WorldWideScience

Sample records for valleys lake fryxell

  1. Thin, Conductive Permafrost Surrounding Lake Fryxell Indicates Salts From Past Lakes, McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Foley, N.; Tulaczyk, S. M.; Gooseff, M. N.; Myers, K. F.; Doran, P. T.; Auken, E.; Dugan, H. A.; Mikucki, J.; Virginia, R. A.

    2017-12-01

    In the McMurdo Dry Valleys (MDV), permafrost should be thick and liquid water rare. However, despite the well below zero mean annual temperature in this cryospheric desert, liquid water can be found in lakes, summer melt streams, subglacial outflow, and - recent work has shown - underneath anomalously thin permafrost. In part, this niche hydrosphere is maintained by the presence of salts, which depress the freezing point of water to perhaps as cold as -10° Celsius. We detected widespread salty water across the MDV in lakes and at depth using a helicopter-borne Time Domain Electromagnetic (TDEM) sensor. By using the presence of brines to mark the transition from frozen permafrost (near the surface) to unfrozen ground (at depth), we have created a map of permafrost thickness in Lower Taylor Valley (LTV), a large MDV with a complex history of glaciation and occupation by lakes. Our results show that permafrost is thinner ( 200m) than would be expected based on geothermal gradient measurements (up to 1000m), a result of the freezing point depression caused by salt and potentially enhanced by an unfinished transient freezing process. Near Lake Fryxell, a large, brackish lake in the center of LTV, permafrost is very thin (about 30-40m) and notably more electrically conductive than more distal permafrost. This thin ring of conductive permafrost surrounding the lake basin most likely reflects the high presence of salts in the subsurface, preventing complete freezing. These salts may be a remnant of the salty bottom waters of a historic larger lake (LGM glacially dammed Lake Washburn) or the remnant of salty basal water from a past advance of Taylor Glacier, which now sits many km up-valley but is known to contain brines which currently flow onto the surface and directly into the subsurface aquifer.

  2. Hydrological Controls on Ecosystem Dynamics in Lake Fryxell, Antarctica.

    Directory of Open Access Journals (Sweden)

    Radu Herbei

    Full Text Available The McMurdo Dry Valleys constitute the largest ice free area of Antarctica. The area is a polar desert with an annual precipitation of ∼ 3 cm water equivalent, but contains several lakes fed by glacial melt water streams that flow from four to twelve weeks of the year. Over the past ∼20 years, data have been collected on the lakes located in Taylor Valley, Antarctica as part of the McMurdo Dry Valley Long-Term Ecological Research program (MCM-LTER. This work aims to understand the impact of climate variations on the biological processes in all the ecosystem types within Taylor Valley, including the lakes. These lakes are stratified, closed-basin systems and are perennially covered with ice. Each lake contains a variety of planktonic and benthic algae that require nutrients for photosynthesis and growth. The work presented here focuses on Lake Fryxell, one of the three main lakes of Taylor Valley; it is fed by thirteen melt-water streams. We use a functional regression approach to link the physical, chemical, and biological processes within the stream-lake system to evaluate the input of water and nutrients on the biological processes in the lakes. The technique has been shown previously to provide important insights into these Antarctic lacustrine systems where data acquisition is not temporally coherent. We use data on primary production (PPR and chlorophyll-A (CHLfrom Lake Fryxell as well as discharge observations from two streams flowing into the lake. Our findings show an association between both PPR, CHL and stream input.

  3. Micro-hole and multigrain quartz luminescence dating of Paleodeltas at Lake Fryxell, McMurdo Dry Valleys (Antarctica), and relevance for lake history

    DEFF Research Database (Denmark)

    Berger, G.W.; Doran, P.T.; Thomsen, Kristina Jørkov

    2013-01-01

    Relict (perched) lacustrine deltas around the perennially ice-covered lakes in the Taylor Valley, Antarctica, imply that these lakes were up to 40 times larger in area than at present since the last glacial maximum (LGM). These deltas have been used to constrain ice-margin positions in Taylor Val...

  4. Modeling the Thickness of Perennial Ice Covers on Stratified Lakes of the Taylor Valley, Antarctica

    Science.gov (United States)

    Obryk, M. K.; Doran, P. T.; Hicks, J. A.; McKay, C. P.; Priscu, J. C.

    2016-01-01

    A one-dimensional ice cover model was developed to predict and constrain drivers of long term ice thickness trends in chemically stratified lakes of Taylor Valley, Antarctica. The model is driven by surface radiative heat fluxes and heat fluxes from the underlying water column. The model successfully reproduced 16 years (between 1996 and 2012) of ice thickness changes for west lobe of Lake Bonney (average ice thickness = 3.53 m; RMSE = 0.09 m, n = 118) and Lake Fryxell (average ice thickness = 4.22 m; RMSE = 0.21 m, n = 128). Long-term ice thickness trends require coupling with the thermal structure of the water column. The heat stored within the temperature maximum of lakes exceeding a liquid water column depth of 20 m can either impede or facilitate ice thickness change depending on the predominant climatic trend (temperature cooling or warming). As such, shallow (< 20 m deep water columns) perennially ice-covered lakes without deep temperature maxima are more sensitive indicators of climate change. The long-term ice thickness trends are a result of surface energy flux and heat flux from the deep temperature maximum in the water column, the latter of which results from absorbed solar radiation.

  5. The lakes of the Jordan Rift Valley

    International Nuclear Information System (INIS)

    Gat, J.R.

    2001-01-01

    This paper presents a summary of the proceedings of a workshop on the Lakes of the Jordan Rift Valley that was held in conjunction with the CRP on The Use of Isotope Techniques in Lake Dynamics Investigations. The paper presents a review of the geological, hydrogeological and physical limnological setting of the lakes in the Jordan Rift Valley, Lake Hula, Lake Kinneret and the Dead Sea. This is complemented by a description of the isotope hydrology of the system that includes the use of a wide range of isotopes: oxygen-18, deuterium, tritium, carbon-14, carbon-13, chlorine isotopes, boron-11 and helium-3/4. Environmental isotope aspects of the salt balances of the lakes, their palaeolimnology and biogeochemical tracers are also presented. The scope of application of isotopic tracers is very broad and provides a clear insight into many aspects of the physical, chemical and biological limnology of the Rift Valley Lakes. (author)

  6. 75 FR 22620 - Upper Klamath, Lower Klamath, Tule Lake, Bear Valley, and Clear Lake National Wildlife Refuges...

    Science.gov (United States)

    2010-04-29

    ...] Upper Klamath, Lower Klamath, Tule Lake, Bear Valley, and Clear Lake National Wildlife Refuges, Klamath..., Bear Valley, and Clear Lake National Wildlife Refuges (Refuges) located in Klamath County, Oregon, and..., Tule Lake, Bear Valley, and Clear Lake Refuges located in Klamath County, Oregon, and Siskiyou and...

  7. Groundwater and Thaw Legacy of a Large Paleolake in Taylor Valley, East Antarctica as Evidenced by Airborne Electromagnetic and Sedimentological Techniques

    Science.gov (United States)

    Doran, P. T.; Myers, K. F.; Foley, N.; Tulaczyk, S. M.; Dugan, H. A.; Auken, E.; Mikucki, J.; Virginia, R. A.

    2017-12-01

    The McMurdo Dry Valleys (MDVs) in east Antarctica contain a number of perennial ice-covered lakes fed by ephemeral meltwater streams. Lake Fryxell in Taylor Valley, is roughly 5.5 km long and approximately 22 m deep. Paleodeltas and paleoshorelines throughout Fryxell Basin provide evidence of significant lake level change occurring since the Last Glacial Maximum (LGM). During the LGM, grounded ice in the Ross Sea extended into the eastern portion of Taylor Valley, creating a large ice dammed paleolake. Glacial Lake Washburn (GLW) was roughly 300 m higher than modern day Lake Fryxell and its formation and existence has been debated. In this study, we use Geographical Information System and remote sensing techniques paired with regional resistivity data to provide new insight into the paleohydrology of the region. The existence of GLW is supported by new findings of a deep groundwater system beneath Lake Fryxell, which is interpreted as the degrading thaw bulb of GLW. Airborne resistivity data collected by SkyTEM, a time-domain airborne electromagnetic sensor system was used to map groundwater systems in the lake basin. Subsurface characteristics can be inferred from the relationship of resistivity to temperature, salinity, porosity, and degree of saturation. A large low resistivity region indicative of liquid water extends hundreds of meters away from the modern lake extent which is consistent with the presence of a degrading thaw bulb from GLW. As lake level in Fryxell Basin fell to modern levels, the saturated sediment beneath the lake began to freeze as it became exposed to low atmospheric temperatures. We hypothesize that this process is ongoing and will continue until equilibrium is reached between the geothermal gradient and atmospheric temperatures. Though liquid groundwater systems were previously thought to be minimal or nonexistent in the MDVs, regional resistivity data now show that extensive groundwater reservoirs exist beneath these lakes. In addition

  8. Oncorhynchus nerka population monitoring in the Sawtooth Valley Lakes

    International Nuclear Information System (INIS)

    Teuscher, D.M.; Taki, D.; Ariwite, K.

    1996-01-01

    Critical habitat for endangered Snake River sockeye salmon includes five rearing lakes located in the Sawtooth Valley of central Idaho. Most of the lakes contain either introduced or endemic kokanee populations. Snake River sockeye occur naturally in Redfish Lake, and are being stocked in Redfish and Pettit Lakes. Because kokanee compete with sockeye for limited food resources, understanding population characteristics of both species such as spawn timing, egg-to-fry survival, distribution and abundance are important components of sockeye recovery. This chapter describes some of those characteristics. In 1995, hydroacoustic estimates of O. nerka densities in the Sawtooth Valley Lakes ranged from 57 to 465 fish/ha. Densities were greatest in Pettit followed by Redfish (167), Alturas (95), and Stanley Lakes. O. nerka numbers increased from 1994 values in Pettit and Alturas Lakes, but declined in Redfish and Stanley. Despite a decline in total lake abundance, O. nerka biomass estimates in Redfish Lake increased. Approximately 144,000 kokanee fry recruited to Redfish Lake from Fishhook Creek. O. nerka fry recruitment to Stanley and Alturas lake was 5,000 and 30,000 fry, respectively. Egg-to-fry survival was 14% in Fishhook and 7% in Stanley Lake Creek. In Fishhook Creek, kokanee spawning escapement was estimated using stream surveys and a weir. Escapement estimates were 4,860 from weir counts, and 7,000 from stream surveys. As part of the kokanee reduction program, 385 of the spawning female kokanee were culled. Escapement for Stanley Lake Creek was only 60 fish, a ten fold decrease from 1994. In Alturas Lake, kokanee spawners dropped by 50% to 1,600

  9. Oncorhynchus nerka population monitoring in the Sawtooth Valley Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Teuscher, D.M.; Taki, D.; Ariwite, K.

    1996-05-01

    Critical habitat for endangered Snake River sockeye salmon includes five rearing lakes located in the Sawtooth Valley of central Idaho. Most of the lakes contain either introduced or endemic kokanee populations. Snake River sockeye occur naturally in Redfish Lake, and are being stocked in Redfish and Pettit Lakes. Because kokanee compete with sockeye for limited food resources, understanding population characteristics of both species such as spawn timing, egg-to-fry survival, distribution and abundance are important components of sockeye recovery. This chapter describes some of those characteristics. In 1995, hydroacoustic estimates of O. nerka densities in the Sawtooth Valley Lakes ranged from 57 to 465 fish/ha. Densities were greatest in Pettit followed by Redfish (167), Alturas (95), and Stanley Lakes. O. nerka numbers increased from 1994 values in Pettit and Alturas Lakes, but declined in Redfish and Stanley. Despite a decline in total lake abundance, O. nerka biomass estimates in Redfish Lake increased. Approximately 144,000 kokanee fry recruited to Redfish Lake from Fishhook Creek. O. nerka fry recruitment to Stanley and Alturas lake was 5,000 and 30,000 fry, respectively. Egg-to-fry survival was 14% in Fishhook and 7% in Stanley Lake Creek. In Fishhook Creek, kokanee spawning escapement was estimated using stream surveys and a weir. Escapement estimates were 4,860 from weir counts, and 7,000 from stream surveys. As part of the kokanee reduction program, 385 of the spawning female kokanee were culled. Escapement for Stanley Lake Creek was only 60 fish, a ten fold decrease from 1994. In Alturas Lake, kokanee spawners dropped by 50% to 1,600.

  10. Hydrology of modern and late Holocene lakes, Death Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, D.N.

    1996-07-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi{sup 2}, closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area.

  11. Hydrology of modern and late Holocene lakes, Death Valley, California

    International Nuclear Information System (INIS)

    Grasso, D.N.

    1996-01-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi 2 , closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area

  12. Ciliated protozoa of two antarctic lakes: analysis by quantitative protargol staining and examination of artificial substrates

    Science.gov (United States)

    Kepner, R. L. Jr; Wharton, R. A. Jr; Coats, D. W.; Wharton RA, J. r. (Principal Investigator)

    1999-01-01

    Planktonic and artificial substrate-associated ciliates have been identified in two perennially ice-covered antarctic lakes of the McMurdo Dry Valleys. Abundances estimated by quantitative protargol staining ranged from < 5 to 31690 cells l-1, levels that are comparable to those previously obtained using other methods. Nineteen ciliate taxa were identified from these lakes, with the most frequently encountered genera being Plagiocampa, Askenasia, Monodinium, Sphaerophrya and Vorticella. The taxonomic findings compare favorably with those of previous investigators; however four previously unreported genera were observed in both Lakes Fryxell and Hoare. The variability in the depth distributions of ciliates in Lake Fryxell is explained in terms of lake physicochemical properties and ciliate prey distributions, while factors related to temporal succession in the Lake Hoare assemblage remain unexplained. Local marine or temperate zone freshwater habitats are a more likely source than the surrounding dry valleys soils for present ciliate colonists in these lakes. Although the taxonomic uncertainties require further examination, our results suggest that ciliate populations in these antarctic lakes undergo significant fluctuations and are more diverse than was previously recognized.

  13. Limnology of Sawtooth Valley Lakes in 1995

    Energy Technology Data Exchange (ETDEWEB)

    Luecke, C.; Slater, M.; Budy, P.

    1996-05-01

    Included in this section of the report on limnology of Lakes in the Snake River Plain are descriptions of the limnological characteristics of the four lakes in reference to their potential effect of growth and survival of juvenile sockeye salmon. Physical parameters included light penetration, Secchi transparency, and water temperature; chemical parameters included oxygen, and both dissolved and particulate forms of nitrogen and phosphorus. Phytoplankton parameters included chlorophyll concentration, biovolume of dominant taxa, and rates of primary production; zooplankton parameters included density and biomass estimate, length frequencies, and the number of eggs carried by female cladocerans. 11 figs., 5 tabs.

  14. Limnology of Sawtooth Valley Lakes in 1995

    International Nuclear Information System (INIS)

    Luecke, C.; Slater, M.; Budy, P.

    1996-01-01

    Included in this section of the report on limnology of Lakes in the Snake River Plain are descriptions of the limnological characteristics of the four lakes in reference to their potential effect of growth and survival of juvenile sockeye salmon. Physical parameters included light penetration, Secchi transparency, and water temperature; chemical parameters included oxygen, and both dissolved and particulate forms of nitrogen and phosphorus. Phytoplankton parameters included chlorophyll concentration, biovolume of dominant taxa, and rates of primary production; zooplankton parameters included density and biomass estimate, length frequencies, and the number of eggs carried by female cladocerans. 11 figs., 5 tabs

  15. Evaporation estimation of rift valley lakes: comparison of models.

    Science.gov (United States)

    Melesse, Assefa M; Abtew, Wossenu; Dessalegne, Tibebe

    2009-01-01

    Evapotranspiration (ET) accounts for a substantial amount of the water flux in the arid and semi-arid regions of the World. Accurate estimation of ET has been a challenge for hydrologists, mainly because of the spatiotemporal variability of the environmental and physical parameters governing the latent heat flux. In addition, most available ET models depend on intensive meteorological information for ET estimation. Such data are not available at the desired spatial and temporal scales in less developed and remote parts of the world. This limitation has necessitated the development of simple models that are less data intensive and provide ET estimates with acceptable level of accuracy. Remote sensing approach can also be applied to large areas where meteorological data are not available and field scale data collection is costly, time consuming and difficult. In areas like the Rift Valley regions of Ethiopia, the applicability of the Simple Method (Abtew Method) of lake evaporation estimation and surface energy balance approach using remote sensing was studied. The Simple Method and a remote sensing-based lake evaporation estimates were compared to the Penman, Energy balance, Pan, Radiation and Complementary Relationship Lake Evaporation (CRLE) methods applied in the region. Results indicate a good correspondence of the models outputs to that of the above methods. Comparison of the 1986 and 2000 monthly lake ET from the Landsat images to the Simple and Penman Methods show that the remote sensing and surface energy balance approach is promising for large scale applications to understand the spatial variation of the latent heat flux.

  16. Evaporation Estimation of Rift Valley Lakes: Comparison of Models

    Directory of Open Access Journals (Sweden)

    Tibebe Dessalegne

    2009-12-01

    Full Text Available Evapotranspiration (ET accounts for a substantial amount of the water flux in the arid and semi-arid regions of the World. Accurate estimation of ET has been a challenge for hydrologists, mainly because of the spatiotemporal variability of the environmental and physical parameters governing the latent heat flux. In addition, most available ET models depend on intensive meteorological information for ET estimation. Such data are not available at the desired spatial and temporal scales in less developed and remote parts of the world. This limitation has necessitated the development of simple models that are less data intensive and provide ET estimates with acceptable level of accuracy. Remote sensing approach can also be applied to large areas where meteorological data are not available and field scale data collection is costly, time consuming and difficult. In areas like the Rift Valley regions of Ethiopia, the applicability of the Simple Method (Abtew Method of lake evaporation estimation and surface energy balance approach using remote sensing was studied. The Simple Method and a remote sensing-based lake evaporation estimates were compared to the Penman, Energy balance, Pan, Radiation and Complementary Relationship Lake Evaporation (CRLE methods applied in the region. Results indicate a good correspondence of the models outputs to that of the above methods. Comparison of the 1986 and 2000 monthly lake ET from the Landsat images to the Simple and Penman Methods show that the remote sensing and surface energy balance approach is promising for large scale applications to understand the spatial variation of the latent heat flux.

