth (HIE group) and 45 didn't (non-HIE group). Cord blood plasma ADM concentrations in the HIE group (160.30 ± 41.3pg/ml) were significantly higher than those in the non-HIE group (112.26 ± 22.90 pg/ml) and controls (102.90 ± 19.43pg/ml). The cord blood plasma ADH concentrations in HIE group were also significantly positively correlated with the severity of the disease (r s = 0. 752, P < 0. 01 ). From our data, taking 117.93pg/ml as cut-off value for diagnosis of HIE would result in a sensitivity of 90.63%, specificity of 80%, and accuracy of 84.42%. Conclusion: High level of ADM in cord blood of neonates with perinatal asphyxia (≥117.93pg/ml) would predict development of HIE with a reasonable accuracy. (authors)

  7. Lower limb SSEP changes in stroke-predictive values regarding functional recovery.

    Science.gov (United States)

    Tzvetanov, Pl; Rousseff, R T; Milanov, Iv

    2003-04-01

    To assess the predictive value of lower limbs somatosensory evoked potentials (SSEPs) in the acute phase of stroke. 94 stroke patients (mean age: 61.2; S.D.: 11.8; 43 women) were included. Computed tomography confirmed diagnosis was cortical middle cerebral artery (MCA) infarction in 35, subcortical MCA in 11, and mixed in 25. By size, infarctions were large (29), limited (33), and lacunar (9). Thalamic haemorrhage was found in eight patients, putaminal in seven, small capsular in two, massive in two and lobar in four patients. All patients presented with hemiparesis (54) or hemiplegia (40), pure in five and combined with hemihypesthesia in 89. Tibial nerve SSEPs were recorded early in the course of the disease (up to third day). SSEP parameters (presence/absence of SSEP, absolute P40 latency, amplitude and amplitude ratio-affected/healthy side of P40-N50) were evaluated and compared with motor ability using the Medical Research Council (MRC) scale, and daily living activities using Barthel index (ADLB) followed for 3 months after stroke. Disability was assessed after the Rankin scale. The absolute amplitude of P40 has moderately strong correlation with Barthel index (r=0.63) and nearly moderate (r=-0.46) with Rankin scale at 3 months. P40 ratio exhibits weaker correlations with clinical outcome parameters. The combination of SSEP abnormalities and MRC has stronger predictive value than MRC alone (Pvs Pstroke, independently or combined with muscle power assessment, significantly increases prognostic capability.

  8. Human Papilloma Virus: Prevalence, distribution and predictive value to lymphatic metastasis in penile carcinoma

    Directory of Open Access Journals (Sweden)

    Aluizio Goncalves da Fonseca

    2013-07-01

    Full Text Available Objectives To evaluate the prevalence, distribution and association of HPV with histological pattern of worse prognosis of penile cancer, in order to evaluate its predictive value of inguinal metastasis, as well as evaluation of other previous reported prognostic factors. Material and Methods Tumor samples of 82 patients with penile carcinoma were tested in order to establish the prevalence and distribution of genotypic HPV using PCR. HPV status was correlated to histopathological factors and the presence of inguinal mestastasis. The influence of several histological characteristics was also correlated to inguinal disease-free survival. Results Follow-up varied from 1 to 71 months (median 22 months. HPV DNA was identified in 60.9% of sample, with higher prevalence of types 11 and 6 (64% and 32%, respectively. There was no significant correlation of the histological characteristics of worse prognosis of penile cancer with HPV status. Inguinal disease-free survival in 5 years did also not show HPV status influence (p = 0.45. The only independent pathologic factors of inguinal metastasis were: stage T ≥ T1b-T4 (p = 0.02, lymphovascular invasion (p = 0.04 and infiltrative invasion (p = 0.03. conclusions HPV status and distribution had shown no correlation with worse prognosis of histological aspects, or predictive value for lymphatic metastasis in penile carcinoma.

