WorldWideScience

Sample records for valproic acid stimulates

  1. Valproic Acid

    Science.gov (United States)

    ... and spinal cord and can also cause lower intelligence in babies exposed to valproic acid before birth. ... all of the prescription and nonprescription (over-the-counter) medicines you are taking, as well as any ...

  2. Valproic Acid and Pregnancy

    Science.gov (United States)

    ... questions. We have answers. Fact Sheets Share Valproic Acid and Pregnancy Wednesday, 01 July 2015 In every ... This sheet talks about whether exposure to valproic acid may increase the risk for birth defects over ...

  3. Hyperammonemia Associated with Valproic Acid Concentrations

    Directory of Open Access Journals (Sweden)

    Marta Vázquez

    2014-01-01

    Full Text Available Valproic acid, a branched short-chain fatty acid, has numerous action mechanisms which turn it into a broad spectrum anticonvulsant drug and make its use possible in some other pathologies such as bipolar disorder. It is extensively metabolized in liver, representing β-oxidation in the mitochondria one of its main metabolic route (40%. Carnitine is responsible for its entry into the mitochondria as any other fatty acid. Long-term high-dose VPA therapy or acute VPA overdose induces carnitine depletion, resulting in high levels of ammonia in blood. As a high correlation between salivary valproic acid levels and plasma ultrafiltrate levels was found in humans, saliva becomes a promising monitoring fluid in order to study valproic acid pharmacokinetics and its toxic effect. Extended-release (twice daily formulations of valproic acid or carnitine supplementation are the proposed two therapeutic strategies in order to reverse hyperammonemia.

  4. Valproic acid loading during intensive monitoring.

    Science.gov (United States)

    Rosenfeld, W E; Leppik, I E; Gates, J R; Mireles, R E

    1987-07-01

    Of 35 patients who had generalized tonic-clonic seizures during antiepileptic drug therapy withdrawal, "loading" with valproic acid was effective in limiting these seizures in 32 patients. A loading dose of approximately 12.5 mg/kg was used. This dose resulted in valproic acid levels between 284 and 458 mumol/L (41 and 66 mg/L) 1.5 hours after "loading" in six of the eight patients in whom serum concentrations were measured.

  5. Compound list: valproic acid [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available valproic acid VPA 00005 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_vitro/valproic_acid....Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/valproic_acid..._vivo/Liver/Single/valproic_acid.Rat.in_vivo.Liver.Single.zip ftp://ftp.bioscienc...edbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Repeat/valproic_acid.Rat.in_vivo.Liver.Repeat.zip ftp:...//ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Kidney/Single/valproic_acid.Rat.in_vivo.Kidne

  6. Potential interaction between valproic acid and doripenem.

    Science.gov (United States)

    Hellwig, Thaddaus R; Onisk, Mallory L; Chapman, Bret A

    2011-02-01

    A potential interaction between valproate (VPA) and doripenem leading to decreased valproic acid concentrations in two patients is described. In the first patient case, a 54-year-old female presented to the emergency department following a seizure episode after stopping her medications a few days prior. She was given a 1500 mg (23 mg/kg) intravenous (IV) bolus dose of valproate and restarted on her home regimen of divalproex sodium 750 mg daily which quickly resulted in valproic acid blood concentrations within the reference range. The patient was later started on doripenem 500 mg IV every 8 hours and subsequent valproic acid concentrations decreased by 62%. The second patient was a 54-year-old female transferred from an outlying facility following a motor vehicle accident. The patient was receiving valproate 1250 mg IV every 8 hours for seizure prophylaxis following a traumatic brain injury. She developed pneumonia and was started on doripenem 500mg IV every 8 hours. Valproic acid concentrations decreased by 69% within two days. This case report describes two patients receiving concomitant valproate and doripenem resulting in a 62% and 69% reduction in valproic acid concentration.

  7. Valproic Acid-Associated Liver Failure

    OpenAIRE

    J Gordon Millichap

    2011-01-01

    Researchers at the University of Maryland School of Medicine, Baltimore, and other centers analyzed the records of 17 children undergoing liver transplantation (LT) for valproic acid-associated liver failure (VPA-ALF) and 98 with ALF caused by other drugs (non-VPA-drug-induced acute liver failure [DIALF].

  8. [Hemoperfusion in the treatment of acute valproic acid intoxication].

    Science.gov (United States)

    Peces, R; Fernández, E J; Sánchez, R J; Peces, C; Montero, A; Selgas, R

    2007-01-01

    Valproic acid is increasingly used in the treatment of epilepsy, and also prescribed for bipolar affective disorders, schizoaffective disorders, schizophrenia and migraine prophylaxis. Valproic acid intoxication with suicide attempt is a relatively common clinical problem that can result in coma, respiratory depression, pancytopenia, hemodynamic instability and death. The drug's relatively low molecular weight, small volume of distribution and saturable protein-binding render it potentially amenable to exracorporeal removal (hemodialysis, hemoperfusion or hemofiltration ), but published experience is scarce. We describe a case report involving valproic acid intoxication with ingestion of ethanol, who was successfully treated with charcoal hemoperfusion. With this treatment the half-life of valproic acid was reduced with rapid lowering of valproic acid levels and clinical improvement. Based on our experience in this patient and a review of previously reported cases, charcoal hemoperfusion should be considered for serious valproic acid intoxication because free as well as bound drug fractions are eliminated via this technique.

  9. Valproic acid for agitation in dementia.

    Science.gov (United States)

    Lonergan, E T; Cameron, M; Luxenberg, J

    2004-01-01

    Agitation affects up to 70% of older people with dementia. Valproic acid has been used for the past 10 years to control agitation in dementia, but no systematic review of the effectiveness of this drug has been published to date. The current study examines three randomized, placebo-controlled trials of the effect of valproic acid on older people with dementia who were agitated. To determine whether evidence supports the use of valproic acid in the treatment of agitation of people with dementia. Trials were identified from a last updated search of the Specialized Register of the Cochrane Dementia and Cognitive Improvement Group on 10 July 2003 using the terms ("agitat*" or "distur*" or "behavi*" or "aggress*") and "valproic" or "valproate" or "divalpro*." This Register contains articles from all major health care databases and many ongoing trials databases and is regularly updated. The reviewers contacted the authors of publications and drug companies manufacturing valproic acid for additional information. Randomized, placebo-controlled trials with concealed allocation where agitation and dementia of participants were assessed 1. Two reviewers extracted data from published trials. 2. Odds ratios of average differences were calculated. 3. Only "intention to treat" analyses were included. 4. Analysis compared participants treated with valproic acid with controls. Meta-analysis of the pooled results of the included trials could not be performed because of the following problems. In Porsteinsson 2001, although the physicians having direct responsibility for patient care were blinded, a non-blinded physician, who had no direct contact with these physicians, adjusted divalproex sodium dosage on the basis of reports from blinded raters. Therefore, because the physician who controlled therapy knew which patients were receiving divalproex, the trial did not satisfy the criterion of concealed allocation. In Tariot 2001, 54% of the treated patients dropped out compared with 29

  10. Use of valproic acid in long stay units of psychiatry

    Directory of Open Access Journals (Sweden)

    Mª Teresa Martínez-Lazcano

    2015-01-01

    Full Text Available Objective: Valproic acid is often used in psychiatry to treat schizophrenia and other conditions outside of indication (“off-label”. However, its effectiveness has not been sufficiently demonstrated and its use is not exempt of adverse effects. This study’s main objective is to determine the frequency of use of valproic acid in approved indications and the “off-label” use in psychiatric patients. Methods: A cross-sectional study on July 7, 2014 with a sample of 167 patients residents in a psychiatric center was designed. Demographics, valproic acid treatment, posology and associated drug treatment, monitoring safety parameters, interactions and valproic acid concentrations. Results: Valproic acid is prescribed in 1 of 3 patients of the center. It was used in the approved indications in 8 (15% of the 53 patients analyzed: 5 (9% of them with bipolar disorder and 3 (6% diagnosed with epilepsy. Other 5 patients (9% were included in the extended schizoaffective disorder indication. 76% (40 of the evaluated patients were prescribed valproic acid off-label. The mean dose of valproic acid was 1.26 Defined Daily Dose / patient / day. An average of 6 drugs associated with valproic acid was found. 18% of patients had thrombocytopenia. Conclusions: Valproic acid is often used off-label in psychiatric patients. It should be assessed the benefit-risk in this population

  11. Valproic acid monotherapy in pregnancy and major congenital malformations

    DEFF Research Database (Denmark)

    Jentink, Janneke; Loane, Maria A; Dolk, Helen

    2010-01-01

    The use of valproic acid in the first trimester of pregnancy is associated with an increased risk of spina bifida, but data on the risks of other congenital malformations are limited.......The use of valproic acid in the first trimester of pregnancy is associated with an increased risk of spina bifida, but data on the risks of other congenital malformations are limited....

  12. The effect of lamotrigine on valproic acid concentrations.

    Science.gov (United States)

    Martin, Andrew C; Besag, Frank M C; Berry, David J; Besag, Frank P

    2011-02-01

    To determine whether lamotrigine affects serum concentrations of valproic acid. Pre-morning-dose serum valproic acid concentrations were measured in 76 subjects with epilepsy (48 M, 28 F, age range 6-20 years, mean age 14 years) in whom lamotrigine was added while the dose of valproate and other medication remained unchanged. In a comparison group, either acetazolamide or gabapentin was added to sodium valproate. Far more subjects (26/76 = 34%) had an increase of >25% in valproic acid concentration with lamotrigine than those who had a decrease of >25% (4/76 = 5.3%). The mean valproic acid concentration before starting lamotrigine was 61.0 mg/L and on lamotrigine was 67.1 mg/L; the difference in means was 6.1 mg/L (standard error 2.1, 95% confidence limits 2.0, 10.2, p=0.004, highly significant, paired sample t-test, two-tailed), a rise of 10%. The change in valproic acid concentration appeared to depend on the initial valproic acid concentration (Pearson r=-0.405, pvalproate concentration was >50%, which could lead to toxicity, although the increase tended to occur with lower or intermediate initial valproic acid concentrations whereas a small overall decrease in valproic acid concentrations with lamotrigine was found with the higher initial valproic acid concentrations. One subject had abnormal bruising with the increased valproate level after lamotrigine was added, which resolved on decreasing the valproate dose. The changes in valproic acid concentrations in the comparison group were small (mean increase 2.6%) and were not statistically significant. Although there is a wide variation in the changes of valproic acid concentrations when lamotrigine is added, the concentrations tend to increase rather than decrease, especially with low or intermediate initial valproic acid concentrations. In some cases valproate toxicity, manifested by abnormal bruising, may result, although at higher initial valproic acid concentrations the valproic acid concentration usually

  13. Extracorporeal treatment for valproic acid poisoning

    DEFF Research Database (Denmark)

    Ghannoum, Marc; Laliberté, Martin; Nolin, Thomas D

    2015-01-01

    BACKGROUND: The EXtracorporeal TReatments In Poisoning (EXTRIP) workgroup presents its systematic review and clinical recommendations on the use of extracorporeal treatment (ECTR) in valproic acid (VPA) poisoning. METHODS: The lead authors reviewed all of the articles from a systematic literature....... The workgroup concluded that VPA is moderately dialyzable (level of evidence = B) and made the following recommendations: ECTR is recommended in severe VPA poisoning (1D); recommendations for ECTR include a VPA concentration > 1300 mg/L (9000 μmol/L)(1D), the presence of cerebral edema (1D) or shock (1D...... 50 and 100 mg/L (350-700 μmol/L)(2D). Intermittent hemodialysis is the preferred ECTR in VPA poisoning (1D). If hemodialysis is not available, then intermittent hemoperfusion (1D) or continuous renal replacement therapy (2D) is an acceptable alternative. CONCLUSIONS: VPA is moderately dialyzable...

  14. Decrease in serum valproic acid levels during treatment with ertapenem.

    Science.gov (United States)

    Liao, Fen-Fen; Huang, Yaw-Bin; Chen, Chi-Yu

    2010-08-01

    A possible interaction between valproic acid and ertapenem resulting in reduced serum valproic acid levels in two patients is reported. In the first case, a 47-year-old woman was brought to the emergency department (ED) with fever, pain, redness, swelling, and local heat in the tissue around her tracheostomy tube and left foot. One month prior she was hospitalized with pneumonia and had a generalized tonic-clonic seizure. She was given teicoplanin and amoxicillin-clavulanate potassium as empirical therapy for cellulitis. On day 3, the patient developed a fever. Amoxicillin-clavulanate potassium was discontinued and replaced by i.v. ertapenem. On day 5, due to a suspected drug-induced fever, carbamazepine was discontinued, and oral valproate sodium was initiated. On day 16, the patient was afebrile, so ertapenem was discontinued. Her serum valproic acid concentration was valproate sodium. On day 15, cefpirome was replaced with ertapenem. On day 21, she had a seizure, and her serum valproic acid levels was found to be <1 mg/L. Ertapenem was discontinued after 14 days. Her serum valproic acid levels continued to increase until discharge on day 42. After initiation of ertapenem, decreased serum valproic acid levels were observed in two patients.

  15. Fatal Hyperammonemic Brain Injury from Valproic Acid Exposure

    Directory of Open Access Journals (Sweden)

    Danny Bega

    2012-12-01

    Full Text Available Background: Hyperammonemia is known to cause neuronal injury, and can result from valproic acid exposure. Prompt reduction of elevated ammonia levels may prevent permanent neurological injury. We report a case of fatal hyperammonemic brain injury in a woman exposed to valproic acid. Case: A 38-year-old woman with schizoaffective disorder and recent increase in valproic acid dosage presented with somnolence and confusion and rapidly progressed to obtundation. Brain MRI showed diffuse bilateral restricted diffusion in nearly the entire cerebral cortex. She had normal liver function tests but serum ammonia level was severely elevated at 288 µmol/l. Genetic testing showed no mutation in urea cycle enzymes. Despite successful elimination of ammonia with hemodialysis she developed fatal cerebral edema. Conclusion: Cerebral edema secondary to hyperammonemia is potentially reversible if recognized early. Ammonia excretion can be facilitated by initiation of hemodialysis and administration of scavenging agents (sodium phenylacetate and sodium benzoate. Severe hyperammonemia can result from valproic acid exposure even in the absence of hepatotoxicity or inborn errors of metabolism. It is important to check serum ammonia in any patient with encephalopathy who has had recent valproic acid exposure.

  16. Endocrine effects of valproic acid therapy in girls with epilepsy: a prospective study.

    Science.gov (United States)

    Goldberg-Stern, Hadassa; Yaacobi, Eyal; Phillip, Moshe; de Vries, Liat

    2014-11-01

    It is controversial whether the endocrine dysfunction in epilepsy patients is caused by the epilepsy itself, the antiepileptic therapy, or both. We prospectively evaluated the long-term impact of valproic acid monotherapy compared to other anti-epileptic drugs on anthropometric, metabolic, hormonal, and ultrasonographic parameters in girls with epilepsy. Fifty-seven female patients with epilepsy who had started therapy at mean age of 11.5 ± 3.3 years, 42 with valproic acid (mean dose 13.1 ± 7.0 mg/kg/day and 15 with other anti-epileptic agents were followed for a mean of 3.2 years (range 1.0-8.5 years) in our center. Clinical, hormonal and transabdominal pelvic ultrasound data were collected at 3 time points: before and 6-12 months after onset of anti-epileptic drug treatment; and at the last visit while patients were still taking anti-epileptic drugs. There were no significant between-group differences regarding changes in height, body mass index standard deviation score, levels of glucose and insulin, or lipid and endocrine profile from first to last visits. Mean thyroid-stimulating hormone level increased significantly between first and last visit only in the valproic acid group (p syndrome for the valproic acid group (11%) was comparable to that reported in healthy controls (5-10%). Administration of valproic acid had no adverse effect on body weight, metabolic status or endocrine function over an average follow-up of 3.2 years. Valproic acid appears to be safe for use in girls with epilepsy. Copyright © 2014 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  17. Valproic Acid Teratogenicity: A Toxicogenomics Approach

    Science.gov (United States)

    Kultima, Kim; Nyström, Anna-Maja; Scholz, Birger; Gustafson, Anne-Lee; Dencker, Lennart; Stigson, Michael

    2004-01-01

    Embryonic development is a highly coordinated set of processes that depend on hierarchies of signaling and gene regulatory networks, and the disruption of such networks may underlie many cases of chemically induced birth defects. The antiepileptic drug valproic acid (VPA) is a potent inducer of neural tube defects (NTDs) in human and mouse embryos. As with many other developmental toxicants however, the mechanism of VPA teratogenicity is unknown. Using microarray analysis, we compared the global gene expression responses to VPA in mouse embryos during the critical stages of teratogen action in vivo with those in cultured P19 embryocarcinoma cells in vitro. Among the identified VPA-responsive genes, some have been associated previously with NTDs or VPA effects [vinculin, metallothioneins 1 and 2 (Mt1, Mt2), keratin 1-18 (Krt1-18)], whereas others provide novel putative VPA targets, some of which are associated with processes relevant to neural tube formation and closure [transgelin 2 (Tagln2), thyroid hormone receptor interacting protein 6, galectin-1 (Lgals1), inhibitor of DNA binding 1 (Idb1), fatty acid synthase (Fasn), annexins A5 and A11 (Anxa5, Anxa11)], or with VPA effects or known molecular actions of VPA (Lgals1, Mt1, Mt2, Id1, Fasn, Anxa5, Anxa11, Krt1-18). A subset of genes with a transcriptional response to VPA that is similar in embryos and the cell model can be evaluated as potential biomarkers for VPA-induced teratogenicity that could be exploited directly in P19 cell–based in vitro assays. As several of the identified genes may be activated or repressed through a pathway of histone deacetylase (HDAC) inhibition and specificity protein 1 activation, our data support a role of HDAC as an important molecular target of VPA action in vivo. PMID:15345369

  18. Hyperammoneic encephalopathy, valproic acid, and benzodiazepine withdrawal: a case series.

    Science.gov (United States)

    Starer, Jacquelyn; Chang, Grace

    2010-03-01

    Benzodiazepine withdrawal is accompanied by a risk of seizures, delirium, and death. While a gradual outpatient taper off of benzodiazepines is the most commonly recommended method for discontinuation, acute inpatient detoxification and seizure prophylaxis may be necessary for some. Complications related to the use of valproic acid for seizure prophylaxis are presented. The study's objectives are to highlight an uncommon and possibly unrecognized complication of valproic acid when used for seizure prophylaxis during acute inpatient detoxification from benzodiazepines in the context of current practice. Case series. Three patients with hyperammoneic encephalopathy are described. Hyperammoneic encephalopathy can occur as a distinct entity separate from hepatotoxicity with the use of valproic acid and may be an unrecognized complication among patients receiving this drug during benzodiazepine detoxification. A previously unreported complication among the addiction patient population is reported. This underscores the need for a better evidence base regarding the prevention of seizures during acute benzodiazepine detoxification, particularly in terms of indications, safety, and efficacy.

  19. Valproic acid-induced hyperammonaemic coma and unrecognised portosystemic shunt.

    Science.gov (United States)

    Nzwalo, Hipólito; Carrapatoso, Leonor; Ferreira, Fátima; Basilio, Carlos

    2013-06-01

    Hyperammonaemic encephalopathy is a rare and potentially fatal complication of valproic acid treatment. The clinical presentation of hyperammonaemic encephalopathy is wide and includes seizures and coma. We present a case of hyperammonaemic coma precipitated by sodium valproate use for symptomatic epilepsy in a patient with unrecognised portosystemic shunt, secondary to earlier alcoholism. The absence of any stigmata of chronic liver disease and laboratory markers of liver dysfunction delayed the recognition of this alcohol-related complication. The portal vein bypass led to a refractory, valproic acid-induced hyperammonaemic coma. The patient fully recovered after dialysis treatment.

  20. Valproic Acid Monotherapy in Pregnancy and Major Congenital Malformations.

    NARCIS (Netherlands)

    Jentink, J.; Loane, M.A.; Dolk, H.; Barisic, I.; Garne, E.; de Jong-van den Berg, L.T.W.; Morris, Joan K.

    2010-01-01

    Background: The use of valproic acid in the first trimester of pregnancy is associated with an increased risk of spina bifida, but data on the risks of other congenital malformations are limited. Methods: We first combined data from eight published cohort studies (1565 pregnancies in which the women

  1. Withdrawal of valproic acid treatment during pregnancy and seizure outcome

    DEFF Research Database (Denmark)

    Tomson, Torbjörn; Battino, Dina; Bonizzoni, Erminio

    2016-01-01

    Based on data from the EURAP observational International registry of antiepileptic drugs (AEDs) and pregnancy, we assessed changes in seizure control and subsequent AED changes in women who underwent attempts to withdraw valproic acid (VPA) during the first trimester of pregnancy. Applying Bayesi...

  2. Valproic Acid and Sleep Duration in Children with Epilepsy

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2009-09-01

    Full Text Available Sleep duration and behavior were assessed in 46 children (age range 1.7-17.4 years before and after tapering valproic acid (VPA administered for more than 6 months for epilepsy, in a study at University Children's Hospital, Zurich, Switzerland.

  3. Valproic acid modulates platelet and coagulation function ex vivo

    DEFF Research Database (Denmark)

    Bambakidis, Ted; Dekker, Simone E; Halaweish, Ihab

    2017-01-01

    : Trauma-induced coagulopathy is associated with adverse patient outcome. Animal models demonstrate that histone deacetylase inhibitors, such as valproic acid (VPA), improve survival following injury. While in-vivo data suggest that improved survival may in part be because of an attenuation...

  4. Hemicrania continua evolving from cluster headache responsive to valproic acid.

    Science.gov (United States)

    Lambru, Giorgio; Castellini, Paola; Bini, Annamaria; Evangelista, Andrea; Manzoni, Gian Camillo; Torelli, Paola

    2008-10-01

    Hemicrania continua (HC) is a rare type of primary headache characterized by a prompt and enduring response to indomethacin. We describe a patient who suffered from cluster headache evolving into ipsilateral HC, who does not tolerate a long-term indomethacin therapy. The case was complex in terms of diagnosis, associated comorbidity, and choice of treatment; after several trials with different therapeutic regimens, we started the patient on a therapy with valproic acid and obtained an improvement of her HC.

  5. Valproic Acid as a Cause of Transient Atrio-Ventricular Conduction Block Episodes.

    Science.gov (United States)

    Davutoglu, Vedat; Neyal, Munife; Altunbas, Gokhan

    2017-01-01

    Herein we share, to our knowledge for the first time, a a case of valproic acid use complicated by symptomatic atrio-ventricular conduction block episodes on Holter monitoring. Symptomatic atrio-ventricular block episodes should be considered as an unusual side effect of valproic acid despite normal blood therapeutic level. Before consideration of pacemaker implantation in such cases, valproic acid usage should be investigated, and dose reduction should be attempted.

  6. Valproic acid inhibits TTX-resistant sodium currents in prefrontal cortex pyramidal neurons.

    Science.gov (United States)

    Szulczyk, Bartlomiej; Nurowska, Ewa

    2017-09-16

    Valproic acid is frequently prescribed and used to treat epilepsy, bipolar disorder and other conditions. However, the mechanism of action of valproic acid has not been fully elucidated. The aim of this study was to assess the influence of valproic acid (200 μM) on TTX-resistant sodium currents in mPFC pyramidal neurons. Valproic acid inhibited the maximal amplitude and did not change the activation parameters of TTX-resistant sodium currents. Moreover, valproic acid (2 μM and 200 μM) shifted the TTX-resistant sodium channel inactivation curve towards hyperpolarisation. In the presence of valproic acid, TTX-resistant sodium currents recovered from inactivation more slowly. Valproic acid did not influence the use-dependent blockade of TTX-resistant sodium currents. This study suggests that a potential new mechanism of the antiepileptic action of valproic acid is, among others, inhibition of TTX-resistant sodium currents. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The use of valproic acid and multiple sclerosis

    DEFF Research Database (Denmark)

    Nielsen, Nete Munk; Svanström, Henrik; Stenager, Egon

    2014-01-01

    BACKGROUND: Animal studies have suggested that drugs inhibiting the enzyme histone deacetylase might have a beneficial effect on multiple sclerosis (MS). Valproic acid (VPA), an anti-epileptic drug, is the only widely used human drug with a histone deacetylase inhibitory effect. OBJECTIVE...... on propensity scores in a 1:4 ratio with non-users of VPA. Incidence rates of MS were compared among VPA users and non-users of VPA using Cox regression to estimate hazard ratios (HRs). RESULTS: Among 16 028 ever-users of VPA and 54 172 non-users, 18 and 26 cases of MS were identified, respectively. Neither...

  8. Inhibitory effect of valproic acid on cytochrome P450 2C9 activity in epilepsy patients.

    Science.gov (United States)

    Gunes, Arzu; Bilir, Erhan; Zengil, Hakan; Babaoglu, Melih O; Bozkurt, Atila; Yasar, Umit

    2007-06-01

    Drug interactions constitute a major problem in the treatment of epilepsy because drug combinations are so common. Valproic acid is a widely used anticonvulsant drug with a broad therapeutic spectrum. Case reports suggest interaction between valproic acid and other drugs metabolized mainly by cytochrome P450 isoforms. The aim of this study was to evaluate the inhibitory effect of valproic acid on cytochrome P450 2C9 (CYP2C9) activity by using losartan oxidation as a probe in epilepsy patients. Patients were prescribed sodium valproate (mean 200 mg/day for the first week and 400 mg/day in the following period) according to their clinical need. A single oral dose of 25 mg losartan was given to patients before and after the first dose, first week and 4 weeks of valproic acid treatment. Losartan and E3174, the CYP2C9-derived carboxylic acid metabolite of losartan in 8 hr urine were assayed by using high pressure liquid chromatography. Urinary losartan/E3174 ratio did not change significantly on the first day (0.9, 0.3-3.5; median, range), and first week (0.6, 0.2-3.8; median, range), while a significant increase was observed after 4 weeks of valproic acid treatment (1.1, 0.3-5.7; median, range) as compared to that of measured before valproic acid administration (0.6, 0.1-2.1; median, range) (P = 0.039). The degree of inhibition was correlated with the steady-state plasma concentrations of valproic acid (r(2) = 0.70, P = 0.04). The results suggest an inhibitory effect of valproic acid on CYP2C9 enzyme activity in epilepsy patients at steady state. The risk of pharmacokinetic drug-drug interactions should be taken into account during concomitant use of valproic acid and CYP2C9 substrates.

  9. Calorimetric Study of Mesoporous SBA-15 Modified for Controlled Valproic Acid Delivery

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2013-01-01

    Full Text Available SBA-15 ordered mesoporous silica functionalized with (3-aminopropyltriethoxysilane (APTES was used as the carrier for anticonvulsant drug 2-propylpentanoic acid (valproic acid. The surface of SBA-15 containing free silanol groups was modified with 3-aminopropyltriethoxysilane via postsynthetic reaction. Functionalization of the carrier with basic aminopropyl groups resulted in an ionic interaction with acidic valproic acid. The samples of carriers and carrier-drug complexes were characterized by elemental analysis, N2 adsorption, FTIR, and UV spectroscopy. The adsorption of valproic acid on modified mesoporous matrix was proportional to the amount of introduced aminopropyl groups. A thermodynamic study with isothermal titration calorimetry (ITC was made to characterize the modification and encapsulation of SBA-15 with APTES and valproic acid, respectively. The maximum content of deposited drug in modified SBA-15 was close to 30 wt.%. Tests performed in acidic solution (pH 2.0 showed the best pharmaceutical availability.

  10. Metabolic and endocrine effects of valproic acid chronic treatment.

    Science.gov (United States)

    Belcastro, Vincenzo; D'Egidio, Claudia; Striano, Pasquale; Verrotti, Alberto

    2013-11-01

    Treatment of epileptic patients with valproic acid (VPA) may be associated with substantial weight changes that may increase morbidity and impair adherence to the treatment regimen. VPA-induced weight gain seems to be associated with many metabolic disturbances; the most frequent are hyperinsulinemia and insulin resistance, hyperleptinemia and leptin resistance. Patients who gain weight during VPA therapy can develop dyslipidemia and metabolic syndrome that are associated with long-term vascular complications such as hypertension and atherosclerosis. Moreover, an elevation in the levels of uric acid and homocysteine, together with oxidative stress, may contribute to atherosclerotic risk in patients under long-term therapy with VPA. The aim of this review is to discuss the metabolic and endocrine effects of VPA chronic treatment in patients with epilepsy. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Molecular and Therapeutic Potential and Toxicity of Valproic Acid

    Directory of Open Access Journals (Sweden)

    Sébastien Chateauvieux

    2010-01-01

    Full Text Available Valproic acid (VPA, a branched short-chain fatty acid, is widely used as an antiepileptic drug and a mood stabilizer. Antiepileptic properties have been attributed to inhibition of Gamma Amino Butyrate (GABA transaminobutyrate and of ion channels. VPA was recently classified among the Histone Deacetylase Inhibitors, acting directly at the level of gene transcription by inhibiting histone deacetylation and making transcription sites more accessible. VPA is a widely used drug, particularly for children suffering from epilepsy. Due to the increasing number of clinical trials involving VPA, and interesting results obtained, this molecule will be implicated in an increasing number of therapies. However side effects of VPA are substantially described in the literature whereas they are poorly discussed in articles focusing on its therapeutic use. This paper aims to give an overview of the different clinical-trials involving VPA and its side effects encountered during treatment as well as its molecular properties.

  12. Chir99021 and Valproic acid reduce the proliferative advantage of Apc mutant cells.

    Science.gov (United States)

    Langlands, Alistair J; Carroll, Thomas D; Chen, Yu; Näthke, Inke

    2018-02-15

    More than 90% of colorectal cancers carry mutations in Apc that drive tumourigenesis. A 'just-right' signalling model proposes that Apc mutations stimulate optimal, but not excessive Wnt signalling, resulting in a growth advantage of Apc mutant over wild-type cells. Reversal of this growth advantage constitutes a potential therapeutic approach. We utilised intestinal organoids to compare the growth of Apc mutant and wild-type cells. Organoids derived from Apc Min/+ mice recapitulate stages of intestinal polyposis in culture. They eventually form spherical cysts that reflect the competitive growth advantage of cells that have undergone loss of heterozygosity (LOH). We discovered that this emergence of cysts was inhibited by Chiron99021 and Valproic acid, which potentiates Wnt signalling. Chiron99021 and Valproic acid restrict the growth advantage of Apc mutant cells while stimulating that of wild-type cells, suggesting that excessive Wnt signalling reduces the relative fitness of Apc mutant cells. As a proof of concept, we demonstrated that Chiron99021-treated Apc mutant organoids were rendered susceptible to TSA-induced apoptosis, while wild-type cells were protected.

  13. Valproic acid enhances bosutinib cytotoxicity in colon cancer cells.

    Science.gov (United States)

    Mologni, Luca; Cleris, Loredana; Magistroni, Vera; Piazza, Rocco; Boschelli, Frank; Formelli, Franca; Gambacorti-Passerini, Carlo

    2009-04-15

    Unbalanced histone deacetylase (HDAC) hyperactivity is a common feature of tumor cells. Inhibition of HDAC activity is often associated with cancer cell growth impairment and death. Valproic acid (VPA) is a HDAC inhibitor used for the treatment of epilepsy. It has recently been recognized as a promising anticancer drug. We investigated the effects of VPA on growth and survival of colon cancer cells. VPA caused growth inhibition and programmed cell death that correlated with histone hyperacetylation. VPA modulated the expression of various factors involved in cell cycle control and apoptosis and induced caspase activation. Interestingly, VPA induced downregulation of c-Src and potentiated the cytotoxic effects of the c-Src inhibitor bosutinib, both in vitro and in vivo. The combination of sublethal doses of VPA and bosutinib led to massive apoptosis of colon cancer cells, irrespective of their genetic background. These results suggest that VPA may be employed as a positive modulator of bosutinib antitumor activity in colorectal cancer.

  14. Can valproic acid be an inducer of clozapine metabolism?

    Science.gov (United States)

    Diaz, Francisco J.; Eap, Chin B.; Ansermot, Nicolas; Crettol, Severine; Spina, Edoardo; de Leon, Jose

    2014-01-01

    Introduction Prior clozapine studies indicated no effects, mild inhibition or induction of valproic acid (VPA) on clozapine metabolism. The hypotheses that 1) VPA is a net inducer of clozapine metabolism, and 2) smoking modifies this inductive effect were tested in a therapeutic drug monitoring study. Methods After excluding strong inhibitors and inducers, 353 steady-state total clozapine (clozapine plus norclozapine) concentrations provided by 151 patients were analyzed using a random intercept linear model. Results VPA appeared to be an inducer of clozapine metabolism since total plasma clozapine concentrations in subjects taking VPA were significantly lower (27% lower; 95% confidence interval, 14% to 39%) after controlling for confounding variables including smoking (35% lower, 28% to 56%). Discussion Prospective studies are needed to definitively establish that VPA may 1) be an inducer of clozapine metabolism when induction prevails over competitive inhibition, and 2) be an inducer even in smokers who are under the influence of smoking inductive effects on clozapine metabolism. PMID:24764199

  15. Valproic Acid-Induced Syringomyelia in Rat Fetuses

    Directory of Open Access Journals (Sweden)

    M. Jalali

    2005-01-01

    Full Text Available Among antiepileptic drugs, valproic acid (VA is a well known teratogenic agent. Although axial skeletal malformations (vertebral column and limb defects have been described, its main target organ is neuroepithelium of neural tube. Therefore it seems that administration of VA during early pregnancy may affect on neural tube and adjacent tissues. The goal of present study was to determine whether there is a relationship between maternal valproic acid exposure and developmental changes during neural tube and notochord and their interactions.For this reason, on 9th day of gestation, wistar rats were treated with double dose of 600 mg/kg VA given once in the morning and another in the evening (in experimental group. The controls were received the same volume of normal saline by animal feeding. For teratological studies, fetuses were examined on 20th day of gestation and histological study were carried out.Our findings showed that in addition to some well known congenital malformations (such as axial skeletal defects and spina bifida there was an abnormal cavitation in cervical and thoracic segments of spinal cord (syringomyelia which was accompanied with a delay in determination of notochord at these levels. At these area, the syrinx (cyst is lined by compact glial tissue. In this kind of abnormality there is an atrophy of gray and white matter in the neighboring of syrinx in the spinal cord.These data revealed that, there is a strong association between maternal VA administration and risk for severe spinal cord defect such as syringomyelia and the same pathological changes might occur in human .

  16. Photocarcinogenesis of topical tazarotene and isotretinoin alone and in combination with valproic acid in hairless mice

    DEFF Research Database (Denmark)

    Lerche, Catharina Margrethe; Philipsen, Peter Alshede; Sehested, Maxwell

    2008-01-01

    /TifBomTac immunocompetent mice exposed to simulated solar radiation (SSR) and whether valproic acid changes the effect of the retinoids: tazarotene and isotretinoin. The products were applied on the dorsal skin of 400 mice (five times weekly) followed by SSR (three times weekly) 3-4 h after the application....... This was performed during 12 months or until death. Tumors appeared sooner in groups treated with tazarotene and isotretinoin compared with that of the group treated with valproic acid and the control group. The present study shows that valproic acid alone is not photocarcinogenic or photoprotective in hairless mice....... When valproic acid is combined with tazarotene or isotretinoin, it does not change their photocarcinogenicity significantly Udgivelsesdato: 2008/11...

  17. Different Resuscitation Strategies and Novel Pharmacologic Treatment with Valproic Acid in Traumatic Brain Injury

    Science.gov (United States)

    2017-07-25

    in children receiving valproic acid. Journal of Child Neurology, 17, 41. Shang, Y., Jiang, Y. X., Ding, Z. J., Shen, A. L., Xu, S. P., Yuan, S. Y...future research opportunities using valproic acid and related drugs are discussed. J Neuro Res. 2018;96:711–719. wileyonlinelibrary.com/ journal /jnr VC...locomotor function in rat spinal cord injury based on epigenetic science. Iranian Biomedical Journal , 16, 90–100. Alam, H. B., Stegalkina, S., Rhee, P

  18. Study of Valproic Acid-Enhanced Hepatocyte Steatosis

    Directory of Open Access Journals (Sweden)

    Renin Chang

    2016-01-01

    Full Text Available Valproic acid (VPA is one of the most widely used antiepilepsy drugs. However, several side effects, including weight gain and fatty liver, have been reported in patients following VPA treatment. In this study, we explored the molecular mechanisms of VPA-induced hepatic steatosis using FL83B cell line-based in vitro model. Using fluorescent lipid staining technique, we found that VPA enhanced oleic acid- (OLA- induced lipid accumulation in a dose-dependent manner in hepatocytes; this may be due to upregulated lipid uptake, triacylglycerol (TAG synthesis, and lipid droplet formation. Real-time PCR results showed that, following VPA treatment, the expression levels of genes encoding cluster of differentiation 36 (Cd36, low-density lipoprotein receptor-related protein 1 (Lrp1, diacylglycerol acyltransferase 2 (Dgat2, and perilipin 2 (Plin2 were increased, that of carnitine palmitoyltransferase I a (Cpt1a was not affected, and those of acetyl-Co A carboxylase α (Acca and fatty acid synthase (Fasn were decreased. Furthermore, using immunofluorescence staining and flow cytometry analyses, we found that VPA also induced peroxisome proliferator-activated receptor γ (PPARγ nuclear translocation and increased levels of cell-surface CD36. Based on these results, we propose that VPA may enhance OLA-induced hepatocyte steatosis through the upregulation of PPARγ- and CD36-dependent lipid uptake, TAG synthesis, and lipid droplet formation.

  19. Comparison of trichostatin A and valproic acid treatment regimens in a mouse model of kidney fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Van Beneden, Katrien, E-mail: kvbenede@vub.ac.be [Department of Human Anatomy, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels (Belgium); Geers, Caroline [Department of Pathology, Universitair Ziekenhuis Brussel, Brussels (Belgium); Pauwels, Marina [Department of Human Anatomy, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels (Belgium); Mannaerts, Inge [Department of Cell Biology, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels (Belgium); Wissing, Karl M. [Department of Nephrology, Universitair Ziekenhuis Brussel, Brussels (Belgium); Van den Branden, Christiane [Department of Human Anatomy, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels (Belgium); Grunsven, Leo A. van, E-mail: lvgrunsv@vub.ac.be [Department of Cell Biology, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels (Belgium)

    2013-09-01

    Histone deacetylase (HDAC) inhibitors are promising new compounds for the therapy of fibrotic diseases. In this study we compared the effect of two HDAC inhibitors, trichostatin A and valproic acid, in an experimental model of kidney fibrosis. In mice, doxorubicin (adriamycin) can cause nephropathy characterized by chronic proteinuria, glomerular damage and interstitial inflammation and fibrosis, as seen in human focal segmental glomerulosclerosis. Two treatment regimens were applied, treatment was either started prior to the doxorubicin insult or delayed until a significant degree of proteinuria and fibrosis was present. Pre-treatment of trichostatin A significantly hampered glomerulosclerosis and tubulointerstitial fibrosis, as did the pre-treatment with valproic acid. In contrast, the development of proteinuria was only completely inhibited in the pre-treated valproic acid group, and not in the pre-treated trichostatin A animals. In the postponed treatment with valproic acid, a complete resolution of established doxorubicin-induced proteinuria was achieved within three days, whereas trichostatin A could not correct proteinuria in such a treatment regimen. However, both postponed regimens have comparable efficacy in maintaining the kidney fibrosis to the level reached at the start of the treatments. Moreover, not only the process of fibrosis, but also renal inflammation was attenuated by both HDAC inhibitors. Our data confirm a role for HDACs in renal fibrogenesis and point towards a therapeutic potential for HDAC inhibitors. The effect on renal disease progression and manifestation can however be different for individual HDAC inhibitors. - Highlights: • Valproic acid is a potent antiproteinuric drug, whereas trichostatin A is not. • Trichostatin A and valproic acid reduce kidney fibrosis in doxorubicin nephropathy. • Both valproic acid and trichostatin A attenuate renal inflammation.

  20. In Vitro and In Vivo Radiosensitizing Effect of Valproic Acid on Fractionated Irradiation.

    Science.gov (United States)

    Chie, Eui Kyu; Shin, Jin Hee; Kim, Jin Ho; Kim, Hak Jae; Kim, In Ah; Kim, Il Han

    2015-07-01

    This study was conducted in order to validate the radiosensitization effect of valproic acid, a biologically available histone deacetylase inhibitor, for fractionated radiation. Radiosensitization effect of valproic acid was tested for the A549 cell line and U87MG cell line in vitro. Fractionated irradiation of 12 Gy in four fractions was administered on D2-5 with valproic acid, 150 mg/Kg, ip, bid for six consecutive days (D1-6) to A549 and U87MG tumors implanted in BALB/c-nude mice. A growth delay curve was formulated. Radiosensitization effect of valproic acid was found for both cell lines; A549 at 1.5 mM and 3.0 mM concentration and U87MG at 3.0 mM concentration. In growth delay analysis, a statistically significant radiosensitization effect was observed for both tumors (p < 0.001 for both tumors). Difference for change in slope for control and valproic acid versus radiotherapy and radiotherapy plus valproic acid showed borderline significance for the U87MG cell line (p=0.065), indicating beyond additive effect, whereas this difference was statistically insignificant for A549 tumor (p=0.951), indicating additive effect. Results of this study indicate that a radiosensitizing effect for fractionated radiotherapy of valproic acid for A549 and U87MG tumors in vivo is evident and that it may be more than additive for U87MG tumors. Further exploitation of histone deacetylase inhibitors in clinical trials is warranted.

  1. Inhibition of histone deacetylase activity by valproic acid blocks adipogenesis.

    Science.gov (United States)

    Lagace, Diane C; Nachtigal, Mark W

    2004-04-30

    Adipogenesis is dependent on the sequential activation of transcription factors including the CCAAT/enhancer-binding proteins (C/EBP), peroxisome proliferator-activated receptor gamma (PPARgamma), and steroid regulatory element-binding protein (SREBP). We show that the mood stabilizing drug valproic acid (VPA; 0.5-2 mm) inhibits mouse 3T3 L1 and human preadipocyte differentiation, likely through its histone deacetylase (HDAC) inhibitory properties. The HDAC inhibitor trichostatin A (TSA) also inhibited adipogenesis, whereas the VPA analog valpromide, which does not possess HDAC inhibitory effects, did not prevent adipogenesis. Acute or chronic VPA treatment inhibited differentiation yet did not affect mitotic clonal expansion. VPA (1 mm) inhibited PPARgamma induced differentiation but does not activate a PPARgamma reporter gene, suggesting that it is not a PPARgamma ligand. VPA or TSA treatment reduced mRNA and protein levels of PPARgamma and SREBP1a. TSA reduced C/EBPalpha mRNA and protein levels, whereas VPA only produced a decrease in C/EBPalpha protein expression. Overall our results highlight a role for HDAC activity in adipogenesis that can be blocked by treatment with VPA.

  2. Valproic Acid related metabolic syndrome in patients with epilepsy.

    Science.gov (United States)

    Mania, M; Kasradze, S; Okujava, N

    2011-05-01

    Valproic acid (VPA) is an anticonvulsant and mood-stabilizing drug for the long-term treatment. It is established that VPA has number of side effects affecting metabolic and endocrine system, like weight gain, hyperinsulinemia, changes in sex hormones, dyslipidemia, hyperleptinemia and etc. But the data are not sufficient to judge if VPA treatment can induce metabolic syndrome. Our aim was to investigate metabolic syndrome frequency in VPA-treated (n=11) and CBZ-treated (n=13) patients with epilepsy and in drug-free healthy subjects (n=11). We diagnosed metabolic syndrome according to Adult Treatment Panel III criteria (ATP III). We took blood samples for analysing triglyceride, HDL cholesterol and fasting glucose. Waist circumference and blood pressure was measured as well. Our data revealed that metabolic syndrome is relatively frequent in VPA-treated patients group (45,5%) compared with CBZ group and controls (15.4% and 27.3% respectively) (pmetabolic syndrome in patients with epilepsy, but BMI did not differ between VPA monotherapy study group, CBZ monotherapy study group and controls.

  3. The valproic acid-induced rodent model of autism.

    Science.gov (United States)

    Nicolini, Chiara; Fahnestock, Margaret

    2017-05-02

    Autism is a lifelong neurodevelopmental disorder characterized by impairments in social communication and interaction and by repetitive patterns of behavior, interests and activities. While autism has a strong genetic component, environmental factors including toxins, pesticides, infection and drugs are known to confer autism susceptibility, likely by inducing epigenetic changes. In particular, exposure to valproic acid (VPA) during pregnancy has been demonstrated to increase the risk of autism in children. Furthermore, rodents prenatally exposed to this drug display behavioral phenotypes characteristics of the human condition. Indeed, in utero exposure of rodents to VPA represents a robust model of autism exhibiting face, construct and predictive validity. This model might better represent the many cases of idiopathic autism which are of environmental/epigenetic origins than do transgenic models carrying mutations in single autism-associated genes. The VPA model provides a valuable tool to investigate the neurobiology underlying autistic behavior and to screen for novel therapeutics. Here we review the VPA-induced rodent model of autism, highlighting its importance and reliability as an environmentally-induced animal model of autism. Copyright © 2017. Published by Elsevier Inc.

  4. Chronotolerance study of the antiepileptic drug valproic acid in mice

    Directory of Open Access Journals (Sweden)

    Ben-Cherif Wafa

    2012-05-01

    Full Text Available Abstract Background Valproic acid (VPA is an antiepileptic drug widely used for the treatment of absence seizures and generalized tonic-clonic seizures. The present work aims to study whether VPA-induced toxicity varies according to the dosing-time in the 24 hour-scale. Methods The influence of dosing-time on tolerance to VPA was investigated in 120 male Swiss mice synchronized under a light-dark cycle (12:12. The mean VPA lethal dose was first determined to be 850 ± 0.2 mg/kg, i.p.. Such a dose was administered by i.p. route to a total of 90 mice divided in six circadian stages [1, 5, 9, 13, 17 and 21 Hours After Light Onset (HALO] (15 mice/circadian time; 30 mice were used as control (5 mice / circadian time. Results The surviving treated mice exhibited a significant circadian variation in rectal temperature and body weight loss (p 2 = 42.1, p  Conclusions With regards to these data the optimal tolerance to VPA occurred when the drug was administered in the second half of the light-rest span of mice which is physiologically analogous to the second half of the night for human patients.

  5. Valproic Acid Induces Telomerase Reverse Transcriptase Expression during Cortical Development.

    Science.gov (United States)

    Kim, Ki Chan; Choi, Chang Soon; Gonzales, Edson Luck T; Mabunga, Darine Froy N; Lee, Sung Hoon; Jeon, Se Jin; Hwangbo, Ram; Hong, Minha; Ryu, Jong Hoon; Han, Seol-Heui; Bahn, Geon Ho; Shin, Chan Young

    2017-10-01

    The valproic acid (VPA)-induced animal model is one of the most widely utilized environmental risk factor models of autism. Autism spectrum disorder (ASD) remains an insurmountable challenge among neurodevelopmental disorders due to its heterogeneity, unresolved pathological pathways and lack of treatment. We previously reported that VPA-exposed rats and cultured rat primary neurons have increased Pax6 expression during post-midterm embryonic development which led to the sequential upregulation of glutamatergic neuronal markers. In this study, we provide experimental evidence that telomerase reverse transcriptase (TERT), a protein component of ribonucleoproteins complex of telomerase, is involved in the abnormal components caused by VPA in addition to Pax6 and its downstream signals. In embryonic rat brains and cultured rat primary neural progenitor cells (NPCs), VPA induced the increased expression of TERT as revealed by Western blot, RT-PCR, and immunostainings. The HDAC inhibitor property of VPA is responsible for the TERT upregulation. Chromatin immunoprecipitation revealed that VPA increased the histone acetylation but blocked the HDAC1 binding to both Pax6 and Tert genes. Interestingly, the VPA-induced TERT overexpression resulted to sequential upregulations of glutamatergic markers such as Ngn2 and NeuroD1, and inter-synaptic markers such as PSD-95, α-CaMKII, vGluT1 and synaptophysin. Transfection of Tert siRNA reversed the effects of VPA in cultured NPCs confirming the direct involvement of TERT in the expression of those markers. This study suggests the involvement of TERT in the VPA-induced autistic phenotypes and has important implications for the role of TERT as a modulator of balanced neuronal development and transmission in the brain.

  6. Valproic acid: Does it have an antiarrhythmic action?

    Directory of Open Access Journals (Sweden)

    Osama Shukir Muhammed Amin

    2013-08-01

    Full Text Available Objective: The antiepileptic sodium valproate (valproic acid; VPA is thought to possess an antiarrhythmic action. We aimed to explore whether this medication influences cardiac atrial ectopics or not. Methods: From December 1, 2009 to June 1, 2011, 80 consecutive patients who were newly diagnosed with cryptogenic generalized tonic-clonic seizures were enrolled in this prospective short-term longitudinal observational study, which was conducted at the Sulaimaniya General Teaching Hospital, Iraq. Forty patients were allocated to receive VPA and the rest (n=40 were given placebo. All patients underwent cardiac 24-hour Holter monitoring before and after one week of VPA or placebo administration. The minimum heart rate (MiHR and maximum heart rate (MxHR as well as the total number of atrial ectopics (TNAE were evaluated. Results: VPA significantly reduced the MiHR, MxHR, and the TNAE. In the placebo group, the reduction in the MiHR was statistically significant while the reduction in the MxHR and the TNAE were not. However, the reduction in the target parameters in the VPA-treated group did not demonstrate a dose-dependent effect. When both groups were evaluated head-to-head for the reduction in the MiHR before and after week of therapy, there was no statistically significant difference between them. Conclusion: Sodium valproate therapy appears to be effective against atrial ectopic beats and may be used as an antiarrhythmic medication in patients who co-experience seizures and troublesome atrial ectopics. [Cukurova Med J 2013; 38(4.000: 592-600

  7. The Protective Role of Folic Acid and Vitamin E Against Toxical Effects of Valproic Acid on Liver Tissue During Period of Gestation

    Directory of Open Access Journals (Sweden)

    Özlem Pamukçu Baran

    2004-01-01

    Full Text Available Valproic acid is an anticonvulsan drug used in epilepsy. Thehistopathological changes of valproic acid on liver and the protective effectof vitamin E and also folic acid were observed. 24 adult female Wistar Albinorats were used. The first control, the second valproic acid group that wasgiven 300 mg/kg on 8.9. and 10. days of gestation, the third valproic acid+vitamin E group. Vitamin E was given 250mg/kg via nasogastric intubationbefore one hour administration of valproic acid on 8.9.10.days of gestation.The fourth valproic acid+ folic acid group; via valproic acid, folic acid wasgiven 400 microgram ordinarily in drinking water per day. In the liversections of valproic acid group, perivenullar dilatation, swelling of Kuppfercells, microvesicular steatosis and degeneration were observed. In the secondgroup there was moderate degeneration in hepatocytes,necrotic areas insome places, mononuclear cell infiltration. In valproic acid +vitamin E groupnormal-like appearance of the structure of Remark cell lines were observed.Under these source of results, we viewed antioxidants decreased thehepatotoxicity on liver tissue by using folic acid and vitamin E .

  8. Marked accumulation of valproic acid in embryonic neuroepithelium of the mouse during early organogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Dencker, L.; Nau, H.; D' Argy, R. (Univ. of Uppsala (Sweden))

    1990-06-01

    Valproic acid, an antiepileptic drug, causes neural tube defects in mice and man. 14C-labeled valproic acid (sodium-salt) was administered to pregnant mice on days 8 and 9 of gestation (period of high sensitivity in regard to formation of neural tube defects in this species). Two dose levels of valproic acid (1 and 400 mg/kg) were used; in each case the total radioactivity administered was the same: 400 microCi/kg or 14.7 MBq/kg. Autoradiography combined with computerized densitometry revealed that in low-dose animals most of the radioactivity was confined to maternal liver and kidney, while at high doses more activity was observed in soft tissues and fluids, including amniotic fluid. In the embryo, the neuroepithelium showed the highest concentration, irrespective of dose and survival interval (30 min, 3 h, and 6 h). Upon administration of the high dose, up to five times more radioactivity (approximately 2,000 times more valproic acid) was recovered in embryonic tissues than after the low dose. It is concluded that high doses of VPA saturate the capacities of metabolism, excretion, and protein binding in the maternal organism, resulting in a higher proportion of the dose reaching the embryo, allowing more of the drug to be accumulated by the target organ, the neuroepithelium.

  9. Preparation of Coated Valproic Acid and Sodium Valproate Sustained-release Matrix Tablets.

    Science.gov (United States)

    Phaechamud, T; Mueannoom, W; Tuntarawongsa, S; Chitrattha, S

    2010-03-01

    The aim of this research was to investigate the technique for preparation of coated valproic acid and sodium valproate sustained-release matrix tablets. Different diluents were tested and selected as the effective absorbent for oily valproic acid. Effect of the amount of absorbent and hydroxypropylmethylcellulose on drug release from valproic acid-sodium valproate matrix tablets prepared with wet granulation technique was evaluated in pH change system. Colloidal silicon dioxide effectively adsorbed liquid valproic acid during wet granulation and granule preparation. The amounts of colloidal silicon dioxide and hydroxypropylmethylcellulose employed in tablet formulations affected drug release from the tablets. The drug release was prominently sustained for over 12 h using hydroxypropylmethylcellulose-based hydrophilic matrix system. The mechanism of drug release through the matrix polymer was a diffusion control. The drug release profile of the developed matrix tablet was similar to Depakine Chrono(®), providing the values of similarity factor (f2) and difference factor (f1) of 85.56 and 2.37, respectively. Eudragit(®) L 30 D-55 was used as effective subcoating material for core matrix tablets before over coating with hydroxypropylmethylcellulose film with organic base solvent. Drug release profile of coated matrix tablet was almost similar to that of Depakine Chrono(®).

  10. Valproic acid malabsorption in 30 year-old female patient - Case study.

    Science.gov (United States)

    Jopowicz, Anna; Piechal, Agnieszka; Kurkowska-Jastrzębska, Iwona

    Valproic acid (VPA) is used in epilepsy treatment and as a stabilizer in bipolar affective disorder for over 40 years. Although, the pharmacokinetic properties of valproic acid are well known, it is often forgotten that the formulation of the drug significantly influences its gastrointestinal absorption. We are describing the case of 30 year-old female patient, diagnosed at the age of 13 with juvenile myoclonic epilepsy. Complete ineffectiveness of the treatment was caused by malabsorption of sodium valproate and valproic acid in the patient. The change of the drug formulation resulted in a several times higher bioavailability of the drug and a partial improvement of the patient's clinical condition. Low concentration of valproic acid after administration the slow-released tablets are usually observed. However, a low bioavailability beside the bad compliance should be considered when the minimal level is extremely low during therapy. It is known that form of the drug, beside presence of food and its components, as well as gastrointestinal tract condition or interactions with other drugs can influence the drug level. Modification of the formulation of the drug may lead to improvement of absorption and increase its effectiveness. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  11. Hyperconnectivity of local neocortical microcircuitry induced by prenatal exposure to valproic acid

    DEFF Research Database (Denmark)

    Rinaldi, Tania; Silberberg, Gilad; Markram, Henry

    2008-01-01

    Exposure to valproic acid (VPA) during embryogenesis can cause several teratogenic effects, including developmental delays and in particular autism in humans if exposure occurs during the third week of gestation. We examined the postnatal effects of embryonic exposure to VPA on microcircuit...

  12. Enhanced long-term microcircuit plasticity in the valproic Acid animal model of autism

    DEFF Research Database (Denmark)

    Silva, Guilherme Testa; Le Bé, Jean-Vincent; Riachi, Imad

    2009-01-01

    A single intra-peritoneal injection of valproic acid (VPA) on embryonic day (ED) 11.5 to pregnant rats has been shown to produce severe autistic-like symptoms in the offspring. Previous studies showed that the microcircuitry is hyperreactive due to hyperconnectivity of glutamatergic synapses and ...

  13. Stevens - Johnson Syndrome Induced by Combination of Lamotrigine and Valproic Acid in a 9-Year-Old Boy

    LENUS (Irish Health Repository)

    Maduemem, K

    2017-06-01

    We describe the case history of a 9-year-old boy who developed Stevens-Johnson syndrome (SJS) following concomitant use of valproic acid and lamotrigine. He presented with rash and fever several weeks after introduction of lamotrigine, having been on valproic acid for seizure disorder. SJS happens to be one of the rare adverse reactions of antiepilepsy drugs (AED). Management is mainly supportive with care escalation when necessary because of the significant morbidity.

  14. Antifibrogenic role of valproic acid in streptozotocin induced diabetic rat penis.

    Science.gov (United States)

    Kutlu, O; Karaguzel, E; Gurgen, S G; Okatan, A E; Kutlu, S; Bayraktar, C; Kazaz, I O; Eren, H

    2016-05-01

    We investigated the therapeutic effects of valproic acid (VPA) on erectile dysfunction and reducing penile fibrosis in streptozocin (STZ)-induced diabetic rats. Eighteen male rats were divided into three experimental groups (Control, STZ-DM, STZ-DM plus VPA) and diabetes was induced by transperitoneal single dose STZ. Eight weeks after, VPA and placebo treatments were given according to groups for 15 days. All rats were anesthetised for the measurement of in vivo erectile response to cavernous nerve stimulation. Afterward penes were evaluated histologically in terms of immune labelling scores of endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF) and transforming growth factor-β1 (TGF-β1). Slides were also evaluated in terms of collagen/smooth muscle ratio and penile apoptosis. After the treatment with VPA, erectile responses were found as improved when compared with STZ-DM rats but not statistically meaningful. eNOS and VEGF immune expressions diminished in penile corpora of STZ-DM rats and improved with VPA treatment. VPA led to decrease in TGF-β1 expression and collagen content of diabetic rats' penes. Penile apoptosis was not diminished with VPA. In conclusion, VPA treatment seems to be effective for reducing penile fibrosis in diabetic rats and more prolonged treatment period may enhance erectile functions. © 2015 Blackwell Verlag GmbH.

  15. Increased BDNF expression in fetal brain in the valproic acid model of autism.

    Science.gov (United States)

    Almeida, Luis E F; Roby, Clinton D; Krueger, Bruce K

    2014-03-01

    Human fetal exposure to valproic acid (VPA), a widely-used anti-epileptic and mood-stabilizing drug, leads to an increased incidence of behavioral and intellectual impairments including autism; VPA administration to pregnant rats and mice at gestational days 12.5 (E12.5) or E13.5 leads to autistic-like symptoms in the offspring and is widely used as an animal model for autism. We report here that this VPA administration protocol transiently increased both BDNF mRNA and BDNF protein levels 5-6-fold in the fetal mouse brain. VPA exposure in utero induced smaller increases in the expression of mRNA encoding the other neurotrophins, NT3 (2.5-fold) and NT4 (2-fold). Expression of the neurotrophin receptors, trkA, trkB and trkC were minimally affected, while levels of the low-affinity neurotrophin receptor, p75(NTR), doubled. Of the nine 5'-untranslated exons of the mouse BDNF gene, only expression of exons I, IV and VI was stimulated by VPA in utero. In light of the well-established role of BDNF in regulating neurogenesis and the laminar fate of postmitotic neurons in the developing cortex, an aberrant increase in BDNF expression in the fetal brain may contribute to VPA-induced cognitive disorders by altering brain development. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Valproic acid prevents penile fibrosis and erectile dysfunction in cavernous nerve-injured rats.

    Science.gov (United States)

    Hannan, Johanna L; Kutlu, Omer; Stopak, Bernard L; Liu, Xiaopu; Castiglione, Fabio; Hedlund, Petter; Burnett, Arthur L; Bivalacqua, Trinity J

    2014-06-01

    Bilateral cavernous nerve injury (BCNI) causes profound penile changes such as apoptosis and fibrosis leading to erectile dysfunction (ED). Histone deacetylase (HDAC) has been implicated in chronic fibrotic diseases. This study will characterize the molecular changes in penile HDAC after BCNI and determine if HDAC inhibition can prevent BCNI-induced ED and penile fibrosis. Five groups of rats (8-10 weeks, n = 10/group) were utilized: (i) sham; (ii and iii) BCNI 14 and 30 days following injury; and (iv and v) BCNI treated with HDAC inhibitor valproic acid (VPA 250 mg/kg; 14 and 30 days). All groups underwent cavernous nerve stimulation (CNS) to determine intracavernosal pressure (ICP). Penile HDAC3, HDAC4, fibronectin, and transforming growth factor-β1 (TGF-β1) protein expression (Western blot) were assessed. Trichrome staining and the fractional area of fibrosis were determined in penes from each group. Cavernous smooth muscle content was assessed by immunofluorescence to alpha smooth muscle actin (α-SMA) antibodies. We measured ICP; HDAC3, HDAC4, fibronectin, and TGF-β1 protein expression; penile fibrosis; penile α-SMA content. There was a voltage-dependent decline (P erectile responses to CNS (P dysfunction. Pharmacological inhibition of HDAC prevents penile fibrosis, normalizes fibronectin expression, and preserves erectile function. The HDAC pathway may represent a suitable target in preventing the progression of ED occurring post-radical prostatectomy. © 2014 International Society for Sexual Medicine.

  17. Targeting prolyl endopeptidase with valproic acid as a potential modulator of neutrophilic inflammation

    OpenAIRE

    Abdul Roda, Mojtaba; Sadik, Mariam; Gaggar, Amit; Hardison, Matthew T; Jablonsky, Michael J; Braber, Saskia; Blalock, James Edwin; Redegeld, Frank A; Folkerts, Gert; Jackson, Patricia L

    2014-01-01

    A novel neutrophil chemoattractant derived from collagen, proline-glycine-proline (PGP), has been recently characterized in chronic obstructive pulmonary disease (COPD). This peptide is derived via the proteolytic activity of matrix metalloproteases (MMP's)-8/9 and PE, enzymes produced by neutrophils and present in COPD serum and sputum. Valproic acid (VPA) is an inhibitor of PE and could possibly have an effect on the severity of chronic inflammation. Here the interaction site of VPA to PE a...

  18. Valproic acid poisoning: an evidence-based consensus guideline for out-of-hospital management.

    Science.gov (United States)

    Manoguerra, Anthony S; Erdman, Andrew R; Woolf, Alan D; Chyka, Peter A; Caravati, E Martin; Scharman, Elizabeth J; Booze, Lisa L; Christianson, Gwenn; Nelson, Lewis S; Cobaugh, Daniel J; Troutman, William G

    2008-08-01

    A review of US poison center data for 2004 showed over 9000 ingestions of valproic acid. A guideline that determines the conditions for emergency department referral and prehospital care could potentially optimize patient outcome, avoid unnecessary emergency department visits, reduce health care costs, and reduce life disruption for patients and caregivers. An evidence-based expert consensus process was used to create the guideline. Relevant articles were abstracted by a trained physician researcher. The first draft of the guideline was created by the lead author. The entire panel discussed and refined the guideline before distribution to secondary reviewers for comment. The panel then made changes based on the secondary review comments. The objective of this guideline is to assist poison center personnel in the appropriate out-of-hospital triage and initial out-of-hospital management of patients with a suspected ingestion of valproic acid by 1) describing the process by which an ingestion of valproic acid might be managed, 2) identifying the key decision elements in managing cases of valproic acid ingestion, 3) providing clear and practical recommendations that reflect the current state of knowledge, and 4) identifying needs for research. This guideline applies to the acute ingestion and acute-on-chronic ingestion of immediate-release and extended-release dosage forms of valproic acid, divalproex, and valproate sodium alone. Co-ingestion of additional substances could require different referral and management recommendations depending on the combined toxicities of the substances. This review focuses on the ingestion of more than a single therapeutic dose and the effects of an overdose. Although therapeutic doses of valproic acid can cause adverse effects in adults and children, some idiosyncratic and some dose-dependent, these cases are not considered. This guideline is based on an assessment of current scientific and clinical information. The expert consensus

  19. Assessment of the role of in situ generated (E)-2,4-diene-valproic acid in the toxicity of valproic acid and (E)-2-ene-valproic acid in sandwich-cultured rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Surendradoss, Jayakumar; Chang, Thomas K.H.; Abbott, Frank S., E-mail: frank.abbott@ubc.ca

    2012-11-01

    Valproic acid (VPA) undergoes cytochrome P450-mediated desaturation to form 4-ene-VPA, which subsequently yields (E)-2,4-diene-VPA by β-oxidation. Another biotransformation pathway involves β-oxidation of VPA to form (E)-2-ene-VPA, which also generates (E)-2,4-diene-VPA by cytochrome P450-mediated desaturation. Although the synthetic form of (E)-2,4-diene-VPA is more hepatotoxic than VPA as shown in various experimental models, there is no conclusive evidence to implicate the in situ generated (E)-2,4-diene-VPA in VPA hepatotoxicity. The present study investigated the effects of modulating the in situ formation of (E)-2,4-diene-VPA on markers of oxidative stress (formation of 2′,7′-dichlorofluorescein; DCF), steatosis (accumulation of BODIPY 558/568 C{sub 12}), necrosis (release of lactate dehydrogenase; LDH), and on cellular total glutathione (GSH) levels in sandwich-cultured rat hepatocytes treated with VPA or (E)-2-ene-VPA. Treatment with either of these chemicals alone increased each of the toxicity endpoints. In VPA-treated hepatocytes, (E)-2,4-diene-VPA was detected only at trace levels, even after phenobarbital (PB) pretreatment and there was no effect on the toxicity of VPA. Furthermore, pretreatment with a cytochrome P450 enzyme inhibitor, 1-aminobenzotriazole (1-ABT), did not influence the extent of VPA toxicity in both PB-pretreated and vehicle-pretreated hepatocytes. However, in (E)-2-ene-VPA-treated hepatocytes, PB pretreatment greatly enhanced the levels of (E)-2,4-diene-VPA and this was accompanied by a further enhancement of the effects of (E)-2-ene-VPA on DCF formation, BODIPY accumulation, LDH release, and GSH depletion. Pretreatment with 1-ABT reduced the concentrations of (E)-2,4-diene-VPA and the extent of (E)-2-ene-VPA toxicity; however, this occurred in PB-pretreated hepatocytes, but not in control hepatocytes. In conclusion, in situ generated (E)-2,4-diene-VPA is not responsible for the hepatocyte toxicity of VPA, whereas it

  20. Valproic acid and sodium valproate for neuropathic pain and fibromyalgia in adults.

    Science.gov (United States)

    Gill, Dipender; Derry, Sheena; Wiffen, Philip J; Moore, R Andrew

    2011-10-05

    Valproic acid and its sodium salt (sodium valproate) are antiepileptic drugs that are sometimes used to treat chronic neuropathic pain and fibromyalgia, although they are not licensed for this use. To evaluate the analgesic efficacy and adverse effects of valproic acid and sodium valproate in the management of chronic neuropathic pain and fibromyalgia. We identified randomised controlled trials (RCTs) of valproic acid and sodium valproate in acute, and chronic pain by searching MEDLINE, EMBASE and Cochrane CENTRAL to June 2011, together with reference lists of retrieved papers and reviews. RCTs that were double blind and of eight-weeks duration or longer, reporting on analgesic effects and adverse events with valproic acid and sodium valproate in the treatment of chronic neuropathic pain and fibromyalgia. Two review authors independently extracted results and scored for quality. We extracted efficacy and adverse event data, and examined issues of study quality. We included three studies, two in diabetic neuropathy (42 participants treated with valproate, 42 with placebo), and one in post-herpetic neuralgia (23 treated with divalproex sodium, 22 with placebo). Study duration was eight or 12 weeks. No studies were found in fibromyalgia.Only one study reported one of our primary outcomes (≥ 50% pain relief), while all three reported group means for pain reduction from baseline to endpoint. In all three studies; efficacy results were given only for participants who completed the study. One study in diabetic neuropathy and the study in post-herpetic neuralgia reported significant differences between active and placebo groups, but there were insufficient data for reliable pooled analysis.More adverse events were reported with active treatment than placebo, and included nausea, drowsiness and abnormal liver function tests. One participant taking sodium valproate withdrew due to serious derangement of liver enzymes. These three studies no more than hint that sodium

  1. Effects of cytarabine on activation of human T cells - cytarabine has concentration-dependent effects that are modulated both by valproic acid and all-trans retinoic acid

    OpenAIRE

    Ersvær, Elisabeth; Brenner, Annette; Vetås, Kristin; Reikvam, Håkon; Bruserud, Øystein

    2015-01-01

    Background Cytarabine is used in the treatment of acute myeloid leukemia (AML). Low-dose cytarabine can be combined with valproic acid and all-trans retinoic acid (ATRA) as AML-stabilizing treatment. We have investigated the possible risk of immunotoxicity by this combination. We examined the effects of cytarabine combined with valproic acid and ATRA on in vitro activated human T cells, and we tested cytarabine at concentrations reached during in vivo treatment with high doses, conventional d...

  2. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yingying; Chen, Xi; Yu, Dehai [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Li, Tao [Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Cui, Jiuwei; Wang, Guanjun [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Hu, Ji-Fan, E-mail: jifan@stanford.edu [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Li, Wei, E-mail: jdyylw@163.com [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China)

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phase blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.

  3. Histone deacetylase inhibitor valproic acid promotes the differentiation of human induced pluripotent stem cells into hepatocyte-like cells.

    Directory of Open Access Journals (Sweden)

    Yuki Kondo

    Full Text Available In this study, we aimed to elucidate the effects and mechanism of action of valproic acid on hepatic differentiation from human induced pluripotent stem cell-derived hepatic progenitor cells. Human induced pluripotent stem cells were differentiated into endodermal cells in the presence of activin A and then into hepatic progenitor cells using dimethyl sulfoxide. Hepatic progenitor cells were matured in the presence of hepatocyte growth factor, oncostatin M, and dexamethasone with valproic acid that was added during the maturation process. After 25 days of differentiation, cells expressed hepatic marker genes and drug-metabolizing enzymes and exhibited drug-metabolizing enzyme activities. These expression levels and activities were increased by treatment with valproic acid, the timing and duration of which were important parameters to promote differentiation from human induced pluripotent stem cell-derived hepatic progenitor cells into hepatocytes. Valproic acid inhibited histone deacetylase activity during differentiation of human induced pluripotent stem cells, and other histone deacetylase inhibitors also enhanced differentiation into hepatocytes. In conclusion, histone deacetylase inhibitors such as valproic acid can be used to promote hepatic differentiation from human induced pluripotent stem cell-derived hepatic progenitor cells.

  4. Dose-dependent improvement of myoclonic hyperkinesia due to Valproic acid in eight Huntington's Disease patients: a case series

    Directory of Open Access Journals (Sweden)

    Przuntek Horst

    2006-02-01

    Full Text Available Abstract Background Chorea in Huntington's Disease (HD is usually treated with antidopaminergic neuroleptics like haloperidol, olanzapine and tiaprid or dopamine depleting drugs like tetrabenazine. Some patients with hyperkinesia, however, react to treatment with antidopaminergic drugs by developing extrapyramidal side effects. In earlier studies valproic acid showed no beneficial effect on involuntary choreatic movements. Myoclonus is rare in HD and is often overseen or misdiagnosed as chorea. Methods In this report, we present eight patients whose main symptom is myoclonic hyperkinesia. All patients were treated with valproic acid and scored by using the Unified Huntington's Disease Rating Scale (UHDRS motor score before and after treatment. In addition to this, two patients agreed to be videotaped. Results In seven patients myoclonus and, therefore the UHDRS motor score improved in a dose dependent manner. In three of these patients antidopaminergic medication could be reduced. Conclusion In the rare subgroup of HD patients suffering from myoclonic hyperkinesia, valproic acid is a possible alternative treatment.

  5. Valproic acid induces hair regeneration in murine model and activates alkaline phosphatase activity in human dermal papilla cells.

    Directory of Open Access Journals (Sweden)

    Soung-Hoon Lee

    Full Text Available Alopecia is the common hair loss problem that can affect many people. However, current therapies for treatment of alopecia are limited by low efficacy and potentially undesirable side effects. We have identified a new function for valproic acid (VPA, a GSK3β inhibitor that activates the Wnt/β-catenin pathway, to promote hair re-growth in vitro and in vivo.Topical application of VPA to male C3H mice critically stimulated hair re-growth and induced terminally differentiated epidermal markers such as filaggrin and loricrin, and the dermal papilla marker alkaline phosphatase (ALP. VPA induced ALP in human dermal papilla cells by up-regulating the Wnt/β-catenin pathway, whereas minoxidil (MNX, a drug commonly used to treat alopecia, did not significantly affect the Wnt/β-catenin pathway. VPA analogs and other GSK3β inhibitors that activate the Wnt/β-catenin pathway such as 4-phenyl butyric acid, LiCl, and BeCl(2 also exhibited hair growth-promoting activities in vivo. Importantly, VPA, but not MNX, successfully stimulate hair growth in the wounds of C3H mice.Our findings indicate that small molecules that activate the Wnt/β-catenin pathway, such as VPA, can potentially be developed as drugs to stimulate hair re-growth.

  6. Diffuse alveolar hemorrhage due to valproic acid: Case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Francesco Inzirillo

    2015-01-01

    Full Text Available Valproic acid (VPA is one of the most frequently used antiepileptic drugs for the treatment of focal and generalized epilepsies, absence seizures, and Lennox-Gastaut syndrome (LGS. VPA has been demonstrated to have a negative effect on both the intrinsic and extrinsic coagulation systems and controversy exists about the clinical relevance of such hematological abnormalities. We describe a case of reversible lung hemorrage due to VPA. In English-language literature only two other similar cases (one of which fatal have been described so far.

  7. Tibial developmental field defect in valproic acid embryopathy: Report on three cases.

    Science.gov (United States)

    Alessandri, J L; Isidor, B; David, A; Martin-Coignard, D; Ghazouani, J; Ramful, D; Laville, J M; Le Caignec, C

    2010-11-01

    Prenatal exposure to valproic acid (VA) is associated with an increased risk of congenital malformations, especially limb defects like radial ray defects. Tibial developmental field defect in VA embryopathy remains exceptional. We report on three patients presenting with tibial hypo/aplasia associated with either femoral bifurcation or radial ray defect following prenatal exposure to VA. Femoral bifurcation and tibial agenesis has been described in the Gollop-Wolfgang complex and in the tibial agenesis-ectrodactyly syndrome. Tibial agenesis has also been reported in VACTERL association. The relation between prenatal exposure to VA and tibial agenesis is discussed. © 2010 Wiley-Liss, Inc.

  8. Therapeutic efficacy of valproic acid in a combined monocrotaline and chronic hypoxia rat model of severe pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Beidi Lan

    Full Text Available Pulmonary hypertension (PH is a serious disease with poor prognosis. Reports show that cells in remodeled pulmonary arteries of PH patients have similar characteristics to cancer cells, such as exuberant inflammation, increased proliferation, and decreased apoptosis. An ideal strategy for developing PH therapies is to directly target pulmonary vascular remodeling. High levels of histone deacetylase (HDAC expression and activity are found in certain cancers, and research has shown the potential of HDAC inhibitors in repressing tumor growth via anti-inflammatory and anti-proliferative effects. To date, little is known about the effectiveness of HDAC inhibitors against pulmonary vascular remodeling in severe PH.To investigate whether class I HDAC inhibitors suppress or reverse the development of severe PH in rats.Male Sprague-Dawley rats were injected with a single, subcutaneous dose of monocrotaline (60 mg/kg, and were exposed to chronic hypoxia to induce severe PH. Valproic acid, a class I HDAC inhibitor, was administered to rats daily via gastric gavage (300 mg/kg in a PH prevention study (during the first 3 weeks or a PH reversal study (from 3 to 5 weeks. At the end of experiment, hemodynamic indices were measured, ventricular hypertrophy indices were calculated and vascular remodeling phenotypes were analyzed.After 3 weeks exposure to a combined stimulation of monocrotaline and chronic hypoxia, rats exhibited a reduced body weight, elevated right ventricular systolic pressure, an increased Fulton index, right ventricle weight ratio, medial wall thickness and muscularized peripheral pulmonary arteries. These parameters for PH evaluation were exacerbated from 3 to 5 weeks. Daily administration of valproic acid therapy prevented and partially reversed the development of severe PH in rats, and decreased inflammation and proliferation in remodeled pulmonary arteries.These data show that class I HDAC inhibitors may be effective for treating severe

  9. Valproic acid-induced parkinsonism in the elderly: a comprehensive review of the literature.

    Science.gov (United States)

    Mahmoud, Fade; Tampi, Rajesh R

    2011-12-01

    Valproic acid (VPA) is commonly used to treat many psychiatric conditions in the elderly. VPA-induced parkinsonism is a less common but important adverse effect of this drug. The purpose of our study was to conduct a literature review to assess VPA-induced parkinsonism in the elderly. We searched Ovid Medline, PubMed, and Cochrane Database (January 1970 to December 2010) using the key words divalproate, divalproex sodium, valproate, depakote, valproic acid, elderly, aged, Parkinson's disease, and parkinsonism. The Naranjo algorithm was used to assess whether a change in clinical status was the result of an adverse drug reaction. We identified 13 case reports. Available evidence indicated that there was a variable time interval for the development of parkinsonism after VPA therapy. Most cases showed improvement with the withdrawal of the drug, but the rate and extent of improvement was unpredictable. The calculated Naranjo adverse drug reaction scores, for most cases, were between 5 and 6, meaning it was probable that parkinsonism was due to VPA therapy. High clinical awareness is required in diagnosing VPA-induced parkinsonism in the elderly due the presence of comorbid neurodegenerative conditions and the usage of antipsychotics in these patients. Copyright © 2011 Elsevier HS Journals, Inc. All rights reserved.

  10. Synergistically killing activity of aspirin and histone deacetylase inhibitor valproic acid (VPA) on hepatocellular cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaofei; Zhu, Yanshuang [Department of Infectious Diseases, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China); He, Huabin [Department of Orthopedics, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China); Lou, Lianqing; Ye, Weiwei; Chen, Yongxin [Department of Infectious Diseases, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China); Wang, Jinghe, E-mail: Xiaofeili2000@163.com [Department of Infectious Diseases, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China)

    2013-06-28

    Highlights: •Novel combination therapy using aspirin and valproic acid (VPA). •Combination of aspirin and VPA elicits synergistic cytotoxic effects. •Combination of aspirin and VPA significantly reduces the drug dosage required alone. •Combination of aspirin and VPA significantly inhibit tumor growth. •Lower dose of aspirin in combination therapy will minimize side effects of aspirin. -- Abstract: Aspirin and valproic acid (VPA) have been extensively studied for inducing various malignancies growth inhibition respectively, despite their severe side effects. Here, we developed a novel combination by aspirin and VPA on hepatocellular cancer cells (HCCs). The viability of HCC lines were analyzed by MTT assay, apoptotic analysis of HepG2 and SMMC-7721 cell was performed. Real time-PCR and Western blotting were performed to determine the expression of apoptosis related genes and proteins such as Survivin, Bcl-2/Bax, Cyclin D1 and p15. Moreover, orthotopic xenograft tumors were challenged in nude mice to establish murine model, and then therapeutic effect was analyzed after drug combination therapy. The viability of HCC lines’ significantly decreased after drug combination treatment, and cancer cell apoptosis in combination group increasingly induced compared with single drug use. Therapeutic effect was significantly enhanced by combination therapy in tumor volume and tumor weight decrease. From the data shown here, aspirin and VPA combination have a synergistic killing effect on hepatocellular cancers cells proliferation and apoptosis.

  11. Anticonvulsant drugs in alcohol withdrawal: use of phenytoin, primidone, carbamazepine, valproic acid, and the sedative anticonvulsants.

    Science.gov (United States)

    Wilbur, R; Kulik, F A

    1981-08-01

    The evidence for the efficacy of anticonvulsant drugs in the control of seizures during alcohol withdrawal is examined. The literature on the use of anticonvulsants to control anxiety, irritability, tension, and other symptoms of abstinence syndrome is reviewed. The data on benzodiazepines, phenobarbital, hydroxyzine, and neuroleptics are discussed briefly. There is no evidence to support the routine use of phenytoin for seizure prophylaxis in detoxication. However, phenytoin may be valuable in patients at a high risk for seizures, such as skid-row alcoholics. Only one retrospective study has been done on primidone; it claimed primidone was an efficacious adjuvant. Carbamazepine and valproic acid may be useful in the treatment of anxiety, dysphoric mood, somatization, and other symptoms of abstinence syndrome, as well as for seizure prophylaxis. The benzodiazepines, diazepam and chlordiazepoxide, are recognized as primary therapeutic agents in the detoxication of alcoholic patients. The major difficulty with the use of phenobarbital is that it cannot be used over as wide a range as the benzodiazepines. Hydroxyzine has been shown to be inferior to chlorazepate dipotassium. Most neuroleptics appear to be inappropriate for detoxication because they lower the seizure threshold; however, haloperidol has been found efficacious in acutely abstinent alcoholics. Carbamazepine, valproic acid, primidone, and phenobarbital should be tested against standard drugs such as chlordiazepoxide and diazepam in the detoxication of alcoholic patients.