  17. Chemodenitrification in the cryoecosystem of Lake Vida, Victoria Valley, Antarctica.

    Science.gov (United States)

    Ostrom, N E; Gandhi, H; Trubl, G; Murray, A E

    2016-11-01

    Lake Vida, in the Victoria Valley of East Antarctica, is frozen, yet harbors liquid brine (~20% salt, >6 times seawater) intercalated in the ice below 16 m. The brine has been isolated from the surface for several thousand years. The brine conditions (permanently dark, -13.4 °C, lack of O 2 , and pH of 6.2) and geochemistry are highly unusual. For example, nitrous oxide (N 2 O) is present at a concentration among the highest reported for an aquatic environment. Only a minor 17 O anomaly was observed in N 2 O, indicating that this gas was predominantly formed in the lake. In contrast, the 17 O anomaly in nitrate (NO3-) in Lake Vida brine indicates that approximately half or more of the NO3- present is derived from atmospheric deposition. Lake Vida brine was incubated in the presence of 15 N-enriched substrates for 40 days. We did not detect microbial nitrification, dissimilatory reduction of NO3- to ammonium (NH4+), anaerobic ammonium oxidation, or denitrification of N 2 O under the conditions tested. In the presence of 15 N-enriched nitrite (NO2-), both N 2 and N 2 O exhibited substantial 15 N enrichments; however, isotopic enrichment declined with time, which is unexpected. Additions of 15 N-NO2- alone and in the presence of HgCl 2 and ZnCl 2 to aged brine at -13 °C resulted in linear increases in the δ 15 N of N 2 O with time. As HgCl 2 and ZnCl 2 are effective biocides, we interpret N 2 O production in the aged brine to be the result of chemodenitrification. With this understanding, we interpret our results from the field incubations as the result of chemodenitrification stimulated by the addition of 15 N-enriched NO2- and ZnCl 2 and determined rates of N 2 O and N 2 production of 4.11-41.18 and 0.55-1.75 nmol L -1  day -1 , respectively. If these rates are representative of natural production, the current concentration of N 2 O in Lake Vida could have been reached between 6 and 465 years. Thus, chemodenitrification alone is sufficient to explain the

  18. Long Valley Caldera Lake and reincision of Owens River Gorge

    Science.gov (United States)

    Hildreth, Wes; Fierstein, Judy

    2016-12-16

    Owens River Gorge, today rimmed exclusively in 767-ka Bishop Tuff, was first cut during the Neogene through a ridge of Triassic granodiorite to a depth as great as its present-day floor and was then filled to its rim by a small basaltic shield at 3.3 Ma. The gorge-filling basalt, 200 m thick, blocked a 5-km-long reach of the upper gorge, diverting the Owens River southward around the shield into Rock Creek where another 200-m-deep gorge was cut through the same basement ridge. Much later, during Marine Isotope Stage (MIS) 22 (~900–866 ka), a piedmont glacier buried the diversion and deposited a thick sheet of Sherwin Till atop the basalt on both sides of the original gorge, showing that the basalt-filled reach had not, by then, been reexcavated. At 767 ka, eruption of the Bishop Tuff blanketed the landscape with welded ignimbrite, deeply covering the till, basalt, and granodiorite and completely filling all additional reaches of both Rock Creek canyon and Owens River Gorge. The ignimbrite rests directly on the basalt and till along the walls of Owens Gorge, but nowhere was it inset against either, showing that the basalt-blocked reach had still not been reexcavated. Subsidence of Long Valley Caldera at 767 ka produced a steep-walled depression at least 700 m deeper than the precaldera floor of Owens Gorge, which was beheaded at the caldera’s southeast rim. Caldera collapse reoriented proximal drainages that had formerly joined east-flowing Owens River, abruptly reversing flow westward into the caldera. It took 600,000 years of sedimentation in the 26-km-long, usually shallow, caldera lake to fill the deep basin and raise lake level to its threshold for overflow. Not until then did reestablishment of Owens River Gorge begin, by incision of the gorge-filling ignimbrite.

  19. Holocene evolution of the Tonle Sap Lake: valley network infill and rates of sedimentation in Cambodia's Great Lake

    Science.gov (United States)

    Best, J.; Darby, S. E.; Langdon, P. G.; Hackney, C. R.; Leyland, J.; Parsons, D. R.; Aalto, R. E.; Marti, M.

    2017-12-01

    Tonle Sap Lake, the largest freshwater lake in SE Asia (c. 120km long and 35 km wide), is a vital ecosystem that provides 40-60% of the protein for the population of Cambodia. The lake is fed by flow from the Mekong River that causes the lake rise in level by c. 8m during monsoonal and cyclone-related floods, with drainage of the lake following the monsoon. Hydropower dam construction on the Mekong River has raised concerns as to the fragility of the Tonle Sap habitat due to any changing water levels and sedimentation rates within the lake. This paper details results of sub-bottom profiling surveys of Tonle Sap Lake in October 2014 that detailed the stratigraphy of the lake and assessed rates of infill. An Innomar Parametric Echo Sounder (PES) was used to obtain c. 250 km of sub-bottom profiles, with penetration up to 15m below the lake bed at a vertical resolution of c. 0.20m. These PES profiles were linked to cores from the north of the lake and previous literature. The PES profiles reveal a network of valleys, likely LGM, with relief up to c. 15-20m, that have been infilled by a suite of Holocene sediments. The valley surface is picked out as a strong reflector throughout the lake, and displays a series of valleys that are up to c. 15m deep and commonly 50-200m wide, although some of the largest valleys are 1.2km in width. Modelling of channel network incision during LGM conditions generates landscapes consistent with our field observations. The Tonle Sap valley network is infilled by sediments that show firstly fluvial and/or subaerial slope sedimentation, and then by extensive, parallel-bedded, lacustrine sedimentation. Lastly, the top c. 1m of sedimentation is marked by a distinct basal erosional surface that can be traced over much of the Tonle Sap Lake, and that is overlain by a series of parallel PES reflections. This upper sediment layer is interpreted to represent sedimentation in the Tonle Sap lake due to sediment suspension settling but after a period

  20. Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho

    Science.gov (United States)

    Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.

    2009-01-01

    Bear Lake, on the Idaho-Utah border, lies in a fault-bounded valley through which the Bear River flows en route to the Great Salt Lake. Surficial deposits in the Bear Lake drainage basin provide a geologic context for interpretation of cores from Bear Lake deposits. In addition to groundwater discharge, Bear Lake received water and sediment from its own small drainage basin and sometimes from the Bear River and its glaciated headwaters. The lake basin interacts with the river in complex ways that are modulated by climatically induced lake-level changes, by the distribution of active Quaternary faults, and by the migration of the river across its fluvial fan north of the present lake. The upper Bear River flows northward for ???150 km from its headwaters in the northwestern Uinta Mountains, generally following the strike of regional Laramide and late Cenozoic structures. These structures likely also control the flow paths of groundwater that feeds Bear Lake, and groundwater-fed streams are the largest source of water when the lake is isolated from the Bear River. The present configuration of the Bear River with respect to Bear Lake Valley may not have been established until the late Pliocene. The absence of Uinta Range-derived quartzites in fluvial gravel on the crest of the Bear Lake Plateau east of Bear Lake suggests that the present headwaters were not part of the drainage basin in the late Tertiary. Newly mapped glacial deposits in the Bear River Range west of Bear Lake indicate several advances of valley glaciers that were probably coeval with glaciations in the Uinta Mountains. Much of the meltwater from these glaciers may have reached Bear Lake via groundwater pathways through infiltration in the karst terrain of the Bear River Range. At times during the Pleistocene, the Bear River flowed into Bear Lake and water level rose to the valley threshold at Nounan narrows. This threshold has been modified by aggradation, downcutting, and tectonics. Maximum lake

  1. Design and results of the Mariano Lake-Lake Valley drilling project, Northwestern New Mexico

    International Nuclear Information System (INIS)

    Kirk, A.R.; Huffman, A.C. Jr.; Zech, R.S.

    1986-01-01

    This drilling project included 12 holes along a north-south-trending line from Mariano Lake to Lake Valley, New Mexico, near the southern margin of the San Juan basin. Of a total 33,075 ft (10,088m) drilled, 4,550 ft (1,388m) were cored in the stratigraphic interval that included the basal part of the Dakota Sandstone, the Brushy Basin and Westwater Canyon Members of the Morrison Formation, and the upper part of the Recapture Member of the Morrison Formation. The project objectives were (1) to provide cores and geophysical logs for study of the sedimentology, petrography, geochemistry, and mineralization in the uranium-bearing Westwater Canyon Member; (2) to provide control for a detailed seismic study of Morrison stratigraphy and basement structures; (3) to define and correlate the stratigraphy of Cretaceous coal-bearing units; (4) to supply background data for studies of ground-water flow pattern and ground-water quality; and (5) to provide data to aid resource assessment or uranium and coal. The project design included selection of (1) drill-hole locations to cross known ore and depositional trends in the Morrison Formation; (2) a coring interval to include the uranium-bearing unit and adjacent units; geophysical logs for lithologic correlations, quantitative evaluation of uranium mineralization, qualitative detection of coal beds, preparation of synthetic seismograms, and magnetic susceptibility studies of alteration in the Morrison; and (3) a high-salinity mud program to enhance core recovery

  2. The carbon stable isotope biogeochemistry of streams, Taylor Valley, Antarctica

    International Nuclear Information System (INIS)

    Lyons, W.B.; Leslie, D.L.; Harmon, R.S.; Neumann, K.; Welch, K.A.; Bisson, K.M.; McKnight, D.M.

    2013-01-01

    Highlights: ► δ 13 C-DIC reported from McMurdo Dry Valleys, Antarctica, streams. ► Stream water δ 13 C PDB values range −9.4‰ to +5.1‰, largely inorganic in character. ► Atmospheric exchange is the dominant control on δ 13 C-DIC. - Abstract: The McMurdo Dry Valleys region of Antarctica is the largest ice-free region on the continent. This study reports the first C stable isotope measurements for dissolved inorganic C present in ephemeral streams in four dry valleys that flow for four to twelve weeks during the austral summer. One of these valleys, Taylor Valley, has been the focus of the McMurdo Dry Valleys Long-Term Ecological Research (MCM-LTER) program since 1993. Within Taylor Valley, numerous ephemeral streams deliver water to three perennially ice-covered, closed-basin lakes: Lake Fryxell, Lake Hoare, and Lake Bonney. The Onyx River in the Wright Valley, the longest river in Antarctica, flows for 40 km from the Wright Lower Glacier and Lake Brownworth at the foot of the glacier to Lake Vanda. Streamflow in the McMurdo Dry Valley streams is produced primarily from glacial melt, as there is no overland flow. However, hyporheic zone exchange can be a major hydrogeochemical process in these streams. Depending on landscape position, these streams vary in gradient, channel substrate, biomass abundance, and hyporheic zone extent. This study sampled streams from Taylor, Wright, Garwood, and Miers Valleys and conducted diurnal sampling of two streams of different character in Taylor Valley. In addition, transect sampling was undertaken of the Onyx River in Wright Valley. The δ 13 C PDB values from these streams span a range of greater than 14‰, from −9.4‰ to +5.1‰, with the majority of samples falling between −3‰ and +2‰, suggesting that the C stable isotope composition of dissolved C in McMurdo Dry Valley streams is largely inorganic in character. Because there are no vascular plants on this landscape and no groundwater input to these

  3. Determinism in fish assemblages of floodplain lakes of the vastly disturbed Mississippi Alluvial Valley

    Science.gov (United States)

    Miranda, L.E.; Lucas, G.M.

    2004-01-01

    The Mississippi Alluvial Valley between southern Illinois and southern Louisiana contains hundreds of floodplain lakes, most of which have been adversely affected by landscape modifications used to control flooding and support agriculture. We examined fish assemblages in lakes of this region to determine whether deterministic patterns developed in relation to prominent abiotic lake characteristics and to explore whether relevant abiotic factors could be linked to specific assemblage structuring mechanisms. The distributions of 14 taxa in 29 lakes were governed primarily by two gradients that contrasted assemblages in terms of lake area, lake elongation, and water clarity. The knowledge of whether a lake was clear or turbid, large or small, and long or short helped determine fish assemblage characteristics. Abiotic factors influenced fish assemblage structures, plausibly through limitations on foraging and physiological tolerances. Determinism in assemblage organization of floodplain lakes relative to recurrence in physicochemical features has been documented for unaltered rivers. Whereas the Mississippi Alluvial Valley has been subjected to vast anthropogenic disturbances and is not a fully functional floodplain river, fish assemblages in its floodplain lakes remain deterministic and organized by the underlying factors that also dictate assemblages in unaltered rivers. In advanced stages of lake aging, fish assemblages in these lakes are expected to largely include species that thrive in turbid, shallow systems with few predators and low oxygen concentrations. The observed patterns related to physical characteristics of these lakes suggest three general conservation foci, including (1) watershed management to control erosion, (2) removal of sediments or increases in water level to alleviate depth reductions and derived detriments to water physicochemistry, and (3) management of fish populations through stockings, removals, and harvest regulations.

  4. 77 FR 27001 - Proposed Establishment of the Ancient Lakes of Columbia Valley Viticultural Area

    Science.gov (United States)

    2012-05-08

    ... comments that TTB receives about this proposal by appointment at the TTB Information Resource Center, 1310... and avoid any potential confusion with any other locations referred to as ``Ancient Lakes... such usage. The newspaper article concerned a geological tour of the Quincy Valley and listed one of...

  5. Late Pleistocene Hansel Valley basaltic ash, northern Lake Bonneville, Utah, USA

    Science.gov (United States)

    Miller, D.M.; Oviatt, Charles G.; Nash, B.P.

    2008-01-01

    The Hansel Valley ash bed lies within 5 cm of the base of deposits of Lake Bonneville (???28 ka) in the vicinity of Great Salt Lake and provides a useful stratigraphic marker for this area of the lake basin. However, it has not been matched to an eruptive edifice, presumably because such an edifice was eroded by waves of Lake Bonneville. We present data for the chemical composition of the tephra and for possible matching lavas and tephras of the region, as well as grain size data for the tephra in an attempt to identify the location of the eruption. Matches with other tephras are negative, but lavas near the coarsest ash deposits match well with the distinctive high values of TiO2 and P2O5 of the ash. Neither chemistry nor grain size data points uniquely to a source area, but an area near the northwest shore of Great Salt Lake and within Curlew Valley is most likely. The Hansel Valley ash is an example of an ash that has no direct numerical date from proximal deposits, despite considerable study, yet nonetheless is useful for stratigraphic studies by virtue of its known stratigraphic position and approximate age. Basaltic tephras commonly are not as widespread as their rhyolitic counterparts, and in some cases apparently are produced by eruptive sources that are short lived and whose edifices are not persistent. ?? 2007 Elsevier Ltd and INQUA.

  6. Hierarchy in factors affecting fish biodiversity in floodplain lakes of the Mississippi Alluvial Valley

    Science.gov (United States)

    Dembkowski, D.J.; Miranda, L.E.

    2012-01-01

    River-floodplain ecosystems offer some of the most diverse and dynamic environments in the world. Accordingly, floodplain habitats harbor diverse fish assemblages. Fish biodiversity in floodplain lakes may be influenced by multiple variables operating on disparate scales, and these variables may exhibit a hierarchical organization depending on whether one variable governs another. In this study, we examined the interaction between primary variables descriptive of floodplain lake large-scale features, suites of secondary variables descriptive of water quality and primary productivity, and a set of tertiary variables descriptive of fish biodiversity across a range of floodplain lakes in the Mississippi Alluvial Valley of Mississippi and Arkansas (USA). Lakes varied considerably in their representation of primary, secondary, and tertiary variables. Multivariate direct gradient analyses indicated that lake maximum depth and the percentage of agricultural land surrounding a lake were the most important factors controlling variation in suites of secondary and tertiary variables, followed to a lesser extent by lake surface area. Fish biodiversity was generally greatest in large, deep lakes with lower proportions of watershed agricultural land. Our results may help foster a holistic approach to floodplain lake management and suggest the framework for a feedback model wherein primary variables can be manipulated for conservation and restoration purposes and secondary and tertiary variables can be used to monitor the success of such efforts. ?? 2011 Springer Science+Business Media B.V.

  7. Factors affecting fish biodiversity in floodplain lakes of the Mississippi Alluvial Valley

    Science.gov (United States)

    Miranda, Leandro E.; Dembkowski, Daniel J.

    2012-01-01

    River-floodplain ecosystems offer some of the most diverse and dynamic environments in the world. Accordingly, floodplain habitats harbor diverse fish assemblages. Fish biodiversity in floodplain lakes may be influenced by multiple variables operating on disparate scales, and these variables may exhibit a hierarchical organization depending on whether one variable governs another. In this study, we examined the interaction between primary variables descriptive of floodplain lake large-scale features, suites of secondary variables descriptive of water quality and primary productivity, and a set of tertiary variables descriptive of fish biodiversity across a range of floodplain lakes in the Mississippi Alluvial Valley of Mississippi and Arkansas (USA). Lakes varied considerably in their representation of primary, secondary, and tertiary variables. Multivariate direct gradient analyses indicated that lake maximum depth and the percentage of agricultural land surrounding a lake were the most important factors controlling variation in suites of secondary and tertiary variables, followed to a lesser extent by lake surface area. Fish biodiversity was generally greatest in large, deep lakes with lower proportions of watershed agricultural land. Our results may help foster a holistic approach to floodplain lake management and suggest the framework for a feedback model wherein primary variables can be manipulated for conservation and restoration purposes and secondary and tertiary variables can be used to monitor the success of such efforts.

  8. Balancing lake ecological condition and agriculture irrigation needs in the Mississippi Alluvial Valley

    Science.gov (United States)

    Miranda, Leandro E.; Omer, A.R.; Killgore, K.J.

    2017-01-01

    The Mississippi Alluvial Valley includes hundreds of floodplain lakes that support unique fish assemblages and high biodiversity. Irrigation practices in the valley have lowered the water table, increasing the cost of pumping water, and necessitating the use of floodplain lakes as a source of water for irrigation. This development has prompted the need to regulate water withdrawals to protect aquatic resources, but it is unknown how much water can be withdrawn from lakes before ecological integrity is compromised. To estimate withdrawal limits, we examined descriptors of lake water quality (i.e., total nitrogen, total phosphorus, turbidity, Secchi visibility, chlorophyll-a) and fish assemblages (species richness, diversity, composition) relative to maximum depth in 59 floodplain lakes. Change-point regression analysis was applied to identify critical depths at which the relationships between depth and lake descriptors exhibited a rapid shift in slope, suggesting possible thresholds. All our water quality and fish assemblage descriptors showed rapid changes relative to depth near 1.2–2.0 m maximum depth. This threshold span may help inform regulatory decisions about water withdrawal limits. Alternatives to explain the triggers of the observed threshold span are considered.

  9. Daytime wind valleys adjacent to the Great Salt Lake

    Energy Technology Data Exchange (ETDEWEB)

    Stone, G.L. (Los Alamos National Lab., NM (USA)); Hoard, D.E. (Amparo Corp., Santa Fe, NM (USA))

    1990-01-01

    In 1986 Los Alamos National Laboratory was engaged by the US Army to study the meteorological aspects of emergency preparedness at several sites where toxic materials are stored and handled. The project included a series of tracer and meteorological field experiments in the vicinity of the Tooele Army Depot. These experiments generated a large data set for validating numerical simulations and for empirical analyses of the local meteorology. This paper discusses the main characteristics of the daytime, up-valley flow at the Utah site, including frequency of occurrence, horizontal and vertical structure, and temporal evolution. Some parameters controlling the variability in onset time for up-valley flow are identified, and an empirical forecasting scheme is discussed. 16 refs., 7 figs.

  10. Mercury in fish from three rift valley lakes (Turkana, Naivasha and Baringo), Kenya, East Africa

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, L.M.; Osano, O.; Hecky, R.E.; Dixon, D.G

    2003-09-01

    Mercury concentrations in Kenyan fish vary with tropic position but, in general, do not pose an unacceptable risk to human consumers of wildlife. -Total mercury (THg) concentrations were measured for various fish species from Lakes Turkana, Naivasha and Baringo in the rift valley of Kenya. The highest THg concentration (636 ng g{sup -1} wet weight) was measured for a piscivorous tigerfish Hydrocynus forskahlii from Lake Turkana. THg concentrations for the Perciformes species, the Nile perch Lates niloticus from Lake Turkana and the largemouth bass Micropterus salmoides from Lake Naivasha ranged between 4 and 95 ng g{sup -1}. The tilapiine species in all lakes, including the Nile tilapia Oreochromis niloticus, had consistently low THg concentrations ranging between 2 and 25 ng g{sup -1}. In Lake Naivasha, the crayfish species, Procambrus clarkii, had THg concentrations similar to those for the tilapiine species from the same lake, which is consistent with their shared detritivore diet. THg concentrations in all fish species were usually consistent with their known trophic position, with highest concentrations in piscivores and declining in omnivores, insectivores and detritivores. One exception is the detritivore Labeo cylindricus from Lake Baringo, which had surprisingly elevated THg concentrations (mean=75 ng g{sup -1}), which was similar to those for the top trophic species (Clarias and Protopterus) in the same lake. Except for two Hydrocynus forskahlii individuals from Lake Turkana, which had THg concentrations near or above the international marketing limit of 500 ng g{sup -1}, THg concentrations in the fish were generally below those of World Health Organization's recommended limit of 200 ng g{sup -1} for at-risk groups.

  11. Groundwater quality in the Bear Valley and Lake Arrowhead Watershed, California

    Science.gov (United States)

    Mathany, Timothy; Burton, Carmen; Fram, Miranda S.

    2017-06-20

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Bear Valley and Lake Arrowhead Watershed study areas in southern California compose one of the study units being evaluated.