  9. The Predictive Value of Scores Used in Intensive Care Unit for Burn Patients Prognostic.

    Science.gov (United States)

    Novac, M; Dragoescu, Alice; Stanculescu, Andreea; Duca, Lucica; Cernea, Daniela

    2014-01-01

    Statistical evaluation of the prognosis of burned patients based on the analysis of prognostic scores as quickly and easily obtainable that track the evolution of burned patient in ICU. Material / Methods: The prospective study included 92 patients were performed with severe burns on 35-67% body surface large area, aiming to establish a cut-off score for each studied and statistically significant prognostic parameter for assessing the risk of mortality. The control group was represented by 20 patients with burns on the body surface of 0.05) sex (male / female), but we had p cut-off. Quantification of variables by calculating the area under the ROC curve (AUC), sensitivity and sensitivity, positive predictive value (PPV) and negative predictive value (NPV), allowed a better appreciation of these prognostic scores. These systems applicable to the burned patient scores, making a cut-off of each index / mortality probability score, he can manifest usefulness in medical decision making process and strategy to reduce the risk of death in patients with severe burns.

  10. The predictive value of 2-year posttreatment biopsy after prostate cancer radiotherapy for eventual biochemical outcome

    International Nuclear Information System (INIS)

    Vance, Waseet; Tucker, Susan L.; Crevoisier, Renaud de; Kuban, Deborah A.; Cheung, M. Rex

    2007-01-01

    Purpose: To determine the value of a 2-year post-radiotherapy (RT) prostate biopsy for predicting eventual biochemical failure in patients who were treated for localized prostate cancer. Methods and Materials: This study comprised 164 patients who underwent a planned 2-year post-RT prostate biopsy. The independent prognostic value of the biopsy results for forecasting eventual biochemical outcome and overall survival was tested with other factors (the Gleason score, 1992 American Joint Committee on Cancer tumor stage, pretreatment prostate-specific antigen level, risk group, and RT dose) in a multivariate analysis. The current nadir + 2 (CN + 2) definition of biochemical failure was used. Patients with rising prostate-specific antigen (PSA) or suspicious digital rectal examination before the biopsy were excluded. Results: The biopsy results were normal in 78 patients, scant atypical and malignant cells in 30, carcinoma with treatment effect in 43, and carcinoma without treatment effect in 13. Using the CN + 2 definition, we found a significant association between biopsy results and eventual biochemical failure. We also found that the biopsy status provides predictive information independent of the PSA status at the time of biopsy. Conclusion: A 2-year post-RT prostate biopsy may be useful for forecasting CN + 2 biochemical failure. Posttreatment prostate biopsy may be useful for identifying patients for aggressive salvage therapy

  11. Cosmological constraints from the CFHTLenS shear measurements using a new, accurate, and flexible way of predicting non-linear mass clustering

    Science.gov (United States)

    Angulo, Raul E.; Hilbert, Stefan

    2015-03-01

    We explore the cosmological constraints from cosmic shear using a new way of modelling the non-linear matter correlation functions. The new formalism extends the method of Angulo & White, which manipulates outputs of N-body simulations to represent the 3D non-linear mass distribution in different cosmological scenarios. We show that predictions from our approach for shear two-point correlations at 1-300 arcmin separations are accurate at the ˜10 per cent level, even for extreme changes in cosmology. For moderate changes, with target cosmologies similar to that preferred by analyses of recent Planck data, the accuracy is close to ˜5 per cent. We combine this approach with a Monte Carlo Markov chain sampler to explore constraints on a Λ cold dark matter model from the shear correlation functions measured in the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We obtain constraints on the parameter combination σ8(Ωm/0.27)0.6 = 0.801 ± 0.028. Combined with results from cosmic microwave background data, we obtain marginalized constraints on σ8 = 0.81 ± 0.01 and Ωm = 0.29 ± 0.01. These results are statistically compatible with previous analyses, which supports the validity of our approach. We discuss the advantages of our method and the potential it offers, including a path to model in detail (i) the effects of baryons, (ii) high-order shear correlation functions, and (iii) galaxy-galaxy lensing, among others, in future high-precision cosmological analyses.