  12. Direct Determination of a Small-Molecule Drug, Valproic Acid, by an Electrically-Detected Microcantilever Biosensor for Personalized Diagnostics

    Directory of Open Access Journals (Sweden)

    Long-Sun Huang

    2015-01-01

    Full Text Available Direct, small-molecule determination of the antiepileptic drug, valproic acid, was investigated by a label-free, nanomechanical biosensor. Valproic acid has long been used as an antiepileptic medication, which is administered through therapeutic drug monitoring and has a narrow therapeutic dosage range of 50–100 μg·mL−1 in blood or serum. Unlike labeled and clinically-used measurement techniques, the label-free, electrical detection microcantilever biosensor can be miniaturized and simplified for use in portable or hand-held point-of-care platforms or personal diagnostic tools. A micromachined microcantilever sensor was packaged into the micro-channel of a fluidic system. The measurement of the antiepileptic drug, valproic acid, in phosphate-buffered saline and serum used a single free-standing, piezoresistive microcantilever biosensor in a thermally-controlled system. The measured surface stresses showed a profile over a concentration range of 50–500 μg·mL−1, which covered the clinically therapeutic range of 50–100 μg·mL−1. The estimated limit of detection (LOD was calculated to be 45 μg·mL−1, and the binding affinity between the drug and the antibody was measured at around 90 ± 21 μg·mL−1. Lastly, the results of the proposed device showed a similar profile in valproic acid drug detection with those of the clinically-used fluorescence polarization immunoassay.

  13. VAC chemotherapy with valproic acid for refractory/relapsing small cell lung cancer: a phase II study

    Directory of Open Access Journals (Sweden)

    Thierry Berghmans

    2015-10-01

    Full Text Available Salvage chemotherapy (CT for relapsing or refractory small cell lung cancer (SCLC remains disappointing. In vitro experiments showed that valproic acid increases apoptosis of SCLC cell lines exposed to doxorubicin, vindesine and bis(2-chloroethylamine. The primary objective of this phase II study was to determine whether epigenetic modulation with valproic acid in addition to a doxorubicin, vindesine and cyclophosphamide (VAC regimen improves 6-month progression-free survival (PFS. Patients with pathologically proven SCLC refractory to prior platinum derivatives and etoposide were eligible. After central registration, patients received VAC plus daily oral valproic acid. 64 patients were registered, of whom six were ineligible. Seven patients did not receive any CT, leaving 51 patients assessable for the primary end-point. The objective response rate was 19.6%. Median PFS was 2.8 months (95% CI 2.5–3.6 months and 6-month PFS was 6%. Median survival time was 5.9 months (95% CI 4.7–7.5 months. Toxicity was mainly haematological, with 88% and 26% grade 3–4 neutropenia and thrombopenia, respectively. Despite an interesting response rate, the addition of valproic acid to VAC did not translate into adequate PFS in relapsing SCLC or SCLC refractory to platinum–etoposide.

  14. The Effect of Gallic Acid on Histopathologic Evaluation of Cerebellum in Valproic Acid-Induced Autism Animal Models

    Directory of Open Access Journals (Sweden)

    Parvin Samimi

    2016-06-01

    Full Text Available Autism spectrum disorder (ASD is counted as a worldwide public health problem. The possible causes of ASD are reactive oxygen species and free radicals. So, this study is aimed to evaluate the effects of Gallic acid, as an effective antioxidant, on histopathologic disorder of the cerebellum in valproic acid-induced autism animal models. 30 pregnant female rats were randomly divided into 5 groups, including: control, autism (or VAP and experimental 1, 2 and 3. Using a gavage needle, Gallic acid administered orally until about2 months of age. After the end of the treatment period, the rats were anesthetized with ether and their cerebellar tissues were removed for histopathologic studies. A significant decrease in the number of Purkinje and granular cells was observed in this study in VAP group compared to the control group (P≤0.05. A trend toward improvement was observed in the groups received 100 and 200 mg/kg of Gallic acid (P≤0.05. The results of this research revealed that Gallic acid reduces the side effects caused by valproic acid on cerebellar tissue of autistic rats. So, it should be considered for therapeutic goals.

  15. Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism.

    Science.gov (United States)

    Al-Amin, Md Mamun; Rahman, Md Mahbubur; Khan, Fazlur Rahman; Zaman, Fahmida; Mahmud Reza, Hasan

    2015-06-01

    Prenatal exposure to valproic acid on gestational day 12.5 may lead to the impaired behavior in the offspring, which is similar to the human autistic symptoms. To the contrary, astaxanthin shows neuroprotective effect by its antioxidant mechanism. We aimed to (i) develop mice model of autism and (ii) investigate the effect of astaxanthin on such model animals. Valproic acid (600 mg/kg) was administered intraperitoneally to the pregnant mice on gestational day 12.5. Prenatal valproic acid-exposed mice were divided into 2 groups on postnatal day 25 and astaxanthin (2mg/kg) was given to the experimental group (VPA_AST, n=10) while saline was given to the control group (VPA, n=10) for 4 weeks. Behavioral test including social interaction, open field and hot-plate were conducted on postnatal day 25 and oxidative stress markers such as lipid peroxidation, advanced protein oxidation product, nitric oxide, glutathione, and activity of superoxide dismutase and catalase were estimated on postnatal day 26 to confirm mice model of autism and on postnatal day 56 to assess the effect of astaxanthin. On postnatal day 25, prenatal valproic acid-exposed mice exhibited (i) delayed eye opening (ii) longer latency to respond painful stimuli, (iii) poor sociability and social novelty and (iv) high level of anxiety. In addition, an increased level of oxidative stress was found by determining different oxidative stress markers. Treatment with astaxanthin significantly (pstress in brain and liver. In conclusion, prenatal exposure to valproic day in pregnant mice leads to the development of autism-like features. Astaxanthin improves the impaired behavior in animal model of autism presumably by its antioxidant activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Resistance to valproic acid as predictor of treatment resistance in genetic generalized epilepsies

    DEFF Research Database (Denmark)

    Gesche, Joanna; Khanevski, Marina; Solberg, Carl

    2017-01-01

    to the International League Against Epilepsy (ILAE) definition. Psychiatric comorbidities, age at first diagnosis, and absences were associated with worse seizure control, whereas focal changes in EEG remained without prognostic impact. Resistance to valproic acid was the most important prognostic factor......This study aimed at defining clinical predictors of drug resistance in adults with genetic generalized epilepsy (GGE) who were treated with a broad spectrum of antiepileptic drugs. Of a cohort of 137 unselected adult GGE patients with long-term follow up, clinical and demographic data, putative...... prognostic factors (e.g., psychiatric comorbidities, electroencephalography [EEG]), treatment response, and data indicative of social status were collected. Fifty-eight patients had seizures within the past year. Thirty-three patients met the definition of "drug-resistant epilepsy" according...

  17. A case of mania presenting with hypersexual behavior and gender dysphoria that resolved with valproic acid

    Directory of Open Access Journals (Sweden)

    Michelle R. Heare

    2016-11-01

    Full Text Available Hypersexuality and gender dysphoria have both been described in the literature as symptoms of mania. Hypersexuality is listed in the Diagnostic and Statistical Manual of Mental Disorders 5 as part of the diagnostic criteria for bipolar disorder. Gender dysphoria is less often described and its relation to mania remains unclear. This case report describes a young homosexual man presenting in a manic episode with co-morbid amphetamine abuse whose mania was marked by hypersexuality and the new onset desire to be a woman. Both of these symptoms resolved with the addition of valproic acid to antipsychotics. This case report presents the existing literature on hypersexuality and gender dysphoria in mania and describes a treatment option that has not been previously reported.

  18. The effects of valproic acid on appetitive and aversive instrumental learning in adult rats.

    Science.gov (United States)

    Orczyk, John J; Banks, Melissa K; Garraghty, Preston E

    2014-01-01

    Antiepileptic medications are the frontline treatment for seizure conditions. However, these medications are not without cognitive side effects. Previously, our laboratory reported learning deficits in phenytoin and carbamazepine-treated rats. In the experiment reported here, the effects of valproic acid (VPA) have been studied using the same instrumental training tasks. VPA-treated rats displayed a severe deficit in acquiring a tone-signaled avoidance response. This deficit was attenuated in animals that had prior training in an appetitive context. Thus, this deficit is specific to learning in an aversive context, and does not result from difficulties in transferring associations from an appetitive to aversive context. Learning transfer deficits were previously observed in rats treated with phenytoin, and to a lesser extent, carbamazepine. On the other hand, rats treated with VPA fail to suppress inappropriate responsiveness across aversive training whether they had undergone prior appetitive training or not.

  19. Reduced Adult Hippocampal Neurogenesis and Cognitive Impairments following Prenatal Treatment of the Antiepileptic Drug Valproic Acid

    Directory of Open Access Journals (Sweden)

    Berry Juliandi

    2015-12-01

    Full Text Available Prenatal exposure to valproic acid (VPA, an established antiepileptic drug, has been reported to impair postnatal cognitive function in children born to VPA-treated epileptic mothers. However, how these defects arise and how they can be overcome remain unknown. Using mice, we found that comparable postnatal cognitive functional impairment is very likely correlated to the untimely enhancement of embryonic neurogenesis, which led to depletion of the neural precursor cell pool and consequently a decreased level of adult neurogenesis in the hippocampus. Moreover, hippocampal neurons in the offspring of VPA-treated mice showed abnormal morphology and activity. Surprisingly, these impairments could be ameliorated by voluntary running. Our study suggests that although prenatal exposure to antiepileptic drugs such as VPA may have detrimental effects that persist until adulthood, these effects may be offset by a simple physical activity such as running.

  20. Effects of amoxicillin/clavulanic acid on the pharmacokinetics of valproic acid

    Directory of Open Access Journals (Sweden)

    Lee SY

    2015-08-01

    Full Text Available Soo-Yun Lee,1 Wooseong Huh,2 Jin Ah Jung,3 Hye Min Yoo,2 Jae-Wook Ko,1,2 Jung-Ryul Kim2,4 1Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 2Department of Clinical Pharmacology and Therapeutics, Samsung Medical Center, Seoul, 3Department of Clinical Pharmacology, Inje University, Busan Paik Hospital, Busan, 4Department of Clinical Research and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea Abstract: Valproic acid (VPA is mainly metabolized via glucuronide, which is hydrolyzed by β-glucuronidase and undergoes enterohepatic circulation. Amoxicillin/clavulanic acid (AMC administration leads to decreased levels of β-glucuronidase-producing bacteria, suggesting that these antibiotics could interrupt enterohepatic circulation and thereby alter the pharmacokinetics of VPA. This study aimed to evaluate the effects of AMC on the pharmacokinetics of VPA. This was an open-label, two-treatment, one-sequence study in 16 healthy volunteers. Two treatments were evaluated; treatment VPA, in which a single dose of VPA 500 mg was administered, and treatment AMC + VPA, in which multiple doses of AMC 500/125 mg were administered three times daily for 7 days and then a single dose of VPA was administered. Blood samples were collected up to 48 hours. Pharmacokinetic parameters were calculated using noncompartmental methods. Fifteen subjects completed the study. Systemic exposures and peak concentrations of VPA were slightly lower with treatment AMC + VPA than with treatment VPA (AUClast, 851.0 h·mg/L vs 889.6 h·mg/L; Cmax, 52.1 mg/L vs 53.0 mg/L. There were no significant between-treatment effects on pharmacokinetics (95% confidence interval [CI] of AUClast and Cmax (95.7 [85.9–106.5] and 98.3 [91.6–105.6], respectively. Multiple doses of AMC had no significant effects on the pharmacokinetics of VPA; thus, no dose adjustment is necessary. Keywords: drug–drug interaction, pharmacokinetics

  1. Music application alleviates short-term memory impairments through increasing cell proliferation in the hippocampus of valproic acid-induced autistic rat pups

    OpenAIRE

    Lee, Sung-Min; Kim, Bo-Kyun; Kim, Tae-Woon; Ji, Eun-Sang; Choi, Hyun-Hee

    2016-01-01

    Autism is a neurodevelopmental disorder and this disorder shows impairment in reciprocal social interactions, deficits in communication, and restrictive and repetitive patterns of behaviors and interests. The effect of music on short-term memory in the view of cell proliferation in the hippocampus was evaluated using valproic acid-induced autistic rat pups. Animal model of autism was made by subcutaneous injection of 400-mg/kg valproic acid into the rat pups on the postnatal day 14. The rat p...

  2. Medroxyprogesterone - valproic acid - aspirin. MVA regime to reduce transfusion associated mortality in late-term hemoglobinopathies. Hypothesis and rationale.

    Science.gov (United States)

    Altinoz, Meric A; Ozdilli, Kursat; Carin, Mahmut N; Gedikoglu, Gunduz

    2007-01-01

    Medroxyprogesterone acetate (MPA) - a safe depot contraceptive - is shown previously to reduce painful crises of sickle cell anemia, which is parallel with the recent findings showing progesterone induction of fetal hemoglobin genes. This would be a way to reduce transfusions for late term thalassemia major and sickle cell-disease cases with no chances left for a stem cell transplantation. In these patients, transfusional hemosiderosis causes irreversible damage to many organs despite the available iron-chelating agents. Pharmacological strategies either target the conformal structure of the defective adult hemoglobin or aim to activate fetal hemoglobin concentrations. The only concern on MPA may be its thromboembolic risks, which may be uncoupled with agents acting both anti-coagulant and inductive on the blood oxygen-carrying affinity. Such agents could be valproic acid and aspirin. Valproic acid is being safely used to treat epilepsy and its histone acetylating function may lead its induction of fetal hemoglobin. Aspirin was shown to increase oxygen affinity of hemoglobin via acetylating lysine residues and its general acetylating activity on proteins such as histones makes it also an interesting candidate to activate fetal hemoglobin. We propose that combining MPA with clinically available doses of valproic acid and aspirin would be beneficial in terms of both reduced coagulation risks and increased oxygen affinity to decrease the transfusions and to improve the prognosis in late-phase hemoglobin disorders.

  3. Characterisation, in-vitro and in-vivo evaluation of valproic acid-loaded nanoemulsion for improved brain bioavailability.

    Science.gov (United States)

    Tan, Suk Fei; Kirby, Brian P; Stanslas, Johnson; Basri, Hamidon Bin

    2017-11-01

    This study was aimed to investigate the potential of formulated valproic acid-encapsulated nanoemulsion (VANE) to improve the brain bioavailability of valproic acid (VPA). Valproic acid-encapsulated nanoemulsions were formulated and physically characterised (osmolarity, viscosity, drug content, drug encapsulation efficiency). Further investigations were also conducted to estimate the drug release, cytotoxic profile, in-vitro blood-brain barrier (BBB) permeability, pharmacokinetic parameter and the concentration of VPA and VANE in blood and brain. Physical characterisation confirmed that VANE was suitable for parenteral administration. Formulating VPA into nanoemulsion significantly reduced the cytotoxicity of VPA. In-vitro drug permeation suggested that VANEs crossed the BBB as freely as VPA. Pharmacokinetic parameters of VANE-treated rats in plasma and brain showed F3 VANE had a remarkable improvement in AUC, prolongation of half-life and reduction in clearance compared to VPA. Given the same extent of in-vitro BBB permeation of VPA and VANE, the higher bioavailability of VANE in brain was believed to have due to higher concentration of VANE in blood. The brain bioavailability of VPA was improved by prolonging the half-life of VPA by encapsulating it within the nanoemulsion-T80. Nanoemulsion containing VPA has alleviated the cytotoxic effect of VPA and improved the plasma and brain bioavailability for parenteral delivery of VPA. © 2017 Royal Pharmaceutical Society.

  4. The Effect of Valproic Acid on Mesenchymal Pluripotent Cell Proliferation and Differentiation in Extracellular Matrices

    Directory of Open Access Journals (Sweden)

    Yuji Hatakeyama

    2011-01-01

    Full Text Available Valproic acid (2- n -propylpentanoic acid, VPA is a widely used antiepileptic and anticonvulsant drug. Previous studies have reported that VPA effects osteogenesis in vivo and in vitro, yet it remains unclear whether VPA promotes cell differentiation of osteoblasts derived from mesenchymal cells. The purpose of this study was to clarify the effect of VPA on undifferentiated pluripotent mesenchymal cell proliferation and differentiation into osteoblasts while analyzing the impact of the absence or presence of extracellular matrices (ECMs. Mouse mesenchymal cells were cultured on non-coated plastic, type I collagen-coated, and fibronectin-coated plates in the absence or presence of VPA. A cell proliferation assay was performed in which modified formazan dye content was analyzed and proliferation nuclear antigen (PCNA-positive cells were counted at various concentrations of VPA. A high concentration of VPA did not clearly alter cell morphology, but large numbers of stress fibers were observed in these cells and the cell proliferation ratio was decreased with positive PCNA counts. In the presence of matrices, the cell proliferation ratio decreased at low VPA concentrations compared with the ratio obtained in the absence of these ECMs. On the other hand, VPA promoted osteoblastic differentiation in the presence of type I collagen. These findings indicate that for undifferentiated mesenchymal cells, VPA promotes a decrease in the cell proliferation rate in the presence of ECMs and promotes osteoblastic differentiation, both of which could provide insight into additional mechanisms of osteoblastic cell differentiation caused by VPA.

  5. Genome-wide screening for genes associated with valproic acid sensitivity in fission yeast.

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    Full Text Available We have been studying the action mechanisms of valproic acid (VPA in fission yeast Schizosaccharomyces pombe by developing a genetic screen for mutants that show hypersensitivity to VPA. In the present study, we performed a genome-wide screen of 3004 haploid deletion strains and confirmed 148 deletion strains to be VPA sensitive. Of the 148 strains, 93 strains also showed sensitivity to another aliphatic acids HDAC inhibitor, sodium butyrate (SB, and 55 strains showed sensitivity to VPA but not to SB. Interestingly, we found that both VPA and SB treatment induced a marked increase in the transcription activity of Atf1 in wild-type cells. However, in clr6-1, a mutant allele the clr6(+ gene encoding class I HDAC, neither VPA- nor SB induced the activation of Atf1 transcription activity. We also found that VPA, but not SB, caused an increase in cytoplasmic Ca(2+ level. We further found that the cytoplasmic Ca(2+ increase was caused by Ca(2+ influx from extracellular medium via Cch1-Yam8 channel complex. Altogether, our present study indicates that VPA and SB play similar but distinct roles in multiple physiological processes in fission yeast.

  6. Effects of royal jelly on genotoxicity and nephrotoxicity induced by valproic acid in albino mice

    Directory of Open Access Journals (Sweden)

    Sanaa R. Galaly

    2014-03-01

    Full Text Available Epilepsy is one of the most common neurological diseases affecting at least 50 million people worldwide. Valproic acid (VPA is a widely used antiepileptic medication for both generalized and partial seizures of epilepsy. The objective of the study was to investigate the anti-mutagenic and anti-histopathologic effects of royal jelly (RJ on VPA-induced genotoxicity and nephrotoxicity in male albino mice (Mus musculus. 80 Mice were used for 21 days; they were divided into eight groups, (G1 served as normal control group, G2 received VPA (100 mg/kg and (G3–G5 received RJ at doses 50, 100 and 200 mg/kg respectively. While (G6–G8 were administrated RJ simultaneously with VPA. In RJ treated mice at doses of 50 and 100 mg/kg, the kidney sections showed normal histological structure with non significant changes in chromosomal aberrations (CA and mitotic index (MI, while RJ at dose of 200 mg/kg showed mild inflammatory cells infiltration and hyperemic glomeruli but not highly significant changes in CA and MI. The cortex of VPA treated mice revealed congested glomeruli with inflammatory cells infiltration, and marked degeneration of almost structures of the glomeruli including some vacuoles in mesangial cells with dark mesangial substances on the ultrastructure level. Some proximal tubules showed degeneration of microvilli on the apical parts of some cells. Cells of the distal tubules attained obliterated lumen and vacuolated lining epithelium. The results also revealed that valproic acid induced a high frequency of CA in bone marrow cells of mice and MI was significantly decreased indicating bone marrow cytotoxicity. The treatment of mice with RJ at doses 50, 100 and 200 mg/kg for 21 days simultaneously with VPA resulted in abating the histological alterations in renal tissues with significant reduction in chromosomal aberrations, for doses of 50 and 100 mg/kg, and elevation in mitotic index (P < 0.05. RJ at doses 50 and 100 mg/kg appeared

  7. Improvement of Blood-Brain Barrier Integrity in Traumatic Brain Injury and Hemorrhagic Shock Following Treatment With Valproic Acid and Fresh Frozen Plasma.

    Science.gov (United States)

    Nikolian, Vahagn C; Dekker, Simone E; Bambakidis, Ted; Higgins, Gerald A; Dennahy, Isabel S; Georgoff, Patrick E; Williams, Aaron M; Andjelkovic, Anuska V; Alam, Hasan B

    2018-01-01

    Combined traumatic brain injury and hemorrhagic shock are highly lethal. Following injuries, the integrity of the blood-brain barrier can be impaired, contributing to secondary brain insults. The status of the blood-brain barrier represents a potential factor impacting long-term neurologic outcomes in combined injuries. Treatment strategies involving plasma-based resuscitation and valproic acid therapy have shown efficacy in this setting. We hypothesize that a component of this beneficial effect is related to blood-brain barrier preservation. Following controlled traumatic brain injury, hemorrhagic shock, various resuscitation and treatment strategies were evaluated for their association with blood-brain barrier integrity. Analysis of gene expression profiles was performed using Porcine Gene ST 1.1 microarray. Pathway analysis was completed using network analysis tools (Gene Ontology, Ingenuity Pathway Analysis, and Parametric Gene Set Enrichment Analysis). Female Yorkshire swine were subjected to controlled traumatic brain injury and 2 hours of hemorrhagic shock (40% blood volume, mean arterial pressure 30-35 mmHg). Subjects were resuscitated with 1) normal saline, 2) fresh frozen plasma, 3) hetastarch, 4) fresh frozen plasma + valproic acid, or 5) hetastarch + valproic acid (n = 5 per group). After 6 hours of observation, brains were harvested for evaluation. Immunofluoroscopic evaluation of the traumatic brain injury site revealed significantly increased expression of tight-junction associated proteins (zona occludin-1, claudin-5) following combination therapy (fresh frozen plasma + valproic acid and hetastarch + valproic acid). The extracellular matrix protein laminin was found to have significantly improved expression with combination therapies. Pathway analysis indicated that valproic acid significantly modulated pathways involved in endothelial barrier function and cell signaling. Resuscitation with fresh frozen plasma results in improved expression of

  8. Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism.

    Science.gov (United States)

    Kim, Ji-Woon; Seung, Hana; Kim, Ki Chan; Gonzales, Edson Luck T; Oh, Hyun Ah; Yang, Sung Min; Ko, Mee Jung; Han, Seol-Heui; Banerjee, Sourav; Shin, Chan Young

    2017-02-01

    Autism spectrum disorder (ASD) is an immensely challenging developmental disorder characterized primarily by two core behavioral symptoms of social communication deficits and restricted/repetitive behaviors. Investigating the etiological process and identifying an appropriate therapeutic target remain as formidable challenges to overcome ASD due to numerous risk factors and complex symptoms associated with the disorder. Among the various mechanisms that contribute to ASD, the maintenance of excitation and inhibition balance emerged as a key factor to regulate proper functioning of neuronal circuitry. Interestingly, our previous study involving the valproic acid animal model of autism (VPA animal model) has demonstrated excitatory-inhibitory imbalance (E/I imbalance) due to enhanced differentiation of glutamatergic neurons and reduced GABAergic neurons. Here, we investigated the potential of agmatine, an endogenous NMDA receptor antagonist, as a novel therapeutic candidate in ameliorating ASD symptoms by modulating E/I imbalance using the VPA animal model. We observed that a single treatment of agmatine rescued the impaired social behaviors as well as hyperactive and repetitive behaviors in the VPA animal model. We also observed that agmatine treatment rescued the overly activated ERK1/2 signaling in the prefrontal cortex and hippocampus of VPA animal models, possibly, by modulating over-excitability due to enhanced excitatory neural circuit. Taken together, our results have provided experimental evidence suggesting a possible therapeutic role of agmatine in ameliorating ASD-like symptoms in the VPA animal model of ASD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Prevention of valproic acid-induced neural tube defects by sildenafil citrate.

    Science.gov (United States)

    Tiboni, Gian Mario; Ponzano, Adalisa

    2015-08-15

    This study was undertaken to test the effects of sildenafil citrate (SC), a type 5 phosphodiesterase inhibitor, on valproic acid (VPA)-induced teratogenesis. On gestation day (GD) 8, ICR (CD-1) mice were treated by gastric intubation with SC at 0 (vehicle), 1.0, 2.5, 5.0 or 10mg/kg. One hour later, animals received a teratogenic dose of VPA (600mg/kg) or vehicle. Developmental endpoints were evaluated near the end of gestation. Twenty-eighth percent of fetuses exposed to VPA had neural tube defects (exencephaly). Pretreatment with SC at 2.5, 5.0 or 10mg/kg significantly reduced the rate of VPA-induced exencephaly to 15.9%, 13.7%, and 10.0%, respectively. Axial skeletal defects were observed in 75.8% of VPA-exposed fetuses. Pre-treatment with SC at 10mg/kg, but not at lower doses, significantly decreased the rate of skeletally affected fetuses to 61.6%. These results show that SC, which prolongs nitric oxide (NO) signaling action protects from VPA-induced teratogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Protective effect of vitamin E on sperm motility and oxidative stress in valproic acid treated rats.

    Science.gov (United States)

    Ourique, Giovana M; Saccol, Etiane M H; Pês, Tanise S; Glanzner, Werner G; Schiefelbein, Sun Hee; Woehl, Viviane M; Baldisserotto, Bernardo; Pavanato, Maria A; Gonçalves, Paulo B D; Barreto, Kátia P

    2016-09-01

    Long-term administration of valproic acid (VPA) is known to promote reproductive impairment mediated by increase in testicular oxidative stress. Vitamin E (VitE) is a lipophilic antioxidant known to be essential for mammalian spermatogenesis. However, the capacity of this vitamin to abrogate the VPA-mediated oxidative stress has not yet been assessed. In the current study, we evaluated the protective effect of VitE on functional abnormalities related to VPA-induced oxidative stress in the male reproductive system. VPA (400 mg kg(-1)) was administered by gavage and VitE (50 mg kg(-1)) intraperitoneally to male Wistar rats for 28 days. Analysis of spermatozoa from the cauda epididymides was performed. The testes and epididymides were collected for measurement of oxidative stress biomarkers. Treatment with VPA induced a decrease in sperm motility accompanied by an increase in oxidative damage to lipids and proteins, depletion of reduced glutathione and a decrease in total reactive antioxidant potential on testes and epididymides. Co-administration of VitE restored the antioxidant potential and prevented oxidative damage on testes and epididymides, restoring sperm motility. Thus, VitE protects the reproductive system from the VPA-induced damage, suggesting that it may be a useful compound to minimize the reproductive impairment in patients requiring long-term treatment with VPA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Spirulina (arthrospira) protects against valproic acid-induced neural tube defects in mice.

    Science.gov (United States)

    Escalona-Cardoso, Gerardo N; Paniagua-Castro, Norma; Pérez-Pastén, Ricardo; Chamorro-Cevallos, Germán

    2012-12-01

    Valproic acid (VPA) is a potent inducer of neural tube defects in human and mouse, its teratogenicity is associated with its potential to generation of free radicals and increase oxidative stress. Furthermore, spirulina (SP) has shown pharmacological properties against teratogenicity, which are attributed to its antioxidant potential. Accordingly, the present study was performed to investigate the influence of SP on the teratogenicity of VPA in imprinting control region mice and the possible mechanisms of action. VPA (sodium valproate) was administered intraperitoneally to mice on gestation day (GD) 8 at a dose of 600 mg/kg. SP was given orally at 125, 250, and 500 mg/kg daily from GD0 through GD18. The most common finding in fetuses with VPA exposure was exencephaly. SP decreased the incidence of this and other malformations and increased levels of superoxide dismutase, catalase, and glutathione peroxidase. In conclusion, these results illustrate the protective action of SP through its antioxidant activity against VPA-induced teratogenicity.

  12. Effects of chronic administration of valproic acid to epileptic patients on coagulation tests and primary hemostasis.

    Science.gov (United States)

    Zighetti, Maddalena L; Fontana, Gessica; Lussana, Federico; Chiesa, Valentina; Vignoli, Aglaia; Canevini, Maria Paola; Cattaneo, Marco

    2015-05-01

    Valproic acid (VPA) is an antiepileptic drug that has been associated with impaired hemostasis and increased risk for postsurgical bleeding. However, the published reports provide controversial results. We measured parameters of primary hemostasis in VPA-treated patients with epilepsy, focusing on adenosine nucleotide-dependent platelet responses, which play a central role in primary hemostasis. We enrolled 20 cases (epileptic patients receiving treatment with VPA) and 20 controls (12 epileptic patients receiving treatment with drugs different from VPA and 8 healthy subjects). Measurements included prothrombin time (PT), activated partial thromboplastin time (APTT), platelet count, platelet function analyzer (PFA)-100 closure times, plasma von Willebrand factor levels, platelet content of ADP, ATP, and serotonin (all stored in platelet dense granules), and platelet shape change and aggregation induced by ADP and other platelet agonists, including the ATP analog α,β-methylene-ATP. The plasma concentration of VPA was in the therapeutic range in 17 patients and slightly above the upper limit in 3 patients. There were no statistically significant differences in any of the studied parameters in cases versus controls. Our thorough controlled study failed to show that chronic treatment with VPA induces significant abnormalities of coagulation and primary hemostasis. Therefore, VPA, when present in the circulation in the therapeutic range, does not impair hemostasis. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  13. Soybean greatly reduces valproic acid plasma concentrations: a food-drug interaction study.

    Science.gov (United States)

    Marahatta, Anu; Bhandary, Bidur; Jeong, Seul-Ki; Kim, Hyung-Ryong; Chae, Han-Jung

    2014-03-12

    The aim of this study was to investigate the effects of soy on the pharmacokinetics and pharmacodynamics of valproic acid (VPA). In a preclinical study, rats were pretreated with two different amounts of soy extract for five days (150 mg/kg and 500 mg/kg), which resulted in decreases of 57% and 65% in the Cmax of VPA, respectively. AUC of VPA decreased to 83% and 70% in the soy pretreatment groups. Interestingly, the excretion rate of VPA glucuronide (VPAG) was higher in the soy-fed groups. Levels of UDP-glucuronosyltransferase (UGT) UGT1A3, UGT1A6, UGT2B7 and UGT2B15 were elevated in the soy-treated group, and GABA concentrations were elevated in the brain after VPA administration. However, this was less pronounced in soy extract pretreated group than for the untreated group. This is the first study to report the effects of soy pretreatment on the pharmacokinetics and pharmacodynamics of VPA in rodents.

  14. Pentylenetetrazole-induced seizures in developing rats prenatally exposed to valproic acid

    Directory of Open Access Journals (Sweden)

    Angel A. Puig-Lagunes

    2016-11-01

    Full Text Available Background Epidemiological evidence indicates epilepsy is more common in patients with autism spectrum disorders (ASD (20–25% than in the general population. The aim of this project was to analyze seizure susceptibility in developing rats prenatally exposed to valproic acid (VPA as autism model. Methods Pregnant females were injected with VPA during the twelfth embryonic day. Seizures were induced in fourteen-days-old rat pups using two models of convulsions: pentylenetetrazole (PTZ and lithium-pilocarpine (Li-Pilo. Results Two subgroups with different PTZ-induced seizure susceptibility in rats exposed to VPA were found: a high susceptibility (VPA+ (28/42, seizure severity 5 and a low susceptibility (VPA− (14/42, seizure severity 2. The VPA+ subgroup exhibited an increased duration of the generalized tonic-clonic seizure (GTCS; 45 ± 2.7 min, a higher number of rats showed several GTCS (14/28 and developed status epilepticus (SE after PTZ injection (19/27 compared with control animals (36.6 ± 1.9 min; 10/39; 15/39, respectively. No differences in seizure severity, latency or duration of SE induced by Li-Pilo were detected between VPA and control animals. Discussion Prenatal VPA modifies the susceptibility to PTZ-induced seizures in developing rats, which may be linked to an alteration in the GABAergic transmission. These findings contribute to a better understanding of the comorbidity between autism and epilepsy.

  15. Late onset deficits in synaptic plasticity in the valproic acid rat model of autism

    Directory of Open Access Journals (Sweden)

    Henry Giles Stratten Martin

    2014-01-01

    Full Text Available Valproic acid (VPA is a frequently used drug in the treatment of epilepsy, bipolar disorders and migraines; however it is also a potent teratogen. Prenatal exposure increases the risk of childhood malformations and can result in cognitive deficits. In rodents in utero exposure to VPA also causes neurodevelopmental abnormalities and is an important model of autism. In early postnatal life VPA exposed rat pups show changes in medial prefrontal cortex (mPFC physiology and synaptic connectivity. Specifically, principal neurons show decreased excitability but increased local connectivity, coupled with an increase in long-term potentiation (LTP due to an up-regulation of NMDA receptor (NMDAR expression. However recent evidence suggests compensatory homeostatic mechanisms lead to normalization of synaptic NMDA receptors during later postnatal development. Here we have extended study of mPFC synaptic physiology into adulthood to better understand the longitudinal consequences of early developmental abnormalities in VPA exposed rats. Surprisingly in contrast to early postnatal life and adolescence, we find that adult VPA exposed rats show reduced synaptic function. Both NMDAR mediated currents and LTP are lower in adult VPA rats, although spontaneous activity and endocannabinoid dependent long-term depression are normal. We conclude that rather than correcting, synaptic abnormalities persist into adulthood in VPA exposed rats, although a quite different synaptic phenotype is present. This switch from hyper to hypo function in mPFC may be linked to some of the neurodevelopmental defects found in prenatal VPA exposure and autism spectrum disorders in general.

  16. Clinical trial of L-carnitine and valproic acid in spinal muscular atrophy type I.

    Science.gov (United States)

    Krosschell, Kristin J; Kissel, John T; Townsend, Elise L; Simeone, Sarah D; Zhang, Ren Zhe; Reyna, Sandra P; Crawford, Thomas O; Schroth, Mary K; Acsadi, Gyula; Kishnani, Priya S; Von Kleist-Retzow, Jürgen-Christoph; Hero, Barbara; D'Anjou, Guy; Smith, Edward C; Elsheikh, Bakri; Simard, Louise R; Prior, Thomas W; Scott, Charles B; Lasalle, Bernard; Sakonju, Ai; Wirth, Brunhilde; Swoboda, Kathryn J

    2017-08-18

    The aim of this study was to determine the safety and therapeutic potential of L-carnitine and valproic acid (VPA) in infants with spinal muscular atrophy (SMA). Our investigation was an open-label phase 2 multicenter trial of L-carnitine and VPA in infants with SMA type I with retrospective comparison to an untreated, matched cohort. Primary outcomes were: safety and adverse events; secondary outcomes were survival, time to death/>16 hours/day of ventilator support; motor outcomes; and maximum ulnar compound motor action potential amplitude. A total of 245 AEs were observed in 35 of the 37 treated subjects (95%). Respiratory events accounted for 49% of all adverse events, resulting in 14 deaths. Survival was not significantly different between treated and untreated cohorts. This trial provides evidence that, in infants with SMA type I, L-carnitine/VPA is ineffective at altering survival. The substantial proportion of infants reaching end-points within 6 months of enrollment underscores the urgent need for pre-symptomatic treatment in SMA type I. Muscle Nerve, 2017. © 2017 Wiley Periodicals, Inc.

  17. Repeated prenatal exposure to valproic acid results in cerebellar hypoplasia and ataxia.

    Science.gov (United States)

    Main, Stacey L; Kulesza, Randy J

    2017-01-06

    Autism spectrum disorder (ASD) is a developmental brain disorder characterized by restricted and repetitive patterns of behavior, social and communication defects, and is commonly associated with difficulties with motor coordination. The etiology of ASD, while mostly idiopathic, has been linked to hereditary factors and teratogens, such as valproic acid (VPA). VPA is used clinically to treat epilepsy, mood disorders, and in the prevention of migraines. The use of VPA during pregnancy significantly increases the risk of ASD in the offspring. Neuropathological studies show decreased cerebellar function in patients with ASD, resulting in gait, balance and coordination impairments. Herein, we have exposed pregnant rats to a repeated oral dose of VPA on embryonic days 10 and 12 and performed a detailed investigation of the structure and function of the cerebellar vermis. We found that throughout all ten lobules of the cerebellar vermis, Purkinje cells were significantly smaller and expression of the calcium binding protein calbindin (CB) was significantly reduced. We also found that dendritic arbors of Purkinje cells were shorter and less complex. Additionally, animals exposed to a repeated dose of VPA performed significantly worse in a number of motor tasks, including beam walking and the rotarod. These results suggest that repeated embryonic exposure to VPA induces significant cerebellar dysfunction and is an effective animal model to study the cerebellar alterations in ASD. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Valproic acid induces cutaneous wound healing in vivo and enhances keratinocyte motility.

    Directory of Open Access Journals (Sweden)

    Soung-Hoon Lee

    Full Text Available BACKGROUND: Cutaneous wound healing is a complex process involving several signaling pathways such as the Wnt and extracellular signal-regulated kinase (ERK signaling pathways. Valproic acid (VPA is a commonly used antiepileptic drug that acts on these signaling pathways; however, the effect of VPA on cutaneous wound healing is unknown. METHODS AND FINDINGS: We created full-thickness wounds on the backs of C3H mice and then applied VPA. After 7 d, we observed marked healing and reduced wound size in VPA-treated mice. In the neo-epidermis of the wounds, β-catenin and markers for keratinocyte terminal differentiation were increased after VPA treatment. In addition, α-smooth muscle actin (α-SMA, collagen I and collagen III in the wounds were significantly increased. VPA induced proliferation and suppressed apoptosis of cells in the wounds, as determined by Ki67 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL staining analyses, respectively. In vitro, VPA enhanced the motility of HaCaT keratinocytes by activating Wnt/β-catenin, ERK and phosphatidylinositol 3-kinase (PI3-kinase/Akt signaling pathways. CONCLUSIONS: VPA enhances cutaneous wound healing in a murine model and induces migration of HaCaT keratinocytes.

  19. Mechanism of Growth Inhibition of Prostate Cancer Xenografts by Valproic Acid

    Directory of Open Access Journals (Sweden)

    Abhinav Sidana

    2012-01-01

    Full Text Available Valproic Acid (VPA, a histone deacetylase inhibitor, has been demonstrated to cause a marked decrease in proliferation of prostate cancer (PCa cells in vitro and a significant reduction in tumor volume in vivo. The goal of this study is to better understand the VPA-induced growth inhibition in vivo, by studying expression of various markers in PCa xenografts. Methods. For in vitro experiments, PCa cells were treated with 0, 0.6, and 1.2 mM VPA for 14 days. For in vivo models, experimental animals received 0.4% VPA in drinking water for 35 days. Tissue microarray was generated using cell pellets and excised xenografts. Results. VPA treatment causes cell cycle arrest in PCa cells in vivo, as determined by increase in p21 and p27 and decrease in cyclin D1 expression. Increased expression of cytokeratin18 was also seen in xenografts. LNCaP xenografts in treated animals had reduced androgen receptor (AR expression. While decreased proliferation was found in vitro, increase in apoptosis was found to be the reason for decreased tumor growth in vivo. Also, an anti-angiogenic effect was observed after VPA treatment. Conclusion. VPA inhibits tumor growth by multiple mechanisms including cell cycle arrest, induction of differentiation, and inhibition of growth of tumor vasculature.

  20. Valproic acid transfer across human placental cotyledon during dual perfusion in vitro.

    Science.gov (United States)

    Semczuk-Sikora, Anna; Czuczwar, Stanislaw; Semczuk, Andrzej; Kwasniewska, Anna; Semczuk, Marian

    2010-01-01

    Valproic acid (VPA ) is a well-known antiepileptic drug with a significant teratogenic effect when administered during pregnancy. To investigate the transplacental transport of VPA, we used an in vitro experiment of dual perfusion of a human placental cotyledon. Eighteen normal placentas at term were investigated; ten were treated with a therapeutic dose of VPA (initial level at maternal circulation 75 microgram/ml), while the remaining eight were supplied with toxic VPA doses (initial level at maternal circulation 225 microgram/ml). VPA concentrations in fetal compartment were lower than those in the maternal compartment at all timepoints with both doses applied. The maternal and foetal VPA concentrations were stable at 60 min and 120 min for the therapeutic dose of VPA (transfer percentages from the maternal to the fetal circulation were 22.7 +- 9.1 percent and 22.7 +- 7.1 percent, respectively). Interestingly, a significant decrease of VPA level in the maternal perfusate was observed after 120 min due to the slightly higher transfer of the drug to the foetal compartment. In conclusion, our data confirmed an easy and rapid transfer of VPA accross the placental barrier. Since the incidence of congenital malformations in infants correlates positively with VPA concentrations in maternal serum, monitoring of VPA should be mandatory due to possible harmful effects on the foetus.

  1. Resveratrol prevents social deficits in animal model of autism induced by valproic acid.

    Science.gov (United States)

    Bambini-Junior, Victorio; Zanatta, Geancarlo; Della Flora Nunes, Gustavo; Mueller de Melo, Gabriela; Michels, Marcus; Fontes-Dutra, Mellanie; Nogueira Freire, Valder; Riesgo, Rudimar; Gottfried, Carmem

    2014-11-07

    Autism spectrum disorders (ASD) involve a complex interplay of both genetic and environmental risk factors, such as prenatal exposure to valproic acid (VPA). Considering the neuroprotective, antioxidant and anti-inflammatory effects of resveratrol (RSV), we investigated the influence of prenatal RSV treatment on social behaviors of a rodent model of autism induced by prenatal exposure to VPA. In the three-chambered apparatus test, the VPA group showed a reduced place preference conditioned by conspecific and no preference between exploring a wire-cage or a rat enclosed inside a wire cage, revealing sociability impairments. Prenatal administration of RSV prevented the VPA-induced social impairments evaluated in this study. A bioinformatics analysis was used to discard possible molecular interactions between VPA and RSV during administration. The interaction energy between RSV and VPA is weak and highly unstable, suggesting cellular effects instead of a single chemical process. In summary, the present study highlights a promising experimental strategy to evaluate new molecular targets possibly involved in the etiology of autism and developmental alterations implicated in neural and behavioral impairments in ASD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Effect of valproic acid on dementia onset in patients with bipolar disorder.

    Science.gov (United States)

    Tsai, Pei-Shan; Liu, I-Chao; Chiu, Chen-Huan; Huang, Chun-Jen; Wang, Mei-Yeh

    2016-09-01

    Valproic acid (VPA) is widely used for treating patients with bipolar disorder; however, it has adverse effects on cognitive function. This study investigated the effect of VPA on the risk of dementia in patients with bipolar disorder. We analyzed data from Taiwan's Longitudinal Health Insurance Database 2010. Patients with bipolar disorder who were prescribed VPA for 28 days or at least once per month for 3 consecutive months after the index date were classified as the VPA-treated group, whereas those who did not receive VPA were classified as the VPA-untreated group. Both groups were tracked until the end of 2013 or until loss to follow-up to identify new-onset dementia events. Multivariable Cox proportional hazards models were used to estimate the hazard ratio (HR) of subsequent dementia associated with VPA treatment after adjustment for confounding variables. The study comprised 5158 patients with bipolar disorder. The multivariable-adjusted HR for newly diagnosed dementia was 1.73 (95% confidence interval [CI], 1.24-2.41, P=0.001) for the VPA-treated group compared with the VPA-untreated group after adjustment for potential confounders. The VPA-treated group had a higher risk than did the VPA-untreated group after propensity score adjustment (HR=1.95, 95% CI=1.42-2.67, Pbipolar disorder with VPA increases the risk of dementia by 73-95%. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Drug interaction between valproic acid and carbapenems in patients with epileptic seizures

    Directory of Open Access Journals (Sweden)

    Chi-Ren Huang

    2017-03-01

    Full Text Available Valproic acid (VPA is a widely used antiepileptic drug (AED. When carbapenems are concomitantly used with VPA, the serum levels of VPA may decrease and aggravate seizures. The aim of this study was to evaluate the risk factors associated with decreased serum VPA levels and clinical outcome in patients being treated with a combination of carbapenems and VPA. Fifty-four adult patients who were treated with VPA for epileptic seizures concomitant with carbapenems for the treatment of infections were evaluated in this study. Serum VPA levels were measured before and during combination therapy with VPA and carbapenems, and the change in serum VPA levels was calculated. The risk factors related to the decrease in serum VPA levels and clinical outcomes were evaluated. Our results show that VPA concentrations were reduced to subtherapeutic levels after the introduction of carbapenems. The reduction in VPA concentrations was found within 24 hours of the start of treatment with carbapenems. VPA levels continuously declined while the combination of treatments was used, which aggravated epileptic seizures in 48% of the patients. Renal disease and enzyme-inducing AEDs were risk factors that contributed to the severity of reduced serum VPA levels during combined treatment with carbapenems. This study suggests that clinicians need to be aware of the reduction of VPA concentrations to subtherapeutic levels and the aggravation of seizures while patients are treated with a combination of carbapenems and VPA.

  4. Cell motility is inhibited by the antiepileptic compound, valproic acid and its teratogenic analogues

    DEFF Research Database (Denmark)

    Walmod, P S; Foley, A; Berezin, A

    1998-01-01

    analysis, and it was found that VPA and selected VPA-analogues inhibited individual cell motility of L-cells in a dose-dependent manner. The compounds caused a decrease in the root-mean-square speed, S, and in the rate of diffusion, R, but an increase in the time of persistence in direction, P. Using short......Valproic acid (VPA) is an established human teratogen that causes neural tube defects in 1-2% of human foetuses exposed to the drug during early pregnancy. In this study, individual cell motility was evaluated using short- and long-term time-lapse video-recording and computer assisted image...... the neuronal marker NCAM and in the neuronal cell line N2a. Furthermore, the observed effect was independent of culture substratum, being observed for L-cells grown on fibronectin as well as on plastic. Immunofluorescence microscopy revealed that VPA-treatment of mouse L-cells caused a redistribution of F...

  5. Valproic acid decreases urothelial cancer cell proliferation and induces thrombospondin-1 expression.

    Science.gov (United States)

    Byler, Timothy K; Leocadio, Dean; Shapiro, Oleg; Bratslavsky, Gennady; Stodgell, Christopher J; Wood, Ronald W; Messing, Edward M; Reeder, Jay E

    2012-08-16

    Prevention of bladder cancer recurrence is a central challenge in the management of this highly prevalent disease. The histone deacetylase inhibitor valproic acid (sodium valproate) has anti-angiogenic properties and has been shown to decrease bladder cancer growth in model systems. We have previously shown reduced expression of thrombospondin-1 in a mouse model and in human bladder cancer relative to normal urothelium. We speculated that inhibition of angiogenesis by valproate might be mediated by this anti-angiogenic protein. Bladder cancer cell lines UMUC3 and T24 were treated with valproate or another histone deacetylase inhibitor, vorinostat, in culture for a period of three days. Proliferation was assessed by alamar blue reduction. Gene expression was evaluated by reverse transcription of RNA and quantitative PCR. Proliferation assays showed treatment with valproate or vorinostat decreased proliferation in both cell lines. Histone deacetylase inhibition also increased relative expression of thrombospondin-1 up to 8 fold at 5 mM valproate. Histone deacetylase inhibitors warrant further study for the prevention or treatment of bladder cancer.

  6. Valproic acid decreases urothelial cancer cell proliferation and induces thrombospondin-1 expression

    Directory of Open Access Journals (Sweden)

    Byler Timothy K

    2012-08-01

    Full Text Available Abstract Background Prevention of bladder cancer recurrence is a central challenge in the management of this highly prevalent disease. The histone deacetylase inhibitor valproic acid (sodium valproate has anti-angiogenic properties and has been shown to decrease bladder cancer growth in model systems. We have previously shown reduced expression of thrombospondin-1 in a mouse model and in human bladder cancer relative to normal urothelium. We speculated that inhibition of angiogenesis by valproate might be mediated by this anti-angiogenic protein. Methods Bladder cancer cell lines UMUC3 and T24 were treated with valproate or another histone deacetylase inhibitor, vorinostat, in culture for a period of three days. Proliferation was assessed by alamar blue reduction. Gene expression was evaluated by reverse transcription of RNA and quantitative PCR. Results Proliferation assays showed treatment with valproate or vorinostat decreased proliferation in both cell lines. Histone deacetylase inhibition also increased relative expression of thrombospondin-1 up to 8 fold at 5 mM valproate. Conclusions Histone deacetylase inhibitors warrant further study for the prevention or treatment of bladder cancer.

  7. Valproic Acid versus Lamotrigine as First-line Monotherapy in Newly Diagnosed Idiopathic Generalized Tonic -Clonic Seizures in Adults - A Randomized Controlled Trial.

    Science.gov (United States)

    Giri, Vishal Prakash; Giri, Om Prakash; Khan, Farhan Ahmad; Kumar, Narendra; Kumar, Ajay; Haque, Ataul

    2016-07-01

    Idiopathic Generalized Tonic-Clonic Seizures (GTCS) are frequently encountered in adults. Their successful control is necessary to improve the quality of life of these patients. Valproic acid is a simple branched-chain carboxylic acid and lamotrigine is a phenyltriazine derivative. Opinions differ in regards to their effectiveness in idiopathic GTCS. To compare the effectiveness of valproic acid and lamotrigine in newly diagnosed adults with idiopathic generalized tonic-clonic seizures. The present prospective randomized study was conducted on 60 patients suffering from idiopathic GTCS. Thirty patients received valproic acid and rest 30 patients received lamotrigine. All patients were followed regularly monthly for one year for treatment response and adverse effects. After 12 months follow-up, 76.67% patients taking valproic acid and 56.67% patients taking lamotrigine were seizure-free. Common adverse effects recorded were nausea, dyspepsia, headache and skin rash. Valproic acid is more effective than lamotrigine as first-line drug in the treatment of adults with newly diagnosed idiopathic generalized tonic-clonic seizures.

  8. Antimetastatic Efficacy of the Combination of Caffeine and Valproic Acid on an Orthotopic Human Osteosarcoma Cell Line Model in Nude Mice.

    Science.gov (United States)

    Igarashi, Kentaro; Kawaguchi, Kei; Kiyuna, Tasuku; Murakami, Takashi; Yamamoto, Norio; Hayashi, Katsuhiro; Kimura, Hiroaki; Miwa, Shinji; Tsuchiya, Hiroyuki; Hoffman, Robert M

    2017-03-01

    We have previously reported that caffeine can enhance chemotherapy efficacy of bone and soft tissue sarcoma via cell-cycle perturbation. Valproic acid has histone deacetylase (HDAC) inhibitory activity. We have also reported the anti-tumor efficacy of combination treatment with caffeine and valproic acid against osteosarcoma primary tumors in a cell-line orthotopic mouse model. In this study, we performed combination treatment of caffeine and valproic acid on osteosarcoma cell lines in vitro and in spontaneous and experimental lung metastasis mouse models of osteosarcoma. Survival of 143B-RFP human osteosarcoma cells after exposure to caffeine and valproic acid for 72 hours was determined using the WST-8 assay. IC 50 values and combination indices were calculated. Mouse models of primary osteosarcoma and spontaneous lung metastasis were obtained by orthotopic intra-tibial injection of 143B-RFP cells. Valproic acid, caffeine, and combination of both drugs were administered from day 7, five times a week, for four weeks. Six weeks after orthotopic injection, lung samples were excised and observed with a fluorescence imaging system. A mouse model of experimental lung metastasis was obtained by tail vein injection of 143B-RFP cells. The mice were treated with these agents from day 0, five times a week for four weeks. Both caffeine and valproic acid caused concentration-dependent cell kill in vitro. Synergistic efficacy of the combination treatment was observed. In the spontaneous lung-metastasis model, the number of lung metastasis was 9.0±2.6 in the untreated group (G1); 10.8±2.9 in the caffeine group (G2); 10.0±3.1 in the valproic-acid group (G3); and 3.0±1.1 in the combination group (G4); (p=6.78E-5 control vs. combination; p=0.006 valproic acid vs. combination; p=0.003 caffeine vs. combination). In the experimental lung-metastasis model, the combination group significantly reduced lung metastases and improved overall survival (p=0.0005). Efficacy of the

  9. Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPβ-regulated atrogin1 expression in cancer cachexia.

    Science.gov (United States)

    Sun, Rulin; Zhang, Santao; Hu, Wenjun; Lu, Xing; Lou, Ning; Yang, Zhende; Chen, Shaoyong; Zhang, Xiaoping; Yang, Hongmei

    2016-07-01

    Muscle wasting is the hallmark of cancer cachexia and is associated with poor quality of life and increased mortality. Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, has important biological effects in the treatment of muscular dystrophy. To verify whether VPA could ameliorate muscle wasting induced by cancer cachexia, we explored the role of VPA in two cancer cachectic mouse models [induced by colon-26 (C26) adenocarcinoma or Lewis lung carcinoma (LLC)] and atrophied C2C12 myotubes [induced by C26 cell conditioned medium (CCM) or LLC cell conditioned medium (LCM)]. Our data demonstrated that treatment with VPA increased the mass and cross-sectional area of skeletal muscles in tumor-bearing mice. Furthermore, treatment with VPA also increased the diameter of myotubes cultured in conditioned medium. The skeletal muscles in cachectic mice or atrophied myotubes treated with VPA exhibited reduced levels of CCAAT/enhancer binding protein beta (C/EBPβ), resulting in atrogin1 downregulation and the eventual alleviation of muscle wasting and myotube atrophy. Moreover, atrogin1 promoter activity in myotubes was stimulated by CCM via activating the C/EBPβ-responsive cis-element and subsequently inhibited by VPA. In contrast to the effect of VPA on the levels of C/EBPβ, the levels of inactivating forkhead box O3 (FoxO3a) were unaffected. In summary, VPA attenuated muscle wasting and myotube atrophy and reduced C/EBPβ binding to atrogin1 promoter locus in the myotubes. Our discoveries indicate that HDAC inhibition by VPA might be a promising new approach for the preservation of skeletal muscle in cancer cachexia. Copyright © 2016 the American Physiological Society.

  10. Valproic Acid, a Histone Deacetylase Inhibitor, in Combination with Paclitaxel for Anaplastic Thyroid Cancer: Results of a Multicenter Randomized Controlled Phase II/III Trial

    Directory of Open Access Journals (Sweden)

    Maria Graziella Catalano

    2016-01-01

    Full Text Available Anaplastic thyroid cancer (ATC has a median survival less than 5 months and, to date, no effective therapy exists. Taxanes have recently been stated as the main drug treatment for ATC, and the histone deacetylase inhibitor valproic acid efficiently potentiates the effects of paclitaxel in vitro. Based on these data, this trial assessed the efficacy and safety of the combination of paclitaxel and valproic acid for the treatment of ATC. This was a randomized, controlled phase II/III trial, performed on 25 ATC patients across 5 centers in northwest Italy. The experimental arm received the combination of paclitaxel (80 mg/m2/weekly and valproic acid (1,000 mg/day; the control arm received paclitaxel alone. Overall survival and disease progression, evaluated in terms of progression-free survival, were the primary outcomes. The secondary outcome was the pharmacokinetics of paclitaxel. The coadministration of valproic acid did not influence the pharmacokinetics of paclitaxel. Neither median survival nor median time to progression was statistically different in the two arms. Median survival of operated-on patients was significantly better than that of patients who were not operated on. The present trial demonstrates that the addition of valproic acid to paclitaxel has no effect on overall survival and disease progression of ATC patients. This trial is registered with EudraCT 2008-005221-11.

  11. Association between the blood concentrations of ammonia and carnitine/amino acid of schizophrenic patients treated with valproic acid.

    Science.gov (United States)

    Ando, Masazumi; Amayasu, Hideaki; Itai, Takahiro; Yoshida, Hisahiro

    2017-01-01

    Administration of valproic acid (VPA) is complicated with approximately 0.9% of patients developing hyperammonemia, but the pathogenesis of this adverse effect remains to be clarified. The aim of the present study was to search for mechanisms associated with VPA-induced hyperammonemia in the light of changes in serum amino acids concentrations associated with the urea cycle of schizophrenic patients. Blood samples (10 mL) were obtained from 37 schizophrenic patients receiving VPA for the prevention of violent behaviors in the morning after overnight fast. Blood concentrations of ammonia, VPA, free carnitine, acyl-carnitine, and 40 amino acids including glutamate and citrulline were measured for each patient. Univariate and multivariate regression analyses were performed to identify amino acids or concomitantly administered drugs that were associated with variability in the blood concentrations of ammonia. The blood ammonia level was positively correlated with the serum glutamate concentration ( r  = 0.44, p  blonanserin ( p  < 0.01) was positively associated with the elevation of the blood ammonia level. We hypothisized that VPA would elevate the blood ammonia level of schizophrenic patients. The observed changes in serum amino acids are compatible with urea cycle dysfunction, possibly due to reduced carbamoyl-phosphate synthase 1 (CPS1) activity. We conclude that VPA should be prudently prescribed to schizophrenic patients, particularly those receiving mood stabilizers or certain antipsychotics.

  12. The effects of vitamin B6 on lens antioxidant system in valproic acid-administered rats.

    Science.gov (United States)

    Tunali, S

    2014-06-01

    Valproic acid (VPA, 2-propyl pentanoic acid) is a broad-spectrum antiepileptic drug (AED) and is commonly used in the treatment of bipolar disorders and epilepsy. AEDs are known to result in vascular disturbances. Vitamin B6 (Vit B6) is water soluble vitamin essential for normal growth, development, and metabolism. In this study, we aimed to investigate the protective effects of Vit B6 against VPA-induced lens damage in experimental animals. In this study, male 4-month-old, Sprague-Dawley rats were used. The animals were divided into four groups. Group I was intact control animals. Group II rats were administered with Vit B6 (50 mg/kg/day) for 7 days. Group III rats were administered with only VPA (500 mg/kg/day) for 7 days. Group IV was given VPA + Vit B6 (in a same dose and time). Vit B6 was given to rats by gavage and VPA was given by intraperitoneally. On the 8th day of experiment, all of the animals were fasted overnight and then killed under ether anesthesia. Lens tissues were taken from animals, homogenized in 0.9% saline to make up a 10% homogenate. The homogenates was used for glutathione (GSH), lipid peroxidation (LPO), protein levels, and enzyme analysis. In VPA groups, levels of lens GSH and LPO and activities of glutathione-S-transferase, glutathione peroxidase, glutathione reductase, and aldose reductase were increased, while superoxide dismutase activity was decreased. Treatment with Vit B6 reversed these effects. These results demonstrated that administration of Vit B6 is potentially beneficial agent to reduce the lens damage in VPA toxicity, probably by decreasing oxidative stress. © The Author(s) 2014.

  13. Valproic acid induces histologic changes and decreases androgen receptor levels of testis and epididymis in rats

    Directory of Open Access Journals (Sweden)

    Sitthichai Iamsaard

    2017-08-01

    Full Text Available Background: Valproic acid (VPA, an anti-epileptic drug, can cause male subfertility. However, the degree to which testicular and epididymal histopathologies and androgen receptor (AR expression are changed under VPA treatment has never been reported. Objective: To investigate the histopathological changes and AR protein levels of testis and epididymis in VPA-treated rats for every single day. Materials and Methods: Sixty-four adult male Wistar rats were divided into control and VPA-treated groups (n=8/ each. Treated rats were injected with 500 mg/ kgBW, intraperitoneally, VPA for 10 consecutive days. At the end of every experimental day, all reproductive parameters including histology by hematoxylin and eosin staining and protein expression of AR by Immuno-Western blot in testis and epididymis were examined. Results: VPA-treated rats showed dramatically changes in testicular and epididymal histopathologies compared to control group. The multinucleated giant cells and sloughing of germ cells were observed on day 6. The germ cell disintegration and increased intercellular spaces of seminiferous tubular epithelium appeared in days 7-10 of VPA treatment. Additionally, extensive multinucleated giant cells and complete exfoliation were clearly found from days 8-10. Such exfoliated germ cells were clearly seen in its epididymal lumen at day 10. The increasing rate of sperm concentration was approximately 32.31% of that in control group at day 10 (p=0.03. Moreover, the protein expressions of testicular and epididymal AR (% intensity/ 80 μg protein lysate was decreased in VPA-treated rats compared with control. Conclusion: VPA treatment induces histologic changes of germ cell epithelium in seminiferous tubules and decreases the expression of testicular and epididymal androgen receptors

  14. Prenatal valproic acid exposure disrupts tonotopic c-Fos expression in the rat brainstem.

    Science.gov (United States)

    Dubiel, A; Kulesza, R J

    2016-06-02

    Autism spectrum disorder (ASD) is a group of neurodevelopmental conditions characterized by difficulties in communication and social interactions, restricted, repetitive behaviors and sensory abnormalities. Notably, the vast majority of individuals with ASD experience some degree of auditory dysfunction and we have recently reported consistent hypoplasia and dysmorphology in auditory brainstem centers in individuals with ASD. Prenatal exposure to the antiepileptic drug valproic acid (VPA) is associated with an increased risk of ASD. In rodents, prenatal exposure to VPA is employed as an animal model of ASD and is associated with a number of anatomical, physiological and behavioral deficits, including hypoplasia and dysmorphology of auditory brainstem centers. Based on these observations, we hypothesized that such dysmorphology in VPA-exposed animals would translate into abnormal neuronal activity in brainstem circuits and irregular tonotopic maps. Herein, we have subjected control and VPA-exposed animals to 4- or 16-kHz tones and examined neuronal activation with immunohistochemistry for c-Fos. After these exposures, we identified significantly more c-Fos-positive neurons in the auditory brainstem of VPA-exposed animals. Additionally, we observed a larger dispersion of c-Fos-positive neurons and shifted tonotopic bands in VPA-exposed rats. We interpret these findings to suggest hyper-responsiveness to sounds and disrupted mapping of sound frequencies after prenatal VPA exposure. Based on these findings, we suggest that such abnormal patterns of activation may play a role in auditory processing deficits in ASD. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Abnormal emotional learning in a rat model of autism exposed to valproic acid in utero

    Directory of Open Access Journals (Sweden)

    Anwesha eBanerjee

    2014-11-01

    Full Text Available Autism Spectrum Disorders (ASD are complex neurodevelopmental disorders characterized by repetitive behavior and impaired social communication and interactions. Apart from these core symptoms, a significant number of ASD individuals display higher levels of anxiety and some ASD individuals exhibit impaired emotional learning. We therefore sought to further examine anxiety and emotional learning in an environmentally induced animal model of ASD that utilizes the administration of the known teratogen, valproic acid (VPA during gestation. Specifically we exposed dams to one of two different doses of VPA (500 and 600 mg/kg or vehicle on day 12.5 of gestation and examined the resultant progeny. Our data indicate that animals exposed to VPA in utero exhibit enhanced anxiety in the open field test and normal object recognition memory compared to control animals. Animals exposed to 500 mg/kg of VPA displayed normal acquisition of auditory fear conditioning, and exhibited reduced extinction of fear memory and normal litter survival rates as compared to control animals. We observed that animals exposed to 600 mg/kg of VPA exhibited a significant reduction in the acquisition of fear conditioning, a significant reduction in social interaction and a significant reduction in litter survival rates as compared to control animals. VPA (600 mg/kg exposed animals exhibited similar shock sensitivity and hearing as compared to control animals indicating the fear conditioning deficit observed in these animals was not likely due to sensory deficits, but rather due to deficits in learning or memory retrieval. In conclusion, considering that progeny from dams exposed to rather similar doses of VPA exhibit striking differences in emotional learning, the VPA model may serve as a useful tool to explore the molecular and cellular mechanisms that contribute to not only ASD, but also emotional learning.

  16. Ultrasonic emulsification of parenteral valproic acid-loaded nanoemulsion with response surface methodology and evaluation of its stability.

    Science.gov (United States)

    Tan, Suk Fei; Masoumi, Hamid Reza Fard; Karjiban, Roghayeh Abedi; Stanslas, Johnson; Kirby, Brian P; Basri, Mahiran; Basri, Hamidon Bin

    2016-03-01

    Response surface methodology (RSM) was used to optimize the formulation of a nanoemulsion for central delivery following parenteral administration. A mixture of medium-chain triglyceride (MCT) and safflower seed oil (SSO) was determined as a sole phase from the emulsification properties. Similarly, a natural surfactant (lecithin) and non-ionic surfactant (Tween 80) (ratio 1:2) were used in the formulation. A central composite design (CCD) with three-factor at five-levels was used to optimize the processing method of high energy ultrasonicator. Effects of pre-sonication ultrasonic intensity (A), sonication time (B), and temperature (C) were studied on the preparation of nanoemulsion loaded with valproic acid. Influence of the aforementioned specifically the effects of the ultrasonic processing parameters on droplet size and polydispersity index were investigated. From the analysis, it was found that the interaction between ultrasonic intensity and sonication time was the most influential factor on the droplet size of nanoemulsion formulated. Ultrasonic intensity (A) significantly affects the polydispersity index value. With this optimization method, a favorable droplet size of a nanoemulsion with reasonable polydispersity index was able to be formulated within a short sonication time. A valproic acid loaded nanoemulsion can be obtained with 60% power intensity for 15 min at 60 °C. Droplet size of 43.21±0.11 nm with polydispersity index of 0.211 were produced. The drug content was then increased to 1.5%. Stability study of nanoemulsion containing 1.5% of valproic acid had a good stability as there are no significant changes in physicochemical aspects such as droplet size and polydispersity index. With the characteristisation study of pH, viscosity, transmission electron microscope (TEM) and stability assessment study the formulated nanoemulsion has the potential to penetrate blood-brain barrier in the treatment of epilepsy. Copyright © 2015 Elsevier B.V. All

  17. Valproic Acid as a Potential Inhibitor of Plasmodium falciparum Histone Deacetylase 1 (PfHDAC1: An in Silico Approach

    Directory of Open Access Journals (Sweden)

    Mohamed A. Abdallah Elbadawi

    2015-02-01

    Full Text Available A new Plasmodium falciparum histone deacetylase1 (PfHDAC1 homology model was built based on the highest sequence identity available template human histone deacetylase 2 structure. The generated model was carefully evaluated for stereochemical accuracy, folding correctness and overall structure quality. All evaluations were acceptable and consistent. Docking a group of hydroxamic acid histone deacetylase inhibitors and valproic acid has shown binding poses that agree well with inhibitor-bound histone deacetylase-solved structural interactions. Docking affinity dG scores were in agreement with available experimental binding affinities. Further, enzyme-ligand complex stability and reliability were investigated by running 5-nanosecond molecular dynamics simulations. Thorough analysis of the simulation trajectories has shown that enzyme-ligand complexes were stable during the simulation period. Interestingly, the calculated theoretical binding energies of the docked hydroxamic acid inhibitors have shown that the model can discriminate between strong and weaker inhibitors and agrees well with the experimental affinities reported in the literature. The model and the docking methodology can be used in screening virtual libraries for PfHDAC1 inhibitors, since the docking scores have ranked ligands in accordance with experimental binding affinities. Valproic acid calculated theoretical binding energy suggests that it may inhibit PfHDAC1.

  18. Amelioration of bleomycin-induced lung fibrosis in rats by valproic acid and butyrate: Role of nuclear factor kappa-B, proinflammatory cytokines and oxidative stress.

    Science.gov (United States)

    Kabel, Ahmed M; Omar, Mohamed S; Elmaaboud, Maaly A Abd

    2016-10-01

    Bleomycin is one of the anticancer agents used frequently in management of various types of tumors. Pulmonary fibrosis is the major limiting factor for the use of bleomycin. Mechanisms of fibrosis may include disordered wound healing, infiltration with inflammatory cells and fibroblasts and release of reactive oxygen species and growth factors. The aim of this study was to investigate the effect of valproic acid and butyrate on lung fibrosis induced by bleomycin, and to clarify their mechanisms of action. Fifty male Wistar rats were divided into 5 equal groups as follows: control group; bleomycin group; bleomycin+valproic acid group; bleomycin+butyrate group and bleomycin+valproic acid+butyrate group. Weight of rats, lung tissue hydroxyproline, malondialdehyde, superoxide dismutase and catalase were measured. Also, bronchoalveolar lavage (BAL) was analyzed for total and differential leukocytic count, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and transforming growth factor-beta 1 (TGF-β1). Lung tissue was examined histopathologically and immunostained for nuclear factor kappa B (NF-κB). Valproic acid and/or butyrate resulted in significant improvement of the body weight gain, oxidative stress, TGF-β1, IL-6, TNF-α, hydroxyproline and BAL cellularity together with significant improvement of the histopathological and immunohistochemical picture. The use of valproic acid/butyrate combination was better than the use of each of these drugs alone in bleomycin-induced pulmonary fibrosis. In conclusion, valproic acid/butyrate combination may be used prophylactically for amelioration of bleomycin-induced pulmonary fibrosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Synthesis and Activity of Tumor-Homing Peptide iRGD and Histone Deacetylase Inhibitor Valproic Acid Conjugate

    OpenAIRE

    Peng, Zheng-Hong; Kopeček, Jindřich

    2014-01-01

    In this report, we present a concise strategy to prepare a conjugate of the tumor homing peptide iRGD and histone deacetylase inhibitor Valproic acid, VPA-GFLG-iRGD. The conjugate VPA-GFLG-iRGD and a mixture of VPA and GFLG-iRGD have shown similar cytotoxicity against DU-145 prostate cancer cells. However, the treatment of DU-145 cells with conjugate VPA-GFLG-iRGD resulted in a decreased percentage of cells in the G2 phase, whereas the exposure of a mixture of VPA and GFLG-iRGD led to an incr...

  20. Drug-induced hypersensitivity syndrome caused by valproic acid as a monotherapy for epilepsy: First case report in Asian population.

    Science.gov (United States)

    Wu, X T; Hong, P W; Suolang, D J; Zhou, D; Stefan, H

    2017-01-01

    Valproic acid (VPA) is a broad-spectrum antiseizure drug used for a variety of clinical conditions, such as epilepsy and mood disorders. Drug-induced hypersensitivity syndrome (DRESS) accompanied by hyponatremia, thrombocytopenia, hypoalbuminemia and elevated aminotransferase has never been reported as an adverse effect of VPA monotherapy during titration for epilepsy in Asian population. Hereby, we present the case of a 73-year-old Chinese male who suffered from DRESS and other complications two weeks after initiating VPA treatment for epilepsy. Understanding the risk associated with VPA-induced DRESS, and taking effective measures to avoid the severe side effects are necessary.

  1. Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid

    DEFF Research Database (Denmark)

    Rinaldi, Tania; Kulangara, Karina; Antoniello, Katia

    2007-01-01

    as the commonly linked kinase calcium/calmodulin-dependent protein kinase II. Synaptic plasticity experiments between pairs of pyramidal neurons revealed an augmented postsynaptic form of long-term potentiation. These results indicate that VPA significantly enhances NMDA receptor-mediated transmission and causes...... increased plasticity in the neocortex. Enhanced plasticity introduces a surprising perspective to the potential molecular and synaptic mechanisms involved in children prenatally exposed to VPA.......Valproic acid (VPA) is a powerful teratogen causing birth defects in humans, including autism spectrum disorder (ASD), if exposure occurs during the first trimester of embryogenesis. Learning and memory alterations are common symptoms of ASD, but underlying molecular and synaptic alterations remain...

  2. Music application alleviates short-term memory impairments through increasing cell proliferation in the hippocampus of valproic acid-induced autistic rat pups.

    Science.gov (United States)

    Lee, Sung-Min; Kim, Bo-Kyun; Kim, Tae-Woon; Ji, Eun-Sang; Choi, Hyun-Hee

    2016-06-01

    Autism is a neurodevelopmental disorder and this disorder shows impairment in reciprocal social interactions, deficits in communication, and restrictive and repetitive patterns of behaviors and interests. The effect of music on short-term memory in the view of cell proliferation in the hippocampus was evaluated using valproic acid-induced autistic rat pups. Animal model of autism was made by subcutaneous injection of 400-mg/kg valproic acid into the rat pups on the postnatal day 14. The rat pups in the music-applied groups were exposed to the 65-dB comfortable classic music for 1 hr once a day, starting postnatal day 15 and continued until postnatal day 28. In the present results, short-term memory was deteriorated by autism induction. The numbers of 5-bromo-2'-deoxyridine (BrdU)-positive, Ki-67-positive, and doublecortin (DCX)-positive cells in the hippocampal dentate gyrus were decreased by autism induction. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) expressions in the hippocampus were also suppressed in the autistic rat pups. Music application alleviated short-term memory deficits with enhancing the numbers of BrdU-positive, Ki-67-positive, and DCX-positive cells in the autistic rat pups. Music application also enhanced BDNF and TrkB expressions in the autistic rat pups. The present study show that application of music enhanced hippocampal cell proliferation and alleviated short-term memory impairment through stimulating BDNF-TrkB signaling in the autistic rat pups. Music can be suggested as the therapeutic strategy to overcome the autism-induced memory deficits.

  3. Asiatic Acid Prevents the Deleterious Effects of Valproic Acid on Cognition and Hippocampal Cell Proliferation and Survival

    Directory of Open Access Journals (Sweden)

    Jariya Umka Welbat

    2016-05-01

    Full Text Available Valproic acid (VPA is commonly prescribed as an anticonvulsant and mood stabilizer used in the treatment of epilepsy and bipolar disorder. A recent study has demonstrated that VPA reduces histone deacetylase (HDAC activity, an action which is believed to contribute to the effects of VPA on neural stem cell proliferation and differentiation which may explain the cognitive impairments produced in rodents and patients. Asiatic acid is a triterpenoid derived from the medicinal plant Centella asiatica. Our previous study has shown that Asiatic acid improves working spatial memory and increases cell proliferation in the sub granular zone of the hippocampal dentate gyrus. In the present study we investigate the effects of Asiatic acid in preventing the memory and cellular effects of VPA. Male Spraque-Dawley rats were orally administered Asiatic acid (30 mg/kg/day for 28 days, while VPA-treated animals received injections of VPA (300 mg/kg twice a day from Day 15 to Day 28 for 14 days. Spatial memory was determined using the novel object location (NOL test and hippocampal cell proliferation and survival was quantified by immuostaining for Ki-67 and Bromodeoxyuridine (BrdU, respectively. The results showed that VPA-treated animals were unable to discriminate between objects in familiar and novel locations. Moreover, VPA significantly reduced numbers of Ki-67 and BrdU positive cells. These results indicate that VPA treatment caused impairments of spatial working memory, cell proliferation and survival in the subgranular zone (SGZ of the hippocampal dentate gyrus (DG. However, these abnormalities were restored to control levels by co-treatment with Asiatic acid. These data demonstrate that Asiatic acid could prevent the spatial memory and neurogenesis impairments caused by VPA.

  4. Bilateral subacute lacrimal gland enlargement mimicking dacryoadenitis in a 7-year-old boy: a rare adverse effect of valproic acid (sodium valproate).

    Science.gov (United States)

    Lyons, Christopher; Godoy, Flavia; Driessche, Koen Vanden

    2017-06-01

    A healthy 7-year-old boy presented with bilateral symmetrical lacrimal gland enlargement; a week later salivary gland enlargement was also noted. Clinical investigations suggested no diagnosis, and surgical biopsy was considered. Valproic acid (sodium valproate), which he was taking for absence seizures, has been reported to cause salivary gland swelling in adults. Suspecting that a similar mechanism could be causal, the drug was discontinued. Complete resolution of the lacrimal and salivary gland enlargement rapidly ensued. This is the first report of lacrimal gland enlargement caused by valproic acid. Copyright © 2017 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  5. All guns blazing: management and survival of massive valproic acid overdose – case report and literature review

    Directory of Open Access Journals (Sweden)

    Al Jawder S

    2018-01-01

    Full Text Available Shaikha Al Jawder,1 Eiman AlJishi,2 Shaikhah Al-Otaibi,2 Mohammed S Al-Shahrani3 1King Hamad University Hospital, Busaiteen, Bahrain; 2Emergency Medicine Department, 3Emergency and Critical Care Department, King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia Abstract: A 51-year-old woman, who intentionally ingested a massive dose of ~60 g of valproic acid which she was using as a mood stabilizer for bipolar affective disorder, presented within 30 minutes of ingestion to the emergency department. The patient was asymptomatic and was immediately started on decontamination therapy with activated charcoal (AC. Drug serum levels, liver functions, and ammonia levels were tested and followed up during treatment. Due to the massive ingestion and continuous rise in serum drug levels, the patient received regular multiple doses of AC, as well as l-carnitine for liver protection. The patient was started on extracorporeal therapy in the form of renal replacement therapy in the intensive care unit (ICU, followed by intermittent hemodialysis. Drug serum levels dropped significantly. Ammonia levels showed improvement with treatment. The patient was discharged from the ICU after 14 days of treatment. She was stable and in good condition with no residual hepatic or central nervous system (CNS manifestations. Keywords: valproic acid, multiple dose activated charcoal, l-carnitine, hemodialysis

  6. Targeting mitochondrial STAT3 with the novel phospho-valproic acid (MDC-1112 inhibits pancreatic cancer growth in mice.

    Directory of Open Access Journals (Sweden)

    Gerardo G Mackenzie

    Full Text Available New agents are needed to treat pancreatic cancer, one of the most lethal human malignancies. We synthesized phospho-valproic acid, a novel valproic acid derivative, (P-V; MDC-1112 and evaluated its efficacy in the control of pancreatic cancer. P-V inhibited the growth of human pancreatic cancer xenografts in mice by 60%-97%, and 100% when combined with cimetidine. The dominant molecular target of P-V was STAT3. P-V inhibited the phosphorylation of JAK2 and Src, and the Hsp90-STAT3 association, suppressing the activating phosphorylation of STAT3, which in turn reduced the expression of STAT3-dependent proteins Bcl-xL, Mcl-1 and survivin. P-V also reduced STAT3 levels in the mitochondria by preventing its translocation from the cytosol, and enhanced the mitochondrial levels of reactive oxygen species, which triggered apoptosis. Inhibition of mitochondrial STAT3 by P-V was required for its anticancer effect; mitochondrial STAT3 overexpression rescued animals from the tumor growth inhibition by P-V. Our results indicate that P-V is a promising candidate drug against pancreatic cancer and establish mitochondrial STAT3 as its key molecular target.