  12. Preliminary Study of the Effect of the Proposed Long Lake Valley Project Operation on the Transport of Larval Suckers in Upper Klamath Lake, Oregon

    Science.gov (United States)

    Wood, Tamara M.

    2009-01-01

    A hydrodynamic model of Upper Klamath and Agency Lakes, Oregon, was used to explore the effects of the operation of proposed offstream storage at Long Lake Valley on transport of larval suckers through the Upper Klamath and Agency Lakes system during May and June, when larval fish leave spawning sites in the Williamson River and springs along the eastern shoreline and become entrained in lake currents. A range in hydrologic conditions was considered, including historically high and low outflows and inflows, lake elevations, and the operation of pumps between Upper Klamath Lake and storage in Long Lake Valley. Two wind-forcing scenarios were considered: one dominated by moderate prevailing winds and another dominated by a strong reversal of winds from the prevailing direction. On the basis of 24 model simulations that used all combinations of hydrology and wind forcing, as well as With Project and No Action scenarios, it was determined that the biggest effect of project operations on larval transport was the result of alterations in project management of the elevation in Upper Klamath Lake and the outflow at the Link River and A Canal, rather than the result of pumping operations. This was because, during the spring time period of interest, the amount of water pumped between Upper Klamath Lake and Long Lake Valley was generally small. The dominant effect was that an increase in lake elevation would result in more larvae in the Williamson River delta and in Agency Lake, an effect that was enhanced under conditions of wind reversal. A decrease in lake elevation accompanied by an increase in the outflow at the Link River had the opposite effect on larval concentration and residence time.

  13. Spatial relationships of the Preajba Valley Lakes evolution reflected on cartographic documents

    Directory of Open Access Journals (Sweden)

    Marga AVRAM

    2015-12-01

    Full Text Available The Preajba-Facai lacustrine system is located in the southern part of Craiova municipality and it is distinguished by a high level of originality conferred by both its hydro-geomorphological and biological features. The construction of this series of lakes along the Preajba river began during the Communist times (in the 1970s with the declared aim of serving as a recreational space for the inhabitants of this municipality. The river springs near Cârcea locality at an altitude of 192 metres and it flows into Craiova channel after 9.6 km, with a source-mouth level difference of 121.1 metres. Chronologically, the number of lakes situated along the Preajba river may vary, according to the analysed cartographic document, from 3 lakes (Military Topographic Maps to 11 lakes (Topographic Map, 1:25,000. With the development of the area covered by water, the human pressure has increased as a consequence of the intensive development of the surrounding area. This phenomenon gradually led to an involution of the lake surface (25.34 ha in 2014, Google Earth PRO. The aim of this research is to highlight the relational dynamic appearance-evolution-involution suffered by the lakes situated along the Preajba Valley, in correlation with the processes that occurred at the level of the constructed surface and in terms of respecting the status of this protected area of aqua-faunistic interest (The Lacustrine System of Preajba-Facai.

  14. Valley formation by groundwater seepage, pressurized groundwater outbursts and crater-lake overflow in flume experiments with implications for Mars

    Science.gov (United States)

    Marra, Wouter A.; Braat, Lisanne; Baar, Anne W.; Kleinhans, Maarten G.

    2014-04-01

    Remains of fluvial valleys on Mars reveal the former presence of water on the surface. However, the source of water and the hydrological setting is not always clear, especially in types of valleys that are rare on Earth and where we have limited knowledge of the processes involved. We investigated three hydrological scenarios for valley formation on Mars: hydrostatic groundwater seepage, release of pressurized groundwater and crater-lake overflow. Using physical modeling in laboratory experiments and numerical hydrological modeling we quantitatively studied the morphological development and processes involved in channel formation that result from these different sources of water in unconsolidated sediment. Our results show that valleys emerging from seeping groundwater by headward erosion form relatively slowly as fluvial transport takes place in a channel much smaller than the valley. Pressurized groundwater release forms a characteristic source area at the channel head by fluidization processes. This head consist of a pit in case of superlithostatic pressure and may feature small radial channels and collapse features. Valleys emerging from a crater-lake overflow event develop quickly in a run-away process of rim erosion and discharge increase. The valley head at the crater outflow point has a converging fan shape, and the rapid incision of the rim leaves terraces and collapse features. Morphological elements observed in the experiments can help in identifying the formative processes on Mars, when considerations of experimental scaling and lithological characteristics of the martian surface are taken into account. These morphological features might reveal the associated hydrological settings and formative timescales of a valley. An estimate of formative timescale from sediment transport is best based on the final channel dimensions for groundwater seepage valleys and on the valley dimensions for pressurized groundwater release and crater-lake overflow valleys. Our

  15. Integrated hazard assessment of Cirenmaco glacial lake in Zhangzangbo valley, Central Himalayas

    Science.gov (United States)

    Wang, Weicai; Gao, Yang; Iribarren Anacona, Pablo; Lei, Yanbin; Xiang, Yang; Zhang, Guoqing; Li, Shenghai; Lu, Anxin

    2018-04-01

    Glacial lake outburst floods (GLOFs) have recently become one of the primary natural hazards in the Himalayas. There is therefore an urgent need to assess GLOF hazards in the region. Cirenmaco, a moraine-dammed lake located in the upstream portion of Zhangzangbo valley, Central Himalayas, has received public attention after its damaging 1981 outburst flood. Here, by combining remote sensing methods, bathymetric survey and 2D hydraulic modeling, we assessed the hazard posed by Cirenmaco in its current status. Inter-annual variation of Cirenmaco lake area indicates a rapid lake expansion from 0.10 ± 0.08 km2 in 1988 to 0.39 ± 0.04 km2 in 2013. Bathymetric survey shows the maximum water depth of the lake in 2012 was 115 ± 2 m and the lake volume was calculated to be 1.8 × 107 m3. Field geomorphic analysis shows that Cirenmaco glacial lake is prone to GLOFs as mass movements and ice and snow avalanches can impact the lake and the melting of the dead ice in the moraine can lower the dam level. HEC-RAS 2D model was then used to simulate moraine dam failure of the Cirenmaco and assess GLOF impacts downstream. Reconstruction of Cirenmaco 1981 GLOF shows that HEC-RAS can produce reasonable flood extent and water depth, thus demonstrate its ability to effectively model complex GLOFs. GLOF modeling results presented can be used as a basis for the implementation of disaster prevention and mitigation measures. As a case study, this work shows how we can integrate different methods to GLOF hazard assessment.

  16. Morphometric Change Detection of Lake Hawassa in the Ethiopian Rift Valley

    Directory of Open Access Journals (Sweden)

    Yonas Abebe

    2018-05-01

    Full Text Available The Ethiopian Rift Valley lakes have been subjected to environmental and ecological changes due to recent development endeavors and natural phenomena, which are visible in the alterations to the quality and quantity of the water resources. Monitoring lakes for temporal and spatial alterations has become a valuable indicator of environmental change. In this regard, hydrographic information has a paramount importance. The first extensive hydrographic survey of Lake Hawassa was conducted in 1999. In this study, a bathymetric map was prepared using advances in global positioning systems, portable sonar sounder technology, geostatistics, remote sensing and geographic information system (GIS software analysis tools with the aim of detecting morphometric changes. Results showed that the surface area of Lake Hawassa increased by 7.5% in 1999 and 3.2% in 2011 from that of 1985. Water volume decreased by 17% between 1999 and 2011. Silt accumulated over more than 50% of the bed surface has caused a 4% loss of the lake’s storage capacity. The sedimentation patterns identified may have been strongly impacted by anthropogenic activities including urbanization and farming practices located on the northern, eastern and western sides of the lake watershed. The study demonstrated this geostatistical modeling approach to be a rapid and cost-effective method for bathymetric mapping.

  17. Analysis of geophysical well logs from the Mariano Lake-Lake Valley drilling project, San Juan Basin, Northwestern New Mexico

    International Nuclear Information System (INIS)

    Scott, J.H.

    1986-01-01

    Geophysical well logs were obtained in eight deep holes drilled and cored by the U.S. Geological Survey to examine the geology of the Mariano Lake-Lake Valley area in the southern part of the San Juan basin, New Mexico. The logs were made to determine the petrophysical properties of the rocks penetrated by the holes, to aid in making stratigraphic correlations between the holes, and to estimate the grade of uranium enrichment in mineralized zones. The logs can be divided into six categories-nuclear, electric, sonic, magnetic, dipmeter, and borehole conditions. Examples of these logs are presented and related to lithological and petrophysical properties of the cores recovered. Gamma-ray and prompt fission neutron logs were used to estimate uranium grade in mineralized zones. Resistivity and spontaneous potential logs were used to make stratigraphic correlations between drill holes and to determine the variability of the sandstone:mudstone ratios of the major sedimentary units. In one drill hole a dipmeter log was used to estimate the direction of sediment transport of the fluvial host rock. Magnetic susceptibility logs provided supportive information for a laboratory study of magnetic mineral alteration in drill cores. This study was used to infer the geochemical and hydrologic environment associated with uranium deposition in the project area

  18. Sulphate balance of lakes and shallow groundwater in the Vasavere buried valley, Northeast Estonia

    International Nuclear Information System (INIS)

    Erg, K.

    2003-01-01

    Groundwater is an important component of many water resource systems supplying water for domestic use, industry, and agriculture. In recent years the attention has been focused on groundwater contamination by mine water. Decline in mining activities and introduction of new technologies together with economic measures has improved the situation but much should be done during coming years. Oil shale mining brings about changes in the groundwater regime and chemical composition. The correlation between the natural (meteorological and hydrological) and technogenic (mining-technological, hydrogeological, hydrochemical) factors caused by the oil shale mining in the Vasavere valley during 1970-2000 has been studied. As a result of extensive drainage of mining shafts and water consumption, the groundwater table has noticeably lowered in the area and sulphate content in lakes and groundwater is especially high

  19. The water balance of the urban Salt Lake Valley: a multiple-box model validated by observations

    Science.gov (United States)

    Stwertka, C.; Strong, C.

    2012-12-01

    A main focus of the recently awarded National Science Foundation (NSF) EPSCoR Track-1 research project "innovative Urban Transitions and Arid-region Hydro-sustainability (iUTAH)" is to quantify the primary components of the water balance for the Wasatch region, and to evaluate their sensitivity to climate change and projected urban development. Building on the multiple-box model that we developed and validated for carbon dioxide (Strong et al 2011), mass balance equations for water in the atmosphere and surface are incorporated into the modeling framework. The model is used to determine how surface fluxes, ground-water transport, biological fluxes, and meteorological processes regulate water cycling within and around the urban Salt Lake Valley. The model is used to evaluate the hypotheses that increased water demand associated with urban growth in Salt Lake Valley will (1) elevate sensitivity to projected climate variability and (2) motivate more attentive management of urban water use and evaporative fluxes.

  20. Delineating the Drainage Structure and Sources of Groundwater Flux for Lake Basaka, Central Rift Valley Region of Ethiopia

    Directory of Open Access Journals (Sweden)

    Megersa Olumana Dinka

    2017-11-01

    Full Text Available As opposed to most of the other closed basin type rift valley lakes in Ethiopia, Lake Basaka is found to be expanding at an alarming rate. Different studies indicated that the expansion of the lake is challenging the socio-economics and environment of the region significantly. This study result and previous reports indicated that the lake’s expansion is mostly due to the increased groundwater (GW flux to the lake. GW flux accounts for about 56% of the total inflow in recent periods (post 2000 and is found to be the dominant factor for the hydrodynamics and existence of the lake. The analysis of the drainage network for the area indicates the existence of a huge recharge area on the western and upstream side of the catchment. This catchment has no surface outlet; hence most of the incoming surface runoff recharges the GW system. The recharge area is the main source of GW flux to the lake. In addition to this, the likely sources/causes of GW flux to the lake could be: (i an increase of GW recharge following the establishment of irrigation schemes in the region; (ii subsurface inflow from far away due to rift system influence, and (iii lake neotectonism. Overall, the lake’s expansion has damaging effect to the region, owing to its poor water quality; hence the identification of the real causes of GW flux and mitigation measures are very important for sustainable lake management. Therefore a comprehensive and detailed investigation of the parameters related to GW flux and the interaction of the lake with the GW system of the area is highly recommended.

  1. Middle Pleistocene infill of Hinkley Valley by Mojave River sediment and associated lake sediment: Depositional architecture and deformation by strike-slip faults

    Science.gov (United States)

    Miller, David; Haddon, Elizabeth; Langenheim, Victoria; Cyr, Andrew J.; Wan, Elmira; Walkup, Laura; Starratt, Scott W.

    2018-01-01

    Hinkley Valley in the Mojave Desert, near Barstow about 140 km northeast of Los Angeles and midway between Victorville Valley and the Lake Manix basin, contains a thick sedimentary sequence delivered by the Mojave River. Our study of sediment cores drilled in the valley indicates that Hinkley Valley was probably a closed playa basin with stream inflow from four directions prior to Mojave River inflow. The Mojave River deposited thick and laterally extensive clastic wedges originating from the southern valley that rapidly filled much of Hinkley Valley. Sedimentary facies representing braided stream, wetland, delta, and lacustrine depositional environments all are found in the basin fill; in some places, the sequence is greater than 74 m (245 ft) thick. The sediment is dated in part by the presence of the ~631 ka Lava Creek B ash bed low in the section, and thus represents sediment deposition after Victorville basin was overtopped by sediment and before the Manix basin began to be filled. Evidently, upstream Victorville basin filled with sediment by about 650 ka, causing the ancestral Mojave River to spill to the Harper and Hinkley basins, and later to Manix basin.Initial river sediment overran wetland deposits in many places in southern Hinkley Valley, indicating a rapidly encroaching river system. These sediments were succeeded by a widespread lake (“blue” clay) that includes the Lava Creek B ash bed. Above the lake sediment lies a thick section of interlayered stream sediment, delta and nearshore lake sediment, mudflat and/or playa sediment, and minor lake sediment. This stratigraphic architecture is found throughout the valley, and positions of lake sediment layers indicate a successive northward progression in the closed basin. A thin overlapping sequence at the north end of the valley contains evidence for a younger late Pleistocene lake episode. This late lake episode, and bracketing braided stream deposits of the Mojave River, indicate that the river

  2. Trace element mobility and transfer to vegetation within the Ethiopian Rift Valley lake areas.

    Science.gov (United States)

    Kassaye, Yetneberk A; Skipperud, Lindis; Meland, Sondre; Dadebo, Elias; Einset, John; Salbu, Brit

    2012-10-26

    To evaluate critical trace element loads in native vegetation and calculate soil-to-plant transfer factors (TFs), 11 trace elements (Cr, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Pb and Mn) have been determined in leaves of 9 taxonomically verified naturally growing terrestrial plant species as well as in soil samples collected around 3 Ethiopian Rift Valley lakes (Koka, Ziway and Awassa). The Cr concentration in leaves of all the plant species was higher than the "normal" range, with the highest level (8.4 mg per kg dw) being observed in Acacia tortilis from the Lake Koka area. Caper species (Capparis fascicularis) and Ethiopian dogstooth grass (Cynodon aethiopicus) from Koka also contained exceptionally high levels of Cd (1 mg per kg dw) and Mo (32.8 mg per kg dw), respectively. Pb, As and Cu concentrations were low in the plant leaves from all sites. The low Cu level in important fodder plant species (Cynodon aethiopicus, Acacia tortilis and Opuntia ficus-indicus) implies potential deficiency in grazing and browsing animals. Compared to the Canadian environmental quality guideline and maximum allowable concentration in agricultural soils, the total soil trace element concentrations at the studied sites are safe for agricultural crop production. Enrichment factor was high for Zn in soils around Lakes Ziway and Awassa, resulting in moderate to high transfer of Zn to the studied plants. A six step sequential extraction procedure on the soils revealed a relatively high mobility of Cd, Se and Mn. Strong association of most trace elements with the redox sensitive fraction and mineral lattice was also confirmed by partial redundancy analysis. TF (mg per kg dw plants/mg per kg dw soil) values based on the total (TF(total)) and mobile fractions (TF(mobile)) of soil trace element concentrations varied widely among elements and plant species, with the averaged TF(total) and TF(mobile) values ranging from 0.01-2 and 1-60, respectively. Considering the mobile fraction in soils should

  3. Hydrology, water quality, and nutrient loads to the Bauman Park Lake, Cherry Valley, Winnebago County, Illinois, May 1996-April 1997

    Science.gov (United States)

    Kay, Robert T.; Trugestaad, Aaron

    1998-01-01

    The Bauman Park Lake occupies a former sand and gravel quarry in the Village of Cherry Valley, Illinois. The lake is eutrophic, and nuisance growths of algae and aquatic macrophytes are supported by nutrients (nitrogen and phosphorus) that are derived primarily from ground-water inflow, the main source of water for the lake. The lake has an average depth of about 18 feet, a maximum depth of about 28 feet, and a volume of 466 acre-feet at a stage of about 717 feet above sea level. The lake also is subject to thermal stratification, and although most of the lake is well oxidized, nearly anoxic conditions were present at the lake bottom during part of the summer of 1996. 4,648 pounds of nitrogen compounds were added to the Bauman Park Lake from May 1996 through April 1997. Phosphorus compounds were derived primarily from inflow from ground water (68.7 percent), sediments derived from shoreline erosion (15.6 percent), internal regeneration (11.7 percent), waterfowl excrement (1.6 percent), direct precipitation and overland runoff (1.2 percent), and particulate matter deposited from the atmosphere (1.2 percent). Nitrogen compounds were derived from inflow from ground water (62.1 percent), internal regeneration (19.6 percent), direct precipitation and overland runoff (10.1 percent), particulate matter deposited from the atmosphere (3.5 percent), sediments derived from shoreline erosion (4.4 percent), and waterfowl excrement (0.3 percent). About 13 pounds of phosphorus and 318 pounds of nitrogen compounds flow out of the lake to ground water. About 28 pounds of nitrogen is removed by denitrification. Algae and aquatic macrophytes utilize nitrate, nitrite, ammonia, and dissolved phosphorus. The availability of dissolved phosphorus in the lake water controls algal growth. Uptake of the nutrients, by aquatic macrophytes and algae, temporarily removes nutrients from the water column but not from the lake basin. Because the amount of nutrients entering the lake greatly exceeds

  4. A 28,000 year history of vegetation and climate from Lower Red Rock Lake, Centennial Valley, Southwestern Montana, USA

    Science.gov (United States)

    Mumma, Stephanie Ann; Whitlock, Cathy; Pierce, Kenneth

    2012-01-01

    A sediment core extending to 28,000 cal yr BP from Lower Red Rock Lake in the Centennial Valley of southwestern Montana provides new information on the nature of full-glacial vegetation as well as a history of late-glacial and Holocene vegetation and climate in a poorly studied region. Prior to 17,000 cal yr BP, the eastern Centennial Valley was occupied by a large lake (Pleistocene Lake Centennial), and valley glaciers were present in adjacent mountain ranges. The lake lowered upon erosion of a newly formed western outlet in late-glacial time. High pollen percentages of Juniperus, Poaceae, Asteraceae, and other herbs as well as low pollen accumulation rates suggest sparse vegetation cover. Inferred cold dry conditions are consistent with a strengthened glacial anticyclone at this time. Between 17,000 and 10,500 cal yr BP, high Picea and Abies pollen percentages suggest a shift to subalpine parkland and warmer conditions than before. This is attributed to the northward shift of the jet stream and increasing summer insolation. From 10,500 to 7100 cal yr BP, pollen evidence of open dry forests suggests warm conditions, which were likely a response to increased summer insolation and a strengthened Pacific subtropical high-pressure system. From 7100 to 2400 cal yr BP, cooler moister conditions promoted closed forest and wetlands. Increases in Picea and Abies pollen percentages after 2400 cal yr BP suggest increasing effective moisture. The postglacial pattern of Pseudotsuga expansion indicates that it arrived later on the Atlantic side of the Continental Divide than on the Pacific side. The Divide may have been a physical barrier for refugial populations or it delimited different climate regions that influenced the timing of Pseudotsuga expansion.