  12. Incremental value of the CT coronary calcium score for the prediction of coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Genders, Tessa S.S. [Erasmus University Medical Center, Department of Epidemiology, P.O. Box 2040, CA, Rotterdam (Netherlands); Erasmus University Medical Center, Department of Radiology, P.O. Box 2040, CA, Rotterdam (Netherlands); Pugliese, Francesca; Mollet, Nico R.; Meijboom, W. Bob; Weustink, Annick C.; Mieghem, Carlos A.G. van; Feyter, Pim J. de [Erasmus University Medical Center, Department of Radiology, P.O. Box 2040, CA, Rotterdam (Netherlands); Erasmus University Medical Center, Department of Cardiology, P.O. Box 2040, CA, Rotterdam (Netherlands); Hunink, M.G.M. [Erasmus University Medical Center, Department of Epidemiology, P.O. Box 2040, CA, Rotterdam (Netherlands); Erasmus University Medical Center, Department of Radiology, P.O. Box 2040, CA, Rotterdam (Netherlands); Harvard University, Department of Health Policy and Management, Harvard School of Public Health, Boston (United States)

    2010-10-15

    To validate published prediction models for the presence of obstructive coronary artery disease (CAD) in patients with new onset stable typical or atypical angina pectoris and to assess the incremental value of the CT coronary calcium score (CTCS). We searched the literature for clinical prediction rules for the diagnosis of obstructive CAD, defined as {>=}50% stenosis in at least one vessel on conventional coronary angiography. Significant variables were re-analysed in our dataset of 254 patients with logistic regression. CTCS was subsequently included in the models. The area under the receiver operating characteristic curve (AUC) was calculated to assess diagnostic performance. Re-analysing the variables used by Diamond and Forrester yielded an AUC of 0.798, which increased to 0.890 by adding CTCS. For Pryor, Morise 1994, Morise 1997 and Shaw the AUC increased from 0.838 to 0.901, 0.831 to 0.899, 0.840 to 0.898 and 0.833 to 0.899. CTCS significantly improved model performance in each model. Validation demonstrated good diagnostic performance across all models. CTCS improves the prediction of the presence of obstructive CAD, independent of clinical predictors, and should be considered in its diagnostic work-up. (orig.)

  13. Risk Prediction in Aortic Valve Replacement: Incremental Value of the Preoperative Echocardiogram.

    Science.gov (United States)

    Tan, Timothy C; Flynn, Aidan W; Chen-Tournoux, Annabel; Rudski, Lawrence G; Mehrotra, Praveen; Nunes, Maria C; Rincon, Luis M; Shahian, David M; Picard, Michael H; Afilalo, Jonathan

    2015-10-26

    Risk prediction is a critical step in patient selection for aortic valve replacement (AVR), yet existing risk scores incorporate very few echocardiographic parameters. We sought to evaluate the incremental predictive value of a complete echocardiogram to identify high-risk surgical candidates before AVR. A cohort of patients with severe aortic stenosis undergoing surgical AVR with or without coronary bypass was assembled at 2 tertiary centers. Preoperative echocardiograms were reviewed by independent observers to quantify chamber size/function and valve function. Patient databases were queried to extract clinical data. The cohort consisted of 432 patients with a mean age of 73.5 years and 38.7% females. Multivariable logistic regression revealed 3 echocardiographic predictors of in-hospital mortality or major morbidity: E/e' ratio reflective of elevated left ventricular (LV) filling pressure; myocardial performance index reflective of right ventricular (RV) dysfunction; and small LV end-diastolic cavity size. Addition of these echocardiographic parameters to the STS risk score led to an integrated discrimination improvement of 4.1% (Pvalue to the STS risk score and should be integrated in prediction when evaluating the risk of AVR. In addition, findings of small hypertrophied LV cavities and/or low mean aortic gradients confer a higher risk of 2-year mortality. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  14. Incremental value of the CT coronary calcium score for the prediction of coronary artery disease

    International Nuclear Information System (INIS)

    Genders, Tessa S.S.; Pugliese, Francesca; Mollet, Nico R.; Meijboom, W. Bob; Weustink, Annick C.; Mieghem, Carlos A.G. van; Feyter, Pim J. de; Hunink, M.G.M.