  7. Effects of Valproic Acid on Axonal Regeneration and Recovery of Motor Function after Peripheral Nerve Injury in the Rat

    Science.gov (United States)

    Rao, Ting; Wu, Fei; Xing, Danmou; Peng, Zhengren; Ren, Dong; Feng, Wei; Chen, Yan; Zhao, Zhiming; Wang, Huan; Wang, Junweng; Kan, Wusheng; Zhang, Qingsong

    2014-01-01

    Background: Valproic acid (VPA) is used to be an effective anti-epileptic drug and mood stabilizer. It has recently been demonstrated that VPA could promote neurite outgrowth, activate the extracellular signal regulated kinase pathway, and increases bcl-2 and growth cone-associated protein 43 levels in spinal cord. In the present research we demonstrate the effect of VPA on peripheral nerve regeneration and recovery of motor function following sciatic nerve transaction in rats. Methods: The rats in VPA group and control group were administered with valproic acid (300mg/kg) and sodium chloride respectively after operation. Each animal was observed sciatic nerve index (SFI) at 2-week intervals and studied electrophysiology at 4-week intervals for 12 weeks. Histological and morphometrical analyses were performed 12 weeks after operation. Using the digital image-analysis system, thickness of the myelin sheath was measured, and total numbers of regenerated axons were counted. Results: There was a significant difference in SFI, electrophysiological index (motor-nerve conduct velocity), and morphometrical results (regenerated axon number and thickness of myelin sheath) in nerve regeneration between the VPA group and controls (P<0.05). Conclusions: The results demonstrated that VPA is able to enhance sciatic nerve regeneration in rats, suggesting the potential clinical application of VPA for the treatment of peripheral nerve injury in humans. PMID:25207308

  8. Effects of Valproic Acid on Axonal Regeneration and Recovery of Motor Function after Peripheral Nerve Injury in the Rat

    Directory of Open Access Journals (Sweden)

    Ting Rao

    2014-03-01

    Full Text Available Background:   Valproic acid (VPA is used to be an effective anti-epileptic drug and mood stabilizer. It has recently been demonstrated that VPA could promote neurite outgrowth, activate the extracellular signal regulated kinase pathway, and increases bcl-2 and growth cone-associated protein 43 levels in spinal cord. In the present research we demonstrate the effect of VPA on peripheral nerve regeneration and recovery of motor function following sciatic nerve transaction in rats. Methods:   The rats in VPA group and control group were administered with valproic acid (300mg/kg and sodium chloride respectively after operation. Each animal was observed sciatic nerve index (SFI at 2-week intervals and studied electrophysiology at 4-week intervals for 12 weeks. Histological and morphometrical analyses were performed 12 weeks after operation. Using the digital image-analysis system, thickness of the myelin sheath was measured, and total numbers of regenerated axons were counted. Results:   There was a significant difference in SFI, electrophysiological index (motor-nerve conduct velocity, and morphometrical results (regenerated axon number and thickness of myelin sheath in nerve regeneration between the VPA group and controls (   P

  9. Non-24-hour sleep–wake syndrome improved by low-dose valproic acid: a case report

    Directory of Open Access Journals (Sweden)

    Kurita M

    2016-12-01

    Full Text Available Masatake Kurita,1–3 Takahiro Moriya,2 Satoshi Nishino,2,4 Eishin Hirata,4 Noriyasu Hirasawa,5 Yoshiro Okubo,3 Tadahiro Sato4 1Wakamiya Hospital, Koutokukai, Yoshihara, Yamagata, 2Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 3Department of Psychiatry and Behavioral Science, Graduate School of Medicine, Nippon Medical School, Sendagi, Tokyo, 4Sato Hospital, Koutokukai, Kunugizuka, Nanyo, Yamagata, 5Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan Abstract: A woman was diagnosed with non-24-hour sleep–wake syndrome and depressive symptoms. Her depressive symptoms did not respond to standard doses of several antidepressants or mood stabilizers. Furthermore, her sleep–wake cycle remained non-entrained despite treatment with a melatonin-related drug, vitamin B12, and phototherapy. Ultimately, her sleep–wake rhythm was restored to a 24-hour pattern with a low dose of valproic acid, and her depressive symptoms tended to improve as a result of synchronization without antidepressants. Low-dose valproic acid appears to be one of the effective means of entraining circadian rhythms in patients with non-24-hour sleep–wake syndrome, which in turn likely improves associated depressive symptoms. Keywords: circadian rhythm sleep disorder, mood stabilizers, vitamin B12, melatonin, phototherapy, antidepressants, depression

  10. Effects of cytarabine on activation of human T cells - cytarabine has concentration-dependent effects that are modulated both by valproic acid and all-trans retinoic acid.

    Science.gov (United States)

    Ersvaer, Elisabeth; Brenner, Annette K; Vetås, Kristin; Reikvam, Håkon; Bruserud, Øystein

    2015-05-02

    Cytarabine is used in the treatment of acute myeloid leukemia (AML). Low-dose cytarabine can be combined with valproic acid and all-trans retinoic acid (ATRA) as AML-stabilizing treatment. We have investigated the possible risk of immunotoxicity by this combination. We examined the effects of cytarabine combined with valproic acid and ATRA on in vitro activated human T cells, and we tested cytarabine at concentrations reached during in vivo treatment with high doses, conventional doses and low doses. T cells derived from blood donors were activated in vitro in cell culture medium alone or supplemented with ATRA (1 μM), valproic acid (500 or 1000 μM) or cytarabine (0.01-44 μM). Cell characteristics were assessed by flow cytometry. Supernatants were analyzed for cytokines by ELISA or Luminex. Effects on primary human AML cell viability and proliferation of low-dose cytarabine (0.01-0.5 μM) were also assessed. Statistical tests include ANOVA and Cluster analyses. Only cytarabine 44 μM had both antiproliferative and proapoptotic effects. Additionally, this concentration increased the CD4:CD8 T cell ratio, prolonged the expression of the CD69 activation marker, inhibited CD95L and heat shock protein (HSP) 90 release, and decreased the release of several cytokines. In contrast, the lowest concentrations (0.35 and 0.01 μM) did not have or showed minor antiproliferative or cytotoxic effects, did not alter activation marker expression (CD38, CD69) or the release of CD95L and HSP90, but inhibited the release of certain T cell cytokines. Even when these lower cytarabine concentrations were combined with ATRA and/or valproic acid there was still no or minor effects on T cell viability. However, these combinations had strong antiproliferative effects, the expression of both CD38 and CD69 was altered and there was a stronger inhibition of the release of FasL, HSP90 as well as several cytokines. Cytarabine (0.01-0.05 μM) showed a dose-dependent antiproliferative effect on

  11. Phase II Open Label Study of Valproic Acid in Spinal Muscular Atrophy

    Science.gov (United States)

    Swoboda, Kathryn J.; Scott, Charles B.; Reyna, Sandra P.; Prior, Thomas W.; LaSalle, Bernard; Sorenson, Susan L.; Wood, Janine; Acsadi, Gyula; Crawford, Thomas O.; Kissel, John T.; Krosschell, Kristin J.; D'Anjou, Guy; Bromberg, Mark B.; Schroth, Mary K.; Chan, Gary M.; Elsheikh, Bakri; Simard, Louise R.

    2009-01-01

    Preliminary in vitro and in vivo studies with valproic acid (VPA) in cell lines and patients with spinal muscular atrophy (SMA) demonstrate increased expression of SMN, supporting the possibility of therapeutic benefit. We performed an open label trial of VPA in 42 subjects with SMA to assess safety and explore potential outcome measures to help guide design of future controlled clinical trials. Subjects included 2 SMA type I ages 2–3 years, 29 SMA type II ages 2–14 years and 11 type III ages 2–31 years, recruited from a natural history study. VPA was well-tolerated and without evident hepatotoxicity. Carnitine depletion was frequent and temporally associated with increased weakness in two subjects. Exploratory outcome measures included assessment of gross motor function via the modified Hammersmith Functional Motor Scale (MHFMS), electrophysiologic measures of innervation including maximum ulnar compound muscle action potential (CMAP) amplitudes and motor unit number estimation (MUNE), body composition and bone density via dual-energy X-ray absorptiometry (DEXA), and quantitative blood SMN mRNA levels. Clear decline in motor function occurred in several subjects in association with weight gain; mean fat mass increased without a corresponding increase in lean mass. We observed an increased mean score on the MHFMS scale in 27 subjects with SMA type II (p≤0.001); however, significant improvement was almost entirely restricted to participants <5 years of age. Full length SMN levels were unchanged and Δ7SMN levels were significantly reduced for 2 of 3 treatment visits. In contrast, bone mineral density (p≤0.0036) and maximum ulnar CMAP scores (p≤0.0001) increased significantly. Conclusions While VPA appears safe and well-tolerated in this initial pilot trial, these data suggest that weight gain and carnitine depletion are likely to be significant confounding factors in clinical trials. This study highlights potential strengths and limitations of various

  12. Phase II open label study of valproic acid in spinal muscular atrophy.

    Directory of Open Access Journals (Sweden)

    Kathryn J Swoboda

    Full Text Available Preliminary in vitro and in vivo studies with valproic acid (VPA in cell lines and patients with spinal muscular atrophy (SMA demonstrate increased expression of SMN, supporting the possibility of therapeutic benefit. We performed an open label trial of VPA in 42 subjects with SMA to assess safety and explore potential outcome measures to help guide design of future controlled clinical trials. Subjects included 2 SMA type I ages 2-3 years, 29 SMA type II ages 2-14 years and 11 type III ages 2-31 years, recruited from a natural history study. VPA was well-tolerated and without evident hepatotoxicity. Carnitine depletion was frequent and temporally associated with increased weakness in two subjects. Exploratory outcome measures included assessment of gross motor function via the modified Hammersmith Functional Motor Scale (MHFMS, electrophysiologic measures of innervation including maximum ulnar compound muscle action potential (CMAP amplitudes and motor unit number estimation (MUNE, body composition and bone density via dual-energy X-ray absorptiometry (DEXA, and quantitative blood SMN mRNA levels. Clear decline in motor function occurred in several subjects in association with weight gain; mean fat mass increased without a corresponding increase in lean mass. We observed an increased mean score on the MHFMS scale in 27 subjects with SMA type II (p

  13. Valproic acid, a histone deacetylase inhibitor, induces apoptosis in breast cancer stem cells.

    Science.gov (United States)

    Aztopal, Nazlıhan; Erkisa, Merve; Erturk, Elif; Ulukaya, Engin; Tokullugil, Asuman Hatice; Ari, Ferda

    2018-01-25

    Cancer stem-like cells (CSCs) are a cell subpopulation that can reinitiate tumors, resist chemotherapy, give rise to metastases and lead to disease relapse because of an acquired resistance to apoptosis. Especially, epigenetic alterations play a crucial role in the regulation of stemness and also have been implicated in the development of drug resistance. Hence, in the present study, we examined the cytotoxic and apoptotic activity of valproic acid (VPA) as an inhibitor of histone deacetylases (HDACs) against breast CSCs (BCSCs). Increased expression of stemness markers were determined by western blotting in mammospheres (MCF-7s, a cancer stem cell-enriched population) propagated from parental MCF-7 cells. Anti-growth activity of VPA was determined via ATP viability assay. The sphere formation assay (SFA) was performed to assess the inhibitory effect of VPA on the self-renewal capacity of MCF-7s cells. Acetylation of histon H3 was detected with ELISA assay. Cell death mode was performed by Hoechst dye 33342 and propidium iodide-based flouresent stainings (for pyknosis and membrane integrity), by M30 and M65 ELISA assays (for apoptosis and primary or secondary necrosis) as well as cytofluorimetric analysis (caspase 3/7 activity and annexin-V-FITC staining for early and late stage apoptosis). VPA exhibited anti-growth effect against both MCF-7 and MCF-7s cells in a dose (0.6-20 mM) and time (24, 48, 72 h) dependent manner. As expected, MCF-7s cells were found more resistant to VPA than MCF-7 cells. It was observed that VPA prevented mammosphere formation at relatively lower doses (2.5 and 5 mM) while the acetylation of histon H3 was increased. At the same doses, VPA increased the M30 levels, annexin-V-FITC positivity and caspase 3/7 activation, implying the induction of apoptosis. The secondary necrosis (late stage of apoptosis) was also evidenced by nuclear pyknosis with propidium iodide staining positivity. Taken together, inhibition of HDACs is cytotoxic to

  14. Determination of Acute Lethal and Chronic Lethal Thresholds of Valproic Acid using 3D Spheroids Constructed from the Immortal Human Hepatocyte Cell Line Hepg2/C3A

    DEFF Research Database (Denmark)

    Fey, S. J.; Wrzesinski, Krzysztof

    2013-01-01

    describe here a culture system based on 3D spheroid culture of immortal hepatocytes which can determine the toxicity of valproic acid (or structurally or functionally related molecules) in vitro. The spheroids were used to follow changes in ATP production, glucose uptake and adenylate kinase following...

  15. Long-term valproic acid exposure increases the number of neocortical neurons in the developing rat brain. A possible new animal model of autism

    DEFF Research Database (Denmark)

    Sabers, Anne; Bertelsen, Freja C B; Scheel-Krüger, Jørgen

    2014-01-01

    The aim of this study was to test the hypothesis that long-term fetal valproic acid (VPA) exposure at doses relevant to the human clinic interferes with normal brain development. Pregnant rats were given intraperitoneal injections of VPA (20mg/kg or 100mg/kg) continuously during the last 9-12 days...

  16. Investigation of low levels of plasma valproic acid concentration following simultaneous administration of sodium valproate and rizatriptan benzoate.

    Science.gov (United States)

    Hokama, Nobuo; Hobara, Norio; Kameya, Hiromasa; Ohshiro, Susumu; Hobara, Narumi; Sakanashi, Matao

    2007-03-01

    Drug interaction between rizatriptan benzoate, an anti-migraine agent, and sodium valproate (VPA-Na), an anticonvulsant, was studied in rats. When rizatriptan benzoate was administered orally immediately after VPA-Na oral administration, the pharmacokinetic parameters, such as plasma valproic acid (VPA) and area under the plasma concentration-time curve up to 3 h (AUC(0-3)), were significantly decreased compared with those in the control group. However, when rizatriptan benzoate was administered intraperitoneally immediately after VPA-Na orally, these parameters were not changed. In addition, when benzoic acid was administered orally immediately after VPA-Na orally, these were significantly lower compared with the control values. Therefore, it might be possible that VPA transport by monocarboxylate transporter was competitively inhibited by rizatriptan benzoate and thus absorption of VPA was decreased.

  17. Modulation of Antioxidant Enzymatic Activities by Certain Antiepileptic Drugs (Valproic Acid, Oxcarbazepine, and Topiramate: Evidence in Humans and Experimental Models

    Directory of Open Access Journals (Sweden)

    Noemí Cárdenas-Rodríguez

    2013-01-01

    Full Text Available It is estimated that at least 100 million people worldwide will suffer from epilepsy at some point in their lives. This neurological disorder induces brain death due to the excessive liberation of glutamate, which activates the postsynaptic N-methyl-D-aspartic acid (NMDA receptors, which in turn cause the reuptake of intracellular calcium (excitotoxicity. This excitotoxicity elicits a series of events leading to nitric oxide synthase (NOS activation and the generation of reactive oxygen species (ROS. Several studies in experimental models and in humans have demonstrated that certain antiepileptic drugs (AEDs exhibit antioxidant effects by modulating the activity of various enzymes associated with this type of stress. Considering the above-mentioned data, we aimed to compile evidence elucidating how AEDs such as valproic acid (VPA, oxcarbazepine (OXC, and topiramate (TPM modulate oxidative stress.

  18. Liquid chromatography–tandem mass spectrometry method for simultaneous determination of valproic acid and its ene-metabolites in epilepsy patient plasma

    Directory of Open Access Journals (Sweden)

    Huan Lu

    2016-04-01

    Full Text Available A simple and high throughput method was developed and validated for simultaneous determination of valproic acid and its two toxicant ene-metabolites, 2-enevalproic acid and 4-enevalproic acid in epilepsy patient plasma using liquid chromatography–tandem mass spectrometry. Probenecid was used as internal standard and solid-phase extraction was selected for sample preparation. A chromatographic separation was performed on an Agilent Poroshell SB-C18 column (50 mm×4.6 mm i.d., 2.7 μm by an optimized gradient elution at a flow rate of 0.9 mL/min. The total run time was 7 min. Electrospray ionization was used in negative ion mode by multiple reaction monitoring of the precursor-to-product ion transitions at m/z 143.0→143.0 for valproic acid, m/z 140.9→140.9 for 2-enevalproic acid and 4-enevalproic acid for their poor fragments, and m/z 283.9→239.9 for probenecid. The results showed good linearity of valproic acid, 2-enevalproic acid and 4-enevalproic acid in their respective linear ranges. The correlation coefficients were more than 0.998. The intra- and inter-day precision of the assay was less than 11.0% and the accuracy ranged from 2% to 12%. This analytical method was successfully applied to assay plasma concentrations of valproic acid and its two ene-metabolites in epilepsy patient plasma and used for therapeutic drug monitoring.

  19. Comparison of clinical, magnetic resonance and evoked potentials data in a case of valproic-acid-related hyperammonemic coma

    Energy Technology Data Exchange (ETDEWEB)

    Hantson, Philippe [Universite Catholique de Louvain, Department of Intensive Care, Cliniques Saint-Luc, Brussels (Belgium); Grandin, Cecile; Duprez, Thierry [Universite Catholique de Louvain, Department of Neuroradiology, Cliniques Saint-Luc, Brussels (Belgium); Nassogne, Marie-Cecile [Universite Catholique de Louvain, Department of Pediatric Neurology, Cliniques Saint-Luc, Brussels (Belgium); Guerit, Jean-Michel [Universite Catholique de Louvain, Laboratory of Neurophysiology, Cliniques Saint-Luc, Brussels (Belgium)

    2005-01-01

    Magnetic resonance (MR) multimodality evoked potentials (MEPs) and clinical findings were correlated in a 47-year-old epileptic man in whom parenteral valproic acid (VPA) therapy induced severe comatose hyperammonemic encephalopathy without biological signs of hepatotoxicity (or hepatocytic dysfunction). Although the plasma VPA level remained within a normal therapeutic range, the ammoniemia increased to a toxic peak level at 411 {mu}mol/l 24 h after symptom onset, requiring VPA therapy discontinuation. Brain MR monitoring demonstrated early cytotoxic edema evolving into delayed vasogenic edema and final brain atrophy. Concomitantly to abnormalities within the brainstem on MR images, an increase in brainstem conduction at MEPs and clinical disturbance of brainstem reflexes were observed at the initial phase of the disease course. Later, the resolution of the MR and MEPs abnormalities paralleled the clinical recovery of the reflexes. (orig.)

  20. Suppression of NMDA receptor function in mice prenatally exposed to valproic acid improves social deficits and repetitive behaviors

    Directory of Open Access Journals (Sweden)

    Jaeseung eKang

    2015-05-01

    Full Text Available Animals prenatally exposed to valproic acid (VPA, an antiepileptic agent, have been used as a model for autism spectrum disorders (ASDs. Previous studies have identified enhanced NMDA receptor (NMDAR function in the brain of VPA rats, and demonstrated that pharmacological suppression of NMDAR function normalizes social deficits in these animals. However, whether repetitive behavior, another key feature of ASDs, can be rescued by NMDAR inhibition remains unknown. We report here that memantine, an NMDAR antagonist, administered to VPA mice rescues both social deficits and repetitive behaviors such as self-grooming and jumping. These results suggest that suppression of elevated NMDAR function in VPA animals normalizes repetitive behaviors in addition to social deficits.

  1. Subchronic treatment of donepezil rescues impaired social, hyperactive, and stereotypic behavior in valproic acid-induced animal model of autism.

    Directory of Open Access Journals (Sweden)

    Ji-Woon Kim

    Full Text Available Autism spectrum disorder (ASD is a group of pervasive developmental disorders with core symptoms such as sociability deficit, language impairment, and repetitive/restricted behaviors. Although worldwide prevalence of ASD has been increased continuously, therapeutic agents to ameliorate the core symptoms especially social deficits, are very limited. In this study, we investigated therapeutic potential of donepezil for ASD using valproic acid-induced autistic animal model (VPA animal model. We found that prenatal exposure of valproic acid (VPA induced dysregulation of cholinergic neuronal development, most notably the up-regulation of acetylcholinesterase (AChE in the prefrontal cortex of affected rat and mouse offspring. Similarly, differentiating cortical neural progenitor cell in culture treated with VPA showed increased expression of AChE in vitro. Chromatin precipitation experiments revealed that acetylation of histone H3 bound to AChE promoter region was increased by VPA. In addition, other histone deacetyalse inhibitors (HDACIs such as trichostatin A and sodium butyrate also increased the expression of AChE in differentiating neural progenitor cells suggesting the essential role of HDACIs in the regulation of AChE expression. For behavioral analysis, we injected PBS or donepezil (0.3 mg/kg intraperitoneally to control and VPA mice once daily from postnatal day 14 all throughout the experiment. Subchronic treatment of donepezil improved sociability and prevented repetitive behavior and hyperactivity of VPA-treated mice offspring. Taken together, these results provide evidence that dysregulation of ACh system represented by the up-regulation of AChE may serve as an effective pharmacological therapeutic target against autistic behaviors in VPA animal model of ASD, which should be subjected for further investigation to verify the clinical relevance.

  2. Subchronic treatment of donepezil rescues impaired social, hyperactive, and stereotypic behavior in valproic acid-induced animal model of autism.

    Science.gov (United States)

    Kim, Ji-Woon; Seung, Hana; Kwon, Kyung Ja; Ko, Mee Jung; Lee, Eun Joo; Oh, Hyun Ah; Choi, Chang Soon; Kim, Ki Chan; Gonzales, Edson Luck; You, Jueng Soo; Choi, Dong-Hee; Lee, Jongmin; Han, Seol-Heui; Yang, Sung Min; Cheong, Jae Hoon; Shin, Chan Young; Bahn, Geon Ho

    2014-01-01

    Autism spectrum disorder (ASD) is a group of pervasive developmental disorders with core symptoms such as sociability deficit, language impairment, and repetitive/restricted behaviors. Although worldwide prevalence of ASD has been increased continuously, therapeutic agents to ameliorate the core symptoms especially social deficits, are very limited. In this study, we investigated therapeutic potential of donepezil for ASD using valproic acid-induced autistic animal model (VPA animal model). We found that prenatal exposure of valproic acid (VPA) induced dysregulation of cholinergic neuronal development, most notably the up-regulation of acetylcholinesterase (AChE) in the prefrontal cortex of affected rat and mouse offspring. Similarly, differentiating cortical neural progenitor cell in culture treated with VPA showed increased expression of AChE in vitro. Chromatin precipitation experiments revealed that acetylation of histone H3 bound to AChE promoter region was increased by VPA. In addition, other histone deacetyalse inhibitors (HDACIs) such as trichostatin A and sodium butyrate also increased the expression of AChE in differentiating neural progenitor cells suggesting the essential role of HDACIs in the regulation of AChE expression. For behavioral analysis, we injected PBS or donepezil (0.3 mg/kg) intraperitoneally to control and VPA mice once daily from postnatal day 14 all throughout the experiment. Subchronic treatment of donepezil improved sociability and prevented repetitive behavior and hyperactivity of VPA-treated mice offspring. Taken together, these results provide evidence that dysregulation of ACh system represented by the up-regulation of AChE may serve as an effective pharmacological therapeutic target against autistic behaviors in VPA animal model of ASD, which should be subjected for further investigation to verify the clinical relevance.

  3. Subchronic Treatment of Donepezil Rescues Impaired Social, Hyperactive, and Stereotypic Behavior in Valproic Acid-Induced Animal Model of Autism

    Science.gov (United States)

    Kim, Ji-Woon; Seung, Hana; Kwon, Kyung Ja; Ko, Mee Jung; Lee, Eun Joo; Oh, Hyun Ah; Choi, Chang Soon; Kim, Ki Chan; Gonzales, Edson Luck; You, Jueng Soo; Choi, Dong-Hee; Lee, Jongmin; Han, Seol-Heui; Yang, Sung Min; Cheong, Jae Hoon; Shin, Chan Young; Bahn, Geon Ho

    2014-01-01

    Autism spectrum disorder (ASD) is a group of pervasive developmental disorders with core symptoms such as sociability deficit, language impairment, and repetitive/restricted behaviors. Although worldwide prevalence of ASD has been increased continuously, therapeutic agents to ameliorate the core symptoms especially social deficits, are very limited. In this study, we investigated therapeutic potential of donepezil for ASD using valproic acid-induced autistic animal model (VPA animal model). We found that prenatal exposure of valproic acid (VPA) induced dysregulation of cholinergic neuronal development, most notably the up-regulation of acetylcholinesterase (AChE) in the prefrontal cortex of affected rat and mouse offspring. Similarly, differentiating cortical neural progenitor cell in culture treated with VPA showed increased expression of AChE in vitro. Chromatin precipitation experiments revealed that acetylation of histone H3 bound to AChE promoter region was increased by VPA. In addition, other histone deacetyalse inhibitors (HDACIs) such as trichostatin A and sodium butyrate also increased the expression of AChE in differentiating neural progenitor cells suggesting the essential role of HDACIs in the regulation of AChE expression. For behavioral analysis, we injected PBS or donepezil (0.3 mg/kg) intraperitoneally to control and VPA mice once daily from postnatal day 14 all throughout the experiment. Subchronic treatment of donepezil improved sociability and prevented repetitive behavior and hyperactivity of VPA-treated mice offspring. Taken together, these results provide evidence that dysregulation of ACh system represented by the up-regulation of AChE may serve as an effective pharmacological therapeutic target against autistic behaviors in VPA animal model of ASD, which should be subjected for further investigation to verify the clinical relevance. PMID:25133713

  4. Role of isovaleryl-CoA dehydrogenase and short branched-chain acyl-CoA dehydrogenase in the metabolism of valproic acid: implications for the branched-chain amino acid oxidation pathway

    NARCIS (Netherlands)

    Luís, Paula B. M.; Ruiter, Jos P. N.; Ijlst, Lodewijk; Tavares de Almeida, Isabel; Duran, Marinus; Mohsen, Al-Walid; Vockley, Jerry; Wanders, Ronald J. A.; Silva, Margarida F. B.

    2011-01-01

    Many biological systems including the oxidative catabolic pathway for branched-chain amino acids (BCAAs) are affected in vivo by valproate therapy. In this study, we investigated the potential effect of valproic acid (VPA) and some of its metabolites on the metabolism of BCAAs. In vitro studies were

  5. Laser Acupuncture at HT7 Improves the Cerebellar Disorders in Valproic Acid-Rat Model of Autism

    Directory of Open Access Journals (Sweden)

    Jurairat Khongrum

    2017-08-01

    Full Text Available The novel therapeutic strategy against autism is essential due to the limited therapeutic efficacy. Based on the benefit of laser acupuncture at HT7 acupoint on the neurological disorders related with oxidative stress and inflammation, its benefit on oxidative stress, neuroinflammation, and GABAergic/glutamatergic imbalance in cerebellum of autism have been considered. To elucidate this issue, male rat pups were induced autistic-like conditions by valproic acid (VPA and treated with laser acupuncture at HT7 acupoint once daily between postnatal Day 14 and Day 40. At the end of study, the changes of oxidative stress markers, the expressions of cytokines interleukin 6 (IL-6 and glutamic acid decarboxylase (GAD proteins (65 kDa and 67 kDa together with gamma-aminobutyric acid transaminase (GABA-T activity and density of Purkinje cell in the cerebellum were assessed. The results showed that laser acupuncture HT7 decreased oxidative stress, IL-6 expression, and GABA-T activity but increased the expressions of GAD 65 kDa together with the density of Purkinje cells in the cerebellum. Therefore, laser acupuncture at HT7 is the potential strategy to improve the cerebellar disorders in VPA-rat model of autism. The mechanism may occur partly via the decrease of oxidative stress status, inflammation, and the improved GABAergic function.

  6. Laser Acupuncture at HT7 Improves the Cerebellar Disorders in Valproic Acid-Rat Model of Autism.

    Science.gov (United States)

    Khongrum, Jurairat; Wattanathorn, Jintanaporn

    2017-08-01

    The novel therapeutic strategy against autism is essential due to the limited therapeutic efficacy. Based on the benefit of laser acupuncture at HT7 acupoint on the neurological disorders related with oxidative stress and inflammation, its benefit on oxidative stress, neuroinflammation, and GABAergic/glutamatergic imbalance in cerebellum of autism have been considered. To elucidate this issue, male rat pups were induced autistic-like conditions by valproic acid (VPA) and treated with laser acupuncture at HT7 acupoint once daily between postnatal Day 14 and Day 40. At the end of study, the changes of oxidative stress markers, the expressions of cytokines interleukin 6 (IL-6) and glutamic acid decarboxylase (GAD) proteins (65 kDa and 67 kDa) together with gamma-aminobutyric acid transaminase (GABA-T) activity and density of Purkinje cell in the cerebellum were assessed. The results showed that laser acupuncture HT7 decreased oxidative stress, IL-6 expression, and GABA-T activity but increased the expressions of GAD 65 kDa together with the density of Purkinje cells in the cerebellum. Therefore, laser acupuncture at HT7 is the potential strategy to improve the cerebellar disorders in VPA-rat model of autism. The mechanism may occur partly via the decrease of oxidative stress status, inflammation, and the improved GABAergic function. Copyright © 2017. Published by Elsevier B.V.

  7. The effect of uridine diphosphate glucuronosyltransferase (UGT)1A6 genetic polymorphism on valproic acid pharmacokinetics in Indian patients with epilepsy: a pharmacogenetic approach.

    Science.gov (United States)

    Munisamy, Murali; Tripathi, Manjari; Behari, Madhuri; Raghavan, S; Jain, D C; Ramanujam, Barghavi; Arumugam, Karthik; Rajakannan, Thiyagu; Mallayasamy, Surulivel Rajan; Subbiah, Vivekanandhan

    2013-10-01

    Sodium valproate is a widely prescribed broad-spectrum antiepileptic drug. It shows high inter-individual variability in pharmacokinetics and pharmacodynamics and has a narrow therapeutic range. We evaluated the effects of polymorphic uridine diphosphate glucuronosyltransferase (UGT)1A6 (541A>G, 552A>C) metabolizing enzyme on the pharmacokinetics of sodium valproate in the patients with epilepsy who showed toxicity to therapy. Genotype analysis of the patients was made with polymerase chain-restriction fragment length polymorphism (RFLP) with sequencing. Plasma drug concentrations were measured with reversed phase high-performance liquid chromatography (HPLC) and concentration-time data were analyzed by using a non-compartmental approach. The results of this study suggested a significant genotypic as well as allelic association with valproic acid toxicity for UGT1A6 (541A>G) or UGT1A6 (552A>C) polymorphic enzymes. The elimination half-life (t ½ = 40.2 h) of valproic acid was longer and the clearance rate (CL = 917 ml/h) was lower in the poor metabolizers group of UGT1A6 (552A>C) polymorphism who showed toxicity than in the intermediate metabolizers group (t ½ = 35.5 h, CL = 1,022 ml/h) or the extensive metabolizers group (t ½ = 25.4 h, CL = 1,404 ml/h). Our findings suggest that the UGT1A6 (552A>C) genetic polymorphism plays a significant role in the steady state concentration of valproic acid, and it thereby has an impact on the toxicity of the valproic acid used in the patients with epilepsy.

  8. Moclobemide monotherapy vs. combined therapy with valproic acid or carbamazepine in depressive patients: a pharmacokinetic interaction study.

    Science.gov (United States)

    Rakic Ignjatovic, Anita; Miljkovic, Branislava; Todorovic, Dejan; Timotijevic, Ivana; Pokrajac, Milena

    2009-02-01

    Moclobemide (MCB) undergoes extensive both presystemic and systemic metabolism that can be affected by concomitant drugs. Valproic acid (VPA) and carbamazepine (CBZ) have been found to interact with psychotropic medications of all classes and many other drugs; VPA acts as a broad-spectrum inhibitor, and CBZ as a potent inducer of a variety of drug-metabolizing enzymes. There have been no previous studies designed to investigate a potential pharmacokinetic (PK) interaction between MCB and VPA or CBZ; however, these agents are likely to be used concomitantly for the treatment of depressive disorders. VPA does not significantly affect PK or metabolism of MCB at steady state. CBZ significantly decreases MCB exposure. This effect is time-dependent, being more pronounced after 3-5 weeks of co-administration. To assess the impact of valproic acid (VPA) and carbamazepine (CBZ) on moclobemide (MCB) pharmacokinetics (PK) and metabolism at steady state in depressive patients. Twenty-one inpatients with recurrent endogenous depression received MCB (150 mg t.i.d.), either as monotherapy or in combination with VPA (500 mg b.i.d.) or CBZ (200 mg b.i.d.) in a nonrandomized manner. Steady-state plasma PK parameters of MCB and its two metabolites, Ro 12-8095 and Ro 12-5637, were derived. Clinical assessments of treatment efficacy were performed weekly using standard depression rating scales. CBZ, but not VPA, was associated with decreases in the MCB AUC by 35% [from 7.794 to 5.038 mg h l(-1); 95% confidence interval (CI) -4.84863, -0.66194; P = 0.01] and C(max) by 28% (from 1.911 to 1.383 mg l(-1); 95% CI -0.98197, -0.07518; P MCB through concentrations were also decreased, on average by 41% (from 0.950 to 0.559 mg l(-1); 95% CI -0.77479, -0.03301; P MCB, whereas CBZ time-dependently decreases MCB exposure, probably by inducing metabolism of MCB and its major plasma metabolite. The actual clinical relevance of the observed MCB-CBZ PK interaction needs to be further evaluated in a

  9. Drug-drug interaction between valproic acid and meropenem: a retrospective analysis of electronic medical records from neurosurgery inpatients.

    Science.gov (United States)

    Wen, Z-P; Fan, S-S; Du, C; Yin, T; Zhou, B-T; Peng, Z-F; Xie, Y-Y; Zhang, W; Chen, Y; Xiao, J; Chen, X-P

    2017-04-01

    A series of studies have indicated that valproic acid (VPA) plasma concentration decreased rapidly when used concomitantly with carbapenem antibiotics, including meropenem (MEPM), imipenem and panipenem, which may increase the risk of seizure breakthrough. However, the cause for the change in VPA pharmacokinetics is unclear. A retrospective analysis of VPA therapeutic drug monitoring (TDM) records was performed to investigate this VPA pharmacokinetics drug-drug interaction. Three hundred and eighty one VPA TDM records from the Department of Neurosurgery of Xiangya Hospital from January 2012 to December 2014 were collected. The VPA TDM records were categorized by VPA and MEPM daily dosages in grams/day (g/day). A comparison of VPA plasma levels among different groups was performed to investigate the change in VPA level in this drug interaction. Remarkable decreases in VPA plasma level were observed when the drug was used concomitantly with MEPM in both 1.2 g/d and 1.6 g/d VPA groups (67·3 ± 4·6 μg/mL, n = 21 vs. 15·3 ± 1·9 μg/mL, n = 15, P drug concentration cannot be reversed by increasing VPA dose. Moreover, MEPM daily dose did not influence the drop in VPA plasma level. At least 7 days are required for the recovery of VPA plasma concentration after discontinuation of MEPM. © 2017 John Wiley & Sons Ltd.

  10. Docking and QSAR Studies of Aryl-valproic Acid Derivatives to Identify Antiproliferative Agents Targeting the HDAC8.

    Science.gov (United States)

    Martínez-Pacheco, Heidy; Ramírez-Galicia, Guillermo; Vergara-Arias, Midalia; Gertsch, Jurg; Fragoso-Vazquez, Jonathan Manuel; Mendez-Luna, David; Abujamra, A L; Cristina, Cabrera-Perez Laura; Cecilia, Rosales-Hernandez Martha; Mendoza-Lujambio, I; Correa-Basurto, Jose

    2017-01-01

    Histone deacetylase 8 (HDAC8) is a plausible target for the development of novel anticancer drugs using a metal-chelating group and hydrophobic moieties as pharmacophores. It is known that valproic acid (administered as its salt, sodium valproate; VPANa+) is an HDAC8 inhibitor characterized by its hydrophobic chains. Nevertheless, VPA is hepatotoxic and VPA analogues might be explored for less hepatotoxic antiproliferative compounds. In this work, docking and QSAR studies of 500 aryl-VPA derivatives as possible HDAC8 inhibitors were performed in order to explore and select potential anti-proliferative compounds. Docking results identified π-π, hydrogen bonds as the most important noncovalent interactions between HDAC8 (PDB: 3F07) and the ligands tested, whereas Belm4 was the best QSAR descriptor and classified as a 2D-BCUT descriptor. Based on theoretical studies, compound DAVP042 was synthesized and evaluated in vitro for its antiproliferative activities on several cancer cell lines (A549-lung, MCF-7-breast, HCT116-colon and U937- lymphoid tissue) in comparison to VPA, as well as for its inhibitory activity on HDAC8 using in vitro models. DAVP042 demonstrated to have antiproliferative activity on all cancer cell lines employed, not only suggesting that this compound should be further studied, but also demonstrating that the methodology herein employed is appropriated to identify new therapeutic candidates. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Laser Acupuncture Improves Behavioral Disorders and Brain Oxidative Stress Status in the Valproic Acid Rat Model of Autism.

    Science.gov (United States)

    Khongrum, Jurairat; Wattanathorn, Jintanaporn

    2015-08-01

    The therapeutic strategy against autism, a severe neurological development disorder, is one of the challenges of this decade. Recent findings show that oxidative stress plays a crucial role on the pathophysiology of autism, and laser acupuncture at Shenmen (HT7) can improve oxidative status in many neurological disorders. Therefore, we aimed to assess the effect of laser acupuncture at HT7 on behavior disorders and oxidative stress status in the cortex, striatum, and hippocampus of the valproic acid rat model of autism. Laser acupuncture was performed once daily during postnatal day (PND) 14-PND 40. Behavioral tests including rotarod, open-field, learning and memory, and social behavior tests were performed during PND 14-PND 40. At the end of study, brain oxidative status including malondialdehyde levels and the activities of superoxide dismutase, catalase, and glutathione peroxidase were determined in the cortex, striatum, and hippocampus. Laser acupuncture at HT7 significantly improved autistic-like behaviors. Decreased malondialdehyde levels were observed in all areas mentioned above, however, increased glutathione peroxidase activity was observed only in the striatum and hippocampus. No changes in superoxide dismutase and catalase activities were observed in any investigated area of the brain. Therefore, our study suggests that laser acupuncture at HT7 partly mitigates autistic-like symptoms via improved oxidative status. Copyright © 2015. Published by Elsevier B.V.

  12. Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic acid animal model of autism

    Directory of Open Access Journals (Sweden)

    Tania Rinaldi

    2008-10-01

    Full Text Available The prefrontal cortex has been extensively implicated in autism to explain deficits in executive and other higher-order functions related to cognition, language, sociability and emotion. The possible changes at the level of the neuronal microcircuit are however not known. We studied microcircuit alterations in the prefrontal cortex in the valproic acid rat model of autism and found that the layer 5 pyramidal neurons are connected to significantly more neighbouring neurons than in controls. These excitatory connections are more plastic displaying enhanced long-term potentiation of the strength of synapses. The microcircuit alterations found in the prefrontal cortex are therefore similar to the alterations previously found in the somatosensory cortex. Hyper-connectivity and hyper-plasticity in the prefrontal cortex implies hyper-functionality of one of the highest order processing regions in the brain, and stands in contrast to the hypo-functionality that is normally proposed in this region to explain some of the autistic symptoms. We propose that a number of deficits in autism such as sociability, attention, multi-tasking and repetitive behaviours, should be re-interpreted in the light of a hyper-functional prefrontal cortex.

  13. Population Pharmacokinetics of Valproic Acid in Pediatric Patients With Epilepsy: Considerations for Dosing Spinal Muscular Atrophy Patients

    Science.gov (United States)

    Williams, Jason H.; Jayaraman, Bhuvaneswari; Swoboda, Kathryn J.; Barrett, Jeffrey S.

    2012-01-01

    Valproic acid (VPA) dosing strategies used in recent clinical trials in patients with spinal muscular atrophy (SMA) have utilized a paradigm of monitoring trough levels to estimate drug exposure with subsequent dose titration. The validity of this approach remains uncertain and could be improved by understanding sources of pharmacokinetic variability. A population pharmacokinetic analysis of VPA in pediatric patients with epilepsy was recently performed. The pooled data set included 52 subjects with epilepsy, ages 1 to 17 years, who received intravenous and/or various oral formulations. The data was best fit by a 2-compartment model; inclusion of age and weight reduced intersubject variability for clearance (41%), central volume (70%), and peripheral volume (42%) over the base model. The final model for clearance and volume parameters was clearance = 0.854 · (weight/70)0.75; central volume of distribution = 10.3 · (weight/70)1.0 · (age/8.5)−0.267; peripheral volume of distribution = 4.08 · (weight/70)1.0; and intercompartmental clearance = 5.34 · (weight/70)0.75. Application of the model to data from a clinical trial in SMA patients suggests altered kinetics, perhaps based on underlying physiologic differences such as alterations in lean body mass. Future studies in SMA should incorporate modeling and simulation techniques to support individualized dosing and further assess if additional patient-specific factors necessitate alternative dosing strategies. PMID:22167565

  14. Valproic acid affects the engraftment of TPO-expanded cord blood cells in NOD/SCID mice.

    Science.gov (United States)

    Vulcano, Francesca; Milazzo, Luisa; Ciccarelli, Carmela; Barca, Alessandra; Agostini, Francesca; Altieri, Ilaria; Macioce, Giampiero; Di Virgilio, Antonio; Screnci, Maria; De Felice, Lidia; Giampaolo, Adele; Hassan, Hamisa Jane

    2012-02-15

    Hematopoietic stem and progenitor cells (HSPC) can improve the long-term outcome of transplanted individuals and reduce the relapse rate. Valproic acid (VPA), an inhibitor of histone deacetylase, when combined with different cytokine cocktails, induces the expansion of CD34+ cell populations derived from cord blood (CB) and other sources. We evaluated the effect of VPA, in combination with thrombopoietin (TPO), on the viability and expansion of CB-HSPCs and on short- and long-term engraftability in the NOD/SCID mouse model. In vitro, VPA+TPO inhibited HSPC differentiation and preserved the CD34+ cell fraction; the self-renewal of the CD34+ TPO+VPA-treated cells was suggested by the increased replating efficiency. In vivo, short- and long-term engraftment was determined after 6 and 20 weeks. After 6 weeks, the median chimerism percentage was 13.0% in mice transplanted with TPO-treated cells and only 1.4% in those transplanted with TPO+VPA-treated cells. By contrast, after 20 weeks, the engraftment induced by the TPO+VPA-treated cells was three times more effective than that induced by TPO alone, and over ten times more effective compared to the short-term engraftment induced by the TPO+VPA-treated cells. The in vivo results are consistent with the higher secondary plating efficiency of the TPO+VPA-treated cells in vitro. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. In Vivo Screening Using Transgenic Zebrafish Embryos Reveals New Effects of HDAC Inhibitors Trichostatin A and Valproic Acid on Organogenesis.

    Directory of Open Access Journals (Sweden)

    Ling Li

    Full Text Available The effects of endocrine disrupting chemicals (EDCs on reproduction are well known, whereas their developmental effects are much less characterized. However, exposure to endocrine disruptors during organogenesis may lead to deleterious and permanent problems later in life. Zebrafish (Danio rerio transgenic lines expressing the green fluorescent protein (GFP in specific organs and tissues are powerful tools to uncover developmental defects elicited by EDCs. Here, we used seven transgenic lines to visualize in vivo whether a series of EDCs and other pharmaceutical compounds can alter organogenesis in zebrafish. We used transgenic lines expressing GFP in pancreas, liver, blood vessels, inner ear, nervous system, pharyngeal tooth and pectoral fins. This screen revealed that four of the tested chemicals have detectable effects on different organs, which shows that the range of effects elicited by EDCs is wider than anticipated. The endocrine disruptor tetrabromobisphenol-A (TBBPA, as well as the three drugs diclofenac, trichostatin A (TSA and valproic acid (VPA induced abnormalities in the embryonic vascular system of zebrafish. Moreover, TSA and VPA induced specific alterations during the development of pancreas, an observation that was confirmed by in situ hybridization with specific markers. Developmental delays were also induced by TSA and VPA in the liver and in pharyngeal teeth, resulting in smaller organ size. Our results show that EDCs can induce a large range of developmental alterations during embryogenesis of zebrafish and establish GFP transgenic lines as powerful tools to screen for EDCs effects in vivo.

  16. Spectroscopic analysis of the interaction of valproic acid with histone H1 in solution and in chromatin structure.

    Science.gov (United States)

    Sargolzaei, Javad; Rabbani-Chadegani, Azra; Mollaei, Hossein; Deezagi, Abdolkhalegh

    2017-06-01

    Histone H1 is a basic chromosomal protein which links adjacent nucleosomes in chromatin structure. Valproic acid (VPA), a histone deacetylase inhibitor, is widely used as an antiepileptic drug for the treatment of various cancers. In this study the interaction between VPA and histone H1, chromatin and DNA in solution was investigated employing spectroscopic techniques. The results showed that VPA binds cooperatively to histone H1 and chromatin but exhibited very weak interaction with DNA. The association constants demonstrated higher affinity of VPA to H1 compared to chromatin. Fluorescence emission intensity was reduced by quenching value (Ksv) of 2.3 and 0.83 for H1 and chromatin respectively. VPA also altered ellipticity of chromatin and H1 at 220nm indicating increase in α-helix content of H1/chromatin proteins suggesting that the protein moiety of chromatin is the site of VPA action. Moreover, thermal denaturation revealed hypochromicity in chromatin Tm profiles with small shift in Tm values without any significant change in DNA pattern. It is concluded that VPA, apart from histone deacetylase inhibition activity, binds strongly to histone H1 in chromatin structure, demonstrating that VPA may also exert its anticancer activity by influencing chromatin proteins which opens new insight into the mechanism of VPA action. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Maternal DHA supplementation protects rat offspring against impairment of learning and memory following prenatal exposure to valproic acid.

    Science.gov (United States)

    Gao, Jingquan; Wu, Hongmei; Cao, Yonggang; Liang, Shuang; Sun, Caihong; Wang, Peng; Wang, Ji; Sun, Hongli; Wu, Lijie

    2016-09-01

    Docosahexaenoic acid (22:6n-3; DHA) is known to play a critical role in postnatal brain development. However, there have been no studies investigating the preventive effect of DHA on prenatal valproic acid (VPA)-induced behavioral and molecular alterations in offspring. The present study was to evaluate the neuroprotective effects in offspring using maternal feeding of DHA to rats exposed to VPA in pregnancy. In the present study, rats were exposed to VPA on day 12.5 of pregnancy; DHA was administered at the dosages of 100, 300 and 500 mg/kg/day for 3 weeks from day 1 to 21 of pregnancy. The results showed that maternal feeding of DHA to the prenatal exposed to VPA (1) prevented VPA-induced learning and memory impairment but did not change social-related behavior, (2) increased total DHA content in offspring plasma and hippocampus, (3) rescued VPA-induced neuronal loss and apoptosis of pyramidal cells in hippocampal CA1, (4) influenced the content of malondialdehyde and glutathione and the activities of superoxide dismutase and glutathione in the hippocampus, (5) altered levels of apoptosis-related proteins (Bcl-2, Bax and caspase-3) and inhibited the activity of caspase-3 in offspring hippocampus and (6) enhanced relative levels of p-CaMKII and p-CREB proteins in the hippocampus. These findings suggest that maternal feeding with DHA may prevent prenatal VPA-induced impairment of learning and memory, normalize several different molecules associated with oxidative stress and apoptosis in the hippocampus of offspring, and exert preventive effects on prenatal VPA-induced brain dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. First case report of suspected onset of convulsive seizures due to co-administration of valproic acid and tebipenem.

    Science.gov (United States)

    Shihyakugari, Atsuko; Miki, Akiko; Nakamoto, Natsue; Satoh, Hiroki; Sawada, Yasufumi

    2015-01-01

    A patient presented with convulsive seizures when sodium valproate (VPA) and tebipenem pivoxil (Orapenem) were co-administered accidentally. The seizures were suspected to be caused by a reduced concentration of VPA in the blood. A 6-year-old boy (weight: 16 kg, at the start of treatment) began sodium valproate (valproate syrup 5%) treatment for epilepsy in February 2012. At a dose of 350 mg/day, he experienced no convulsive seizures and maintained stable symptoms for the past 9 months. In December, he was prescribed 160 mg/day tebipenem pivoxil by an otolaryngologist for inflammation of the tympanic membrane. He experienced convulsive seizures the day after beginning co-administration. The concentration of VPA in his blood at this time was 30.0 μg/mL, which was lower than the optimal blood concentration. Marked reduction of VPA concentration in the blood due to co-administration of VPA and injectable carbapenem antibiotics has been well-documented; however, this is the first report of such an interaction with tebipenem, which is an orally-administered carbapenem antibiotic. Although the mechanism of drug interaction between VPA and carbapenem antibiotics is not fully understood, it is thought that VPA blood concentrations decrease due to production of valproic acid glucuronic acid conjugates (VPA-Gluc) being promoted directly or indirectly by carbapenem antibiotics. When we assessed the patient according to the DIPS system, we calculated a score of +4 (possibility of interaction). The results suggest that co-administration of oral carbapenem antibiotics and VPA should be avoided.

  19. Cytochrome P-450-catalyzed desaturation of valproic acid in vitro. Species differences, induction effects, and mechanistic studies

    Energy Technology Data Exchange (ETDEWEB)

    Rettie, A.E.; Boberg, M.; Rettenmeier, A.W.; Baillie, T.A.

    1988-09-25

    The cytochrome P-450-mediated desaturation of valproic acid (VPA) to its hepatotoxic metabolite, 2-n-propyl-4-pentenoic acid (4-ene-VPA), was examined in liver microsomes from rats, mice, rabbits and humans. The highest substrate turnover was found with microsomes from rabbits (44.2 +/- 2.7 pmol of product/nmol P-450/15 min), while lower activities were observed in preparations from human, mouse, and rat liver, in that order. Pretreatment of animals with phenobarbital led to enhanced rates of formation of 4-ene-VPA in vitro and yielded induction ratios for desaturation ranging from 2.5 to 8.4, depending upon the species. Comparative studies in the rat showed that phenobarbital is a more potent inducer of olefin formation than either phenytoin or carbamazepine. The mechanism of the desaturation reaction was studied by inter- and intramolecular deuterium isotope effect experiments, which demonstrated that removal of a hydrogen atom from the subterminal C-4 position of VPA is rate limiting in the formation of both 4-ene- and 4-hydroxy-VPA. Hydroxylation at the neighboring C-5 position, on the other hand, was highly sensitive to deuterium substitution at that site, but not to deuteration at C-4. Based on these findings, it is proposed that 4-ene- and 4-hydroxy-VPA are products of a common P-450-dependent metabolic pathway, in which a carbon-centered free radical at C-4 serves as the key intermediate. 5-Hydroxy-VPA, in contrast, derives from an independent hydroxylation reaction.

  20. A new fluorimetric method for determination of valproic acid using TGA-capped CdTe quantum dots as proton sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sorouraddin, Mohammad-Hossein; Imani-Nabiyyi, Amin; Najibi-Gehraz, Seyed Ali [Analytical Chemistry Department, Faculty of Chemistry, University of Tabriz, Tabriz 51664-14766 (Iran, Islamic Republic of); Rashidi, Mohammad-Reza, E-mail: rashidi@tbzmed.ac.ir [Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51664-14766 (Iran, Islamic Republic of)

    2014-01-15

    Valproic acid (VA) is an acidic anticonvulsant and mood stabilizing drug with very weak fluorescence and absorption properties. A simple, inexpensive and sensitive method was established for determination of VA using thiogycolic acid (TGA)-capped CdTe quantum dots (QDs) based on pH-dependent fluorescence of the prepared QDs. The TGA-capped CdTe QDs of various sizes were successfully synthesized in aqueous medium and characterized by fluorescence spectroscopy, UV–vis absorption spectra, infrared spectroscopy and transmission electron microscopy (TEM). Under the optimal conditions, plotting ln(F{sub 0}/F) versus concentration of VA showed a linear relationship in the range of 0.3–7.5 mg/L with correlation coefficient of 0.998. The limit of detection (LOD) was 0.24 µg mL{sup −1}. The proposed method was successfully applied for determination of VA in commercial tablets, human serum, and urine samples satisfactorily. -- Highlights: • Development of a new simple and sensitive method for determination of valproic acid. • Based on pH-dependent fluorescence of thiogycolic acid-capped CdTe of the prepared quantum dots. • The first report of direct spectroscopic determination of VA with high sensitivity. • Capable of measuring VA in pharmaceutical and biological samples.

  1. Valproate (valproic acid or sodium valproate or a combination of the two) for the prophylaxis of episodic migraine in adults.

    Science.gov (United States)

    Linde, Mattias; Mulleners, Wim M; Chronicle, Edward P; McCrory, Douglas C

    2013-06-24

    Some antiepileptic drugs but not others are useful in clinical practice for the prophylaxis of migraine. This might be explained by the variety of actions of these drugs in the central nervous system. The present review is part of an update of a Cochrane review first published in 2004, and previously updated (conclusions not changed) in 2007. To describe and assess the evidence from controlled trials on the efficacy and tolerability of valproate (valproic acid or sodium valproate or a combination of the two) for preventing migraine attacks in adult patients with episodic migraine. We searched the Cochrane Central Register of Controlled Trials (CENTRAL; The Cochrane Library 2012, Issue 12), PubMed/MEDLINE (1966 to 15 January 2013), MEDLINE In-Process (current week, 15 January 2013), and EMBASE (1974 to 15 January 2013) and handsearched Headache and Cephalalgia through January 2013. Studies were required to be prospective, controlled trials of valproate taken regularly to prevent the occurrence of migraine attacks, to improve migraine-related quality of life, or both. Two review authors independently selected studies and extracted data. For headache frequency data, we calculated mean differences (MDs) between valproate and comparator (placebo, active control, or valproate in a different dose) for individual studies and pooled these across studies. For dichotomous data on responders (patients with ≥ 50% reduction in headache frequency), we calculated odds ratios (ORs) and, in select cases, risk ratios (RRs); we also calculated numbers needed to treat (NNTs). We calculated MDs for Migraine Disability Assessment (MIDAS) scores. We also summarised data on adverse events from placebo-controlled trials and calculated risk differences (RDs) and numbers needed to harm (NNHs). Ten papers describing 10 unique trials met the inclusion criteria. Analysis of data from two trials (63 participants) showed that sodium valproate reduced headache frequency by approximately four

  2. Real-Time Quantitative Analysis of Valproic Acid in Exhaled Breath by Low Temperature Plasma Ionization Mass Spectrometry

    Science.gov (United States)

    Gong, Xiaoxia; Shi, Songyue; Gamez, Gerardo

    2017-04-01

    Real-time analysis of exhaled human breath is a rapidly growing field in analytical science and has great potential for rapid and noninvasive clinical diagnosis and drug monitoring. In the present study, an LTP-MS method was developed for real-time, in-vivo and quantitative analysis of γ-valprolactone, a metabolite of valproic acid (VPA), in exhaled breath without any sample pretreatment. In particular, the effect of working conditions and geometry of the LTP source on the ions of interest, protonated molecular ion at m/z 143 and ammonium adduct ion at m/z 160, were systematically characterized. Tandem mass spectrometry (MS/MS) with collision-induced dissociation (CID) was carried out in order to identify γ-valprolactone molecular ions ( m/z 143), and the key fragment ion ( m/z 97) was used for quantitation. In addition, the fragmentation of ammonium adduct ions to protonated molecular ions was performed in-source to improve the signal-to-noise ratio. At optimum conditions, signal reproducibility with an RSD of 8% was achieved. The concentration of γ-valprolactone in exhaled breath was determined for the first time to be 4.83 (±0.32) ng/L by using standard addition method. Also, a calibration curve was obtained with a linear range from 0.7 to 22.5 ng/L, and the limit of detection was 0.18 ng/L for γ-valprolactone in standard gas samples. Our results show that LTP-MS is a powerful analytical platform with high sensitivity for quantitative analysis of volatile organic compounds in human breath, and can have potential applications in pharmacokinetics or for patient monitoring and treatment.

  3. Effects of an H3R antagonist on the animal model of autism induced by prenatal exposure to valproic acid.

    Directory of Open Access Journals (Sweden)

    Diego Baronio

    Full Text Available Autism spectrum disorders (ASD are a group of neurodevelopmental disorders primarily characterized by impaired social interaction and communication, and by restricted repetitive behaviors and interests. Ligands of histamine receptor 3 (H3R are considered potential therapeutic agents for the treatment of different brain disorders and cognitive impairments. Considering this, the aim of the present study is to evaluate the actions of ciproxifan (CPX, an H3R antagonist, on the animal model of autism induced by prenatal exposure to valproic acid (VPA. Swiss mice were prenatally exposed to VPA on embryonic day 11 and assessed for social behavior, nociceptive threshold and repetitive behavior at 50 days of life. The treatment with CPX (3 mg/kg or saline was administered 30 minutes before each behavioral test. The VPA group presented lower sociability index compared to VPA animals that were treated with CPX. Compared to the Control group, VPA animals presented a significantly higher nociceptive threshold, and treatment with CPX was not able to modify this parameter. In the marble burying test, the number of marbles buried by VPA animals was consistent with markedly repetitive behavior. VPA animals that received CPX buried a reduced amount of marbles. In summary, we report that an acute dose of CPX is able to attenuate sociability deficits and stereotypies present in the VPA model of autism. Our findings have the potential to help the investigations of both the molecular underpinnings of ASD and of possible treatments to ameliorate the ASD symptomatology, although more research is still necessary to corroborate and expand this initial data.

  4. Effects of an H3R antagonist on the animal model of autism induced by prenatal exposure to valproic acid.

    Science.gov (United States)

    Baronio, Diego; Castro, Kamila; Gonchoroski, Taylor; de Melo, Gabriela Mueller; Nunes, Gustavo Della Flora; Bambini-Junior, Victorio; Gottfried, Carmem; Riesgo, Rudimar

    2015-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders primarily characterized by impaired social interaction and communication, and by restricted repetitive behaviors and interests. Ligands of histamine receptor 3 (H3R) are considered potential therapeutic agents for the treatment of different brain disorders and cognitive impairments. Considering this, the aim of the present study is to evaluate the actions of ciproxifan (CPX), an H3R antagonist, on the animal model of autism induced by prenatal exposure to valproic acid (VPA). Swiss mice were prenatally exposed to VPA on embryonic day 11 and assessed for social behavior, nociceptive threshold and repetitive behavior at 50 days of life. The treatment with CPX (3 mg/kg) or saline was administered 30 minutes before each behavioral test. The VPA group presented lower sociability index compared to VPA animals that were treated with CPX. Compared to the Control group, VPA animals presented a significantly higher nociceptive threshold, and treatment with CPX was not able to modify this parameter. In the marble burying test, the number of marbles buried by VPA animals was consistent with markedly repetitive behavior. VPA animals that received CPX buried a reduced amount of marbles. In summary, we report that an acute dose of CPX is able to attenuate sociability deficits and stereotypies present in the VPA model of autism. Our findings have the potential to help the investigations of both the molecular underpinnings of ASD and of possible treatments to ameliorate the ASD symptomatology, although more research is still necessary to corroborate and expand this initial data.

  5. [The prevalence of obesity and metabolic syndrome in paediatric patients with epilepsy treated in monotherapy with valproic acid].

    Science.gov (United States)

    Carmona-Vazquez, C R; Ruiz-Garcia, M; Pena-Landin, D M; Diaz-Garcia, L; Greenawalt, S R

    2015-09-01

    Valproic acid (VPA) is a useful antiepileptic drug for controlling different types of epilepsy. It has several side effects and is associated to increased body weight, as well as metabolic and endocrine disorders, including metabolic syndrome. To determine the prevalence of obesity and metabolic syndrome among paediatric patients with epilepsy treated in monotherapy with VPA. The study was cross-sectional, observational and analytical. A sample of patients treated with VPA between 2010-2014 were studied and the body mass index (BMI), abdominal perimeter, arterial blood pressure, glucose, triglycerides and high density lipoproteins (HDL) were studied in search of obesity and metabolic syndrome. Obesity was defined as a BMI above the 95th percentile, and metabolic syndrome was considered if at least three of the following criteria were fulfilled: abdominal perimeter above the 90th percentile, systolic arterial pressure above the 90th percentile, triglycerides above 110 mg/dL and HDL below 40 mg/dL. A total of 47 patients with a mean age of 10.1 ± 4 years were studied; 51.06% were males. Eight (17%) of them developed obesity and, of those, two (25%) had metabolic syndrome. Three patients went on to become overweight (6%). Statistically significant differences were observed in the mean age in comparison to the BMI groups, where the obese patients were adolescents (ANOVA, p = 0.0001) and those who took more VPA per day were the obese (ANOVA, p = 0.024). Patients treated with VPA who become obese may go on to develop metabolic syndrome. They require careful monitoring and, if they are seen to put on weight, withdrawal of the drug should be considered.

  6. The effect of ketogenic diet in an animal model of autism induced by prenatal exposure to valproic acid.

    Science.gov (United States)

    Castro, Kamila; Baronio, Diego; Perry, Ingrid Schweigert; Riesgo, Rudimar Dos Santos; Gottfried, Carmem

    2017-07-01

    Autism spectrum disorder (ASD) is characterized by impairments in social interaction and communication, and by restricted repetitive behaviors and interests. Its etiology is still unknown, but different environmental factors during pregnancy, such as exposure to valproic acid (VPA), are associated with high incidence of ASD in children. In this context, prenatal exposure to VPA in rodents has been used as a reliable model of ASD. Ketogenic diet (KD) is an alternative therapeutic option for refractory epilepsy; however, the effects of this approach in ASD-like behavior need to be evaluated. We conducted a behavioral assessment of the effects of KD in the VPA model of autism. Pregnant animals received a single-intraperitoneal injection of 600 mg/kg VPA, and their offspring were separated into four groups: (1) control group with standard diet (C-SD), (2) control group with ketogenic diet (C-KD), (3) VPA group with standard diet (VPA-SD), and (4) VPA group with ketogenic diet (VPA-KD). When compared with the control group, VPA animals presented increased social impairment, repetitive behavior and higher nociceptive threshold. Interestingly, the VPA group fed with KD presented improvements in social behavior. These mice displayed higher scores in sociability index and social novelty index when compared with the SD-fed VPA mice. VPA mice chronically exposed to a KD presented behavioral improvements; however, the mechanism by which KD improves ASD-like features needs to be further investigated. In conclusion, the present study reinforces the potential use of KD as a treatment for the core deficits of ASD.

  7. Valproate protein binding following rapid intravenous administration of high doses of valproic acid in patients with epilepsy.

    Science.gov (United States)

    Dutta, S; Faught, E; Limdi, N A

    2007-08-01

    To characterize protein binding in patients with epilepsy who achieve transient high (>150 mg/L) total plasma concentrations following rapid valproate infusion at very high doses. Patients with epilepsy (n = 40) were administered 20 or 30 mg/kg loading doses (6 or 10 mg/kg/min) of undiluted valproate sodium injection. Total and unbound valproic acid (VPA) concentrations were used to assess VPA binding to plasma albumin. One- and two-binding site models were explored in a nonlinear mixed effects population analysis framework. The relative importance of weight, age, sex, race and enzyme-inducing comedications on the binding site association constant (K) was examined using the likelihood ratio test. Intersubject and intrasubject variabilities were characterized using exponential or proportional error models. Optimal characterization of the data was achieved using the one-binding site model. Population binding parameter estimates (standard error) for number of binding sites (N) and K were 1.98 (0.0865) and 15.5 [2.28 (1/mM)], respectively. No significant covariates were identified for VPA protein binding. The intersubject and intrasubject coefficients of variation were 32% and 14%, respectively. A one-binding site model without any significant covariates for binding constants optimally described VPA protein binding. As the estimated dissociation constant (1/K, 64.5 microm or 9.3 mg/L) was within the therapeutic range (5-15 mg/L) for unbound VPA concentrations, protein binding was nonlinear. Although the range of unbound fraction and VPA concentrations were much higher than previous studies, the dissociation constant was consistent with historical data in normal healthy adults and epilepsy patients receiving lower doses.

  8. Synergistic antitumor interaction between valproic acid, capecitabine and radiotherapy in colorectal cancer: critical role of p53.

    Science.gov (United States)

    Terranova-Barberio, Manuela; Pecori, Biagio; Roca, Maria Serena; Imbimbo, Serena; Bruzzese, Francesca; Leone, Alessandra; Muto, Paolo; Delrio, Paolo; Avallone, Antonio; Budillon, Alfredo; Di Gennaro, Elena

    2017-12-06

    Recurrence with distant metastases has become the predominant pattern of failure in locally advanced rectal cancer (LARC), thus the integration of new antineoplastic agents into preoperative fluoropyrimidine-based chemo-radiotherapy represents a clinical challenge to implement an intensified therapeutic strategy. The present study examined the combination of the histone deacetylase inhibitor (HDACi) valproic acid (VPA) with fluoropyrimidine-based chemo-radiotherapy on colorectal cancer (CRC) cells. HCT-116 (p53-wild type), HCT-116 p53-/- (p53-null), SW620 and HT29 (p53-mutant) CRC cell lines were used to assess the antitumor interaction between VPA and capecitabine metabolite 5'-deoxy-5-fluorouridine (5'-DFUR) in combination with radiotherapy and to evaluate the role of p53 in the combination treatment. Effects on proliferation, clonogenicity and apoptosis were evaluated, along with γH2AX foci formation as an indicator for DNA damage. Combined treatment with equipotent doses of VPA and 5'-DFUR resulted in synergistic effects in CRC lines expressing p53 (wild-type or mutant). In HCT-116 p53-/- cells we observed antagonist effects. Radiotherapy further potentiated the antiproliferative, pro-apoptotic and DNA damage effects induced by 5'-DFUR/VPA combination in p53 expressing cells. These results highlighted the role of VPA as valuable candidate to be added to preoperative chemo-radiotherapy in LARC. On these bases we launched the ongoing phase I/II study of VPA and short-course radiotherapy plus capecitabine as preoperative treatment in low-moderate risk rectal cancer (V-shoRT-R3).

  9. Examination by EPR spectroscopy of free radicals in melanins isolated from A-375 cells exposed on valproic acid and cisplatin.

    Science.gov (United States)

    Chodurek, Ewa; Zdybel, Magdalena; Pilawa, Barbara; Dzierzewicz, Zofia

    2012-01-01

    Drug binding by melanin biopolymers influence the effectiveness of the chemotherapy, radiotherapy and photodynamic therapy. Free radicals of melanins take part in formation of their complex with drugs. The aim of this work was to determine the effect of the two compounds: valproic acid (VPA) and cisplatin (CPT) on free radicals properties of melanin isolated from A-375 melanoma cells. Free radicals were examined by an X-band (9.3 GHz) electron paramagnetic resonance (EPR) spectroscopy. EPR spectra were measured for the model synthetic eumelanin - DOPA-melanin, the melanin isolated from the control A-375 cells and these cells treated by VPA, CPT and both VPA and CPT. For all the examined samples broad EPR lines (deltaBpp: 0.48-0.68 mT) with g-factors of 2.0045-2.0060 characteristic for o-semiquinone free radicals were observed. Free radicals concentrations (N) in the tested samples, g-factors, amplitudes (A), integral intensities (I) and linewidths (deltaBpp) of the EPR spectra, were analyzed. The EPR lines were homogeneously broadened. Continuous microwave saturation of the EPR spectra indicated that slow spin-lattice relaxation processes existed in all the tested melanin samples. The relatively slowest spin-lattice relaxation processes characterized melanin isolated from A-375 cells treated with both VPA and CPT. The changes of the EPR spectra with increasing microwave power in the range of 2.2-70 mW were evaluated. Free radicals concentrations in the melanin from A-375 cells were higher than in the synthetic DOPA-melanin. The strong increase of free radicals concentration in the melanin from A-375 cells was observed after their treating by VPA. CPT also caused the increase of free radicals concentrations in the examined natural melanin. The free radicals concentration in melanin isolated from A-375 cells treated with both VPA and CPT was slightly higher than those in melanin from the control cells.

  10. Model steatogenic compounds (amiodarone, valproic acid, and tetracycline alter lipid metabolism by different mechanisms in mouse liver slices.

    Directory of Open Access Journals (Sweden)

    Ewa Szalowska

    Full Text Available Although drug induced steatosis represents a mild type of hepatotoxicity it can progress into more severe non-alcoholic steatohepatitis. Current models used for safety assessment in drug development and chemical risk assessment do not accurately predict steatosis in humans. Therefore, new models need to be developed to screen compounds for steatogenic properties. We have studied the usefulness of mouse precision-cut liver slices (PCLS as an alternative to animal testing to gain more insight into the mechanisms involved in the steatogenesis. To this end, PCLS were incubated 24 h with the model steatogenic compounds: amiodarone (AMI, valproic acid (VA, and tetracycline (TET. Transcriptome analysis using DNA microarrays was used to identify genes and processes affected by these compounds. AMI and VA upregulated lipid metabolism, whereas processes associated with extracellular matrix remodelling and inflammation were downregulated. TET downregulated mitochondrial functions, lipid metabolism, and fibrosis. Furthermore, on the basis of the transcriptomics data it was hypothesized that all three compounds affect peroxisome proliferator activated-receptor (PPAR signaling. Application of PPAR reporter assays classified AMI and VA as PPARγ and triple PPARα/(β/δ/γ agonist, respectively, whereas TET had no effect on any of the PPARs. Some of the differentially expressed genes were considered as potential candidate biomarkers to identify PPAR agonists (i.e. AMI and VA or compounds impairing mitochondrial functions (i.e. TET. Finally, comparison of our findings with publicly available transcriptomics data showed that a number of processes altered in the mouse PCLS was also affected in mouse livers and human primary hepatocytes exposed to known PPAR agonists. Thus mouse PCLS are a valuable model to identify early mechanisms of action of compounds altering lipid metabolism.

  11. Valproic acid (VPA) reduces sensorimotor gating deficits and HDAC2 overexpression in the MAM animal model of schizophrenia.

    Science.gov (United States)

    Bator, Ewelina; Latusz, Joachim; Radaszkiewicz, Aleksandra; Wędzony, Krzysztof; Maćkowiak, Marzena

    2015-12-01

    Evidence indicates that the disruption of epigenetic processes might play an important role in the development of schizophrenia symptoms. The present study investigated the role of histone acetylation in the development of sensorimotor gating deficits in a neurodevelopmental model of schizophrenia based on prenatal administration of methylazoxymethanol (MAM) at embryonic day 17. Valproic acid (VPA), an inhibitor of class I histone deacetylases, was administered (250 mg/kg, twice a day for 7 consecutive days) in early adolescence (23rd-29th day) or early adulthood (63rd-69th day) to rats. The effect of VPA treatment on the sensorimotor gating deficits induced by prenatal MAM administration was analyzed in adult rats at postnatal day 70 (P70). In addition, the effects of VPA administration (at the same doses) on MAM-induced changes in the levels of histone H3 acetylation at lysine 9 (H3K9ac) and histone deacetylase 2 (HDAC2) in the medial prefrontal cortex (mPFC) were determined at P70 using Western blot. VPA administration in either adolescence or early adulthood prevented the sensorimotor gating deficits induced by MAM. However, VPA administration in early adolescence or early adulthood did not alter H3K9ac levels induced by MAM. In contrast, VPA administration in either adolescence or adulthood prevented the increase in HDAC2 level evoked by MAM. Prenatal MAM administration impaired histone acetylation in the mPFC, which might be involved in the development of some of the neurobehavioral deficits (i.e., sensorimotor gating deficits) associated with schizophrenia. Blockade of HDAC2 might prevent the disruption of sensorimotor gating in adulthood. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  12. S-adenosyl methionine prevents ASD like behaviors triggered by early postnatal valproic acid exposure in very young mice.

    Science.gov (United States)

    Ornoy, Asher; Weinstein-Fudim, Liza; Tfilin, Matanel; Ergaz, Zivanit; Yanai, Joseph; Szyf, Moshe; Turgeman, Gadi

    2018-01-14

    A common animal model of ASD is the one induced by valproic acid (VPA), inducing epigenetic changes and oxidative stress. We studied the possible preventive effect of the methyl donor for epigenetic enzymatic reactions, S-adenosine methionine (SAM), on ASD like behavioral changes and on redox potential in the brain and liver in this model. ICR albino mice were injected on postnatal day 4 with one dose of 300 mg/kg of VPA, with normal saline (controls) or with VPA and SAM that was given orally for 3 days at the dose of 30 mg/kg body weight. From day 50, we carried out neurobehavioral tests and assessment of the antioxidant status of the prefrontal cerebral cortex, liver assessing SOD and CAT activity, lipid peroxidation and the expression of antioxidant genes. Mice injected with VPA exhibited neurobehavioral deficits typical of ASD that were more prominent in males. Changes in the activity of SOD and CAT increased lipid peroxidation and changes in the expression of antioxidant genes were observed in the prefrontal cortex of VPA treated mice, more prominent in females, while ASD like behavior was more prominent in males. There were no changes in the redox potential of the liver. The co-administration of VPA and SAM alleviated most ASD like neurobehavioral symptoms and normalized the redox potential in the prefrontal cortex. Early postnatal VPA administration induces ASD like behavior that is more severe in males, while the redox status changes are more severe in females; SAM corrects both. VPA-induced ASD seems to result from epigenetic changes, while the redox status changes may be secondary. Copyright © 2017. Published by Elsevier Inc.

  13. Carbamazepine, lamotrigine, levetiracetam and valproic acid in dried blood spots with liquid chromatography tandem mass spectrometry; method development and validation.

    Science.gov (United States)

    Linder, Camilla; Hansson, Anna; Sadek, Sara; Gustafsson, Lars L; Pohanka, Anton

    2017-11-04

    Monitoring of antiepileptic drugs in children with epilepsy require multiple visits at a clinic for blood collection. Dried blood spot sampling is an alternative way of collection, performed at home by self-collection and can save time and costs for patients and family members. The aim was to develop and validate an LC-MS/MS dried blood spot method for carbamazepine, lamotrigine, levetiracetam and valproic acid with the requirements of using standard equipment and material in a routine laboratory setting. Whatman-903 filter paper was utilized, and discs were punched into a 96 well plate with an automated puncher and barcode reading. Extraction with methanol/water solution including internal standards on an orbital shaker was followed by a vacuum centrifuge step and reconstitution in mobile phase. Bioanalytical validation was performed according to guidelines from European Medicines Agency and additional dried blood spot specific validation. Calibration curves of the four included drugs had R2 values ≥0.994. Therapeutic relevant concentrations were well within measuring ranges. Within and -between run precision had %CV:s of 2.9-10.5%. Accuracy (%bias) was between -16.5% (lower limit of quantification) to +7.4%. Blood spots in a volume range of 15-50μL with hematocrit in expected ranges for this patient group were within precision and accuracy limits. To test the method, concentrations from dried blood spot venous and capillary patient samples (n=50) were compared with plasma concentrations. Good correlations for all four drugs with R2 of >0.92 was shown. In summary, a fast method for dried blood spots based on a 96 well format was developed for four commonly prescribed antiepileptic drugs. This validated method with traceability in sample preparation by bar code reading makes it suitable for the clinical laboratory. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effect of histone deacetylase inhibitors trichostatin A and valproic acid on hair cell regeneration in zebrafish lateral line neuromasts

    Directory of Open Access Journals (Sweden)

    Yingzi eHe

    2014-11-01

    Full Text Available In humans, auditory hair cells are not replaced when injured. Thus, cochlear hair cell loss causes progressive and permanent hearing loss. Conversely, nonmammalian vertebrates are capable of regenerating lost sensory hair cells. The zebrafish lateral line has numerous qualities that make it well suited for studying hair cell development and regeneration. Histone deacetylase (HDAC activity has been shown to have an important role in regenerative processes in vertebrates, but its function in hair cell regeneration in vivo is not fully understood. Here, we have examined the role of HDAC activity in hair cell regeneration in the zebrafish lateral line. We eliminated lateral line hair cells of 5-day post-fertilization larvae using neomycin and then treated the larvae with HDAC inhibitors. To assess hair cell regeneration, we used 5-bromo-2-deoxyuridine (BrdU incorporation in zebrafish larvae to label mitotic cells after hair cell loss. We found that pharmacological inhibition of HDACs using trichostatin A (TSA or valproic acid (VPA increased histone acetylation in the regenerated neuromasts following neomycin-induced damage. We also showed that treatment with TSA or VPA decreased the number of supporting cells and regenerated hair cells in response to hair cell damage. Additionally, BrdU immunostaining and western blot analysis showed that TSA or VPA treatment caused a significant decrease in the percentage of S-phase cells and induced p21Cip1 and p27Kip1 expression, both of which are likely to explain the decrease in the amount of newly regenerated hair cells in treated embryos. Finally, we showed that HDAC inhibitors induced no observable cell death in neuromasts as measured by cleaved caspase-3 immunohistochemistry and western blot analysis. Taken together, our results demonstrate that HDAC activity has an important role in the regeneration of hair cells in the lateral line.

  15. Valproic acid reduces insulin-resistance, fat deposition and FOXO1-mediated gluconeogenesis in type-2 diabetic rat.

    Science.gov (United States)

    Khan, Sabbir; Kumar, Sandeep; Jena, Gopabandhu

    2016-06-01

    Recent evidences highlighted the role of histone deacetylases (HDACs) in insulin-resistance, gluconeogenesis and islet function. HDACs can modulate the expression of various genes, which directly or indirectly affect glucose metabolism. This study was aimed to evaluate the role of valproic acid (VPA) on fat deposition, insulin-resistance and gluconeogenesis in type-2 diabetic rat. Diabetes was developed in Sprague-Dawley rats by the combination of high-fat diet and low dose streptozotocin. VPA at the doses of 150 and 300 mg/kg/day and metformin (positive control) 150 mg/kg twice daily for 10 weeks were administered by oral gavage. Insulin-resistance, dyslipidemia and glycemia were evaluated by biochemical estimations, while fat accumulation and structural alteration were assessed by histopathology. Protein expression and insulin signaling were evaluated by western blot and immunohistochemistry. VPA treatment significantly reduced the plasma glucose, HbA1c, insulin-resistance, fat deposition in brown adipose tissue, white adipose tissue and liver, which are comparable to metformin treatment. Further, VPA inhibited the gluconeogenesis and glucagon expression as well as restored the histopathological alterations in pancreas and liver. Our findings provide new insights on the anti-diabetic role of VPA in type-2 diabetes mellitus by the modulation of insulin signaling and forkhead box protein O1 (FOXO1)-mediated gluconeogenesis. Since VPA is a well established clinical drug, the detailed molecular mechanisms of the present findings can be further investigated for possible clinical use. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  16. Embryological exposure to valproic acid induces social interaction deficits in zebrafish (Danio rerio): A developmental behavior analysis.

    Science.gov (United States)

    Zimmermann, Fernanda Francine; Gaspary, Karina Vidarte; Leite, Carlos Eduardo; De Paula Cognato, Giana; Bonan, Carla Denise

    2015-01-01

    Changes in social behavior are associated with brain disorders, including mood disorders, stress, schizophrenia, Alzheimer's disease, and autism spectrum disorders (ASD). Autism is a complex neurodevelopmental disorder characterized by deficits in social interaction, impaired communication, anxiety, hyperactivity, and the presence of restricted interests. Zebrafish is one of the most social vertebrates used as a model in biomedical research, contributing to an understanding of the mechanisms that underlie social behavior. Valproic acid (VPA) is used as an anti-epileptic drug and mood stabilizer; however, prenatal VPA exposure in humans has been associated with an increased incidence of autism and it can also affect fetal brain development. Therefore, we conducted a behavioral screening at different periods of zebrafish development at 6, 30, 70, and 120dpf (days postfertilization) after VPA exposure in the early development stage to investigate social behavior, locomotion, aggression, and anxiety. VPA (48μM) exposure during the first 48hpf (hours postfertilization) did not promote changes on survival, morphology, and hatching rate at 24hpf, 48hpf, and 72hpf. The behavioral patterns suggest that VPA exposure induces changes in locomotor activity and anxiety at different developmental periods in zebrafish. Furthermore, a social interaction deficit is present at 70dpf and 120dpf. VPA exposure did not affect aggression in the adult stage at 70dpf and 120dpf. This is the first study that demonstrated zebrafish exposed to VPA during the first 48h of development exhibit deficits in social interaction, anxiety, and hyperactivity at different developmental periods. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The histone deacetylase (HDAC) inhibitor valproic acid reduces ethanol consumption and ethanol-conditioned place preference in rats.

    Science.gov (United States)

    Al Ameri, Mouza; Al Mansouri, Shamma; Al Maamari, Alyazia; Bahi, Amine

    2014-10-02

    Recent evidence suggests that epigenetic mechanisms such as chromatin modification (specifically histone acetylation) may play a crucial role in the development of addictive behavior. However, little is known about the role of epigenetic modifications in the rewarding properties of ethanol. In the current study, we studied the effects of systemic injection of the histone deacetylase (HDAC) inhibitor, valproic acid (VPA) on ethanol consumption and ethanol-elicited conditioned place preference (CPP). The effect of VPA (300 mg/kg) on voluntary ethanol intake and preference was assessed using continuous two-bottle choice procedure with escalating concentrations of alcohol (2.5-20% v/v escalating over 4 weeks). Taste sensitivity was studies using saccharin (sweet; 0.03% and 0.06%) and quinine (bitter; 20 µM and 40 µM) tastants solutions. Ethanol conditioned reward was investigated using an unbiased CPP model. Blood ethanol concentration (BEC) was also measured. Compared to vehicle, VPA-injected rats displayed significantly lower preference and consumption of ethanol in a two-bottle choice paradigm, with no significant difference observed with saccharin and quinine. More importantly, 0.5 g/kg ethanol-induced-CPP acquisition was blocked following VPA administration. Finally, vehicle- and VPA-treated mice had similar BECs. Taken together, our results implicated HDAC inhibition in the behavioral and reinforcement-related effects of alcohol and raise the question of whether specific drugs that target HDAC could potentially help to tackle alcoholism in humans. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Alteration of spontaneous spectral powers and coherences of local field potential in prenatal valproic acid mouse model of autism.