  5. Speciation of selected trace elements in three Ethiopian Rift Valley Lakes (Koka, Ziway, and Awassa) and their major inflows

    International Nuclear Information System (INIS)

    Masresha, Alemayehu E.; Skipperud, Lindis; Rosseland, Bjorn Olav; Zinabu, G.M.; Meland, Sondre; Teien, Hans-Christian; Salbu, Brit

    2011-01-01

    The Ethiopian Rift Valley Lakes (ERVLs) are water resources which have considerable environmental, economic and cultural importance. However, there is an increasing concern that increasing human activities around these lakes and their main inflows can result in increased contamination of these water bodies. Information on total concentrations of some trace elements is available for these lakes and their inflows; however, data on the trace element speciation is lacking. Therefore, the objective of this study was to determine the low molecular mass (LMM) trace element species and also, evaluate the influence of flooding episodes on the LMM trace element fractions. At-site size and charge fractionation system was used for sampling of water from the lakes Koka, Ziway and Awassa and their main inflows during the dry and wet seasons. The results showed that chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), and lead (Pb) in Lake Koka and its inflows as well as in Lake Ziway were predominantly present as HMM (high molecular mass, i.e., > 10 kDa) forms, while arsenic (As), selenium (Se), cadmium (Cd) were more mobile during the dry season. In Lake Awassa, all except Cr and Mn were predominantly found as LMM species (low molecular mass, i.e. < 10 kDa) which can be attributed to the high concentrations of LMM DOC (dissolved organic carbon). During the wet season, results from the Lake Koka and its inflows showed that all trace elements were predominantly associated with HMM forms such as colloids and particles, demonstrating that the mobility of elements was reduced during the wet season. The colloidal fraction of elements such as Cr, Ni, and Cd was also correlated with dissolved Fe. As the concentration of LMM trace element species are very low, the mobility, biological uptake and the potential environmental impact should be low.

  6. Understanding the behavior of carbon dioxide and surface energy fluxes in semiarid Salt Lake Valley, Utah, USA

    Science.gov (United States)

    Ramamurthy, Prathap

    This dissertation reports the findings from the Salt Lake Valley flux study. The Salt Lake Valley flux study was designed to improve our understanding of the complex land-atmosphere interactions in urban areas. The flux study used the eddy covariance technique to quantify carbon dioxide and surface energy budget in the semiarid Salt Lake Valley. Apart from quantifying fluxes, the study has also added new insight into the nature of turbulent scalar transport in urban areas and has addressed some of the complications in using Eddy Covariance technique in urban areas. As part of this experiment, eddy fluxes of CO2 and surface energy fluxes were measured at two sites, with distinct urban landforms; One site was located in a suburban neighborhood with substantial vegetative cover, prototypical of many residential neighborhoods in the valley. The other CO2 site was in a preurban surrounding that resembled the Salt Lake Valley before it was urbanized. The two sites were intentionally chosen to illustrate the impact of urbanization on CO 2 and surface energy flux cycles. Results indicate that the suburban site acted as a sink of CO2 during the midday period due to photosynthesis and acted as a source of CO2 during the evening and nighttime periods. The vegetative cover around the suburban site also had a significant impact on the surface energy fluxes. Contribution from latent heat flux was substantially high at the suburban site during the summer months compared to sensible heat. The turbulence investigation found that the general behavior of turbulence was very much influenced by local factors and the statistics did not always obey Monin-Obukhov Similarity parameters. This investigation also found that the scalar (co)spectra observed at the suburban site were characterized by multiple peaks and were different compared to (co)spectra reported over forest and crop canopies. The study also observed multiscale CO2 transport at the suburban site during the convective period

  7. Ciliate diversity, community structure, and novel taxa in lakes of the McMurdo Dry Valleys, Antarctica.

    Science.gov (United States)

    Xu, Yuan; Vick-Majors, Trista; Morgan-Kiss, Rachael; Priscu, John C; Amaral-Zettler, Linda

    2014-10-01

    We report an in-depth survey of next-generation DNA sequencing of ciliate diversity and community structure in two permanently ice-covered McMurdo Dry Valley lakes during the austral summer and autumn (November 2007 and March 2008). We tested hypotheses on the relationship between species richness and environmental conditions including environmental extremes, nutrient status, and day length. On the basis of the unique environment that exists in these high-latitude lakes, we expected that novel taxa would be present. Alpha diversity analyses showed that extreme conditions-that is, high salinity, low oxygen, and extreme changes in day length-did not impact ciliate richness; however, ciliate richness was 30% higher in samples with higher dissolved organic matter. Beta diversity analyses revealed that ciliate communities clustered by dissolved oxygen, depth, and salinity, but not by season (i.e., day length). The permutational analysis of variance test indicated that depth, dissolved oxygen, and salinity had significant influences on the ciliate community for the abundance matrices of resampled data, while lake and season were not significant. This result suggests that the vertical trends in dissolved oxygen concentration and salinity may play a critical role in structuring ciliate communities. A PCR-based strategy capitalizing on divergent eukaryotic V9 hypervariable region ribosomal RNA gene targets unveiled two new genera in these lakes. A novel taxon belonging to an unknown class most closely related to Cryptocaryon irritans was also inferred from separate gene phylogenies. © 2014 Marine Biological Laboratory.

  8. Hydro-meteorological trends in the Gidabo catchment of the Rift Valley Lakes Basin of Ethiopia

    Science.gov (United States)

    Belihu, Mamuye; Abate, Brook; Tekleab, Sirak; Bewket, Woldeamlak

    2018-04-01

    The global and regional variability and changes of climate and stream flows are likely to have significant influence on water resource availability. The magnitude and impacts of climate variability and change differs spatially and temporally. This study examines the long term hydroclimatic changes, analyses of the hydro-climate variability and detect whether there exist significant trend or not in the Gidabo catchment, rift valley lakes basin of Ethiopia. Precipitation, temperature and stream flow time series data were used in monthly, seasonal and annual time scales. The precipitation and temperature data span is between 1982 and 2014 and that of stream flow is between 1976 and 2006. To detect trends the analysis were done by using Mann Kendal (MK), Sen's graphical method and to detect change point using the Pettit test. The comparison of trend analysis between MK trend test and Sen graphical method results depict mostly similar pattern. The annual rainfall trends exhibited a significant decrease by about 12 mm per year in the upstream, which is largely driven by the significant decrease in the peak season rainfall. The Pettit test revealed that the years 1997 and 2007 were the change points. It is noted that the rise of temperature over a catchment might have decreased the availability of soil moisture which resulted in less runoff. The temperature analyses also revealed that the catchment was getting warmer; particularly in the upstream. The minimum temperature trend showed a significant increase about 0.08°c per annum. There is generally a decreasing trend in stream flow. The monthly stream flow also exhibited a decreasing trend in February, March and September. The decline in annual and seasonal rainfall and the increase in temperature lead to more evaporation and directly affecting the stream flow negatively. This trend compounded with the growth of population and increasing demand for irrigation water exacerbates the competing demand for water resources. It

  9. Limnology of the Green Lakes Valley: Phytoplankton ecology and dissolved organic matter biogeochemistry at a long-term ecological research site

    Science.gov (United States)

    Miller, Matthew P.; McKnight, Diane M.

    2015-01-01

    Background: Surface waters are the lowest points in the landscape, and therefore serve as excellent integrators and indicators of changes taking place in the surrounding terrestrial and atmospheric environment.Aims: Here we synthesise the findings of limnological studies conducted during the past 15 years in streams and lakes in the Green Lakes Valley, which is part of the Niwot Ridge Long-term Ecological Research (LTER) Site.Methods: The importance of these studies is discussed in the context of aquatic ecosystems as indicators, integrators, and regulators of environmental change. Specifically, investigations into climatic, hydrologic, and nutrient controls on present-day phytoplankton, and historical diatom, community composition in the alpine lake, Green Lake 4, are reviewed. In addition, studies of spatial and temporal patterns in dissolved organic matter (DOM) biogeochemistry and reactive transport modelling that have taken place in the Green Lakes Valley are highlighted.Results and conclusions: The findings of these studies identify specific shifts in algal community composition and DOM biogeochemistry that are indicative of changing environmental conditions and provide a framework for detecting future environmental change in the Green Lakes Valley and in other alpine watersheds. Moreover, the studies summarised here demonstrate the importance of long-term monitoring programmes such as the LTER programme.

  10. An 11 000-year-long record of fire and vegetation history at Beaver Lake, Oregon, central Willamette Valley

    Science.gov (United States)

    Walsh, Megan K.; Pearl, Christopher A.; Whitlock, Cathy; Bartlein, Patrick J.; Worona, Marc A.

    2010-01-01

    High-resolution macroscopic charcoal and pollen analysis were used to reconstruct an 11??000-year-long record of fire and vegetation history from Beaver Lake, Oregon, the first complete Holocene paleoecological record from the floor of the Willamette Valley. In the early Holocene (ca 11??000-7500 calendar years before present [cal??yr??BP]), warmer, drier summers than at present led to the establishment of xeric woodland of Quercus, Corylus, and Pseudotsuga near the site. Disturbances (i.e., floods, fires) were common at this time and as a result Alnus rubra grew nearby. High fire frequency occurred in the early Holocene from ca 11??200-9300??cal??yr??BP. Riparian forest and wet prairie developed in the middle Holocene (ca 7500??cal??yr??BP), likely the result of a decrease in the frequency of flooding and a shift to effectively cooler, wetter conditions than before. The vegetation at Beaver Lake remained generally unchanged into the late Holocene (from 4000??cal??yr??BP to present), with the exception of land clearance associated with Euro-American settlement of the valley (ca 160??cal??yr BP). Middle-to-late Holocene increases in fire frequency, coupled with abrupt shifts in fire-episode magnitude and charcoal composition, likely indicate the influence anthropogenic burning near the site. The paleoecological record from Beaver Lake, and in particular the general increase in fire frequency over the last 8500??years, differs significantly from other low-elevation sites in the Pacific Northwest, which suggests that local controls (e.g., shifts in vegetation structure, intensification of human land-use), rather than regional climatic controls, more strongly influenced its environmental history. ?? 2010 Elsevier Ltd.

  11. 78 FR 20544 - Proposed Establishment of the Big Valley District-Lake County and Kelsey Bench-Lake County...

    Science.gov (United States)

    2013-04-05

    ... Lake warms more slowly than the adjacent land during the day and also holds its heat longer at night... formations are comprised of chert, greywacke, shale, metasedimentary rocks, and metavolcanic rocks thrown... included information on the wind, growing degree days, frost-free days, and precipitation within the...

  12. Tilted lake shorelines record the onset of motion along the Hilton Creek fault adjacent to Long Valley caldera, CA, USA

    Science.gov (United States)

    Perkins, J. P.; Finnegan, N. J.; Cervelli, P. F.; Langbein, J. O.

    2010-12-01

    Prominent normal faults occur within and around Long Valley caldera, in the eastern Sierra Nevada of California. However, their relationship to both the magmatic and tectonic evolution of the caldera since the 760 ka eruption of the Bishop Tuff remains poorly understood. In particular, in the Mono-Inyo Craters north of Long Valley, extensional faulting appears to be replaced by dike intrusion where magma is available in the crust. However, it is unclear whether extensional faults in Long Valley caldera have been active since the eruption of the Bishop Tuff (when the current topography was established) or are a relatively young phenomenon owing to the cooling and crystallization of the Long Valley magma reservoir. Here we use GPS geodesy and geomorphology to investigate the evolution of the Hilton Creek fault, the primary range-front fault bounding Long Valley caldera to the southwest. Our primary goals are to determine how long the Hilton Creek fault has been active and whether slip rates have been constant over that time interval. To characterize the modern deformation field, we capitalize on recently (July, 2010) reoccupied GPS benchmarks first established in 1999-2000. These fixed-array GPS data show no discernible evidence for recent slip on the Hilton Creek fault, which further highlights the need for longer-term constraints on fault motion. To establish a fault slip history, we rely on a suite of five prominent shorelines from Pleistocene Long Valley Lake whose ages are well constrained based on field relationships to dated lavas, and that are tilted southward toward the Hilton Creek fault. A preliminary analysis of shoreline orientations using GPS surveys and a 5-m-resolution Topographic Synthetic Aperture Radar (TOPSAR) digital elevation model shows that lake shorelines tilt towards the Hilton Creek fault at roughly parallel gradients (~ 0.6%). The measured shorelines range in inferred age from 100 ka to 500 ka, which constrain recent slip on the Hilton

  13. New structural/tectonical model and its implication on hydrological thinking and groundwater management - the Lake Tiberias, Jordan Rift Valley

    Science.gov (United States)

    Inbar, Nimrod; Magri, Fabien; Yellin-Dror, Annat; Rosenthal, Eliahu; Möller, Peter; Siebert, Christian; Guttman, Josef

    2014-05-01

    Lake Tiberias is a fresh water lake located at the Kinneret basin which is approximately 30 km long and 10 km wide. It comprises a link in the chain of pull-apart basins that characterizes the structure of the conspicuous Jordan Rift Valley (JRV). The basin surface is about 200 m below mean sea level (msl) and basin-fill attains a thickness of up to 8 km. Until recently, studies focused mainly on the upper strata of basin fill. Consequently, a complete three dimensional geological model, including clear view of the tectonic framework at the Kinneret Basin was incomplete. This situation imposes great difficulty in understanding the local hydrological system and as consequence enforce constrains on groundwater management of the regional aquifers that flows towards the lake. A recently proposed structural/tectonical model (Inbar, 2012) enables revaluation of several geohydrological aspects at Sea of Galilee and its surroundings and a new hydrological model based on those findings aims to clarify those aspects with relation to groundwater management. The deep-seated stratigraphical units were seismically studied at the Kinnarot Valley (southern part of Kinneret basin) where sufficient information is available (Inbar, 2012). This study shows the subsidence and northwestward tilting of the basin floor (pre-rift formations) and the flow of thick Late Miocene salt accumulation accordingly. Furthermore, shallower seismic data, collected at the lake itself, shows a suspected salt dome close to the western boundary fault of the basin (Resnikov et al., 2004). Salt flow is now suggested to be a substantial factor in the tectonic play. At the lake surroundings there are several springs and boreholes where brine immerges from an estimated depth of about 2-3 kilometers. Significant differences in brine characteristics raised questions regarding the location of brine traps, flow mechanism and the mixture process between the fresh water and the brine. However, the effect of the

  14. 78 FR 60686 - Establishment of the Big Valley District-Lake County and Kelsey Bench-Lake County Viticultural...

    Science.gov (United States)

    2013-10-02

    ... viticultural areas. Definition Section 4.25(e)(1)(i) of the TTB regulations (27 CFR 4.25(e)(1)(i)) defines a... to the road's intersection with Manning Creek, northern boundary of section 6, T13N/R9W; then (23) Proceed northwesterly (downstream) along Manning Creek to the shore of Clear Lake, section 30, T14N/R9W...

  15. Towards a Detailed Seismic Structure of the Valley of Mexico's Xochimilco Lake Zone.

    Science.gov (United States)

    Rabade, S.; Sanchez-Sanchez, J.; Ayala Hernandez, M.; Macias, M. A.; Aguilar Calderon, L. A.; Alcántara, L.; Almora Mata, D.; Castro Parra, G.; Delgado, R.; Leonardo Suárez, M.; Molina Avila, I.; Mora, A.; Perez-Yanez, C.; Ruiz, A. L.; Sandoval, H.; Torres Noguez, M.; Vazquez Larquet, R.; Velasco Miranda, J. M.; Aguirre, J.; Ramirez-Guzmán, L.

    2017-12-01

    Six centuries of gradual, intentional sediment filling in the Xochimilco Lake Zone have drastically reduced the size of the lake. The basin structure and the lake's clay limits and thickness are poorly constrained, and yet, essential to explain the city's anomalous ground motion. Therefore, we conducted an experiment to define the 3D velocity model of Mexico's capital; the CDMX-E3D. The initial phase involved the deployment of a moving set of 18-broadband stations with an interstation distance of 500m over a period of 19 weeks. We collected the data and analyzed the results for the Xochimilco Lake Zone using H/V Spectral Ratios (Nakamura, 1989), which provided an improved fundamental period map of the region. Results show that periods in the former lake zone have larger variability than values previously estimated. In order to obtain group velocity maps at different periods, we estimated Green's functions from ambient noise cross-correlations following standard methodologies to invert Rayleigh wave travel times (Bensen et al., 2007). Preliminary result show very low-velocity zones (100 m/s) and thick sediment layers in most of the former Xochimilco Lake area. This Project was funded by the Secretaria de Ciencia, Tecnología e Innovación (SECITI) of Mexico City. Project SECITI/073/2016.

  16. Modeling potential scenarios of the Tangjiashan Lake outburst and risk assessment in the downstream valley

    Science.gov (United States)

    Kidyaeva, Vera; Chernomorets, Sergey; Krylenko, Inna; Wei, Fangqiang; Petrakov, Dmitry; Su, Pengcheng; Yang, Hongjuan; Xiong, Junnan

    2017-09-01

    This research is devoted to Tangjiashan Lake, a quake landslide-dammed lake, situated in Sichuan Province, China, which was formed by a landslide triggered by the Wenchuan Earthquake on 12 May 2008. A STREAM_2D two-dimensional hydrodynamic model of Russia was applied to simulate the process of two flood scenarios: 1, lake dam outbreak, and 2, dam overtopping. An artificial dam outbreak was made after the earthquake to lower the water level of the lake in 2008, which led to a great flood with a maximum water discharge of more than 6400 m3/s. The negative impact of the flood was reduced by a timely evacuation of the population. Flood hazards still remain in the event of new landslides into the lake and lake dam overtopping (Scenario 2), in which case a maximum water discharge at the dam crest would reach 5000 m3/s, placing the population of Shabacun and Shilingzi villages in the zone of flood impact.

  17. Stochastic and cyclic deposition of multiple subannual laminae in an urban lake (Twin Lake, Golden Valley, Minnesota, USA)

    Science.gov (United States)

    Myrbo, A.; Ustipak, K.; Demet, B.

    2013-12-01

    Twin Lake, a small, deep, meromictic urban lake in Minneapolis, Minnesota, annually deposits two to 10 laminae that are distinguished from one another by composition and resulting color. Sediment sources are both autochthonous and allochthonous, including pure and mixed laminae of authigenic calcite, algal organic matter, and diatoms, as well as at least three distinct types of sediment gravity flow deposits. Diagenetic iron sulfide and iron phosphate phases are minor components, but can affect color out of proportion to their abundance. We used L*a*b* color from digital images of a freeze core slab, and petrographic smear slides of individual laminae, to categorize 1080 laminae deposited between 1963 and 2010 CE (based on lead-210 dating). Some causal relationships exist between the ten categories identified: diatom blooms often occur directly above the debris of gravity flows that probably disrupt the phosphate-rich monimolomnion and fertilize the surface waters; calcite whitings only occur after diatom blooms that increase calcite saturation. Stochastic events, as represented by laminae rich in siliciclastics and other terrigenous material, or shallow-water microfossils and carbonate morphologies, are the dominant sediment source. The patterns of cyclic deposition (e.g., summer and winter sedimentation) that produce 'normal' varve couplets in some lakes are continually interrupted by these stochastic events, to such an extent that spectral analysis finds only a weak one-year cycle. Sediments deposited before about 1900, and extending through the entire Holocene sequence (~10m) are varve couplets interrupted by thick (20-90 cm) debris layers, indicating that gravity flows were lower in frequency but greater in magnitude before the historical period, probably due to an increased frequency of disturbance under urban land-use.

  18. Characterize the hydrogeological properties and probe the stress field in Salt Lake Valley, Utah using SAR imagery

    Science.gov (United States)

    Hu, X.; Lu, Z.; Barbot, S.; Wang, T.