    2010-01-01

    To validate published prediction models for the presence of obstructive coronary artery disease (CAD) in patients with new onset stable typical or atypical angina pectoris and to assess the incremental value of the CT coronary calcium score (CTCS). We searched the literature for clinical prediction rules for the diagnosis of obstructive CAD, defined as ≥50% stenosis in at least one vessel on conventional coronary angiography. Significant variables were re-analysed in our dataset of 254 patients with logistic regression. CTCS was subsequently included in the models. The area under the receiver operating characteristic curve (AUC) was calculated to assess diagnostic performance. Re-analysing the variables used by Diamond and Forrester yielded an AUC of 0.798, which increased to 0.890 by adding CTCS. For Pryor, Morise 1994, Morise 1997 and Shaw the AUC increased from 0.838 to 0.901, 0.831 to 0.899, 0.840 to 0.898 and 0.833 to 0.899. CTCS significantly improved model performance in each model. Validation demonstrated good diagnostic performance across all models. CTCS improves the prediction of the presence of obstructive CAD, independent of clinical predictors, and should be considered in its diagnostic work-up. (orig.)

  15. Predictive value of symptoms and demographics in diagnosing malignancy or peptic stricture

    Science.gov (United States)

    Murray, Iain A; Palmer, Joanne; Waters, Carolyn; Dalton, Harry R

    2012-01-01

    AIM: To determine which features of history and demographics predict a diagnosis of malignancy or peptic stricture in patients presenting with dysphagia. METHODS: A prospective case-control study of 2000 consecutive referrals (1031 female, age range: 17-103 years) to a rapid access service for dysphagia, based in a teaching hospital within the United Kingdom, over 7 years. The service consists of a nurse-led telephone triage followed by investigation (barium swallow or gastroscopy), if appropriate, within 2 wk. Logistic regression analysis of demographic and clinical variables was performed. This includes age, sex, duration of dysphagia, whether to liquids or solids, and whether there are associated features (reflux, odynophagia, weight loss, regurgitation). We determined odds ratio (OR) for these variables for the diagnoses of malignancy and peptic stricture. We determined the value of the Edinburgh Dysphagia Score (EDS) in predicting cancer in our cohort. Multivariate logistic regression was performed and P 73 years, OR 1.1-3.3, age 73 years 11.8%, P dysphagia (≤ 8 wk, OR 4.5-20.7, 16.6%, 8-26 wk 14.5%, > 26 wk 2.5%, P dysphagia (food or drink sticking within 5 s of swallowing than those who did not (15.1% vs 5.2% respectively, P dysphagia (pharyngeal level dysphagia 11.9% vs mid sternal or lower sternal dysphagia 12.4%). Peptic stricture was statistically more frequent in those with longer duration of symptoms (> 6 mo, OR 1.2-2.9, ≤ 8 wk 9.8%, 8-26 wk 10.6%, > 26 wk 15.7%, P 73 years 10.6%, P dysphagia. The predictive value for associated features could help determine need for fast track investigation whilst reducing service pressures. PMID:22969199

  16. The predictive value of mean serum uric acid levels for developing prediabetes.

    Science.gov (United States)

    Zhang, Qing; Bao, Xue; Meng, Ge; Liu, Li; Wu, Hongmei; Du, Huanmin; Shi, Hongbin; Xia, Yang; Guo, Xiaoyan; Liu, Xing; Li, Chunlei; Su, Qian; Gu, Yeqing; Fang, Liyun; Yu, Fei; Yang, Huijun; Yu, Bin; Sun, Shaomei; Wang, Xing; Zhou, Ming; Jia, Qiyu; Zhao, Honglin; Huang, Guowei; Song, Kun; Niu, Kaijun

    2016-08-01

    We aimed to assess the predictive value of mean serum uric acid (SUA) levels for incident prediabetes. Normoglycemic adults (n=39,353) were followed for a median of 3.0years. Prediabetes is defined as impaired fasting glucose (IFG), impaired glucose tolerance (IGT), or impaired HbA1c (IA1c), based on the American Diabetes Association criteria. Serum SUA levels were measured annually. Four diagnostic strategies were used to detect predia