    Science.gov (United States)

    Cheaha, Dania; Kumarnsit, Ekkasit

    2015-01-01

    Previously, autism spectrum disorder (ASD) has been identified mainly by social communication deficits and behavioral symptoms. However, a link between behaviors and learning process in the brain of animal model of autism remained largely unexplored. Particularly, spontaneous neural signaling in learning-related brain areas has not been studied. This study investigated local field potential (LFP) of the hippocampus (HP), the olfactory bulb (OB) and the medial prefrontal cortex (mPFC) in mice prenatally exposed to valproic acid (VPA) on gestational day 13. Adult male Swiss albino mouse offspring implanted with intracranial electrodes were used. VPA-exposed mice exhibited ASD-associated behaviors. Hippocampal LFP analysis revealed that VPA group significantly increased low gamma activity (25-45 Hz) during awake immobility. Regression analyses confirmed positive correlations between locomotor speed and hippocampal theta oscillations in control but not VPA group. VPA group exhibited increases in delta (1-4 Hz) and beta (25-35 Hz) activities in OB during awake immobility and active exploring, respectively. Moreover, significantly increased and decreased coherences between HP and OB of VPA animals were seen within gamma (active exploration) and theta (awake immobility) ranges, respectively. In addition, significant increase in coherence between HP and mPFC was seen within delta range during active exploration. In addition to three ASD symptoms, VPA animals also exhibited differential patterns of olfacto-hippocampal LFP, altered locomotor speed-related hippocampal theta activities and distinct interplays between HP and learning-related brain areas. The altered olfacto-hippocampal and medial prefrontal cortex-hippocampal networks may underlie impairments in autism mouse model.

  19. Valproic acid effects in the hippocampus and prefrontal cortex in an animal model of post-traumatic stress disorder.

    Science.gov (United States)

    Wilson, C Brad; McLaughlin, Leslie D; Ebenezer, Philip J; Nair, Anand R; Francis, Joseph

    2014-07-15

    Reactive oxygen species (ROS) and pro-inflammatory cytokines (PIC) are upregulated in post-traumatic stress disorder (PTSD). Histone deacetylase inhibitors (HDACi) modify genetic transcription and can diminish ROS and PIC escalation. They can also modulate levels of neurotransmitters such as catecholamines and serotonin (5-HT). Thus, this study sought to analyze the effects of the HDACi valproic acid (VA) on oxidative stress, inflammation, and neurotransmitter modulation via a predator exposure/psychosocial stress animal model of PTSD. PTSD-like effects were induced in male Sprague-Dawley rats (n=6/group×4 groups). The rats were secured in Plexiglas cylinders and placed in a cage with a cat for 1h on days 1, 11, and 40 of a 40-day stress regimen. PTSD rats were also subjected to psychosocial stress via daily cage cohort changes. At the conclusion of the stress regimen, the treatment group (PTSD+VA) and control group (Control+VA) rats were given VA in their drinking water for 30 days. The rats were then euthanized and their brains were dissected to remove the hippocampus and prefrontal cortex (PFC). Whole blood was collected to assess systemic oxidative stress. ROS and PIC mRNA and protein elevation in the PTSD group were normalized with VA. Anxiety decreased in this group via improved performance on the elevated plus-maze (EPM). No changes were attributed to VA in the control group, and no improvements were noted in the vehicle groups. Results indicate VA can attenuate oxidative stress and inflammation, enhance fear extinction, and correct neurotransmitter aberrancies in a rat model of PTSD. Copyright © 2014. Published by Elsevier B.V.

  20. Valproic acid inhibits the angiogenic potential of cervical cancer cells via HIF-1α/VEGF signals.

    Science.gov (United States)

    Zhao, Y; You, W; Zheng, J; Chi, Y; Tang, W; Du, R

    2016-11-01

    Cervical cancer is one of the most prevalent malignancies in women worldwide. Therefore, the investigation about the molecular pathogenesis and related therapy targets of cervical cancer is an emergency. The objective of the present study is to investigate the effects of valproic acid (VPA), a histone deacetylase inhibitor, on the angiogenesis of cervical cancer. The effects and mechanisms of VPA on in vitro angiogenesis and vascular endothelial growth factor (VEGF) expression of human cervical cancer HeLa and SiHa cells were investigated. Our present study reveals that 1 mM VPA can significantly inhibit the in vitro angiogenic potential and VEGF expression of human cervical cancer HeLa and SiHa cells. Further, the transcription and protein levels of hypoxia inducible factor-1α (HIF-1α), and not HIF-1β, are significantly inhibited in VPA-treated cervical cancer cells. Over expression of HIF-1α can obviously reverse VPA-induced VEGF down regulation. VPA-treatment decreases the activation of Akt and ERK1/2 in both HeLa and SiHa cells in a time-dependent manner. The inhibitor of Akt (LY 294002) or ERK1/2 (PD98059) can inhibit VEGF alone and cooperatively reinforce the suppression effects of VPA on HIF-1α and VEGF expression. Collectively, our data reveal that the inhibition of PI3K/Akt and ERK1/2 signals are involved in VPA-induced HIF-1α and VEGF suppression of cervical cancer cells.

  1. A Phase 2 Study of Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients With Glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Krauze, Andra V. [Radiation Oncology Branch, National Cancer Institute/National Institutes of Health, Bethesda, Maryland (United States); Myrehaug, Sten D. [Department of Radiation Oncology, Lakeridge Health Durham Regional Cancer Centre, Oshawa, Ontario (Canada); Chang, Michael G.; Holdford, Diane J. [Massey Cancer Center Virginia Commonwealth University, Richmond, Virginia (United States); Smith, Sharon; Shih, Joanna; Tofilon, Philip J. [Radiation Oncology Branch, National Cancer Institute/National Institutes of Health, Bethesda, Maryland (United States); Fine, Howard A. [New York University Langone Medical Center, New York, New York (United States); Camphausen, Kevin, E-mail: camphauk@mail.nih.gov [Radiation Oncology Branch, National Cancer Institute/National Institutes of Health, Bethesda, Maryland (United States)

    2015-08-01

    Purpose: Valproic acid (VPA) is an antiepileptic agent with histone deacetylase inhibitor (HDACi) activity shown to sensitize glioblastoma (GBM) cells to radiation in preclinical models. We evaluated the addition of VPA to standard radiation therapy (RT) plus temozolomide (TMZ) in patients with newly diagnosed GBM. Methods and Materials: Thirty-seven patients with newly diagnosed GBM were enrolled between July 2006 and April 2013. Patients received VPA, 25 mg/kg orally, divided into 2 daily doses concurrent with RT and TMZ. The first dose of VPA was given 1 week before the first day of RT at 10 to 15 mg/kg/day and subsequently increased up to 25 mg/kg/day over the week prior to radiation. VPA- and TMZ-related acute toxicities were evaluated using Common Toxicity Criteria version 3.0 (National Cancer Institute Cancer Therapy Evaluation Program) and Cancer Radiation Morbidity Scoring Scheme for toxicity and adverse event reporting (Radiation Therapy Oncology Group/European Organization for Research and Treatment). Results: A total of 81% of patients took VPA according to protocol. Median overall survival (OS) was 29.6 months (range: 21-63.8 months), and median progression-free survival (PFS) was 10.5 months (range: 6.8-51.2 months). OS at 6, 12, and 24 months was 97%, 86%, and 56%, respectively. PFS at 6, 12, and 24 months was 70%, 43%, and 38% respectively. The most common grade 3/4 toxicities of VPA in conjunction with RT/TMZ therapy were blood and bone marrow toxicity (32%), neurological toxicity (11%), and metabolic and laboratory toxicity (8%). Younger age and class V recursive partitioning analysis (RPA) results were significant for both OS and PFS. VPA levels were not correlated with grade 3 or 4 toxicity levels. Conclusions: Addition of VPA to concurrent RT/TMZ in patients with newly diagnosed GBM was well tolerated. Additionally, VPA may result in improved outcomes compared to historical data and merits further study.

  2. Anticonvulsant profile and teratogenicity of 3,3-dimethylbutanoylurea: a potential for a second generation drug to valproic acid.

    Science.gov (United States)

    Shimshoni, Jakob Avi; Yagen, Boris; Pessah, Neta; Wlodarczyk, Bogdan; Finnell, Richard H; Bialer, Meir

    2008-07-01

    The purpose of this study was to evaluate the anticonvulsant activity and teratogenic potential of branched aliphatic acylureas represented by isovaleroylurea (IVU), pivaloylurea (PVU) and 3,3-dimethylbutanoylurea (DBU), as potential second-generation drugs to valproic acid (VPA). The anticonvulsant activity of IVU, PVU, and DBU was determined in mice and rats utilizing the maximal electroshock seizure (MES) and the pentylenetetrazole (scMet) tests. The ability of DBU to block electrical-, or chemical-induced seizures was further examined in three acute seizure models: the psychomotor 6 Hz model, the bicuculline and picrotoxin models and one model of chronic epilepsy (i.e., the hippocampal kindled rat model). The induction of neural tube defects (NTDs) by IVU, PVU, and DBU was evaluated after i.p. administration at day 8.5 of gestation to a mouse strain highly susceptible to VPA-induced teratogenicity. The pharmacokinetics of DBU was studied following i.v. administration to rats. DBU emerged as the most potent compound having an MES-ED(50)of 186 mg/kg (mice) and 64 mg/kg (rats) and an scMet-ED(50)of 66 mg/kg (mice) and 26 mg/kg (rats). DBU underwent further evaluation in the hippocampal kindled rat (ED(50)= 35 mg/kg), the psychomotor 6 Hz mouse model (ED(50)= 80 mg/kg at 32 mA and ED(50)= 133 mg/kg at 44 mA), the bicuculline- and picrotoxin-induced seizure mouse model (ED(50)= 205 mg/kg and 167 mg/kg, respectively). In contrast to VPA, DBU, IVU, and PVU did not induce a significant increase in NTDs as compared to control. DBU was eliminated by metabolism with a half-life of 4.5 h. DBU's broad spectrum and potent anticonvulsant activity, along with its high safety margin and favorable pharmacokinetic profile, make it an attractive candidate to become a new, potent, and safe AED.

  3. EPR studies of free radicals in A-2058 human melanoma cells treated by valproic acid and 5,7-dimethoxycoumarin.

    Science.gov (United States)

    Zdybel, Magdalena; Chodurek, Ewa; Pilawa, Barbara

    2014-01-01

    Free radicals in A-2058 human melanoma cells were studied by the use of electron paramagnetic resonance (EPR) spectroscopy. The aim of this work was to determine the changes in relative free radical concentrations in tumor A-2058 cells after treatment by valproic acid (VPA) and 5,7-dimethoxycoumarin (DMC). The influences of VPA and DMC on free radicals in A-2058 cells were compared with those for human melanoma malignum A-375 and G-361 cells, which were tested by us earlier. Human malignant melanoma A-2058 cells were exposed to interactions with VPA, DMC, and both VPA and DMC. The tumor cells A-2058 were purchased from LGC Standards (Lomianki, Poland), and they were grown in the standard conditions: at 37°C and in an atmosphere containing 95% air and 5% CO2, in the Minimum Essential Medium Eagle (MEM, Sigma-Aldrich). The A-2058 cells were incubated with VPA (1 mM) and DMC (10 μM) for 4 days. The first-derivative EPR spectra of the control A-2058 cells, and the cells treated with VPA, DMC, and both VPA and DMC, were measured by the electron paramagnetic resonance spectrometer of Radiopan (Poznań, Poland) with microwaves from an X-band (9.3 GHz). The parameters of the EPR lines: amplitudes (A), integral intensities (I), line widths (ΔBpp), and g-factors, were analyzed. The changes of amplitudes and line widths with microwave power increasing from 2.2 to 70 mW were drawn evaluated, o-Semiquinone free radicals of melanin biopolymer are mainly responsible for the EPR lines of A-2058 melanoma malignum cells. The amounts of free radicals in A-2058 cells treated with VPA, and both VPA and DMC, were lower than in the untreated control cells. Application of the tested substances (VPA, and both VPA and DMC) as the antitumor compounds was discussed. DMC without VPA did not decrease free radicals concentration in A-2058 cells. The studies con-firmed that EPR spectroscopy may be used to examine interactions of free radicals with antitumor compounds.

  4. Experience in using injectable valproic acid (convulex in patients with serial epileptic seizures and status epilepticus at the prehospital stage

    Directory of Open Access Journals (Sweden)

    A. V. Lebedeva

    2012-01-01

    Full Text Available Objective: to evaluate the efficacy of injectable valproate (convulex in patients with serial epileptic seizures and status epilepticus (SE at the prehospital stage.Patients and methods. Thirty-two adult patients, including 17 (53% men and 15 (47% women, were examined. Most patients were aged over 40 years (mean age 54.7±9.4 years. To define the required dose of the drug, the authors estimated the patient's weight that averaged 76.8±1.9 kg, i.e. there was a preponderance of patients who needed convulex, more than 500 mg, to achieve a therapeutic effect.Results. It was impossible to reliably and validly evaluate the type of a seizure as the medical emergency team (MET generally observed the patient with a just evolving seizure and the medical history data were not always valid therefore the type of convulsions and the type of a seizure were evaluated. In most cases, solitary convulsive attacks (tonic and/or clonic convulsions and/or serial seizures were observed in 12 (37.5% and 14 (43.7% patients, respectively; SE was recorded in 6 (8.8% patients. Generalized seizures (without a clear focal onset were prevalent in 24 (75% patients while 8 (25% patients were found to have partial seizures (seizure onset lateralization, a focal onset. According to the pattern of convulsions, seizures may be classified into three types: tonic-clonic, clonic, and tonic in 22 (68.8%, 7 (21.9%, and 3 (9.3% patients, respectively. Analysis of the efficacy of intravenously injectable valproate (convulex in the group of patients with SE and epileptic seizures indicated that complete cessation of seizures could be achieved in 68.8%, their rate decreased in other 9.4% of the patients. Seizures were preserved in 7 (21.8% cases, which required additional administration of drugs. Conclusion. Injectable valproic acid (convulex has a high efficacy and may be preclinically used as the drug of choice to arrest SE and serial seizures caused by both epilepsy and other

  5. Determination of acute lethal and chronic lethal dose thresholds of valproic acid using 3D spheroids constructed from the immortal human hepatocyte cell line HepG2/C3A

    DEFF Research Database (Denmark)

    Fey, S. J.; Wrzesinski, K.

    2013-01-01

    describe here a culture system based on 3D spheroid culture of immortal hepatocytes which can determine the toxicity of valproic acid (or structurally or functionally related molecules) in vitro. The spheroids were used to follow changes in ATP production, glucose uptake and adenylate kinase following...

  6. Corrigendum to “Long-term valproic acid exposure increases the number of neocortical neurons in the developing rat brain" [Neurosci.Lett. 580 (2014) 12–16] A possible new animal model of autism

    DEFF Research Database (Denmark)

    Sabers, Anne; Bertelsen, Freja C B; Scheel-Krüger, Jørgen

    2015-01-01

    The aim of this study was to test the hypothesis that long-term fetal valproic acid (VPA) exposure at doses relevant to the human clinic interferes with normal brain development. Pregnant rats were given intraperitoneal injections of VPA (20 mg/kg or 100 mg/kg) continuously during the last 9–12 d...

  7. p21Waf1/Cip1 is a common target induced by short-chain fatty acid HDAC inhibitors (valproic acid, tributyrin and sodium butyrate) in neuroblastoma cells.

    Science.gov (United States)

    Rocchi, Paola; Tonelli, Roberto; Camerin, Consuelo; Purgato, Stefania; Fronza, Raffaele; Bianucci, Fabrizio; Guerra, Francesco; Pession, Andrea; Ferreri, Anna Maria

    2005-06-01

    Histone acetyltransferase and histone deacetylase (HDAC) determine the acetylation status of histones, and thereby control the regulation of gene expression. HDAC inhibitors have been found to inhibit the growth of a variety of tumor cells in vitro and in vivo. We demonstrated previously that the short-chain fatty acid compound butyrate and its derivative tributyrin (both HDAC inhibitors) arrest cell growth and induce differentiation in human neuroblastoma (NB) cells. In the current study we investigated the effect of the HDAC inhibitor valproic acid (VPA) on proliferation and differentiation in human NB cells (SJ-N-KP, AF8). Treatment with VPA resulted in a strong inhibition of cell proliferation and induction of cell differentiation, as revealed by neurite outgrowth and increase of acetylcholinesterase specific activity. Moreover, we addressed the question of whether the cyclin-dependent kinase inhibitors p21(Cip1) and p27(Kip1) are involved in the mechanism of action of members of the short-chain fatty acids class (VPA, sodium butyrate and tributyrin) of HDAC inhibitors, in human NB cells. We demonstrated that p21(Cip1) is a common target of induction of transcription and protein expression for all the three compounds, while only VPA induced a concomitant increase of p27(Kip1) gene expression. These results suggest that p21(Cip1) could be involved in the inhibition of proliferation and induction of differentiation in human NB cells induced by treatment with VPA or tributyrin or sodium butyrate. Moreover, p21(Cip1) could be applied in the molecular monitoring of drug action in the possible therapeutic application of these short-chain fatty acid members of HDAC inhibitors for human NB treatment.

  8. Cell type-specific anti-cancer properties of valproic acid: independent effects on HDAC activity and Erk1/2 phosphorylation

    DEFF Research Database (Denmark)

    Gotfryd, Kamil; Skladchikova, Galina; Lepekhin, Eugene E

    2010-01-01

    ABSTRACT: BACKGROUND: The anti-epileptic drug valproic acid (VPA) has attracted attention as an anti-cancer agent. Methods: The present study investigated effects of VPA exposure on histone deacetylase (HDAC) inhibition, cell growth, cell speed, and the degree of Erk1/2 phosphorylation in 10 cell....../2 phosphorylation were inhibited, activated, or unaffected by VPA in a cell type-specific manner. Importantly, no relationship was found between the effects of VPA on HDAC inhibition and changes in the degree of Erk1/2 phosphorylation, cell growth, or motility. In contrast, VPA-induced modulation of the MAPK....../2 phosphorylation are also important for the anti-cancer properties of VPA....

  9. SMA valiant trial: a prospective, double-blind, placebo-controlled trial of valproic acid in ambulatory adults with spinal muscular atrophy.

    Science.gov (United States)

    Kissel, John T; Elsheikh, Bakri; King, Wendy M; Freimer, Miriam; Scott, Charles B; Kolb, Stephen J; Reyna, Sandra P; Crawford, Thomas O; Simard, Louise R; Krosschell, Kristin J; Acsadi, Gyula; Schroth, Mary K; D'Anjou, Guy; LaSalle, Bernard; Prior, Thomas W; Sorenson, Susan; Maczulski, Jo Anne; Swoboda, Kathryn J

    2014-02-01

    An open-label trial suggested that valproic acid (VPA) improved strength in adults with spinal muscular atrophy (SMA). We report a 12-month, double-blind, cross-over study of VPA in ambulatory SMA adults. There were 33 subjects, aged 20–55 years, included in this investigation. After baseline assessment, subjects were randomized to receive VPA (10–20 mg/kg/day) or placebo. At 6 months, patients were switched to the other group. Assessments were performed at 3, 6, and 12 months. The primary outcome was the 6-month change in maximum voluntary isometric contraction testing with pulmonary, electrophysiological, and functional secondary outcomes. Thirty subjects completed the study. VPA was well tolerated, and compliance was good. There was no change in primary or secondary outcomes at 6 or 12 months. VPA did not improve strength or function in SMA adults. The outcomes used are feasible and reliable and can be employed in future trials in SMA adults.

  10. The Teratogenic Potencies of Valproic Acid Derivatives and Their Effects on Biological End-points are Related to Changes in Histone Deacetylase and Erk1/2 Activities

    DEFF Research Database (Denmark)

    Gotfryd, Kamil; Hansen, Maria; Kawa, Anna

    2011-01-01

    Valproic acid (VPA) is a known teratogen. In the present study, the effects of VPA and seven VPA derivatives with different teratogenic potencies (isobutyl-, 5-methyl-, ethyl-, propyl-, butyl-, pentyl- and hexyl-4-yn-VPA) were investigated in L929 cells in vitro. Evaluated end-points included...... associated with the teratogenic potencies of the VPA derivatives. However, in contrast to changes in Erk1/2 phosphorylation and H3 acetylation, significant changes in GSK-3ß phosphorylation could only be obtained in response to prolonged incubation at high drug concentration. There was an association between...... changes in H3 acetylation and GSK-3ß-Tyr216 phosphorylation, whereas none of these end-points were associated with changes in Erk1/2 phosphorylation. These results suggest that the teratogenic potencies of VPA and VPA derivatives are related to effects on both Erk1/2 and histone deacetylase activities...

  11. Long-lasting recognition memory impairment and alterations in brain levels of cytokines and BDNF induced by maternal deprivation: effects of valproic acid and topiramate.

    Science.gov (United States)

    Pinheiro, Rose Mary Carvalho; de Lima, Maria Noêmia Martins; Portal, Bernardo Chaves Dávila; Busato, Stefano Boemler; Falavigna, Lucio; Ferreira, Rafael Dal Ponte; Paz, André Contri; de Aguiar, Bianca Wollenhaupt; Kapczinski, Flávio; Schröder, Nadja

    2015-05-01

    Exposure to stressful events early in life may have permanent deleterious consequences on nervous system function and increase the susceptibility to psychiatric conditions later in life. Maternal deprivation, commonly used as a source of neonatal stress, impairs memory in adult rats and reduces hippocampal brain-derived neurotrophic factor (BDNF) levels. Inflammatory cytokines, such as interleukins (IL) and tumor necrosis factor-α (TNF-α) have been shown to be increased in the peripheral blood of patients with psychiatric disorders. The aim of the present study was to investigate the effects of maternal separation on the levels of IL-10 and TNF-α, and BDNF in the hippocampus and prefrontal cortex of adult rats. We also evaluated the potential ameliorating properties of topiramate and valproic acid on memory deficits and cytokine and BDNF changes associated with maternal deprivation. The results indicated that, in addition to inducing memory deficits, maternal deprivation increased the levels of IL-10 in the hippocampus, and TNF-α in the hippocampus and in the cortex, and decreased hippocampal levels of BDNF, in adult life. Neither valproic acid nor topiramate were able to ameliorate memory deficits or the reduction in BDNF induced by maternal separation. The highest dose of topiramate was able to reduce IL-10 in the hippocampus and TNF-α in the prefrontal cortex, while valproate only reduced IL-10 levels in the hippocampus. These findings may have implications for a better understanding of the mechanisms associated with alterations observed in adult life induced by early stressful events, and for the proposal of novel therapeutic strategies.

  12. Opposing Effects of Valproic Acid Treatment Mediated by Histone Deacetylase Inhibitor Activity in Four Transgenic X. laevis Models of Retinitis Pigmentosa.

    Science.gov (United States)

    Vent-Schmidt, Ruanne Y J; Wen, Runxia H; Zong, Zusheng; Chiu, Colette N; Tam, Beatrice M; May, Christopher G; Moritz, Orson L

    2017-01-25

    Retinitis pigmentosa (RP) is an inherited retinal degeneration (RD) that leads to blindness for which no treatment is available. RP is frequently caused by mutations in Rhodopsin; in some animal models, RD is exacerbated by light. Valproic acid (VPA) is a proposed treatment for RP and other neurodegenerative disorders, with a phase II trial for RP under way. However, the therapeutic mechanism is unclear, with minimal research supporting its use in RP. We investigated the effects of VPA on Xenopus laevis models of RP expressing human P23H, T17M, T4K, and Q344ter rhodopsins, which are associated with RP in humans. VPA ameliorated RD associated with P23H rhodopsin and promoted clearing of mutant rhodopsin from photoreceptors. The effect was equal to that of dark rearing, with no additive effect observed. Rescue of visual function was confirmed by electroretinography. In contrast, VPA exacerbated RD caused by T17M rhodopsin in light, but had no effect in darkness. Effects in T4K and Q344ter rhodopsin models were also negative. These effects of VPA were paralleled by treatment with three additional histone deacetylase (HDAC) inhibitors, but not other antipsychotics, chemical chaperones, or VPA structural analogues. In WT retinas, VPA treatment increased histone H3 acetylation. In addition, electron microscopy showed increased autophagosomes in rod inner segments with HDAC inhibitor (HDACi) treatment, potentially linking the therapeutic effects in P23H rhodopsin animals and negative effects in other models with autophagy. Our results suggest that the success or failure of VPA treatment is dependent on genotype and that HDACi treatment is contraindicated for some RP cases.SIGNIFICANCE STATEMENT Retinitis pigmentosa (RP) is an inherited, degenerative retinal disease that leads to blindness for which no therapy is available. We determined that valproic acid (VPA), currently undergoing a phase II trial for RP, has both beneficial and detrimental effects in animal models of

  13. Valproic acid ameliorates olfactory dysfunction in APP/PS1 transgenic mice of Alzheimer's disease: Ameliorations from the olfactory epithelium to the olfactory bulb.

    Science.gov (United States)

    Yao, Zhi-Gang; Jing, Hai-Yan; Wang, Dong-Mei; Lv, Bei-Bei; Li, Jia-Mei; Liu, Feng-Feng; Fan, Hui; Sun, Xi-Chao; Qin, Ye-Jun; Zhao, Miao-Qing

    2016-05-01

    Olfactory dysfunction is a common and early symptom of many neurodegenerative diseases, particularly of Alzheimer's disease (AD) and mild cognitive impairment, pointing to the progression to dementia. Recent studies have revealed that valproic acid (VPA) has neuroprotective effects in rodent models of AD. In this study, we investigated the effects of VPA on olfactory dysfunction of APP/PS1 double transgenic mouse models of AD. After continuous treatment with a 100mg/kg daily dose of VPA for 3 months, APP/PS1 mice showed improved olfactory performances. In agreement with the behavioral findings, VPA treatment reduced amyloid β (Aβ) burden in the olfactory epithelium (OE) of transgenic mice. And, VPA increased epithelial thickness of the olfactory mucosa through decreased cell apoptosis and increased cell proliferation. In the olfactory bulb (OB), VPA administration also reduced senile plaques and levels of soluble and insoluble Aβ42 peptides. Besides, VPA promoted the increase of mitral cells and decrease of neurofilament immunostaining. In hence, VPA treatment completely improved the olfactory performances and prevented degenerative changes of the OE and OB. Our study raises the possibility of AD diagnosis by OE biopsy. Moreover, VPA may provide a novel therapeutic strategy for the treatment of olfactory dysfunction in AD patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Valproic acid reduces hair loss and improves survival in patients receiving temozolomide-based radiation therapy for high-grade glioma.

    Science.gov (United States)

    Watanabe, Shinichi; Kuwabara, Yui; Suehiro, Satoshi; Yamashita, Daisuke; Tanaka, Mamoru; Tanaka, Akihiro; Ohue, Shiro; Araki, Hiroaki

    2017-03-01

    Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, is also used to manage seizures in glioblastoma patients. HDAC inhibitors can protect normal cells and tissues from the deleterious effects of radiotherapy, and VPA is reported to improve the survival of glioblastoma patients receiving chemoradiation therapy. VPA also promotes hair growth, and thus has the potential to reduce the radiotherapy side effect of hair loss while improving the survival of patients with glioblastoma. The purpose of this study was to determine whether VPA use during radiotherapy for high-grade glioma is associated with decreased side effects of radiotherapy and an improvement in overall survival (OS) and progression-free survival (PFS). Medical records of 112 patients with high-grade glioma were retrospectively reviewed. We grouped patients by VPA use or non-use during radiotherapy, and evaluated hair loss, OS, and PFS. The radiation dose and fractionation at the onset of hair loss were 4 Gy and two fractions higher, respectively, in the VPA group compared with the VPA non-use group (P hair loss and improvement in survival. Hair loss prevention benefits patients suffering from the deleterious effects of radiation.

  15. Morphological abnormalities of embryonic cranial nerves after in utero exposure to valproic acid: implications for the pathogenesis of autism with multiple developmental anomalies.

    Science.gov (United States)

    Tashiro, Yasura; Oyabu, Akiko; Imura, Yoshio; Uchida, Atsuko; Narita, Naoko; Narita, Masaaki

    2011-06-01

    Autism is often associated with multiple developmental anomalies including asymmetric facial palsy. In order to establish the etiology of autism with facial palsy, research into developmental abnormalities of the peripheral facial nerves is necessary. In the present study, to investigate the development of peripheral cranial nerves for use in an animal model of autism, rat embryos were treated with valproic acid (VPA) in utero and their cranial nerves were visualized by immunostaining. Treatment with VPA after embryonic day 9 had a significant effect on the peripheral fibers of several cranial nerves. Following VPA treatment, immunoreactivity within the trigeminal, facial, glossopharyngeal and vagus nerves was significantly reduced. Additionally, abnormal axonal pathways were observed in the peripheral facial nerves. Thus, the morphology of several cranial nerves, including the facial nerve, can be affected by prenatal VPA exposure as early as E13. Our findings indicate that disruption of early facial nerve development is involved in the etiology of asymmetric facial palsy, and may suggest a link to the etiology of autism. Copyright © 2011 ISDN. Published by Elsevier Ltd. All rights reserved.

  16. Valproic acid activates the PI3K/Akt/mTOR pathway in muscle and ameliorates pathology in a mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Gurpur, Praveen B; Liu, Jianming; Burkin, Dean J; Kaufman, Stephen J

    2009-03-01

    Duchenne muscular dystrophy is a lethal neuromuscular disease that currently has no effective therapy. Transgenic overexpression of the alpha7 integrin in mdx/utrn(-/-) mice, a model of Duchenne muscular dystrophy ameliorates the disease. We have isolated and used alpha7(+/-) muscle cells expressing beta-galactosidase, driven by the endogenous alpha7 promoter, to identify compounds that increase alpha7 integrin levels. Valproic acid (VPA) was found to enhance alpha7 integrin levels, induce muscle hypertrophy, and inhibit apoptosis in myotubes by activating the Akt/mTOR/p70S6K pathway. This activation of the Akt pathway occurs within 1 hour of treatment and is mediated by phosphatidylinositol 3-OH kinase. To evaluate the potential use of VPA to treat muscular dystrophy, mdx/utrn(-/-) mice were injected with the drug. Treatment with VPA lowered collagen content and fibrosis, and decreased hind limb contractures. VPA-treated mice also had increased sarcolemmal integrity and decreased damage, decreased CD8-positive inflammatory cells, and higher levels of activated Akt in their muscles. Thus, VPA has important biological effects that may be applicable for the treatment of muscular dystrophy.

  17. Valproic acid-associated acute liver failure in children: case report and analysis of liver transplantation outcomes in the United States.

    Science.gov (United States)

    Mindikoglu, Ayse L; King, Dale; Magder, Laurence S; Ozolek, John A; Mazariegos, George V; Shneider, Benjamin L

    2011-05-01

    To determine whether valproic acid (VPA)-associated acute liver failure (ALF; VPA-ALF) explains the poor outcomes after liver transplantation (LT) in children. Organ Procurement and Transplantation Network data of pediatric patients who underwent LT for VPA-ALF and ALF caused by other drugs (non-VPA-drug-induced acute liver failure [DIALF]) were analyzed. Pre- and post-transplant variables and post-LT survival were compared between VPA-ALF and non-VPA-DIALF. Seventeen children were transplanted for VPA-ALF. Of the 17 children, 82% died within 1 year of LT. Pre- and post-transplant parameters of VPA versus non-VPA-DIALF were comparable with two exceptions. The median alanine aminotransferase level at transplant was remarkably lower in VPA-ALF compared with non-VPA-DIALF (45 versus 1179 IU/L, P = .004). One-year survival probability was worse in VPA-ALF than non-VPA-DIALF (20% versus 69%, P < .0001). Median post-LT survival time for VPA-ALF was 2.8 months. Children who underwent LT for VPA-ALF had a significantly lower survival probability than children with non-VPA-DIALF. Current data suggest that VPA-ALF in children represents an "unmasking" of mitochondrial disease. VPA-ALF should be a contraindication for LT, even in the absence of a documented mitochondrial disease. Copyright © 2011 Mosby, Inc. All rights reserved.

  18. Topical valproic acid increases the hair count in male patients with androgenetic alopecia: a randomized, comparative, clinical feasibility study using phototrichogram analysis.

    Science.gov (United States)

    Jo, Seong Jin; Shin, Hyoseung; Park, Young Woon; Paik, Seung Hwan; Park, Won Seok; Jeong, Yeon Su; Shin, Hong Ju; Kwon, Ohsang

    2014-04-01

    Valproic acid (VPA), a widely used anticonvulsant, inhibits glycogen synthase kinase 3β and activates the Wnt/β-catenin pathway, which is associated with hair growth cycle and anagen induction. To assess the efficacy of topical VPA for treating androgenetic alopecia (AGA), we performed a randomized, double-blind, placebo-controlled clinical trial. Male patients with moderate AGA underwent treatment with either VPA (sodium valproate, 8.3%) or placebo spray for 24 weeks. The primary end-point for efficacy was the change in hair count during treatment, which was assessed by phototrichogram analysis. Of the 40 patients enrolled in the study, 27 (n = 15, VPA group; n = 12, placebo group) completed the entire protocol with good compliance. No statistical differences in age, hair loss duration and total hair count at baseline were found between the groups. The mean change in total hair count was significantly higher in the VPA group than in the placebo group (P = 0.047). Both groups experienced mostly mild and self-limited adverse events, but their differences in prevalence rates were similar between the two groups (P = 0.72). A subject treated with topical VPA developed ventricular tachycardia, but it did not seem to be related to the VPA spray. Topical VPA increased the total hair counts of our patients; therefore, it is a potential treatment option for AGA. © 2014 Japanese Dermatological Association.

  19. Valproic Acid Improves Glucose Homeostasis by Increasing Beta-Cell Proliferation, Function, and Reducing its Apoptosis through HDAC Inhibition in Juvenile Diabetic Rat.

    Science.gov (United States)

    Khan, Sabbir; Jena, Gopabandhu

    2016-09-01

    Recent evidence highlighted that there is a link between type-1 diabetes mellitus and histone deacetylases (HDACs) due to their involvement in beta-cell differentiation, proliferation, and function. The present study aimed to investigate the protective role of valproic acid (VPA) on beta-cell proliferation, function, and apoptosis in juvenile diabetic rat. Diabetes was induced in juvenile Sprague-Dawley rats by streptozotocin (75 mg/kg, i.p.) and VPA was administered at the doses of 150 and 300 mg/kg/day for 3 weeks by oral route. Various biochemical parameters, cellular alterations, and protein expression as well as apoptosis were assessed using different assays. VPA treatment significantly decreased plasma glucose, beta-cell damage, and apoptosis as well as increased the beta-cell function, insulin level/expression. The present study demonstrated that VPA improves beta-cell proliferation and function as well as reduces beta-cell apoptosis through HDAC inhibition. Our findings provide evidence that VPA may be useful for the treatment of juvenile diabetes. © 2016 Wiley Periodicals, Inc.

  20. Valproic acid increases SMN2 expression and modulates SF2/ASF and hnRNPA1 expression in SMA fibroblast cell lines.

    Science.gov (United States)

    Harahap, Indra Sari Kusuma; Saito, Toshio; San, Lai Poh; Sasaki, Naoko; Gunadi; Nurputra, Dian Kesuma Pramudya; Yusoff, Surini; Yamamoto, Tomoto; Morikawa, Satoru; Nishimura, Noriyuki; Lee, Myeong Jin; Takeshima, Yasuhiro; Matsuo, Masafumi; Nishio, Hisahide

    2012-03-01

    Spinal muscular atrophy (SMA) is a common autosomal recessive neuromuscular disorder that is caused by loss of the survival motor neuron gene, SMN1. SMA treatment strategies have focused on production of the SMN protein from the almost identical gene, SMN2. Valproic acid (VPA) is a histone deacetylase inhibitor that can increase SMN levels in some SMA cells or SMA patients through activation of SMN2 transcription or splicing correction of SMN2 exon 7. It remains to be clarified what concentration of VPA is required and by what mechanisms the SMN production from SMN2 is elicited. We observed that in two fibroblast cell lines from Japanese SMA patients, more than 1mM of VPA increased SMN2 expression at both the transcript and protein levels. VPA increased not only full-length (FL) transcript level but also exon 7-excluding (Δ7) transcript level in the cell lines and did not change the ratio of FL/Δ7, suggesting that SMN2 transcription was mainly activated. We also found that VPA modulated splicing factor expression: VPA increased the expression of splicing factor 2/alternative splicing factor (SF2/ASF) and decreased the expression of heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1). In conclusion, more than 1mM of VPA activated SMN2 transcription and modulated the expression of splicing factors in our SMA fibroblast cell lines. Copyright © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  1. Resting-state fMRI revealed different brain activities responding to valproic acid and levetiracetam in benign epilepsy with central-temporal spikes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qirui; Zhang, Zhiqiang; Xu, Qiang; Wu, Han; Li, Zhipeng; Lu, Guangming [Nanjing University School of Medicine, Department of Medical Imaging, Jinling Hospital, Nanjing (China); Yang, Fang; Li, Qian [Nanjing University School of Medicine, Department of Neurology, Jinling Hospital, Nanjing (China); Hu, Zheng [Nanjing Children' s Hospital, Department of Neurology, Nanjing (China); Dante, Mantini [Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven (Belgium); Li, Kai [Suzhou University, Laboratory of Molecular Medicine, Suzhou (China)

    2017-05-15

    Our aim was to investigate regional difference in brain activities in response to antiepileptic drug (AED) medications in benign epilepsy with central-temporal spikes (BECTS) using resting-state functional magnetic resonance imaging (fMRI). Fifty-seven patients with BECTS underwent resting-state fMRI scans after receiving either valproic acid (VPA) (n = 15), levetiracetam (LEV) (n = 21), or no medication (n = 21). fMRI regional homogeneity (ReHo) parameter among the three groups of patients were compared and were correlated with total doses of AED in the two medicated groups. Compared with patients on no-medication, patients receiving either VPA or LEV showed decreased ReHo in the central-temporal region, frontal cortex, and thalamus. In particular, the VPA group showed greater ReHo decrease in the thalamus and milder in cortices and caudate heads compared with the LEV group. In addition, the VPA group demonstrated a negative correlation between ReHo values in the central-temporal region and medication dose. Both VPA and LEV inhibit resting-state neural activity in the central-temporal region, which is the main epileptogenic focus of BECTS. VPA reduced brain activity in the cortical epileptogenic regions and thalamus evenly, whereas LEV reduced brain activity predominantly in the cortices. Interestingly, VPA showed a cumulative effect on inhibiting brain activity in the epileptogenic regions in BECTS. (orig.)

  2. Encapsulation of valproic acid and sodic phenytoin in ordered mesoporous SiO 2 solids for the treatment of temporal lobe epilepsy

    Science.gov (United States)

    López, T.; Basaldella, E. I.; Ojeda, M. L.; Manjarrez, J.; Alexander-Katz, R.

    2006-10-01

    Temporal lobe epilepsy is one of the most frequent types of human neurological diseases, and a variety of surgical procedures have been developed for the treatment of intractable cases. An alternative is the use of drug-containing reservoirs based on nanostructured materials of controlled pore sizes in order to deliver the drug without causing secondary effects. Ordered SiO 2 nanostructures were developed as drug reservoirs. The latter were prepared by the sol-gel process using tetraethyl orthosilicate TEOS as precursor to form the "sol" and P123 surfactant as the organic structure-directing agent. In addition to the nontoxic nature of amorphous silica, uniform and tunable pore sizes between 2.5 and 30 nm can be obtained in this way. The aim of this study is to investigate the potential of these materials for the storage and release of drugs in the brain. For that, we loaded valproic acid (VH) and sodic phenytoin (PH) molecules into an ordered mesoporous SiO 2 by impregnation and characterized the drug impregnated SiO 2 by standard physical and spectroscopic techniques to identify the parameters necessary to improve the capacity and quality of the reservoirs. Finally, a study of neurohistopathology of the effects of these reservoirs on brain tissue is presented.

  3. Oxytocin attenuates deficits in social interaction but not recognition memory in a prenatal valproic acid-induced mouse model of autism.

    Science.gov (United States)

    Hara, Yuta; Ago, Yukio; Higuchi, Momoko; Hasebe, Shigeru; Nakazawa, Takanobu; Hashimoto, Hitoshi; Matsuda, Toshio; Takuma, Kazuhiro

    2017-09-28

    Recent studies have reported that oxytocin ameliorates behavioral abnormalities in both animal models and individuals with autism spectrum disorders (ASD). However, the mechanisms underlying the ameliorating effects of oxytocin remain unclear. In this study, we examined the effects of intranasal oxytocin on impairments in social interaction and recognition memory in an ASD mouse model in which animals are prenatally exposed to valproic acid (VPA). We found that a single intranasal administration of oxytocin restored social interaction deficits for up to 2h in mice prenatally exposed to VPA, but there was no effect on recognition memory impairments. Additionally, administration of oxytocin across 2weeks improved prenatal VPA-induced social interaction deficits for at least 24h. In contrast, there were no effects on the time spent sniffing in control mice. Immunohistochemical analysis revealed that intranasal administration of oxytocin increased c-Fos expression in the paraventricular nuclei (PVN), prefrontal cortex, and somatosensory cortex, but not the hippocampal CA1 and CA3 regions of VPA-exposed mice, suggesting the former regions may underlie the effects of oxytocin. These findings suggest that oxytocin attenuates social interaction deficits through the activation of higher cortical areas and the PVN in an ASD mouse model. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Characterization of in utero valproic acid mouse model of autism by local field potential in the hippocampus and the olfactory bulb.

    Science.gov (United States)

    Cheaha, Dania; Bumrungsri, Sara; Chatpun, Surapong; Kumarnsit, Ekkasit

    2015-09-01

    Valproic acid (VPA) mouse model of autism spectrum disorder (ASD) has been characterized mostly by impaired ultrasonic vocalization, poor sociability and increased repetitive self-grooming behavior. However, its neural signaling remained unknown. This study investigated the local field potentials (LFPs) in the dorsal hippocampal CA1 and the olfactory bulb while animals exploring a novel open field. VPA was administered at gestational day 13. The results demonstrated three core features of ASD in male offspring. However, there was no difference in Y-maze performance and locomotor activity. Analysis of hippocampal LFP power revealed significantly increased slow wave (1-4 Hz) and high gamma (80-140 Hz) oscillations and decreased theta (4-12 Hz) activity in VPA mice. In the olfactory bulb, VPA animals showed greater slow wave (1-4 Hz) and beta (25-40 Hz) activity and lower activity of low gamma (55-80 Hz) wave. Regression analysis revealed positive correlations between hippocampal theta power and locomotor speed for both control and VPA-exposed mice. There was no significant difference between groups for modulation index of theta (4-12 Hz) phase modulated gamma (30-200 Hz) amplitude. These findings characterized VPA mouse model with LFP oscillations that might provide better understanding of neural processing in ASD. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  5. Effects of Korean red ginseng extracts on neural tube defects and impairment of social interaction induced by prenatal exposure to valproic acid.

    Science.gov (United States)

    Kim, Pitna; Park, Jin Hee; Kwon, Kyoung Ja; Kim, Ki Chan; Kim, Hee Jin; Lee, Jong Min; Kim, Hahn Young; Han, Seol-Heui; Shin, Chan Young

    2013-01-01

    Ginseng is one of the most widely used medicinal plants, which belongs to the genus Panax. Compared to uncured white ginseng, red ginseng has been generally regarded to produce superior pharmacological effects with lesser side/adverse effects, which made it popular in a variety of formulation from tea to oriental medicine. Using the prenatal valproic acid (VPA)-injection model of autism spectrum disorder (ASD) in rats, which produces social impairrment and altered seizure susceptibility as in human ASD patients as well as mild neural tube defects like crooked tail phenotype, we examined whether chronic administration of red ginseng extract may rescue the social impairment and crooked tail phenotype in prenatally VPA-exposed rat offspring. VPA-induced impairment in social interactions tested using sociability and social preference paradigms as well as crooked tail phenotypes were significantly improved by administration of Korean red ginseng (KRG) in a dose dependent manner. Rat offspring prenatally exposed to VPA showed higher sensitivity to electric shock seizure and increased locomotor activity in open-field test. KRG treatment reversed abnormal locomotor activity and sensitivity to electric shock to control level. These results suggest that KRG may modulate neurobehavioral and structural organization of nervous system adversely affected by prenatal exposure to VPA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Disease-stabilizing treatment based on all-trans retinoic acid and valproic acid in acute myeloid leukemia - identification of responders by gene expression profiling of pretreatment leukemic cells.

    Science.gov (United States)

    Reikvam, Håkon; Hovland, Randi; Forthun, Rakel Brendsdal; Erdal, Sigrid; Gjertsen, Bjørn Tore; Fredly, Hanne; Bruserud, Øystein

    2017-09-06

    Acute myeloid leukemia (AML) is an aggressive malignancy only cured by intensive therapy. However, many elderly and unfit patients cannot receive such treatment due to an unacceptable risk of treatment-related morbidity and mortality. Disease-stabilizing therapy is then the only possible strategy, one alternative being treatment based on all-trans retinoic acid (ATRA) combined with the histone deacetylase inhibitor valproic acid and possibly low-toxicity conventional chemotherapy. Primary AML cells were derived from 43 patients included in two clinical studies of treatment based on ATRA, valproic acid and theophyllamine; low toxicity chemotherapy (low-dose cytarabine, hydroxyurea, 6-mercaptopurin) was also allowed. Pretreatment leukemic cells were analyzed by mutation profiling of 54 genes frequently mutated in myeloid malignancies and by global gene expression profiling before and during in vivo treatment. Patients were classified as responders and non-responders to the treatment, however response to treatment showed no significant associations with karyotype or mutational profiles. Significance analysis of microarray (SAM) showed that responders and non-responders significantly differed with regard to the expression of 179 different genes. The differentially expressed genes encoding proteins with a known function were further classified based on the PANTHER (protein annotation through evolutionary relationship) classification system. The identified genes encoded proteins that are involved in several important biological functions, but a main subset of the genes were important for transcriptional regulation. These pretherapy differences in gene expression were largely maintained during treatment. Our analyses of primary AML cells during in vivo treatment suggest that ATRA modulates HOX activity (i.e. decreased expression of HOXA3, HOXA4 and HOXA5 and their regulator PBX3), but altered function of DNA methyl transferase 3A (DNMT3A) and G-protein coupled receptor

  7. Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder.

    Science.gov (United States)

    Kim, Ki Chan; Kim, Pitna; Go, Hyo Sang; Choi, Chang Soon; Park, Jin Hee; Kim, Hee Jin; Jeon, Se Jin; Dela Pena, Ike Campomayor; Han, Seol-Heui; Cheong, Jae Hoon; Ryu, Jong Hoon; Shin, Chan Young

    2013-03-01

    Autism spectrum disorder (ASD) is a pervasive developmental disorder characterized by three main behavioral symptoms including social deficits, impaired communication, and stereotyped and repetitive behaviors. ASD prevalence shows gender bias to male. Prenatal exposure to valproic acid (VPA), a drug used in epilepsy and bipolar disorder, induces autistic symptoms in both human and rodents. As we reported previously, prenatally VPA-exposed animals at E12 showed impairment in social behavior without any overt reproductive toxicity. Social interactions were not significantly different between male and female rats in control condition. However, VPA-exposed male offspring showed significantly impaired social interaction while female offspring showed only marginal deficits in social interaction. Similar male inclination was observed in hyperactivity behavior induced by VPA. In addition to the ASD-like behavioral phenotype, prenatally VPA-exposed rat offspring shows crooked tail phenotype, which was not different between male and female groups. Both male and female rat showed reduced GABAergic neuronal marker GAD and increased glutamatergic neuronal marker vGluT1 expression. Interestingly, despite of the similar increased expression of vGluT1, post-synaptic marker proteins such as PSD-95 and α-CAMKII expression was significantly elevated only in male offspring. Electron microscopy showed increased number of post-synapse in male but not in female at 4 weeks of age. These results might suggest that the altered glutamatergic neuronal differentiation leads to deranged post-synaptic maturation only in male offspring prenatally exposed to VPA. Consistent with the increased post-synaptic compartment, VPA-exposed male rats showed higher sensitivity to electric shock than VPA-exposed female rats. These results suggest that prenatally VPA-exposed rats show the male preponderance of ASD-like behaviors including defective social interaction similar to human autistic patients, which

  8. Valproic acid inhibits the release of soluble CD40L induced by non-nucleoside reverse transcriptase inhibitors in human immunodeficiency virus infected individuals.

    Directory of Open Access Journals (Sweden)

    Donna C Davidson

    Full Text Available Despite the use of highly active antiretroviral therapies (HAART, a majority of Human Immunodeficiency Virus Type 1 (HIV infected individuals continually develop HIV - Associated Neurocognitive Disorders (HAND, indicating that host inflammatory mediators, in addition to viral proteins, may be contributing to these disorders. Consistent with this notion, we have previously shown that levels of the inflammatory mediator soluble CD40 ligand (sCD40L are elevated in the plasma and cerebrospinal fluid (CSF of HIV infected, cognitively impaired individuals, and that excess sCD40L can contribute to blood brain barrier (BBB permeability in vivo, thereby signifying the importance of this inflammatory mediator in the pathogenesis of HAND. Here we demonstrate that the non-nucleoside reverse transcriptase inhibitor (NNRTI efavirenz (EFV induces the release of circulating sCD40L in both HIV infected individuals and in an in vitro suspension of washed human platelets, which are the main source of circulating sCD40L. Additionally, EFV was found to activate glycogen synthase kinase 3 beta (GSK3β in platelets, and we now show that valproic acid (VPA, a known GSK3β inhibitor, was able to attenuate the release of sCD40L in HIV infected individuals receiving EFV, and in isolated human platelets. Collectively these results have important implications in determining the pro-inflammatory role that some antiretroviral regimens may have. The use of antiretrovirals remains the best strategy to prevent HIV-associated illnesses, including HAND, however these drugs have clear limitations to this end, and thus, these results underscore the need to develop adjunctive therapies for HAND that can also minimize the undesired negative effects of the antiretrovirals.

  9. Effects of ketoconazole and valproic acid on the pharmacokinetics of the next generation NNRTI, lersivirine (UK-453,061), in healthy adult subjects.

    Science.gov (United States)

    Langdon, Grant; Davis, John; Layton, Gary; Chong, Chew-Lan; Weissgerber, Georges; Vourvahis, Manoli

    2012-05-01

    To investigate the effect of inhibitors of cytochrome P450 (CYP) 3A4 and glucuronidation (UGT2B7) on the pharmacokinetics of lersivirine (UK-453,061), a next generation non-nucleoside reverse transcriptase inhibitor with a unique resistance profile, and to investigate the safety and tolerability of co-administration of lersivirine with these inhibitors. Two open-label, randomized, placebo-controlled, crossover studies were conducted in healthy subjects. Study 1 investigated the effect of ketoconazole (400 mg once daily) on the pharmacokinetics of lersivirine (250 mg once daily). Subjects received ketoconazole 400 mg once daily or placebo on days 1-2 and received lersivirine 250 mg once daily and ketoconazole 400 mg once daily or placebo on days 3-9. Study 2 investigated the effect of valproic acid (VPA, sodium valproate, 1000 mg once daily) on the PK of lersivirine (500 mg once daily). On days 1-7, subjects received lersivirine 500 mg once daily plus either VPA 1000 mg or placebo. Compared with lersivirine alone, co-administration with ketoconazole increased the lersivirine mean area under the curve (AUC(0,24 h)) and maximum plasma concentration (C(max) ) by 82% (90% CI 74%, 91%) and 61% (90% CI 41%, 83%), respectively. VPA increased the mean lersivirine AUC(0,24 h) by 25% (90% CI 16%, 35%), with little effect on C(max) (2.5%, 90% CI -9%, 16%). There were no serious adverse events and no treatment-related discontinuations from either study. Inhibition of CYP3A4 and UGT2B7 by ketoconazole increased lersivirine exposure. Inhibition of UGT2B7-mediated glucuronidation by VPA had a modest effect on lersivirine exposure. Co-administration of lersivirine with either ketoconazole or VPA appeared to be well tolerated. © 2011 Pfizer Inc. British Journal of Clinical Pharmacology © 2011 The British Pharmacological Society.

  10. Combined Treatment with Valproic Acid and 5-Aza-2'-Deoxycytidine Synergistically Inhibits Human Clear Cell Renal Cell Carcinoma Growth and Migration.

    Science.gov (United States)

    Xi, Wenjin; Chen, Xu; Sun, Jinbo; Wang, Wei; Huo, Yi; Zheng, Guoxu; Wu, Jieheng; Li, Yufang; Yang, Angang; Wang, Tao

    2018-02-19

    BACKGROUND Histone acetylation and DNA methylation are important mammalian epigenetic modifications that participate in the regulation of gene expression. Because dysregulation of histone deacetylase and DNA methyltransferases are hallmarks of malignancy, they have become promising therapeutic targets. In this study, we explored the anti-tumor activity of valproic acid (VPA), a histone deacetylase inhibitor (HDACi) and 5-Aza-2'-deoxycytidine (5-Aza), an inhibitor of DNA methyltransferases, on renal cell carcinoma (RCC) cell lines 786-O and 769-P. MATERIAL AND METHODS The cell proliferation was detected by xCELLigence RTCA DP Instrument, viability by CCK8 assay, cell apoptosis and cell cycle by flow cytometry, and cell migration by wound healing assay, Transwell assay and xCELLigence RTCA DP Instrument. RESULTS We discovered that VPA and 5-Aza could individually induce decreased viability and have an inhibitory effect on the proliferation of 786-O and 769-P cells. This anti-growth effect was more pronounced when the cells were treated with both VPA and 5-Aza. The combination of VPA and 5-Aza also elicited more apoptosis and produced more cell cycle arrest in the G1 phase for both cell lines. On the other hand, treatment of RCC cells with VPA, 5-Aza, or a combination of both resulted in slow wound healing and impaired migration. CONCLUSIONS These findings clearly demonstrated that VPA combined with 5-Aza could significantly increase anti-RCC effects by inhibiting cellular proliferation, inducing apoptosis, promoting cell cycle arrest and prohibiting the migration of human RCC cells.

  11. Improvement by methylphenidate and atomoxetine of social interaction deficits and recognition memory impairment in a mouse model of valproic acid-induced autism.

    Science.gov (United States)

    Hara, Yuta; Ago, Yukio; Taruta, Atsuki; Katashiba, Keisuke; Hasebe, Shigeru; Takano, Erika; Onaka, Yusuke; Hashimoto, Hitoshi; Matsuda, Toshio; Takuma, Kazuhiro

    2016-09-01

    Rodents exposed prenatally to valproic acid (VPA) show autism-related behavioral abnormalities. We recently found that prenatal VPA exposure causes a reduction of dopaminergic activity in the prefrontal cortex of male, but not female, mice. This suggests that reduced prefrontal dopaminergic activity is associated with behavioral abnormalities in VPA-treated mice. In the present study, we examined whether the attention deficit/hyperactivity disorder drugs methylphenidate and atomoxetine (which increase dopamine release in the prefrontal cortex, but not striatum, in mice) could alleviate the behavioral abnormalities and changes in dendritic spine morphology induced by prenatal VPA exposure. We found that methylphenidate and atomoxetine increased prefrontal dopamine and noradrenaline release in VPA-treated mice. Acute treatment with methylphenidate or atomoxetine did not alleviate the social interaction deficits or recognition memory impairment in VPA-treated mice, while chronic treatment for 2 weeks did. Methylphenidate or atomoxetine for 2 weeks also improved the prenatal VPA-induced decrease in dendritic spine density in the prefrontal cortex. The effects of these drugs on behaviors and dendritic spine morphology were antagonized by concomitant treatment with the dopamine-D1 receptor antagonist SCH39166 or the dopamine-D2 receptor antagonist raclopride, but not by the α2 -adrenoceptor antagonist idazoxan. These findings suggest that chronic treatment with methylphenidate or atomoxetine improves abnormal behaviors and diminishes the reduction in spine density in VPA-treated mice via a prefrontal dopaminergic system-dependent mechanism. Autism Res 2016, 9: 926-939. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  12. Valproic acid increases NO production via the SH-PTP1-CDK5-eNOS-Ser(116) signaling cascade in endothelial cells and mice.

    Science.gov (United States)

    Cho, Du-Hyong; Park, Jung-Hyun; Joo Lee, Eun; Jong Won, Kyung; Lee, Sang-Hee; Kim, Yang-Hoon; Hwang, Soojin; Ja Kwon, Kyoung; Young Shin, Chan; Song, Kee-Ho; Jo, Inho; Han, Seol-Heui

    2014-11-01

    Valproic acid (VPA) with its inhibitory activity of histone deacetylase has been used in the treatment of epilepsy and bipolar disorder associated with cerebrovascular dysfunction. Because nitric oxide (NO) produced by endothelial NO synthase (eNOS) plays a role in the maintenance of vascular function, NO is likely to mediate VPA׳s drug effect, but its effect on NO production remains controversial. We investigated whether and how VPA regulates NO production in bovine aortic endothelial cells (BAECs) and mice. VPA increased NO production in BAECs, which was accompanied by a decrease in phosphorylation of eNOS at serine 116 (eNOS-Ser(116)) and cyclin-dependent kinase 5 at tyrosine 15 (CDK5-Tyr(15)). Ectopic expression of p25, a CDK5 activator, restored the VPA-inhibited eNOS-Ser(116) phosphorylation. In silico analysis revealed that the CDK5-Tyr(15) residue might be a substrate for SH2 domain-containing protein tyrosine phosphatase 1 (SH-PTP1), and CDK5 actually interacted with SH-PTP1. VPA increased SH-PTP1 expression and its activity. Stibogluconate, a specific SH-PTP1 inhibitor, reversed the VPA-inhibited phosphorylation of CDK5-Tyr(15) and eNOS-Ser(116). Knockdown of SH-PTP1 using small interfering RNA also reversed all the observed effects of VPA. Finally, both serum NO level and acetylcholine-induced aortic relaxation increased in VPA-medicated male mice. These increases were accompanied by increased SH-PTP1 expression and decreased phosphorylation of CDK5-Tyr(15) and eNOS-Ser(116) in mouse aortas. In conclusion, VPA increases NO production by inhibiting the CDK5-Tyr(15)-eNOS-Ser(116) phosphorylation axis; this process is mediated by SH-PTP1. VPA may be useful in the treatment of NO-related cerebrocardiovascular diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Effects of lithium and valproic acid on gene expression and phenotypic markers in an NT2 neurosphere model of neural development.

    Directory of Open Access Journals (Sweden)

    Eric J Hill

    Full Text Available Mood stabilising drugs such as lithium (LiCl and valproic acid (VPA are the first line agents for treating conditions such as Bipolar disorder and Epilepsy. However, these drugs have potential developmental effects that are not fully understood. This study explores the use of a simple human neurosphere-based in vitro model to characterise the pharmacological and toxicological effects of LiCl and VPA using gene expression changes linked to phenotypic alterations in cells. Treatment with VPA and LiCl resulted in the differential expression of 331 and 164 genes respectively. In the subset of VPA targeted genes, 114 were downregulated whilst 217 genes were upregulated. In the subset of LiCl targeted genes, 73 were downregulated and 91 were upregulated. Gene ontology (GO term enrichment analysis was used to highlight the most relevant GO terms associated with a given gene list following toxin exposure. In addition, in order to phenotypically anchor the gene expression data, changes in the heterogeneity of cell subtype populations and cell cycle phase were monitored using flow cytometry. Whilst LiCl exposure did not significantly alter the proportion of cells expressing markers for stem cells/undifferentiated cells (Oct4, SSEA4, neurons (Neurofilament M, astrocytes (GFAP or cell cycle phase, the drug caused a 1.4-fold increase in total cell number. In contrast, exposure to VPA resulted in significant upregulation of Oct4, SSEA, Neurofilament M and GFAP with significant decreases in both G2/M phase cells and cell number. This neurosphere model might provide the basis of a human-based cellular approach for the regulatory exploration of developmental impact of potential toxic chemicals.

  14. Effects of lithium and valproic acid on gene expression and phenotypic markers in an NT2 neurosphere model of neural development.

    Science.gov (United States)

    Hill, Eric J; Nagel, David A; O'Neil, John D; Torr, Elizabeth; Woehrling, Elizabeth K; Devitt, Andrew; Coleman, Michael D

    2013-01-01

    Mood stabilising drugs such as lithium (LiCl) and valproic acid (VPA) are the first line agents for treating conditions such as Bipolar disorder and Epilepsy. However, these drugs have potential developmental effects that are not fully understood. This study explores the use of a simple human neurosphere-based in vitro model to characterise the pharmacological and toxicological effects of LiCl and VPA using gene expression changes linked to phenotypic alterations in cells. Treatment with VPA and LiCl resulted in the differential expression of 331 and 164 genes respectively. In the subset of VPA targeted genes, 114 were downregulated whilst 217 genes were upregulated. In the subset of LiCl targeted genes, 73 were downregulated and 91 were upregulated. Gene ontology (GO) term enrichment analysis was used to highlight the most relevant GO terms associated with a given gene list following toxin exposure. In addition, in order to phenotypically anchor the gene expression data, changes in the heterogeneity of cell subtype populations and cell cycle phase were monitored using flow cytometry. Whilst LiCl exposure did not significantly alter the proportion of cells expressing markers for stem cells/undifferentiated cells (Oct4, SSEA4), neurons (Neurofilament M), astrocytes (GFAP) or cell cycle phase, the drug caused a 1.4-fold increase in total cell number. In contrast, exposure to VPA resulted in significant upregulation of Oct4, SSEA, Neurofilament M and GFAP with significant decreases in both G2/M phase cells and cell number. This neurosphere model might provide the basis of a human-based cellular approach for the regulatory exploration of developmental impact of potential toxic chemicals.

  15. Evaluation of muscle strength and motor abilities in children with type II and III spinal muscle atrophy treated with valproic acid

    Directory of Open Access Journals (Sweden)

    Zanoteli Edmar

    2011-03-01

    Full Text Available Abstract Background Spinal muscular atrophy (SMA is an autosomal recessive disorder that affects the motoneurons of the spinal anterior horn, resulting in hypotonia and muscle weakness. The disease is caused by deletion or mutation in the telomeric copy of SMN gene (SMN1 and clinical severity is in part determined by the copy number of the centromeric copy of the SMN gene (SMN2. The SMN2 mRNA lacks exon 7, resulting in a production of lower amounts of the full-length SMN protein. Knowledge of the molecular mechanism of diseases has led to the discovery of drugs capable of increasing SMN protein level through activation of SMN2 gene. One of these drugs is the valproic acid (VPA, a histone deacetylase inhibitor. Methods Twenty-two patients with type II and III SMA, aged between 2 and 18 years, were treated with VPA and were evaluated five times during a one-year period using the Manual Muscle Test (Medical Research Council scale-MRC, the Hammersmith Functional Motor Scale (HFMS, and the Barthel Index. Results After 12 months of therapy, the patients did not gain muscle strength. The group of children with SMA type II presented a significant gain in HFMS scores during the treatment. This improvement was not observed in the group of type III patients. The analysis of the HFMS scores during the treatment period in the groups of patients younger and older than 6 years of age did not show any significant result. There was an improvement of the daily activities at the end of the VPA treatment period. Conclusion Treatment of SMA patients with VPA may be a potential alternative to alleviate the progression of the disease. Trial Registration ClinicalTrials.gov: NCT01033331

  16. SMA CARNIVAL TRIAL PART II: a prospective, single-armed trial of L-carnitine and valproic acid in ambulatory children with spinal muscular atrophy.

    Directory of Open Access Journals (Sweden)

    John T Kissel

    Full Text Available BACKGROUND: Multiple lines of evidence have suggested that valproic acid (VPA might benefit patients with spinal muscular atrophy (SMA. The SMA CARNIVAL TRIAL was a two part prospective trial to evaluate oral VPA and L-carnitine in SMA children. Part 1 targeted non-ambulatory children ages 2-8 in a 12 month cross over design. We report here Part 2, a twelve month prospective, open-label trial of VPA and L-carnitine in ambulatory SMA children. METHODS: This study involved 33 genetically proven type 3 SMA subjects ages 3-17 years. Subjects underwent two baseline assessments over 4-6 weeks and then were placed on VPA and L-carnitine for 12 months. Assessments were performed at baseline, 3, 6 and 12 months. Primary outcomes included safety, adverse events and the change at 6 and 12 months in motor function assessed using the Modified Hammersmith Functional Motor Scale Extend (MHFMS-Extend, timed motor tests and fine motor modules. Secondary outcomes included changes in ulnar compound muscle action potential amplitudes (CMAP, handheld dynamometry, pulmonary function, and Pediatric Quality of Life Inventory scores. RESULTS: Twenty-eight subjects completed the study. VPA and carnitine were generally well tolerated. Although adverse events occurred in 85% of subjects, they were usually mild and transient. Weight gain of 20% above body weight occurred in 17% of subjects. There was no significant change in any primary outcome at six or 12 months. Some pulmonary function measures showed improvement at one year as expected with normal growth. CMAP significantly improved suggesting a modest biologic effect not clinically meaningful. CONCLUSIONS: This study, coupled with the CARNIVAL Part 1 study, indicate that VPA is not effective in improving strength or function in SMA children. The outcomes used in this study are feasible and reliable, and can be employed in future trials in SMA. TRIAL REGSITRATION: Clinicaltrials.gov NCT00227266.

  17. Downregulation of Homer1b/c in SOD1 G93A Models of ALS: A Novel Mechanism of Neuroprotective Effect of Lithium and Valproic Acid.

    Science.gov (United States)

    Jiang, Hai-Zhi; Wang, Shu-Yu; Yin, Xiang; Jiang, Hong-Quan; Wang, Xu-Dong; Wang, Jing; Wang, Tian-Hang; Qi, Yan; Yang, Yue-Qing; Wang, Ying; Zhang, Chun-Ting; Feng, Hong-Lin

    2016-12-17

    Mutations in the Cu/Zn superoxide dismutase (SOD1) gene have been linked to amyotrophic lateral sclerosis (ALS). However, the molecular mechanisms have not been elucidated yet. Homer family protein Homer1b/c is expressed widely in the central nervous system and plays important roles in neurological diseases. In this study, we explored whether Homer1b/c was involved in SOD1 mutation-linked ALS. In vitro studies showed that the SOD1 G93A mutation induced an increase of Homer1b/c expression at both the mRNA and protein levels in NSC34 cells. Knockdown of Homer1b/c expression using its short interfering RNA (siRNA) (si-Homer1) protected SOD1 G93A NSC34 cells from apoptosis. The expressions of Homer1b/c and apoptosis-related protein Bax were also suppressed, while Bcl-2 was increased by lithium and valproic acid (VPA) in SOD1 G93A NSC34 cells. In vivo, both the mRNA and protein levels of Homer1b/c were increased significantly in the lumbar spinal cord in SOD1 G93A transgenic mice compared with wild type (WT) mice. Moreover, lithium and VPA treatment suppressed the expression of Homer1b/c in SOD1 G93A mice. The suppression of SOD1 G93A mutation-induced Homer1b/c upregulation protected ALS against neuronal apoptosis, which is a novel mechanism of the neuroprotective effect of lithium and VPA. This study provides new insights into pathogenesis and treatment of ALS.

  18. Downregulation of Homer1b/c in SOD1 G93A Models of ALS: A Novel Mechanism of Neuroprotective Effect of Lithium and Valproic Acid

    Directory of Open Access Journals (Sweden)

    Hai-Zhi Jiang

    2016-12-01

    Full Text Available Background: Mutations in the Cu/Zn superoxide dismutase (SOD1 gene have been linked to amyotrophic lateral sclerosis (ALS. However, the molecular mechanisms have not been elucidated yet. Homer family protein Homer1b/c is expressed widely in the central nervous system and plays important roles in neurological diseases. In this study, we explored whether Homer1b/c was involved in SOD1 mutation-linked ALS. Results: In vitro studies showed that the SOD1 G93A mutation induced an increase of Homer1b/c expression at both the mRNA and protein levels in NSC34 cells. Knockdown of Homer1b/c expression using its short interfering RNA (siRNA (si-Homer1 protected SOD1 G93A NSC34 cells from apoptosis. The expressions of Homer1b/c and apoptosis-related protein Bax were also suppressed, while Bcl-2 was increased by lithium and valproic acid (VPA in SOD1 G93A NSC34 cells. In vivo, both the mRNA and protein levels of Homer1b/c were increased significantly in the lumbar spinal cord in SOD1 G93A transgenic mice compared with wild type (WT mice. Moreover, lithium and VPA treatment suppressed the expression of Homer1b/c in SOD1 G93A mice. Conclusion: The suppression of SOD1 G93A mutation-induced Homer1b/c upregulation protected ALS against neuronal apoptosis, which is a novel mechanism of the neuroprotective effect of lithium and VPA. This study provides new insights into pathogenesis and treatment of ALS.

  19. Foamed acid stimulation of old wells

    Energy Technology Data Exchange (ETDEWEB)

    Ford, W.G.F.

    1980-12-01

    As oil and gas wells age, many of them exhibit similar characteristics. One of the most obvious is reduced bottom-hole pressure that can contribute to the formation of paraffins, asphaltenes, and scales. Many old wells have had repeated acid treatments. Following conventional acid treatments, large amounts of insoluble fines such as quartz, gypsum, and feldspars may cause a reduction in fracture conductivity. All of these factors related to old wells are especially amenable to foamed acid stimulation. Treatment of wells with characteristics as outlined above with a conventional nonfoamed acid treatment probably will be beneficial. However, the high liquid content of conventional fluids may exacerbate the clay problems. Low viscosity of the spent acid may leave a large amount of insoluble fines in the well. Finally, low bottom-hole pressure may necessitate swabbing to clean up the well. Foamed acid offers characteristics to virtually eliminate the problems. First, foamed acid has a low liquid content. Less liquid contacts the formation, thereby reducing the chance for damage. Foamed acid offers high apparent viscosity. Foamed acid offers built-in gas assist. Finally, foamed acid is simply more effective than nonfoamed acid treatments in many situations.

  20. Systemic administration of valproic acid and zonisamide promotes the survival and differentiation of induced pluripotent stem cell–derived dopaminergic neurons

    Directory of Open Access Journals (Sweden)

    Tatsuya eYoshikawa

    2013-02-01

    Full Text Available Cell replacement therapy using embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs is a promising strategy for the treatment of neurologic diseases such as Parkinson’s disease (PD. However, a limiting factor for effective cell transplantation is the low survival rate of grafted cells, especially neurons. In this study, we modified the host environment and investigated whether the simultaneous administration of soluble factors can improve the survival and differentiation of murine iPSC-derived dopaminergic (DA neurons in host brains. With the goal of applying this technology in clinical settings in the near future, we selected drugs that were already approved for clinical use. The drugs included two commonly used anticonvulsants, valproic acid (VPA and zonisamide (ZNS, and estradiol (E2, also known as biologically active estrogen. Following neural induction of murine iPSCs, we collected neural progenitor cells by sorting PSA-NCAM+ cells, then treated the PSA-NCAM+ cells with drugs for four days. An immunofluorescence study revealed that 0.01 mM and 0.1 mM of VPA and 10 nM of E2 increased the percentage of tyrosine hydroxylase+ (TH: a DA neuron marker cells in vitro. Furthermore, 0.1 mM of VPA increased the percentage of TH+ cells that simultaneously express the midbrain markers FOXA2 and NURR1. Next, in order to determine the effects of the drugs in vivo, the iPSC-derived NPCs were transplanted into the striata of intact SD rats. The animals received intraperitoneal injections of one of the drugs for four weeks, then were subjected to an immunofluorescence study. VPA administration (150 mg/kg/daily increased the number of NeuN+ postmitotic neurons and TH+ DA neurons in the grafts. Furthermore, VPA (150 mg/kg/daily and ZNS (30 mg/kg/daily increased the number of TH+FOXA2+ midbrain DA neurons. These results suggest that the systemic administration of VPA and ZNS may improve the efficiency of cell replacement therapy using i

  1. Differential improvement of the sleep quality among patients with juvenile myoclonic epilepsy with valproic acid: A longitudinal sleep questionnaire-based study.

    Science.gov (United States)

    Nayak, Chetan; Sinha, Sanjib; Ramachandraiah, Chaitra T; Nagappa, Madhu; Thennarasu, Kandivali; Taly, Arun B; Satishchandra, Parthasarathy

    2015-01-01

    The aim of this study was to assess the effect of sodium valproic acid (SVA) on the sleep quality of patients with juvenile myoclonic epilepsy (JME). Standardized sleep questionnaires viz. Epworth Sleepiness Scale (ESS) and Pittsburgh Sleep Quality Index (PSQI) were administered to 30 drug-naïve patients with JME (male:female (M:F) = 14:16; age: 21 ± 3.7 years) and the changes following SVA monotherapy was analyzed using t- and chi-squared tests. The mean age at onset of seizures and diagnosis was 15.43 ± 3.8 and 21 ± 5.1, years respectively. All had myoclonic jerks with mean duration of 5.23 ± 2.7 years, aggravated by sleep deprivation (23, 76.7%) and sleep-wake transition (29, 96.7%). Twenty-seven (90%) had generalized tonic-clonic seizures (GTCS), majority (70%) on awakening from sleep. Seizures were controlled in 25 patients (83.33%) with SVA monotherapy. Abnormal ESS was noted in five (16.66%) drug naïve patients compared to six (20%) patients while on SVA (P = 0.782). Mean ESS remained unchanged before and after SVA therapy (6.27 ± 4.4 vs 6.97 ± 4.7, P = 0.262). On the other hand, only four (13.3%) patients had abnormal PSQI scores at follow-up after initiation of SVA, as compared to 14 (46.7%) subjects in the drug naïve state (P = 0.037). Further, we also found significant reduction in mean PSQI scores after initiating SVA monotherapy (6.7 ± 5.6 vs 2.7 ± 2.84, P £ 0.0001). This study showed that the mean PSQI as well as the number of patients with abnormal PSQI significantly reduced after initiating SVA therapy, suggesting a significant improvement in night-time sleep quality with SVA treatment. However, SVA therapy did not alter ESS.

  2. SMA CARNI-VAL trial part I: double-blind, randomized, placebo-controlled trial of L-carnitine and valproic acid in spinal muscular atrophy.

    Directory of Open Access Journals (Sweden)

    Kathryn J Swoboda

    2010-08-01

    Full Text Available Valproic acid (VPA has demonstrated potential as a therapeutic candidate for spinal muscular atrophy (SMA in vitro and in vivo.Two cohorts of subjects were enrolled in the SMA CARNIVAL TRIAL, a non-ambulatory group of "sitters" (cohort 1 and an ambulatory group of "walkers" (cohort 2. Here, we present results for cohort 1: a multicenter phase II randomized double-blind intention-to-treat protocol in non-ambulatory SMA subjects 2-8 years of age. Sixty-one subjects were randomized 1:1 to placebo or treatment for the first six months; all received active treatment the subsequent six months. The primary outcome was change in the modified Hammersmith Functional Motor Scale (MHFMS score following six months of treatment. Secondary outcomes included safety and adverse event data, and change in MHFMS score for twelve versus six months of active treatment, body composition, quantitative SMN mRNA levels, maximum ulnar CMAP amplitudes, myometry and PFT measures.At 6 months, there was no difference in change from the baseline MHFMS score between treatment and placebo groups (difference = 0.643, 95% CI = -1.22-2.51. Adverse events occurred in >80% of subjects and were more common in the treatment group. Excessive weight gain was the most frequent drug-related adverse event, and increased fat mass was negatively related to change in MHFMS values (p = 0.0409. Post-hoc analysis found that children ages two to three years that received 12 months treatment, when adjusted for baseline weight, had significantly improved MHFMS scores (p = 0.03 compared to those who received placebo the first six months. A linear regression analysis limited to the influence of age demonstrates young age as a significant factor in improved MHFMS scores (p = 0.007.This study demonstrated no benefit from six months treatment with VPA and L-carnitine in a young non-ambulatory cohort of subjects with SMA. Weight gain, age and treatment duration were significant confounding variables that

  3. DNA Methylation Changes in Valproic Acid-Treated HeLa Cells as Assessed by Image Analysis, Immunofluorescence and Vibrational Microspectroscopy.

    Directory of Open Access Journals (Sweden)

    Giovana M B Veronezi

    Full Text Available Valproic acid (VPA, a well-known histone deacetylase inhibitor, has been reported to affect the DNA methylation status in addition to inducing histone hyperacetylation in several cell types. In HeLa cells, VPA promotes histone acetylation and chromatin remodeling. However, DNA demethylation was not checked in this cell model for standing effects longer than those provided by histone acetylation, which is a rapid and transient phenomenon. Demonstration of VPA-induced DNA demethylation in HeLa cells would contribute to understanding the effect of VPA on an aggressive tumor cell line. In the present work, DNA demethylation in VPA-treated HeLa cells was assessed by image analysis of chromatin texture, the abundance of 5-methylcytosine (5mC immunofluorescence signals and Fourier transform-infrared (FT-IR microspectroscopy centered on spectral regions related to the vibration of-CH3 groups. Image analysis indicated that increased chromatin unpacking promoted by a 4-h-treatment with 1.0 mM VPA persisted for 24 h in the absence of the drug, suggesting the occurrence of DNA demethylation that was confirmed by decreased 5mC immunofluorescence signals. FT-IR spectra of DNA samples from 1 mM or 20 mM VPA-treated cells subjected to a peak fitting analysis of the spectral window for-CH3 stretching vibrations showed decreased vibrations and energy of these groups as a function of the decreased abundance of 5mC induced by increased VPA concentrations. Only the 20 mM-VPA treatment caused an increase in the ratio of -CH3 bending vibrations evaluated at 1375 cm-1 in relation to in-plane vibrations of overall cytosines evaluated at 1492 cm-1. CH3 stretching vibrations showed to be more sensitive than-CH3 bending vibrations, as detected with FT-IR microspectroscopy, for studies aiming to associate vibrational spectroscopy and changes in DNA 5mC abundance.

  4. Corrigendum to “Long-term valproic acid exposure increases the number of neocortical neurons in the developing rat brain" [Neurosci.Lett. 580 (2014) 12–16] A possible new animal model of autism

    DEFF Research Database (Denmark)

    Sabers, Anne; Bertelsen, Freja C B; Scheel-Krüger, Jørgen

    2015-01-01

    The aim of this study was to test the hypothesis that long-term fetal valproic acid (VPA) exposure at doses relevant to the human clinic interferes with normal brain development. Pregnant rats were given intraperitoneal injections of VPA (20 mg/kg or 100 mg/kg) continuously during the last 9....... Pups exposed to 100 mg/kg, but not to 20 mg/kg VPA displayed a significant (p development by disturbing neocortical organization......, resulting in overgrowth of frontal lobes and increased neuronal cell numbers. The results indirectly suggest that prenatal VPA may contribute as a causative factor in the brain developmental disturbances equivalent to those seen inhuman autism spectrum disorders. We therefore suggest that this version...

  5. Optimising the Effect of Stimulants on Citric Acid Production from ...

    African Journals Online (AJOL)

    Additives such as low molecular weight alcohols, trace metals, phytate, lipids etc have been reported to stimulate citric acid production. Hence the objective of this study was to investigate the effect of stimulating the metabolic activity of Aspergillus niger for the purpose of improved citric acid production from cocoyam starch.

  6. In Vitro Characterization of Valproic Acid, ATRA, and Cytarabine Used for Disease-Stabilization in Human Acute Myeloid Leukemia: Antiproliferative Effects of Drugs on Endothelial and Osteoblastic Cells and Altered Release of Angioregulatory Mediators by Endothelial Cells.