    2017-12-01

    Aquifer skeletons deform actively in response to the groundwater redistribution and hydraulic head changes with varied time scales of delay and sensitivity, that can also, in some instances, trigger earthquakes. However, determining the key hydrogeological properties and understanding the interactions between aquifer and seismicity generally requires the analysis of dense water level data combined with expensive drilling data (borehole breakouts). Here we investigate the spatiotemporal correlation among ground motions, hydrological changes, earthquakes, and faults in Salt Lake Valley, Utah, based on InSAR observations from ENVISAT ASAR (2004-2010) and Sentinel-1A (2015-2016). InSAR results show a clear seasonal and long-term correlation between surface uplift/subsidence and groundwater recharge/discharge, with evidence for an average net uplift of 15 mm/yr for a period of 7 years. The long-term uplift, remarkably bounded by faults, reflects a net increase in pore pressure associated with prolonged water recharge probably decades ago. InSAR-derived ground deformation and its correlation with head variations allow us to quantify hydrogeological properties - decay coefficient, storage coefficient, and bulk compressibility. We also model the long-term deformation using a shallow vertical shearing reservoir to constrain its thickness and strain rate. InSAR-derived deformation help reveal the coupled hydrological and tectonic processes in Salt Lake Valley: the embedded faults disrupt the groundwater flow and partition the hydrological units, and the pore pressure changes rearrange the aquifer skeleton and modulate the stress field, which may affect the basin-wide seismicity.

  19. Impacts of flamingos on saline lake margin and shallow lacustrine sediments in the Kenya Rift Valley

    Science.gov (United States)

    Scott, Jennifer J.; Renaut, Robin W.; Owen, R. Bernhart

    2012-11-01

    Studies of modern, Holocene, and Pleistocene sediments around saline to hypersaline, alkaline Lake Bogoria and Lake Magadi show that evidence of flamingo activity in marginal areas of these lakes is nearly ubiquitous. Flamingos produce discrete structures such as webbed footprints (~ 9 cm long, ~ 11 cm wide) and nest mounds (~ 30 cm wide, ~ 20 cm high), and they also extensively rework sediments in delta front, delta plain, and shoreline areas. Large (~ 0.5-2 cm in diameter), pinched, 'bubble pores' and ped-like mud clumps are formed by the trampling and churning of wet clay-rich sediments in these settings. Flamingo nest mounds, although superficially similar to some thrombolite mounds, are typically internally structureless, unless formed on pre-existing sediments that preserve internal structures. The flamingo mounds consist of a dense, packed oval-shaped core, a surrounding 'body' of packed sediment, and an external layer with a ped-like texture of clumped mud. The nests may contain open holes from roots or feather shafts incorporated into the nest, and (or) burrows produced once the nests are abandoned. In areas with high densities of flamingos, lake margin sediments may be preferentially compacted, particularly at breeding sites, and become resistant to subaerial erosion and the effects of transgressive ravinement on time scales ranging from seasons to tens of thousands of years. The relatively well-compacted nest mounds and associated sediments also contribute to the stability of delta distributary channels during regressive-transgressive cycles, and can lead to the minor channelization of unconfined flows where currents are diverted around nest mounds. Pleistocene exhumed surfaces of relatively well-indurated lake margin sediments at Lake Bogoria and Lake Magadi that are interpreted as combined regressive and transgressive surfaces (flooding surface/sequence boundary) preserve evidence of flamingo activities, and are overlain by younger, porous lacustrine

  20. Over-winter ecology of Oncorhynchus nerka in the Sawtooth Valley Lakes

    International Nuclear Information System (INIS)

    Steinhart, G.B.; Wurtsbaugh, W.A.

    1996-01-01

    Included in this section of the report on limnology of Lakes in the Snake River Plain are descriptions of winter limnological conditions and kokanee growth characteristics from 1993 to 1995. The winter is usually a very harsh period for animals, and little is know about the over-winter ecology os sockeye salmon. They are active a temperatures below 4 F. The chapter discusses methods and results. 14 figs, 4 tabs

  1. Over-winter ecology of Oncorhynchus nerka in the Sawtooth Valley Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Steinhart, G.B.; Wurtsbaugh, W.A.

    1996-05-01

    Included in this section of the report on limnology of Lakes in the Snake River Plain are descriptions of winter limnological conditions and kokanee growth characteristics from 1993 to 1995. The winter is usually a very harsh period for animals, and little is know about the over-winter ecology os sockeye salmon. They are active a temperatures below 4 F. The chapter discusses methods and results. 14 figs, 4 tabs.

  2. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-124 (Echo Lake-Maple Valley #1 [Mile 9-16], Adno 8258)

    Energy Technology Data Exchange (ETDEWEB)

    Shurtliff, Aaron [Bonneville Power Administration (BPA), Portland, OR (United States)

    2003-02-18

    Vegetation Management for portion of the Echo Lake – Maple Valley #1 500 kV transmission line located from tower structure 9/2 to 16/5. BPA proposes to clear targeted vegetation within the Right-of-Ways along access roads and around towers that may impede the operation and maintenance of the subject transmission lines. See Section 1.4 of the attached checklists for a complete description of the proposed action.

  3. Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOE/EIS-0285/SA-125 (Echo Lake-Maple Valley #1 [Mile 1-9], Adno 8258)

    Energy Technology Data Exchange (ETDEWEB)

    Shurtliff, Aaron [Bonneville Power Administration (BPA), Portland, OR (United States)

    2003-02-18

    Vegetation Management for portion of the Echo Lake – Maple Valley #1 500 kV transmission line located from tower structure 1/1 to 9/2. BPA proposes to clear targeted vegetation within the Right-of-Ways along access roads and around towers that may impede the operation and maintenance of the subject transmission lines. See Section 1.4 of the attached checklists for a complete description of the proposed action.

  4. Numerical Simulations of an Inversion Fog Event in the Salt Lake Valley during the MATERHORN-Fog Field Campaign

    Science.gov (United States)

    Chachere, Catherine N.; Pu, Zhaoxia

    2018-01-01

    An advanced research version of the Weather Research and Forecasting (WRF) Model is employed to simulate a wintertime inversion fog event in the Salt Lake Valley during the Mountain Terrain Atmospheric Modeling and Observations Program (MATERHORN) field campaign during January 2015. Simulation results are compared to observations obtained from the field program. The sensitivity of numerical simulations to available cloud microphysical (CM), planetary boundary layer (PBL), radiation, and land surface models (LSMs) is evaluated. The influence of differing visibility algorithms and initialization times on simulation results is also examined. Results indicate that the numerical simulations of the fog event are sensitive to the choice of CM, PBL, radiation, and LSM as well as the visibility algorithm and initialization time. Although the majority of experiments accurately captured the synoptic setup environment, errors were found in most experiments within the boundary layer, specifically a 3° warm bias in simulated surface temperatures compared to observations. Accurate representation of surface and boundary layer variables are vital in correctly predicting fog in the numerical model.

  5. Identification and Characterization of Quantitative Trait Loci for Shattering in Japonica Rice Landrace Jiucaiqing from Taihu Lake Valley, China

    Directory of Open Access Journals (Sweden)

    Jinping Cheng

    2016-11-01

    Full Text Available Easy shattering reduces yield from grain loss during rice ( L. harvest. We characterized a nonshattering rice landrace Jiucaiqing from Taihu Lake valley in China. The breaking tensile strength (BTS; grams force, gf of the grain pedicel was measured using a digital force gauge to evaluate the degree of shattering at 0, 7, 14, 21, 28, and 35 d after heading (DAH. The BTS of Jiucaiqing did not significantly decrease with increasing DAH, maintaining a level of 152.2 to 195.9 gf, while that of IR26 decreased greatly during 0 to 14 DAH and finally stabilized at ∼100 gf. Then the chromosome segment substitution lines (CSSLs and near isogenic lines (NILs of Jiucaiqing in IR26 background were developed for quantitative trait loci (QTL mapping. Four putative QTL (, , , and for shattering were detected, and the was confirmed on chromosome 1. We further mapped to a 98.4-kb region, which contains 14 genes. Os01g62920 was considered to be a strong candidate for , which colocated with . Further quantitative real-time polymerase chain reaction (PCR analyses confirmed that the QTL can significantly decrease the expression of shattering related genes (, , , , and especially at the middle development stage at 10 and 15 cm panicle length, which causes rice shattering decrease. The elite allele and the NIL with desirable agronomic traits identified in this study could be useful for rice breeding.

  6. Measurements and Modeling of Turbulent Fluxes during Persistent Cold Air Pool Events in Salt Lake Valley, Utah

    Science.gov (United States)

    Ivey, C. E.; Sun, X.; Holmes, H.

    2017-12-01

    Land surface processes are important in meteorology and climate research since they control the partitioning of surface energy and water exchange at the earth's surface. The surface layer is coupled to the planetary boundary layer (PBL) by surface fluxes, which serve as sinks or sources of energy, moisture, momentum, and atmospheric pollutants. Quantifying the surface heat and momentum fluxes at the land-atmosphere interface, especially for different surface land cover types, is important because they can further influence the atmospheric dynamics, vertical mixing, and transport processes that impact local, regional, and global climate. A cold air pool (CAP) forms when a topographic depression (i.e., valley) fills with cold air, where the air in the stagnant layer is colder than the air aloft. Insufficient surface heating, which is not able to sufficiently erode the temperature inversion that forms during the nighttime stable boundary layer, can lead to the formation of persistent CAPs during wintertime. These persistent CAPs can last for days, or even weeks, and are associated with increased air pollution concentrations. Thus, realistic simulations of the land-atmosphere exchange are meaningful to achieve improved predictions of the accumulation, transport, and dispersion of air pollution concentrations. The focus of this presentation is on observations and modeling results using turbulence data collected in Salt Lake Valley, Utah during the 2010-2011 wintertime Persistent Cold Air Pool Study (PCAPS). Turbulent fluxes and the surface energy balance over seven land use types are quantified. The urban site has an energy balance ratio (EBR) larger than one (1.276). Negative Bowen ratio (-0.070) is found at the cropland site. In addition to turbulence observations, half-hourly WRF simulated net radiation, latent heat, sensible heat, ground heat fluxes during one persistent CAP event are evaluated using the PCAPS observations. The results show that sensible and latent

  7. Steroidal and phenolic compounds from Sidastrum paniculatum (L.) Fryxell and evaluation of cytotoxic and anti-inflammatory activities

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcante, Jose Marcilio Sobral; Nogueira, Tiago Bezerra de Sa de Souza; Tomaz, Anna Claudia de Andrade; Antas e Silva, Davi; Agra, Maria de Fatima; Souza, Maria de Fatima Vanderlei de [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Lab. de Tecnologia Farmaceutica Prof. Delby Fernandes de Medeiros; Carvalho, Paulo Roberto Cavalcanti; Ramos, Silvia Rafaelli; Nascimento, Silene Carneiro do; Goncalves-Silva, Teresinha [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Antibioticos

    2010-07-01

    Sidastrum paniculatum (L.) Fryxell belongs to the family Malvaceae and is popularly known as 'malva roxa' or 'malvavisco'. The phytochemical study of the hexane, CHCl{sub 3} and EtOAc phases from the crude ethanol extract of S. paniculatum led to the isolation of six compounds: a mixture of {beta}-sitosterol and stigmasterol, 4-methoxy-3-hydroxybenzoic acid, 4-methoxy-3-hydroxybenzaldehyde, N-trans-feruloyltyramine and kaempferol-3-O-{beta}{beta}-D-(6''-E-p-coumaroyl) glucoside. The structural identification of the compounds was made on the basis of spectroscopic methods such as IR, {sup 1}H and {sup 13}C NMR with the aid of including two-dimensional techniques, besides comparison with literature data. The {beta}-sitosterol and stigmasterol mixture showed a significant anti-inflammatory activity. (author)

  8. Steroidal and phenolic compounds from Sidastrum paniculatum (L.) Fryxell and evaluation of cytotoxic and anti-inflammatory activities

    International Nuclear Information System (INIS)

    Cavalcante, Jose Marcilio Sobral; Nogueira, Tiago Bezerra de Sa de Souza; Tomaz, Anna Claudia de Andrade; Antas e Silva, Davi; Agra, Maria de Fatima; Souza, Maria de Fatima Vanderlei de; Carvalho, Paulo Roberto Cavalcanti; Ramos, Silvia Rafaelli; Nascimento, Silene Carneiro do; Goncalves-Silva, Teresinha

    2010-01-01

    Sidastrum paniculatum (L.) Fryxell belongs to the family Malvaceae and is popularly known as 'malva roxa' or 'malvavisco'. The phytochemical study of the hexane, CHCl 3 and EtOAc phases from the crude ethanol extract of S. paniculatum led to the isolation of six compounds: a mixture of β-sitosterol and stigmasterol, 4-methoxy-3-hydroxybenzoic acid, 4-methoxy-3-hydroxybenzaldehyde, N-trans-feruloyltyramine and kaempferol-3-O-β-D-(6''-E-p-coumaroyl) glucoside. The structural identification of the compounds was made on the basis of spectroscopic methods such as IR, 1 H and 13 C NMR with the aid of including two-dimensional techniques, besides comparison with literature data. The β-sitosterol and stigmasterol mixture showed a significant anti-inflammatory activity. (author)

  9. Steroidal and phenolic compounds from Sidastrum paniculatum (L. Fryxell and evaluation of cytotoxic and anti-inflammatory activities

    Directory of Open Access Journals (Sweden)

    José Marcílio Sobral Cavalcante

    2010-01-01

    Full Text Available Sidastrum paniculatum (L. Fryxell belongs to the family Malvaceae and is popularly known as "malva roxa" or "malvavisco". The phytochemical study of the hexane, CHCl3 and EtOAc phases from the crude ethanol extract of S. paniculatum led to the isolation of six compounds: a mixture of β-sitosterol and stigmasterol, 4-methoxy-3-hydroxybenzoic acid, 4-methoxy-3-hydroxybenzaldehyde, N-trans-feruloyltyramine and kaempferol-3-O-β-D-(6''-E-p -coumaroyl glucoside. The structural identification of the compounds was made on the basis of spectroscopic methods such as IR, ¹H and 13C NMR with the aid of including two-dimensional techniques, besides comparison with literature data. The β-sitosterol and stigmasterol mixture showed a significant anti-inflammatory activity.

  10. Coring of Karakel’ Lake sediments (Teberda River valley and prospects for reconstruction of glaciation and Holocene climate history in the Caucasus

    Directory of Open Access Journals (Sweden)

    O. N. Solomina

    2013-01-01

    Full Text Available Lacustrine sediments represent an important data source for glacial and palaeoclimatic reconstructions. Having a number of certain advantages, they can be successfully used as a means of specification of glacier situation and age of moraine deposits, as well as a basis for detailed climatic models of the Holocene. The article focuses on the coring of sediments of Lake Kakakel (Western Caucasus that has its goal to clarify the Holocene climatic history for the region, providing the sampling methods, lithologic description of the sediment core, obtained radiocarbon dating and the element composition of the sediments. The primary outlook over the results of coring of the sediments of the Lake Karakyol helped to reconsider the conventional opinion on the glacial fluctuations in the valley of Teberda and to assume the future possibility for high-definition palaeoclimatic reconstruction for Western Caucasus.

  11. Valley formation by groundwater seepage, pressurized groundwater outbursts and crater-lake overflow in flume experiments with implications for Mars

    NARCIS (Netherlands)

    Marra, Wouter A.; Braat, Lisanne; Baar, Anne W.; Kleinhans, Maarten G.

    2014-01-01

    Remains of fluvial valleys on Mars reveal the former presence of water on the surface. However, the source of water and the hydrological setting is not always clear, especially in types of valleys that are rare on Earth and where we have limited knowledge of the processes involved. We investigated

  12. Decadal-scale changes in dissolved-solids concentrations in groundwater used for public supply, Salt Lake Valley, Utah

    Science.gov (United States)

    Thiros, Susan A.; Spangler, Larry

    2010-01-01

    Basin-fill aquifers are a major source of good-quality water for public supply in many areas of the southwestern United States and have undergone increasing development as populations have grown over time. During 2005, the basin-fill aquifer in Salt Lake Valley, Utah, provided approximately 75,000 acre-feet, or about 29 percent of the total amount of water used by a population of 967,000. Groundwater in the unconsolidated basin-fill deposits that make up the aquifer occurs under unconfined and confined conditions. Water in the shallow unconfined part of the groundwater system is susceptible to near-surface contamination and generally is not used as a source of drinking water. Groundwater for public supply is withdrawn from the deeper unconfined and confined parts of the system, termed the principal aquifer, because yields generally are greater and water quality is better (including lower dissolved-solids concentrations) than in the shallower parts of the system. Much of the water in the principal aquifer is derived from recharge in the adjacent Wasatch Range (mountain-block recharge). In many areas, the principal aquifer is separated from the overlying shallow aquifer by confining layers of less permeable, fine-grained sediment that inhibit the downward movement of water and any potential contaminants from the surface. Nonetheless, under certain hydrologic conditions, human-related activities can increase dissolved-solids concentrations in the principal aquifer and result in groundwater becoming unsuitable for consumption without treatment or mixing with water having lower dissolved-solids concentrations. Dissolved-solids concentrations in areas of the principal aquifer used for public supply typically are less than 500 milligrams per liter (mg/L), the U.S. Environmental Protection Agency (EPA) secondary (nonenforceable) drinking-water standard. However, substantial increases in dissolved-solids concentrations in the principal aquifer have been documented in some

  13. High pollution events in the Great Salt Lake Basin and its adjacent valleys. Insights on mechanisms and spatial distribution of the formation of secondary aerosol.

    Science.gov (United States)

    Franchin, A.; Middlebrook, A. M.; Baasandorj, M.; Brown, S. S.; Fibiger, D. L.; Goldberger, L.; McDuffie, E. E.; Moravek, A.; Murphy, J. G.; Thornton, J. A.; Womack, C.

    2017-12-01

    High pollution events are common in many locations in the U.S.A. and around the world. They can last several days or up to weeks and they negatively affect human health, deteriorate visibility, and increase premature mortality. The main causes for high pollution events are related to meteorology and sources. They often happen in the winter, when high emissions, stagnation and reduced mixing, due to a shallow boundary layer, cause high concentrations of pollutants to accumulate. In the last decades, the air quality in the U.S. has seen an overall improvement, due to the reductions in particulate and gaseous pollutants. However, some areas remain critical. The Great Salt Lake Basin and its adjacent valleys are currently areas where high pollution events are a serious environmental problem involving more than 2.4 million people. We will present the results of the Utah Wintertime Fine Particulate Study (UWFPS) that took place in winter 2017. During UWFPS, we carried out airborne measurements of aerosol chemical composition and precursor vapor concentrations over the Great Salt Lake Basin and its adjacent valleys. We will give insights into how and under which conditions conversion of precursor vapors into aerosol particles takes place in the area. We will also present a comparison of our measurements with models that will provide an insight of the mechanisms that lead to the formation of secondary aerosol particles. With the results of our work, we aim to inform strategies for pollution control in the future.

  14. Changes in surface area of the Böön Tsagaan and Orog lakes (Mongolia, Valley of the Lakes, 1974-2013) compared to climate and permafrost changes

    Science.gov (United States)

    Szumińska, Danuta

    2016-07-01

    The main aim of the study is the analysis of changes in surface area of lake Böön Tsagaan (45°35‧N, 99°8‧E) and lake Orog (45°3‧N, 100°44‧E) taking place in the last 40 years in the context of climate conditions and permafrost degradation. The lakes, located in Central Mongolia, at the borderline of permafrost range are fed predominantly by river waters and groundwater from the surrounding mountain areas, characterized by continuous and discontinuous permafrost occurrence - mostly the Khangai. The analysis of the Böön Tsagaan and Orog lake surface area in 1974-2013 was conducted based on satellite images, whereas climate conditions were analysed using the NOAA climate data and CRU dataset. Principal Component Analysis (PCA) was used to study the relationship patterns between the climatic factors and changes in the surface area of the lakes. A tendency for a decrease in surface area, intermittent with short episodes of resupply, was observed in both studied lakes. Climate changes recorded in the analysed period had both direct and indirect impacts on water supply to lakes. Taking into account the results of PCA analysis, the most significant factors include: fluctuation of annual precipitation, increase in air temperature and thickness of snow cover. The extended duration of snow cover in the last decades of the 20th century may constitute a key factor in relation to permafrost degradation.

  15. Characterizing Microbial Mat Morphology with Structure from Motion Techniques in Ice-Covered Lake Joyce, McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Mackey, T. J.; Leidman, S. Z.; Allen, B.; Hawes, I.; Lawrence, J.; Jungblut, A. D.; Krusor, M.; Coleman, L.; Sumner, D. Y.

    2015-12-01

    Structure from Motion (SFM) techniques can provide quantitative morphological documentation of otherwise inaccessible benthic ecosystems such as microbial mats in Lake Joyce, a perennially ice-covered lake of the Antarctic McMurdo Dry Valleys (MDV). Microbial mats are a key ecosystem of MDV lakes, and diverse mat morphologies like pinnacles emerge from interactions among microbial behavior, mineralization, and environmental conditions. Environmental gradients can be isolated to test mat growth models, but assessment of mat morphology along these gradients is complicated by their inaccessibility: the Lake Joyce ice cover is 4-5 m thick, water depths containing diverse pinnacle morphologies are 9-14 m, and relevant mat features are cm-scale. In order to map mat pinnacle morphology in different sedimentary settings, we deployed drop cameras (SeaViewer and GoPro) through 29 GPS referenced drill holes clustered into six stations along a transect spanning 880 m. Once under the ice cover, a boom containing a second GoPro camera was unfurled and rotated to collect oblique images of the benthic mats within dm of the mat-water interface. This setup allowed imaging from all sides over a ~1.5 m diameter area of the lake bottom. Underwater lens parameters were determined for each camera in Agisoft Lens; images were reconstructed and oriented in space with the SFM software Agisoft Photoscan, using the drop camera axis of rotation as up. The reconstructions were compared to downward facing images to assess accuracy, and similar images of an object with known geometry provided a test for expected error in reconstructions. Downward facing images identify decreasing pinnacle abundance in higher sedimentation settings, and quantitative measurements of 3D reconstructions in KeckCAVES LidarViewer supplement these mat morphological facies with measurements of pinnacle height and orientation. Reconstructions also help isolate confounding variables for mat facies trends with measurements

  16. Scenario earthquake hazards for the Long Valley Caldera-Mono Lake area, east-central California (ver. 2.0, January 2018)

    Science.gov (United States)

    Chen, Rui; Branum, David M.; Wills, Chris J.; Hill, David P.

    2014-06-30

    As part of the U.S. Geological Survey’s (USGS) multi-hazards project in the Long Valley Caldera-Mono Lake area, the California Geological Survey (CGS) developed several earthquake scenarios and evaluated potential seismic hazards, including ground shaking, surface fault rupture, liquefaction, and landslide hazards associated with these earthquake scenarios. The results of these analyses can be useful in estimating the extent of potential damage and economic losses because of potential earthquakes and also for preparing emergency response plans.The Long Valley Caldera-Mono Lake area has numerous active faults. Five of these faults or fault zones are considered capable of producing magnitude ≥6.7 earthquakes according to the Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2) developed by the 2007 Working Group on California Earthquake Probabilities (WGCEP) and the USGS National Seismic Hazard Mapping Program. These five faults are the Fish Slough, Hartley Springs, Hilton Creek, Mono Lake, and Round Valley Faults. CGS developed earthquake scenarios for these five faults in the study area and for the White Mountains Fault Zone to the east of the study area.In this report, an earthquake scenario is intended to depict the potential consequences of significant earthquakes. A scenario earthquake is not necessarily the largest or most damaging earthquake possible on a recognized fault. Rather it is both large enough and likely enough that emergency planners should consider it in regional emergency response plans. In particular, the ground motion predicted for a given scenario earthquake does not represent a full probabilistic hazard assessment, and thus it does not provide the basis for hazard zoning and earthquake-resistant building design.Earthquake scenarios presented here are based on fault geometry and activity data developed by the WGCEP, and are consistent with the 2008 Update of the United States National Seismic Hazard Maps (NSHM). Alternatives

  17. Status and understanding of groundwater quality in the Bear Valley and Lake Arrowhead Watershed Study Unit, 2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Mathany, Timothy; Burton, Carmen

    2017-06-20

    Groundwater quality in the 112-square-mile Bear Valley and Lake Arrowhead Watershed (BEAR) study unit was investigated as part of the Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit comprises two study areas (Bear Valley and Lake Arrowhead Watershed) in southern California in San Bernardino County. The GAMA-PBP is conducted by the California State Water Resources Control Board (SWRCB) in cooperation with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory.The GAMA BEAR study was designed to provide a spatially balanced, robust assessment of the quality of untreated (raw) groundwater from the primary aquifer systems in the two study areas of the BEAR study unit. The assessment is based on water-quality collected by the USGS from 38 sites (27 grid and 11 understanding) during 2010 and on water-quality data from the SWRCB-Division of Drinking Water (DDW) database. The primary aquifer system is defined by springs and the perforation intervals of wells listed in the SWRCB-DDW water-quality database for the BEAR study unit.This study included two types of assessments: (1) a status assessment, which characterized the status of the quality of the groundwater resource as of 2010 by using data from samples analyzed for volatile organic compounds, pesticides, and naturally present inorganic constituents, such as major ions and trace elements, and (2) an understanding assessment, which evaluated the natural and human factors potentially affecting the groundwater quality. The assessments were intended to characterize the quality of groundwater resources in the primary aquifer system of the BEAR study unit, not the treated drinking water delivered to consumers. Bear Valley study area and the Lake Arrowhead Watershed study area were also compared statistically on the basis of water-quality results and factors potentially affecting the groundwater quality.Relative concentrations (RCs

  18. Understanding the groundwater dynamics in the Southern Rift Valley Lakes Basin (Ethiopia). Multivariate statistical analysis method, oxygen (δ 18O) and deuterium (δ 2H)

    International Nuclear Information System (INIS)

    Girum Admasu Nadew; Zebene Lakew Tefera

    2013-01-01

    Multivariate statistical analysis is very important to classify waters of different hydrochemical groups. Statistical techniques, such as cluster analysis, can provide a powerful tool for analyzing water chemistry data. This method is used to test water quality data and determine if samples can be grouped into distinct populations that may be significant in the geologic context, as well as from a statistical point of view. Multivariate statistical analysis method is applied to the geochemical data in combination with δ 18 O and δ 2 H isotopes with the objective to understand the dynamics of groundwater using hierarchical clustering and isotope analyses. The geochemical and isotope data of the central and southern rift valley lakes have been collected and analyzed from different works. Isotope analysis shows that most springs and boreholes are recharged by July and August rainfalls. The different hydrochemical groups that resulted from the multivariate analysis are described and correlated with the geology of the area and whether it has any interaction with a system or not. (author)

  19. Iron-titanium oxide minerals and magnetic susceptibility anomalies in the Mariano Lake-Lake Valley cores - Constraints on conditions of uranium mineralization in the Morrison Formation, San Juan Basin, New Mexico

    International Nuclear Information System (INIS)

    Reynolds, R.L.; Fishman, N.S.; Scott, J.H.; Hudson, M.R.

    1986-01-01

    Petrographic study of the Mariano Lake-Lake Valley cores reveals three distinct zones of postdepositional alteration of detrital Fe-Ti (iron-titanium) oxide minerals in the Westwater Canyon Member of the Upper Jurassic Morrisson Formation. In the uranium-bearing and adjacent portions of the Westwater Canyon, these detrital Fe-Ti oxide minerals have been thoroughly altered by leaching of iron. Stratigraphically lower parts of the Westwater Canyon and the underlying Recapture Member are characterized by preservation of Fe-Ti oxide grains, primarily magnetite and ilmenite, and of hematite, and by an absence or uranium concentrations. Partly destroyed Fe-Ti oxide minerals occupy an interval between the zones of destruction and preservation. Alteration patterns of the Fe-Ti oxide minerals are reflected in bore-hole magnetic susceptibility logs. Magnetic susceptibility response in the upper parts of the Westwater Canyon Member is flat and uniformly <500 μSI units, but at greater depths it fluctuates sharply, from <1,000 to nearly 8,000 μSI units. The boundary between uniformly low and high magnetic susceptibility response corresponds closely to the interval that divides the zone of completely altered from the zone of preserved detrital Fe-Ti oxide minerals. The alteration pattern suggests that solutions responsible for destruction of the Fe-ti oxide minerals originated in the overlying Brushy Basin Member of the Morrison Formation. Previous studies indicate that these solutions were rich in soluble organic matter and perhaps in uranium. Uranium precipitation may have been controlled by a vertically fluctuation interface between organic-rich solutions and geochemically different fluids in which the detrital Fe-Ti oxide minerals were preserved

  20. Characterization of the abundant ≤0.2 μm cell-like particles inhabiting Lake Vida brine, McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Kuhn, E.; Ichimura, A.; Peng, V.; Fritsen, C. H.; Murray, A. E.

    2011-12-01

    Most lakes in the McMurdo Dry Valleys are perennially covered with 3 to 6 m of ice, but Lake Vida is frozen from the surface through the lake bed, with ice permeated by brine channels. Brine collected from within the ice of Lake Vida is six times saltier than seawater, anoxic, with temperature of -13.4 C, pH of 6.2, high concentrations of ferrous iron (>300 μM), NH4+ (3.6 mM), and N2O (>58 μM), making it a unique environment. The first analysis of Vida brine microbial community (sampled in 2005) detected a cell rich environment (107 cells/mL), with cells falling into two size classes: ≥0.5 μm (105 cells/mL) and ~0.2 μm (107 cells/mL). Microorganisms in the domain Bacteria were detected, but Eukarya and Archaea were not. The clone library from 2005 identified Bacteria related to the phyla Proteobacteria (γ, δ, and ɛ), Lentisphaera, Firmicutes, Spirochaeta, Bacterioidetes, Actinobacteria, Verrucomicrobia, and candidate Division TM7. Brine samples were collected again in the austral summer of 2010 in which one of the focus areas is interrogating the ~0.2 μm cell size class. Molecular, imaging, and elemental analyses were employed to characterize the population of nano-sized particles (NP) that pass through 0.2 μm filters. The aim of testing was to determine whether or not these particles are cells with a morphology resulting from environmental stresses. These results are being compared to the same analyses applied in the whole brine microbial community. A 0.2 μm filtrate of brine incubated for 25 days at -13 C was collected on a 0.1 μm filter. Analysis of the 16S rRNA gene DGGE profile showed differences in the banding pattern and relative intensity when comparing the 0.2 μm filtrate to the whole brine community. A 16S rRNA clone library from the 0.2 μm filtrate indicated the presence of genera previously described in the 2005 whole brine community clone library like Pscychrobacter, Marinobacter, and members related to candidate Division TM7. Also, the

  1. Hydrology and model of North Fork Solomon River Valley, Kirwin Dam to Waconda Lake, north-central Kansas

    Science.gov (United States)

    Jorgensen, Donald G.; Stullken, Lloyd E.

    1981-01-01

    The alluvial valley of the North Fork Solomon River is an important agricultural area. Reservoir releases diverted below Kirwin Dam are the principal source of irrigation water. During the 1970'S, severe water shortages occurred in Kirwin Reservoir and other nearby reservoirs as a result of an extended drought. Some evidence indicates that surface-water shortages may have been the result of a change in the rainfall-runoff relationship. Examination of the rainfall-runoff relationship shows no apparent trend from 1951 to 1968, but annual records from 1969 to 1976 indicate that deficient rainfall occurred during 6 of the 8 years. Ground water from the alluvial aquifer underlying the river valley also is used extensively for irrigation. Utilization of ground water for irrigation greatly increased from about 200 acre-feet in 1955 to about 12,300 acre-feet in 1976. Part of the surface water diverted for irrigation has percolated downward into the aquifer raising the ground-water level. Ground-water storage in the aquifer increased from 230,000 acre-feet in 1946 to 275,000 acre-feet in 1976-77. A digital model was used to simulate the steady-state conditions in the aquifer prior to closure of Kirwin Dam. Model results indicated that precipitation was the major source of recharge to the aquifer. The effective recharge, or gain from precipitation minus evapotranspiration, was about 11,700 acre-feet per year. The major element of discharge from the aquifer was leakage to the river. The simulated net leakage (leakage to the river minus leakage from the river) was about 11,500 acre-feet per year. The simulated value is consistent with the estimated gain in base flow of the river within the area modeled. Measurements of seepage used to determine gain and loss to the stream were made twice during 1976. Based on these measurements and on base-flow periods identified from hydrographs, it was estimated that the ground-water discharge to the stream has increased about 4,000 acre

  2. Geohydrology, water quality, and simulation of groundwater flow in the stratified-drift aquifer system in Virgil Creek and Dryden Lake Valleys, Town of Dryden, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.; Bugliosi, Edward F.

    2013-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Tompkins County Planning Department and the Town of Dryden, New York, began a study of the stratified-drift aquifer system in the Virgil Creek and Dryden Lake Valleys in the Town of Dryden, Tompkins County. The study provided geohydrologic data needed by the town and county to develop a strategy to manage and protect their water resources. In this study area, three extensive confined sand and gravel aquifers (the upper, middle, and lower confined aquifers) compose the stratified-drift aquifer system. The Dryden Lake Valley is a glaciated valley oriented parallel to the direction of ice movement. Erosion by ice extensively widened and deepened the valley, truncated bedrock hillsides, and formed a nearly straight, U-shaped bedrock trough. The maximum thickness of the valley fill in the central part of the valley is about 400 feet (ft). The Virgil Creek Valley in the east part of the study area underwent less severe erosion by ice than the Dryden Lake Valley, and hence, it has a bedrock floor that is several hundred feet higher in altitude than that in the Dryden Lake Valley. The sources and amounts of recharge were difficult to identify in most areas because the confined aquifers are overlain by confining units. However, in the vicinity of the Virgil Creek Dam, the upper confined aquifer crops out at land surface in the floodplain of a gorge eroded by Virgil Creek, and this is where the aquifer receives large amounts of recharge from precipitation that directly falls over the aquifer and from seepage losses from Virgil Creek. The results of streamflow measurements made in Virgil Creek where it flows through the gorge indicated that the stream lost 1.2 cubic feet per second (ft3/s) or 0.78 million gallons per day (Mgal/d) of water in the reach extending from 220 ft downstream from the dam to 1,200 ft upstream from the dam. In the southern part of the study area, large amounts of recharge also replenish the

  3. The sero-epidemiology of Rift Valley fever in people in the Lake Victoria Basin of western Kenya.

    Directory of Open Access Journals (Sweden)

    Elizabeth Anne Jessie Cook

    2017-07-01

    Full Text Available Rift Valley fever virus (RVFV is a zoonotic arbovirus affecting livestock and people. This study was conducted in western Kenya where RVFV outbreaks have not previously been reported. The aims were to document the seroprevalence and risk factors for RVFV antibodies in a community-based sample from western Kenya and compare this with slaughterhouse workers in the same region who are considered a high-risk group for RVFV exposure. The study was conducted in western Kenya between July 2010 and November 2012. Individuals were recruited from randomly selected homesteads and a census of slaughterhouses. Structured questionnaire tools were used to collect information on demographic data, health, and risk factors for zoonotic disease exposure. Indirect ELISA on serum samples determined seropositivity to RVFV. Risk factor analysis for RVFV seropositivity was conducted using multi-level logistic regression. A total of 1861 individuals were sampled in 384 homesteads. The seroprevalence of RVFV in the community was 0.8% (95% CI 0.5-1.3. The variables significantly associated with RVFV seropositivity in the community were increasing age (OR 1.2; 95% CI 1.1-1.4, p<0.001, and slaughtering cattle at the homestead (OR 3.3; 95% CI 1.0-10.5, p = 0.047. A total of 553 slaughterhouse workers were sampled in 84 ruminant slaughterhouses. The seroprevalence of RVFV in slaughterhouse workers was 2.5% (95% CI 1.5-4.2. Being the slaughterman, the person who cuts the animal's throat (OR 3.5; 95% CI 1.0-12.1, p = 0.047, was significantly associated with RVFV seropositivity. This study investigated and compared the epidemiology of RVFV between community members and slaughterhouse workers in western Kenya. The data demonstrate that slaughtering animals is a risk factor for RVFV seropositivity and that slaughterhouse workers are a high-risk group for RVFV seropositivity in this environment. These risk factors have been previously reported in other studies providing further

  4. The sero-epidemiology of Rift Valley fever in people in the Lake Victoria Basin of western Kenya.

    Science.gov (United States)

    Cook, Elizabeth Anne Jessie; Grossi-Soyster, Elysse Noel; de Glanville, William Anson; Thomas, Lian Francesca; Kariuki, Samuel; Bronsvoort, Barend Mark de Clare; Wamae, Claire Njeri; LaBeaud, Angelle Desiree; Fèvre, Eric Maurice

    2017-07-01

    Rift Valley fever virus (RVFV) is a zoonotic arbovirus affecting livestock and people. This study was conducted in western Kenya where RVFV outbreaks have not previously been reported. The aims were to document the seroprevalence and risk factors for RVFV antibodies in a community-based sample from western Kenya and compare this with slaughterhouse workers in the same region who are considered a high-risk group for RVFV exposure. The study was conducted in western Kenya between July 2010 and November 2012. Individuals were recruited from randomly selected homesteads and a census of slaughterhouses. Structured questionnaire tools were used to collect information on demographic data, health, and risk factors for zoonotic disease exposure. Indirect ELISA on serum samples determined seropositivity to RVFV. Risk factor analysis for RVFV seropositivity was conducted using multi-level logistic regression. A total of 1861 individuals were sampled in 384 homesteads. The seroprevalence of RVFV in the community was 0.8% (95% CI 0.5-1.3). The variables significantly associated with RVFV seropositivity in the community were increasing age (OR 1.2; 95% CI 1.1-1.4, p<0.001), and slaughtering cattle at the homestead (OR 3.3; 95% CI 1.0-10.5, p = 0.047). A total of 553 slaughterhouse workers were sampled in 84 ruminant slaughterhouses. The seroprevalence of RVFV in slaughterhouse workers was 2.5% (95% CI 1.5-4.2). Being the slaughterman, the person who cuts the animal's throat (OR 3.5; 95% CI 1.0-12.1, p = 0.047), was significantly associated with RVFV seropositivity. This study investigated and compared the epidemiology of RVFV between community members and slaughterhouse workers in western Kenya. The data demonstrate that slaughtering animals is a risk factor for RVFV seropositivity and that slaughterhouse workers are a high-risk group for RVFV seropositivity in this environment. These risk factors have been previously reported in other studies providing further evidence for RVFV

  5. Differential Extension, Displacement Transfer, and the South to North Decrease in Displacement on the Furnace Creek - Fish Lake Valley Fault System, Western Great Basin.

    Science.gov (United States)

    Katopody, D. T.; Oldow, J. S.

    2015-12-01

    The northwest-striking Furnace Creek - Fish Lake Valley (FC-FLV) fault system stretches for >250 km from southeastern California to western Nevada, forms the eastern boundary of the northern segment of the Eastern California Shear Zone, and has contemporary displacement. The FC-FLV fault system initiated in the mid-Miocene (10-12 Ma) and shows a south to north decrease in displacement from a maximum of 75-100 km to less than 10 km. Coeval elongation by extension on north-northeast striking faults within the adjoining blocks to the FC-FLV fault both supply and remove cumulative displacement measured at the northern end of the transcurrent fault system. Elongation and displacement transfer in the eastern block, constituting the southern Walker Lane of western Nevada, exceeds that of the western block and results in the net south to north decrease in displacement on the FC-FLV fault system. Elongation in the eastern block is accommodated by late Miocene to Pliocene detachment faulting followed by extension on superposed, east-northeast striking, high-angle structures. Displacement transfer from the FC-FLV fault system to the northwest-trending faults of the central Walker Lane to the north is accomplished by motion on a series of west-northwest striking transcurrent faults, named the Oriental Wash, Sylvania Mountain, and Palmetto Mountain fault systems. The west-northwest striking transcurrent faults cross-cut earlier detachment structures and are kinematically linked to east-northeast high-angle extensional faults. The transcurrent faults are mapped along strike for 60 km to the east, where they merge with north-northwest faults forming the eastern boundary of the southern Walker Lane. The west-northwest trending transcurrent faults have 30-35 km of cumulative left-lateral displacement and are a major contributor to the decrease in right-lateral displacement on the FC-FLV fault system.