    Science.gov (United States)

    Kvestad, Hilde; Evensen, Lasse; Lorens, James B; Bruserud, Oystein; Hatfield, Kimberley J

    2014-01-01

    The combined use of the histone deacetylase inhibitor valproic acid (VPA), the retinoic acid receptor- α agonist all-trans retinoic acid (ATRA), and the deoxyribonucleic acid polymerase- α inhibitor cytarabine (Ara-C) is now considered for disease-stabilizing treatment of acute myeloid leukemia (AML). Leukemogenesis and leukemia cell chemoresistance seem to be supported by neighbouring stromal cells in the bone marrow, and we have therefore investigated the effects of these drugs on primary human endothelial cells and the osteoblastic Cal72 cell line. The results show that VPA and Ara-C have antiproliferative effects, and the antiproliferative/cytotoxic effect of Ara-C was seen at low concentrations corresponding to serum levels found during low-dose in vivo treatment. Furthermore, in functional assays of endothelial migration and tube formation VPA elicited an antiangiogenic effect, whereas ATRA elicited a proangiogenic effect. Finally, VPA and ATRA altered the endothelial cell release of angiogenic mediators; ATRA increased levels of CXCL8, PDGF-AA, and VEGF-D, while VPA decreased VEGF-D and PDGF-AA/BB levels and both drugs reduced MMP-2 levels. Several of these mediators can enhance AML cell proliferation and/or are involved in AML-induced bone marrow angiogenesis, and direct pharmacological effects on stromal cells may thus indirectly contribute to the overall antileukemic activity of this triple drug combination.

  7. Insuficiência aguda hepática associada ao ácido valpróico na infância: relato de três casos Acute hepatic failure with valproic acid in children: report of three cases

    Directory of Open Access Journals (Sweden)

    Sérgio A. Antoniuk

    1996-12-01

    Full Text Available Relatamos três casos da insuficiência aguda hepática associada ao uso de ácido valpróico (AVP em crianças epilépticas. A idade variou de 2 anos e 8 meses a 5 anos e 1 mês. Todos os pacientes apresentavam epilepsia de difícil controle e dois deles tinham desenvolvimento psicomotor severamente comprometido. O AVP foi usado em associação com outros antiepilépticos (carbamazepina em dois, fenobarbital em um. Todos os pacientes apresentaram sinais clínicos de insuficiência hepática.Vômitos, edema e icterícia foram os sinais iniciais. Febre ocorreu em dois pacientes. Os exames laboratoriais mostraram transaminases pouco aumentadas (inferiores a 194 U/l e níveis de bilirrubina entre 5,5 e 19,8 mg%. Um dos pacientes usava a droga há 12 meses e os dois outros, há menos de 6 meses. Dois pacientes apresentaram resolução do quadro hepático após a retirada da droga e um faleceu. Com este relato, salientamos a toxicidade do AVP em crianças epilépticas mesmo acima de dois anos de idade, principalmente em uso de politerapia, com comprometimento neurológico, e que o quadro pode ser reversível com a retirada da droga.We report the cases of three epileptic children who developed hepatotoxicity induced by valproic acid. Two patients had developmental delay. Including the one who died, all patients were receiving polytherapy (carbamazepine in two and phenobarbital in one. The patients age ranged from 2 years and 8 months to 5 years and 1 month. The onset of hepatic complications occurred within 6 months of valproate therapy in two patients and 12 months in one. All patients developed the classical clinical signs of hepatotoxicity. Vomiting, edema and jaundice were the initial symptoms. Fever occurred in two patients. The serum levels of glutamic oxaloacetic transaminase were mildly elevated with a maximum of 194 IU. The bilirubin levels ranged from 5.5 to 19.8 mg%. Two patients recovered clinically and showed normalization of the

  8. Autistic-Like Behaviors, Oxidative Stress Status, and Histopathological Changes in Cerebellum of Valproic Acid Rat Model of Autism Are Improved by the Combined Extract of Purple Rice and Silkworm Pupae.

    Science.gov (United States)

    Morakotsriwan, Nartnutda; Wattanathorn, Jintanaporn; Kirisattayakul, Woranan; Chaisiwamongkol, Kowit

    2016-01-01

    Due to the crucial role of oxidative stress on the pathophysiology of autism and the concept of synergistic effect, the benefit of the combined extract of purple rice and silkworm pupae (AP1) for autism disorder was the focus. Therefore, we aimed to determine the effect of AP1 on autistic-like behaviors, oxidative stress status, and histopathological change of cerebellum in valproic acid (VPA) rat model of autism. VPA was injected on postnatal day (PND) 14 and the animals were orally given AP1 at doses of 50, 100, and 200 mg·kg(-1) BW between PND 14 and PND 40. The autism-like behaviors were analyzed via hot-plate, rotarod, elevated plus-maze, learning, memory, and social behavior tests. Oxidative stress and the histological change in the cerebellum were assessed at the end of study. AP1 treated rats improved behaviors in all tests except that in hot-plate test. The improvement of oxidative stress and Purkinje cell loss was also observed in the cerebellum of VPA-treated rats. Our data suggest that AP1 partially reduced autism-like behaviors by improving oxidative stress and Purkinje cell loss. Further research is required to identify the active ingredients in AP1 and gender difference effect.

  9. New acid systems for sandstone stimulation. [Oil wells

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G.J.; Wong, T.C.T.; Mungan, N.

    1982-01-01

    A new series of prepackaged acid systems have been developed for stimulation of sandstone formations. The original system, containing phosphoric acid and other additives (P.P.A.S.) was specifically formulated to overcome several limitations of existing acid systems. The scope of applications for P.P.A.S. has since been expanded by combining HCl (Hydrochloric acid) or HF (Hydrofluoric acid) with the P.P.A.S. to form hybrid systems that have unique properties. These new systems have been successfully used for stimulating sandstone formations that have been difficult to treat with existing acid systems. The problems associated with currently used acids and their limitations are compared to the P.P.A.S. to illustrate the advantages of these new systems. 10 refs.

  10. Maleic acid and succinic acid in fermented alcoholic beverages are the stimulants of gastric acid secretion

    OpenAIRE

    Teyssen, Stephan; González-Calero, Gloria; Schimiczek, Michael; Singer, Manfred V

    1999-01-01

    Alcoholic beverages produced by fermentation (e.g., beer and wine) are powerful stimulants of gastric acid output and gastrin release in humans. The aim of this study was to separate and specify the gastric acid stimulatory ingredients in alcoholic beverages produced by fermentation. Yeast-fermented glucose was used as a simple model of fermented alcoholic beverages; it was stepwise separated by different methods of liquid chromatography, and each separated solution was tested in human volunt...

  11. Association of CYP2C9, CYP2A6, ACSM2A, and CPT1A gene polymorphisms with adverse effects of valproic acid in Chinese patients with epilepsy.

    Science.gov (United States)

    Wang, Can; Wang, Ping; Yang, Li-Ping; Pan, Jing; Yang, Xue; Ma, Hong-Ying

    2017-05-01

    To explore the influence of CYP2C9, CYP2A6, ACSM2A, CPT1A gene polymorphisms on valproic acid (VPA) and its role in metabolism-related liver dysfunction in order to guide the clinical safety and rational use of VPA. One hundred two patients taking sodium valproate oral solution were genotyped. To assess the genotypes of relevant genes, the CYP2C9 gene was directly sequenced; for polymorphism classification, multiple Long-PCR electrophoresis was conducted for CYP2A6; and imLDR method was used for ACSM2A and CPT1A. GC-MS-SIM was used to determine the levels of VPA and 2-propyl-4-pentenoic acid (4-ene-VPA) in human plasma simultaneously. CYP2C9 mutations had a significant impact on 4-ene-VPA concentration, in patients with wild-type CYP2C9 (CYP2C9*1), which has a greater capacity for VPA metabolism than the mutant type (CYP2C9*3), liver dysfunction was substantially higher. Patients with an ACSM2A polymorphism had higher levels of ALT and AST compared with wild-type (p0.05). Among different CYP2A6 and CPT1A genotype groups, there was no significant correlation in the levels of VPA, 4-ene-VPA, ALT, AST or TB (p>0.05). The content of 4-ene-VPA had no direct correlation with the incidence of liver dysfunction. Early detection of CYP2C9 gene polymorphisms may help to predict or prevent liver dysfunction caused by VPA. While the concentration of 4-ene-VPA was not suitable as an early warning index, the results provide clear theoretical guidance for the rational and safe clinical use of VPA. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Stimulation of acid formation in permeable gastric glands by valinomycin

    Energy Technology Data Exchange (ETDEWEB)

    Hersey, S.J.; Steiner, L. (Emory Univ., Atlanta, GA (USA))

    1988-09-01

    Isolated gastric glands made permeable with digitonin treatment were employed to study the ionic requirements of acid formation. Acid formation was monitored by the accumulation of a novel weak base probe, ({sup 14}C)benzylamine. ATP-dependent acid formation was found to require K{sup +} in a concentration-dependent manner, with an apparent K{sub 0.5} = 7 mM. The anion dependence of acid formation gave a selectivity sequence of Cl = I > Br < NO{sub 3} > SO{sub 4} = isethionate, with isethionate being {approximately}50% as effective as Cl. The dependence of acid formation on (Cl) gave an apparent K{sub 0.5} = 6 mM. Addition of the K{sup +} ionophore, valinomycin, to resting glands (cimetidine pretreatment) resulted in a two- to threefold increase in ATP-dependent acid formation. In contrast, stimulated (forskolin pretreated) glands showed a greater accumulation of benzylamine with ATP but significantly less valinomycin stimulation. The valinomycin stimulation required both K{sup +} and Cl{sup {minus}} and was inhibited by omeprazole and Sch 28080. The results and interpreted to indicate that major events in the transition from a resting to a stimulated state include changes in both K{sup +} and anion permeability of the secretory membrane of parietal cells.

  13. Chenodeoxycholic acid stimulated fibroblast growth factor 19 response - a potential biochemical test for bile acid diarrhoea

    DEFF Research Database (Denmark)

    Borup, Christian; Wildt, S; Rumessen, J J

    2017-01-01

    BACKGROUND: Bile acid diarrhoea (BAD) is underdiagnosed and better diagnostic tests are needed. Fasting serum fibroblast growth factor-19 (FGF19) has insufficient diagnostic value, but this may be improved by stimulation. AIM: To explore if an impaired FGF19 response identifies primary bile acid ...... response following chenodeoxycholic acid plus meal is impaired in primary bile acid diarrhoea. This may provide a biochemical diagnostic test.......BACKGROUND: Bile acid diarrhoea (BAD) is underdiagnosed and better diagnostic tests are needed. Fasting serum fibroblast growth factor-19 (FGF19) has insufficient diagnostic value, but this may be improved by stimulation. AIM: To explore if an impaired FGF19 response identifies primary bile acid...

  14. Cytochalasins inhibit arachidonic acid metabolism in thrombin-stimulated platelets.

    OpenAIRE

    Siess, W; Lapetina, E G; Cuatrecasas, P

    1982-01-01

    Low concentrations (0.5-1 microM) of cytochalasins inhibit the thrombin-stimulated polymerization of monomeric actin to filamentous actin in platelets. Similar concentrations of cytochalasin B inhibit the formation and metabolism of arachidonic acid in horse platelets stimulated by low concentrations of thrombin (0.1-0.5 unit/ml). However, the release of serotonin is not inhibited by cytochalasin B. Cytochalasins B and D (0.5-1 microM) markedly reduce, in thrombin-stimulated human or horse pl...

  15. Cytokinin producing bacteria stimulate amino acid deposition by wheat roots.

    Science.gov (United States)

    Kudoyarova, Guzel R; Melentiev, Alexander I; Martynenko, Elena V; Timergalina, Leila N; Arkhipova, Tatiana N; Shendel, Galina V; Kuz'mina, Ludmila Yu; Dodd, Ian C; Veselov, Stanislav Yu

    2014-10-01

    Phytohormone production is one mechanism by which rhizobacteria can stimulate plant growth, but it is not clear whether the bacteria gain from this mechanism. The hypothesis that microbial-derived cytokinin phytohormones stimulate root exudation of amino acids was tested. The rhizosphere of wheat plants was drenched with the synthetic cytokinin trans-zeatin or inoculated with Bacillus subtilis IB-22 (which produces zeatin type cytokinins) or B. subtilis IB-21 (which failed to accumulate cytokinins). Growing plants in a split root system allowed spatial separation of zeatin application or rhizobacterial inoculation to one compartment and analyses of amino acid release from roots (rhizodeposition) into the other compartment (without either microbial inoculation or treatment with exogenous hormone). Supplying B. subtilis IB-22 or zeatin to either the whole root system or half of the roots increased concentrations of amino acids in the soil solution although the magnitude of the increase was greater when whole roots were treated. There was some similarity in amino acid concentrations induced by either bacterial or zeatin treatment. Thus B. subtilis IB-22 increased amino acid rhizodeposition, likely due to its ability to produce cytokinins. Furthermore, B. subtilis strain IB-21, which failed to accumulate cytokinins in culture media, did not significantly affect amino acid concentrations in the wheat rhizosphere. The ability of rhizobacteria to produce cytokinins and thereby stimulate rhizodeposition may be important in enhancing rhizobacterial colonization of the rhizoplane. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Stimulating effect of phosphatidic acid on autophosphorylation of phosphorylase kinase.

    Science.gov (United States)

    Negami, A I; Sasaki, H; Yamamura, H

    1985-09-16

    Autophosphorylation of phosphorylase kinase from rabbit skeletal muscle was stimulated by acidic phospholipids such as phosphatidic acid (PA), phosphatidylinositol, and phosphatidyl-serine. PA stimulated an initial velocity of autophosphorylation 3.8-fold. When fully autophosphorylated, about 11 mol of phosphate per tetramer (alpha beta gamma delta) were incorporated in the presence of PA and about 6.5 mol in the absence of PA. In the presence of PA (100 micrograms/ml), there was a concomitant enhancement of its kinase activity about 25-fold at pH 6.8. PA (100 micrograms/ml) sharply decreased an apparent Ka for Ca2+ on autophosphorylation from 4.0 X 10(-5) M to 1.0 X 10(-6) M. Available evidence indicates that the Ca2+-activated, PA-dependent autophosphorylation of phosphorylase kinase shows an ability to stimulate glycogen breakdown.

  17. Biochemical engineering of cell surface sialic acids stimulates axonal growth.

    Science.gov (United States)

    Büttner, Bettina; Kannicht, Christoph; Schmidt, Carolin; Löster, Klemens; Reutter, Werner; Lee, Hye-Youn; Nöhring, Sabine; Horstkorte, Rüdiger

    2002-10-15

    Sialylation is essential for development and regeneration in mammals. Using N-propanoylmannosamine, a novel precursor of sialic acid, we were able to incorporate unnatural sialic acids with a prolonged N-acyl side chain (e.g., N-propanoylneuraminic acid) into cell surface glycoconjugates. Here we report that this biochemical engineering of sialic acid leads to a stimulation of neuronal cells. Both PC12 cells and cerebellar neurons showed a significant increase in neurite outgrowth after treatment with this novel sialic acid precursor. Furthermore, also the reestablishment of the perforant pathway was stimulated in brain slices. In addition, we surprisingly identified several cytosolic proteins with regulatory functions, which are differentially expressed after treatment with N-propanoylmannosamine. Because sialic acid is the only monosaccharide that is activated in the nucleus, we hypothesize that transcription could be modulated by the unnatural CMP-N-propanoylneuraminic acid and that sialic acid activation might be a general tool to regulate cellular functions, such as neurite outgrowth.

  18. STIMULATION BY HYDROCHLORIC ACID AND BY THE NORMAL ALIPHATIC ACIDS IN THE SUNFISH EUPOMOTIS

    Science.gov (United States)

    Allison, James B.

    1932-01-01

    1. The reaction of the sunfish, Eupomotis gibbosus, to different concentrations of hydrochloric acid and of the first six members of the N aliphatic acids has been studied. 2. The stimulating efficiency of hydrochloric acid may best be related to the concentration of hydrogen ions produced by that acid. 3. The stimulating efficiency of the N aliphatic acids may best be correlated with the non-polar nature of a portion of the molecule, but it is necessary to consider the higher potential of the polar group of formic acid to account satisfactorily for its position in the series. 4. When equally effective concentrations of the N aliphatic acids are compared, formic acid is more effective at lower concentrations than at higher. 5. Per cent variation in response appears to be independent of the chemical environment to which the animal responded. PMID:19872671

  19. Determinação de ácido valpróico em soro por cromatografia líquida de alta eficiência com detector de arranjo de diodos (CLAE-DAD, após derivatização com brometo de fenacila Determination of valproic acid in serum by high performance liquid chromatography with diode array detection (HPLC-DAD, after derivatization with phenacyl bromide

    Directory of Open Access Journals (Sweden)

    Marina Venzon Antunes

    2009-01-01

    Full Text Available Valproic acid (VA is a drug used to control seizures in several epileptic conditions. In VA pharmacotherapy, therapeutic drug monitoring is recommended to obtain adequate seizure control and avoid toxicity. The aim of this study was to validate a method for the determination of valproic acid in serum, employing high performance liquid chromatography with diode array detection (HPLC-DAD, after derivatization with phenacyl bromide. The calibration curve (y=0.0133x-0.0025 presented good linearity with r²=0.9999. Accuracy (101-115%, intra-assay precision (4.53-8.15% and inter-assay precision (3.15-6.77% were acceptable. The quantification limit was 2.0 µg/mL. The method presented similar results to enzyme immunoassay.

  20. A rapid and simple HPLC-MS/MS method for the simultaneous quantification of valproic acid and its five metabolites in human plasma and application to study pharmacokinetic interaction in Chinese epilepsy patients.

    Science.gov (United States)

    Wen, Dingsheng; Chen, Ziyi; Yang, Chao; Liu, Huanbin; Li, Hongliang; Chen, Juan; Dai, Qiling; Zhong, Guoping; Qin, Jiaming; Ni, Guanzhong; Huang, Min; Zhou, Liemin; Wang, Xueding

    2017-11-16

    Valproic acid(VPA) is a classic drug that used to treat epilepsy in monotherapy or combination with other anticonvulsant drugs such as lamotrigine (LTG). Although it was reported that VPA could increase lamotrigine trough concentration in clinical practice, there was no report about the effect of LTG on the trough concentration of VPA and its main metabolites, such as 4-ene-VPA, 3-OH-VPA, 4-OH-VPA, 3-keto-VPA, 2-PGA which are related to the therapeutic and toxic effects of VPA. In this study, a simple and rapid method for the simultaneous determination of VPA and its five metabolites in human plasma using HPLC-MS/MS was developed for the first time. Benzoic acid was used as an internal standard (IS). Separation was performed on a Hypersil GOLD C18 column by isocratic elution using acetonitrile: 10mM ammonium acetate solution (90:10, v/v) as mobile phase at a flow rate of 0.3mL/min. A triple quadrupole mass spectrometer operating in the negative ion-switching, electron spray ionization mode with selection reaction monitoring (SRM) was employed to determine transitions of m/z 143.183→143.183, 157.033→113.165, 173.017→129.074, 159.058→101.082, 140.870→140. 870, 159.049→123.076, 121.035→77.136 for VPA, 2-PGA, 3-keto-VPA, 3-OH-VPA, 4-ene-VPA, 4-OH-VPA and IS, respectively. The method also afforded satisfactory results in terms of sensitivity, specificity, precision (intra- and inter-batch), accuracy, recovery, matrix effect and stability. This method was successfully applied to evaluate the effect of LTG on the trough concentration of VPA, 2-PGA, 3-keto-VPA, 3-OH-VPA, 4-ene-VPA, 4-OH-VPA in Chinese epilepsy patients. The result showed that there was no significant difference in the concentration of VPA and its five metabolites between patients in VPA monotherapy and patients in therapy combining VPA with LTG. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Valproic acid inhibits neural progenitor cell death by activation of NF-κB signaling pathway and up-regulation of Bcl-XL

    Directory of Open Access Journals (Sweden)

    Han Seol

    2011-07-01

    Full Text Available Abstract Background At the beginning of neurogenesis, massive brain cell death occurs and more than 50% of cells are eliminated by apoptosis along with neuronal differentiation. However, few studies were conducted so far regarding the regulation of neural progenitor cells (NPCs death during development. Because of the physiological role of cell death during development, aberration of normal apoptotic cell death is detrimental to normal organogenesis. Apoptosis occurs in not only neuron but also in NPCs and neuroblast. When growth and survival signals such as EGF or LIF are removed, apoptosis is activated as well as the induction of differentiation. To investigate the regulation of cell death during developmental stage, it is essential to investigate the regulation of apoptosis of NPCs. Methods Neural progenitor cells were cultured from E14 embryonic brains of Sprague-Dawley rats. For in vivo VPA animal model, pregnant rats were treated with VPA (400 mg/kg S.C. diluted with normal saline at E12. To analyze the cell death, we performed PI staining and PARP and caspase-3 cleavage assay. Expression level of proteins was investigated by Western blot and immunocytochemical assays. The level of mRNA expression was investigated by RT-PCR. Interaction of Bcl-XL gene promoter and NF-κB p65 was investigated by ChIP assay. Results In this study, FACS analysis, PI staining and PARP and caspase-3 cleavage assay showed that VPA protects cultured NPCs from cell death after growth factor withdrawal both in basal and staurosporine- or hydrogen peroxide-stimulated conditions. The protective effect of prenatally injected VPA was also observed in E16 embryonic brain. Treatment of VPA decreased the level of IκBα and increased the nuclear translocation of NF-κB, which subsequently enhanced expression of anti-apoptotic protein Bcl-XL. Conclusion To the best of our knowledge, this is the first report to indicate the reduced death of NPCs by VPA at developmentally

  2. A Comparative Study of Different Acids used for Sandstone Acid Stimulation: A Literature Review

    Science.gov (United States)

    Van Hong, Leong; Ben Mahmud, Hisham

    2017-07-01

    Matrix acidizing is an effective well stimulation technique, in which acids are injected at a pressure below the formation fracture pressure. The application of sandstone matrix acidizing has been widely used in the oil and gas industry for many decades. The application of mud acid, which is a combination of Hydrofluoric acid and Hydrochloric acid (HF:HCl) in well stimulation, has gained its popularity in improving the porosity and permeability of reservoir formation. In fact, this is driven by the effectiveness of HF in dissolving minerals in sandstone and HCl in controlling precipitation. Nonetheless, high temperature matrix acidizing approach is in growing need since many wells nowadays are producing from much deeper and hotter reservoir, with a temperature higher than 200°F. In such conditions, mud acid causes rapid reaction rates, hence becoming less efficient as the acids are consumed too early. Furthermore, mud acid is hazardous and very corrosive. On the contrary, previous studies had shown that Fluoroboric Acid (HBF4) and Phosphoric acid (H3PO4) offered numerous advantages in comparison to the conventional mud acid. HBF4 can hydrolyze to form HF whereas H3PO4 acts as a buffer acid; which is able to penetrate deeper into the formation before spending. Likewise, both acids cause more increase in the permeability, less change in the strength of core samples and significantly less corrosive. This paper had critically reviewed the experimental works which had been done on different types of acids. The advantages and disadvantages of these acids are evaluated. Therefore, a new acid combination (HBF4:H3PO4) is developed and the future work which can be done on it is proposed.

  3. Adrenergic influence on pentagastrin and bethanechol stimulated gastric acid secretion in dogs with gastric fistula

    DEFF Research Database (Denmark)

    Hovendal, C; Bech, K; Gottrup, F

    1984-01-01

    The purpose of this study was to elucidate the effect of alpha-, beta- and dopaminergic receptor stimulation and blockade on pentagastrin and bethanechol stimulated gastric acid secretion in conscious dogs with gastric fistula. Gastric acid secretion was found to be subject to a dose related....... The inhibitory effect of isoprenaline on pentagastrin stimulated acid secretion showed the characteristics of competitive type and on bethanechol stimulated acid secretion of non competitive type. An increasing and dose-dependent stimulation of bethanechol stimulated gastric acid secretion was found for dopamine...... 1, 5 and 10 micrograms/kg/min. Dopamine (40 micrograms/kg/min.) exerted an inhibitory effect on pentagastrin and bethanechol stimulated gastric acid secretion mediated, via the beta 1-receptors. The stimulatory effect of low doses of dopamine during bethanechol stimulation could not be defined...

  4. Comparison of the efficacy of carbamazepine, haloperidol and valproic acid in the treatment of children with Sydenham´s chorea: clinical follow-up of 18 patients Comparación de la eficacia de carbamazepina, haloperidol y acido valproico en el tratamiento de niños con corea de Sydenham: seguimiento clínico de 18 pacientes

    Directory of Open Access Journals (Sweden)

    Joaquín Peña

    2002-06-01

    Full Text Available In order to compare and contrast the efficacy of haloperidol, carbamazepine, and valproic acid in the treatment of Sydenham´s chorea a prospective study including 18 cases of this disorder was undertaken. Age of patients ranged from 7 to 15 years. Ten children were female and 8 were male. All but one had generalized, either symmetric or asymmetric chorea. The patients were divided in three equal groups, and were given a standardized dose of each of the drugs built-up over a week. Following therapy, the six children receiving valproic acid showed remarkable improvement, without side effects. Five patients receiving carbamazepine showed improvement without side effects. Only three of the patients that received haloperidol improved. In the 4 cases that did not show clinical improvement after one week of treatment, therapy with valproic acid led to disappearance of the symptoms in a lapse that ranged from 4 to 7 days. Recurrence related to discontinuation of treatment was observed in two patients. In view of the present results we recommend valproic acid as the first choice drug to treat Sydenham chorea.A fin de comparar y contrastar la eficacia de haloperidol, carbamazepina y ácido valproico en el tratamiento de la corea de Sydenham, se realizó un estudio prospectivo que incluyó 18 casos de esta patología. La edad de los pacientes varió de 7 a 15 años. Diez de los niños eran varones y el resto hembras. A excepción de uno de ellos, todos tenían corea generalizada, simétrica ó asimétrica. Los pacientes fueron divididos en tres grupos iguales, a cada uno de los cuales se le administró una dosis estandarizada de los medicamentos mencionados durante una semana. Luego del tratamiento, los seis pacientes que recibieron ácido valproico mostraron mejoría notable sin efectos colaterales. Cinco de los seis pacientes que recibieron carbamazepina exhibieron mejoría sin efectos colaterales. Solo tres de los pacientes que recibieron haloperidol

  5. Perfluorodecanoic acid stimulates NLRP3 inflammasome assembly in gastric cells

    Science.gov (United States)

    Zhou, Xiangyu; Dong, Tianyi; Fan, Ziyan; Peng, Yanping; Zhou, Rongbin; Wang, Xiaqiong; Song, Ning; Han, Mingyong; Fan, Bingbing; Jia, Jihui; Liu, Shili

    2017-04-01

    Perfluorodecanoic acid (PFDA), a perfluorinated carboxylic acid, presents in the environment and accumulates in human blood and organs, but its association with tumor promotion are not clear. Given that inflammation plays a significant role in the development of gastric malignancies, we evaluated the effects of PFDA on activation of the inflammasome and inflammation regulation in the gastric cell line AGS. When added to cell cultures, PFDA significantly stimulated IL-1β and IL18 secretion and their mRNA levels compared with control cells. By RT-PCR and western-blot we found that up-regulation of NLRP3 were associated with promotion of IL-1β and IL-18 production. Then expression variation of cIAP1/2, c-Rel and p52 were analyzed, the results demonstrated raised mRNA expression in all the tested genes concomitant with enhanced inflammasome activity after exposure to PFDA. Assays with cIAP2 siRNA and NFκB reporter provided additional evidence that these genes were involved in PFDA-induced inflammasome assembly. Furthermore, increased secretion of IL-1β and IL-18 were detected in stomach of PFDA-treated mice, disorganized alignment of epithelial cells and inflammatory cell infiltration were also observed in the stomach tissues upon PFDA treatment. This study reports for the first time that PFDA regulates inflammasome assembly in human cells and mice tissues.

  6. Methylmalonic Acid Test

    Science.gov (United States)

    ... Hormone Binding Globulin (SHBG) Shiga toxin-producing Escherichia coli Sickle Cell Tests Sirolimus Smooth Muscle Antibody (SMA) ... Ratio Valproic Acid Vancomycin Vanillylmandelic Acid (VMA) VAP Vitamin A Vitamin B12 and Folate Vitamin D Tests ...

  7. Hydraulic Fracture Stimulation and Acid Treatment of Well Baca 20; Geothermal Reservoir Well Stimulation Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-07-01

    The U.S. Department of Energy-sponsored Geothermal Reservoir Well Stimulation Program was initiated in February 1979 to pursue industry interest in geothermal well stimulation work and to develop technical expertise in areas directly related to geothermal well stimulation activities. This report provides an overview of the two experiments conducted in the high-temperature reservoir in Baca, New Mexico. The report discusses resource and reservoir properties, and provides a description of the stimulation experiment, a description of the treatment evaluation, and a summary of the experiment costs. (DJE-2005)

  8. Stimulation of gluconeogenesis by intravenous lipids in preterm infants: response depends on fatty acid profile

    NARCIS (Netherlands)

    van Kempen, Anne A. M. W.; van der Crabben, Saskia N.; Ackermans, Mariëtte T.; Endert, Erik; Kok, Joke H.; Sauerwein, Hans P.

    2006-01-01

    In preterm infants, both hypo- and hyperglycemia are a frequent problem. Intravenous lipids can affect glucose metabolism by stimulation of gluconeogenesis by providing glycerol, which is a gluconeogenic precursor, and/or free fatty acids (FFA), which are stimulants of the rate of gluconeogenesis.

  9. ATP Synthesis Driven by a-Keto Acid-stimulated Alternative Oxidase in Pea Leaf Mitochondria

    OpenAIRE

    Angelo, Vianello; Enrico, Braidot; Elisa, Petrussa; Francesco, Macri; Department of Biology and Agro-IndustrialE conomics, Section of Plant Biology, University of Udine

    1997-01-01

    The electrical potential difference (ΔΨ) generation and ATP synthesis due to α-keto acid-stimulated alternative oxidase activity in pea leaf mitochondria, energized by malate plus glutamate, was studied. In the absence of α-keto acids, ΔΨ was ca. 60% collapsed by KCN or antimycin A (AA), while the remaining part (ca. 30%) was dissipated by salicylhydroxamic acid (SHAM). The presence of α-keto acids (pyruvate or iodoacetate), known to stimulate the alternative oxidase, caused a decrease in the...

  10. Skin collagen reproduction increased by ascorbic acid derivative iontophoresis by frequent-reversal bipolar electric stimulation.

    Science.gov (United States)

    Hori, Yusuke; Akimoto, Ryuji; Hori, Akiko; Kato, Katsuhiko; Chino, Daisuke; Matsumoto, Shohei; Kamiya, Shohei; Watanabe, Yasuo

    2009-01-01

    The effect of the iontophoresis of ascorbic acid (Vitamin C; VC) derivative with frequent-reversal bipolar electric stimulation on the production of collagen in rat skin was evaluated in terms of hydroxyproline content through high-performance liquid chromatography. First, a control group was not given electrical stimulation and four groups were stimulated with a unipolar pulse for 0.5-10 min every day for one week. The hydroxyproline level in the skin was increased depending on the length of the stimulation. Second, a control group was not given any electrical stimulation, and three groups were treated with (a) VC solution without any stimulation, (b) a bipolar pulse for 10 min with saline, or (c) a bipolar pulse for 5 min with the VC solution. Significant increases were found in all the stimulation groups, although these treated with the VC solution without any stimulation did not have any effects compared to the control. Thus, in order to increase the hydroxyproline levels in skin, a VC must be delivered with bipolar stimulation as a method of iontophoresis. These results suggest that our newly developed electric stimulation is effective at increasing skin collagen content, and that bipolar stimulation is more effective on the iontophoresis of not only VC but also some medicines such as low- and high-molecular drugs directed to the target organ (7).

  11. Okadaic Acid, a Bioactive Fatty Acid from Halichondria okadai, Stimulates Lipolysis in Rat Adipocytes: The Pivotal Role of Perilipin Translocation

    Directory of Open Access Journals (Sweden)

    Nen-Chung Chang

    2013-01-01

    Full Text Available Lipid metabolism in visceral fat cells is correlated with metabolic syndrome and cardiovascular diseases. Okadaic-acid, a 38-carbon fatty acid isolated from the black sponge Halichondria okadai, can stimulate lipolysis by promoting the phosphorylation of several proteins in adipocytes. However, the mechanism of okadaic acid-induced lipolysis and the effects of okadaic acid on lipid-droplet-associated proteins (perilipins and beta-actin remain unclear. We isolated adipocytes from rat epididymal fat pads and treated them with isoproterenol and/or okadaic acid to estimate lipolysis by measuring glycerol release. Incubating adipocytes with okadaic acid stimulated time-dependent lipolysis. Lipid-droplet-associated perilipins and beta-actin were analyzed by immunoblotting and immunofluorescence, and the association of perilipin A and B was found to be decreased in response to isoproterenol or okadaic acid treatment. Moreover, okadaic-acid treatment could enhance isoproterenol-mediated lipolysis, whereas treatment of several inhibitors such as KT-5720 (PKA inhibitor, calphostin C (PKC inhibitor, or KT-5823 (PKG inhibitor did not attenuate okadaic-acid-induced lipolysis. By contrast, vanadyl acetylacetonate (tyrosine phosphatase inhibitor blocked okadaic-acid-dependent lipolysis. These results suggest that okadaic acid induces the phosphorylation and detachment of lipid-droplet-associated perilipin A and B from the lipid droplet surface and thereby leads to accelerated lipolysis.

  12. The Gibberellic Acid Stimulated-Like Gene Family in Maize and Its Role in Lateral Root Development

    National Research Council Canada - National Science Library

    Roman Zimmermann; Hajime Sakai; Frank Hochholdinger

    2010-01-01

    .... mays Gibberellic Acid Stimulated-Like), were identified. The ZmGSL family encodes small proteins of 75 to 128 amino acids, which are characterized by a conserved 59 to 64 amino acid C-terminal domain...

  13. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults.

    Science.gov (United States)

    Volpi, Elena; Kobayashi, Hisamine; Sheffield-Moore, Melinda; Mittendorfer, Bettina; Wolfe, Robert R

    2003-08-01

    Nutritional supplementation may be used to treat muscle loss with aging (sarcopenia). However, if physical activity does not increase, the elderly tend to compensate for the increased energy delivered by the supplements with reduced food intake, which results in a calorie substitution rather than supplementation. Thus, an effective supplement should stimulate muscle anabolism more efficiently than food or common protein supplements. We have shown that balanced amino acids stimulate muscle protein anabolism in the elderly, but it is unknown whether all amino acids are necessary to achieve this effect. We assessed whether nonessential amino acids are required in a nutritional supplement to stimulate muscle protein anabolism in the elderly. We compared the response of muscle protein metabolism to either 18 g essential amino acids (EAA group: n = 6, age 69 +/- 2 y; +/- SD) or 40 g balanced amino acids (18 g essential amino acids + 22 g nonessential amino acids, BAA group; n = 8, age 71 +/- 2 y) given orally in small boluses every 10 min for 3 h to healthy elderly volunteers. Muscle protein metabolism was measured in the basal state and during amino acid administration via L-[ring-(2)H(5)]phenylalanine infusion, femoral arterial and venous catheterization, and muscle biopsies. Phenylalanine net balance (in nmol x min(-1). 100 mL leg volume(-1)) increased from the basal state (P anabolism in the elderly.

  14. The stimulation of arachidonic acid metabolism in human platelets by hydrodynamic stresses

    Science.gov (United States)

    Rajagopalan, Sridhar; Mcintire, Larry V.; Hall, Elizabeth R.; Wu, Kenneth K.

    1988-01-01

    The effects of stimulating human platelets by thrombin and by hydrodynamic stresses on the platelets' arachidonic acid metabolism were investigated using (1-C-14)-arachidonic acid label and a specially designed viscometer that ensured laminar shear flow with a nearly uniform shear rate throughout the flow region. It was found that platelets activated by thrombin formed principally thromboxane A2, 12-hydroxy 5,8,10-heptadecatrienoic acid and 12-hydroxy 5,8,10,14-eicosatetraenoic acid (12-HETE). On the other hand, platelets activated by shear, formed only 12-HETE (although arachidonic acid metabolism was stimulated); no cyclooxygenase metabolites were detected. Results indicate that platelets may greatly increase their 12-HETE production when activated by passage through a high-stress region of the circulation, such as an atherosclerotic stenosis.

  15. Glucose-stimulated acrolein production from unsaturated fatty acids.

    Science.gov (United States)

    Medina-Navarro, R; Duran-Reyes, G; Diaz-Flores, M; Hicks, J J; Kumate, J

    2004-02-01

    Glucose auto-oxidation may be a significant source of reactive oxygen species (ROS), and also be important in the lipid peroxidation process, accompanied by the release of toxic reactive products. We wanted to demonstrate that acrolein can be formed directly and actively from free fatty acids in a hyperglycemic environment. A suspension of linoleic and arachidonic acids (2.5 mM) was exposed to different glucose concentrations (5, 10 and 15 mmol/L) in vitro. The samples were extracted with organic solvents, partitioned, followed at 255-267 nm, and analysed using capillary electrophoresis and mass spectroscopy. The total release of aldehydes significantly (P < 0.01) increased from 1.0 to 5.1, 8.3 and 13.1 micromol/L after 6 hours of incubation, proportional to glucose concentrations. It was possible to verify a correlate hydroperoxide formation as well. Among the lipid peroxidation products, acrolein (5% of total) and its condensing product, 4-hydroxy-hexenal, were identified. From the results presented here, it was possible to demonstrate the production of acrolein, probably as a fatty acid product, due to free radicals generated from the glucose auto-oxidation process. The results led us to propose that acrolein, which is one of the most toxic aldehydes, is produced during hyperglycemic states, and may lead to tissue injury, as one of the initial problems to be linked to high levels of glucose in vivo.

  16. Bile acids stimulate ATP hydrolysis in the purified cholesterol transporter ABCG5/G8.

    Science.gov (United States)

    Johnson, Brandy J Harvey; Lee, Jyh-Yeuan; Pickert, Amanda; Urbatsch, Ina L

    2010-04-27

    ABCG5 and ABCG8 are half-size ABC transporters that function as heterodimers (ABCG5/G8) to reduce sterol absorption in the intestines and increase sterol excretion from the liver. Previous studies demonstrated that bile acids increased ABCG5/G8 specific cholesterol efflux in cell models. In this study we tested the effects of bile acids on ATP hydrolysis in Pichia pastoris purified ABCG5/G8 and found that they stimulated hydrolysis approximately 20-fold in wild-type ABCG5/G8 but not in a hydrolysis-deficient mutant. Nonconjugated cholate supported the highest ATPase activity in ABCG5/G8 (256 +/- 9 nmol min(-1) mg(-1)). ATP hydrolysis was also stimulated by other conjugated bile acids and a mixture of bile acids resembling human bile with activities ranging from 129 +/- 4 to 147 +/- 14 nmol min(-1) mg(-1). The kinetic parameters, inhibitor profiles, and lipid requirements of bile acid stimulated ATP hydrolysis were characterized. Cholate-stimulated ATP hydrolysis was maximal at concentrations of >or=10 mM MgATP and had a relatively high K(M) (MgATP) of approximately 1 mM. Orthovanadate, BeFx, and AlFx effectively inhibited ABCG5/G8 at concentrations of 1 mM. Various lipid mixtures supported bile acid-stimulated ATP hydrolysis, which increased when cholesterol was present. The data demonstrate that bile acids together with lipids and cholesterol increase ATP hydrolysis in purified ABCG5/G8. Bile acids may promote an active conformation of purified ABCG5/G8 either by global stabilization of the transporter or by binding to a specific site on ABCG5/G8.

  17. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis.

    Science.gov (United States)

    Goto, Tsuyoshi; Kim, Young-Il; Furuzono, Tomoya; Takahashi, Nobuyuki; Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia; Ohue, Ryuji; Nomura, Wataru; Sugawara, Tatsuya; Yu, Rina; Kitamura, Nahoko; Park, Si-Bum; Kishino, Shigenobu; Ogawa, Jun; Kawada, Teruo

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Stimulation of aflatoxin B1 and T-2 toxin production by sorbic acid.

    OpenAIRE

    Gareis, M; Bauer, J; von Montgelas, A; Gedek, B

    1984-01-01

    Aspergillus flavus grown on yeast extract-sucrose medium produced higher amounts of aflatoxin B1 in the presence of 0.025% sorbic acid than without this chemical with a maximum at 17 days of incubation. Addition of 0.05 to 0.0125% sorbic acid stimulated T-2 toxin production of Fusarium acuminatum cultures grown on maize meal. The highest amounts of the mycotoxin were detected in 14-day-old cultures containing 0.025% sorbic acid. It is assumed that certain amounts of sorbic acid near the minim...

  19. Glycosylation of capsaicinoids with Panax ginseng stimulated by salicylic acid.

    Science.gov (United States)

    Katsuragi, H; Shimoda, Kei; Ohiro, Azusa; Hamada, Hiroki

    2010-12-01

    The efficient production of β-glycosides of capsaicin and 8-nordihydrocapsaicin by cultured cells of Panax ginseng is reported. Capsaicin 4-O-(6-O-β-D-xylopyranosyl)-β-D-glucopyranoside (β-primeveroside, 12%) together with capsaicin 4-O-β-D-glucoside (6%) was isolated from the cell suspension of P. ginseng after one week of incubation with capsaicin. On the other hand, 8-nordihydrocapsaicin was glycosylated to 8-nordihydrocapsaicin 4-O-β-D-glucoside (5%) and 8-nordihydrocapsaicin 4-O-β-primeveroside (9%) by P. ginseng. Pretreatment of the cultured cells with salicylic acid greatly enhanced the glucosylation activity toward capsaicinoids. When 500 μM of salicylic acid was added to the cultures prior to the addition of substrate, capsaicin was converted into capsaicin 4-O-β-D-glucoside (17%) and capsaicin β-primeveroside (21%) and 8-nordihydrocapsaicin was glycosylated to 8-nordihydrocapsaicin 4-O-β-D-glucoside (16%) and 8-nordihydrocapsaicin β-primeveroside (15%).

  20. Lysergic acid diethylamide: evidence for stimulation of pituitary dopamine receptors.

    Science.gov (United States)

    Meltzer, H Y; Fessler, R G; Simonovic, M; Doherty, J; Fang, V S

    1977-08-31

    Lysergic acid diethylamide (LSD), 0.05 mg/kg and 0.20 mg/kg, significantly decreased plasma prolactin (PRL) levels in male rats. LSD, 0.20 mg/kg, also inhibits the increase in plasma PRL levels produced by chlorpromazine (CPZ), 5 mg/kg, and alpha-methyl-paratyrosine (AMPT), 50 mg/kg, both of which interfere with dopaminergic inhibition of PRL secretion. LSD was more potent than methysergide, a serotonin receptor blocker, in lowering plasma PRL levels and more potent than apomorphine, a known direct acting dopamine agonist, in blocking the increase in plasma PRL produced by quipazine, a 5-HT agonist. These results suggest LSD has potent dopamine agonist properties on the rat pituitary or hypothalamic dopamine receptors which directly or indirectly inhibit PRL secretion.

  1. Stimulation by epinephrine of the membrane transport of long chain fatty acid in the adipocyte

    Energy Technology Data Exchange (ETDEWEB)

    Abumrad, N.A.; Perry, P.R.; Whitesell, R.R.

    1985-08-25

    In isolated rat adipocytes, epinephrine rapidly stimulates the transport of long chain fatty acid across the plasma membrane. At a concentration of unbound oleate of 0.1 microM and 5 min exposure to the hormone, the minimal effective concentration of epinephrine is 0.03 and the optimal concentration 0.3 microM (0.01 and 0.1 microgram/ml). The stimulated rates are 5-10-fold the basal rate of influx or efflux. The hormone effect is on the transport process specifically as shown by isolation of the product of transport in either direction as unesterified fatty acid and inhibition by the transport inhibitors phloretin and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. This effect of epinephrine on transport coordinates physiologically with lipase activation to bring about fatty acid release from adipose tissue.

  2. Antigen-specific stimulation of amino acid transport in bovine lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Tate, E.H.

    1982-01-01

    Treatment of bovine lymphocytes isolated from animals which were either infected with Mycobacterium bovis or sensitized to a purified protein derivative (PPD-B) from this organism induced an increase in the transport of a-aminoisobutyric acid (AIB) and a-methylaminoisobutyric acid (MeAIB). PPD-B did not stimulate these transport activities in lymphocytes from nonsensitized animals. The transport stimulation was first measurable after about 7 hours of treatment, reached about a two-fold enhancement after 20 hours, and continued to increase to 30- to 40-fold after 6 days. The stimulation of AIB transport was inhibited by both ouabain and cycloheximide. Experiments to determine transport system specificities in nonstimulated lymphocytes showed that MeAIB transport was primarily by the Na/sup +/-dependent, A-system,and leucine transport was mostly by Na/sup +/-independent system(s). In contrast, AIB transport was about 25% by the A-system, 25% by at least one Na/sup +/-dependent, non-A-system, and 50% by one or more Na/sup +/-independent system(s). Analysis of the three components of AIB transport after treatment with PPD-B showed that: 1) transport by both the A-system and the Na/sup +/-independent system(s) was stimulated; 2) A-system transport was stimulated to a larger extent than Na/sup +/-independent transport; and 3) Na/sup +/-dependent, non-A-system transport was not stimulated significantly.

  3. Sialic acid feeding aged rats rejuvenates stimulated salivation and colon enteric neuron chemotypes.

    Science.gov (United States)

    Sprenger, Norbert; Julita, Monique; Donnicola, Dominique; Jann, Alfred

    2009-12-01

    Old age is linked to numerous changes of body functions such as salivation, gastrointestinal motility, and permeability all linked to central and enteric nervous system decline. Thus, gut motility and barrier functions suffer. Sialic acid plays a key role in the nervous system at large and for many receptor functions specifically. Decreased sialylation in the elderly suggests an endogenous sialic acid deficit. We used a rat model of aging, to ask whether sialic acid feeding would affect (i) stimulated salivation, (ii) gut functions, and (iii) sialic acid levels and neuronal markers in brain and gut. We observed reduced levels of pilocarpine-stimulated salivation in old versus young rats and restored this function by sialic acid feeding. Brain ganglioside bound sialic acid levels were found lower in aged versus young rats, and sialic acid feeding partly restored the levels. The hypothalamic expression of cholinergic and panneuronal markers was reduced in aged rats. The expression of the nitrergic marker nNOS was increased upon sialic acid feeding in aged rats. Neither fecal output nor gut permeability was different between young and aged rats studied here, and sialic acid feeding did not alter these parameters. However, the colonic expression of specific nervous system markers nNOS and Uchl1 and the key enzyme for sialic acid synthesis GNE were differentially affected in young and aged rats by sialic acid feeding indicating that regulatory mechanisms change with age. Investigation of sialic acid supplementation as a functional nutrient in the elderly may help those who suffer from disorders of reduced salivation. Further research is needed to understand the differential effects of sialic acid feeding in young and aged rats.

  4. Modulation of CpG oligodeoxynucleotide-mediated immune stimulation by locked nucleic acid (LNA)

    DEFF Research Database (Denmark)

    Vollmer, Jörg; Jepsen, Jan Stenvang; Uhlmann, Eugen

    2004-01-01

    Locked nucleic acid (LNA) is an RNA derivative that when introduced into oligodeoxynucleotides (ODN), mediates high efficacy and stability. CpG ODNs are potent immune stimulators and are recognized by toll-like receptor-9 (TLR9). Some phosphorothioate antisense ODNs bearing CpG dinucleotides have...

  5. Postvagotomy acid secretion and mucosal blood flow during beta-adrenoceptor stimulation and universal chemical sympathectomy in dogs

    DEFF Research Database (Denmark)

    Hovendal, C P

    1983-01-01

    -stimulated gastric acid secretion via the beta 1 receptors non-competitively. The effect of isoprenaline was more pronounced after vagotomy than before vagotomy and significantly more pronounced than the effect on parasympathomimetically stimulated (bethanechol) gastric acid secretion. The animals were subjected...

  6. Effect of esophageal distention on basal and stimulated gastric acid secretion in rats

    Directory of Open Access Journals (Sweden)

    Mohammad Kazem Gharib Nasery

    2007-02-01

    Full Text Available Background: It is well established that the esophageal distention leads to gastric relaxation, partly by vago-vagal reflex but till now, the effect of esophageal distention on gastric acid secretion has not been investigated. The aim of this study was to investigate the effect of esophageal distention (ED on basal and stimulated gastric acid secretion. Methods: Adult male Wistar rats (200-240g were deprived of food but not water for 24 hrs before the experiments. Under urethane anesthesia (1.2 g/kg, i.p., animals underwent tracheostomy and laparotomy. A catheter was inserted in the stomach through duodenum for gastric distention and gastric washout and the esophagus was cannulated with a distensible balloon orally to distend esophagus (0.3 ml, 10 min. Gastric acid secretion was stimulated by gastric distention, carbachol (4 µg/kg, i.p. or histamine (5 mg/kg, s.c.. Effects of vagotomy, L-NAME (10 mg/kg, i.v., L-arginine (500 mg/kg, i.p. and hexamethonium were also investigated. Results: Esophageal distention reduces basal and gastric distention, carbachol and histamine stimulated acid secretion (P<0.05, P<0.0001, P<0.01 and P<0.02, respectively. Vagotomy reduced the inhibitory effect of the esophagus distention on gastric distention-induced acid secretion (P<0.05. Conclusion: These results indicate that vagus nerve involves in the inhibitory effect of the esophageal distention on the basal and stimulated gastric acid secretion. Nitric oxide (NO may also be involved.

  7. Stimulation of aflatoxin B1 and T-2 toxin production by sorbic acid.

    Science.gov (United States)

    Gareis, M; Bauer, J; von Montgelas, A; Gedek, B

    1984-01-01

    Aspergillus flavus grown on yeast extract-sucrose medium produced higher amounts of aflatoxin B1 in the presence of 0.025% sorbic acid than without this chemical with a maximum at 17 days of incubation. Addition of 0.05 to 0.0125% sorbic acid stimulated T-2 toxin production of Fusarium acuminatum cultures grown on maize meal. The highest amounts of the mycotoxin were detected in 14-day-old cultures containing 0.025% sorbic acid. It is assumed that certain amounts of sorbic acid near the minimal inhibitory concentration reduce the activity of the tricarboxylic acid cycle; this may lead to an accumulation of acetyl coenzyme A, which is an essential intermediate in the biosynthesis of aflatoxin B1 and T-2 toxin. PMID:6424567

  8. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Tsuyoshi, E-mail: tgoto@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University (Japan); Kim, Young-Il; Furuzono, Tomoya [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Takahashi, Nobuyuki [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University (Japan); Yamakuni, Kanae; Yang, Ha-Eun; Li, Yongjia [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Ohue, Ryuji [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University (Japan); Nomura, Wataru [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011 (Japan); Sugawara, Tatsuya [Laboratory of Marine Bioproducts Technology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); Yu, Rina [Department of Food Science and Nutrition, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Kitamura, Nahoko [Laboratory of Fermentation Physiology and Applied Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); and others

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increased adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.

  9. Acetic Acid Acts as a Volatile Signal To Stimulate Bacterial Biofilm Formation

    Science.gov (United States)

    Chen, Yun; Gozzi, Kevin; Yan, Fang

    2015-01-01

    ABSTRACT Volatiles are small air-transmittable chemicals with diverse biological activities. In this study, we showed that volatiles produced by the bacterium Bacillus subtilis had a profound effect on biofilm formation of neighboring B. subtilis cells that grew in proximity but were physically separated. We further demonstrated that one such volatile, acetic acid, is particularly potent in stimulating biofilm formation. Multiple lines of genetic evidence based on B. subtilis mutants that are defective in either acetic acid production or transportation suggest that B. subtilis uses acetic acid as a metabolic signal to coordinate the timing of biofilm formation. Lastly, we investigated how B. subtilis cells sense and respond to acetic acid in regulating biofilm formation. We showed the possible involvement of three sets of genes (ywbHG, ysbAB, and yxaKC), all encoding putative holin-antiholin-like proteins, in cells responding to acetic acid and stimulating biofilm formation. All three sets of genes were induced by acetate. A mutant with a triple mutation of those genes showed a severe delay in biofilm formation, whereas a strain overexpressing ywbHG showed early and robust biofilm formation. Results of our studies suggest that B. subtilis and possibly other bacteria use acetic acid as a metabolic signal to regulate biofilm formation as well as a quorum-sensing-like airborne signal to coordinate the timing of biofilm formation by physically separated cells in the community. PMID:26060272

  10. Chlorogenic Acids Biosynthesis in Centella asiatica Cells Is not Stimulated by Salicylic Acid Manipulation.

    Science.gov (United States)

    Ncube, E N; Steenkamp, P A; Madala, N E; Dubery, I A

    2016-07-01

    Exogenous application of synthetic and natural elicitors of plant defence has been shown to result in mass production of secondary metabolites with nutraceuticals properties in cultured cells. In particular, salicylic acid (SA) treatment has been reported to induce the production of phenylpropanoids, including cinnamic acid derivatives bound to quinic acid (chlorogenic acids). Centella asiatica is an important medicinal plant with several therapeutic properties owing to its wide spectrum of secondary metabolites. We investigated the effect of SA on C. asiatica cells by monitoring perturbation of chlorogenic acids in particular. Different concentrations of SA were used to treat C. asiatica cells, and extracts from both treated and untreated cells were analysed using an optimised UHPLC-QTOF-MS/MS method. Semi-targeted multivariate data analyses with the aid of principal component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS-DA) revealed a concentration-dependent metabolic response. Surprisingly, a range of chlorogenic acid derivatives were found to be downregulated as a consequence of SA treatment. Moreover, irbic acid (3,5-O-dicaffeoyl-4-O-malonilquinic acid) was found to be a dominant CGA in C. asiatica cells, although the SA treatment also had a negative effect on its concentration. Overall SA treatment was found to be an ineffective elicitor of CGA production in cultured C. asiatica cells.

  11. Food preservatives sodium sulfite and sorbic acid suppress mitogen-stimulated peripheral blood mononuclear cells.

    Science.gov (United States)

    Winkler, Christiana; Frick, Barbara; Schroecksnadel, Katharina; Schennach, Harald; Fuchs, Dietmar

    2006-12-01

    Antioxidant preservatives prolong the quality of food and ensure the nutritional adequacy, palatability and safety of many processed foods and beverages. Effects of sodium sulfite (E221) and sorbic acid (E200) were investigated in human peripheral blood mononuclear cells (PBMC) which were purified from blood of healthy donors. Cells were stimulated with the mitogen phytohaemagglutinin in vitro, which induces proliferation of T-cells and the production of Th1-type cytokines like interferon-gamma. The latter triggers enzyme indoleamine (2,3)-dioxygenase, which degrades tryptophan, and GTP cyclohydrolase I, which leads to increased neopterin production, in monocyte-derived macrophages. Sodium sulfite and sorbic acid suppressed both these biochemical changes in a dose-dependent way (Psorbic acid). Data demonstrate a suppressive influence of sodium sulfite and sorbic acid on the activated Th1-type immune response.

  12. Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes.

    Science.gov (United States)

    Heimann, Emilia; Nyman, Margareta; Degerman, Eva

    2015-01-01

    Fermentation of dietary fibers by colonic microbiota generates short-chain fatty acids (SCFAs), e.g., propionic acid and butyric acid, which have been described to have "anti-obesity properties" by ameliorating fasting glycaemia, body weight and insulin tolerance in animal models. In the present study, we therefore investigate if propionic acid and butyric acid have effects on lipolysis, de novo lipogenesis and glucose uptake in primary rat adipocytes. We show that both propionic acid and butyric acid inhibit isoproterenol- and adenosine deaminase-stimulated lipolysis as well as isoproterenol-stimulated lipolysis in the presence of a phosphodiesterase (PDE3) inhibitor. In addition, we show that propionic acid and butyric acid inhibit basal and insulin-stimulated de novo lipogenesis, which is associated with increased phosphorylation and thus inhibition of acetyl CoA carboxylase, a rate-limiting enzyme in fatty acid synthesis. Furthermore, we show that propionic acid and butyric acid increase insulin-stimulated glucose uptake. To conclude, our study shows that SCFAs have effects on fat storage and mobilization as well as glucose uptake in rat primary adipocytes. Thus, the SCFAs might contribute to healthier adipocytes and subsequently also to improved energy metabolism with for example less circulating free fatty acids, which is beneficial in the context of obesity and type 2 diabetes.

  13. Nitrogenous compounds stimulate glucose-derived acid production by oral Streptococcus and Actinomyces.

    Science.gov (United States)

    Norimatsu, Yuka; Kawashima, Junko; Takano-Yamamoto, Teruko; Takahashi, Nobuhiro

    2015-09-01

    Both Streptococcus and Actinomyces can produce acids from dietary sugars and are frequently found in caries lesions. In the oral cavity, nitrogenous compounds, such as peptides and amino acids, are provided continuously by saliva and crevicular gingival fluid. Given that these bacteria can also utilize nitrogen compounds for their growth, it was hypothesized that nitrogenous compounds may influence their acid production; however, no previous studies have examined this topic. Therefore, the present study aimed to assess the effects of nitrogenous compounds (tryptone and glutamate) on glucose-derived acid production by Streptococcus and Actinomyces. Acid production was evaluated using a pH-stat method under anaerobic conditions, whereas the amounts of metabolic end-products were quantified using high performance liquid chromatography. Tryptone enhanced glucose-derived acid production by up to 2.68-fold, whereas glutamate enhanced Streptococcus species only. However, neither tryptone nor glutamate altered the end-product profiles, indicating that the nitrogenous compounds stimulate the whole metabolic pathways involving in acid production from glucose, but are not actively metabolized, nor do they alter metabolic pathways. These results suggest that nitrogenous compounds in the oral cavity promote acid production by Streptococcus and Actinomyces in vivo. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  14. Saliva stimulation with glycerine and citric acid does not affect salivary cortisol levels.

    Science.gov (United States)

    Brorsson, Camilla; Dahlqvist, Per; Nilsson, Leif; Naredi, Silvana

    2014-08-01

    In critically ill patients with hypotension, who respond poorly to fluids and vasoactive drugs, cortisol insufficiency may be suspected. In serum over 90% of cortisol is protein-bound, thus routine measures of total serum cortisol may yield 'false lows' due to hypoproteinaemia. Thus, the occurrence of cortisol insufficiency could be overestimated in critically ill patients. Salivary cortisol can be used as a surrogate for free serum cortisol, but in critically ill patients saliva production is decreased, and insufficient volume of saliva for analysis is a common problem. The aim of this study was to investigate if a cotton-tipped applicator with glycerine and citric acid could be used for saliva stimulation without affecting salivary cortisol levels. Prospective, observational study. Thirty-six volunteers (six males, 30 females), age 49 ± 9 years, without known oral mucus membrane rupture in the mouth. Forty-two pairs of saliva samples (22 paired morning samples, 20 paired evening samples) were obtained before and after saliva stimulation with glycerine and citric acid. Salivary cortisol was analysed using Spectria Cortisol RIA (Orion Diagnostica, Finland). The paired samples correlated significantly (P citric acid did not significantly influence salivary cortisol levels in healthy volunteers. This indicates that salivary cortisol measurement after saliva stimulation may be a useful complement when evaluating cortisol status in critically ill patients. © 2014 John Wiley & Sons Ltd.

  15. TNF-α stimulates endothelial palmitic acid transcytosis and promotes insulin resistance

    Science.gov (United States)

    Li, Wenjing; Yang, Xiaoyan; Zheng, Tao; Xing, Shasha; Wu, Yaogong; Bian, Fang; Wu, Guangjie; Li, Ye; Li, Juyi; Bai, Xiangli; Wu, Dan; Jia, Xiong; Wang, Ling; Zhu, Lin; Jin, Si

    2017-01-01

    Persistent elevation of plasma TNF-α is a marker of low grade systemic inflammation. Palmitic acid (PA) is the most abundant type of saturated fatty acid in human body. PA is bound with albumin in plasma and could not pass through endothelial barrier freely. Albumin-bound PA has to be transported across monolayer endothelial cells through intracellular transcytosis, but not intercellular diffusion. In the present study, we discovered that TNF-α might stimulate PA transcytosis across cardiac microvascular endothelial cells, which further impaired the insulin-stimulated glucose uptake by cardiomyocytes and promoted insulin resistance. In this process, TNF-α-stimulated endothelial autophagy and NF-κB signaling crosstalk with each other and orchestrate the whole event, ultimately result in increased expression of fatty acid transporter protein 4 (FATP4) in endothelial cells and mediate the increased PA transcytosis across microvascular endothelial cells. Hopefully the present study discovered a novel missing link between low grade systemic inflammation and insulin resistance. PMID:28304381

  16. Chlorogenic acids biosynthesis in Centella asiatica cells is not stimulated by salicylic acid manipulation

    CSIR Research Space (South Africa)

    Ncube, EN

    2016-07-01

    Full Text Available Exogenous application of synthetic and natural elicitors of plant defence has been shown to result in mass production of secondary metabolites with nutraceuticals properties in cultured cells. In particular, salicylic acid (SA) treatment has been...

  17. Dopamine D2High receptors stimulated by phencyclidines, lysergic acid diethylamide, salvinorin A, and modafinil.

    Science.gov (United States)

    Seeman, Philip; Guan, Hong-Chang; Hirbec, Hélène

    2009-08-01

    Although it is commonly stated that phencyclidine is an antagonist at ionotropic glutamate receptors, there has been little measure of its potency on other receptors in brain tissue. Although we previously reported that phencyclidine stimulated cloned-dopamine D2Long and D2Short receptors, others reported that phencyclidine did not stimulate D2 receptors in homogenates of rat brain striatum. This study, therefore, examined whether phencyclidine and other hallucinogens and psychostimulants could stimulate the incorporation of [(35)S]GTP-gamma-S into D2 receptors in homogenates of rat brain striatum, using the same conditions as previously used to study the cloned D2 receptors. Using 10 microM dopamine to define 100% stimulation, phencyclidine elicited a maximum incorporation of 46% in rat striata, with a half-maximum concentration of 70 nM for phencyclidine, when compared with 80 nM for dopamine, 89 nM for salvinorin A (48 nM for D2Long), 105 nM for lysergic acid diethylamide (LSD), 120 nM for R-modafinil, 710 nM for dizocilpine, 1030 nM for ketamine, and >10,000 nM for S-modafinil. These compounds also inhibited the binding of the D2-selective ligand [(3)H]domperidone. The incorporation was inhibited by the presence of 200 microM guanylylimidodiphosphate and also by D2 blockade, using 10 microM S-sulpiride, but not by D1 blockade with 10 microM SCH23390. Hypertonic buffer containing 150 mM NaCl inhibited the stimulation by phencyclidine, which may explain negative results by others. It is concluded that phencyclidine and other psychostimulants and hallucinogens can stimulate dopamine D2 receptors at concentrations related to their behavioral actions.

  18. Effect of gibberellic acid and the biostimulant stimulate® on the initial growth of tamarind

    Directory of Open Access Journals (Sweden)

    Ana Cristina Vello Loyola Dantas

    2012-03-01

    Full Text Available Plant growth regulators and biostimulants have been used as an agronomic technique to optimize the production of seedlings in various crops. This study aimed to evaluate the influence of gibberellic acid and the biostimulant Stimulate® on the initial growth of tamarind (Tamarindus indica L.. The experiments were conducted in a nursery with 50% shading, in a randomized block design with five replications and five plants per plot. Thirty eight days after sowing, the leaves were sprayed seven times a day with 0.0 (control, 0.8, 1.6, 2.4 and 3.2 mL of gibberellic acid L-1 aqueous solution and with 0.0 (control, 6.0,12.0, 18.0, and 24.0 mL Stimulate® L-1 aqueous solution. Stem diameter (SD, plant height (PH, longest root length (LRL, shoot dry mass (SDM, root dry mass (RDM and RDM:SDM ratio were evaluated ninety days after sowing. Variance and regression analysis showed that GA3 at 4% promoted plant growth (height, but had no significant effect on stem diameter, longest root length, shoot and root dry mass and the RDM:SDM ratio. On the other hand, all concentrations of Stimulate® significantly increased plant height and shoot and root dry mass of tamarind seedlings.

  19. Esomeprazole inhibits the pentagastrin-stimulated secretion of gastric acid in healthy Japanese volunteers.

    Science.gov (United States)

    Maejima, Ryuhei; Koike, Tomoyuki; Nakagawa, Kenichiro; Iijima, Katsunori; Shimosegawa, Tooru

    2015-03-01

    Gastroesophageal reflux disease (GERD) is a common disease, in which the reflux of gastric acid causes mucosal damage of the esophagus and/or troublesome symptoms. Esomeprazole, a proton pump inhibitor, has been used for treatment of GERD in Japan since 2011; namely, only little is known about its effect on gastric acid secretion in Japanese. We, therefore, assessed the relationship between dose and timing of esomeprazole administration and gastric acid inhibition in 11 healthy male Japanese volunteers by directly examining gastric acid secretion capacity. In this randomized, open-label, three-way crossover study, the subjects were dosed with esomeprazole 10 mg or 20 mg once a day (q.d.), or 20 mg twice a day (b.i.d.) for 14 days, and pentagastrin-stimulated gastric acid secretion was measured by endoscopic gastrin test. At steady states, gastric acid inhibition rates were significantly higher in esomeprazole 20 mg b.i.d. (median 100.0%, interquartile range [IQR] 99.4-100%, P = 0.027) or 20 mg q.d. (100.0%, IQR 99.7-100%, P = 0.016), compared with 10 mg q.d. (98.4%, IQR 84.4-100%). At trough states, esomeprazole 20 mg b.i.d. showed significantly higher gastric acid inhibition (99.6%, IQR 99.0-100%) than did 20 mg q.d. (84.2%, IQR 76.4-88.8%, P = 0.002) or 10 mg q.d. (64.9%, IQR 59.1-76.7%, P = 0.001). Thus, esomeprazole 20 mg b.i.d. was sufficient to inhibit > 99% gastric acid secretion in healthy subjects. We propose that esomeprazole 20 mg b.i.d. is effective for treating Japanese patients with refractory GERD who require long-lasting gastric acid inhibition.

  20. Evidence for a central 5-hydroxytryptamine receptor stimulation by lysergic acid diethylamide

    Science.gov (United States)

    Andén, N.-E.; Corrodi, H.; Fuxe, K.; Hökfelt, T.

    1968-01-01

    1. Lysergic acid diethylamide (LSD) and the 5-hydroxytryptamine (5-HT) precursor, 5-hydroxytryptophan produced similar functional effects in rat spinal cord and brain to the 5-hydroxytryptamine precursor 5-hydroxytryptophan, which indicates that LSD stimulates central 5-HT receptors. 2. By means of combined histochemical and biochemical techniques it was found that LSD reduced the turnover rate of brain and spinal cord 5-HT, studied after inhibition of the tryptophan hydroxylase by α-propyldopacetamide. The turnover of brain noradrenaline but not dopamine was somewhat accelerated. 3. The functional and chemical effects by LSD were related to dose and to time. They were not observed after the LSD analogues 2-bromo-LSD and methylsergide. 4. The retardation of the 5-HT turnover by LSD may be due to negative feed-back mechanisms evoked by direct stimulation of the central 5-HT receptors. ImagesFIG. 1FIG. 2 PMID:5302837

  1. Rosmarinic acid stimulates liver regeneration through the mTOR pathway.

    Science.gov (United States)

    Lou, Kaihan; Yang, Min; Duan, Erdan; Zhao, Jiahui; Yu, Cong; Zhang, Rongping; Zhang, Lanchun; Zhang, Ming; Xiao, Zhicheng; Hu, Weiyan; He, Zhiyong

    2016-12-01

    Rosemary (Rosmarinus offcinsalis L) has a liver protection function under various conditions of liver damage. Rosmarinic acid, one of the pharmacological constituents of rosemary, exhibited protective effects against organ injury, including acute liver injury. We hypothesize that RA stimulates liver regeneration. In the present study, we investigated the effects and mechanism of RA administration on liver regeneration using partial hepatectomy (PH), a well-validated liver regeneration model in mice. We use a 2/3 partial hepatectomy (PH) model to induce liver regeneration. RA was administered prior to and simultaneously with PH. The regeneration process was estimated by the index of the liver to body weight (ILBW) and the expression of proliferating cell nuclear antigen (PCNA) and liver transaminases. The administration of rosmarinic acid stimulated hepatocyte proliferation based on activation of the mTOR/S6K pathway. Rosmarinic acid treatment also rescued impaired liver function due to PH. These data demonstrate that RA is potentially useful to promote liver regeneration. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Differential stimulation of luminol-enhanced chemiluminescence (CL) and arachidonic acid metabolism in rat peritoneal neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, R.J.; Adams, L.M.; Cullinan, C.A.; Berkenkopf, J.W.; Weichman, B.M.

    1986-03-05

    Phorbol 12-myristate, 13-acetate (PMA) induced the production of radical oxygen species (ROS) from rat peritoneal neutrophils as assessed by CL. ROS generation occurred in a time- (maximum at 13.5 min) and dose- (concentration range of 1.7-498 nM) related fashion. However, 166 nM PMA did not induce either cyclooxygenase (CO) or lipoxygenase (LPO) product formation by 20 min post-stimulation. Conversely, A23187, at concentrations between 0.1 and 10 ..mu..M, stimulated both pathways of arachidonic acid metabolism, but had little or no effect upon ROS production. When suboptimal concentrations of PMA (5.5 nM) and A23187 (0.1-1 ..mu..M) were coincubated with the neutrophils, a synergistic ROS response was elicited. However, arachidonic acid metabolism in the presence of PMA was unchanged relative to A12187 alone. Nordihydroguaiaretic acid (NDGA) inhibited both PMA-induced CL (IC/sub 50/ = 0.9 ..mu..M) and A23187-induced arachidonic acid metabolism (IC/sub 50/ = 1.7 ..mu..M and 6.0 ..mu..M for LPO and CO, respectively). The mixed LPO-CO inhibitor, BW755C, behaved in a qualitatively similar manner to NDGA, whereas the CO inhibitors, indomethacin, piroxicam and naproxen had no inhibitory effect on ROS generation at concentrations as high as 100 ..mu..M. These results suggest that NDGA and BW755C may inhibit CL and arachidonic acid metabolism by distinct mechanisms in rat neutrophils.

  3. Novel Polymeric Prodrugs of Valproic Acid as Anti- Epilepsy Drugs ...

    African Journals Online (AJOL)

    All the compounds were characterized by Fourier transform infrared (FT-IR), nuclear magnetic resonance (1H and 13C-NMR), elemental analyses, and gel permeation chromatography (GPC). The release of VPA from polymeric prodrugs was studied using cellophane membrane dialysis bags containing aqueous buffer ...

  4. Effect of antiepileptic drug (valproic acid on children growth

    Directory of Open Access Journals (Sweden)

    Hussein Metwally Abdel Maksoud

    2016-06-01

    Conclusion: Childhood and adolescence are crucial periods in which to attain peak bone mass, and it is a crucial period for growth in general; and most patients with epilepsy are diagnosed and treated in this period, therefore, AEDs, and especially VPA, should be used with caution in pediatric patients with epilepsy.

  5. Enhanced extracorporeal elimination of valproic acid in overdose - Editorial.

    NARCIS (Netherlands)

    Engbersen, R.H.G.; Kramers, C.

    2004-01-01

    The treatment of the poisoned patient has been based on three main approaches: use of supportive nonspecific therapy, if available administration of antidotes and removal of the offending drug from the body. Gastric lavage and binding of nonabsorbed drug by activated charcoal are often used in an

  6. New therapeutic potentials of valproic acid and its derivatives

    DEFF Research Database (Denmark)

    Gotfryd, Kamil

    2008-01-01

    korttidshukommelse, bestemt ved social genkendelse i rotter. De to enantiomerer havde stor set samme kvalitative effekter in vitro. Dog var S-PE-4-yn-VPA i alle in vitro eksperimenter mere potent end R-PE-4-yn-VPA, og kun S-PE-4-yn-VPA havde stærke proapoptotiske effekter. Begge enantiomerer forbedrede indlæring og...... hukommelse. De hukommelsesforbedrende effekter af R-PE-4-yn- VPA var imidlertid længerevarende end dem af S-PE-4-yn-VPA, hvilket antyder, at de gavnlige effekter af S-enantiomeren på hukommelsesdannelse muligvis modvirkes af dets skadelige effekter på neuronal celleoverlevelse....

  7. VALPROIC ACID-INDUCED THROMBOCYTOPENIA: A LONGITUDINAL STUDY

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Sahu

    2016-08-01

    Full Text Available BACKGROUND Valproate shows the most promising efficiency in treating mood as well as anxiety disorders; however, thrombocytopenia is one of the most common side effects associated with it. The perceived novelty and under recognition of the platelet lowering effects of valproate is illustrated by various case reports of thrombocytopenia associated with valproate in psychiatric populations. AIMS Present study aims is to investigate the relationship between platelet count & VPA therapy, age, and duration of medication. SETTINGS AND DESIGN It was a longitudinal observational study conducted at Department of Psychiatry, Pt. JNM Medical College, Raipur. METHODS AND MATERIAL The sample consisted of patients of either sex, aged between 18 to 65 years who were prescribed valproate therapy by the treating doctor. Patients were evaluated at baseline, at every month up to three months and at six months. The platelet counts were determined using an automatic haematology analyser. STATISTICAL ANALYSIS Correlation statistics were used to analyse the collected data. CONCLUSION Most of the time thrombocytopenia is mild and transient which resolves spontaneously. Regular monitoring of platelet level is required in the high risk groups.

  8. Activation of PPARd and RXRa stimulates fatty acid oxidatin and insulin secretion inpancreatic beta-cells

    DEFF Research Database (Denmark)

    Børgesen, Michael; Ravnskjær, Kim; Frigerio, Francesca

    , in animal models of obesity PPARd agonists display a modest insulin sensitizing action and a marked improvement of the plasma lipid profile by reducing circulating free fatty acids and triglycerides and raising HDL-cholesterol. The lipid-lowering effect of PPARd-activation correlates with increased...... oxidation and dissipation of lipids particularly in skeletal muscle. Here we show that PPARd at the RNA as well as protein level is the most abundant PPAR subtype in the rat pancreatic ß-cell line INS-1E and in isolated rat pancreatic islets. In keeping with that, a large number of PPAR target genes...... as a central effector of unsaturated fatty acids in pancreatic ß-cells. Interestingly, activation of PPARd increases basal as well as glucose-stimulated insulin secretion of INS-1E cells. This increase is further potentiated by RXR agonists. This observation suggests that PPARd may mediate some of the positive...

  9. Isolation of three diterpenoid acids from sunflowers, as oviposition stimulants for the banded sunflower moth, Cochylis hospes.

    Science.gov (United States)

    Morris, Bruce D; Charlet, Laurence D; Foster, Stephen P

    2009-01-01

    The banded sunflower moth (BSFM), Cochylis hospes Walshingham (Lepidoptera: Cochylidae) is a specialist insect, the larvae of which feed on sunflowers, Helianthus spp., and a few other species of Compositae. It is one of the most important pests of sunflower in the USA. Previous work on H. annuus, the cultivated sunflower, revealed two diterpenoids that function as oviposition stimulants for female BSFM, and that other, more polar compounds also stimulated oviposition. Using a bioassay-guided approach, we isolated three additional diterpenoids, grandifloric acid (1), 15beta-hydroxy-ent-trachyloban-19-oic acid (2), and 17-hydroxy-16alpha-ent-kauran-19-oic acid (3), from polar fractions of pre-bloom sunflower head extracts. In laboratory bioassays, purified natural samples of each of these compounds stimulated oviposition by female BSFM. Structure-activity relationships of the five diterpenoids known to stimulate oviposition by female BSFM are discussed.

  10. Stimulation of the amino acid transporter SLC6A19 by JAK2

    Energy Technology Data Exchange (ETDEWEB)

    Bhavsar, Shefalee K.; Hosseinzadeh, Zohreh; Merches, Katja; Gu, Shuchen [Department of Physiology I, University of Tuebingen (Germany); Broeer, Stefan [Research School of Biology, Australian National University (Australia); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology I, University of Tuebingen (Germany)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer The amino acid transporter SLC6A19 is upregulated by Janus kinase-2 JAK2. Black-Right-Pointing-Pointer The {sup V617F}JAK2 mutant, causing myeloproliferative disease, is more effective. Black-Right-Pointing-Pointer JAK2 inhibitor AG490 reverses stimulation of SLC6A19 by {sup V617F}JAK2. Black-Right-Pointing-Pointer JAK2 enhances SLC6A19 protein insertion into the cell membrane. Black-Right-Pointing-Pointer SLC6A19 may contribute to amino acid uptake into {sup V617F}JAK2 expressing tumor cells. -- Abstract: JAK2 (Janus kinase-2) is expressed in a wide variety of cells including tumor cells and contributes to the proliferation and survival of those cells. The gain of function mutation {sup V617F}JAK2 mutant is found in the majority of myeloproliferative diseases. Cell proliferation depends on the availability of amino acids. Concentrative cellular amino acid uptake is in part accomplished by Na{sup +} coupled amino acid transport through SLC6A19 (B(0)AT). The present study thus explored whether JAK2 activates SLC6A19. To this end, SLC6A19 was expressed in Xenopus oocytes with or without wild type JAK2, {sup V617F}JAK2 or inactive {sup K882E}JAK2 and electrogenic amino acid transport determined by dual electrode voltage clamp. In SLC6A19-expressing oocytes but not in oocytes injected with water or JAK2 alone, the addition of leucine (2 mM) to the bath generated a current (I{sub le}), which was significantly increased following coexpression of JAK2 or {sup V617F}JAK2, but not by coexpression of {sup K882E}JAK2. Coexpression of JAK2 enhanced the maximal transport rate without significantly modifying the affinity of the carrier. Exposure of the oocytes to the JAK2 inhibitor AG490 (40 {mu}M) resulted in a gradual decline of I{sub le}. According to chemiluminescence JAK2 enhanced the carrier protein abundance in the cell membrane. The decline of I{sub le} following inhibition of carrier insertion by brefeldin A (5 {mu}M) was similar

  11. Lipoic Acid Stimulates cAMP Production in Healthy Control and Secondary Progressive MS Subjects.

    Science.gov (United States)

    Fiedler, Sarah E; Yadav, Vijayshree; Kerns, Amelia R; Tsang, Catherine; Markwardt, Sheila; Kim, Edward; Spain, Rebecca; Bourdette, Dennis; Salinthone, Sonemany

    2017-11-15

    Lipoic acid (LA) exhibits antioxidant and anti-inflammatory properties; supplementation reduces disease severity and T lymphocyte migration into the central nervous system in a murine model of multiple sclerosis (MS), and administration in secondary progressive MS (SPMS) subjects reduces brain atrophy compared to placebo. The mechanism of action (MOA) of LA's efficacy in suppression of MS pathology is incompletely understood. LA stimulates production of the immunomodulator cyclic AMP (cAMP) in vitro. To determine whether cAMP could be involved in the MOA of LA in vivo, we performed a clinical trial to examine whether LA stimulates cAMP production in healthy control and MS subjects, and whether there are differences in the bioavailability of LA between groups. We administered 1200 mg of oral LA to healthy control, relapsing remitting MS (RRMS) and SPMS subjects, and measured plasma LA and cAMP levels in peripheral blood mononuclear cells (PBMCs). There were no significant differences between the groups in pharmacokinetic (PK) parameters. Healthy and SPMS subjects had increased cAMP at 2 and 4 h post-LA treatment compared to baseline, while RRMS subjects showed decreases in cAMP. Additionally, plasma concentrations of prostaglandin E2 (PGE2, a known cAMP stimulator) were significantly lower in female RRMS subjects compared to female HC and SPMS subjects 4 h after LA ingestion. These data indicate that cAMP could be part of the MOA of LA in SPMS, and that there is a divergent response to LA in RRMS subjects that may have implications in the efficacy of immunomodulatory drugs. This clinical trial, "Defining the Anti-inflammatory Role of Lipoic Acid in Multiple Sclerosis," NCT00997438, is registered at https://clinicaltrials.gov/ct2/show/record/NCT00997438 .

  12. Geochemical modelling of EGS fracture stimulation applying weak and strong acid treatments

    Science.gov (United States)

    Sigfusson, Bergur; Sif Pind Aradottir, Edda

    2015-04-01

    Engineered Geothermal systems (EGS) provide geothermal power by tapping into the Earth's deep geothermal resources that are otherwise not exploitable due to lack of water and fractures, location or rock type. EGS technologies have the potential to cost effectively produce large amounts of electricity almost anywhere in the world. The EGS technology creates permeability in the rock by hydro-fracturing the reservoir with cold water pumped into the first well (the injection well) at a high pressure. The second well (the production well) intersects the stimulated fracture system and returns the hot water to the surface where electricity can be generated. A significant technological hurdle is ensuring effective connection between the wells and the fracture system and to control the deep-rooted fractures (can exceed 5 000 m depth). A large area for heat transfer and sufficient mass flow needs to be ensured between wells without creating fast flowing paths in the fracture network. Maintaining flow through the fracture system can cause considerable energy penalty to the overall process. Therefore, chemical methods to maintain fractures and prevent scaling can be necessary to prevent excessive pressure build up in the re-injection wells of EGS systems. The effect of different acid treatments on the porosity development of selected rock types was simulated with the aid of the Petrasim interface to the Toughreact simulation code. The thermodynamic and kinetic database of Aradottir et al. (2014) was expanded to include new minerals and the most important fluoride bearing species involved in mineral reactions during acid stimulation of geothermal systems. A series of simulations with injection waters containing fluoric acid, hydrochloric acid and CO2 or mixtures thereof were then carried out and porosity development in the fracture system monitored. The periodic injection of weak acid mixtures into EGS systems may be cost effective in some isolated cases to prevent pressure

  13. Effect of dopamine on bethanechol-stimulated gastric mucosal blood flow and gastric acid secretion in dogs with gastric fistula

    DEFF Research Database (Denmark)

    Hovendal, C P; Bech, K

    1982-01-01

    The aim of the present study was to investigate the effect of Dopamine on bethanechol-stimulated gastric acid secretion and mucosal blood flow. dopamine was used alone and in conjunction with selective blockade of the alpha, beta, and dopaminergic receptors. An increasing and dose-dependent stimu......The aim of the present study was to investigate the effect of Dopamine on bethanechol-stimulated gastric acid secretion and mucosal blood flow. dopamine was used alone and in conjunction with selective blockade of the alpha, beta, and dopaminergic receptors. An increasing and dose...... by high dopamine doses could be explained by a beta 1 stimulation. Dopamine (10 micrograms/kg/min) was found to increase the bethanechol-stimulated gastric mucosal blood flow. Phentolamine (alpha blackade) increased this dopamine-elevated blood flow further, with a significant increase in the ratio...... between blood flow and acid secretion, indicating a primary action of the alpha receptors on blood flow. Bethanechol stimulated the gastric acid secretion and blood flow in a parallel manner. It is concluded that alpha-receptor stimulation is the predominant directly acting factor in the regulation...

  14. Closed-loop neural stimulation for pentylenetetrazole-induced seizures in zebrafish

    Directory of Open Access Journals (Sweden)

    Ricardo Pineda

    2013-01-01

    Neural stimulation can reduce the frequency of seizures in persons with epilepsy, but rates of seizure-free outcome are low. Vagus nerve stimulation prevents seizures by continuously activating noradrenergic projections from the brainstem to the cortex. Cortical norepinephrine then increases GABAergic transmission and increases seizure threshold. Another approach, responsive nervous stimulation, prevents seizures by reactively shocking the seizure onset zone in precise synchrony with seizure onset. The electrical shocks abort seizures before they can spread and manifest clinically. The goal of this study was to determine whether a hybrid platform in which brainstem activation triggered in response to impending seizure activity could prevent seizures. We chose the zebrafish as a model organism for this study because of its ability to recapitulate human disease, in conjunction with its innate capacity for tightly controlled high-throughput experimentation. We first set out to determine whether electrical stimulation of the zebrafish hindbrain could have an anticonvulsant effect. We found that pulse train electrical stimulation of the hindbrain significantly increased the latency to onset of pentylenetetrazole-induced seizures, and that this apparent anticonvulsant effect was blocked by noradrenergic antagonists, as is also the case with rodents and humans. We also found that the anticonvulsant effect of hindbrain stimulation could be potentiated by reactive triggering of single pulse electrical stimulations in response to impending seizure activity. Finally, we found that the rate of stimulation triggering was directly proportional to pentylenetetrazole concentration and that the stimulation rate was reduced by the anticonvulsant valproic acid and by larger stimulation currents. Taken as a whole, these results show that that the anticonvulsant effect of brainstem activation can be efficiently utilized by reactive triggering, which suggests that alternative

  15. In Vitro Influence of Mycophenolic Acid on Selected Parameters of Stimulated Peripheral Canine Lymphocytes.

    Directory of Open Access Journals (Sweden)

    Maciej Guzera

    Full Text Available Mycophenolic acid (MPA is an active metabolite of mycophenolate mofetil, a new immunosuppressive drug effective in the treatment of canine autoimmune diseases. The impact of MPA on immunity is ambiguous and its influence on the canine immune system is unknown. The aim of the study was to determine markers of changes in stimulated peripheral canine lymphocytes after treatment with MPA in vitro. Twenty nine healthy dogs were studied. Phenotypic and functional analysis of lymphocytes was performed on peripheral blood mononuclear cells cultured with mitogens and different MPA concentrations- 1 μM (10-3 mol/m3, 10 μM or 100 μM. Apoptotic cells were detected by Annexin V and 7-aminoactinomycin D (7-AAD. The expression of antigens (CD3, CD4, CD8, CD21, CD25, forkhead box P3 [FoxP3] and proliferating cell nuclear antigen [PCNA] was assessed with monoclonal antibodies. The proliferation indices were analyzed in carboxyfluorescein diacetate succinimidyl ester (CFSE-labeled cells. All analyses were performed using flow cytometry. The influence of MPA on apoptosis was dependent on the mechanism of cell activation and MPA concentration. MPA caused a decrease in the expression of lymphocyte surface antigens, CD3, CD8 and CD25. Its impact on the expression of CD4 and CD21 was negligible. Its negative influence on the expression of FoxP3 was dependent on cell stimulation. MPA inhibited lymphocyte proliferation. In conclusion, MPA inhibited the activity of stimulated canine lymphocytes by blocking lymphocyte activation and proliferation. The influence of MPA on the development of immune tolerance-expansion of Treg cells and lymphocyte apoptosis-was ambiguous and was dependent on the mechanism of cellular activation. The concentration that MPA reaches in the blood may lead to inhibition of the functions of the canine immune system. The applied panel of markers can be used for evaluation of the effects of immunosuppressive compounds in the dog.

  16. Stimulation of intestinal mucosal growth with intracolonic infusion of short-chain fatty acids.

    Science.gov (United States)

    Kripke, S A; Fox, A D; Berman, J M; Settle, R G; Rombeau, J L

    1989-01-01

    Dietary fiber, which stimulates intestinal mucosal growth, is fermented by anaerobic bacteria in the rat hindgut to the short-chain fatty acids (SCFA) acetate, propionate, and butyrate. Butyrate is the preferred oxidative fuel of the colonocyte in vitro, and the provision of preferred intestinal fuels has been shown to stimulate mucosal proliferation in vivo. This study determined whether chronic colonic infusion of butyrate or a combination of SCFA would stimulate intestinal mucosal growth in an animal deprived of its normal source of SCFA, fiber fermentation in the cecum. Adult male Sprague-Dawley rats were fed a fat- and fiber-free elemental liquid diet and underwent cecectomy, ileocolic anastomosis, and insertion of a proximal colonic infusion catheter. Rats were then assigned to receive either a continuous infusion of butyrate (20 mM, 40 mM, or 150 mM), SCFA (70 mM acetate + 35 mM propionate + 20 mM butyrate), or saline, or to receive no infusion. A seventh group underwent proximal colonic transection and reanastomosis. After 7 days, jejunal, ileal, and proximal colonic segments were analyzed for mucosal weight, protein, RNA, and DNA. In the colon, the 40-mM butyrate infusion resulted in significant elevations in all mucosal parameters relative to all three control groups, saline infusion, no infusion, and transection. Both the 20-mM butyrate and the SCFA groups showed increased colonic mucosal DNA compared to controls. In the jejunum and ileum, mucosal DNA content was significantly greater in the SCFA group than in the control groups.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Abscisic acid stimulates anthocyanin accumulation in 'Jersey' highbush blueberry fruits during ripening.

    Science.gov (United States)

    Oh, Hee Duk; Yu, Duk Jun; Chung, Sun Woo; Chea, Sinath; Lee, Hee Jae

    2018-04-01

    Non-climacteric blueberry (Vaccinium spp.) fruits accumulate high levels of anthocyanins during ripening, which are a good source of dietary antioxidants. This study examined the effects of exogenous abscisic acid (ABA) application on fruit characteristics and anthocyanin accumulation in a northern highbush blueberry (V. corymbosum 'Jersey') during development. Fruits on shrubs were treated with 1gL-1 ABA before the initiation of fruit colouration. Application of ABA temporarily increased the level of ABA in the fruits during development. Exogenous ABA had no obvious effect on fruit growth, but stimulated fruit colouration by accelerating the accumulation of individual anthocyanins, mainly malvidin, delphinidin and petunidin glycosides. This is the first report to show that ABA promotes the accumulation of anthocyanins in blueberry fruits. However, exogenous ABA also promoted fruit softening, which is undesirable during harvest and shelf life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Plasma Amino Acids Stimulate Uncoupled Respiration of Muscle Subsarcolemmal Mitochondria in Lean but Not Obese Humans.

    Science.gov (United States)

    Kras, Katon A; Hoffman, Nyssa; Roust, Lori R; Patel, Shivam H; Carroll, Chad C; Katsanos, Christos S

    2017-12-01

    Obesity is associated with mitochondrial dysfunction in skeletal muscle. Increasing the plasma amino acid (AA) concentrations stimulates mitochondrial adenosine triphosphate (ATP) production in lean individuals. To determine whether acute elevation in plasma AAs enhances muscle mitochondrial respiration and ATP production in subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria in obese adults. Assessment of SS and IMF mitochondrial function during saline (i.e., control) and AA infusions. Eligible participants were healthy lean (body mass index, 30 kg/m2; age 35 ± 3 years; n = 11) subjects. Single trial of saline infusion followed by AA infusion. SS and IMF mitochondria were isolated from muscle biopsies collected at the end of the saline and AA infusions. Mitochondrial respiration and ATP production. AA infusion increased adenosine 5'-diphosphate (ADP)-stimulated respiration and ATP production rates of SS mitochondria in the lean (P 0.05). Increasing the plasma AA concentrations enhances the capacity for respiration and ATP production of muscle SS, but not IMF, mitochondria in lean individuals, in parallel with increases in uncoupled respiration. However, neither of these parameters increases in muscle SS or IMF mitochondria in obese individuals.

  19. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic {beta} cells

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Mirshahi, Faridoddin [Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Grider, John R. [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Murthy, Karnam S., E-mail: skarnam@vcu.edu [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Sanyal, Arun J., E-mail: asanyal@mcvh-vcu.edu [Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA (United States)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer G protein coupled receptor TGR5 is expressed in mouse and human islets. Black-Right-Pointing-Pointer TGR5 is coupled to activation of Gs and Ca{sup 2+} release via cAMP/Epac/PLC-{epsilon} pathway. Black-Right-Pointing-Pointer Activation of TGR5 by bile salts and selective ligands causes insulin secretion. Black-Right-Pointing-Pointer TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic {beta} cells. In the present study, we have identified the expression of TGR5 in pancreatic {beta} cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated G{alpha}{sub s} and caused an increase in intracellular cAMP and Ca{sup 2+}. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective G{alpha}{sub s} inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on G{sub s}/cAMP/Ca{sup 2+} pathway. 8-pCPT-2 Prime -O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic {beta} cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  20. A novel viscoelastic surfactant suitable for use in high temperature carbonate reservoirs for diverted acidizing stimulation treatments

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Stuart; Zhou, Jian; Gadberry, Fred [AkzoNobel Surface Chemistry, Forth Worth, TX (United States); Nasr-El-Din, Hisham; Wang, Guanqun [Texas A and M University, College Station, TX (United States). Dept. of Petroleum Engineering

    2012-07-01

    Due to the low permeability of many carbonate hydrocarbon-bearing reservoirs, it is difficult to achieve economic hydrocarbon recovery from a well without secondary stimulation. Bullheading of strong acids, such as HCl is practiced in low temperature reservoirs, but as the bottom hole temperature (BHT) rises, the acid becomes increasingly corrosive, causing facial dissolution and sub-optimal wormhole network development. In the last decade, viscoelastic surfactants (VES) have been added to HCl acid systems to improve the stimulation of HT carbonate reservoirs. The VES form 'living polymers' or worm-like micelles as electrolyte concentration rises in the acid due to reaction with the reservoir. This leads to viscosification of the stimulation fluid. The viscosification slows further acid reaction in the region already contacted by the acid, and forces the acid to take an alternate path into the rock, leading to diversion of the acids further down the well to the harder to access toe or lower permeability zones. Until recently, the maximum BHT that such VES-based diverting systems could be used was up to about 250 deg F/120 deg C. Above that temperature, all viscous properties of the fluid are lost, destroying the mechanism of acid diversion. A recently developed novel viscoelastic surfactant provides nearly 100 deg F/55 deg C extension in the BHT range in which diverted acid treatments can be used. These fluids are able to maintain both viscosity up to about 375 deg F/190 deg C, with the elastic modulus predominating up to 350 deg F/175 deg C. It is the elasticity which is particularly important in acid diversion. These fluids can have their viscosity readily broken by in-situ hydrocarbons, dilution with water or by using a mutual solvent. The broken fluids are readily removed from the near-well bore, leaving the newly created wormhole network to produce the target hydrocarbons. The new VES is significantly more environmentally benign compared with current

  1. Comparison of delta-aminolaevulinic acid dehydratase activity in chick liver during sex steroid hormone dependent primary and secondary stimulation.

    Science.gov (United States)

    Tsushima, N; Yamada, M

    1990-01-01

    1. Comparative study on primary and secondary stimulation of hepatic delta-aminolaevulinic acid dehydratase (ALAD) (EC 4.2.1.24) was carried out after oestradiol-17 beta and/or testosterone administration in immature female chicken. 2. When 2 mg/day oestradiol was administered to birds for 15 days successively, hepatic total ALAD activity increased to 170% by day 15 of primary stimulation, whereas a more rapid increased rate was observed within day 3 of secondary stimulation and thereafter the hepatic ALAD activity maintained the same high level from day 3 to day 15. 3. Testosterone (2 mg/day) alone decreased hepatic total ALAD activity during both primary and secondary stimulation. 4. When testosterone (0.25-10 mg/day) was injected into birds in combination with 2 mg oestradiol for 15 days during primary and secondary stimulation, only an antagonistic effect of testosterone on oestradiol-stimulated total ALAD activity in liver was observed independently of the testosterone amount administered. However, the extent of suppression of hepatic ALAD activity by testosterone during primary stimulation was markedly different from that of secondary stimulation.

  2. Acidity and organic matter stimulate abiotic nitric oxide emissions in drying soils

    Science.gov (United States)

    Homyak, P. M.; Kamiyama, M. T.; Sickman, J. O.; Schimel, J.

    2016-12-01

    Soils are an important source of nitric oxide (NO) to the atmosphere, particularly in dry lands because of tradeoffs that develop between biotic and abiotic NO-producing processes as soils dry. Understanding how increasingly drier climates may offset the balance of these tradeoffs is critical to estimating N budgets, especially because regions on Earth are expected to become drier. We measured NO emission pulses after wetting soils from similar lithologies along an altitudinal gradient in the Sierra Nevada, CA, where mean annual precipitation varied from 670 to 1,500 mm. Along the gradient, we measured field NO emissions, and used chloroform in the laboratory to partition between biotic and abiotic NO-producing processes. Field NO emission pulses were lowest in acidic and organic matter-rich soils (4-72 ng NO-N m-2 s-1), presumably because topography and vegetation influenced soil moisture and substrate availability, but were highest in the high-elevation barren site ( 560 ng NO-N m-2 s-1). In the laboratory, NO emission pulses were up to 19× greater in chloroform-treated soils than in the controls, and in contrast to field measurements, these pulses increased with elevation as pH decreased (6.2 to 4.4) and soil organic matter (SOM) increased (18 to 157 mg C g-1). Drought can favor abiotic NO-producing processes (i.e., chemodenitrification) during periods when biological processes become stressed. Acidic and SOM-rich soils, which typically develop under mesic conditions, are most vulnerable to N loss as interactions between drought, acidity, and SOM stimulate chemodenitrification.

  3. The earthworm Aporrectodea caliginosa stimulates abundance and activity of phenoxyalkanoic acid herbicide degraders.

    Science.gov (United States)

    Liu, Ya-Jun; Zaprasis, Adrienne; Liu, Shuang-Jiang; Drake, Harold L; Horn, Marcus A

    2011-03-01

    2-Methyl-4-chlorophenoxyacetic acid (MCPA) is a widely used phenoxyalkanoic acid (PAA) herbicide. Earthworms represent the dominant macrofauna and enhance microbial activities in many soils. Thus, the effect of the model earthworm Aporrectodea caliginosa (Oligochaeta, Lumbricidae) on microbial MCPA degradation was assessed in soil columns with agricultural soil. MCPA degradation was quicker in soil with earthworms than without earthworms. Quantitative PCR was inhibition-corrected per nucleic acid extract and indicated that copy numbers of tfdA-like and cadA genes (both encoding oxygenases initiating aerobic PAA degradation) in soil with earthworms were up to three and four times higher than without earthworms, respectively. tfdA-like and 16S rRNA gene transcript copy numbers in soil with earthworms were two and six times higher than without earthworms, respectively. Most probable numbers (MPNs) of MCPA degraders approximated 4 × 10(5) g(dw)(-1) in soil before incubation and in soil treated without earthworms, whereas MPNs of earthworm-treated soils were approximately 150 × higher. The aerobic capacity of soil to degrade MCPA was higher in earthworm-treated soils than in earthworm-untreated soils. Burrow walls and 0-5 cm depth bulk soil displayed higher capacities to degrade MCPA than did soil from 5-10 cm depth bulk soil, expression of tfdA-like genes in burrow walls was five times higher than in bulk soil and MCPA degraders were abundant in burrow walls (MPNs of 5 × 10(7) g(dw)(-1)). The collective data indicate that earthworms stimulate abundance and activity of MCPA degraders endogenous to soil by their burrowing activities and might thus be advantageous for enhancing PAA degradation in soil.

  4. The earthworm Aporrectodea caliginosa stimulates abundance and activity of phenoxyalkanoic acid herbicide degraders

    Science.gov (United States)

    Liu, Ya-Jun; Zaprasis, Adrienne; Liu, Shuang-Jiang; Drake, Harold L; Horn, Marcus A

    2011-01-01

    2-Methyl-4-chlorophenoxyacetic acid (MCPA) is a widely used phenoxyalkanoic acid (PAA) herbicide. Earthworms represent the dominant macrofauna and enhance microbial activities in many soils. Thus, the effect of the model earthworm Aporrectodea caliginosa (Oligochaeta, Lumbricidae) on microbial MCPA degradation was assessed in soil columns with agricultural soil. MCPA degradation was quicker in soil with earthworms than without earthworms. Quantitative PCR was inhibition-corrected per nucleic acid extract and indicated that copy numbers of tfdA-like and cadA genes (both encoding oxygenases initiating aerobic PAA degradation) in soil with earthworms were up to three and four times higher than without earthworms, respectively. tfdA-like and 16S rRNA gene transcript copy numbers in soil with earthworms were two and six times higher than without earthworms, respectively. Most probable numbers (MPNs) of MCPA degraders approximated 4 × 105 gdw−1 in soil before incubation and in soil treated without earthworms, whereas MPNs of earthworm-treated soils were approximately 150 × higher. The aerobic capacity of soil to degrade MCPA was higher in earthworm-treated soils than in earthworm-untreated soils. Burrow walls and 0–5 cm depth bulk soil displayed higher capacities to degrade MCPA than did soil from 5–10 cm depth bulk soil, expression of tfdA-like genes in burrow walls was five times higher than in bulk soil and MCPA degraders were abundant in burrow walls (MPNs of 5 × 107 gdw−1). The collective data indicate that earthworms stimulate abundance and activity of MCPA degraders endogenous to soil by their burrowing activities and might thus be advantageous for enhancing PAA degradation in soil. PMID:20740027

  5. Selective stimulation of excitatory amino acid receptor subtypes and the survival of cerebellar granule cells in culture: effect of kainic acid

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1990-01-01

    Our previous studies showed that the survival of cerebellar granule cells in culture is promoted by treatment with N-methyl-D-aspartate. Here we report on the influence of another glutamate analogue, kainic acid, which, in contrast to N-methyl-D-aspartate, is believed to stimulate transmitter rec...

  6. Amino acids stimulate leg muscle protein synthesis in peripheral arterial disease.

    Science.gov (United States)

    Killewich, Lois A; Tuvdendorj, Demidmaa; Bahadorani, John; Hunter, Glenn C; Wolfe, Robert R

    2007-03-01

    Older patients with peripheral arterial disease (PAD) and intermittent claudication have impaired walking ability resulting from reduced lower extremity blood flow. Evidence suggests that leg muscle abnormalities may also contribute to walking intolerance in claudicants. In healthy elderly people, leg muscle protein synthesis can be augmented by nutritional supplementation with amino acids; preliminary data suggest that this increases muscle mass, walking ability, and functional status. In this study, we investigated whether amino acid supplementation would improve leg muscle protein synthesis in elderly PAD subjects, given that reduced leg blood flow might restrict the availability of amino acids to muscle. Two groups participated in the study: a group of 11 claudicants (mean age, 62 years; mean ankle-brachial index, 0.62; 46% male) and a group of 9 age- and sex-matched healthy controls (mean ankle-brachial index, 1.1). Both groups underwent measurement of leg blood flow by using strain gauge plethysmography, as well as measurement of baseline and amino acid-stimulated protein synthesis in leg muscle. Protein synthesis was quantified from calf muscle biopsy samples by measurement of the fractional synthetic rate (FSR) of protein, by using the incorporation of the stable isotope l-[ring-(2)H(5)]-phenylalanine into muscle protein. Total protein was extracted from muscle samples, and gas chromatography/mass spectroscopy methodology was used to measure incorporation rates. After measurement of basal FSR, all subjects were given an oral drink of 15 g of essential amino acids, and the measurements of FSR were repeated. Data are expressed as mean +/- SD; statistical analysis of differences between the two groups (with and without amino acid supplementation) was performed by using analysis of variance with repeated measures. Calf blood flow was reduced in the PAD subjects compared with controls (1.44 +/- 0.53 mL/min per 100 mg of tissue vs 2.40 +/- 0.57 mL/min per 100 mg

  7. Branched-Chain Amino Acid Ingestion Stimulates Muscle Myofibrillar Protein Synthesis following Resistance Exercise in Humans

    Directory of Open Access Journals (Sweden)

    Sarah R. Jackman

    2017-06-01

    Full Text Available The ingestion of intact protein or essential amino acids (EAA stimulates mechanistic target of rapamycin complex-1 (mTORC1 signaling and muscle protein synthesis (MPS following resistance exercise. The purpose of this study was to investigate the response of myofibrillar-MPS to ingestion of branched-chain amino acids (BCAAs only (i.e., without concurrent ingestion of other EAA, intact protein, or other macronutrients following resistance exercise in humans. Ten young (20.1 ± 1.3 years, resistance-trained men completed two trials, ingesting either 5.6 g BCAA or a placebo (PLA drink immediately after resistance exercise. Myofibrillar-MPS was measured during exercise recovery with a primed, constant infusion of L-[ring13C6] phenylalanine and collection of muscle biopsies pre and 4 h-post drink ingestion. Blood samples were collected at time-points before and after drink ingestion. Western blotting was used to measure the phosphorylation status of mTORC1 signaling proteins in biopsies collected pre, 1-, and 4 h-post drink. The percentage increase from baseline in plasma leucine (300 ± 96%, isoleucine (300 ± 88%, and valine (144 ± 59% concentrations peaked 0.5 h-post drink in BCAA. A greater phosphorylation status of S6K1Thr389 (P = 0.017 and PRAS40 (P = 0.037 was observed in BCAA than PLA at 1 h-post drink ingestion. Myofibrillar-MPS was 22% higher (P = 0.012 in BCAA (0.110 ± 0.009%/h than PLA (0.090 ± 0.006%/h. Phenylalanine Ra was ~6% lower in BCAA (18.00 ± 4.31 μmol·kgBM−1 than PLA (21.75 ± 4.89 μmol·kgBM−1; P = 0.028 after drink ingestion. We conclude that ingesting BCAAs alone increases the post-exercise stimulation of myofibrillar-MPS and phosphorylation status mTORC1 signaling.

  8. Alcoholic beverages produced by alcoholic fermentation but not by distillation are powerful stimulants of gastric acid secretion in humans.

    Science.gov (United States)

    Teyssen, S; Lenzing, T; González-Calero, G; Korn, A; Riepl, R L; Singer, M V

    1997-01-01

    The effect of commonly ingested alcoholic beverages on gastric acid output and release of gastrin in humans is unknown. In 16 healthy humans the effect of some commonly ingested alcoholic beverages produced by fermentation plus distillation (for example, whisky, cognac, calvados, armagnac, and rum) or by alcoholic fermentation (beer, wine, champagne, martini, and sherry) on gastric acid output and release of gastrin was studied. Gastric acid output was determined by the method of intragastric titration. Plasma gastrin was measured using a specific radioimmunoassay. None of the alcoholic beverages produced by fermentation plus distillation had any significant effect on gastric acid output and release of gastrin compared with control (isotonic glucose and distilled water). Alcoholic beverages produced only by fermentation significantly (p wine, and sherry were distilled, only their remaining parts increased gastric acid output by 53% to 76% of MAO and increased release of gastrin up to 4.3-fold compared with control. (1) Alcoholic beverages produced by fermentation but not by distillation are powerful stimulants of gastric acid output and release of gastrin; (2) the alcoholic beverage constituents that stimulate gastric acid output and release of gastrin are most probably produced during the process of fermentation and removed during the following process of distillation.

  9. Heterotrophic Microbial Stimulation through Biosolids Addition for Enhanced Acid Mine Drainage Control

    Directory of Open Access Journals (Sweden)

    Omy T. Ogbughalu

    2017-06-01

    Full Text Available The effective control and treatment of acid mine drainage (AMD from sulfide-containing mine wastes is of fundamental importance for current and future long-term sustainable and cost-effective mining industry operations, and for sustainable management of legacy AMD sites. Historically, AMD management has focused on the use of expensive neutralising chemicals to treat toxic leachates. Accordingly, there is a need to develop more cost-effective and efficient methods to prevent AMD at source. Laboratory kinetic leach column experiments, designed to mimic a sulfide-containing waste rock dump, were conducted to assess the potential of organic waste carbon supplements to stimulate heterotrophic microbial growth, and supress pyrite oxidation and AMD production. Microbiological results showed that the addition of biosolids was effective at maintaining high microbial heterotroph populations and preventing AMD generation over a period of 80 weeks, as verified by leachate chemistry and electron microscopy analyses. This research contributes to the ongoing development of a cost effective, multi-barrier geochemical-microbial control strategy for reduced mineral sulfide oxidation rates at source.

  10. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    Directory of Open Access Journals (Sweden)

    Hitomi Maruta

    Full Text Available Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4 genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A, which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin.

  11. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells.

    Science.gov (United States)

    Maruta, Hitomi; Yoshimura, Yukihiro; Araki, Aya; Kimoto, Masumi; Takahashi, Yoshitaka; Yamashita, Hiromi

    2016-01-01

    Previously, we found that orally administered acetic acid decreased lipogenesis in the liver and suppressed lipid accumulation in adipose tissue of Otsuka Long-Evans Tokushima Fatty rats, which exhibit hyperglycemic obesity with hyperinsulinemia and insulin resistance. Administered acetic acid led to increased phosphorylation of AMP-activated protein kinase (AMPK) in both liver and skeletal muscle cells, and increased transcripts of myoglobin and glucose transporter 4 (GLUT4) genes in skeletal muscle of the rats. It was suggested that acetic acid improved the lipid metabolism in skeletal muscles. In this study, we examined the activation of AMPK and the stimulation of GLUT4 and myoglobin expression by acetic acid in skeletal muscle cells to clarify the physiological function of acetic acid in skeletal muscle cells. Acetic acid added to culture medium was taken up rapidly by L6 cells, and AMPK was phosphorylated upon treatment with acetic acid. We observed increased gene and protein expression of GLUT4 and myoglobin. Uptake of glucose and fatty acids by L6 cells were increased, while triglyceride accumulation was lower in treated cells compared to untreated cells. Furthermore, treated cells also showed increased gene and protein expression of myocyte enhancer factor 2A (MEF2A), which is a well-known transcription factor involved in the expression of myoglobin and GLUT4 genes. These results indicate that acetic acid enhances glucose uptake and fatty acid metabolism through the activation of AMPK, and increases expression of GLUT4 and myoglobin.

  12. High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions.

    Science.gov (United States)

    Woo, Ji-Min; Yang, Kyung-Mi; Kim, Sae-Um; Blank, Lars M; Park, Jin-Byung

    2014-07-01

    Cellular responses of Saccharomyces cerevisiae to high temperatures of up to 42 °C during ethanol fermentation at a high glucose concentration (i.e., 100 g/L) were investigated. Increased temperature correlated with stimulated glucose uptake to produce not only the thermal protectant glycerol but also ethanol and acetic acid. Carbon flux into the tricarboxylic acid (TCA) cycle correlated positively with cultivation temperature. These results indicate that the increased demand for energy (in the form of ATP), most likely caused by multiple stressors, including heat, acetic acid, and ethanol, was matched by both the fermentation and respiration pathways. Notably, acetic acid production was substantially stimulated compared to that of other metabolites during growth at increased temperature. The acetic acid produced in addition to ethanol seemed to subsequently result in adverse effects, leading to increased production of reactive oxygen species. This, in turn, appeared to cause the specific growth rate, and glucose uptake rate reduced leading to a decrease of the specific ethanol production rate far before glucose depletion. These results suggest that adverse effects from heat, acetic acid, ethanol, and oxidative stressors are synergistic, resulting in a decrease of the specific growth rate and ethanol production rate and, hence, are major determinants of cell stability and ethanol fermentation performance of S. cerevisiae at high temperatures. The results are discussed in the context of possible applications.

  13. Influence of ascorbic acid on in vivo amidation of alpha-melanocyte stimulating hormone in guinea pig pituitary

    DEFF Research Database (Denmark)

    Fenger, M; Hilsted, L

    1988-01-01

    The effect of ascorbic acid depletion on the amidation of alphamelanocyte stimulating hormone (alpha MSH) was studied in vivo in guinea pig pituitary. After four weeks, the concentration of ascorbic acid was 1.20 +/- 0.11 mumol/g tissue (mean +/- SD) in the pituitary and 0.34 +/- 0.07 mumol......-39) immunoreactivity was observed in the depleted guinea pigs. Gel chromatography and reversed-phase high-performance luquid chromatography showed that the alpha MSH and ACTH (1-14) immunoreactivity was of low molecular weight and partly mono- or diacetylated. Depletion of ascorbic acid had no influence on the degree...... of acetylation of alpha MSH and ACTH (1-14). It is concluded that depletion of ascorbic acid reduces the in vivo amidation of ACTH (1-14) in the guinea pig pituitary....

  14. 3-Hydroxykynurenine, 3-hydroxyanthranilic acid, and o-aminophenol inhibit leucine-stimulated insulin release from rat pancreatic islets.

    Science.gov (United States)

    Rogers, K S; Evangelista, S J

    1985-02-01

    Individual islets were isolated from rat pancreas to study the effects of tryptophan and its metabolites on leucine-stimulated release of insulin. 3-Hydroxykynurenine, 3-hydroxyanthranilic acid, and o-aminophenol were inhibitors at concentrations below 10 mM whereas tryptophan, kynurenine, kynurenic acid, xanthurenic acid, and anthranilic acid were ineffective inhibitors at concentrations up to 10 mM. A structure-activity analysis of these metabolites demonstrated that vicinal aromatic hydroxy and amino groups with their concomitant electron donating properties are required for inhibition of insulin release. Inhibition of islet insulin release by the three kynurenine metabolites may be involved in the depressed insulin levels found in vitamin B6-deficient rats by other workers.

  15. Wounding stimulates ALLENE OXIDE SYNTHASE gene and increases the level of jasmonic acid in Ipomoea nil cotyledons

    Directory of Open Access Journals (Sweden)

    Emilia Wilmowicz

    2016-03-01

    Full Text Available Allene oxide synthase (AOS encodes the first enzyme in the lipoxygenase pathway, which is responsible for jasmonic acid (JA formation. In this study we report the molecular cloning and characterization of InAOS from Ipomoea nil. The full-length gene is composed of 1662 bp and encodes for 519 amino acids. The predicted InAOS contains PLN02648 motif, which is evolutionarily conserved and characteristic for functional enzymatic proteins. We have shown that wounding led to a strong stimulation of the examined gene activity in cotyledons and an increase in JA level, which suggest that this compound may be a modulator of stress responses in I. nil.

  16. Phytanic acid stimulates glucose uptake in a model of skeletal muscles, the primary porcine myotubes

    DEFF Research Database (Denmark)

    Che, Brita Ngum; Oksbjerg, Niels; Hellgren, Lars

    2013-01-01

    stimulated glucose uptake nor glycogen synthesis in insulin-resistant myotubes generated by excess glucose exposure. CONCLUSIONS: Primary porcine myotubes were established as a model of skeletal muscles for measuring glucose uptake and glycogen synthesis, and we showed that PA can play a role in stimulating...

  17. Growth stimulation and inhibition effects of 4-hydroxybenzoic acid and some related compounds on the freshwater green alga Pseudokirchneriella subcapitata.

    Science.gov (United States)

    Kamaya, Y; Tsuboi, S; Takada, T; Suzuki, K

    2006-11-01

    4-hydroxybenzoic acid (4-HBA) exhibited low algal toxicity with the 72-h median inhibition concentration (IC50) of 9.9 mmol/L in the standard growth inhibition test using the freshwater green alga Pseudokirchneriella subcapitata. In contrast, it stimulated the algal growth at lower concentrations ranging from 0.1 to 1.0 mmol/L. Comparative studies with benzoic acid and 2- and 3-hydroxybenzoic acids (2-HBA and 3-HBA) indicated that 2-HBA was the most toxic, giving a 72-h IC50 of 0.172 mmol/L, and 4-HBA was the least toxic and that only 4-HBA had the pronounced growth stimulation activity. In a semicontinuous exposure to 4-HBA (0.15 and 0.3 mmol/L), algae maintained increased cell growth compared with controls during up to 10 times consecutive batch cultures, without any indication of adaptive responses to the growth enhancing effect of 4-HBA. Return to the clean standard medium of the exposed cells resulted in the quick recovery from the stimulant effect. Furthermore, 4-HBA (0.3 mmol/L) was found to diminish the toxicity of 2-HBA (growth inhibition test. The effects of 4-HBA on P. subcapitata growth observed in the present study are not expected for planktonic algae in the aquatic environments, because known environmental concentrations are far below the effective concentration range.

  18. Biosynthesis of poly(4-hydroxybutyrate) in recombinant Escherichia coli grown on glycerol is stimulated by propionic acid.

    Science.gov (United States)

    Kämpf, Michael M; Thöny-Meyer, Linda; Ren, Qun

    2014-11-01

    One of the most promising polyhydroxyalkanoates (PHAs) for medical applications is poly(4-hydroxybutyrate) (P4HB) due to its biodegradability, biocompatibility and mechanical properties. Currently, the major hurdle for expanding P4HB applications is the production and recovery cost. In this study, we investigated the stimulating factors for P4HB biosynthesis with the ultimate goal of reducing production cost. We found that addition of propionic acid to the culture medium stimulates the P4HB accumulation in recombinant Escherichia coli JM109 grown on glycerol. This stimulating effect was significantly weakened by addition of exogenous methionine, whereas it was not influenced by addition of cysteine. These results suggest that propionic acid enhances P4HB synthesis by reducing the intracellular methionine pool. Utilizing these findings for P4HB production in batch cultures on glycerol, the volumetric yield of P4HB could be improved 4 fold from 0.9g/L to 3.7g/L by adding 2g/L propionic acid into the medium. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Demulsifier for inclusion in injected acidization systems for petroleum formation stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Royle, R.A.

    1983-11-08

    A demulsifier consisting of a long chain carboxylic acid ester of a polyhydric alcohol is added to the acidizing solution in an acidization process where the acidizing solution consists of hydrochloric and hydrofluoric acids which are injected through a well into a subterranean petroleum formation. Long chain carboxylic acid esters of polyhydric alcohols are effective demulsifiers and are useful in treating stable emulsions formed from crude oil, water, spent mud acid, and formation fines. Preferred demulsifiers are sorbitan monolaurate, sorbitan monopalmitate, and sorbitan monooleate. 5 claims

  20. Stimulation of protease activated receptors on RT4 cells mediates arachidonic acid release via Ca2+ independent phospholipase A2.

    Science.gov (United States)

    McHowat, J; Creer, M H; Rickard, A

    2001-06-01

    Protease activated receptors (PAR) represent a family of G protein coupled receptors with 7 membrane spanning domains that are activated by proteolysis of the N-terminus of the receptor by serine proteases. The presence of multiple PARs on the same cell is thought to extend the range of proteases a cell responds to rather than expand the range of intracellular responses. We investigated arachidonic acid and prostaglandin E2 release in the human urothelial carcinoma cell line RT4 in response to stimulation with thrombin, which activates PAR-1, and tryptase, which activates PAR-2. RT4 cells were incubated with thrombin, tryptase or PAR agonist peptides and intracellular phospholipase A2 (PLA2) activity, arachidonic acid and prostaglandin E2 release were measured. Pretreatment with bromoenol lactone, a selective inhibitor for Ca2+ independent PLA2 (iPLA2), was also investigated. Thrombin and tryptase stimulation resulted in a 2 to 3-fold increase in membrane associated iPLA2 that was accompanied by comparative increases in arachidonic acid and prostaglandin E2 release. These responses were also observed when synthetic peptides representing the tethered ligand for each receptor were incubated with RT4 cells. Arachidonic acid and prostaglandin E2 release, and iPLA2 activation were completely inhibited by pretreatment with bromoenol lactone. Stimulating RT4 cells with PAR-1 or PAR-2 leads to the selective activation of iPLA2 as well as the release of arachidonic acid and prostaglandin E2, which may provide cytoprotection during an acute inflammatory reaction.

  1. Intracellular calcium-release and protein kinase C-activation stimulate sonic hedgehog gene expression during gastric acid secretion

    Science.gov (United States)

    El-Zaatari, Mohamad; Zavros, Yana; Tessier, Art; Waghray, Meghna; Lentz, Steve; Gumucio, Deborah; Todisco, Andrea; Merchant, Juanita L.

    2010-01-01

    Introduction Hypochlorhydria during Helicobacter pylori infection inhibits gastric Shh expression. We investigated whether acid-secretory mechanisms regulate Shh gene expression through Ca2+i-dependent protein kinase C (PKC) or cAMP-dependent protein kinase A (PKA)-activation. Method We blocked Hedgehog signaling by transgenically overexpressing a secreted form of the Hedgehog interacting protein-1 (sHip-1), a natural inhibitor of hedgehog ligands, which induced hypochlorhydria. Gadolinium, EGTA+BAPTA, PKC-overexpressing adenoviruses, and PKC-inhibitors were used to modulate Ca2+i-release, PKC-activity and Shh gene expression in primary gastric cell, organ, and AGS cell line cultures. PKA hyperactivity was induced in the H+/K+-β-cholera-toxin overexpressing mice (Ctox). Results Mice that expressed sHip-1 had lower levels of gastric acid (hypochlorhydria), reduced production of somatostatin, and increased gastrin gene expression. Hypochlorhydria in these mice repressed Shh gene expression, similar to the levels obtained with omeprazole treatment of wild-type mice. However, Shh expression was also repressed in the hyperchlorhydric Ctox model with elevated cAMP, suggesting that the regulation of Shh was not solely acid-dependent, but pertained to specific acid-stimulatory signaling pathways. Based on previous reports that Ca2+i-release also stimulates acid secretion in parietal cells, we showed that gadolinium-, thapsigargin- and carbachol-mediated release of Ca2+i induced Shh expression. Ca2+-chelation with BAPTA+EGTA reduced Shh expression. Overexpression of PKC-α, -β and -δ (but not PKC-ε) induced Shh gene expression. In addition, phorbol esters induced a Shh-regulated reporter gene. Conclusion Secretagogues that stimulate gastric acid secretion induce Shh gene expression through increased Ca2+i-release and PKC activation. Shh might be the ligand transducing changes in gastric acidity to the regulation of G-cell secretion of gastrin. PMID:20816837

  2. 18{beta}-Glycyrrhetinic acid inhibits adipogenic differentiation and stimulates lipolysis

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Myung-Hee; Jeong, Jae-Kyo; Lee, You-Jin; Seol, Jae-Won; Ahn, Dong-Choon; Kim, In-Shik [Center for Healthcare Technology Development, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Park, Sang-Youel, E-mail: sypark@chonbuk.ac.kr [Center for Healthcare Technology Development, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer 18{beta}-GA inhibits adipogenic differentiation in 3T3-L1 preadipocytes and stimulates lipolysis in differentiated adipocytes. Black-Right-Pointing-Pointer Anti-adipogenic effect of 18{beta}-GA is caused by down-regulation of PPAR{gamma} and inactivation of Akt signalling. Black-Right-Pointing-Pointer Lipolytic effect of 18{beta}-GA is mediated by up-regulation of HSL, ATGL and perilipin and activation of HSL. -- Abstract: 18{beta}-Glycyrrhetinic acid (18{beta}-GA) obtained from the herb liquorice has various pharmacological properties including anti-inflammatory and anti-bacterial activities. However, potential biological anti-obesity activities are unclear. In this study, novel biological activities of 18{beta}-GA in the adipogenesis of 3T3-L1 preadipocytes and in lipolysis of differentiated adipocytes were identified. Mouse 3T3-L1 cells were used as an in vitro model of adipogenesis and lipolysis, using a mixture of insulin/dexamethasone/3-isobutyl-1-methylxanthine (IBMX) to induce differentiation. The amount of lipid droplet accumulation was determined by an AdipoRed assay. The expression of several adipogenic transcription factors and enzymes was investigated using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. 18{beta}-GA dose-dependently (1-40 {mu}M) significantly decreased lipid accumulation in maturing preadipocytes. In 3T3-L1 preadipocytes, 10 {mu}M of 18{beta}-GA down-regulated the transcriptional levels of the peroxisome proliferator-activated receptor {gamma}, CCAAT/enhancer-binding protein {alpha} and adiponectin, which are markers of adipogenic differentiation via Akt phosphorylation. Also, in differentiated adipocytes, 18{beta}-GA increased the level of glycerol release and up-regulated the mRNA of hormone-sensitive lipase, adipose TG lipase and perilipin, as well as the phosphorylation of hormone-sensitive lipase at Serine 563. The results indicate that 18{beta

  3. Symbiosis revisited: phosphorus and acid buffering stimulate N2 fixation but not Sphagnum growth

    Science.gov (United States)

    van den Elzen, Eva; Kox, Martine A. R.; Harpenslager, Sarah F.; Hensgens, Geert; Fritz, Christian; Jetten, Mike S. M.; Ettwig, Katharina F.; Lamers, Leon P. M.

    2017-03-01

    In pristine Sphagnum-dominated peatlands, (di)nitrogen (N2) fixing (diazotrophic) microbial communities associated with Sphagnum mosses contribute substantially to the total nitrogen input, increasing carbon sequestration. The rates of symbiotic nitrogen fixation reported for Sphagnum peatlands, are, however, highly variable, and experimental work on regulating factors that can mechanistically explain this variation is largely lacking. For two common fen species (Sphagnum palustre and S. squarrosum) from a high nitrogen deposition area (25 kg N ha-1 yr-1), we found that diazotrophic activity (as measured by 15 - 15N2 labeling) was still present at a rate of 40 nmol N gDW-1 h-1. This was surprising, given that nitrogen fixation is a costly process. We tested the effects of phosphorus availability and buffering capacity by bicarbonate-rich water, mimicking a field situation in fens with stronger groundwater or surface water influence, as potential regulators of nitrogen fixation rates and Sphagnum performance. We expected that the addition of phosphorus, being a limiting nutrient, would stimulate both diazotrophic activity and Sphagnum growth. We indeed found that nitrogen fixation rates were doubled. Plant performance, in contrast, did not increase. Raised bicarbonate levels also enhanced nitrogen fixation, but had a strong negative impact on Sphagnum performance. These results explain the higher nitrogen fixation rates reported for minerotrophic and more nutrient-rich peatlands. In addition, nitrogen fixation was found to strongly depend on light, with rates 10 times higher in light conditions suggesting high reliance on phototrophic organisms for carbon. The contrasting effects of phosphorus and bicarbonate on Sphagnum spp. and their diazotrophic communities reveal strong differences in the optimal niche for both partners with respect to conditions and resources. This suggests a trade-off for the symbiosis of nitrogen fixing microorganisms with their Sphagnum

  4. Stimulative effect of lactic acid bacteria in the growth of the microalgae Isochrysis galbana

    Directory of Open Access Journals (Sweden)

    Miquel Planas

    2015-12-01

    Full Text Available Objective: To study the effect of species of lactic acid bacteria (LAB from telluric origin on the growth of the microalgae Isochrysis galbana (I. galbana in small and medium volume flasks. Methods: In the first experiment, 7 LAB species [Carnobacterium piscicola, Lactobacillus brevis, Lactobacillus casei ssp. casei, Lactobacillus helveticus, Lactococcus lactis spp. lactis, Leuconostoc mesenteroides spp. mesenteroides (L. mesenteroides spp. mesenteroides and Pediococcus acidilactici (P. acidilactici] were inoculated in 250 mL flasks containing microalgae I. galbana (106 cells/mL. After fitting the growth data to two mathematical models, two LAB strains (L. mesenteroides spp. mesenteroides and P. acidilactici were selected for the second experiment in which those strains were inoculated in medium size (5 L volume cultures of I. galbana (1.2 × 105 –1.5 × 105 cells/mL. The bacterial load in cultures from the first experiment was analyzed by plating on marine agar, MRS agar and thiosulfate citrate bile saltssucrose media. Results: All strains of LAB tested enhanced the growth rate and the final biomass yield of I. galbana cultures, even in the absence of nutrients in the media. The best overall results and the maximal final cell densities in small flasks were achieved with strains L. mesenteroides spp. mesenteroides and P. acidilactici, respectively. These two strains also stimulated the growth (40% and 16% with respect to controls of I. galbana in medium size volumes. For most strains, CFU values of LAB remained stable (105 –108 CFU/mL for at least 4 days. A high variability was observed in bacteria strains among treatments, with Pseudomonas and Moraxella being the most abundant bacteria. Conclusions: The results of present study showed that the growth of I. galbana in both small and medium size volumes was enhanced by LAB, both in the absence and the presence of nutrients in the culture. The highest final biomass was achieved by adding P

  5. Induction of retinoic acid receptor-alpha by granulocyte macrophage colony-stimulating factor in human myeloid leukemia cell lines.

    Science.gov (United States)

    Shimizu, T; Takeda, K

    2000-08-15

    We reported previously that treatment with all-trans retinoic acid (ATRA) and granulocyte macrophage colony-stimulating factor (GM-CSF) induces differentiation of human myeloblastic leukemia ML-1 cells to granulocytes, whereas treatment with ATRA alone induces practically no differentiation of these cells. To investigate the mechanism of the synergistic effect of these factors, we examined the effect of GM-CSF on retinoic acid receptors (RARs) and retinoid X receptors (RXRs) in ML-1 cells. We reveal that GM-CSF induces the expression of RAR alpha mRNA and protein and stimulates the binding of nuclear proteins to direct repeat 5, a consensus sequence with high affinity for RAR-RXR heterodimers. Furthermore, expression of CD38 mRNA mediated through RAR alpha is induced synergistically by treatment with ATRA + GM-CSF. These results suggest that GM-CSF stimulates transcriptional activity mediated via RAR alpha in ML-1 cells. The induction of RAR alpha by GM-CSF may therefore be a mechanism for stimulation by GM-CSF. The induction of RAR alpha by GM-CSF was also detected in other myeloid leukemia cell lines (THP-1 and KG-1) that showed a synergistic effect similar to that seen in ML-1 cells in response to ATRA + GM-CSF. We also found that GM-CSF induced the expression of RAR alpha in blood cells obtained from patients with acute myeloid leukemia. This activity of GM-CSF may serve as a useful adjunct to differentiation therapy for retinoic acid-nonresponsive leukemias.

  6. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae).

    Science.gov (United States)

    Chia, Mathias Ahii; Lombardi, Ana Teresa; da Graça Gama Melão, Maria; Parrish, Christopher C

    2015-03-01

    Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10(-7) and 2.0×10(-8)molL(-1) Cd) under varying nitrogen (2.9×10(-6), 1.1×10(-5) and 1.1×10(-3)molL(-1)N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Demulsifier for inclusion in injected acidization systems for petroleum formation stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Royle, R.A.

    1981-09-22

    The formation of stable oil-in-water emulsions in produced fluids from wells undergoing acidization treatment is prevented by the inclusion within the injected acidization chemical mixture of a long chain carboxylic acid ester of a polyhydric alcohol such as sorbitan monolaurate, sorbitan monopalmitate or sorbitan monooleate as a demulsification agent.

  8. The Gibberellic Acid Stimulated-Like gene family in maize and its role in lateral root development.

    Science.gov (United States)

    Zimmermann, Roman; Sakai, Hajime; Hochholdinger, Frank

    2010-01-01

    In an approach to study lateral root development in monocots, genome-wide searches for homologs of the Gibberellic Acid Stimulated Transcript-like (GAST-like) gene family in rice (Oryza sativa) and maize (Zea mays) were carried out. Six novel GAST-like genes in rice and 10 members of the gene family in maize, which were designated ZmGSL (for Z. mays Gibberellic Acid Stimulated-Like), were identified. The ZmGSL family encodes small proteins of 75 to 128 amino acids, which are characterized by a conserved 59 to 64 amino acid C-terminal domain. Within this domain, 17 amino acids, including 12 cysteines, are perfectly conserved. The transcript of the ZmGSL1 gene is differentially spliced into the alternative variants ZmGSL1a and ZmGSL1b, the latter of which is translated into a premature protein that lacks the C-terminal domain. The presence of an additional N-terminal cleavable signal sequence in eight of the 10 ZmGSL proteins suggests that they are secreted into the extracellular matrix. In-depth root-specific gene expression analyses carried out in the wild type and the lateral root mutants lrt1 and rum1 suggest a role for ZmGSL genes in early lateral root development, which is likely regulated by gibberellic acid. Expression patterns of ZmGSL1a and ZmGSL1b propose antagonistic functions of these splice variants during early lateral root formation.

  9. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae)

    Energy Technology Data Exchange (ETDEWEB)

    Chia, Mathias Ahii, E-mail: chia28us@yahoo.com [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Lombardi, Ana Teresa [Department of Botany, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Graça Gama Melão, Maria da [Department of Hydrobiology, Federal University of São Carlos, Rodovia Washington Luis km 235, São Carlos, SP Cep 13565905 (Brazil); Parrish, Christopher C. [Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland A1C 5S7 (Canada)

    2015-03-15

    Highlights: • Chlorella vulgaris was exposed to Cd under varying N concentrations. • Growth rate and cell density decreased with increasing Cd stress and N limitation. • Dry weight, chlorophyll a, total lipid, carbohydrate and protein were accumulated. • Amino acids like proline and glutamine were accumulated under N and Cd stress. • Changes in amino acid composition are sensitive biomarkers for Cd and N stress. - Abstract: Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10{sup −7} and 2.0 × 10{sup −8} mol L{sup −1} Cd) under varying nitrogen (2.9 × 10{sup −6}, 1.1 × 10{sup −5} and 1.1 × 10{sup −3} mol L{sup −1} N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production.

  10. Comparison of sex steroid hormone-dependent induction of chick oviduct delta-aminolaevulinic acid dehydratase during primary and secondary stimulation.

    Science.gov (United States)

    Tsushima, N; Yamada, M

    1992-10-01

    1. A comparative study on primary and secondary stimulation of oviduct delta-aminolaevulinic acid dehydratase (ALAD) (EC 4.2.1.24) was carried out with oestradiol-17 beta and/or testosterone administration in immature female chickens during 15-day-primary stimulation, 20-day-withdrawal and 15-day-secondary stimulation periods. 2. Compared with primary stimulation in oestrogenized birds, synthesis and degradation rates of oviduct ALAD molecule during secondary stimulation increased 3.4- and 1.8-fold respectively, resulting in a rapid induction of the enzyme. 3. Specific activity of oviduct ALAD in oestradiol-plus-testosterone treated birds became significantly higher than that of oestradiol alone during secondary stimulation, whereas no significant changes were observed during primary stimulation.

  11. Intracellular calcium release and protein kinase C activation stimulate sonic hedgehog gene expression during gastric acid secretion.

    Science.gov (United States)

    El-Zaatari, Mohamad; Zavros, Yana; Tessier, Art; Waghray, Meghna; Lentz, Steve; Gumucio, Deborah; Todisco, Andrea; Merchant, Juanita L

    2010-12-01

    Hypochlorhydria during Helicobacter pylori infection inhibits gastric Sonic Hedgehog (Shh) expression. We investigated whether acid-secretory mechanisms regulate Shh gene expression through intracellular calcium (Ca2(+)(i))-dependent protein kinase C (PKC) or cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) activation. We blocked Hedgehog signaling by transgenically overexpressing a secreted form of the Hedgehog interacting protein-1, a natural inhibitor of hedgehog ligands, which induced hypochlorhydria. Gadolinium, ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) + 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), PKC-overexpressing adenoviruses, and PKC inhibitors were used to modulate Ca(2+)(i)-release, PKC activity, and Shh gene expression in primary gastric cell, organ, and AGS cell line cultures. PKA hyperactivity was induced in the H(+)/K(+)-β-cholera-toxin-overexpressing mice. Mice that expressed secreted hedgehog-interacting protein-1 had lower levels of gastric acid (hypochlorhydria), reduced production of somatostatin, and increased gastrin gene expression. Hypochlorhydria in these mice repressed Shh gene expression, similar to the levels obtained with omeprazole treatment of wild-type mice. However, Shh expression also was repressed in the hyperchlorhydric H(+)/K(+)-β-cholera-toxin model with increased cAMP, suggesting that the regulation of Shh was not solely acid-dependent, but pertained to specific acid-stimulatory signaling pathways. Based on previous reports that Ca(2+)(i) release also stimulates acid secretion in parietal cells, we showed that gadolinium-, thapsigargin-, and carbachol-mediated release of Ca(2+)(i) induced Shh expression. Ca(2+)-chelation with BAPTA + EGTA reduced Shh expression. Overexpression of PKC-α, -β, and -δ (but not PKC-ϵ) induced an Shh gene expression. In addition, phorbol esters induced a Shh-regulated reporter gene. Secretagogues that stimulate

  12. Docosahexaenoic acid inhibits IL-6 expression via PPARγ-mediated expression of catalase in cerulein-stimulated pancreatic acinar cells.

    Science.gov (United States)

    Song, Eun Ah; Lim, Joo Weon; Kim, Hyeyoung

    2017-07-01

    Cerulein pancreatitis mirrors human acute pancreatitis. In pancreatic acinar cells exposed to cerulein, reactive oxygen species (ROS) mediate inflammatory signaling by Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3, and cytokine induction. Docosahexaenoic acid (DHA) acts as an agonist of peroxisome proliferator activated receptor γ (PPARγ), which mediates the expression of some antioxidant enzymes. We hypothesized that DHA may induce PPARγ-target catalase expression and reduce ROS levels, leading to the inhibition of JAK2/STAT3 activation and IL-6 expression in cerulein-stimulated acinar cells. Pancreatic acinar AR42J cells were treated with DHA in the presence or absence of the PPARγ antagonist GW9662, or treated with the PPARγ agonist troglitazone, and then stimulated with cerulein. Expression of IL-6 and catalase, ROS levels, JAK2/STAT3 activation, and nuclear translocation of PPARγ were assessed. DHA suppressed the increase in ROS, JAK2/STAT3 activation, and IL-6 expression induced nuclear translocation of PPARγ and catalase expression in cerulein-stimulated AR42J cells. Troglitazone inhibited the cerulein-induced increase in ROS and IL-6 expression, but induced catalase expression similar to DHA in AR42J cells. GW9662 abolished the inhibitory effect of DHA on cerulein-induced increase in ROS and IL-6 expression in AR42J cells. DHA-induced expression of catalase was suppressed by GW9662 in cerulein-stimulated AR42J cells. Thus, DHA induces PPARγ activation and catalase expression, which inhibits ROS-mediated activation of JAK2/STAT3 and IL-6 expression in cerulein-stimulated pancreatic acinar cells. Copyright © 2017. Published by Elsevier Ltd.

  13. Toxic epidermal necrolysis due to concomitant use of valproic asid and lamotrigine

    Directory of Open Access Journals (Sweden)

    Hamdi Özcan

    2015-06-01

    Full Text Available Toxic epidermal necrolysis (TEN is a rare but life-threatening acute mucacutaneous hypersensitivity reaction, usually related to medications. Concomitant use of lamotrigine and valproic asid can cause this serious reaction. A 36 year-old-man admitted to emergency department with high fever, burning sensation at eyes, oral and genital mucous erosions, generalized rush and weakness. He had been taking valproic asid, olanzapine, and sertraline for bipolar affective disorder. Lamotrigine 25 mg/day treatment was added his treatment protocol 15 days ago before the rush and lamotgine dose was increased 50 mg/day 10 days later. The patient was diagnosed as TEN caused by concomitant use of valproic asid and lamotrigine. The patient followed up and treated at burn unit with intravenous immunoglobulin, corticosteroid and antibiotics. Concomitant use of valproic asid and lamotrigine increases the frequency of adverse reaction. TEN may cause serious complications and mortality. The patients with TEN should be followed by a multi-disciplinary team. Early determination of complications and suitable management can increase survival.

  14. The polysialic acid mimetics idarubicin and irinotecan stimulate neuronal survival and neurite outgrowth and signal via protein kinase C.

    Science.gov (United States)

    Loers, Gabriele; Astafiev, Steven; Hapiak, Yuliya; Saini, Vedangana; Mishra, Bibhudatta; Gul, Sheraz; Kaur, Gurcharan; Schachner, Melitta; Theis, Thomas

    2017-08-01

    Polysialic acid (PSA) is a large, negatively charged, linear homopolymer of alpha2-8-linked sialic acid residues. It is generated by two polysialyltransferases and attached to N- and/or O-linked glycans, and its main carrier is the neural cell adhesion molecule (NCAM). PSA controls the development and regeneration of the nervous system by enhancing cell migration, axon pathfinding, synaptic targeting, synaptic plasticity, by regulating the differentiation of progenitor cells and by modulating cell-cell and cell-matrix adhesions. In the adult, PSA plays a role in the immune system, and PSA mimetics promote functional recovery after nervous system injury. In search for novel small molecule mimetics of PSA that are applicable for therapy, we identified idarubicin, an antineoplastic anthracycline, and irinotecan, an antineoplastic agent of the topoisomerase I inhibitor class, as PSA mimetics using a competition enzyme-linked immunosorbent assay. Idarubicin and irinotecan compete with the PSA-mimicking peptide and colominic acid, the bacterial analog of PSA, for binding to the PSA-specific monoclonal antibody 735. Idarubicin and irinotecan stimulate neurite outgrowth and survival of cultured cerebellar neurons after oxidative stress via protein kinase C and Erk1/2 in a similar manner as colominic acid, whereas Fyn, casein kinase II and the phosphatase and tensin homolog are only involved in idarubicin and irinotecan-stimulated neurite outgrowth. These novel results show that the structure and function of PSA can be mimicked by the small organic compounds irinotecan and idarubicin which trigger the same signaling cascades as PSA, thus introducing the possibility of retargeting these drugs to treat nervous system injuries. © 2017 International Society for Neurochemistry.

  15. Endurance exercise and conjugated linoleic acid (CLA supplementation up-regulate CYP17A1 and stimulate testosterone biosynthesis.

    Directory of Open Access Journals (Sweden)

    Rosario Barone

    Full Text Available A new role for fat supplements, in particular conjugated linoleic acid (CLA, has been delineated in steroidogenesis, although the underlying molecular mechanisms have not yet been elucidated. The aims of the present study were to identify the pathway stimulated by CLA supplementation using a cell culture model and to determine whether this same pathway is also stimulated in vivo by CLA supplementation associated with exercise. In vitro, Leydig tumour rat cells (R2C supplemented with different concentrations of CLA exhibited increasing testosterone biosynthesis accompanied by increasing levels of CYP17A1 mRNA and protein. In vivo, trained mice showed an increase in free plasma testosterone and an up-regulation of CYP17A1 mRNA and protein. The effect of training on CYP17A1 expression and testosterone biosynthesis was significantly higher in the trained mice supplemented with CLA compared to the placebo. The results of the present study demonstrated that CLA stimulates testosterone biosynthesis via CYP17A1, and endurance training led to the synthesis of testosterone in vivo by inducing the overexpression of CYP17A1 mRNA and protein in the Leydig cells of the testis. This effect was enhanced by CLA supplementation. Therefore, CLA-associated physical activity may be used for its steroidogenic property in different fields, such as alimentary industry, human reproductive medicine, sport science, and anti-muscle wasting.

  16. Inhibition of gastrin-stimulated gastric acid secretion by medium-chain triglycerides and long-chain triglycerides in healthy young men.

    NARCIS (Netherlands)

    Maas, M.I.M.; Hopman, W.P.M.; Katan, M.B.; Jansen, J.B.M.J.

    1996-01-01

    Long-chain triglycerides inhibit gastric acid secretion, but the effect of medium-chain triglycerides in humans is unknown. We compared the effects of intraduodenally perfused saline, medium-chain and long-chain triglycerides on gastrin-stimulated gastric acid secretion and cholecystokinin release.

  17. Minimal concentrations of retinoic acid induce stimulation by retinoic acid 8 and promote entry into meiosis in isolated pregonadal and gonadal mouse primordial germ cells.

    Science.gov (United States)

    Tedesco, Marianna; Desimio, Maria Giovanna; Klinger, Francesca Gioia; De Felici, Massimo; Farini, Donatella

    2013-06-01

    In the present study, we demonstrate that minimal concentrations (≤ 1 nM) of retinoic acid (RA), equivalent to the quantity contaminating serum-containing culture medium, are sufficient to promote meiotic entry and progression through meiotic prophase I (MPI) stages in isolated 12.5-days postcoitum (dpc) XX and XY mouse primordial germ cells (PGCs) in culture. Similarly, we found that the same low RA concentration up-regulated or induced stimulation by retinoic acid 8 (Stra8) in such cells, both at mRNA and protein level. In preleptotene/leptotene germ cells, STRA8 was localized in nuclear dots that disappeared at later MPI stages. In addition to Stra8, other meiotic genes such as Dmc1 and Rec8 appeared stimulated by RA directly in PGCs with similar concentration-dependent trends. Finally, we found that RA induced Stra8, Sycp3, Dmc1, and Rec8 transcripts, promoting meiotic entry in culture also in pregonadal 10.5-dpc PGCs of both sexes. When cultured isolated from somatic cells, such PGCs, however, were unable to progress through MPI stages, while after entering meiosis, they progressed through MPI when cultured within aorta/gonad/mesonephros tissues. We conclude that besides RA, germ cell intrinsic factors and other exogenous signals from the surrounding somatic cells are probably necessary for meiotic entry and progression in mouse PGCs.

  18. Mutually stimulating interactions between lactic acid bacteria and Saccharomyces cerevisiae in sourdough fermentation

    NARCIS (Netherlands)

    Sieuwerts, Sander; Bron, Peter A.; Smid, Eddy J.

    2018-01-01

    Interactions between microorganisms are key to their performance in food habitats. Improved understanding of these interactions supports rational improvement of food fermentations. This study aimed at identifying interactions between lactic acid bacteria and yeast during sourdough fermentation.

  19. The earthworm Aporrectodea caliginosa stimulates abundance and activity of phenoxyalkanoic acid herbicide degraders

    OpenAIRE

    Liu, Ya-Jun; Zaprasis, Adrienne; Liu, Shuang-Jiang; Drake, Harold L; Horn, Marcus A

    2010-01-01

    2-Methyl-4-chlorophenoxyacetic acid (MCPA) is a widely used phenoxyalkanoic acid (PAA) herbicide. Earthworms represent the dominant macrofauna and enhance microbial activities in many soils. Thus, the effect of the model earthworm Aporrectodea caliginosa (Oligochaeta, Lumbricidae) on microbial MCPA degradation was assessed in soil columns with agricultural soil. MCPA degradation was quicker in soil with earthworms than without earthworms. Quantitative PCR was inhibition-corrected per nucleic ...

  20. Activation of Secretagogue Independent Gastric Acid Secretion via Endothelial Nitric Oxide Synthase Stimulation in Rats

    Directory of Open Access Journals (Sweden)

    Alice Miriam Kitay

    2017-12-01

    Full Text Available Background/Aims: L-arginine is an important mediator of cell division, wound healing, and immune function. It can be transformed by the nitric oxide synthase (NOS to nitric oxide (NO, an important cell signaling molecule. Recent studies from our laboratory demonstrate specific effects of L-arginine (10mM exposure on gastric acid secretion in rat parietal cells. Methods: Studies were performed with isolated gastric glands and the pH sensitive dye BCECF-AM +/- L-arginine to examine its effects on acid secretion. The direct NO-donor diethylamine NONOate sodium salt hydrate, was also used while monitoring intracellular pH. The specific inhibitor of the intracellular NO signal cascade ODQ was also used. Results: We found that gastric proton extrusion was activated with application of L-arginine (10mM, in a separate series when L-arginine (10mM + L-NAME (30µM were added there was no acid secretion. Addition of the NO-donor diethylamine NONOate sodium salt hydrate (10µM also induced acid secretion. When the selective sGC-inhibitor ODQ was added with NONOate we did not observe acid secretion. Conclusion: We conclude that L-arginine is a novel secretagogue, which can mediate gastric acid secretion. Furthermore, the intake of L-arginine causes direct activation of the H+, K+ ATPase and increased proton extrusion from parietal cells resulting in the increased risk for acid-related diseases. The NO/sGC/cGMP pathway has never been described as a possible intracellular mechanism for H+, K+ ATPase activation before and presents a completely new scientific finding. Moreover, our studies demonstrate a novel role for L-NAME to effectively eliminate NOS induced acid secretion and thereby reducing the risk for L-arginine inducible ulcer disease.

  1. Stimulating short-chain fatty acids production from waste activated sludge by nano zero-valent iron.

    Science.gov (United States)

    Luo, Jingyang; Feng, Leiyu; Chen, Yinguang; Li, Xiang; Chen, Hong; Xiao, Naidong; Wang, Dongbo

    2014-10-10

    An efficient and green strategy, i.e. adding nano zero-valent iron into anaerobic fermentation systems to remarkably stimulate the accumulation of short-chain fatty acids from waste activated sludge via accelerating the solubilization and hydrolysis processes has been developed. In the presence of nano zero-valent iron, not only the short-chain fatty acids production was significantly improved, but also the fermentation time for maximal short-chain fatty acids was shortened compared with those in the absence of nano zero-valent iron. Mechanism investigations showed that the solubilization of sludge, hydrolysis of solubilized substances and acidification of hydrolyzed products were all enhanced by addition of nano zero-valent iron. Also, the general microbial activity of anaerobes and relative activities of key enzymes with hydrolysis and acidification of organic matters were improved than those in the control. 454 high-throughput pyrosequencing analysis suggested that the abundance of bacteria responsible for waste activated sludge hydrolysis and short-chain fatty acids production was greatly enhanced due to nano zero-valent iron addition. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Control of refractory status epilepticus precipitated by anticonvulsant withdrawal using left vagal nerve stimulation: a case report.

    Science.gov (United States)

    Patwardhan, Ravish V; Dellabadia, John; Rashidi, Mahmoud; Grier, Laurie; Nanda, Anil

    2005-08-01

    To describe a case of left vagal nerve stimulation (VNS) resulting in immediate cessation of status epilepticus (SE) with good neurological outcome. A 30-year-old man with medically intractable seizures including episodes of SE was successfully treated using left VNS. After requiring discontinuation of phenytoin, valproic acid, carbamazepine, and topiramate because of severe allergic reactions resembling Stevens-Johnson syndrome, the patient required pentobarbital coma along with phenobarbital, tiagabine, and levetiracetam for seizure frequency reduction. He underwent left vagal nerve stimulator placement after nearly 9 days of barbiturate-induced coma, with stimulation initiated in the operating room. On the following day, electroencephalography revealed resolution of previously observed periodic lateral epileptiform discharges and the patient was free of seizures. Prestimulation seizure frequency was recorded at 59 times a day, with some seizures enduring 45 minutes despite barbiturate coma. Poststimulation, the patient has been free of seizures for 19 days and is presently taking only levetiracetam and phenobarbital, from which he continues to be successfully weaned without seizures. He is awake, alert, and can recall events leading up to his seizures, with good long-term memory and residual left upper extremity and lower extremity weakness. This case illustrates the role of left vagal stimulation in the treatment of SE and otherwise medically intractable seizures caused by allergic reactions. To our knowledge, this is the first case in the world literature for adults reporting cessation of SE after VNS. Another case with a similar improvement has been reported in the pediatric population.

  3. Stimulation of Phospholipid Scrambling of the Erythrocyte Membrane by 9-Cis-Retinoic Acid

    Directory of Open Access Journals (Sweden)

    Majed Abed

    2017-01-01

    Full Text Available Background/Aims: The endogenous retinoid 9-cis-retinoic acid has previously been shown to trigger apoptosis in a wide variety of cells including several tumor cells and has thus been suggested for the treatment of malignancy. Similar to apoptosis of nucleated cells, erythrocytes may enter suicidal erythrocyte death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Cellular mechanisms participating in the accomplishment of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i and formation of ceramide. The present study explored, whether 9-cis-retinoic acid induces eryptosis and whether the effect involves Ca2+ and/or ceramide. Methods: Flow cytometry was employed to estimate erythrocyte volume from forward scatter, phosphatidylserine exposure at the cell surface from annexin-V-binding, [Ca2+]i from Fluo3-fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was quantified from hemoglobin concentration in the supernatant. Results: A 48 hours exposure of human erythrocytes to 9-cis-retinoic acid (≥ 0.5 µg/ml significantly increased the percentage of annexin-V-binding cells and significantly decreased forward scatter. Exposure to 9-cis-retinoic acid (≥ 0.5 µg/ml significantly increased Fluo3-fluorescence, and the effect of 9-cis-retinoic acid on annexin-V-binding was significantly blunted by removal of extracellular Ca2+. Exposure to 9-cis-retinoic acid (1 µg/ml further significantly increased the ceramide abundance at the erythrocyte surface and significantly increased hemolysis. Conclusions: 9-cis-retinoic acid triggers phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part downstream of Ca2+ and ceramide.

  4. Quantification and enzyme targets of fatty acid amides from duckweed root exudates involved in the stimulation of denitrification.

    Science.gov (United States)

    Sun, Li; Lu, Yufang; Kronzucker, Herbert J; Shi, Weiming

    2016-07-01

    Fatty acid amides from plant root exudates, such as oleamide and erucamide, have the ability to participate in strong plant-microbe interactions, stimulating nitrogen metabolism in rhizospheric bacteria. However, mechanisms of secretion of such fatty acid amides, and the nature of their stimulatory activities on microbial metabolism, have not been examined. In the present study, collection, pre-treatment, and determination methods of oleamide and erucamide in duckweed root exudates are compared. The detection limits of oleamide and erucamide by gas chromatography (GC) (10.3ngmL(-1) and 16.1ngmL(-1), respectively) are shown to be much lower than those by liquid chromatography (LC) (1.7 and 5.0μgmL(-1), respectively). Quantitative GC analysis yielded five times larger amounts of oleamide and erucamide in root exudates of Spirodela polyrrhiza when using a continuous collection method (50.20±4.32 and 76.79±13.92μgkg(-1) FW day(-1)), compared to static collection (10.88±0.66 and 15.27±0.58μgkg(-1) FW day(-1)). Furthermore, fatty acid amide secretion was significantly enhanced under elevated nitrogen conditions (>300mgL(-1)), and was negatively correlated with the relative growth rate of duckweed. Mechanistic assays were conducted to show that erucamide stimulates nitrogen removal by enhancing denitrification, targeting two key denitrifying enzymes, nitrate and nitrite reductases, in bacteria. Our findings significantly contribute to our understanding of the regulation of nitrogen dynamics by plant root exudates in natural ecosystems. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. [Fatal granulocyte function defect in a male infant. Results of in vitro and in vivo stimulation with ascorbic acid as well as in vitro stimulation with levamisol and lithium chloride].

    Science.gov (United States)

    Dopfer, R; Döring, A; Neef, V; Kollmann, W; Niethammer, D

    1982-12-01

    We report about a boy who suffered from repeated bacterial infections starting at the age of 4 weeks. A severe defect of chemotactic activity of the neutrophils, and an additional deficient phagocytosis were discovered. The child died at the age of 3 months from septicemia. Chemotactic activity could be stimulated in vitro by ascorbic acid and levamisole but not by lithium chloride. In vivo, however, the effect of ascorbic acid was minimal and treatment with this vitamin could not prevent the lethal end.

  6. Tauroursodeoxycholic acid stimulates hepatocellular exocytosis and mobilizes extracellular Ca++ mechanisms defective in cholestasis

    NARCIS (Netherlands)

    Beuers, U.; NATHANSON, M. H.; Isales, C. M.; Boyer, J. L.

    1993-01-01

    To assess the effects of tauroursodeoxycholic acid (TUDCA) on bile excretory function, we examined whether TUDCA modulates vesicular exocytosis in the isolated perfused liver of normal rats in the presence of high (1.9 mM) or low (0.19 mM) extracellular Ca++ and in cholestatic rats 24 h after bile

  7. Activation of the calcium sensing receptor stimulates gastrin and gastric acid secretion in healthy participants

    Science.gov (United States)

    Gastric acid secretion is a complex process regulated by neuronal and hormonal pathways. Ex vivo studies in human gastric tissues indicate that the calcium sensing receptor (CaR), expressed on the surface of G and parietal cells, may be involved in this regulation. We sought to determine whether cin...

  8. Exogenous application of ascorbic acid stimulates growth and photosynthesis of wheat (Triticum aestivum L. under drought

    Directory of Open Access Journals (Sweden)

    Samina Malik and Muhammad Ashraf

    2012-05-01

    Full Text Available Drought causes considerable reduction in plant growth. A hydroponic experiment was conducted to appraise the potential role of exogenously applied ascorbic acid in alleviating the effect of drought on wheat. Two contrasting wheat genotypes, a drought tolerant cultivar Chakwal-86 and a drought sensitive strain 6544-6 were used in the study. Drought was induced by dissolving 20% Polyethylene glycol (PEG8000 in the nutrient solution producing -0.6MPa osmotic stress. Drought caused a significant decrease in chlorophyll pigments and net photosynthesis resulting in growth reduction of both wheat genotypes. However, this decrease was more severe in the genotype 6544-6 compared to Chakwal-86. Ascorbic acid (AsA was applied through rooting medium, as a foliar spray and seed soaking treatment. Ascorbic acid treated seedlings of both genotypes maintained higher chlorophyll contents, net photosynthesis and growth compared to the non-treated plants. Of the three different modes of ascorbic acid application, rooting medium was more effective in alleviating the adversities of drought in wheat. `

  9. Effect of isoprenaline on pentagastrin-stimulated gastric acid secretion in dogs with gastric fistula

    DEFF Research Database (Denmark)

    Hovendal, C P; Gottrup, F; Bech, K

    1981-01-01

    dose-dependently inhibited the secretory volume and the acidity. The antisecretory effect of isoprenaline was significantly blocked by the beta 1-adrenoceptor blocker practolol and by the beta 1 + beta 2-adrenoceptor blocker propranolol but not by H 35/25, a beta 2-adrenoceptor blocker. This indicates...

  10. Short-term insulin and nutritional energy provision do not stimulate muscle protein synthesis if blood amino acid availability decreases

    Science.gov (United States)

    Bell, Jill A.; Fujita, Satoshi; Volpi, Elena; Cadenas, Jerson G.; Rasmussen, Blake B.

    2011-01-01

    Muscle protein synthesis requires energy and amino acids to proceed and can be stimulated by insulin under certain circumstances. We hypothesized that short-term provision of insulin and nutritional energy would stimulate muscle protein synthesis in healthy subjects only if amino acid availability did not decrease. Using stable isotope techniques, we compared the effects on muscle phenylalanine kinetics across the leg of an amino acid-lowering, high-energy (HE, n = 6, 162 ± 20 kcal/h) hyperglycemic hyperlipidemic hyperinsulinemic clamp with systemic insulin infusion to a low-energy (LE, n = 6, 35 ± 3 kcal/h, P < 0.05 vs. HE) euglycemic hyperinsulinemic clamp with local insulin infusion in the femoral artery. Basal blood phenylalanine concentrations and phenylalanine net balance, muscle protein breakdown, and synthesis (nmol·min−1·100 g leg muscle−1) were not different between groups. During insulin infusion, femoral insulinemia increased to a similar extent between groups and blood phenylalanine concentration decreased 27 ± 3% in the HE group but only 9 ± 2% in the LE group (P < 0.01 HE vs. LE). Phenylalanine net balance increased in both groups, but the change was greater (P < 0.05) in the LE group. Muscle protein breakdown decreased in the HE group (58 ± 12 to 35 ± 7 nmol·min−1 ·100 g leg muscle−1) and did not change in the LE group. Muscle protein synthesis was unchanged in the HE group (39 ± 6 to 30 ± 7 nmol·min−1 ·100 g leg muscle−1) and increased (P < 0.05) in the LE group (41 ± 9 to 114 ± 26 nmol·min−1 ·100 g leg muscle−1). We conclude that amino acid availability is an important factor in the regulation of muscle protein synthesis in response to insulin, as decreased blood amino acid concentrations override the positive effect of insulin on muscle protein synthesis even if excess energy is provided. PMID:16030064

  11. Anti-Inflammatory Activity of Citric Acid-Treated Wheat Germ Extract in Lipopolysaccharide-Stimulated Macrophages

    Directory of Open Access Journals (Sweden)

    Hee-Yeong Jeong

    2017-07-01

    Full Text Available Until recently, fermentation was the only processing used to improve the functionality of wheat germ. The release of 2,6-dimethoxy-1,4-benzoquinone (DMBQ from hydroquinone glycosides during the fermentation process is considered a marker of quality control. Here, we treated wheat germ extract with citric acid (CWG to release DMBQ and examined the anti-inflammatory activity of this extract using a lipopolysaccharide-activated macrophage model. Treatment of wheat germ with citric acid resulted in detectable release of DMBQ but reduced total phenolic and total flavonoid contents compared with untreated wheat germ extract (UWG. CWG inhibited secretion of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL-6, and IL-12 and the synthesis of cyclooxygenase-2, while UWG only decreased IL-12 production. CWG and UWG induced high levels of anti-inflammatory IL-10 and heme oxygenase-1. CWG specifically inhibited phosphorylation of NF-κB p65 and p38 kinase at 15 min after LPS stimulation. Our study showed that citric acid treatment enhanced the anti-inflammatory activity of wheat germ extract.

  12. Structural Analysis and Immuno-Stimulating Activity of an Acidic Polysaccharide from the Stems of Dendrobium nobile Lindl.

    Science.gov (United States)

    Wang, Jun-Hui; Zuo, Shu-Rong; Luo, Jian-Ping

    2017-04-10

    Dendrobium nobile Lindl., an epiphytic herb distributed in the Southeast Asia, is used as a tonic and antipyretic herbal medicine in China. In this study, a water-soluble acidic heteropolysaccharide, DNP-W4, containing mannose, glucose, galactose, xylose, rhamnose, and galacturonic acid, in the molar ratios of 1.0:4.9:2.5:0.5:1.0:0.9, was obtained from the stems of Dendrobium nobile Lindl. Using methylation analysis, partial acid hydrolysis, pectolyase treatment, NMR, and ESI-MS, the structure of DNP-W4 was elucidated. The obtained data indicated that DNP-W4 was a complex heteropolysaccharide and possessed a backbone composed of (1→4)-linked β-d-Glcp, (1→6)-linked β-d-Glcp, and (1→6)-linked β-d-Galp, with substitutes at O-4/6 of Glcp residues and O-3 of Galp. The branches of DNP-W4 were composed of terminal Manp, (1→6)-linked β-d-Manp, (1→3)-linked β-d-Glcp, β-d-Glcp, β-d-Galp, (1→4)-linked α-d-GalAp, (1→2)-linked α-L-Rhap, and Xylp. DNP-W4 had little immunological activities, but its derivatives had immuno-stimulating activities to some extent.