  6. Reconstruction of a glacial lake outburst flood (GLOF) in the Engaño Valley, Chilean Patagonia: Lessons for GLOF risk management.

    Science.gov (United States)

    Anacona, Pablo Iribarren; Mackintosh, Andrew; Norton, Kevin

    2015-09-15

    Floods from moraine-dammed lake failures can have long standing effects not only on riverine landscapes but also on mountain communities due to the high intensity (i.e. great depth and high velocities) and damaging capacity of glacial lake outburst floods (GLOFs). GLOFs may increase in frequency as glaciers retreat and new lakes develop and there is an urgent need to better understand GLOF dynamics and the measures required to reduce their negative outcomes. In Patagonia at least 16 moraine-dammed lakes have failed in historic time, however, data about GLOF dynamics and impacts in this region are limited. We reconstruct a GLOF that affected a small village in Chilean Patagonia in March 1977, by semi structured interviews, interpretation of satellite images and 2D hydraulic modelling. This provides insight into the GLOF dynamics and the planning issues that led to socioeconomic consequences, which included village relocation. Modelling shows that the water released by the GLOF was in the order of 12-13 × 10(6)m(3) and the flood lasted for about 10h, reaching a maximum depth of ~1.5m in Bahía Murta Viejo, ~ 26 km from the failed lake. The lake had characteristics in common with failed lakes worldwide (e.g. the lake was in contact with a retreating glacier and was dammed by a narrow-steep moraine). The absence of land-use planning and the unawareness of the GLOF hazard contributed to the village flooding. The Río Engaño GLOF illustrates how small-scale and short-distance migration is a reasonable coping strategy in response to a natural hazard that may increase in frequency as atmospheric temperature rises and glaciers retreat. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Chernobyl accident. The ground deposition of radionuclides in Padana plain and in Alps Valleys and the radioactive contamination of the Como lake

    Energy Technology Data Exchange (ETDEWEB)

    Capra, D; Facchini, U; Gianelle, V; Ravasini, G; Ravera, O; Volta, L; Pizzola, A; Bacci, P

    1988-01-01

    The radioactive cloud released during the Chernobyl accident reached the Padana plain and Lombardy in the night of April 30th 1986; the cloud remained in the northern Italian skies for a few days and then disappeared either dispersed by winds and washed by rains. The evidence in atmosphere of radionuclides as Tellurium, Iodine, Cesium, was promptly observed. The intense rain, in first week of may, washed the radioactivity and fall-out contamined the land, soil, grass. The present work concerns the overall contamination of the Northern Italy territory and in particular the radioactive fall-out in the Lakes region. Samples of soil have been measured at the gamma spectroscope; a correlation is found between the radionuclides concentration in soil samples and the rain intensity, when appropriate deposition models are considered. A number of measurements has been done on the Como'lake ecosystem: sediments, plankton, fishes and the overall fall-out in the area has been investigated.

  8. An integrated study of photochemical function and expression of a key photochemical gene (psbA) in photosynthetic communities of Lake Bonney (McMurdo Dry Valleys, Antarctica)

    Czech Academy of Sciences Publication Activity Database

    Kong, W.; Wei, L.; Romancová, Ingrid; Prášil, Ondřej; Morgan-Kiss, R. M.

    2014-01-01

    Roč. 89, č. 6 (2014), s. 293-302 ISSN 0168-6496 R&D Projects: GA MŠk ED2.1.00/03.0110 Grant - others:NSF Office of Polar Programs(US) OPP-0631659, OPP-1056396 Institutional support: RVO:61388971 Keywords : photochemistry * lake Bonnney * communities Subject RIV: EE - Microbiology, Virology Impact factor: 3.568, year: 2014

  9. Phenolic compound from Sidastrum micranthum (A. St.-Hill.) fryxell and evaluation of acacetin and 7,4'-di-o-methylisoscutellarein as motulator of bacterial drug resistance

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Roosevelt A.; Ramirez, Rafael R.A.; Maciel, Jessica Karina da S.; Agra, Maria de Fatima; Souza, Maria de Fatima Vanderlei de, E-mail: mfvanderlei@ltf.ufpb.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Centro de Ciencias da Saude. Lab. de Tecnologia Farmaceutica Delby Fernandes de Medeiros; Falcao-Silva, Vivyanne S.; Siqueira-Junior, Jose P. [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Biologia Molecular

    2011-07-01

    From the aerial parts of Sidastrum micranthum (A. St.-Hill.) Fryxell (Malvaceae) were isolated m-methoxy-p-hydroxy-benzaldehyde, o-hydroxy-benzoic acid, acacetin, quercetin, 7,4'-Di-O-methylisoscutellarein, genkwanin and tiliroside. These compounds were identified by data analyses of spectroscopic methods. Although acacetin and 7,4'-Di-O-methylisoscutellarein did not display relevant antibacterial activity (MIC = 256 {mu}g/mL), they modulated the activity of antibiotics, i.e. in combination with antibiotics at 64 {mu}g/mL (. MIC), a two-fold reduction in the MIC was observed for norfloxacin and ethidium bromide; regarding tetracycline and erythromycin a two-fold reduction in the MIC was observed only with 7,4'-Di-O-methylisoscutellarein. (author)

  10. Mudança na dieta da traíra Hoplias malabaricus (Bloch (Erythrinidae, Characiformes em lagoas da bacia do rio Doce devido à introdução de peixes piscívoros Diet changes of the trahira Hoplias malabaricus (Bloch (Erythrinidae, Characiformes due to piscivorous introductions in Rio Doce valley lakes

    Directory of Open Access Journals (Sweden)

    Paulo dos Santos Pompeu

    2001-12-01

    Full Text Available Two piscivorous fishes, peacock bass (Cichla monoculus Spix & Agassiz, 1831 (Perciformes and piranha (Pygocentrus nattereri Kner, 1860 (Characiformes, were introduced in some Rio Doce valley lakes (19º50'S, 42º40'W for sport fisheries enhancement. As a consequence, small individuals and species were practically vanished in the host lakes. In this study, the effects of peacock bass and piranha introductions on the diet of a native piscivorous fish, the trahira - Hoplias malabaricus (Bloch, 1794 are presented. Trahira's diet from three lakes were was compared with the stomach contentsdiet of trahira's living in another between three lakes with and three withoutstocked with the piscivorous species peacock bass and piranha. In the lakes with introduced fishes species, the consumption of fish was significantly smaller and this food item have been this item partly replaced by aquatic invertebrates. This shift on of trahira's diet to the low abundance of its original prey, is attributed to the small fishes. This diet plasticity adaptative capacity he diet plasticity detected for trahira might be allowing its maintenance in the lakes with peacock bass and piranha.

  11. Submerged Grove in Lake Onogawa

    OpenAIRE

    Sato, Yasuhiro; Nakamura, Soken; Ochiai, Masahiro

    1996-01-01

    Abstract : The first record by ultrasonic echo sounding on the distribution of the submerged standing trees on the bottom of Lake Onogawa is presented. Lake Onogawa is a dammed lake formed at the time of the eruption of the volcano Mt.Bandai in 1888. Since then the original vegetation of the dammed valley has remained submerged. Many submerged standing trees are distributed on the bottom within about 600m from the northeast end of the lake. The density of the trees in this area is sufficient ...

  12. Valley Fever

    Science.gov (United States)

    ... valley fever. These fungi are commonly found in soil in specific regions. The fungi's spores can be stirred into the air by ... species have a complex life cycle. In the soil, they grow as a mold with long filaments that break off into airborne ...

  13. 75 FR 22775 - Copper Valley Electric Association; Notice of Scoping Meeting and Soliciting Scoping Comments for...

    Science.gov (United States)

    2010-04-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-000] Copper Valley....: 13124-000. c. Applicant: Copper Valley Electric Association. d. Name of Project: Allison Lake Project. e.... 791(a)-825(r). g. Applicant Contact: Robert A. Wilkinson, CEO, Copper Valley Electric Association, P.O...

  14. Radiocarbon Records of Fossil Fuel Emissions From Urban Trees in the Greater Salt Lake Valley From Mid-Century to Present.

    Science.gov (United States)

    Chritz, K.; Buchert, M.; Walker, J. C.; Mendoza, D.; Pataki, D. E.; Xu, X.; Lin, J. C.

    2017-12-01

    Generating long term records of fossil fuel emissions of urban environments is complicated by the fact that direct observations of emissions and urban atmospheric CO2 concentrations were only collected in the recent past. Radiocarbon (14C) in tree rings from urban trees can provide archives of fossil fuel emissions that may track population growth over time, as higher population density is typically correlated with increased vehicular traffic and associated CO2 emissions, which are radiocarbon dead. We present radiocarbon measurements (n=125) from five roadside green ash trees (Fraxinus pennsylvanica) located in three cities of northern Utah - Salt Lake City (urban, 2016 population: 193,744), Logan City (agricultural, 2016 population: 49,110) and Heber (rural, 2016 population: 14,969). Urban trees were cored in four cardinal directions and ring widths were measured and counted to establish a chronology. One ring from every third year in a single core from each tree was removed and holocellulose was extracted from bulk wood of individual rings for 14C analysis. Fraction CO2 from fossil fuel burning (CO2-ff) was calculated using a simple mass-balance calculation from measured 14C values and remote background atmospheric 14CO2 values for NH Zone 2. The data from all three cities indicate a general trend of increasing CO2-ff uptake by the trees from 1980s to present, as expected with increased population growth and vehicular traffic. However, records in all three cities show unique elevated CO2-ff prior to the 1980s, assuming similar climate patterns through time, diverging from historic population size. We employed atmospheric simulations from the STILT (Stochastic Time-Inverted Lagrangian Transport) models for each of these trees to create footprints to determine source areas for CO2. These footprints reveal that atmospheric sampling areas can be large for certain trees, and other sources of 14C dead carbon, such as coal and natural gas from industrial emissions

  15. Lake Turkana National Parks Kenya.

    OpenAIRE

    2005-01-01

    Lake Turkana is the largest, most northerly and most saline of Africa's Rift Valley lakes and an outstanding laboratory for the study of plant and animal communities. The three National Parks are a stopover for migrant waterfowl and are major breeding grounds for the Nile crocodile and hippopotamus. The Koobi Fora deposits are rich in pre-human, mammalian, molluscan and other fossil remains and have contributed more to the understanding of Quaternary palaeoenvironments than any other site on ...

  16. Microbiology of Lonar Lake and other soda lakes

    Science.gov (United States)

    Paul Antony, Chakkiath; Kumaresan, Deepak; Hunger, Sindy; Drake, Harold L; Murrell, J Colin; Shouche, Yogesh S

    2013-01-01

    Soda lakes are saline and alkaline ecosystems that are believed to have existed throughout the geological record of Earth. They are widely distributed across the globe, but are highly abundant in terrestrial biomes such as deserts and steppes and in geologically interesting regions such as the East African Rift valley. The unusual geochemistry of these lakes supports the growth of an impressive array of microorganisms that are of ecological and economic importance. Haloalkaliphilic Bacteria and Archaea belonging to all major trophic groups have been described from many soda lakes, including lakes with exceptionally high levels of heavy metals. Lonar Lake is a soda lake that is centered at an unusual meteorite impact structure in the Deccan basalts in India and its key physicochemical and microbiological characteristics are highlighted in this article. The occurrence of diverse functional groups of microbes, such as methanogens, methanotrophs, phototrophs, denitrifiers, sulfur oxidizers, sulfate reducers and syntrophs in soda lakes, suggests that these habitats harbor complex microbial food webs that (a) interconnect various biological cycles via redox coupling and (b) impact on the production and consumption of greenhouse gases. Soda lake microorganisms harbor several biotechnologically relevant enzymes and biomolecules (for example, cellulases, amylases, ectoine) and there is the need to augment bioprospecting efforts in soda lake environments with new integrated approaches. Importantly, some saline and alkaline lake ecosystems around the world need to be protected from anthropogenic pressures that threaten their long-term existence. PMID:23178675

  17. Lake Chad, Chad, Africa

    Science.gov (United States)

    1992-01-01

    Hydrologic and ecologic changes in the Lake Chad Basin are shown in this Oct 1992 photograph. In space photo documentation, Lake Chad was at its greatest area extent (25,000 sq. km.) during Gemini 9 in June 1966 (see S66-38444). Its reduction during the severe droughts from 1968 to 1974 was first noted during Skylab (1973-1974). After the drought began again in 1982, the lake reached its minimum extent (1,450 sq. km.) in Space Shuttle photographs taken in 1984 and 1985. In this STS-52 photograph, Lake Chad has begun to recover. The area of the open water and interdunal impoundments in the southern basin (the Chari River Basin) is estimated to be 1,900 to 2100 sq. km. Note the green vegetation in the valley of the K'Yobe flow has wetted the northern lake basin for the first time in several years. There is evidence of biomass burning south of the K'Yobe Delta and in the vegetated interdunal areas near the dike in the center of the lake. Also note the dark 'Green Line' of the Sahel (the g

  18. The Health Valley: Global Entrepreneurial Dynamics.

    Science.gov (United States)

    Dubuis, Benoit

    2014-12-01

    In the space of a decade, the Lake Geneva region has become the Health Valley, a world-class laboratory for discovering and developing healthcare of the future. Through visionary individuals and thanks to exceptional infrastructure this region has become one of the most dynamic in the field of innovation, including leading scientific research and exceptional actors for the commercialization of academic innovation to industrial applications that will improve the lives of patients and their families. Here follows the chronicle of a spectacular expansion into the Health Valley.

  19. Is Lake Chabot Eutrophic?

    Science.gov (United States)

    Pellegrini, K.; Logan, J.; Esterlis, P.; Lew, A.; Nguyen, M.

    2013-12-01

    Introduction/Abstract: Lake Chabot is an integral part of the East Bay watershed that provides habitats for animals and recreation for humans year-round. Lake Chabot has been in danger of eutrophication due to excessive dumping of phosphorous and nitrogen into the water from the fertilizers of nearby golf courses and neighboring houses. If the lake turned out to be eutrophified, it could seriously impact what is currently the standby emergency water supply for many Castro Valley residents. Eutrophication is the excessive richness of nutrients such as nitrogen and phosphorus in a lake, usually as a result of runoff. This buildup of nutrients causes algal blooms. The algae uses up most of the oxygen in the water, and when it dies, it causes the lake to hypoxify. The fish in the lake can't breathe, and consequently suffocate. Other oxygen-dependant aquatic creatures die off as well. Needless to say, the eutrophication of a lake is bad news for the wildlife that lives in or around it. The level of eutrophication in our area in Northern California tends to increase during the late spring/early summer months, so our crew went out and took samples of Lake Chabot on June 2. We focused on the area of the lake where the water enters, known on the map as Honker Bay. We also took readings a ways down in deeper water for comparison's sake. Visually, the lake looked in bad shape. The water was a murky green that glimmered with particulate matter that swirled around the boat as we went by. In the Honker Bay region where we focused our testing, there were reeds bathed in algae that coated the surface of the lake in thick, swirling patterns. Surprisingly enough, however, our test results didn't reveal any extreme levels of phosphorous or nitrogen. They were slightly higher than usual, but not by any significant amount. The levels we found were high enough to stimulate plant and algae growth and promote eutrophication, but not enough to do any severe damage. After a briefing with a

  20. Determination of hydrologic properties needed to calculate average linear velocity and travel time of ground water in the principal aquifer underlying the southeastern part of Salt Lake Valley, Utah

    Science.gov (United States)

    Freethey, G.W.; Spangler, L.E.; Monheiser, W.J.

    1994-01-01

    A 48-square-mile area in the southeastern part of the Salt Lake Valley, Utah, was studied to determine if generalized information obtained from geologic maps, water-level maps, and drillers' logs could be used to estimate hydraulic conduc- tivity, porosity, and slope of the potentiometric surface: the three properties needed to calculate average linear velocity of ground water. Estimated values of these properties could be used by water- management and regulatory agencies to compute values of average linear velocity, which could be further used to estimate travel time of ground water along selected flow lines, and thus to determine wellhead protection areas around public- supply wells. The methods used to estimate the three properties are based on assumptions about the drillers' descriptions, the depositional history of the sediments, and the boundary con- ditions of the hydrologic system. These assump- tions were based on geologic and hydrologic infor- mation determined from previous investigations. The reliability of the estimated values for hydro- logic properties and average linear velocity depends on the accuracy of these assumptions. Hydraulic conductivity of the principal aquifer was estimated by calculating the thickness- weighted average of values assigned to different drillers' descriptions of material penetrated during the construction of 98 wells. Using these 98 control points, the study area was divided into zones representing approximate hydraulic- conductivity values of 20, 60, 100, 140, 180, 220, and 250 feet per day. This range of values is about the same range of values used in developing a ground-water flow model of the principal aquifer in the early 1980s. Porosity of the principal aquifer was estimated by compiling the range of porosity values determined or estimated during previous investigations of basin-fill sediments, and then using five different values ranging from 15 to 35 percent to delineate zones in the study area that were assumed to

  1. Geologic summary of the Owens Valley drilling project, Owens and Rose Valleys, Inyo County, California

    International Nuclear Information System (INIS)

    Schaer, D.W.

    1981-07-01

    The Owens Valley Drilling Project consists of eight drill holes located in southwest Inyo County, California, having an aggregate depth of 19,205 feet (5853 m). Project holes penetrated the Coso Formation of upper Pliocene or early Pleistocene age and the Owens Lake sand and lakebed units of the same age. The project objective was to improve the reliability of uranium-potential-resource estimates assigned to the Coso Formation in the Owens Valley region. Uranium-potential-resource estimates for this area in $100 per pound U 3 O 8 forward-cost-category material have been estimatd to be 16,954 tons (15,384 metric tons). This estimate is based partly on project drilling results. Within the Owens Valley project area, the Coso Formation was encountered only in the Rose Valley region, and for this reason Rose Valley is considered to be the only portion of the project area favorable for economically sized uranium deposits. The sequence of sediments contained in the Owens Valley basin is considered to be largely equivalent but lithologically dissimilar to the Coso Formation of Haiwee Ridge and Rose Valley. The most important factor in the concentration of significant amounts of uranium in the rock units investigated appears to be the availability of reducing agents. Significant amounts of reductants (pyrite) were found in the Coso Formation. No organic debris was noted. Many small, disconnected uranium occurrences, 100 to 500 ppM U 3 O 8 , were encountered in several of the holes

  2. Groundwater quality in the Owens Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Owens Valley is one of the study areas being evaluated. The Owens study area is approximately 1,030 square miles (2,668 square kilometers) and includes the Owens Valley groundwater basin (California Department of Water Resources, 2003). Owens Valley has a semiarid to arid climate, with average annual rainfall of about 6 inches (15 centimeters). The study area has internal drainage, with runoff primarily from the Sierra Nevada draining east to the Owens River, which flows south to Owens Lake dry lakebed at the southern end of the valley. Beginning in the early 1900s, the City of Los Angeles began diverting the flow of the Owens River to the Los Angeles Aqueduct, resulting in the evaporation of Owens Lake and the formation of the current Owens Lake dry lakebed. Land use in the study area is approximately 94 percent (%) natural, 5% agricultural, and 1% urban. The primary natural land cover is shrubland. The largest urban area is the city of Bishop (2010 population of 4,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to the Owens Lake dry lakebed. The primary aquifers in Owens Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database

  3. Strong Control of Salts on Near Surface Liquid Water Content in a High Polar Desert Indicated by Near Surface Resistivity Mapping with a Helicopter-Borne TEM Sensor, Lower Taylor Valley, Antarctica

    Science.gov (United States)

    Foley, N.; Tulaczyk, S. M.; Auken, E.; Mikucki, J.; Myers, K. F.; Dugan, H.; Doran, P. T.; Virginia, R. A.