  13. Anti-Inflammatory Activity of Citric Acid-Treated Wheat Germ Extract in Lipopolysaccharide-Stimulated Macrophages.

    Science.gov (United States)

    Jeong, Hee-Yeong; Choi, Yong-Seok; Lee, Jae-Kang; Lee, Beom-Joon; Kim, Woo-Ki; Kang, Hee

    2017-07-10

    Until recently, fermentation was the only processing used to improve the functionality of wheat germ. The release of 2,6-dimethoxy-1,4-benzoquinone (DMBQ) from hydroquinone glycosides during the fermentation process is considered a marker of quality control. Here, we treated wheat germ extract with citric acid (CWG) to release DMBQ and examined the anti-inflammatory activity of this extract using a lipopolysaccharide-activated macrophage model. Treatment of wheat germ with citric acid resulted in detectable release of DMBQ but reduced total phenolic and total flavonoid contents compared with untreated wheat germ extract (UWG). CWG inhibited secretion of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-6, and IL-12 and the synthesis of cyclooxygenase-2, while UWG only decreased IL-12 production. CWG and UWG induced high levels of anti-inflammatory IL-10 and heme oxygenase-1. CWG specifically inhibited phosphorylation of NF-κB p65 and p38 kinase at 15 min after LPS stimulation. Our study showed that citric acid treatment enhanced the anti-inflammatory activity of wheat germ extract.

  14. CFD stimulation of gluconic acid production in a stirred gas-liquid fermenter

    OpenAIRE

    Elqotbi, Mohammed; Montastruc, Ludovic; Vlaev, S.D.; Nikov, Iordan

    2006-01-01

    Designing large-scale stirred bioreactors with performance closely matching the one achieved in lab-scale fermenters presents continuous challenge. In this contribution, dynamic modelling of the aerobic biocatalytic conversion process in viscous batch stirred tank reactor is developed. Its operation is illustrated by simulation of the interaction of fluid flow, mass transfer and reaction relevant to gluconic acid production by a strictly aerophilic Aspergiluc niger based on a “two...

  15. Imidazoleacetic acid-ribotide: an endogenous ligand that stimulates imidazol(in)e receptors.

    Science.gov (United States)

    Prell, George D; Martinelli, Giorgio P; Holstein, Gay R; Matulić-Adamić, Jasenka; Watanabe, Kyoichi A; Chan, Susan L F; Morgan, Noel G; Haxhiu, Musa A; Ernsberger, Paul

    2004-09-14

    We identified the previously unknown structures of ribosylated imidazoleacetic acids in rat, bovine, and human tissues to be imidazole-4-acetic acid-ribotide (IAA-RP) and its metabolite, imidazole-4-acetic acid-riboside. We also found that IAA-RP has physicochemical properties similar to those of an unidentified substance(s) extracted from mammalian tissues that interacts with imidazol(in)e receptors (I-Rs). ["Imidazoline," by consensus (International Union of Pharmacology), includes imidazole, imidazoline, and related compounds. We demonstrate that the imidazole IAA-RP acts at I-Rs, and because few (if any) imidazolines exist in vivo, we have adopted the term "imidazol(in)e-Rs."] The latter regulate multiple functions in the CNS and periphery. We now show that IAA-RP (i) is present in brain and tissue extracts that exhibit I-R activity; (ii) is present in neurons of brainstem areas, including the rostroventrolateral medulla, a region where drugs active at I-Rs are known to modulate blood pressure; (iii) is present within synaptosome-enriched fractions of brain where its release is Ca(2+)-dependent, consistent with transmitter function; (iv) produces I-R-linked effects in vitro (e.g., arachidonic acid and insulin release) that are blocked by relevant antagonists; and (v) produces hypertension when microinjected into the rostroventrolateral medulla. Our data also suggest that IAA-RP may interact with a novel imidazol(in)e-like receptor at this site. We propose that IAA-RP is a neuroregulator acting via I-Rs.

  16. Stimulation of tissue-type plasminogen activator expression by retinoic acid in human endothelial cells requires retinoic acid receptor beta 2 induction.

    Science.gov (United States)

    Lansink, M; Kooistra, T

    1996-07-15

    We previously showed the involvement of retinoic acid receptor alpha (RAR alpha) in the induction of tissue-type plasminogen activator (t-PA) synthesis by RA in human umbilical vein endothelial cells (HUVECs). However, the rather slow onset of this induction of t-PA synthesis suggested an indirect role of RAR alpha. Here, we show that the protein synthesis inhibitor, cycloheximide completely blocks the induction of t-PA by RA, which points to the need of an intermediary protein in t-PA stimulation. This intermediary protein is likely to be RAR beta 2 on the basis of the following findings: (1) the induction of RAR beta by RA exactly precedes that of t-PA; (2) HUVECs with elevated RAR beta mRNA levels show an undelayed t-PA induction on stimulation with RA, and this response can be almost completely inhibited with an RAR antagonist; and (3) an antisense oligodeoxynucleotide against the translation initiation site of RAR beta 2 mRNA greatly reduces the t-PA induction by RA. Thus, induction of t-PA by RA in HUVECs involves a 2-step mechanism requiring induction of RAR beta 2 via RAR alpha, followed by induction of t-PA synthesis via RAR beta 2. Each of these steps is shown to have a different activation profile with RA and 9 cis RA.

  17. Relationship between stimulated phosphatidic acid production and inositol lipid hydrolysis in intestinal longitudinal smooth muscle from guinea pig.

    Science.gov (United States)

    Mallows, R S; Bolton, T B

    1987-06-15

    Accumulation of [32P]phosphatidic acid (PA) and total [3H]inositol phosphates (IPs) was measured in the longitudinal smooth-muscle layer from guinea-pig small intestine. Stimulation with carbachol, histamine and substance P produced increases in accumulation of both [3H]IPs and [32P]PA over the same concentration range. The increase in [32P]PA accumulation in response to carbachol (1 microM-0.1 mM) was inhibited in the presence of atropine (0.5 microM). Buffering the external free [Ca2+] to 10 nM did not prevent the carbachol-stimulated increase in [32P]PA accumulation. Carbachol and Ca2+ appear to act synergistically to increase accumulation of [32P]PA. In contrast, although incubation with noradrenaline also increased accumulation of [3H]IPs, no increase in accumulation of [32P]PA could be detected. These results suggest that an increase in formation of IPs is not necessarily accompanied by an increase in PA formation, and imply the existence of receptor-modulated pathways regulating PA concentrations other than by phospholipase-C-catalysed inositol phospholipid hydrolysis.

  18. Increasing palmitic acid intake enhances milk production and prevents glucose-stimulated fatty acid disappearance without modifying systemic glucose tolerance in mid-lactation dairy cows.

    Science.gov (United States)

    Mathews, A T; Rico, J E; Sprenkle, N T; Lock, A L; McFadden, J W

    2016-11-01

    Feeding saturated fatty acids may enhance milk yield in part by decreasing insulin sensitivity and shifting glucose utilization toward the mammary gland. Our objective was to evaluate the effects of palmitic acid (C16:0) on milk production and insulin sensitivity in cows. Twenty multiparous mid-lactation Holstein cows were enrolled in a study consisting of a 5-d covariate, 49-d treatment, and 14-d posttreatment period. All cows received a common sorghum silage-based diet and were randomly assigned to a diet containing no supplemental fat (control; n=10; 138±45d in milk) or C16:0 at 4% of ration DM (PALM; 98% C16:0; n=10; 136±44d in milk). Blood and milk were collected at routine intervals. Intravenous glucose tolerance tests (300mg/kg of body weight) were performed at d -1, 24, and 49 relative to start of treatment. Data were analyzed as repeated measures using a mixed model with fixed effects of treatment and time, and milk yield served as a covariate. The PALM treatment increased milk yield by wk 7. Furthermore, PALM increased milk fat yield and energy-corrected milk at wk 3 and 7. Changes in milk production occurred in parallel with enhanced energy intake. Increased milk fat yield during PALM treatment was due to increased C16:0 and C16:1 incorporation; PALM had no effect on concentration of milk components, BW, or body condition score. Two weeks posttreatment, energy-corrected milk and milk fat yield remained elevated in PALM-fed cows whereas yields of milk were similar between treatments. Increased milk fat yield after PALM treatment was due to increased de novo lipogenesis and uptake of preformed fatty acids. The basal concentration of nonesterified fatty acids (NEFA) in plasma increased by d 4, 6, and 8 of PALM treatment, a response not observed thereafter. Although PALM supplementation did not modify insulin, glucose, or triacylglycerol levels in plasma, total cholesterol in plasma was elevated by wk 3. Estimated insulin sensitivity was lower during the

  19. Stimulation of arachidonic acid metabolism in primary cultures of osteoblast-like cells by hormones and drugs

    Energy Technology Data Exchange (ETDEWEB)

    Feyen, J.H.; van der Wilt, G.; Moonen, P.; Di Bon, A.; Nijweide, P.J.

    1984-12-01

    The effects of parathyroid hormone (PTH), dihydroxycholecalciferol (1,25-(OH)2 D3), thrombin, epidermal growth factor (EGF) and 12-o-tetradecanoylphorbol-13-acetate (PMA) on the biosynthesis and release of arachidonic acid metabolites were studied in primary cultures of osteoblast-like cells isolated from 18-day-old chick embryo calvaria. Cells were labelled with (/sup 14/C)-arachidonic acid for 30 h. The radioactive eicosanoids were extracted from the cell culture media after a further 30 h stimulation period and analysed on a PRP-1 column by HPLC. The radioactive products were characterized by co-elution of (/sup 3/H) standard prostanoids. Osteoblasts showed a basal release of the prostanoids 6-keto-PGF1 alpha, TXB2, PGF2 alpha, PGE2, PGD2 and PGB2, the latter being the most abundant one. Indomethacin (10(-5) M) effectively inhibited the basal release, but not that of an as yet unidentified compound. The release of prostanoids was stimulated by PTH (2 U/ml), thrombin (0.4 NIH/ml), EGF (50 ng/ml) and PMA (25 ng/ml), the latter being by far the most potent one. 1,25-(OH)2D3 was found to slightly inhibit the prostanoid release. These results indicate: (1) primary cultures of osteoblasts synthesize several prostaglandins, thromboxane B2 and one unidentified product. (2) the action on bone of PTH and the various drugs tested may be, at least partly, mediated by an increased prostaglandin production by osteoblasts. Clearly this does not apply to 1,25-(OH)2D3.

  20. Insulin does not stimulate muscle protein synthesis during increased plasma branched-chain amino acids alone but still decreases whole body proteolysis in humans.

    Science.gov (United States)

    Everman, Sarah; Meyer, Christian; Tran, Lee; Hoffman, Nyssa; Carroll, Chad C; Dedmon, William L; Katsanos, Christos S

    2016-10-01

    Insulin stimulates muscle protein synthesis when the levels of total amino acids, or at least the essential amino acids, are at or above their postabsorptive concentrations. Among the essential amino acids, branched-chain amino acids (BCAA) have the primary role in stimulating muscle protein synthesis and are commonly sought alone to stimulate muscle protein synthesis in humans. Fourteen healthy young subjects were studied before and after insulin infusion to examine whether insulin stimulates muscle protein synthesis in relation to the availability of BCAA alone. One half of the subjects were studied in the presence of postabsorptive BCAA concentrations (control) and the other half in the presence of increased plasma BCAA (BCAA). Compared with that prior to the initiation of the insulin infusion, fractional synthesis rate of muscle protein (%/h) did not change (P > 0.05) during insulin in either the control (0.04 ± 0.01 vs 0.05 ± 0.01) or the BCAA (0.05 ± 0.02 vs. 0.05 ± 0.01) experiments. Insulin decreased (P BCAA (0.89 ± 0.07 vs 0.61 ± 0.03) experiments, but the change was not different between the two experiments (P > 0.05). In conclusion, insulin does not stimulate muscle protein synthesis in the presence of increased circulating levels of plasma BCAA alone. Insulin's suppressive effect on proteolysis is observed independently of the levels of circulating plasma BCAA. Copyright © 2016 the American Physiological Society.

  1. Phytanic acid stimulates glucose uptake in a model of skeletal muscles, the primary porcine myotubes

    DEFF Research Database (Denmark)

    Che, Brita Ngum; Oksbjerg, Niels; Hellgren, Lars

    2013-01-01

    ABSTRACT: BACKGROUND: Phytanic acid (PA) is a chlorophyll metabolite with potentials in regulating glucose metabolism, as it is a natural ligand of the peroxisome proliferator-activated receptor (PPAR) that is known to regulate hepatic glucose homeostasis. This study aimed to establish primary...... and tritiated 2-deoxyglucose (2-DOG) was used to measure glucose uptake, in relation to PA and 2-DOG exposure times and also in relation to PA and insulin concentrations. The MIXED procedure model of SAS was used for statistical analysis of data. RESULTS: PA increased glucose uptake by approximately 35...

  2. Docosahexaenoic acid inhibits the adhesion of flowing neutrophils to cytokine stimulated human umbilical vein endothelial cells.

    Science.gov (United States)

    Yates, Clara M; Tull, Samantha P; Madden, Jackie; Calder, Philip C; Grimble, Robert F; Nash, Gerard B; Rainger, G Ed

    2011-07-01

    The (n-3) PUFA, DHA, is widely thought to posses the ability to modulate the inflammatory response. However, its modes of interaction with inflammatory cells are poorly understood. In particular, there are limited data on the interactions of DHA with vascular endothelium, the cells that regulate the traffic of leukocytes from the blood into inflamed tissue. Using human umbilical vein endothelial cells (EC) cultured in a flow-based adhesion assay and activated with TNFα, we tested whether supplementing human umbilical vein EC with physiologically achievable concentrations of DHA would inhibit the recruitment of flowing neutrophils. DHA caused a dose-dependent reduction in neutrophil recruitment to the EC surface, although cells that became adherent were activated and could migrate across the human umbilical vein EC monolayer normally. Using EPA as an alternative supplement had no effect on the levels of neutrophil adhesion in this assay. Analysis of adhesion receptor expression by qPCR demonstrated that DHA did not alter the transcriptional activity of human umbilical vein EC. However, DHA did significantly reduce E-selectin expression at the human umbilical vein EC surface without altering the total cellular pool of this adhesion receptor. Thus, we have identified a novel mechanism by which DHA alters the trafficking of leukocytes during inflammation and demonstrate that this involves disruption of intracellular transport mechanisms used to present adhesion molecules on the surface of cytokine-stimulated EC.

  3. Conjugated Linoleic Acid Stimulates Apoptosis in RH and Tehran Strains of Toxoplasma gondii, in Vitro.

    Directory of Open Access Journals (Sweden)

    Jebreil Shamseddin

    2015-06-01

    Full Text Available The aim of this study was to evaluate the effects of conjugated linoleic acid (CLA on apoptosis of tachyzoites of T. gondii, RH strain (type I and the cyst-forming Tehran strain (type II in vitro.Toxoplasma strains were injected into the peritoneal cavity of BALB/c mice. The Tehran strain forms cysts in the brain of mice. Bradyzoites within the cysts are reactivated to proliferative tachyzoites, by dexamethasone. Tachyzoites were aspirated from the peritoneum of infected mice, and the percentage of viable parasites was estimated with trypan blue staining. Tachyzoites were inoculated into HeLa cells cultivated in DMEM medium. Different concentrations of CLA were evaluated on T. gondii in HeLa cells by the tetrazolium (MTT colorimetric assay. Differentiation between apoptosis and cell death was determined by flow cytometry using Annexin V and propidium iodide (PI double staining. The statistical analysis performed by GraphPad Prism version 6.00.CLA induces apoptosis in virulent (RH and avirulent (Tehran strains of T. gondii. The results of MTT indicated that CLA could decrease the proliferation of tachyzoites of both strains in HeLa cells.Conjugated linoleic acid has anti-toxoplasmacidal activity on tachyzoites of T. gondii. Therefore, we recommended further studies on this component in order to achieve a new drug against the parasite.

  4. A Study of the Differential Effects of Eicosapentaenoic Acid (EPA and Docosahexaenoic Acid (DHA on Gene Expression Profiles of Stimulated Thp-1 Macrophages

    Directory of Open Access Journals (Sweden)

    Bénédicte Allam-Ndoul

    2017-04-01

    Full Text Available Background: An appropriate intake of omega-3 (n-3 fatty acids (FAs such as eicosapentaenoic and docosahexaenoic acid (EPA/DHA from marine sources is known to have anti-inflammatory effects. However, molecular mechanisms underlying their beneficial effects on health are not fully understood. The aim of the present study was to characterize gene expression profiles of THP-1 macrophages, incubated in either EPA or DHA and stimulated with lipopolysaccharide (LPS, a pro-inflammatory agent. Methods: THP-1 macrophages were incubated into 10, 50 and 75 µM of EPA or DHA for 24 h, and 100 nM of LPS was added to the culture media for 18 h. Total mRNA was extracted and gene expression examined by microarray analysis using Illumina Human HT-12 expression beadchips (Illumina. Results: Pathway analysis revealed that EPA and DHA regulate genes involved in cell cycle regulation, apoptosis, immune response and inflammation, oxidative stress and cancer pathways in a differential and dose-dependent manner. Conclusions: EPA and DHA appear to exert differential effects on gene expression in THP-1 macrophages. Specific effects of n-3 FAs on gene expression levels are also dose-dependent.

  5. A Study of the Differential Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) on Gene Expression Profiles of Stimulated Thp-1 Macrophages.

    Science.gov (United States)

    Allam-Ndoul, Bénédicte; Guénard, Frédéric; Barbier, Olivier; Vohl, Marie-Claude

    2017-04-25

    Background: An appropriate intake of omega-3 (n-3) fatty acids (FAs) such as eicosapentaenoic and docosahexaenoic acid (EPA/DHA) from marine sources is known to have anti-inflammatory effects. However, molecular mechanisms underlying their beneficial effects on health are not fully understood. The aim of the present study was to characterize gene expression profiles of THP-1 macrophages, incubated in either EPA or DHA and stimulated with lipopolysaccharide (LPS), a pro-inflammatory agent. Methods: THP-1 macrophages were incubated into 10, 50 and 75 µM of EPA or DHA for 24 h, and 100 nM of LPS was added to the culture media for 18 h. Total mRNA was extracted and gene expression examined by microarray analysis using Illumina Human HT-12 expression beadchips (Illumina). Results: Pathway analysis revealed that EPA and DHA regulate genes involved in cell cycle regulation, apoptosis, immune response and inflammation, oxidative stress and cancer pathways in a differential and dose-dependent manner. Conclusions: EPA and DHA appear to exert differential effects on gene expression in THP-1 macrophages. Specific effects of n-3 FAs on gene expression levels are also dose-dependent.

  6. Diastereomeric mixture of calophyllic acid and isocalophyllic acid stimulates glucose uptake in skeletal muscle cells: involvement of PI-3-kinase- and ERK1/2-dependent pathways.

    Science.gov (United States)

    Prasad, Janki; Maurya, Chandan Kumar; Pandey, Jyotsana; Jaiswal, Natasha; Madhur, Gaurav; Srivastava, Arvind Kumar; Narender, Tadigoppula; Tamrakar, Akhilesh Kumar

    2013-05-06

    The diastereomeric mixture of calophyllic acid and isocalophyllic acid (F015) isolated from the leaves of Calophyllum inophyllum was investigated for the metabolic effect on glucose transport in skeletal muscle cells. In L6 myotubes, F015 dose-dependently stimulated glucose uptake by increasing translocation of glucose transporter4 (GLUT4) to plasma membrane without affecting their gene expression. The effects on glucose uptake were additive to insulin. Inhibitors analyses revealed that F015-induced glucose uptake was dependent on the activation of phosphatidylinositol-3-kinase (PI-3-K) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), while independent to the activation of 5'AMP-activated kinase (AMPK). F015 significantly increased the phosphorylation of AKT, AS160 and ERK1/2, account for the augmented glucose transport capacity in L6 myotubes. Furthermore, F015 improved glucose tolerance and enhanced insulin sensitivity in skeletal muscle of dexamethasone-induced insulin resistant mice. Our findings demonstrate that F015 activates glucose uptake in skeletal muscle cells through PI-3-K- and EKR1/2-dependent mechanisms and can be a potential lead for the management of diabetes and obesity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. [Stimulation of insulin secretion by medium-chain fatty acids in the diet of young rabbits].

    Science.gov (United States)

    Perret, J P; Guiffray, N; Mottaz, P

    1983-01-01

    In the young rabbit, immunoreactive serum insulin (IRI) significantly rises during the first 5 min after suckling and then 20-60 min later, at which time the maximum level is reached. Blood glucose levels remain stable, blood ketone bodies increase 2.7 times and the liver glycogen levels decrease. Replacement of maternal milk by an equal volume of 0.9% NaCl, 2% lactose or 3.5% glycerol does not induce any change in IRI. IRI significantly rises if solutions of bovine milk proteins or skimmed rabbit's milk are administered. This effect is quickened and strengthened by the addition of coconut oil or lipids of rabbit's milk whereas sunflower oil is ineffective. It is suggested that medium-chain fatty acids, major components of rabbit's milk lipids, play an important role in the regulation of insulin secretion in the young rabbit.

  8. Arachidonic Acid and Prostaglandins Enhance Potassium-Stimulated Calcium InFlux into Rat Brain Synaptosomes

    Science.gov (United States)

    1990-03-02

    calcium ci 10 100 10~M l0UM 3O"M I Blausten and Uctor. 1975. Leslie. Friedman, Wilcox riMet’al~r 01iM . and FlrI rod. I 9SO( [a~ contro an d drug...releases sesceral types of cell t Barritt. 1981). it i, possible a ra li l o"nic acid troil, lie ph. -phI1o i pi ds ( Brad ford. that secretion. stim ul...cardiosa-,alar Leslie S. W. Friedman MI B . Wilcox R. F. and Elrod S. disease and calcium antagonists. Am J. (’urdio/ 49: Y i Nxw Acute and c~hronic

  9. Excitatory amino acid receptor blockade within the caudal pressor area and rostral ventrolateral medulla alters cardiovascular responses to nucleus raphe obscurus stimulation in rats

    Directory of Open Access Journals (Sweden)

    Silva N.F.

    2002-01-01

    Full Text Available Pressor responses elicited by stimulation of the nucleus raphe obscurus (NRO depend on the integrity of the rostral ventrolateral medulla (RVLM. Therefore, to test the participation of excitatory amino acid (EAA receptors in the cardiovascular responses evoked by NRO stimulation (1 ms, 100 Hz, 40-70 µA, for 10 s, the EAA antagonist kynurenic acid (Kyn was microinjected at different sites in the ventrolateral medullar surface (2.7 nmol/200 nl of male Wistar rats (270-320 g, N = 39 and NRO stimulation was repeated. The effects of NRO stimulation were: hypertension (deltaMAP = +43 ± 1 mmHg, P<0.01, bradycardia (deltaHR = -30 ± 7 bpm, P<0.01 and apnea. Bilateral microinjection of Kyn into the RVLM, which did not change baseline parameters, almost abolished the bradycardia induced by NRO stimulation (deltaHR = -61 ± 3 before vs -2 ± 3 bpm after Kyn, P<0.01, N = 7. Unilateral microinjection of Kyn into the CVLM did not change baseline parameters or reduce the pressor response to NRO stimulation (deltaMAP = +46 ± 5 before vs +48 ± 5 mmHg after Kyn, N = 6. Kyn bilaterally microinjected into the caudal pressor area reduced blood pressure and heart rate and almost abolished the pressor response to NRO stimulation (deltaMAP = +46 ± 4 mmHg before vs +4 ± 2 mmHg after Kyn, P<0.01, N = 7. These results indicate that EAA receptors on the medullary ventrolateral surface play a role in the modulation of the cardiovascular responses induced by NRO stimulation, and also suggest that the RVLM participates in the modulation of heart rate responses and that the caudal pressor area modulates the pressor response following NRO stimulation.

  10. Phosphatidylcholine is a major source of phosphatidic acid and diacylglycerol in angiotensin II-stimulated vascular smooth-muscle cells.

    Science.gov (United States)

    Lassègue, B; Alexander, R W; Clark, M; Akers, M; Griendling, K K

    1993-06-01

    In cultured vascular smooth-muscle cells, angiotensin II produces a sustained formation of diacylglycerol (DG) and phosphatidic acid (PtdOH). Since the fatty acid composition of these molecules is likely to determine their efficacy as second messengers, it is important to ascertain the phospholipid precursors and the biochemical pathways from which they are produced. Our experiments suggest that phospholipase D (PLD)-mediated phosphatidylcholine (PtdCho) hydrolysis is the major source of both DG and PtdOH during the late signalling phase. First, in cells labelled with [3H]myristate, which preferentially labels PtdCho, formation of [3H]PtdOH precedes formation of [3H]DG. Second, in contrast with phospholipase C (PLC) activation, DG mass accumulation is dependent on extracellular Ca2+. Similarly, DG mass accumulation is not attenuated by protein kinase C activation, which we have previously shown to inhibit the phosphoinositide-specific PLC. Third, the fatty acid composition of late-phase DG and PtdOH more closely resembles that of PtdCho than that of phosphatidylinositol. Finally, in cells labelled for a short time with [3H]glycerol, the radioactivity incorporated into [3H]DG and PtdOH was greater than that incorporated into PtdIns, but not into PtdCho. We found no evidence that synthesis de novo or phosphatidylethanolamine breakdown contributes to sustained DG and PtdOH formation. Thus, in angiotensin II-stimulated cultured vascular smooth-muscle cells, PLD-mediated PtdCho hydrolysis is the major source of sustained DG and PtdOH, whereas phosphoinositide breakdown is a minor contributor. Furthermore, PtdOH phosphohydrolase, which determines the relative levels of DG and PtdOH, appears to be regulated by protein kinase C. These results have important implications for the role of these second messengers in growth and contraction.

  11. Increased saturated fatty acids in obesity alter resolution of inflammation in part by stimulating prostaglandin production1

    Science.gov (United States)

    Hellmann, Jason; Zhang, Michael J.; Tang, Yunan; Rane, Madhavi; Bhatnagar, Aruni; Spite, Matthew

    2013-01-01

    Extensive evidence indicates that nutrient excess associated with obesity and type 2 diabetes activates innate immune responses that lead to chronic, sterile low-grade inflammation and obese and diabetic humans also have deficits in wound healing and increased susceptibility to infections. Nevertheless, the mechanisms that sustain un-resolved inflammation during obesity remain unclear. Here, we report that saturated free fatty acids that are elevated in obesity alter resolution of acute sterile inflammation by promoting neutrophil survival and decreasing macrophage phagocytosis. Using a targeted mass spectrometry-based lipidomics approach, we found that in db/db mice, prostaglandin (E2/D2) levels were elevated in inflammatory exudates during the development of acute peritonitis. Moreover, in isolated macrophages, palmitic acid stimulated COX-2 induction and prostanoid production. Defects in macrophage phagocytosis induced by palmitic acid were mimicked by PGE2 and PGD2 and were reversed by cyclooxygenase inhibition or prostanoid receptor antagonism. Macrophages isolated from obese-diabetic mice expressed prostanoid receptors, EP2 and DP1, and contained significantly higher levels of downstream effector, cAMP, compared with WT mice. Therapeutic administration of EP2/DP1 dual receptor antagonist, AH6809, decreased neutrophil accumulation in the peritoneum of db/db mice, as well as the accumulation of apoptotic cells in the thymus. Together, these studies provide new insights into the mechanisms underlying altered innate immune responses in obesity and suggest that targeting specific prostanoid receptors may represent a novel strategy for resolving inflammation and restoring phagocyte defects in obese and diabetic individuals. PMID:23785121

  12. IL1B promoter polymorphism regulates the expression of gastric acid stimulating hormone gastrin.

    Science.gov (United States)

    Chakravorty, Meenakshi; Datta De, Dipanjana; Choudhury, Abhijit; Roychoudhury, Susanta

    2009-07-01

    It is important to dissect the effect of the alternative alleles of a functional SNP on the entire biochemical pathway for the complete understanding of the mechanism of the manifestation of complex diseases. IL1B-511C>T and -31C>T promoter polymorphisms have been suggested as potential susceptibility loci for Helicobacter pylori associated gastroduodenal diseases. We report that altered expression of IL1B due to a specific polymorphism in its promoter modulates the expression of gastrin, an acid regulating hormone. Treatment of gastric carcinoma cells, AGS, with IL1B resulted in a 20-fold reduction in gastrin expression. Gastrin promoter assay showed that IL1B inhibits gastrin expression at the transcriptional level and part of this inhibitory process is mediated via activation of NFkappaB and involvement of HDACs. An almost 3-fold increase in IL1B expression was observed when AGS cells were transfected with -31TIL1B expression plasmid in comparison to -31CIL1B. The -31TIL1B induced a 2-fold greater repression of the gastrin luciferase activity compared to -31CIL1B. This signaling of the -31TIL1B variant allele driven IL1B revealed an almost 1.5-fold greater expression of NFkappaB. Thus, this study showed that a single base substitution at the -31 position of the IL1B promoter brought about differential expression of IL1B which differentially altered both NFkappaB activation and gastrin expression.

  13. Heme Induction with Delta-Aminolevulinic Acid Stimulates an Increase in Water and Electrolyte Excretion

    Directory of Open Access Journals (Sweden)

    Syed Quadri

    2012-01-01

    Full Text Available Purpose. Studies were performed to examine hemodynamic and renal function before and after acute induction of the endogenous CO system with delta-aminolevulinic acid (DALA, which drives HO activity. Methods. In vivo studies were conducted on Inactin-anesthetized male Sprague Dawley rats (250–300 g either with or without chronic pretreatment with L-NAME (50 mg/Kg, q12 hours x4d. Results. DALA (80 μmol/Kg, IV bolus administration acutely increased endogenous CO production and HO-1 protein. In untreated and L-NAME-pretreated rats, DALA did not alter BP, GFR, or RBF but increased UF, UNaV, and UKV (untreated: Δ108.8 ± 0.28%, 172.1 ± 18.4%, and 165.2 ± 45.9%; pretreated: Δ109.4 ± 0.29%, 187.3 ± 26.9%, and 197.2 ± 45.7%. Acute administration of biliverdin (20 mg/kg, IV and bilirubin (30 mg/kg, IV to similarly treated animals did not alter UF, UNaV, and UKV. Conclusion. These results demonstrate that heme oxygenase induction increases urine and electrolyte excretion and suggest a direct tubular action of endogenous carbon monoxide.

  14. Zoledronic acid enhances lipopolysaccharide-stimulated proinflammatory reactions through controlled expression of SOCS1 in macrophages.

    Directory of Open Access Journals (Sweden)

    Daichi Muratsu

    Full Text Available Bisphosphonate-related osteonecrosis of the jaw (BRONJ is a serious side effect of nitrogen-containing bisphosphonate (NBP use. Many studies have shown that BRONJ is limited to the jawbone and does not occur in the other bones. We hypothesized that BRONJ is related to local bacterial iections and involves the innate immune system. To examine the relationship between BRONJ and innate immunity, we examined the effects of NBPs on macrophages, one of the important cell types in innate immunity. The expression of toll-like receptor-4 (TLR4 in cells after pretreatment with zoledronic acid (ZOL did not considerably differ from that in untreated control cells. However, cytokine levels and nitric oxide (NO production increased after pretreatment with ZOL. Furthermore, ZOL induced NF-κB activation by enhancing IκB-α degradation. Lipopolysaccharide (LPS-induced apoptosis also increased after pretreatment with ZOL. This effect was mediated by a reduction of suppressor of cytokine signaling-1 (SOCS1, which is a negative regulator of myeloid differentiation primary response gene 88 (MyD 88-dependent signaling. These results suggest that ZOL induced excessive innate immune response and proinflammatory cytokine production and that these processes may be involved in the bone destruction observed in BRONJ.

  15. [Effect of citric acid stimulation on salivary alpha-amylase, total protein, salivary flow rate and pH value in Pi deficiency children].

    Science.gov (United States)

    Yang, Ze-min; Chen, Long-hui; Lin, Jing; Zhang, Min; Yang, Xiao-rong; Chen, Wei-wen

    2015-02-01

    To compare the effect of citric acid stimulation on salivary alpha-amylase (sAA), total protein (TP), salivary flow rate, and pH value between Pi deficiency (PD) children and healthy children, thereby providing evidence for Pi controlling saliva theory. Twenty PD children were recruited, and 29 healthy children were also recruited at the same time. Saliva samples from all subjects were collected before and after citric acid stimulation. The sAA activity and amount, TP contents, salivary flow rate, and pH value were determined and compared. (1) Citric acid stimulation was able to significantly increase salivary flow rate, pH value, sAA activities, sAA specific activity and sAA amount (including glycosylated and non-glycosylated sAA amount) in healthy children (Pvalue, and glycosylated sAA levels in PD children (P0.05), salivary indices except salivary flow rate and glycosylated sAA levels decreased more in PD children. There was statistical difference in sAA activity ratio, sAA specific activity ratio, and the ratio of glycosylated sAA levels between PD children and healthy children (P<0.05). PD children had decreased response to citric acid stimulation.

  16. The effects of ear-point stimulation on the contents of somatostatin and Amino acid neurotransmitters in brain of rat with experimental seizure.

    Science.gov (United States)

    Shu, Jia; Liu, Rong-Yu; Huang, Xian-Fen

    2004-01-01

    The goal of this study was to elucidate the anti-convulsion mechanisms of ear-point stimulation in rat with experimental seizure. We prepared the epilepsy rats by intrahippocampal injection of penicillin. One hour later the lower 1/2 auricular lobules of seizure rats, containing ear-points Pizhixia and Shenmen etc., was electrically stimulated, which was imitated as ear-point electrical acupuncture in humans. Radioimmunoassay and biochemical techniques were used to determine the contents of somatostatin and amino acid neurotransmitters in hippocampus of rats. The outcomes revealed epileptiform behaviors of rat were appeared after penicillin-injected. The contents of somatostatin, aspartic acid, glutamine and GABA were increased. When these rats were subsequently given the ear-point electrical stimulation, the convulsion behaviors were definitely improved. At the same time the contents of the somatostatin, aspartic acid and glutamine in hippocampus of seizure rat were significantly decreased correspondingly. The contents of glycine, taurine and GABA had increased. Based on the results above, it was suggestive that ear-point electrical stimulation had anti-epilepsy effects, which might be involved in the decreases of the contents of the somatostatin, aspartic acid and glutamine, and increases of the contents of glycine, taurine and GABA in hippocampus of seizure rat.

  17. Reevaluation of Fatty acid receptor 1 (FFAR1/GPR40) as drug target for the stimulation of insulin secretion in humans

    DEFF Research Database (Denmark)

    Wagner, Robert; Kaiser, Gabriele; Gerst, Felicia

    2013-01-01

    The role of free fatty acid receptor 1 (FFAR1/GPR40) in glucose homeostasis is still incompletely understood. Small receptor agonists stimulating insulin secretion are under investigation for the treatment of type 2 diabetes. Surprisingly, genome-wide association studies did not discover diabetes...

  18. Influences of AMY1 gene copy number and protein expression on salivary alpha-amylase activity before and after citric acid stimulation in splenic asthenia children.

    Science.gov (United States)

    Yang, Zemin; Lin, Jing; Chen, Longhui; Zhang, Min; Yang, Xiaorong; Chen, Weiwen

    2015-06-01

    To compare the correlations between salivary alpha-amylase (sAA) activity and amylase, alpha 1 (salivary) gene (AMYl) copy number or its gene expression between splenic asthenia and healthy children, and investigate the reasons of attenuated sAA activity ratio before and after citric acid stimulation in splenic asthenia children. Saliva samples from 20 splenic asthenia children and 29 healthy children were collected before and after citric acid stimulation. AMYl copy number, sAA activity, and total sAA and glycosylated sAA contents were determined, and their correlations were analyzed. Although splenic asthenia and healthy children had no differences in AMY1 copy number, splenic asthenia children had positive correlations between AMY1 copy number and sAA activity before or after citric acid stimulation. Splenic asthenia children had a higher sAA glycosylated proportion ratio and glycosylated sAA content ratio, while their total sAA content ratio and sAA activity ratio were lower compared with healthy children. The glycosylated sAA content ratio was higher than the total sAA content ratio in both groups. Splenic asthenia and healthy children had positive correlations between total sAA or glycosylated sAA content and sAA activity. However, the role played by glycosylated sAA content in sAA activity in healthy children increased after citric acid stimulation, while it decreased in splenic asthenia children. Genetic factors like AMY1 copy number variations, and more importantly, sAA glycosylation abnormalities leading to attenuated sAA activity after citric acid stimulation, which were the main reasons of the attenuated sAA activity ratio in splenic asthenia children compared with healthy children.

  19. Phosphatidic Acid Produced by RalA-activated PLD2 Stimulates Caveolae-mediated Endocytosis and Trafficking in Endothelial Cells.

    Science.gov (United States)

    Jiang, Ying; Sverdlov, Maria S; Toth, Peter T; Huang, Long Shuang; Du, Guangwei; Liu, Yiyao; Natarajan, Viswanathan; Minshall, Richard D

    2016-09-23

    Caveolae are the primary route for internalization and transendothelial transport of macromolecules, such as insulin and albumin. Caveolae-mediated endocytosis is activated by Src-dependent caveolin-1 (Cav-1) phosphorylation and subsequent recruitment of dynamin-2 and filamin A (FilA), which facilitate vesicle fission and trafficking, respectively. Here, we tested the role of RalA and phospholipase D (PLD) signaling in the regulation of caveolae-mediated endocytosis and trafficking. The addition of albumin to human lung microvascular endothelial cells induced the activation of RalA within minutes, and siRNA-mediated down-regulation of RalA abolished fluorescent BSA uptake. Co-immunoprecipitation studies revealed that albumin induced the association between RalA, Cav-1, and FilA; however, RalA knockdown with siRNA did not affect FilA recruitment to Cav-1, suggesting that RalA was not required for FilA and Cav-1 complex formation. Rather, RalA probably facilitates caveolae-mediated endocytosis by activating downstream effectors. PLD2 was shown to be activated by RalA, and inhibition of PLD2 abolished Alexa-488-BSA uptake, indicating that phosphatidic acid (PA) generated by PLD2 may facilitate caveolae-mediated endocytosis. Furthermore, using a PA biosensor, GFP-PASS, we observed that BSA induced an increase in PA co-localization with Cav-1-RFP, which could be blocked by a dominant negative PLD2 mutant. Total internal reflection fluorescence microscopy studies of Cav-1-RFP also showed that fusion of caveolae with the basal plasma membrane was dependent on PLD2 activity. Thus, our results suggest that the small GTPase RalA plays an important role in promoting invagination and trafficking of caveolae, not by potentiating the association between Cav-1 and FilA but by stimulating PLD2-mediated generation of phosphatidic acid. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Epileptiform response of CA1 neurones to convulsant stimulation by cyclothiazide, kainic acid and pentylenetetrazol in anaesthetized rats.

    Science.gov (United States)

    Qian, Binbin; Sun, Yajie; Wu, Zhen; Wan, Li; Chen, Lulan; Kong, Shuzhen; Zhang, Binhong; Zhang, Fayong; Wang, Zhen-Yu; Wang, Yun

    2011-05-01

    We have previously reported that cyclothiazide (CTZ) evokes epileptiform activities in hippocampal neurons and induces seizure behavior. Here we further studied in vivo the sensitivity of the hippocampal CA1 neurons in response to CTZ in epileptogenesis in comparison with two other classic convulsants of kainic acid (KA) and pentylenetetrazol (PTZ). CTZ administered intracerebral ventricle (i.c.v.) induced epileptiform activities from an initial of multiple evoked population spikes, progressed to spontaneous spikes and finally to highly synchronized burst activities in hippocampal CA1 neurons. PTZ, when given by subcutaneously, but not by intracerebral ventricle injection, evoked similar progressive epileptiform activities. In contrast, KA given by i.c.v. induced a quick development of epileptiform burst activities and then shortly switched to continuous high frequency firing as acute status epilepticus (ASE). Pharmacologically, alprazolam, a high-potency benzodiazepine ligand, inhibited CTZ and PTZ, but not KA, induced epileptiform burst activities while GYKI 53784, an AMPA receptor antagonist, suppressed CTZ and KA but not PTZ evoked epileptiform activities. In conclusion, CTZ and PTZ induced epileptiform activities are most likely to share a similar progressive pattern in hippocampus with GABAergic mechanism dominant in epileptogenesis, while CTZ model involves additional glutamate receptor activation. KA induced seizure in hippocampus is different to that of both CTA and PTZ. The results from this study indicate that hippocampal neurons respond to various convulsant stimulation differently which may reflect the complicated causes of the seizure in clinics. Copyright © 2011 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  1. Salvianolic acid B prevents bone loss in prednisone-treated rats through stimulation of osteogenesis and bone marrow angiogenesis.

    Directory of Open Access Journals (Sweden)

    Liao Cui

    Full Text Available Glucocorticoid (GC induced osteoporosis (GIO is caused by the long-term use of GC for treatment of autoimmune and inflammatory diseases. The GC related disruption of bone marrow microcirculation and increased adipogenesis contribute to GIO development. However, neither currently available anti-osteoporosis agent is completely addressed to microcirculation and bone marrow adipogenesis. Salvianolic acid B (Sal B is a polyphenolic compound from a Chinese herbal medicine, Salvia miltiorrhiza Bunge. The aim of this study was to determine the effects of Sal B on osteoblast bone formation, angiogenesis and adipogenesis-associated GIO by performing marrow adipogenesis and microcirculation dilation and bone histomorphometry analyses. (1 In vivo study: Bone loss in GC treated rats was confirmed by significantly decreased BMD, bone strength, cancellous bone mass and architecture, osteoblast distribution, bone formation, marrow microvessel density and diameter along with down-regulation of marrow BMPs expression and increased adipogenesis. Daily treatment with Sal B (40 mg/kg/d for 12 weeks in GC male rats prevented GC-induced cancellous bone loss and increased adipogenesis while increasing cancellous bone formation rate with improved local microcirculation by capillary dilation. Treatment with Sal B at a higher dose (80 mg/kg/d not only prevented GC-induced osteopenia, but also increased cancellous bone mass and thickness, associated with increase of marrow BMPs expression, inhibited adipogenesis and further increased microvessel diameters. (2 In vitro study: In concentration from 10(-6 mol/L to 10(-7 mol/L, Sal B stimulated bone marrow stromal cell (MSC differentiation to osteoblast and increased osteoblast activities, decreased GC associated adipogenic differentiation by down-regulation of PPARγ mRNA expression, increased Runx2 mRNA expression without osteoblast inducement, and, furthermore, Sal B decreased Dickkopf-1 and increased β-catenin m

  2. The effect of Centella asiatica, vitamins, glycolic acid and their mixtures preparations in stimulating collagen and fibronectin synthesis in cultured human skin fibroblast.

    Science.gov (United States)

    Hashim, Puziah

    2014-03-01

    Centella asiatica (Linn.) Urban is well known in promoting wound healing and provides significant benefits in skin care and therapeutic products formulation. Glycolic acid and vitamins also play a role in the enhancement of collagen and fibronectin synthesis. Here, we evaluate the specific effect of Centella asiatica (CA), vitamins, glycolic acid and their mixture preparations to stimulate collagen and fibronectin synthesis in cultured human fibroblast cells. The fibroblast cells are incubated with CA, glycolic acid, vitamins and their mixture preparations for 48 h. The cell lysates were analyzed for protein content and collagen synthesis by direct binding enzyme immunoassay. The fibronectin of the cultured supernatant was measured by sandwich enzyme immunoassay. The results showed that CA, glycolic acid, vitamins A, E and C significantly stimulate collagen and fibronectin synthesis in the fibroblast. Addition of glycolic acid and vitamins to CA further increased the levels of collagen and fibronectin synthesis to 8.55 and 23.75 μg/100 μg, respectively. CA, glycolic acid, vitamins A, E, and C, and their mixtures demonstrated stimulatory effect on both extra-cellular matrix synthesis of collagen and fibronectin in in vitro studies on human foreskin fibroblasts, which is beneficial to skin care and therapeutic products formulation.

  3. Activation of Muscarinic Acetylcholine Receptor Subtype 4 is Essential for Cholinergic Stimulation of Gastric Acid Secretion - Relation To D Cell/Somatostatin -

    Directory of Open Access Journals (Sweden)

    Koji Takeuchi

    2016-08-01

    Full Text Available AbstractBackground/Aim: Muscarinic acetylcholine receptors exist in five subtypes (M1~M5, and they are widely expressed in various tissues to mediate diverse autonomic functions, including gastric secretion. In the present study, we demonstrated, using M1~M5 KO mice, the importance of M4 receptors in carbachol (CCh stimulation of acid secretion and investigated how the secretion is modulated by the activation of M4 receptors. Methods: C57BL/6J mice of wild-type (WT and M1-M5 KO were used. Under urethane anesthesia, acid secretion was measured in the stomach equipped with an acute fistula. CCh (30 µg/kg was given s.c. to stimulate acid secretion. Atropine or octreotide (a somatostatin analogue was given s.c. 20 min before the administration of CCh. CYN154806 (a somatostatin SST2 receptor antagonist was given i.p. 20 min before the administration of octreotide or CCh. Results: CCh caused an increase of acid secretion in WT mice, and the effect was totally inhibited by prior administration of atropine. The effect of CCh was similarly observed in the animals lacking M1, M2 or M5 receptors but significantly decreased in M3 or M4 KO mice. CYN154806, the SST2 receptor antagonist, dose-dependently and significantly reversed the decreased acid response to CCh in M4 but not M3 KO mice. Octreotide, the somatostatin analogue, inhibited the secretion of acid under CCh-stimulated conditions in WT mice. The immunohistochemical study showed the localization of M4 receptors on D cells in the stomach. Serum somatostatin levels in M4 KO mice were higher than WT mice under basal conditions, while those in WT mice were significantly decreased in response to CCh. Conclusions: These results suggest that under cholinergic stimulation the acid secretion is directly mediated by M3 receptors and indirectly modified by M4 receptors. It is assumed that the activation of M4 receptors inhibits the release of somatostatin from D cells and minimizes the acid inhibitory effect

  4. Modulation of Cytokine Production by Drugs with Antiepileptic or Mood Stabilizer Properties in Anti-CD3- and Anti-CD40-Stimulated Blood In Vitro

    Directory of Open Access Journals (Sweden)

    Hubertus Himmerich

    2014-01-01

    Full Text Available Increased cytokine production possibly due to oxidative stress has repeatedly been shown to play a pivotal role in the pathophysiology of epilepsy and bipolar disorder. Recent in vitro and animal studies of valproic acid (VPA report antioxidative and anti-inflammatory properties, and suppression of interleukin (IL-6 and tumor necrosis factor (TNF-α. We tested the effect of drugs with antiepileptic or mood stabilizer properties, namely, primidone (PRM, carbamazepine (CBZ, levetiracetam (LEV, lamotrigine (LTG, VPA, oxcarbazepine (OXC, topiramate (TPM, phenobarbital (PB, and lithium on the production of the following cytokines in vitro: interleukin (IL-1β, IL-2, IL-4, IL-6, IL-17, IL-22, and TNF-α. We performed a whole blood assay with stimulated blood of 14 healthy female subjects. Anti-human CD3 monoclonal antibody OKT3, combined with 5C3 antibody against CD40, was used as stimulant. We found a significant reduction of IL-1 and IL-2 levels with all tested drugs other than lithium in the CD3/5C3-stimulated blood; VPA led to a decrease in IL-1β, IL-2, IL-4, IL-6, IL-17, and TNF-α production, which substantiates and adds knowledge to current hypotheses on VPA’s anti-inflammatory properties.

  5. The effects of lysergic acid diethylamide on the response to field stimulation of the rat vas deferens and the rat and cat anococcygeus muscles.

    Science.gov (United States)

    Gillespie, J S; McGrath, J C

    1975-08-01

    1. The effect of lysergic acid diethylamid (LSD) on the response to field stimulation in vitro of the rat vas deferens and anococcygeus muscle was examined. 2. LSD in concentrations from 10(-9) to 10(-6) M caused an increase in tone or rhythmic activity in both tissues, effects identical to those produced by guanethidine or tyramine. The motor effects of all three drugs were abolished by phentolamine 2 x 10(-6) M. Methysergide 2 x 10(-7) M given before LSD reduced the motor effect but was ineffective once the LSD contraction had developed. 3. LSD 10(-9) to 10(-6) M reduced and eventually abolished the response to motor adrenergic nerve stimulation in the anococcygeus muscle with no effect on the response to noradrenaline (NA) and no evidence of differential sensitivity according to the number of stimulating pulses. In the vas deferens LSD abolished the initial twitch component with no effect on the secondary slow contraction. LSD had no effect on the response to inhibitory nerve stimulation in the anococcygeus. 4. These results suggest that in the anococcygeus LSD closely resembles guanethidine in its effects as an adrenergic neurone blocking drug with indirect sympathomimetic actions. In the vas deferens these properties would explain the block of the initial twitch component in the motor response to field stimulation and the increase in rhythmic activity but do not explain the resistance of the secondary slow component of the motor response.

  6. Propionic acid and butyric acid inhibit lipolysis and de novo lipogenesis and increase insulin-stimulated glucose uptake in primary rat adipocytes.

    OpenAIRE

    Heimann, Emilia; Nyman, Margareta; Degerman, Eva

    2015-01-01

    Fermentation of dietary fibers by colonic microbiota generates short-chain fatty acids (SCFAs), e.g., propionic acid and butyric acid, which have been described to have "anti-obesity properties" by ameliorating fasting glycaemia, body weight and insulin tolerance in animal models. In the present study, we therefore investigate if propionic acid and butyric acid have effects on lipolysis, de novo lipogenesis and glucose uptake in primary rat adipocytes. We show that both propionic ac...

  7. LPS-stimulated RAW264.7 macrophage CAT-2-mediated l-arginine uptake and nitric oxide biosynthesis is inhibited by omega fatty acid lipid emulsion.

    Science.gov (United States)

    Huang, Qian; Huang, Chuanjiang; Zhao, Yunzhao; Wang, Bin; Ren, Jianan; Li, Ning; Li, Jieshou

    2013-01-01

    Omega-3 fatty acid (ω-3 FA) lipid emulsion has been reported to inhibit nitric oxide (NO) production and alter inducible nitric oxide synthase (iNOS) protein expression in lipopolysaccharide (LPS)-stimulated murine macrophages. However, the role of cellular uptake of l-arginine and iNOS transcription in ω-3 FA emulsion-induced inhibition of NO has not been explored. In addition, cationic amino acid transporter-2 (CAT-2) can regulate iNOS activity. The effect of ω-3 FA emulsion on CAT-2 expression is unknown. In the present study, we hypothesized that ω-3 FA emulsion pretreatment would decrease the production of NO in LPS-stimulated macrophages and that this effect would occur through alterations in the cellular uptake of l-arginine and CAT-2 expression, in addition to iNOS expression. Confluent immortalized murine macrophages (RAW264.7cells) were incubated with Dulbecco's modified Eagle's medium, ω-3 FA emulsion, or an isoenergetic ω-6 lipid emulsion for 4 h. The cells were washed and then stimulated with LPS (1 μg/mL) or media alone for 12 or 24 h before harvesting. Greiss reagent was used to assess NO production of plate well supernatants. Cellular uptake of l-arginine was assessed through [(3)H]-l-arginine. The expression of iNOS and CAT-2 mRNA in harvested RAW264.7 was quantified by reverse transcriptase-polymerase chain reaction. NO production of unstimulated RAW264.7 cells was similar in all groups. After LPS stimulation, ω-3 FA pretreatment at 12 and 24 h produced significantly less NO (P anti-inflammatory effects, ω-3 FA lipid emulsion also significantly lowers NO production and l-arginine transport through altered expression of iNOS and CAT-2 in LPS-stimulated RAW264.7 macrophage cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Stimulation of G protein-coupled bile acid receptor enhances vascular endothelial barrier function via activation of protein kinase A and Rac1.

    Science.gov (United States)

    Kida, Taiki; Omori, Keisuke; Hori, Masatoshi; Ozaki, Hiroshi; Murata, Takahisa

    2014-01-01

    Bile acids are end products of cholesterol metabolism, and they constantly exist at high concentrations in the blood. Since vascular endothelial cells express G protein-coupled bile acid receptor (GPBAR), bile acids potentially modulate endothelial function. Here, we investigated whether and how GPBAR agonism affects endothelial barrier function. In bovine aortic endothelial cells (BAECs), treatment with a GPBAR agonist, taurolithocholic acid (TLCA) increased the transendothelial electrical resistance. In addition, TLCA suppressed the thrombin-induced dextran infiltration through the endothelial monolayer. Knockdown of GPBAR abolished the inhibitory effect of TLCA on hyperpermeability. These results indicate that stimulation of GPBAR enhances endothelial barrier function. TLCA increased intracellular cAMP production in BAECs. Inhibition of protein kinase A (PKA) or Rac1 significantly attenuated the TLCA-induced endothelial barrier protection. TLCA induced cortical actin polymerization, which was attenuated by a Rac1 inhibitor. In vivo, local administration of TLCA into the mouse ear significantly inhibited vascular leakage and edema formation induced by croton oil or vascular endothelial growth factor. These results indicate that stimulation of GPBAR enhances endothelial barrier function by cAMP/PKA/Rac1-dependent cytoskeletal rearrangement.

  9. Stimulation des réservoirs gréseux. Interprétation des courbes de réponse à l'acide Sandstone Acidizing. Acid Response Curves Interpretation

    Directory of Open Access Journals (Sweden)

    Labrid J.

    2006-11-01

    Full Text Available Les problèmes d'acidification des réservoirs gréseux sont abordés en introduisant une grandeur cinétique caractéristique du milieu à stimuler appelée réactivité dont la détermination est nécessaire pour l'interprétation complète des courbes de réponse à l'acide; ce concept de réactivité prend en compte la morphologie du milieu poreux (dimension et forme des- grains, distribution des minéraux, et les constantes de vitesse de dissolution des différentes espèces minéralogiques. Les effets de l'acidification sont évalués en établissant une relation liant la porosité, la perméabilité et la réactivité; cette relation est indépendante des conditions de l'expérience : débit, concentration et volume d'acide injecté. Par ailleurs, un modèle mathématique de l'acidification a été conçu et mis au point en géométrie radiale et unidimensionnelle. Ce modèle, alimenté par les données tirées de l'expérience, restitue de manière très satisfaisante l'évolution des propriétés pétrophysiqués du milieu ; son application à la géométrie radiale (cas de l'opération de chantier conduit à des recommandations sur la procédure à adopter en fonction des caractéristiques de la formation. Problems in the acid treatment of sandstone reservoirs are approached by introducing a kinetic parameter, called reactivity, thot is characteristic of the medium to be stimulated. This reactivity must be determined fora complete interpretation of the acid response curves. The concept of reactivity tokes into consideration the morphology of the porous medium (grain size and shape, distribution of minerals and the dissolution rate constants of the différent mineralogical species. The effects of acid treatment are evaluated by establishing a relationship linking porosity, permeability and reactivity. This relationship is independent of the experimental conditions such as flowrate and concentration and volume of acid injected. In

  10. The Gibberellic Acid Stimulated-Like Gene Family in Maize and Its Role in Lateral Root Development1[C][W][OA

    Science.gov (United States)

    Zimmermann, Roman; Sakai, Hajime; Hochholdinger, Frank

    2010-01-01

    In an approach to study lateral root development in monocots, genome-wide searches for homologs of the Gibberellic Acid Stimulated Transcript-like (GAST-like) gene family in rice (Oryza sativa) and maize (Zea mays) were carried out. Six novel GAST-like genes in rice and 10 members of the gene family in maize, which were designated ZmGSL (for Z. mays Gibberellic Acid Stimulated-Like), were identified. The ZmGSL family encodes small proteins of 75 to 128 amino acids, which are characterized by a conserved 59 to 64 amino acid C-terminal domain. Within this domain, 17 amino acids, including 12 cysteines, are perfectly conserved. The transcript of the ZmGSL1 gene is differentially spliced into the alternative variants ZmGSL1a and ZmGSL1b, the latter of which is translated into a premature protein that lacks the C-terminal domain. The presence of an additional N-terminal cleavable signal sequence in eight of the 10 ZmGSL proteins suggests that they are secreted into the extracellular matrix. In-depth root-specific gene expression analyses carried out in the wild type and the lateral root mutants lrt1 and rum1 suggest a role for ZmGSL genes in early lateral root development, which is likely regulated by gibberellic acid. Expression patterns of ZmGSL1a and ZmGSL1b propose antagonistic functions of these splice variants during early lateral root formation. PMID:19926801

  11. The effect of essential fatty acid deficiency on the stimulation of intestinal calcium transport by 1,25-dihydroxyvitamin D3.

    Science.gov (United States)

    Kreutter, D; Matsumoto, T; Peckham, R; Zawalich, K; Wen, W H; Zolock, D T; Rasmussen, H

    1983-04-25

    The effect of altering the lipid composition of the brush-border membrane on the ability of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) to stimulate calcium transport across the intestinal mucosa was examined by raising chicks on a vitamin D, essential fatty acid-deficient diet (-DEFAD) and measuring calcium absorption from duodenal sacs in situ and calcium uptake into brush-border membrane vesicles in vitro. Administration of 1,25-(OH)2D3 to -DEFAD and to -D control chicks led to the same increase in calcium transport in situ, whereas calcium transport in isolated brush-border membrane vesicles was not stimulated in the EFAD group, but responded normally in the control group. When the incubation temperature was increased to 34 degrees C, brush-border membrane vesicles from 1,25-(OH)2D3-treated essential fatty acid-deficient (+DE-FAD) chicks accumulated calcium at a faster rate than did vesicles from -DEFAD chicks. There was a marked decrease in the linoleic acid content and an increase in the oleic acid content of both the total lipid extract of the brush-border membrane as well as the phosphatidylcholine and phosphatidylethanolamine fractions, which could explain the temperature sensitivity of the in vitro system. When the diet of the EFAD chicks was supplemented with linoleic acid, the rate of calcium uptake into subsequently isolated vesicles from +DE-FAD chicks correlated with the amount of linoleic acid in the brush-border membranes. These results support the concept that the action of 1,25-(OH)2D3 on membrane lipid turnover and structure plays a critically important role in the 1,25-(OH)2D3-mediated cellular transport responses.

  12. Regulation on RhoA in vascular smooth muscle cells under inflammatory stimulation proposes a novel mechanism mediating the multiple-beneficial action of acetylsalicylic acid.

    Science.gov (United States)

    Li, Dong-Bo; Yang, Guo-Jie; Xu, Hong-Wei; Fu, Zhi-Xuan; Wang, Shan-Wei; Hu, Shen-Jiang

    2013-12-01

    Recent studies have revealed the additional beneficial effects of acetylsalicylic acid (aspirin) in the medication of cardiovascular diseases. The small GTPase RhoA as an important signaling factor is implicated in a wide range of cell functions. This study aimed to investigate the regulatory effect of acetylsalicylic acid on RhoA in vascular smooth muscle cells (VSMCs). We found that aspirin at 300 μM suppressed VSMCs proliferation stimulated by LPS, and this inhibitory effect was partially mediated by inhibiting the iNOS/NO pathway. RhoA overexpression was downregulated by aspirin (both 30 and 300 μM) because of enhanced degradation of RhoA protein. The effect of LPS on increasing active RhoA level was significantly attenuated by aspirin (300 μM), which exerted no effect on RhoA translocation. The promoted RhoA phosphorylation under LPS stimulation, coupled with RhoA protein expression, was greatly decreased by aspirin treatment. No effect of aspirin was found on the expression, activation, and phosphorylation of RhoA in VSMCs devoid of inflammatory stimulation. Our investigation indicates that the regulation of RhoA by aspirin in VSMCs under inflammatory stimulus could be a novel mechanism via which aspirin, apart from the COX-dependent action, exerted the multiple beneficial effects.

  13. Uric acid stimulates proliferative pathways in vascular smooth muscle cells through the activation of p38 MAPK, p44/42 MAPK and PDGFRβ.

    Science.gov (United States)

    Kırça, M; Oğuz, N; Çetin, A; Uzuner, F; Yeşilkaya, A

    2017-04-01

    Hyperuricemia and angiotensin II (Ang II) may have a pathogenetic role in the development of hypertension and atherosclerosis as well as cardiovascular disease (CVD) and its prognosis. The purpose of this study was to investigate whether uric acid can induce proliferative pathways of vascular smooth muscle cell (VSMC) that are thought to be responsible for the development of CVD. The phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), p44/42 mitogen-activated protein kinase (p44/42 MAPK) and platelet-derived growth factor receptor β (PDGFRβ) was measured by Elisa and Western blot techniques to determine the activation of proliferative pathways in primary cultured VSMCs from rat aorta. Results demonstrated that uric acid can stimulate p38 MAPK, p44/42 MAPK and PDGFRβ phosphorylation in a time- and concentration-dependent manner. Furthermore, treatment of VSMCs with the angiotensin II type I receptor (AT1R) inhibitor losartan suppressed p38 MAPK and p44/42 MAPK induction by uric acid. The stimulatory effect of uric acid on p38 MAPK was higher compared to that of Ang II. The results of this study show for the first time that uric acid-induced PDGFRβ phosphorylation plays a crucial role in the development of CVDs and that elevated uric acid levels could be a potential therapeutical target in CVD patients.

  14. Effect of a high molecular weight hyaluronic acid (HA) preparation on the stimulation of polymorphonulcear leukocytes (PMNL)

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, J.; Chow, D.C.; Skosey, J.L.

    1986-03-01

    During the process of joint inflammation PMNL are attracted into the joint space by chemotactic agents and are stimulated by immune complexes, particular matter (eg, crystals, cartilage debris) and other phlogistic agents. This process occurs in an environment rich in HA. The authors have examined the effect of high molecular weight HA. They have examined the effect of high molecular weight HA upon PMNL stimulation. PMNL were isolated from human blood and stimulated with either opsonized zymosan or formyl-methionyl-leucyl-phenylalanine (fmlp). The authors assessed stimulation by measuring the ability of cell supernatants to promote the release of /sup 35/S from chips of rabbit articular cartilage labeled in vivo, and the enhancement of oxidation of (1-/sup 14/C)glucose to /sup 14/CO/sub 2/. Stimulation of cells with zym in the presence of HA, 0.125-2.5 mg/ml, resulted in enhanced /sup 35/S release (33-59% over zym alone) and /sup 14/CO/sub 2/ production (0.5-64%). However, HA failed to enhance responses when fmlp (+cytochalasin B) was used as the stimulus. It has been demonstrated that high molecular weight HA inhibits phagocytosis of both latex and aggregated IgG. In our studies, it is likely that HA interference with ingestion of zym leads to frustrated phagocytosis and enhancement of PMNL responses. Similar modification of responses of inflammatory mediator cells could occur in inflamed joints.

  15. The Association of Valproic Acid and Incident Breast Cancer in a Managed Care Cohort

    Science.gov (United States)

    2011-09-01

    Multiple reasons may explain why there was no effect seen in human epidemiologic studies. These include inability to control dose and duration of drug...inhibitors on human papillomavirus early gene expression in cervical cancer, an in vitro and clinical study. Virol J, 2007. 4: p. 18. 7. Jawed, S., eta...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE 1 Sep 2011 2. REPORT TYPE Final 3

  16. Metabolic syndrome and anticonvulsants: A comparative study of valproic acid and carbamazepine.

    Science.gov (United States)

    Rakitin, Aleksei; Kõks, Sulev; Haldre, Sulev

    2016-05-01

    The aim of this study was to compare the risk of metabolic syndrome (MS) and evaluate related factors for MS among people with epilepsy treated with valproate (VPA) or carbamazepine (CBZ). A total of 213 adult patients with epilepsy treated with VPA (n=118) or CBZ (n=95) monotherapy were included in the study. Participants were evaluated for the presence of MS, diagnosed according to the National Cholesterol Education Program Adult Treatment Panel III criteria. In the multiple logistic regression analysis, the risk of MS in CBZ- and VPA-treated patients was similar (odds ratio [OR]=0.99; 95% confidence interval [CI], 0.43-2.26; P=0.979). A lower proportion of CBZ-treated patients had abnormally low levels of high-density lipoprotein cholesterol (OR=0.10; 95% CI, 0.02-0.42; P=0.002), whereas a lower proportion of VPA-treated patients had abnormally high concentrations of fasting blood glucose (OR=0.30; 95% CI, 0.13-0.69; P=0.004). Females treated with VPA tended to have a higher risk of MS (OR=1.48; 95% CI, 0.50-4.41; P=0.485) compared to males (OR=0.74; 95% CI, 0.28-1.96; P=0.551), although this difference was not statistically significant. Although the overall risk of MS was similar in patients with epilepsy who were treated with VPA or CBZ, the distribution of MS components differed between treatment groups. Patients treated with CBZ or VPA less frequently had decreased high-density lipoprotein cholesterol levels or increased blood glucose concentrations, respectively. Females on VPA treatment could be at higher risk of MS than males. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  17. The effects of valproic acid on renal corpuscle of pregnant rats and ...

    African Journals Online (AJOL)

    Both VPA+FA and VPA+Vit E groups exhibited similar ultrastructural changes and had almost the normal structure. Administration of single doses of SV (400 mg/kg) resulted in degenerative changes on kidney at ultrastructural level. Administration of FA and Vit E had a protective effect by preventing the degenerative ...

  18. VALPROIC ACID-INDUCED BRAIN DAMAGE IN RATS AS A MODEL FOR AUTISM. (R824758)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  19. [Idiopathic generalized epilepsies with absence seizures with valproic acid treatment: neuropsychological disorders].

    Science.gov (United States)

    Conde-Guzon, P A; Cancho-Candela, R

    2012-07-16

    To analyze the neuropsychological profile of children with absence seizures treated with valproate. Sample of 34 children from 7 to 12 years with absence seizures treated with valproate (median dose: 30 mg/kg/day) and 28 controls. We get the neuropsychological profile by applying the Wechsler Intelligence Scale for Children-Revised (WISC-R) and Luria-DNI Battery. Children with absence seizures manifest verbal IQ significantly lower (p grammar. This is a serious deterioration profile in the areas of logical memory, short-term memory, arithmetic, numerical structure, reading, writing, naming, and articulation. Children with absence seizures have a significant memory deficit. Memory profile measured with the Luria-DNI Battery and the WISC-R appears generally deteriorated when compared with the control group (p < 0.001) although there is a paradoxical preservation of shape memory. The short-term auditory and visual memory and logical memory are particularly affected. In the epileptic group, the attentional profile (estimated by the 'third factor of the WISC-R') is generally deteriorated when compared with the control group. We consider in children with this diagnosis and treatment, the neuropsychological profile described to strengthen deficient neuropsychological and psychoeducational areas. Above, we claim the need, in the consultations of neuropediatrics, the neuropsychlogists to ensure the systematic analysis of neuropsychological and cognitive difficulties both at the time of the diagnosis and follow-up of epilepsy.

  20. Antiepileptic teratogen valproic acid (VPA) modulates organisation and dynamics of the actin cytoskeleton

    DEFF Research Database (Denmark)

    Walmod, P S; Skladchikova, G; Kawa, A

    1999-01-01

    of control cells and cells treated with VPA, indicating that VPA affected the cytoskeletal determinants of cell morphology. Furthermore, VPA treatment induced an increase of F-actin, and of FAK, paxillin, vinculin, and phosphotyrosine in focal adhesion complexes. These changes were accompanied by increased...

  1. The transgenerational inheritance of autism-like phenotypes in mice exposed to valproic acid during pregnancy.

    Science.gov (United States)

    Choi, Chang Soon; Gonzales, Edson Luck; Kim, Ki Chan; Yang, Sung Min; Kim, Ji-Woon; Mabunga, Darine Froy; Cheong, Jae Hoon; Han, Seol-Heui; Bahn, Geon Ho; Shin, Chan Young

    2016-11-07

    Autism spectrum disorder (ASD) is a heterogeneously pervasive developmental disorder in which various genetic and environmental factors are believed to underlie its development. Recently, epigenetics has been suggested as a novel concept for ASD aetiology with a proposition that epigenetic marks can be transgenerationally inherited. Based on this assumption of epigenetics, we investigated the transgenerational inheritance of ASD-like behaviours and their related synaptic changes in the VPA animal model of ASD. The first generation (F1) VPA-exposed offspring exhibited autistic-like impaired sociability and increased marble burying. They also showed increased seizure susceptibility, hyperactivity and decreased anxiety. We mated the VPA-exposed F1 male offspring with naïve females to produce the second generation (F2), and then similarly mated the F2 to deliver the third generation (F3). Remarkably, the autism-like behavioural phenotypes found in F1 persisted to the F2 and F3. Additionally, the frontal cortices of F1 and F3 showed some imbalanced expressions of excitatory/inhibitory synaptic markers, suggesting a transgenerational epigenetic inheritance. These results open the idea that E/I imbalance and ASD-like behavioural changes induced by environmental insults in mice can be epigenetically transmitted, at least, to the third generation. This study could help explain the unprecedented increase in ASD prevalence.

  2. The transgenerational inheritance of autism-like phenotypes in mice exposed to valproic acid during pregnancy

    Science.gov (United States)

    Choi, Chang Soon; Gonzales, Edson Luck; Kim, Ki Chan; Yang, Sung Min; Kim, Ji-Woon; Mabunga, Darine Froy; Cheong, Jae Hoon; Han, Seol-Heui; Bahn, Geon Ho; Shin, Chan Young

    2016-01-01

    Autism spectrum disorder (ASD) is a heterogeneously pervasive developmental disorder in which various genetic and environmental factors are believed to underlie its development. Recently, epigenetics has been suggested as a novel concept for ASD aetiology with a proposition that epigenetic marks can be transgenerationally inherited. Based on this assumption of epigenetics, we investigated the transgenerational inheritance of ASD-like behaviours and their related synaptic changes in the VPA animal model of ASD. The first generation (F1) VPA-exposed offspring exhibited autistic-like impaired sociability and increased marble burying. They also showed increased seizure susceptibility, hyperactivity and decreased anxiety. We mated the VPA-exposed F1 male offspring with naïve females to produce the second generation (F2), and then similarly mated the F2 to deliver the third generation (F3). Remarkably, the autism-like behavioural phenotypes found in F1 persisted to the F2 and F3. Additionally, the frontal cortices of F1 and F3 showed some imbalanced expressions of excitatory/inhibitory synaptic markers, suggesting a transgenerational epigenetic inheritance. These results open the idea that E/I imbalance and ASD-like behavioural changes induced by environmental insults in mice can be epigenetically transmitted, at least, to the third generation. This study could help explain the unprecedented increase in ASD prevalence. PMID:27819277

  3. Valproic acid increases expression of methylenetetrahydrofolate reductase (MTHFR) and induces lower teratogenicity in MTHFR deficiency

    OpenAIRE

    Roy, Marc; Leclerc, Daniel; Wu, Qing; Gupta, Sapna; Kruger, Warren D.; Rozen, Rima

    2008-01-01

    Valproate (VPA) treatment in pregnancy leads to congenital anomalies, possibly by disrupting folate or homocysteine metabolism. Since methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of folate interconversion and homocysteine metabolism, we addressed the possibility that VPA might have different teratogenicity in Mthfr+/+ and Mthfr+/− mice and that VPA might interfere with folate metabolism through MTHFR modulation. Mthfr+/+ and Mthfr+/− pregnant mice were injected with VPA on gest...

  4. The effects of valproic acid on renal corpuscle of pregnant rats and ...

    African Journals Online (AJOL)

    ONOS

    2010-08-23

    Aug 23, 2010 ... This may generate reactive oxygen species, to combine with polyunsaturated lipids and generate lipid hydroperoxides. SV, its omega oxidation products and delta dehydrogenation moieties are reported to be depressants of gluconeogenesis (Rogiers et al., 1985; Turnbull et al., 1986), and may inhibit the.

  5. The Association of Valproic Acid and Incident Breast Cancer in a Managed Care Cohort

    Science.gov (United States)

    2010-09-01

    have also been identified : epilepsy /seizure disorder (345.0-345.9/780.39), depression (296.2, 296.3, 311), and migraine (346.0=346.9). • Use of...exogenous hormones in th is population has also been collected in the database. R EPORTABLE OUTCOMES: Provide a li st of reportable outcomes that have...support the conduct of this study. 6 REFERENCES: 1. Hodges-Gallagher, L., Valentine , C. D., Bader, S. E., and Kushner, P. j. Inhibition of histone

  6. The combination of valproic acid and lithium delays hematopoietic stem/progenitor cell differentiation

    NARCIS (Netherlands)

    Walasek, Marta A.; Bystrykh, Leonid; van den Boom, Vincent; Olthof, Sandra; Ausema, Albertina; Ritsema, Martha; Huls, Gerwin; de Haan, Gerald; van Os, Ronald

    2012-01-01

    Despite increasing knowledge on the regulation of hematopoietic stem/progenitor cell (HSPC) self-renewal and differentiation, in vitro control of stem cell fate decisions has been difficult. The ability to inhibit HSPC commitment in culture may be of benefit to cell therapy protocols. Small

  7. The combination of valproic acid and lithium delays hematopoietic stem/progenitor cell differentiation.

    NARCIS (Netherlands)

    Walasek, M.A.; Bystrykh, L.; Boom, V. van den; Olthof, S.; Ausema, A.; Ritsema, M.; Huls, G.A.; Haan, G. de; Os, R. van

    2012-01-01

    Despite increasing knowledge on the regulation of hematopoietic stem/progenitor cell (HSPC) self-renewal and differentiation, in vitro control of stem cell fate decisions has been difficult. The ability to inhibit HSPC commitment in culture may be of benefit to cell therapy protocols. Small

  8. Ketoisocaproic acid, a metabolite of leucine, suppresses insulin-stimulated glucose transport in skeletal muscle cells in a BCAT2-dependent manner.

    Science.gov (United States)

    Moghei, Mahshid; Tavajohi-Fini, Pegah; Beatty, Brendan; Adegoke, Olasunkanmi A J

    2016-09-01

    Although leucine has many positive effects on metabolism in multiple tissues, elevated levels of this amino acid and the other branched-chain amino acids (BCAAs) and their metabolites are implicated in obesity and insulin resistance. While some controversies exist about the direct effect of leucine on insulin action in skeletal muscle, little is known about the direct effect of BCAA metabolites. Here, we first showed that the inhibitory effect of leucine on insulin-stimulated glucose transport in L6 myotubes was dampened when other amino acids were present, due in part to a 140% stimulation of basal glucose transport (P glucose transport (-34%, P glucose transport was abrogated in cells depleted of branched-chain aminotransferase 2 (BCAT2), the enzyme that catalyzes the reversible transamination of KIC to leucine. We conclude that although KIC can modulate muscle glucose metabolism, this effect is likely a result of its transamination back to leucine. Therefore, limiting the availability of leucine, rather than those of its metabolites, to skeletal muscle may be more critical in the management of insulin resistance and its sequelae. Copyright © 2016 the American Physiological Society.

  9. Alcoholic beverages produced by alcoholic fermentation but not by distillation are powerful stimulants of gastric acid secretion in humans.

    OpenAIRE

    Teyssen, S; Lenzing, T; González-Calero, G; Korn, A.; Riepl, R. L.; Singer, M V

    1997-01-01

    BACKGROUND: The effect of commonly ingested alcoholic beverages on gastric acid output and release of gastrin in humans is unknown. AIM AND METHODS: In 16 healthy humans the effect of some commonly ingested alcoholic beverages produced by fermentation plus distillation (for example, whisky, cognac, calvados, armagnac, and rum) or by alcoholic fermentation (beer, wine, champagne, martini, and sherry) on gastric acid output and release of gastrin was studied. Gastric acid output was determined ...

  10. Polymerizing Pyrrole Coated Poly (l-lactic acid-co-ε-caprolactone) (PLCL) Conductive Nanofibrous Conduit Combined with Electric Stimulation for Long-Range Peripheral Nerve Regeneration.

    Science.gov (United States)

    Song, Jialin; Sun, Binbin; Liu, Shen; Chen, Wei; Zhang, Yuanzheng; Wang, Chunyang; Mo, Xiumei; Che, Junyi; Ouyang, Yuanming; Yuan, Weien; Fan, Cunyi

    2016-01-01

    Electrospinning and electric stimulation (ES) are both promising methods to support neuron adhesion and guide extension of neurons for nerve regeneration. Concurrently, all studies focus on either electrospinning for conduits material or ES in vitro study to accelerate nerve regeneration; few work on the combined use of these two strategies or ES in vivo study. Therefore, this study aimed to investigate the abilities of direct current ES through electrospinning conductive polymer composites composed of polypyrrole and Poly (l-lactic acid-co-ε-caprolactone) (PPY/PLCL) in peripheral nerve regeneration. PPY/PLCL composite conduits were synthesized by polymerizing pyrrole coated electrospun PLCL scaffolds. Morphologies and chemical compositions were characterized by scanning electron microscope and attenuated total reflection fourier transform infrared (ATR-FTIR) microscope. Rat pheochromocytoma 12 (PC12) cells and dorsal root ganglia (DRG) cells cultured on PPY/PLCL scaffolds were stimulated with 100 mV/cm for 4 h per day. The median neurite length and cell viability were measured in PC-12 cells. The levels of brain-derived neurotrophic factor (BDNF), glial cell derived neurotrophic factor (GDNF) and neurotrophin-3 (NT-3) were analyzed in DRG cells. In rats, 15 mm gaps of sciatic nerves were bridged using an autograft, non-stimulated PPY/PLCL conduit and PPY/PLCL conduit stimulated with 100 mV potential, respectively. A 100 mV potential direct current ES was applied for 1 h per day at 1, 3, 5 and 7 days post-implantation. The PPY/PLCL conduits with ES showed a similar performance compared with the autograft group, and significantly better than the non-stimulated PPY/PLCL conduit group. These promising results show that the PPY/PLCL conductive conduits' combined use with ES has great potential for peripheral nerve regeneration.

  11. Polymerizing pyrrole coated Poly (l-lactic acid-co-ε-caprolactone (PLCL conductive nanofibrous conduit combined with electric stimulation for long-range peripheral nerve regeneration

    Directory of Open Access Journals (Sweden)

    Jialin Song

    2016-11-01

    Full Text Available Electrospinning and electric stimulation (ES are both promising methods to support neurons adhesion and guide extension of neurons for nerve regeneration. Concurrently, all studies focus on either electrospinning for conduits material or ES in vitro study to accelerate nerve regeneration; few works on the combined use of these two strategies or ES in vivo study. Therefore, this study aimed to investigate the abilities of direct current ES through electrospinning conductive polymer composites composed of polypyrrole and Poly (l-lactic acid-co-ε-caprolactone (PPY/PLCL in peripheral nerve regeneration. PPY/PLCL composite conduits were synthesized by polymerizing pyrrole coated electrospun PLCL scaffolds. Morphologies and chemical compositions were characterized by scanning electron microscope and attenuated total reflection fourier transform infrared (ATR-FTIR. Rat pheochromyctoma (PC12 cells and dorsal root ganglia (DRG cells cultured on PPY/PLCL scaffolds were stimulated with 100 mV/cm for 4 h per day. The median neurite length and cell viability were measured in PC-12 cells. The levels of brain-derived neurotrophic factor (BDNF, glial cell derived neurotrophic factor (GDNF and neurotrophin-3 (NT-3 were analyzed in DRG cells. In rats, 15-mm gaps of sciatic nerves were bridged using an autograft, non-stimulated PPY/PLCL conduit and PPY/PLCL conduit stimulated with 100 mV potential, respectively. A 100 mV potential direct current ES was applied for 1h per day at 1, 3, 5, and 7 days post-implantation. The PPY/PLCL conduits with ES showed a similar performance compared with the autograft group, and significantly better than the non-stimulated PPY/PLCL conduit group. These promising results show that the PPY/PLCL conductive conduits combined use with ES has great potential for peripheral nerve regeneration.

  12. Correction of a splice-site mutation in the beta-globin gene stimulated by triplex-forming peptide nucleic acids

    DEFF Research Database (Denmark)

    Chin, Joanna Y; Kuan, Jean Y; Lonkar, Pallavi S

    2008-01-01

    Splice-site mutations in the beta-globin gene can lead to aberrant transcripts and decreased functional beta-globin, causing beta-thalassemia. Triplex-forming DNA oligonucleotides (TFOs) and peptide nucleic acids (PNAs) have been shown to stimulate recombination in reporter gene loci in mammalian...... DNA fragments, can promote single base-pair modification at the start of the second intron of the beta-globin gene, the site of a common thalassemia-associated mutation. This single base pair change was detected by the restoration of proper splicing of transcripts produced from a green fluorescent...

  13. Possible association between moderate intellectual disability and weight gain in valproic acid–treated patients with epilepsy

    Directory of Open Access Journals (Sweden)

    Tanamachi Y

    2015-04-01

    Full Text Available Yukiko Tanamachi,1 Junji Saruwatari,1 Madoka Noai,1 Ryoko Kamihashi,1 Hiromi Soraoka,1 Yuki Yoshimori,1 Naoki Ogusu,1 Kentaro Oniki,1 Norio Yasui-Furukori,2 Takateru Ishitsu,3,4 Kazuko Nakagawa1,5 1Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; 2Department of Neuropsychiatry, Hirosaki University School of Medicine, Hirosaki, Japan; 3Kumamoto Saishunso National Hospital, Koshi, Japan; 4Kumamoto Ezuko Ryoiku Iryo Center, Kumamoto, Japan; 5Center for Clinical Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan Background: Although patients with moderate intellectual disability (ID are known to have higher rates of being overweight and obese than those without ID, there are no current data regarding the relationship between ID and weight gain in epilepsy patients treated with valproic acid (VPA. Patients and methods: The possible association between moderate ID and an overweight status at the time of initiation of VPA therapy (baseline was investigated using a logistic regression analysis in 143 patients with epilepsy. Among the 119 nonoverweight patients at baseline, the longitudinal association between moderate ID and the weight status during VPA therapy was retrospectively examined using a Cox hazards regression analysis and the generalized estimating equations approach, while also paying careful attention to associations with other patient characteristics. Results: The proportion of patients with moderate ID was 52.4% among the 143 study subjects. The presence of moderate ID was not associated with an overweight status at baseline (P=0.762. Among the nonoverweight patients at baseline, 16 subjects were newly diagnosed as being overweight during treatment with VPA (3.6±2.1 years. The presence of moderate ID was significantly associated with the incidence of an overweight status after starting VPA therapy (adjusted hazard ratio =6.72, P=0.007. The patient age

  14. Pituitary adenylate cyclase-activating polypeptide stimulates glial fibrillary acidic protein gene expression in cortical precursor cells by activating Ras and Rap1.

    Science.gov (United States)

    Lastres-Becker, Isabel; Fernández-Pérez, Antonio; Cebolla, Beatriz; Vallejo, Mario

    2008-11-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) acts on cortical precursor cells to trigger glial fibrillary acidic protein (GFAP) gene expression and astrocyte differentiation by stimulation of intracellular cAMP production. Here, we show that as expected, PACAP activates cAMP-dependent protein kinase A. However, inhibition of protein kinase A does not prevent PACAP-induced GFAP gene expression or astrocytogenesis. PACAP also activates the small GTPases Rap1 and Ras, but either activation of Rap1 alone by selective stimulation of the guanine nucleotide exchange factor Epac, or expression of a constitutively active form of Ras, do not induce GFAP gene expression. Ras is activated by PACAP in a cAMP-dependent manner, and inhibition of Ras and/or Rap1 decreases PACAP-induced GFAP promoter stimulation. Thus, cAMP-dependent PACAP-induced GFAP expression during astrocytogenesis involves the coordinated activation of both Ras and Rap1, but activation of either one of them in isolation is not sufficient to trigger this response.

  15. In vivo release by vagal stimulation of L-/sup 3/Hglutamic acid in the nucleus tractus solitarius preloaded with L-/sup 3/Hglutamine

    Energy Technology Data Exchange (ETDEWEB)

    Granata, A.R.; Sved, A.F.; Reis, D.J.

    1984-01-01

    In anesthetized and paralyzed rats, using a push-pull perfusion technique, we examined the effect of bilateral vagal stimulation on the release of L-/sup 3/Hglutamic acid (L-/sup 3/HGlu) from the nucleus tractus solitarius (NTS), after preloading the tissue either with L-/sup 3/HGlu or L-/sup 3/Hglutamine (L-/sup 3/HGln). Vagal stimulation sufficient to produce a maximum fall of arterial pressure (AP) evoked release of L-/sup 3/HGlu from the NTS when the tissue was preloaded with either /sup 3/H-Glu or /sup 3/H-Gln, and of D-/sup 3/Haspartic acid (D-/sup 3/HAsp) when this stable Glu analogue was used to preloaded with either /sup 3/H-Glu or /sup 3/H-Gln, and of D-/sup 3/H precursor L-Gln is a good marker of the releasable pool of L-Glu in vivo and are consistent with the hypothesis that L-/sup 3/HGlu is a neurotransmitter in the NTS, mediating the vasodepressor response from cardiopulmonary mechanoreceptors.

  16. Effect of dopamine on pentagastrin-stimulated gastric acid secretion and mucosal blood flow in dogs with gastric fistula

    DEFF Research Database (Denmark)

    Hovendal, C P; Bech, K; Gottrup, F

    1982-01-01

    The purpose of this study was to elucidate the effect of intravenously administered dopamine on dopamine receptors and adrenergic receptors in terms of its effect on gastric acid secretion, the kinetic mechanism, blood flow, and antral motility. Dopamine was used alone and in conjunction with sel......The purpose of this study was to elucidate the effect of intravenously administered dopamine on dopamine receptors and adrenergic receptors in terms of its effect on gastric acid secretion, the kinetic mechanism, blood flow, and antral motility. Dopamine was used alone and in conjunction...... with selective blockade of alpha-, beta-, and dopaminergic receptors. A significant inhibition of gastric acid secretion was found with the highest dose of dopamine used (40 micrograms/kg/min). The kinetic study showed characteristics of a non-competitive type. The anti-secretory effect dopamine......, but the ratio between blood flow and acid secretion was significantly elevated during dopamine infusion, indicating that the acid inhibition was not secondary to changes in blood flow. It is concluded that the dopamine inhibition of acid secretion is mediated by beta 1-receptors, unlike the effect on antral...

  17. The nitric oxide-donating derivative of acetylsalicylic acid, NCX 4016, stimulates glucose transport and glucose transporters translocation in 3T3-L1 adipocytes.

    Science.gov (United States)

    Kaddai, V; Gonzalez, T; Bolla, M; Le Marchand-Brustel, Y; Cormont, M

    2008-07-01

    NCX 4016 is a nitric oxide (NO)-donating derivative of acetylsalicylic acid. NO and salicylate, in vivo metabolites of NCX 4016, were shown to be potential actors in controlling glucose homeostasis. In this study, we evaluated the action of NCX 4016 on the capacity of 3T3-L1 adipocytes to transport glucose in basal and insulin-stimulated conditions. NCX 4016 induced a twofold increase in glucose uptake in parallel with the translocation of the glucose transporters GLUT1 and GLUT4 to the plasma membrane, leaving unaffected their total expression levels. Importantly, NCX 4016 further increased glucose transport induced by a physiological concentration of insulin. The stimulatory effect of NCX 4016 on glucose uptake appears to be mediated by its NO moiety. Indeed, it is inhibited by a NO scavenger and treatment with acetylsalicylic or salicylic acid had no effect. Although NO is involved in the action of NCX 4016, it did not mainly depend on the soluble cGMP cyclase/protein kinase G pathway. Furthermore, NCX 4016-stimulated glucose transport did not involve the insulin-signaling cascade required to stimulate glucose transport. NCX 4016 induces a small activation of the mitogen-activated protein kinases p38 and c-Jun NH(2)-terminal kinase and no activation of other stress-activated signaling molecules, including extracellular signal-regulated kinase, inhibitory factor kappaB, or AMP-activated kinases. Interestingly, NCX 4016 modified the content of S-nitrosylated proteins in adipocytes. Taken together, our results indicate that NCX 4016 induced glucose transport in adipocytes through a novel mechanism possibly involving S-nitrosylation. NCX 4016 thus possesses interesting characteristics to be considered as a candidate molecule for the treatment of patients suffering from metabolic syndrome and type 2 diabetes.

  18. Mechanical stimulation induces mTOR signaling via an ERK-independent mechanism: implications for a direct activation of mTOR by phosphatidic acid.

    Directory of Open Access Journals (Sweden)

    Jae Sung You

    Full Text Available Signaling by mTOR is a well-recognized component of the pathway through which mechanical signals regulate protein synthesis and muscle mass. However, the mechanisms involved in the mechanical regulation of mTOR signaling have not been defined. Nevertheless, recent studies suggest that a mechanically-induced increase in phosphatidic acid (PA may be involved. There is also evidence which suggests that mechanical stimuli, and PA, utilize ERK to induce mTOR signaling. Hence, we reasoned that a mechanically-induced increase in PA might promote mTOR signaling via an ERK-dependent mechanism. To test this, we subjected mouse skeletal muscles to mechanical stimulation in the presence or absence of a MEK/ERK inhibitor, and then measured several commonly used markers of mTOR signaling. Transgenic mice expressing a rapamycin-resistant mutant of mTOR were also used to confirm the validity of these markers. The results demonstrated that mechanically-induced increases in p70(s6k T389 and 4E-BP1 S64 phosphorylation, and unexpectedly, a loss in total 4E-BP1, were fully mTOR-dependent signaling events. Furthermore, we determined that mechanical stimulation induced these mTOR-dependent events, and protein synthesis, through an ERK-independent mechanism. Similar to mechanical stimulation, exogenous PA also induced mTOR-dependent signaling via an ERK-independent mechanism. Moreover, PA was able to directly activate mTOR signaling in vitro. Combined, these results demonstrate that mechanical stimulation induces mTOR signaling, and protein synthesis, via an ERK-independent mechanism that potentially involves a direct interaction of PA with mTOR. Furthermore, it appears that a decrease in total 4E-BP1 may be part of the mTOR-dependent mechanism through which mechanical stimuli activate protein synthesis.

  19. Mechanical stimulation induces mTOR signaling via an ERK-independent mechanism: implications for a direct activation of mTOR by phosphatidic acid.

    Science.gov (United States)

    You, Jae Sung; Frey, John W; Hornberger, Troy A

    2012-01-01

    Signaling by mTOR is a well-recognized component of the pathway through which mechanical signals regulate protein synthesis and muscle mass. However, the mechanisms involved in the mechanical regulation of mTOR signaling have not been defined. Nevertheless, recent studies suggest that a mechanically-induced increase in phosphatidic acid (PA) may be involved. There is also evidence which suggests that mechanical stimuli, and PA, utilize ERK to induce mTOR signaling. Hence, we reasoned that a mechanically-induced increase in PA might promote mTOR signaling via an ERK-dependent mechanism. To test this, we subjected mouse skeletal muscles to mechanical stimulation in the presence or absence of a MEK/ERK inhibitor, and then measured several commonly used markers of mTOR signaling. Transgenic mice expressing a rapamycin-resistant mutant of mTOR were also used to confirm the validity of these markers. The results demonstrated that mechanically-induced increases in p70(s6k) T389 and 4E-BP1 S64 phosphorylation, and unexpectedly, a loss in total 4E-BP1, were fully mTOR-dependent signaling events. Furthermore, we determined that mechanical stimulation induced these mTOR-dependent events, and protein synthesis, through an ERK-independent mechanism. Similar to mechanical stimulation, exogenous PA also induced mTOR-dependent signaling via an ERK-independent mechanism. Moreover, PA was able to directly activate mTOR signaling in vitro. Combined, these results demonstrate that mechanical stimulation induces mTOR signaling, and protein synthesis, via an ERK-independent mechanism that potentially involves a direct interaction of PA with mTOR. Furthermore, it appears that a decrease in total 4E-BP1 may be part of the mTOR-dependent mechanism through which mechanical stimuli activate protein synthesis.

  20. Long-term functional side-effects of stimulants and sedatives in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Kennedy Matsagas

    Full Text Available BACKGROUND: Small invertebrate animals, such as nematodes and fruit flies, are increasingly being used to test candidate drugs both for specific therapeutic purposes and for long-term health effects. Some of the protocols used in these experiments feature such experimental design features as lifelong virginity and very low densities. By contrast, the ability of both fruit flies and nematodes to resist stress is frequently correlated with their longevity and other functional measures, suggesting that low-stress assays are not necessarily the only useful protocol for testing the long-term effects of drugs. METHODOLOGY/PRINCIPAL FINDINGS: Here we report an alternative protocol for fruit fly drug-testing that maximizes reproductive opportunities and other types of interaction, with moderately high population densities. We validate this protocol using two types of experimental tests: 1. We show that this protocol detects previously well-established genetic differences between outbred fruit fly populations. 2. We show that this protocol is able to distinguish among the long-term effects of similar types of drugs within two broad categories, stimulants and tranquilizers. CONCLUSIONS: Large-scale fly drug testing can be conducted using mixed-sex high-density cage assays. We find that the commonly-used stimulants caffeine and theobromine differ dramatically in their chronic functional effects, theobromine being more benign. Likewise, we find that two generic pharmaceutical tranquilizers, lithium carbonate and valproic acid, differ dramatically in their chronic effects, lithium being more benign. However, these findings do not necessarily apply to human subjects, and we thus do not recommend the use of any one substance over any other.

  1. Deep brain stimulation, histone deacetylase inhibitors and glutamatergic drugs rescue resistance to fear extinction in a genetic mouse model.

    Science.gov (United States)

    Whittle, Nigel; Schmuckermair, Claudia; Gunduz Cinar, Ozge; Hauschild, Markus; Ferraguti, Francesco; Holmes, Andrew; Singewald, Nicolas

    2013-01-01

    Anxiety disorders are characterized by persistent, excessive fear. Therapeutic interventions that reverse deficits in fear extinction represent a tractable approach to treating these disorders. We previously reported that 129S1/SvImJ (S1) mice show no extinction learning following normal fear conditioning. We now demonstrate that weak fear conditioning does permit fear reduction during massed extinction training in S1 mice, but reveals specific deficiency in extinction memory consolidation/retrieval. Rescue of this impaired extinction consolidation/retrieval was achieved with d-cycloserine (N-methly-d-aspartate partial agonist) or MS-275 (histone deacetylase (HDAC) inhibitor), applied after extinction training. We next examined the ability of different drugs and non-pharmacological manipulations to rescue the extreme fear extinction deficit in S1 following normal fear conditioning with the ultimate aim to produce low fear levels in extinction retrieval tests. Results showed that deep brain stimulation (DBS) by applying high frequency stimulation to the nucleus accumbens (ventral striatum) during extinction training, indeed significantly reduced fear during extinction retrieval compared to sham stimulation controls. Rescue of both impaired extinction acquisition and deficient extinction consolidation/retrieval was achieved with prior extinction training administration of valproic acid (a GABAergic enhancer and HDAC inhibitor) or AMN082 [metabotropic glutamate receptor 7 (mGlu7) agonist], while MS-275 or PEPA (AMPA receptor potentiator) failed to affect extinction acquisition in S1 mice. Collectively, these data identify potential beneficial effects of DBS and various drug treatments, including those with HDAC inhibiting or mGlu7 agonism properties, as adjuncts to overcome treatment resistance in exposure-based therapies. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Production of extracellular bifidogenic growth stimulator (BGS) from Propionibacterium shermanii using a bioreactor system with a microfiltration module and an on-line controller for lactic acid concentration.

    Science.gov (United States)

    Kouya, Tomoaki; Tobita, Kazuhiro; Horiuchi, Masahito; Nakayama, Eri; Deguchi, Hiroyoshi; Tanaka, Takaaki; Taniguchi, Masayuki

    2008-03-01

    Production of a bifidogenic growth stimulator (BGS) by Propionibacterium freudenreichii subsp. shermanii (Propionibacterium shermanii) using lactic acid as a carbon source was investigated using different cultivation methods. When a continuous bioreactor system with a filtration device was used at a dilution rate of 0.075 h(-1), the average BGS concentration was 2.4 mg/l, which corresponds to a BGS productivity per cultivation time of 1.8 x 10(-1) mg x l(-1) x h(-1). The BGS productivity per cultivation time in continuous cultivation with filtration was 1.9-fold that (9.4 x 10(-2) mg x l(-1).h(-1)) in a conventional batch cultivation. In fed-batch cultivation with feed-back control using an on-line lactic acid controller with a lactic acid biosensor, it was possible to prevent substrate inhibition by maintaining the lactic acid concentration in culture broth low at 3.3 g/l, and an enhanced BGS production (31 mg/l) was successfully attained. The BGS productivity per cultivation time (2.1x10(-1) mg x l(-1) x h(-1)) in the fed-batch cultivation with feed-back control was 2.2-fold that in the conventional batch cultivation. A new bioreactor system was developed by coupling a continuous bioreactor system with a filtration device to an on-line lactic acid controller. Using the new bioreactor system, we produced BGS continuously at a high level of 47 mg/l. The BGS productivities per cultivation time (3.5 mg.l(-1) x h(-1)) and the total volume of medium used (1.7 x 10(-1) mg x l(-1) x h(-1)) obtained in the new bioreactor system were 37-fold and 2.1-fold those in the conventional batch cultivation, respectively. These results described above clearly demonstrate the positive effects of both the continuous filtration for removal of metabolites (propionic and acetic acids) inhibitory to cell growth and feed-back control of lactic acid concentration in the culture broth on BGS production by P. shermanii. This paper is the first report on BGS production by the propionic acid

  3. Immunocytochemical localization of glutamic acid decarboxylase (GAD) and substance P in neural areas mediating motion-induced emesis: Effects of vagal stimulation on GAD immunoreactivity

    Science.gov (United States)

    Damelio, F.; Gibbs, M. A.; Mehler, W. R.; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    Immunocytochemical methods were employed to localize the neurotransmitter amino acid gamma-aminobutyric acid (GABA) by means of its biosynthetic enzyme glutamic acid decarboxylase (GAD) and the neuropeptide substance P in the area postrema (AP), area subpostrema (ASP), nucleus of the tractus solitarius (NTS), and gelatinous nucleus (GEL). In addition, electrical stimulation was applied to the night vagus nerve at the cervical level to assess the effects on GAD-immunoreactivity (GAR-IR). GAD-IR terminals and fibers were observed in the AP, ASP, NTS, and GEL. They showed pronounced density at the level of the ASP and gradual decrease towards the solitary complex. Nerve cells were not labelled in our preparations. Ultrastructural studies showed symmetric or asymmetric synaptic contracts between labelled terminals and non-immunoreactive dendrites, axons, or neurons. Some of the labelled terminals contained both clear- and dense-core vesicles. Our preliminary findings, after electrical stimulation of the vagus nerve, revealed a bilateral decrease of GAD-IR that was particularly evident at the level of the ASP. SP-immunoreactive (SP-IR) terminals and fibers showed varying densities in the AP, ASP, NTS, and GEL. In our preparations, the lateral sub-division of the NTS showed the greatest accumulation. The ASP showed medium density of immunoreactive varicosities and terminals and the AP and GEL displayed scattered varicose axon terminals. The electron microscopy revealed that all immunoreactive terminals contained clear-core vesicles which make symmetric or asymmetric synaptic contact with unlabelled dendrites. It is suggested that the GABAergic terminals might correspond to vagal afferent projections and that GAD/GABA and substance P might be co-localized in the same terminal allowing the possibility of a regulated release of the transmitters in relation to demands.

  4. High Leucine Diets Stimulate Cerebral Branched-Chain Amino Acid Degradation and Modify Serotonin and Ketone Body Concentrations in a Pig Model.

    Directory of Open Access Journals (Sweden)

    Anna G Wessels

    Full Text Available In addition to its role as an essential protein component, leucine (Leu displays several other metabolic functions such as activation of protein synthesis. This property makes it an interesting amino acid for the therapy of human muscle atrophy and for livestock production. However, Leu can stimulate its own degradation via the branched-chain keto acid dehydrogenase complex (BCKDH. To examine the response of several tissues to excessive Leu, pigs were fed diets containing two- (L2 and four-fold (L4 higher Leu contents than the recommended amount (control. We found that the L4 diet led to a pronounced increase in BCKDH activity in the brain (2.5-fold, P < 0.05, liver (1.8-fold, P < 0.05 and cardiac muscle (1.7-fold, P < 0.05, whereas we found no changes in enzyme activity in the pancreas, skeletal muscle, adipose tissue and intestinal mucosa. The L2 diet had only weak effects on BCKDH activity. Both high Leu diets reduced the concentrations of free valine and isoleucine in nearly all tissues. In the brain, high Leu diets modified the amount of tryptophan available: for serotonin synthesis. Compared to the controls, pigs treated with the high Leu diets consumed less food, showed increased plasma concentrations of 3-hydroxybutyrate and reduced levels of circulating serotonin. In conclusion, excessive Leu can stimulate BCKDH activity in several tissues, including the brain. Changes in cerebral tryptophan, along with the changes in amino acid-derived metabolites in the plasma may limit the use of high Leu diets to treat muscle atrophy or to increase muscle growth.

  5. Extracellular protease derived from lactic acid bacteria stimulates the fermentative lactic acid production from the by-products of rice as a biomass refinery function.

    Science.gov (United States)

    Watanabe, Masanori; Techapun, Charin; Kuntiya, Ampin; Leksawasdi, Noppol; Seesuriyachan, Phisit; Chaiyaso, Thanongsak; Takenaka, Shinji; Maeda, Isamu; Koyama, Masahiro; Nakamura, Kozo

    2017-02-01

    A lactic acid producing bacterium, Lactobacillus rhamnosus M-23, newly isolated from a rice washing drainage storage tank was found to produce l-(+)-lactic acid from a non-sterilized mixture of rice washing drainage and rice bran without any additions of nutrients under the simultaneous saccharification and fermentation (SSF) process. This strain has the ability to utilize the non-sterilized rice washing drainage and rice bran as a source of carbohydrate, saccharifying enzymes and nutrients for lactic acid production. Observation of extracellular protease activity in SSF culture broth showed that a higher protease activity was present in strain M-23 than in other isolated lactic acid producing bacteria (LABs). To investigate the structural changes of solid particles of rice washing drainage throughout LAB cultivation, scanning electron microscopic (SEM) observation and Fourier transform infrared-spectroscopy (FT-IR) analysis were performed. The results of the SEM observation showed that the surface material could be removed from solid particles of rice washing drainage treated by culture broth (supernatant) of strain M-23, thus exposing the crystal structure of the starch particle surface. The results of the FT-IR analysis revealed that the specific transmittance decrease of the CC and CO stretching and OH group of the solid particles of the rice washing drainage were highly correlated with the produced lactic acid concentration and extracellular protease activity, respectively. These results demonstrate the high lactic acid producing ability of strain M-23 from a non-sterilized mixture of rice washing drainage and rice bran under the SSF condition due to the removal of proteinaceous material and exposure of the starch particle surface by extracellular protease. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Preconditioning with mono and polyunsaturated fatty acids and low-intensity electrical stimulation. Effects on skin repair in rats.

    Science.gov (United States)

    Cardoso, Maria dos Prazeres Carneiro; Albuquerque, Andréa de Oliveira; Girão, Virginia Claudia Carneiro; Pompeu, Margarida Maria de Lima; Silva, Cícero Igor Simões Moura; Azevedo, Orleâncio Gomes Ritardo de; Guimarães, Sergio Botelho; Vasconcelos, Paulo Roberto Leitão de

    2015-02-01

    To evaluate the effects of preconditioning with oils mixes containing ω3/ω6/ω9 associated with micro-currents on skin repair in rats. One-hundred and eight Wistar rats randomized into G-1, G-2 and G-3 groups were treated with saline (0.9%), mix 1 (corn+soybean oils) and mix 2 (olive+canola+flaxseed oils), respectively, in a single dose (0.01ml/g) by gavage. Next, each group was subdivided into sham and stimulated subgroups. Pulsed-wave microcurrents (0.5 µA, 0.5 Hz) were applied to stimulated subgroups for 20 min. One hour later anesthetized rats were subjected to surgery. A dorsal incision (6 cm long) was carried out and closed with interrupted nylon sutures. Samples (1 cm2) were harvested from the mid-portion of the incision on the 7, 14, 21 post-operative (P.O.) days. Variables were analyzed using Mann-Whitney/Dunn tests Significance level was set to 5 % (poil mixes 1 and 2 decrease fibrosis and vascularization in the proliferative phase of cicatrization.

  7. Stimulation of tissue-type plasminogen activator expression by retinoic acid in human endothelial cells requires retinoic acid receptor β2 induction

    NARCIS (Netherlands)

    Lansink, M.; Kooistra, T.

    1996-01-01

    We previously showed the involvement of retinoic acid receptor α (RARα) in the induction of tissue-type plasminogen activator (t-PA) synthesis by RA in human umbilical vein endothelial cells (HUVECs). However, the rather slow onset of this induction of t-PA synthesis suggested an indirect role of

  8. Effect of isoprenaline on bethanechol-stimulated gastric acid secrtion and mucosal blood flow in dogs with gastric fistula

    DEFF Research Database (Denmark)

    Hovendal, C P; Bech, K

    1982-01-01

    blocker. The dose-response curve with five doses of bethanechol with and without isoprenaline was in accordance with a non-competitive inhibition. There was no significant effect on gastric mucosal blood flow, indicating that the acid inhibition was not secondary to changes in blood flow. The inhibitory...

  9. Glucagon-like peptide 2 stimulates glucagon secretion, enhances lipid absorption, and inhibits gastric acid secretion in humans

    DEFF Research Database (Denmark)

    Meier, Juris J; Nauck, Michael A; Pott, Andrea

    2006-01-01

    or placebo during the ingestion of a solid test meal. Gastric emptying was determined using a 13C-sodium-octanote breath test. Plasma concentrations of glucose, insulin, C-peptide, glucagon, GLP-2, free fatty acids, free glycerol, and triglycerides were determined. RESULTS: GLP-2 administration led......BACKGROUND & AIMS: The gut-derived peptide glucagon-like peptide 2 (GLP-2) has been suggested as a potential drug candidate for the treatment of various intestinal diseases. However, the acute effects of GLP-2 on gastric functions as well as on glucose and lipid homeostasis in humans are less well...... to a marked increase in glucagon concentrations both in the fasting state and during the meal study (P plasma concentrations of triglycerides and free fatty acids were significantly higher during GLP-2 infusion compared with placebo (P

  10. Delayed translocation of NGFI-B/RXR in glutamate stimulated neurons allows late protection by 9-cis retinoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Mathisen, Gro H.; Fallgren, Asa B.; Strom, Bjorn O.; Boldingh Debernard, Karen A.; Mohebi, Beata U. [Department of Pharmaceutical Biosciences, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo (Norway); Paulsen, Ragnhild E., E-mail: r.e.paulsen@farmasi.uio.no [Department of Pharmaceutical Biosciences, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo (Norway)

    2011-10-14

    Highlights: {yields} NGFI-B and RXR translocate out of the nucleus after glutamate treatment. {yields} Arresting NGFI-B/RXR in the nucleus protects neurons from excitotoxicity. {yields} Late protection by 9-cis RA is possible due to a delayed translocation of NGFI-B/RXR. -- Abstract: Nuclear receptor and apoptosis inducer NGFI-B translocates out of the nucleus as a heterodimer with RXR in response to different apoptosis stimuli, and therefore represents a potential pharmacological target. We found that the cytosolic levels of NGFI-B and RXR{alpha} were increased in cultures of cerebellar granule neurons 2 h after treatment with glutamate (excitatory neurotransmitter in the brain, involved in stroke). To find a time-window for potential intervention the neurons were transfected with gfp-tagged expressor plasmids for NGFI-B and RXR. The default localization of NGFI-Bgfp and RXRgfp was nuclear, however, translocation out of the nucleus was observed 2-3 h after glutamate treatment. We therefore hypothesized that the time-window between treatment and translocation would allow late protection against neuronal death. The RXR ligand 9-cis retinoic acid was used to arrest NGFI-B and RXR in the nucleus. Addition of 9-cis retinoic acid 1 h after treatment with glutamate reduced the cytosolic translocation of NGFI-B and RXR{alpha}, the cytosolic translocation of NGFI-Bgfp observed in live neurons, as well as the neuronal death. However, the reduced translocation and the reduced cell death were not observed when 9-cis retinoic acid was added after 3 h. Thus, late protection from glutamate induced death by addition of 9-cis retinoic acid is possible in a time-window after apoptosis induction.

  11. Relationship between Expression of Chalcone Synthase Genes and Chromones in Artificial Agarwood induced by Formic Acid Stimulation Combined with Fusarium sp. A2 Inoculation.

    Science.gov (United States)

    Chen, Xiaodong; Zhu, Xiaoling; Feng, Meirou; Zhong, Zhaojian; Zhou, Xin; Chen, Xiaoying; Ye, Wei; Zhang, Weimin; Gao, Xiaoxia

    2017-04-25

    Agarwood (gaharu) is a fragrant resin produced in the heartwood of resinous Gyrinops and Aquilaria species. Artificial agarwood samples were obtained from Aquilaria sinensis (Lour.) Gilg using formic acid (FA) stimulation combined with Fusarium sp. A2 inoculation. The relationship between the expression of chalcone synthase genes (CHS) and dynamic changes in chromone content was explored in resin-deposited parts of the trunks of A. sinensis. CHS gene expression levels were detected by qRT-PCR analysis. The chemical composition of agarwood obtained from the heartwood of A. sinensis before and within 1 year after induction was determined by GC-MS. After induction with FA stimulation combined with F. sp. A2 inoculation, the CHS1 gene showed relatively high expression, whereas the CHS2 gene showed low expression. The relative gene expression level of CHS1 peaked at 12 months, with a 153.1-fold increase, and the dominant period of the CHS2 gene expression was 10 months with a 14.13-fold increase. Moreover, chromones were not detected until after 2 months, and a large proportion of chromone compounds were detected after 4 months. Chromone content increased with time and peaked at 12 months. CHS1 gene expression was significantly correlated with 6-hydroxy-2-(2-phenylethyl)chromone accumulation, and CHS2 gene expression was significantly correlated with 5-hydroxy-6-methoxy-2-(2-phenylethyl)chromone accumulation. CHS gene expression was extremely sensitive to FA stimulation combined with F. sp. A2 inoculation and responded to late-onset injury. CHS genes expression also preceded the chromone accumulation. This work laid the foundation for studies on the mechanism by which genes regulate chromone biosynthesis pathways during the formation of agarwood resin in A. sinensis.

  12. Chicoric acid is an antioxidant molecule that stimulates AMP kinase pathway in L6 myotubes and extends lifespan in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Audrey Schlernitzauer

    Full Text Available Chicoric acid (CA is a caffeoyl derivative previously described as having potential anti-diabetic properties. As similarities in cellular mechanism similarities between diabetes and aging have been shown, we explored on L6 myotubes the effect of CA on the modulation of intracellular pathways involved in diabetes and aging. We also determined its influence on lifespan of Caenorhabditis elegans worm (C. elegans. In L6 myotubes, CA was a potent reactive oxygen species (ROS scavenger, reducing ROS accumulation under basal as well as oxidative stress conditions. CA also stimulated the AMP-activated kinase (AMPK pathway and displayed various features associated with AMPK activation: CA (a enhanced oxidative enzymatic defences through increase in glutathion peroxidase (GPx and superoxide dismutase (SOD activities, (b favoured mitochondria protection against oxidative damage through up-regulation of MnSOD protein expression, (c increased mitochondrial biogenesis as suggested by increases in complex II and citrate synthase activities, along with up-regulation of PGC-1α mRNA expression and (d inhibited the insulin/Akt/mTOR pathway. As AMPK stimulators (e.g. the anti-diabetic agent meformin or polyphenols such as epigallocatechingallate or quercetin were shown to extend lifespan in C. elegans, we also determined the effect of CA on the same model. A concentration-dependant lifespan extension was observed with CA (5-100 μM. These data indicate that CA is a potent antioxidant compound activating the AMPK pathway in L6 myotubes. Similarly to other AMPK stimulators, CA is able to extend C. elegans lifespan, an effect measurable even at the micromolar range. Future studies will explore CA molecular targets and give new insights about its possible effects on metabolic and aging-related diseases.

  13. Ovarian cancer-derived lysophosphatidic acid stimulates secretion of VEGF and stromal cell-derived factor-1 alpha from human mesenchymal stem cells.

    Science.gov (United States)

    Jeon, Eun Su; Heo, Soon Chul; Lee, Il Hwan; Choi, Yoon Ji; Park, Ji Hye; Choi, Kyung Un; Park, Do Youn; Suh, Dong Soo; Yoon, Man Soo; Kim, Jae Ho

    2010-04-30

    Lysophosphatidic acid (LPA) stimulates growth and invasion of ovarian cancer cells and tumor angiogenesis. Cancer-derived LPA induces differentiation of human adipose tissue-derived mesenchymal stem cells (hASCs) to alpha-smooth muscle actin (alpha-SMA)-positive cancer-associated fibroblasts. Presently, we explored whether cancer-derived LPA regulates secretion of pro-angiogenic factors from hASCs. Conditioned medium (CM) from the OVCAR-3 and SKOV3 ovarian cancer cell lines stimulated secretion angiogenic factors such as stromal-derived factor-1 alpha (SDF-1 alpha) and VEGF from hASCs. Pretreatment with the LPA receptor inhibitor Ki16425 or short hairpin RNA lentiviral silencing of the LPA((1)) receptor abrogated the cancer CM-stimulated expression of alpha-SMA, SDF-1, and VEGF from hASCs. LPA induced expression of myocardin and myocardin-related transcription factor-A, transcription factors involved in smooth muscle differentiation, in hASCs. siRNA-mediated depletion of endogenous myocardin and MRTF-A abrogated the expression of alpha-SMA, but not SDF-1 and VEGF. LPA activated RhoA in hASCs and pretreatment with the Rho kinase inhibitor Y27632 completely abrogated the LPA-induced expression of alpha-SMA, SDF-1, and VEGF in hASCs. Moreover, LPA-induced alpha-SMA expression was abrogated by treatment with the ERK inhibitor U0126 or the phosphoinositide-3-kinase inhibitor LY294002, but not the PLC inhibitor U73122. LPA-induced VEGF secretion was inhibited by LY294002, whereas LPA-induced SDF-1 secretion was markedly attenuated by U0126, U73122, and LY294002. These results suggest that cancer-secreted LPA induces differentiation of hASCs to cancer-associated fibroblasts through multiple signaling pathways involving Rho kinase, ERK, PLC, and phosphoinositide-3-kinase.

  14. Release of [3H-noradrenaline from the motor adrenergic nerves of the anococcygeus muscle by lysergic acid diethylamide, tyramine or nerve stimulation.

    Science.gov (United States)

    McGrath, J C; Olverman, H J

    1978-01-01

    1 A method is described for labelling the neuronal noradrenaline (NA) stores of rat anococcygeus with [3H]-NA and detecting subsequent release of 3H from the superfused tissue by nerve stimulation or drugs. 2 Lysergic acid diethylamide (LSD) or tyramine but not barium chloride or carbachol increased the efflux of 3H although each drug produced an equivalent contractile response. This confirms that LDS has an indirect sympathomimetic action. 3 LSD was found to produce a proportionately smaller reduction of the nerve-induced efflux of 3H than of the accompanying contractile response. 4 The inhibition of nerve-induced contractile responses by LSD was shown to be independent of the neuronal uptake of noradrenaline and any post-junctional inhibition demonstrated to be non-specific. PMID:728688

  15. Synthesis of Copper-Chelates Derived from Amino Acids and Evaluation of Their Efficacy as Copper Source and Growth Stimulator for Lactuca sativa in Nutrient Solution Culture.

    Science.gov (United States)

    Kaewchangwat, Narongpol; Dueansawang, Sattawat; Tumcharern, Gamolwan; Suttisintong, Khomson

    2017-11-15

    Five tetradentate ligands were synthesized from l-amino acids and utilized for the synthesis of Cu(II)-chelates 1-5. The efficacy of Cu(II)-chelates as copper (Cu) source and growth stimulator in hydroponic cultivation was evaluated with Lactuca sativa. Their stability test was performed at pH 4-10. The results suggested that Cu(II)-chelate 3 is the most pH tolerant complex. Levels of Cu, Zn, and Fe accumulated in plants supplied with Cu(II)-chelates were compared with those supplied with CuSO 4 at the same Cu concentration of 8.0 μM. The results showed that Cu(II)-chelate 3 significantly enhanced Cu, Zn, and Fe content in shoot by 35, 15, and 48%, respectively. Application of Cu(II)-chelate 3 also improved plant dry matter yield by 54%. According to the results, Cu(II)-chelate 3 demonstrated the highest stimulating effect on plant growth and plant mineral accumulation so that it can be used as an alternative to CuSO 4 for supplying Cu in nutrient solutions and enhancing the plant growth.

  16. Recycling of wastes from fish beneficiation by composting: chemical characteristics of the compost and efficiency of their humic acids in stimulating the growth of lettuce.

    Science.gov (United States)

    Busato, Jader Galba; de Carvalho, Caroline Moreira; Zandonadi, Daniel Basilio; Sodré, Fernando Fabriz; Mol, Alan Ribeiro; de Oliveira, Aline Lima; Navarro, Rodrigo Diana

    2017-11-23

    Waste from the beneficiation of fish was composted with crushed grass aiming to characterize their chemical composition and investigate the possibility of the use of the final compost as source of humic acids (HA) able to stimulate the growth of lettuce. Compost presented pH value, C/N ratio, and electrical conductivity that allow its use as an organic fertilizer. The element content was present in the following order of abundance in the compost: P > Ca > N > Mg > K > Fe > Zn > Mn > Mo > Cu, and the humus composition was similar to that observed in others kind of organic residues composted. The high content of oxygen pointed out a high level of oxidation of HA, in line with the predominance of phenolic acidity in the functional groups. The 13 C-NMR spectra showed marked resonances due to the presence of lipids and other materials resistant to degradation as methoxy substituent and N-alkyl groups. A concentration of 20 mg L -1 HA increased significantly both dry and wet root matter in lettuce but the CO 2 assimilation, stomatal conductance, and number of lateral roots of the plants were not affected. However, increases of 64% in the water-use efficiency was observed due to the HA addition, probably related to the root morphology alteration which resulted in 1.6-fold increase of lateral root average length and due to the higher H + extrusion activity. Reuse of residues from the fish beneficiation activity by composting may represent a safe tool to increase the value of recycled organic residues and generate HA with potential use as plant growth stimulants.

  17. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro.

    Science.gov (United States)

    Pingitore, Attilio; Chambers, Edward S; Hill, Thomas; Maldonado, Inmaculada Ruz; Liu, Bo; Bewick, Gavin; Morrison, Douglas J; Preston, Tom; Wallis, Gareth A; Tedford, Catriona; Castañera González, Ramón; Huang, Guo C; Choudhary, Pratik; Frost, Gary; Persaud, Shanta J

    2017-02-01

    Diet-derived short chain fatty acids (SCFAs) improve glucose homeostasis in vivo, but the role of individual SCFAs and their mechanisms of action have not been defined. This study evaluated the effects of increasing colonic delivery of the SCFA propionate on β-cell function in humans and the direct effects of propionate on isolated human islets in vitro. For 24 weeks human subjects ingested an inulin-propionate ester that delivers propionate to the colon. Acute insulin, GLP-1 and non-esterified fatty acid (NEFA) levels were quantified pre- and post-supplementation in response to a mixed meal test. Expression of the SCFA receptor FFAR2 in human islets was determined by western blotting and immunohistochemistry. Dynamic insulin secretion from perifused human islets was quantified by radioimmunoassay and islet apoptosis was determined by quantification of caspase 3/7 activities. Colonic propionate delivery in vivo was associated with improved β-cell function with increased insulin secretion that was independent of changes in GLP-1 levels. Human islet β-cells expressed FFAR2 and propionate potentiated dynamic glucose-stimulated insulin secretion in vitro, an effect that was dependent on signalling via protein kinase C. Propionate also protected human islets from apoptosis induced by the NEFA sodium palmitate and inflammatory cytokines. Our results indicate that propionate has beneficial effects on β-cell function in vivo, and in vitro analyses demonstrated that it has direct effects to potentiate glucose-stimulated insulin release and maintain β-cell mass through inhibition of apoptosis. These observations support ingestion of propiogenic dietary fibres to maintain healthy glucose homeostasis. © 2016 John Wiley & Sons Ltd.

  18. Involvement of retinoic acid receptor alpha in the stimulation of tissue-type plasminogen-activator gene expression in human endothelial cells.

    Science.gov (United States)

    Kooistra, T; Lansink, M; Arts, J; Sitter, T; Toet, K

    1995-09-01

    Retinoids stimulate tissue-type plasminogen-activator (t-PA) gene expression in human endothelial cells, and are likely to do so by binding to one or more nuclear retinoid receptors. The present study was initiated to identify the retinoid receptor(s) involved in this process. Expression and regulation of retinoic acid receptors (RARs) and retinoid X receptors (RXRs) were analyzed by Northern-blot analysis of total or poly(A)-rich RNA prepared from cultured human umbilical vein endothelial cells (HUVEC). Prior to any exposure to retinoids, HUVEC express two transcripts for RAR-alpha (3.6 kb and 2.8 kb), and low levels of transcripts for RAR-beta (3.4 kb and 3.2 kb) and RAR-gamma (3.3 kb and 3.1 kb). Two RXR subtypes were identified, RXR-alpha (4.8 kb) and, at a much lower concentration, RXR-beta (2.4 kb); no evidence for the presence of RXR-gamma was found. Furthermore, HUVEC express cellular retinol-binding protein I (CRBP-I) and cellular retinoic-acid-binding protein I (CRABP-I) mRNA. Exposure of HUVEC to 1 microM retinoic acid or the retinobenzoic acid, Ch55, led to the induction of the two RAR-beta mRNAs, RXR-alpha mRNA and CRBP-I mRNA, whereas the expression of the other receptor and CRABP-I transcripts did not change appreciably. Using retinoid analogues that bind preferentially to one of the RAR or RXR subtypes, we found evidence that RAR-alpha is involved in the retinoid-induced t-PA expression in HUVEC. This conclusion was strengthened by experiments in which blocking of RAR-alpha with a specific RAR-alpha antagonist, Ro 41-5253, was demonstrated to suppress the induction of t-PA by retinoids.

  19. Polyunsaturated Fatty Acids Stimulate De novo Lipogenesis and Improve Glucose Homeostasis during Refeeding with High Fat Diet.

    Science.gov (United States)

    Crescenzo, Raffaella; Mazzoli, Arianna; Cancelliere, Rosa; Bianco, Francesca; Giacco, Antonia; Liverini, Giovanna; Dulloo, Abdul G; Iossa, Susanna

    2017-01-01

    Aims: The recovery of body weight after a period of caloric restriction is accompanied by an enhanced efficiency of fat deposition and hyperinsulinemia-which are exacerbated by isocaloric refeeding on a high fat diet rich in saturated and monounsaturated fatty acids (SFA-MUFA), and poor in polyunsaturated fatty acids (PUFA), and associated with a blunting of de novo lipogenesis in adipose tissue and liver. As high fat diets rich in PUFA have been shown to limit the excess fat deposition and improve glucose homeostasis, we investigated here the extent to which de novo lipogenesis in liver and adipose tissues (white and brown), as well as hepatic oxidative stress, are influenced by refeeding on diets rich in PUFA. Design: In rats calorically restricted for 14 days and refed for 14 days on isocaloric amounts of a high fat diet rich in lard (i.e., high SFA-MUFA) or in safflower and linseed oils (rich in PUFA), we investigated energy balance, body composition, glycemic profile, and the regulation of fatty acid synthase (rate-limiting enzyme of de novo lipogenesis) in liver, white and brown adipose tissue. We also evaluated oxidative stress in liver and skeletal muscle and markers of hepatic inflammation. Results: Rats refed the PUFA diet gained less lipids and more proteins compared to rats refed SFA-MUFA diet and showed lower amount of visceral and epididymal white adipose tissue, but increased depots of interscapular brown adipose tissue, with higher expression of the uncoupling protein 1. A significant increase in non-protein respiratory quotient and carbohydrate utilization was found in rats refed PUFA diet. Rats refed PUFA diet showed improved glucose homeostasis, as well as lower triglycerides and cholesterol levels. Fatty acid synthase activity was significantly higher in liver, white and brown adipose tissue, while lipid peroxidation and the degree of inflammation in the liver were significantly lower, in rats refed PUFA diet. Conclusions: When considering the

  20. Normalizing microbiota-induced retinoic acid deficiency stimulates protective CD8+ T-cell-mediated immunity in colorectal cancer

    OpenAIRE

    Bhattacharya, Nupur; Yuan, Robert; Prestwood, Tyler R.; Penny, Hweixian Leong; DiMaio, Michael A.; Reticker-Flynn, Nathan E.; Krois, Charles R.; Kenkel, Justin A.; Pham, Tho D.; Carmi, Yaron; Tolentino, Lorna; Choi, Okmi; Hulett, Reyna; Wang, Jinshan; Winer, Daniel

    2016-01-01

    Although all-trans retinoic acid (atRA) is a key regulator of intestinal immunity, its role in colorectal cancer (CRC) is unknown. We found that mice with colitis-associated CRC had a marked deficiency in colonic atRA due to alterations in atRA metabolism mediated by microbiota-induced intestinal inflammation. Human ulcerative colitis (UC), UC-associated CRC, and sporadic CRC specimens have similar alterations in atRA metabolic enzymes, consistent with reduced colonic atRA. Inhibition of atRA...

  1. REUL is a novel E3 ubiquitin ligase and stimulator of retinoic-acid-inducible gene-I.

    Directory of Open Access Journals (Sweden)

    Dong Gao

    Full Text Available RIG-I and MDA5 are cytoplasmic sensors that recognize different species of viral RNAs, leads to activation of the transcription factors IRF3 and NF-kappaB, which collaborate to induce type I interferons. In this study, we identified REUL, a RING-finger protein, as a specific RIG-I-interacting protein. REUL was associated with RIG-I, but not MDA5, through its PRY and SPRY domains. Overexpression of REUL potently potentiated RIG-I-, but not MDA5-mediated downstream signalling and antiviral activity. In contrast, the RING domain deletion mutant of REUL suppressed Sendai virus (SV-induced, but not cytoplasmic polyI:C-induced activation of IFN-beta promoter. Knockdown of endogenous REUL by RNAi inhibited SV-triggered IFN-beta expression, and also increased VSV replication. Full-length RIG-I, but not the CARD domain deletion mutant of RIG-I, underwent ubiquitination induced by REUL. The Lys 154, 164, and 172 residues of the RIG-I CARD domain were critical for efficient REUL-mediated ubiquitination, as well as the ability of RIG-I to induce activation of IFN-beta promoter. These findings suggest that REUL is an E3 ubiquitin ligase of RIG-I and specifically stimulates RIG-I-mediated innate antiviral activity.

  2. Protocatechuic Acid, a Phenolic from Sansevieria roxburghiana Leaves, Suppresses Diabetic Cardiomyopathy via Stimulating Glucose Metabolism, Ameliorating Oxidative Stress, and Inhibiting Inflammation

    Directory of Open Access Journals (Sweden)

    Niloy Bhattacharjee

    2017-05-01

    Full Text Available Persistent hyperglycemia, impairment of redox status and establishment of inflammatory pathophysiology integrally play important role in the pathogenesis of diabetic cardiomyopathy (DC. Present study examined the therapeutic potential of protocatechuic acid isolated from the Sansevieria roxburghiana rhizomes against DC employing rodent model of type 2 diabetes (T2D. T2D was induced by high fat diet + a low-single dose of streptozotocin (35 mg/kg, i.p.. T2D rats exhibited significantly (p < 0.01 high fasting blood glucose level. Alteration in serum lipid profile (p < 0.01 and increased levels of lactate dehydrogenase (p < 0.01 and creatine kinase (p < 0.01 in the sera of T2D rats revealed the occurrence of hyperlipidemia and diabetic pathophysiology. A significantly (p < 0.01 high levels of serum C-reactive protein and pro-inflammatory mediators revealed the establishment of inflammatory occurrence in T2D rats. Besides, significantly high levels of troponins in the sera revealed the establishment of cardiac dysfunctions in T2D rats. However, protocatechuic acid (50 and 100 mg/kg, p.o. treatment could significantly reverse the changes in serum biochemical parameters related to cardiac dysfunctions. Molecular mechanism studies demonstrated impairment of signaling cascade, IRS1/PI3K/Akt/AMPK/p 38/GLUT4, in glucose metabolism in the skeletal muscle of T2D rats. Significant (p < 0.01 activation of polyol pathway, enhanced production of AGEs, oxidative stress and up-regulation of inflammatory signaling cascades (PKC/NF-κB/PARP were observed in the myocardial tissue of T2D rats. However, protocatechuic acid (50 and 100 mg/kg, p.o. treatment could significantly (p < 0.05–0.01 stimulate glucose metabolism in skeletal muscle, regulated glycemic and lipid status, reduced the secretion of pro-inflammatory cytokines, and restored the myocardial physiology in T2D rats near to normalcy. Histological assessments were also in agreement with the above findings

  3. Chlorogenic acid stimulates glucose transport in skeletal muscle via AMPK activation: a contributor to the beneficial effects of coffee on diabetes.

    Directory of Open Access Journals (Sweden)

    Khang Wei Ong

    Full Text Available Chlorogenic acid (CGA has been shown to delay intestinal glucose absorption and inhibit gluconeogenesis. Our aim was to investigate the role of CGA in the regulation of glucose transport in skeletal muscle isolated from db/db mice and L6 skeletal muscle cells. Oral glucose tolerance test was performed on db/db mice treated with CGA and soleus muscle was isolated for 2-deoxyglucose transport study. 2DG transport was also examined in L6 myotubes with or without inhibitors such as wortmannin or compound c. AMPK was knocked down with AMPKα1/2 siRNA to study its effect on CGA-stimulated glucose transport. GLUT 4 translocation, phosphorylation of AMPK and Akt, AMPK activity, and association of IRS-1 and PI3K were investigated in the presence of CGA. In db/db mice, a significant decrease in fasting blood sugar was observed 10 minutes after the intraperitoneal administration of 250 mg/kg CGA and the effect persisted for another 30 minutes after the glucose challenge. Besides, CGA stimulated and enhanced both basal and insulin-mediated 2DG transports in soleus muscle. In L6 myotubes, CGA caused a dose- and time-dependent increase in glucose transport. Compound c and AMPKα1/2 siRNA abrogated the CGA-stimulated glucose transport. Consistent with these results, CGA was found to phosphorylate AMPK and ACC, consistent with the result of increased AMPK activities. CGA did not appear to enhance association of IRS-1 with p85. However, we observed activation of Akt by CGA. These parallel activations in turn increased translocation of GLUT 4 to plasma membrane. At 2 mmol/l, CGA did not cause any significant changes in viability or proliferation of L6 myotubes. Our data demonstrated for the first time that CGA stimulates glucose transport in skeletal muscle via the activation of AMPK. It appears that CGA may contribute to the beneficial effects of coffee on Type 2 diabetes mellitus.

  4. Enhanced stimulation of anti-breast cancer T cells responses by dendritic cells loaded with poly lactic-co-glycolic acid (PLGA nanoparticle encapsulated tumor antigens

    Directory of Open Access Journals (Sweden)

    Soodabeh Iranpour

    2016-10-01

    Full Text Available Abstract Background Developing safe and effective cancer vaccine formulations is a primary focus in the field of cancer immunotherapy. Dendritic cells (DC are currently employed as cellular vaccine in clinical trials of tumor immunotherapy. Recognizing the critical role of DCs in initiating anti-tumor immunity has resulted in the development of several strategies that target vaccine antigens to DCs to trigger anti-tumor T cell responses. To increase the efficiency of antigen delivery systems for anti-tumor vaccines, encapsulation of tumor-associated antigens in polymer nanoparticles (NPs has been established. Methods In this study, the effect of tumor lysate antigen obtained from three stage III breast cancer tissues encapsulated within PLGA NPs to enhance the DC maturation was investigated. The T-cell immune response activation was then fallowed up. Fresh breast tumors were initially used to generate tumor lysate antigens containing poly lactic-co-glycolic acid (PLGA NP. The encapsulation efficiency and release kinetics were profiled. The efficiency of encapsulation was measured using Bradford protein assays measuring the dissolved NPs. The stability of released antigen from NPs was verified using SDS-PAGE. To evaluate the hypothesis that NPs enhances antigen presentation, including soluble tumor lysate, tumor lysate containing NPs and control NPs the efficiency of NP-mediated tumor lysate delivery to DCs was evaluated by assessing CD3+ T-cell stimulation after T cell/and DCs co-culture. Results The rate of encapsulation was increased by enhancing the antigen concentration of tumor lysate. However, increasing the antigen concentration diminished the encapsulation efficiency. In addition, higher initial protein contenting NPs led to a greater cumulative release. All three patients released variable amounts of IFN-γ, IL-10, IL-12 and IL-4 in response to re-stimulation. T cells stimulated with lysate-pulsed DCs induced a substantial increase in

  5. Chlorogenic acid stimulates glucose transport in skeletal muscle via AMPK activation: a contributor to the beneficial effects of coffee on diabetes.

    Science.gov (United States)

    Ong, Khang Wei; Hsu, Annie; Tan, Benny Kwong Huat

    2012-01-01

    Chlorogenic acid (CGA) has been shown to delay intestinal glucose absorption and inhibit gluconeogenesis. Our aim was to investigate the role of CGA in the regulation of glucose transport in skeletal muscle isolated from db/db mice and L6 skeletal muscle cells. Oral glucose tolerance test was performed on db/db mice treated with CGA and soleus muscle was isolated for 2-deoxyglucose transport study. 2DG transport was also examined in L6 myotubes with or without inhibitors such as wortmannin or compound c. AMPK was knocked down with AMPKα1/2 siRNA to study its effect on CGA-stimulated glucose transport. GLUT 4 translocation, phosphorylation of AMPK and Akt, AMPK activity, and association of IRS-1 and PI3K were investigated in the presence of CGA. In db/db mice, a significant decrease in fasting blood sugar was observed 10 minutes after the intraperitoneal administration of 250 mg/kg CGA and the effect persisted for another 30 minutes after the glucose challenge. Besides, CGA stimulated and enhanced both basal and insulin-mediated 2DG transports in soleus muscle. In L6 myotubes, CGA caused a dose- and time-dependent increase in glucose transport. Compound c and AMPKα1/2 siRNA abrogated the CGA-stimulated glucose transport. Consistent with these results, CGA was found to phosphorylate AMPK and ACC, consistent with the result of increased AMPK activities. CGA did not appear to enhance association of IRS-1 with p85. However, we observed activation of Akt by CGA. These parallel activations in turn increased translocation of GLUT 4 to plasma membrane. At 2 mmol/l, CGA did not cause any significant changes in viability or proliferation of L6 myotubes. Our data demonstrated for the first time that CGA stimulates glucose transport in skeletal muscle via the activation of AMPK. It appears that CGA may contribute to the beneficial effects of coffee on Type 2 diabetes mellitus.

  6. Amplification of an MFS transporter encoding gene penT significantly stimulates penicillin production and enhances the sensitivity of Penicillium chrysogenum to phenylacetic acid.

    Science.gov (United States)

    Yang, Jing; Xu, Xinxin; Liu, Gang

    2012-11-20

    Penicillin is historically important as the first discovered drug against bacterial infections in human. Although the penicillin biosynthetic pathway and regulatory mechanism have been well studied in Penicillium chrysogenum, the compartmentation and molecular transport of penicillin or its precursors are still poorly understood. In search of the genomic database, more than 830 open reading frames (ORFs) were found to encode transmembrane proteins of P. chrysogenum. In order to investigate their roles on penicillin production, one of them (penT) was selected and cloned. The deduced protein of penT belongs to the major facilitator superfamily (MFS) and contains 12 transmembrane spanning domains (TMS). During fermentation, the transcription of penT was greatly induced by penicillin precursors phenylacetic acid (PAA) and phenoxyacetic acid (POA). Knock-down of penT resulted in significant decrease of penicillin production, while over-expression of penT under the promoter of trpC enhanced the penicillin production. Introduction of an additional penT in the wild-type strain of P. chrysogenum doubled the penicillin production and enhanced the sensitivity of P. chrysogenum to the penicillin precursors PAA or POA. These results indicate that penT stimulates penicillin production probably through enhancing the translocation of penicillin precursors across fungal cellular membrane. Copyright © 2012. Published by Elsevier Ltd.

  7. Lithocholic Acid Stimulates IL-8 Expression in Human Colorectal Cancer Cells Via Activation of Erk1/2 MAPK and Suppression of STAT3 Activity.

    Science.gov (United States)

    Nguyen, Thi Thinh; Lian, Sen; Ung, Trong Thuan; Xia, Yong; Han, Jae Young; Jung, Young Do

    2017-09-01

    The secondary bile acid lithocholic acid (LCA), an established tumor promoter, has been implicated in colorectal cancer (CRC) metastasis. Overexpression of interleukin-8 (IL-8) has been detected in CRC, and it contributes to poor prognosis. However, the effect of LCA on IL-8 expression is still undefined. In this study, we observed that LCA treatment induced IL-8 expression in CRC HCT116 cells. Pharmacological inhibition and mutagenesis studies indicated that Erk1/2 is critical for LCA-induced IL-8 expression. Furthermore, LCA reduced the phosphorylation of STAT3, and the STAT3 inhibitor Stattic, accelerated LCA-induced IL-8 expression, suggesting that STAT3 is involved in LCA-induced IL-8 expression. Activation of Erk1/2 functioned as an upstream signal of the STAT3 suppression induced by LCA. In conclusion, LCA activated Erk1/2 and in turn, suppressed STAT3 phosphorylation to induce IL-8 expression in HCT116 cells, thus stimulating endothelial cell proliferation and tube like formation. J. Cell. Biochem. 118: 2958-2967, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. The moderate essential amino acid restriction entailed by low-protein vegan diets may promote vascular health by stimulating FGF21 secretion.

    Science.gov (United States)

    McCarty, Mark F

    2016-02-12

    The serum total and LDL cholesterol levels of long-term vegans tend to be very low. The characteristically low ratio of saturated to unsaturated fat in vegan diets, and the absence of cholesterol in such diets, clearly contribute to this effect. But there is reason to suspect that the quantity and composition of dietary protein also play a role in this regard. Vegan diets of moderate protein intake tend to be relatively low in certain essential amino acids, and as a result may increase hepatic activity of the kinase GCN2, which functions as a gauge of amino acid status. GCN2 activation boosts the liver's production of fibroblast growth factor 21 (FGF21), a factor which favorably affects serum lipids and metabolic syndrome. The ability of FGF21 to decrease LDL cholesterol has now been traced to at least two mechanisms: a suppression of hepatocyte expression of sterol response element-binding protein-2 (SREBP-2), which in turn leads to a reduction in cholesterol synthesis; and up-regulated expression of hepatocyte LDL receptors, reflecting inhibition of a mechanism that promotes proteasomal degradation of these receptors. In mice, the vascular benefits of FGF21 are also mediated by favorable effects on adipocyte function - most notably, increased adipocyte secretion of adiponectin, which directly exerts anti-inflammatory effects on the vasculature which complement the concurrent reduction in LDL particles in preventing or reversing atherosclerosis. If, as has been proposed, plant proteins preferentially stimulate glucagon secretion owing to their amino acid composition, this would represent an additional mechanism whereby plant protein promotes FGF21 activity, as glucagon acts on the liver to boost transcription of the FGF21 gene.

  9. High extracellular Ca2+ stimulates Ca2+-activated Cl- currents in frog parathyroid cells through the mediation of arachidonic acid cascade.

    Directory of Open Access Journals (Sweden)

    Yukio Okada

    Full Text Available Elevation of extracellular Ca(2+ concentration induces intracellular Ca(2+ signaling in parathyroid cells. The response is due to stimulation of the phospholipase C/Ca(2+ pathways, but the direct mechanism responsible for the rise of intracellular Ca(2+ concentration has remained elusive. Here, we describe the electrophysiological property associated with intracellular Ca(2+ signaling in frog parathyroid cells and show that Ca(2+-activated Cl(- channels are activated by intracellular Ca(2+ increase through an inositol 1,4,5-trisphophate (IP(3-independent pathway. High extracellular Ca(2+ induced an outwardly-rectifying conductance in a dose-dependent manner (EC(50 ∼6 mM. The conductance was composed of an instantaneous time-independent component and a slowly activating time-dependent component and displayed a deactivating inward tail current. Extracellular Ca(2+-induced and Ca(2+ dialysis-induced currents reversed at the equilibrium potential of Cl(- and were inhibited by niflumic acid (a specific blocker of Ca(2+-activated Cl(- channel. Gramicidin-perforated whole-cell recording displayed the shift of the reversal potential in extracellular Ca(2+-induced current, suggesting the change of intracellular Cl(- concentration in a few minutes. Extracellular Ca(2+-induced currents displayed a moderate dependency on guanosine triphosphate (GTP. All blockers for phospholipase C, diacylglycerol (DAG lipase, monoacylglycerol (MAG lipase and lipoxygenase inhibited extracellular Ca(2+-induced current. IP(3 dialysis failed to induce conductance increase, but 2-arachidonoylglycerol (2-AG, arachidonic acid and 12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12(S-HPETE dialysis increased the conductance identical to extracellular Ca(2+-induced conductance. These results indicate that high extracellular Ca(2+ raises intracellular Ca(2+ concentration through the DAG lipase/lipoxygenase pathway, resulting in the activation of Cl(- conductance.

  10. Indole-3-butyric acid promotes adventitious rooting in Arabidopsis thaliana thin cell layers by conversion into indole-3-acetic acid and stimulation of anthranilate synthase activity.

    Science.gov (United States)

    Fattorini, L; Veloccia, A; Della Rovere, F; D'Angeli, S; Falasca, G; Altamura, M M

    2017-07-11

    Indole-3-acetic acid (IAA), and its precursor indole-3-butyric acid (IBA), control adventitious root (AR) formation in planta. Adventitious roots are also crucial for propagation via cuttings. However, IBA role(s) is/are still far to be elucidated. In Arabidopsis thaliana stem cuttings, 10 μM IBA is more AR-inductive than 10 μM IAA, and, in thin cell layers (TCLs), IBA induces ARs when combined with 0.1 μM kinetin (Kin). It is unknown whether arabidopsis TCLs produce ARs under IBA alone (10 μM) or IAA alone (10 μM), and whether they contain endogenous IAA/IBA at culture onset, possibly interfering with the exogenous IBA/IAA input. Moreover, it is unknown whether an IBA-to-IAA conversion is active in TCLs, and positively affects AR formation, possibly through the activity of the nitric oxide (NO) deriving from the conversion process. Revealed undetectable levels of both auxins at culture onset, showing that arabidopsis TCLs were optimal for investigating AR-formation under the total control of exogenous auxins. The AR-response of TCLs from various ecotypes, transgenic lines and knockout mutants was analyzed under different treatments. It was shown that ARs are better induced by IBA than IAA and IBA + Kin. IBA induced IAA-efflux (PIN1) and IAA-influx (AUX1/LAX3) genes, IAA-influx carriers activities, and expression of ANTHRANILATE SYNTHASE -alpha1 (ASA1), a gene involved in IAA-biosynthesis. ASA1 and ANTHRANILATE SYNTHASE -beta1 (ASB1), the other subunit of the same enzyme, positively affected AR-formation in the presence of exogenous IBA, because the AR-response in the TCLs of their mutant wei2wei7 was highly reduced. The AR-response of IBA-treated TCLs from ech2ibr10 mutant, blocked into IBA-to-IAA-conversion, was also strongly reduced. Nitric oxide, an IAA downstream signal and a by-product of IBA-to-IAA conversion, was early detected in IAA- and IBA-treated TCLs, but at higher levels in the latter explants. Altogether, results showed that IBA induced

  11. Synthesis and properties of reprocessable sulfonated polyimides cross-linked via acid stimulation for use as proton exchange membranes

    Science.gov (United States)

    Zhang, Boping; Ni, Jiangpeng; Xiang, Xiongzhi; Wang, Lei; Chen, Yongming

    2017-01-01

    Cross-linked sulfonated polyimides are one of the most promising materials for proton exchange membrane (PEM) applications. However, these cross-linked membranes are difficult to reprocess because they are insoluble. In this study, a series of cross-linkable sulfonated polyimides with flexible pendant alkyl side chains containing trimethoxysilyl groups is successfully synthesized. The cross-linkable polymers are highly soluble in common solvents and can be used to prepare tough and smooth films. Before the cross-linking reaction is complete, the membranes can be reprocessed, and the recovery rate of the prepared films falls within an acceptable range. The cross-linked membranes are obtained rapidly when the cross-linkable membranes are immersed in an acid solution, yielding a cross-linking density of the gel fraction of greater than 90%. The cross-linked membranes exhibit high proton conductivities and tensile strengths under hydrous conditions. Compared with those of pristine membranes, the oxidative and hydrolytic stabilities of the cross-linked membranes are significantly higher. The CSPI-70 membrane shows considerable power density in a direct methanol fuel cell (DMFC) test. All of these results suggest that the prepared cross-linked membranes have great potential for applications in proton exchange membrane fuel cells.

  12. Normalizing Microbiota-Induced Retinoic Acid Deficiency Stimulates Protective CD8(+) T Cell-Mediated Immunity in Colorectal Cancer.

    Science.gov (United States)

    Bhattacharya, Nupur; Yuan, Robert; Prestwood, Tyler R; Penny, Hweixian Leong; DiMaio, Michael A; Reticker-Flynn, Nathan E; Krois, Charles R; Kenkel, Justin A; Pham, Tho D; Carmi, Yaron; Tolentino, Lorna; Choi, Okmi; Hulett, Reyna; Wang, Jinshan; Winer, Daniel A; Napoli, Joseph L; Engleman, Edgar G

    2016-09-20

    Although all-trans-retinoic acid (atRA) is a key regulator of intestinal immunity, its role in colorectal cancer (CRC) is unknown. We found that mice with colitis-associated CRC had a marked deficiency in colonic atRA due to alterations in atRA metabolism mediated by microbiota-induced intestinal inflammation. Human ulcerative colitis (UC), UC-associated CRC, and sporadic CRC specimens have similar alterations in atRA metabolic enzymes, consistent with reduced colonic atRA. Inhibition of atRA signaling promoted tumorigenesis, whereas atRA supplementation reduced tumor burden. The benefit of atRA treatment was mediated by cytotoxic CD8(+) T cells, which were activated due to MHCI upregulation on tumor cells. Consistent with these findings, increased colonic expression of the atRA-catabolizing enzyme, CYP26A1, correlated with reduced frequencies of tumoral cytotoxic CD8(+) T cells and with worse disease prognosis in human CRC. These results reveal a mechanism by which microbiota drive colon carcinogenesis and highlight atRA metabolism as a therapeutic target for CRC. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Tauroursodeoxycholic acid inserts the apical conjugate export pump, Mrp2, into canalicular membranes and stimulates organic anion secretion by protein kinase C-dependent mechanisms in cholestatic rat liver

    NARCIS (Netherlands)

    Beuers, U.; Bilzer, M.; Chittattu, A.; Kullak-Ublick, G. A.; Keppler, D.; Paumgartner, G.; Dombrowski, F.

    2001-01-01

    Ursodeoxycholic acid (UDCA) exerts anticholestatic effects by undefined mechanisms. Previous work suggested that UDCA stimulates biliary exocytosis via Ca(++)- and protein kinase C (PKC)-dependent mechanisms. Therefore, the effect of taurine-conjugated UDCA (TUDCA) was studied in the experimental

  14. Glucose-stimulated insulin response in pregnant sheep following acute suppression of plasma non-esterified fatty acid concentrations

    Directory of Open Access Journals (Sweden)

    Sriskandarajah Nadarajah

    2004-09-01

    Full Text Available Abstract Background Elevated non-esterified fatty acids (NEFA concentrations in non-pregnant animals have been reported to decrease pancreatic responsiveness. As ovine gestation advances, maternal insulin concentrations fall and NEFA concentrations increase. Experiments were designed to examine if the pregnancy-associated rise in NEFA concentration is associated with a reduced pancreatic sensitivity to glucose in vivo. We investigated the possible relationship of NEFA concentrations in regulating maternal insulin concentrations during ovine pregnancy at three physiological states, non-pregnant, non-lactating (NPNL, 105 and 135 days gestational age (dGA, term 147+/- 3 days. Methods The plasma concentrations of insulin, growth hormone (GH and ovine placental lactogen (oPL were determined by double antibody radioimmunoassay. Insulin responsiveness to glucose was measured using bolus injection and hyperglycaemic clamp techniques in 15 non-pregnant, non-lactating ewes and in nine pregnant ewes at 105 dGA and near term at 135 dGA. Plasma samples were also collected for hormone determination. In addition to bolus injection glucose and insulin Area Under Curve calculations, the Mean Plasma Glucose Increment, Glucose Infusion Rate and Mean Plasma Insulin Increment and Area Under Curve were determined for the hyperglycaemic clamp procedures. Statistical analysis of data was conducted with Students t-tests, repeated measures ANOVA and 2-way ANOVA. Results Maternal growth hormone, placental lactogen and NEFA concentrations increased, while basal glucose and insulin concentrations declined with advancing gestation. At 135 dGA following bolus glucose injections, peak insulin concentrations and insulin area under curve (AUC profiles were significantly reduced in pregnant ewes compared with NPNL control ewes (p Conclusions Results suggest that despite an acute suppression of circulating NEFA concentrations during pregnancy, the associated steroids and hormones

  15. Insulin stimulates uric acid reabsorption via regulating urate transporter 1 and ATP-binding cassette subfamily G member 2.

    Science.gov (United States)

    Toyoki, Daigo; Shibata, Shigeru; Kuribayashi-Okuma, Emiko; Xu, Ning; Ishizawa, Kenichi; Hosoyamada, Makoto; Uchida, Shunya

    2017-09-01

    Accumulating data indicate that renal uric acid (UA) handling is altered in diabetes and by hypoglycemic agents. In addition, hyperinsulinemia is associated with hyperuricemia and hypouricosuria. However, the underlying mechanisms remain unclear. In this study, we aimed to investigate how diabetes and hypoglycemic agents alter the levels of renal urate transporters. In insulin-depleted diabetic rats with streptozotocin treatment, both UA excretion and fractional excretion of UA were increased, suggesting that tubular handling of UA is altered in this model. In the membrane fraction of the kidney, the expression of urate transporter 1 (URAT1) was significantly decreased, whereas that of ATP-binding cassette subfamily G member 2 (ABCG2) was increased, consistent with the increased renal UA clearance. Administration of insulin to the diabetic rats decreased UA excretion and alleviated UA transporter-level changes, while sodium glucose cotransporter 2 inhibitor (SGLT2i) ipragliflozin did not change renal UA handling in this model. To confirm the contribution of insulin in the regulation of urate transporters, normal rats received insulin and separately, ipragliflozin. Insulin significantly increased URAT1 and decreased ABCG2 levels, resulting in increased UA reabsorption. In contrast, the SGLT2i did not alter URAT1 or ABCG2 levels, although blood glucose levels were similarly reduced. Furthermore, we found that insulin significantly increased endogenous URAT1 levels in the membrane fraction of NRK-52E cells, the kidney epithelial cell line, demonstrating the direct effects of insulin on renal UA transport mechanisms. These results suggest a previously unrecognized mechanism for the anti-uricosuric effects of insulin and provide novel insights into the renal UA handling in the diabetic state. Copyright © 2017 the American Physiological Society.

  16. Phenylboronic Acid Appended Pyrene-Based Low-Molecular-Weight Injectable Hydrogel: Glucose-Stimulated Insulin Release.

    Science.gov (United States)

    Mandal, Deep; Mandal, Subhra Kanti; Ghosh, Moumita; Das, Prasanta Kumar

    2015-08-17

    A pyrene-containing phenylboronic acid (PBA) functionalized low-molecular-weight hydrogelator was synthesized with the aim to develop glucose-sensitive insulin release. The gelator showed the solvent imbibing ability in aqueous buffer solutions of pH values, ranging from 8-12, whereas the sodium salt of the gelator formed a hydrogel at physiological pH 7.4 with a minimum gelation concentration (MGC) of 5 mg mL(-1) . The aggregation behavior of this thermoreversible hydrogel was studied by using microscopic and spectroscopic techniques, including transmission electron microscopy, FTIR, UV/Vis, luminescence, and CD spectroscopy. These investigations revealed that hydrogen bonding, π-π stacking, and van der Waals interactions are the key factors for the self-assembled gelation. The diol-sensitive PBA part and the pyrene unit in the gelator were judiciously used in fluorimetric sensing of minute amounts of glucose at physiological pH. The morphological change of the gel due to addition of glucose was investigated by scanning electron microscopy, which denoted the glucose-responsive swelling of the hydrogel. A rheological study indicated the loss of the rigidity of the native gel in the presence of glucose. Hence, the glucose-induced swelling of the hydrogel was exploited in the controlled release of insulin from the hydrogel. The insulin-loaded hydrogel showed thixotropic self-recovery property, which hoisted it as an injectable soft composite. Encouragingly, the gelator was found to be compatible with HeLa cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Antiepileptic Effect of Uncaria rhynchophylla and Rhynchophylline Involved in the Initiation of c-Jun N-Terminal Kinase Phosphorylation of MAPK Signal Pathways in Acute Seizures of Kainic Acid-Treated Rats

    Directory of Open Access Journals (Sweden)

    Hsin-Cheng Hsu

    2013-01-01

    Full Text Available Seizures cause inflammation of the central nervous system. The extent of the inflammation is related to the severity and recurrence of the seizures. Cell surface receptors are stimulated by stimulators such as kainic acid (KA, which causes intracellular mitogen-activated protein kinase (MAPK signal pathway transmission to coordinate a response. It is known that Uncaria rhynchophylla (UR and rhynchophylline (RP have anticonvulsive effects, although the mechanisms remain unclear. Therefore, the purpose of this study is to develop a novel strategy for treating epilepsy by investigating how UR and RP initiate their anticonvulsive mechanisms. Sprague-Dawley rats were administered KA (12 mg/kg, i.p. to induce seizure before being sacrificed. The brain was removed 3 h after KA administration. The results indicate that pretreatment with UR (1.0 g/kg, RP (0.25 mg/kg, and valproic acid (VA, 250 mg/kg for 3 d could reduce epileptic seizures and could also reduce the expression of c-Jun aminoterminal kinase phosphorylation (JNKp of MAPK signal pathways in the cerebral cortex and hippocampus brain tissues. Proinflammatory cytokines interleukin (IL-1β, IL-6, and tumor necrosis factor-α remain unchanged, indicating that the anticonvulsive effect of UR and RP is initially involved in the JNKp MAPK signal pathway during the KA-induced acute seizure period.

  18. 5, 8, 11, 14-eicosatetraynoic acid suppresses CCL2/MCP-1 expression in IFN-γ-stimulated astrocytes by increasing MAPK phosphatase-1 mRNA stability

    Directory of Open Access Journals (Sweden)

    Lee Jee

    2012-02-01

    Full Text Available Abstract Background The peroxisome proliferator-activated receptor (PPAR-α activator, 5,8,11,14-eicosatetraynoic acid (ETYA, is an arachidonic acid analog. It is reported to inhibit up-regulation of pro-inflammatory genes; however, its underlying mechanism of action is largely unknown. In the present study, we focused on the inhibitory action of ETYA on the expression of the chemokine, CCL2/MCP-1, which plays a key role in the initiation and progression of inflammation. Methods To determine the effect of ETYA, primary cultured rat astrocytes and microglia were stimulated with IFN-γ in the presence of ETYA and then, expression of CCL2/MCP-1 and MAPK phosphatase (MKP-1 were determined using RT-PCR and ELISA. MKP-1 mRNA stability was evaluated by treating actinomycin D. The effect of MKP-1 and human antigen R (HuR was analyzed by using specific siRNA transfection system. The localization of HuR was analyzed by immunocytochemistry and subcellular fractionation experiment. Results We found that ETYA suppressed CCL2/MCP-1 transcription and secretion of CCL2/MCP-1 protein through up-regulation of MKP-1mRNA levels, resulting in suppression of c-Jun N-terminal kinase (JNK phosphorylation and activator protein 1 (AP1 activity in IFN-γ-stimulated brain glial cells. Moreover, these effects of ETYA were independent of PPAR-α. Experiments using actinomycin D revealed that the ETYA-induced increase in MKP-1 mRNA levels reflected an increase in transcript stability. Knockdown experiments using small interfering RNA demonstrated that this increase in MKP-1 mRNA stability depended on HuR, an RNA-binding protein known to promote enhanced mRNA stability. Furthermore, ETYA-induced, HuR-mediated mRNA stabilization resulted from HuR-MKP-1 nucleocytoplasmic translocation, which served to protect MKP-1 mRNA from the mRNA degradation machinery. Conclusion ETYA induces MKP-1 through HuR at the post-transcriptional level in a receptor-independent manner. The mechanism

  19. Effectiveness of essential amino acid supplementation in stimulating whole body net protein anabolism is comparable between COPD patients and healthy older adults.

    Science.gov (United States)

    Jonker, Renate; Deutz, Nicolaas Ep; Erbland, Marcia L; Anderson, Paula J; Engelen, Mariëlle Pkj

    2017-04-01

    The development of effective nutritional strategies in support of muscle growth for patients with chronic obstructive pulmonary disease (COPD) remains challenging. Dietary essential amino acids (EAAs) are the main driver of postprandial net protein anabolism. In agreement, EAA supplements in healthy older adults are more effective than supplements with the composition of complete proteins. In patients with COPD it is still unknown whether complete protein supplements can be substituted with only EAAs, and whether they are as effective as in healthy older adults. According to a double-blind randomized crossover design, we examined in 23 patients with moderate to very severe COPD (age: 65±2 years, FEV1: 40±2% of predicted) and 19 healthy age-matched subjects (age: 64±2 years), whether a free EAA mixture with a high proportion (40%) of leucine (EAA mixture) stimulated whole body net protein gain more than a similar mixture of balanced free EAAs and non-EAAs as present in whey protein (TAA mixture). Whole body net protein gain and splanchnic extraction of phenylalanine (PHE) were assessed by continuous IV infusion of L-[ring-2H5]-PHE and L-[ring-2H2]-tyrosine, and enteral intake of L-[15N]-PHE (added to the mixtures). Besides an excellent positive linear relationship between PHE intake and net protein gain in both groups (r=0.84-0.91, Panabolism more than free amino acid supplements with the composition of complete proteins. Therefore, free EAA supplements may aid in the prevention and treatment of muscle wasting in this patient population. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Ultrashort-TE stimulated echo acquisition mode (STEAM) improves the quantification of lipids and fatty acid chain unsaturation in the human liver at 7 T.

    Science.gov (United States)

    Gajdošík, Martin; Chadzynski, Grzegorz L; Hangel, Gilbert; Mlynárik, Vladimír; Chmelík, Marek; Valkovič, Ladislav; Bogner, Wolfgang; Pohmann, Rolf; Scheffler, Klaus; Trattnig, Siegfried; Krššák, Martin

    2015-10-01

    Ultrahigh-field, whole-body MR systems increase the signal-to-noise ratio (SNR) and improve the spectral resolution. Sequences with a short TE allow fast signal acquisition with low signal loss as a result of spin-spin relaxation. This is of particular importance in the liver for the precise quantification of the hepatocellular content of lipids (HCL). In this study, we introduce a spoiler Gradient-switching Ultrashort STimulated Echo AcqUisition (GUSTEAU) sequence, which is a modified version of a stimulated echo acquisition mode (STEAM) sequence, with a minimum TE of 6 ms. With the high spectral resolution at 7 T, the efficient elimination of water sidebands and the post-processing suppression of the water signal, we estimated the composition of fatty acids (FAs) via the detection of the olefinic lipid resonance and calculated the unsaturation index (UI) of hepatic FAs. The performance of the GUSTEAU sequence for the assessment of UI was validated against oil samples and provided excellent results in agreement with the data reported in the literature. When measuring HCL with GUSTEAU in 10 healthy volunteers, there was a high correlation between the results obtained at 7 and 3 T (R(2) = 0.961). The test-retest measurements yielded low coefficients of variation for HCL (4 ± 3%) and UI (11 ± 8%) when measured with the GUSTEAU sequence at 7 T. A negative correlation was found between UI and HCL (n = 10; p TE MRS sequence (GUSTEAU; TE = 6 ms) provided high repeatability for the assessment of HCL. The improved spectral resolution at 7 T with the elimination of