    2016-12-01

    the thermally defined active layer in this region with mean annual temperature close to -20C and short summer season is as thin as dozens of cm. The areas with high near-surface resistivities have either a comparable fraction of water but with much higher resistivity or have briny interstitial water at much lower volume concentrations (<1% in top 5m). We favor the former explanation. Closed depressions in the Lake Fryxell basin (McMurdo Dry Valleys, Antarctica) have near surface (top 5m) electrical resistivity that is lower by almost an order of magnitude than nearby slopes and ridges. We interpret this spatial pattern as being due to long term concentration of salts carried by liquid water and deliquescent vapor fronts. Highly hygroscopic salts may prolong the existence and abundance of liquid water in the near surface in this otherwise very cold and dry high polar desert. In areas with low measured resistivity, the liquid water fraction in the top 5m may be a few percent by volume. Due to its connections with life and chemical transport, liquid water is a much studied feature in the McMurdo Dry Valleys. This setting can be used as an analogue for similar features on the surface of Mars, where liquid water tracks have been observed and are believed to be controlled by eutectic brines. Our study demonstrates the utility of mapping at a regional scale via helicopter-borne Time Domain EM. Airborne EM covers more ground and can measure deeper than surface-based measurements, at the expense of resolution. This allows creating valley-scale datasets which could not feasibly be collected on the ground. Our remote measurements complement physical samples that indicate that soluble salts concentrate in certain areas of surface soil where water moves ions and is later removed by evaporation or sublimation.

  4. 75 FR 61174 - Warner Valley Comprehensive Site Plan, Final Environmental Impact Statement, Lassen Volcanic...

    Science.gov (United States)

    2010-10-04

    ... Warner Valley fen and wetland areas; (3) Removal or repair of Dream Lake Dam and restoration of associated riparian/wetland complex; (4) Protect and enhance the Drakesbad Historic District through removal... project planning area. This area includes Dream Lake Dam, built in 1932 by Alex Sifford, which impounds an...

  5. Spatial patterns of lacustrine fish assemblages in a catchment of the Mississippi Alluvial Valley

    Science.gov (United States)

    Andrews, Caroline S.; Miranda, Leandro E.; Goetz, Daniel B.; Kroger, Robert

    2014-01-01

    In the alluvial valley of the lower Mississippi River, floodplain lakes form isolated aquatic fragments that retain differing degrees of connectivity to neighbouring rivers. Within these floodplain lakes it was hypothesized that fish species composition, relative abundance, and biodiversity metrics would be shaped largely by aquatic connectivity within a catchment.

  6. Hydrologic data and description of a hydrologic monitoring plan for the Borax Lake area, Oregon

    Science.gov (United States)

    Schneider, Tiffany Rae; McFarland, William D.

    1995-01-01

    Borax Lake is located in southeastern Oregon, within the Alvord Valley Known Geothermal Resource Area. Borax Lake is a large hot spring; there are more than 50 smaller hot springs within about one-half mile to the north of the lake. Several geothermal exploration wells have been drilled near Borax Lake, and there is concern that development of the geothermal resources could affect the lake and nearby hot springs. A factor to consider in developing the resource is that the Borax Lake chub is an endangered species of fish that is found exclusively in Borax Lake.

  7. LIMNOLOGY, LAKE BASINS, LAKE WATERS

    Directory of Open Access Journals (Sweden)

    Petre GÂŞTESCU

    2009-06-01

    Full Text Available Limnology is a border discipline between geography, hydrology and biology, and is also closely connected with other sciences, from it borrows research methods. Physical limnology (the geography of lakes, studies lake biotopes, and biological limnology (the biology of lakes, studies lake biocoenoses. The father of limnology is the Swiss scientist F.A. Forel, the author of a three-volume entitled Le Leman: monographie limnologique (1892-1904, which focuses on the geology physics, chemistry and biology of lakes. He was also author of the first textbook of limnology, Handbuch der Seenkunde: allgemeine Limnologie,(1901. Since both the lake biotope and its biohydrocoenosis make up a single whole, the lake and lakes, respectively, represent the most typical systems in nature. They could be called limnosystems (lacustrine ecosystems, a microcosm in itself, as the American biologist St.A. Forbes put it (1887.

  8. Transient Tsunamis in Lakes

    Science.gov (United States)

    Couston, L.; Mei, C.; Alam, M.

    2013-12-01

    A large number of lakes are surrounded by steep and unstable mountains with slopes prone to failure. As a result, landslides are likely to occur and impact water sitting in closed reservoirs. These rare geological phenomena pose serious threats to dam reservoirs and nearshore facilities because they can generate unexpectedly large tsunami waves. In fact, the tallest wave experienced by contemporary humans occurred because of a landslide in the narrow bay of Lituya in 1958, and five years later, a deadly landslide tsunami overtopped Lake Vajont's dam, flooding and damaging villages along the lakefront and in the Piave valley. If unstable slopes and potential slides are detected ahead of time, inundation maps can be drawn to help people know the risks, and mitigate the destructive power of the ensuing waves. These maps give the maximum wave runup height along the lake's vertical and sloping boundaries, and can be obtained by numerical simulations. Keeping track of the moving shorelines along beaches is challenging in classical Eulerian formulations because the horizontal extent of the fluid domain can change over time. As a result, assuming a solid slide and nonbreaking waves, here we develop a nonlinear shallow-water model equation in the Lagrangian framework to address the problem of transient landslide-tsunamis. In this manner, the shorelines' three-dimensional motion is part of the solution. The model equation is hyperbolic and can be solved numerically by finite differences. Here, a 4th order Runge-Kutta method and a compact finite-difference scheme are implemented to integrate in time and spatially discretize the forced shallow-water equation in Lagrangian coordinates. The formulation is applied to different lake and slide geometries to better understand the effects of the lake's finite lengths and slide's forcing mechanism on the generated wavefield. Specifically, for a slide moving down a plane beach, we show that edge-waves trapped by the shoreline and free

  9. Valley polarization in bismuth

    Science.gov (United States)

    Fauque, Benoit

    2013-03-01

    The electronic structure of certain crystal lattices can contain multiple degenerate valleys for their charge carriers to occupy. The principal challenge in the development of valleytronics is to lift the valley degeneracy of charge carriers in a controlled way. In bulk semi-metallic bismuth, the Fermi surface includes three cigar-shaped electron valleys lying almost perpendicular to the high symmetry axis known as the trigonal axis. The in-plane mass anisotropy of each valley exceeds 200 as a consequence of Dirac dispersion, which drastically reduces the effective mass along two out of the three orientations. According to our recent study of angle-dependent magnetoresistance in bismuth, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. As a consequence of a unique combination of high mobility and extreme mass anisotropy in bismuth, the effect is visible even at room temperature in a magnetic field of 1 T. Thus, a modest magnetic field can be used as a valley valve in bismuth. The results of our recent investigation of angle-dependent magnetoresistance in other semi-metals and doped semiconductors suggest that a rotating magnetic field can behave as a valley valve in a multi-valley system with sizeable mass anisotropy.

  10. Sutter Buttes-the lone volcano in California's Great Valley

    Science.gov (United States)

    Hausback, Brain P.; Muffler, L.J. Patrick; Clynne, Michael A.

    2011-01-01

    The volcanic spires of the Sutter Buttes tower 2,000 feet above the farms and fields of California's Great Valley, just 50 miles north-northwest of Sacramento and 11 miles northwest of Yuba City. The only volcano within the valley, the Buttes consist of a central core of volcanic domes surrounded by a large apron of fragmental volcanic debris. Eruptions at the Sutter Buttes occurred in early Pleistocene time, 1.6 to 1.4 million years ago. The Sutter Buttes are not part of the Cascade Range of volcanoes to the north, but instead are related to the volcanoes in the Coast Ranges to the west in the vicinity of Clear Lake, Napa Valley, and Sonoma Valley.

  11. Microscopic Identification of Prokaryotes in Modern and Ancient Halite, Saline Valley and Death Valley, California

    Science.gov (United States)

    Schubert, Brian A.; Lowenstein, Tim K.; Timofeeff, Michael N.

    2009-06-01

    Primary fluid inclusions in halite crystallized in Saline Valley, California, in 1980, 2004-2005, and 2007, contain rod- and coccoid-shaped microparticles the same size and morphology as archaea and bacteria living in modern brines. Primary fluid inclusions from a well-dated (0-100,000 years), 90 m long salt core from Badwater Basin, Death Valley, California, also contain microparticles, here interpreted as halophilic and halotolerant prokaryotes. Prokaryotes are distinguished from crystals on the basis of morphology, optical properties (birefringence), and uniformity of size. Electron micrographs of microparticles from filtered modern brine (Saline Valley), dissolved modern halite crystals (Saline Valley), and dissolved ancient halite crystals (Death Valley) support in situ microscopic observations that prokaryotes are present in fluid inclusions in ancient halite. In the Death Valley salt core, prokaryotes in fluid inclusions occur almost exclusively in halite precipitated in perennial saline lakes 10,000 to 35,000 years ago. This suggests that trapping and preservation of prokaryotes in fluid inclusions is influenced by the surface environment in which the halite originally precipitated. In all cases, prokaryotes in fluid inclusions in halite from the Death Valley salt core are miniaturized (<1 μm diameter cocci, <2.5 μm long, very rare rod shapes), which supports interpretations that the prokaryotes are indigenous to the halite and starvation survival may be the normal response of some prokaryotes to entrapment in fluid inclusions for millennia. These results reinforce the view that fluid inclusions in halite and possibly other evaporites are important repositories of microbial life and should be carefully examined in the search for ancient microorganisms on Earth, Mars, and elsewhere in the Solar System.

  12. Greening Turner Valley

    International Nuclear Information System (INIS)

    Byfield, M.

    2010-01-01

    This article discussed remedial activities undertaken in the Turner Valley. Remedial action in the valley must satisfy the financial concerns of engineers and investors as well as the environmental concerns of residents and regulators. Natural gas production in the Turner Valley began in 1914. The production practices were harmful and wasteful. Soil and water pollution was not considered a problem until recently. The impacts of cumulative effects and other pollution hazards are now being considered as part of many oil and gas environmental management programs. Companies know it is cheaper and safer to prevent pollutants from being released, and more efficient to clean them up quickly. Oil and gas companies are also committed to remediating historical problems. Several factors have simplified remediation plans in the Turner Valley. Area real estate values are now among the highest in Alberta. While the valley residents are generally friendly to the petroleum industry, strong communication with all stakeholders in the region is needed. 1 fig.

  13. Angora Fire, Lake Tahoe

    Science.gov (United States)

    2007-01-01

    On the weekend of June 23, 2007, a wildfire broke out south of Lake Tahoe, which stretches across the California-Nevada border. By June 28, the Angora Fire had burned more than 200 homes and forced some 2,000 residents to evacuate, according to The Seattle Times and the Central Valley Business Times. On June 27, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the burn scar left by the Angora fire. The burn scar is dark gray, or charcoal. Water bodies, including the southern tip of Lake Tahoe and Fallen Leaf Lake, are pale silvery blue, the silver color a result of sunlight reflecting off the surface of the water. Vegetation ranges in color from dark to bright green. Streets are light gray, and the customary pattern of meandering residential streets and cul-de-sacs appears throughout the image, including the area that burned. The burn scar shows where the fire obliterated some of the residential areas just east of Fallen Leaf Lake. According to news reports, the U.S. Forest Service had expressed optimism about containing the fire within a week of the outbreak, but a few days after the fire started, it jumped a defense, forcing the evacuation of hundreds more residents. Strong winds that had been forecast for June 27, however, did not materialize, allowing firefighters to regain ground in controlling the blaze. On June 27, authorities hoped that the fire would be completely contained by July 3. According to estimates provided in the daily report from the National Interagency Fire Center, the fire had burned 3,100 acres (about 12.5 square kilometers) and was about 55 percent contained as of June 28. Some mandatory evacuations remained in effect. NASA image by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  14. The Importance of Lake Overflow Floods for Early Martian Landscape Evolution: Insights From Licus Vallis

    Science.gov (United States)

    Goudge, T. A.; Fassett, C. I.

    2017-01-01

    Open-basin lake outlet valleys are incised when water breaches the basin-confining topography and overflows. Outlet valleys record this flooding event and provide insight into how the lake and surrounding terrain evolved over time. Here we present a study of the paleolake outlet Licus Vallis, a >350 km long, >2 km wide, >100 m deep valley that heads at the outlet breach of an approx.30 km diameter impact crater. Multiple geomorphic features of this valley system suggest it records a more complex evolution than formation from a single lake overflow flood. This provides unique insight into the paleohydrology of lakes on early Mars, as we can make inferences beyond the most recent phase of activity..

  15. Late Pleistocene to Holocene lake levels of Lake Warner, Oregon (USA) and their effect on archaeological site distribution patterns

    Science.gov (United States)

    Wriston, T.; Smith, G. M.

    2017-12-01

    Few chronological controls are available for the rise and fall of small pluvial lake systems in the Northwestern Great Basin. Within Warner Basin this control was necessary for interpretation of known archaeological sites and for predicting where evidence of its earliest inhabitants might be expected. We trenched along relic beach ridges of Lake Warner, surveyed a stratified sample of the area for archaeological sites, and excavated some sites and a nearby rockshelter. These efforts produced new ages that we used to construct a lake level curve for Lake Warner. We found that the lake filled the valley floor between ca. 30,000 cal yr BP and ca. 10,300 cal yr BP. In nearby basins, several oscillations are evident before ca. 21,100 cal yr BP, but a steep rise to the LGM maximum occurred between 21,000 and 20,000 cal yr BP. Lake Warner likely mirrored these changes, dropped to the valley floor ca. 18,340 cal yr BP, and then rose to its maximum highstand when its waters briefly reached 1454 m asl. After this highstand the lake receded to moderately high levels. Following ca. 14,385 cal yr BP, the lake oscillated between moderate to moderately-high levels through the Bolling-Allerod interstadials and into the Younger Dryas stadial. The basin's first occupants arrived along its shore around this time, while the lake still filled the valley floor. These earliest people carried either Western Stemmed or Clovis projectile points, both of which are found along the lake margin. The lake receded into the valley floor ca. 10,300 cal yr BP and dune development began, ringing wetlands and small lakes that persisted in the footprint of the once large lake. By the time Mazama tephra fell 7,600 cal yr BP it blanketed pre-existing dunes and marsh peats. Our Lake Warner lake level curve facilitates interdisciplinary testing and refinement of it and similar curves throughout the region while helping us understand the history of lake and the people who lived along its shores.

  16. Christmas Valley Renewable Energy Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Del Mar, Robert [Oregon Department of Energy, Salem, OR (United States)

    2017-05-22

    In partnership with the Oregon Military Department, the Department of Energy used the award to assess and evaluate renewable resources in a 2,622-acre location in Lake County, central Oregon, leading to future development of up to 200 MW of solar electricity. In partnership with the Oregon Military Department, the Department of Energy used the award to assess and evaluate renewable resources in a 2,622-acre location in Lake County, central Oregon, leading to future development of up to 200 MW of solar electricity. The Oregon Military Department (Military) acquired a large parcel of land located in south central Oregon. The land was previously owned by the US Air Force and developed for an Over-the-Horizon Backscatter Radar Transmitter Facility, located about 10 miles east of the town of Christmas Valley. The Military is investigating a number of uses for the site, including Research and Development (R&D) laboratory, emergency response, military operations, developing renewable energy and related educational programs. One of the key potential uses would be for a large scale solar photovoltaic power plant. This is an attractive use because the site has excellent solar exposure; an existing strong electrical interconnection to the power grid; and a secure location at a moderate cost per acre. The project objectives include: 1. Site evaluation 2. Research and Development (R&D) facility analysis 3. Utility interconnection studies and agreements 4. Additional on-site renewable energy resources analysis 5. Community education, outreach and mitigation 6. Renewable energy and emergency readiness training program for veterans

  17. Surficial geologic map of the Red Rock Lakes area, southwest Montana

    Science.gov (United States)

    Pierce, Kenneth L.; Chesley-Preston, Tara L.; Sojda, Richard L.

    2014-01-01

    The Centennial Valley and Centennial Range continue to be formed by ongoing displacement on the Centennial fault. The dominant fault movement is downward, creating space in the valley for lakes and the deposition of sediment. The Centennial Valley originally drained to the northeast through a canyon now represented by a chain of lakes starting with Elk Lake. Subsequently, large landslides blocked and dammed the drainage, which created Lake Centennial, in the Centennial Valley. Sediments deposited in this late Pleistocene lake underlie much of the valley floor and rest on permeable sand and gravel deposited when the valley drained to the northeast. Cold Pleistocene climates enhanced colluvial supply of gravelly sediment to mountain streams and high peak flows carried gravelly sediment into the valley. There, the lower gradient of the streams resulted in deposition of alluvial fans peripheral to Lake Centennial as the lake lowered through time to the level of the two present lakes. Pleistocene glaciers formed in the high Centennial Range, built glacial moraines, and also supplied glacial outwash to the alluvial fans. Winds from the west and south blew sand to the northeast side of the valley building up high dunes. The central part of the map area is flat, sloping to the west by only 0.6 meters in 13 kilometers (2 feet in 8 miles) to form a watery lowland. This lowland contains Upper and Lower Red Rock Lakes, many ponds, and peat lands inside the “water plane,” above which are somewhat steeper slopes. The permeable sands and gravels beneath Lake Centennial sediments provide a path for groundwater recharged from the adjacent uplands. This groundwater leaks upward through Lake Centennial sediments and sustains wetland vegetation into late summer. Upper and Lower Red Rock Lakes are formed by alluvial-fan dams. Alluvial fans converge from both the south and the north to form outlet thresholds that dam the two shallow lakes upstream. The surficial geology aids in

  18. Lake Cadagno

    DEFF Research Database (Denmark)

    Tonolla, Mauro; Storelli, Nicola; Danza, Francesco

    2017-01-01

    Lake Cadagno (26 ha) is a crenogenic meromictic lake located in the Swiss Alps at 1921 m asl with a maximum depth of 21 m. The presence of crystalline rocks and a dolomite vein rich in gypsum in the catchment area makes the lake a typical “sulphuretum ” dominated by coupled carbon and sulphur...... cycles. The chemocline lies at about 12 m depth, stabilized by density differences of salt-rich water supplied by sub-aquatic springs to the monimolimnion and of electrolyte-poor surface water feeding the mixolimnion. Steep sulphide and light gradients in the chemocline support the growth of a large...... in the chemocline. Small-celled PSB together with the sulfate-reducing bacterium Desulfocapsa thiozymogenes sp. form stable aggregates in the lake, which represent small microenvironments with an internal sulphur cycle. Eukaryotic primary producers in the anoxic zones are dominated by Cryptomonas phaseolus...

  19. Playa Lakes

    Data.gov (United States)

    Kansas Data Access and Support Center — This digital dataset provides information about the spatial distribution of soil units associated with playa lakes. Specific soil types have been designated by the...

  20. Ground water in Dale Valley, New York

    Science.gov (United States)

    Randall, Allan D.

    1979-01-01

    Dale Valley is a broad valley segment, enlarged by glacial erosion, at the headwaters of Little Tonawanda Creek near Warsaw , New York. A thin, shallow alluvial aquifer immediately underlies the valley floor but is little used. A deeper gravel aquifer, buried beneath many feet of lake deposits, is tapped by several industrial wells. A finite-difference digital model treated the deep aquifer as two-dimensional with recharge and discharge through a confining layer. It was calibrated by simulating (1) natural conditions, (2) an 18-day aquifer test, and (3) 91 days of well-field operation. Streamflow records and model simulations suggest that in moderately wet years such as 1974, a demand of 750 gallons per minute could be met by withdrawal from the creek and from the aquifer without excessive drawdown at production wells or existing domestic wells. With reasonable but unverified model adjustments to simulate an unusually dry year, the model predicts that a demand of 600 gallons per minute could be met from the same sources. Water high in chloride has migrated from bedrock into parts of the deep aquifer. Industrial pumpage, faults in the bedrock, and the natural flow system may be responsible. (Woodard-USGS)

  1. The Role of Source Material in Basin Sedimentation, as Illustrated within Eureka Valley, Death Valley National Park, CA.

    Science.gov (United States)

    Lawson, M. J.; Yin, A.; Rhodes, E. J.

    2015-12-01

    Steep landscapes are known to provide sediment to sink regions, but often petrological factors can dominate basin sedimentation. Within Eureka Valley, in northwestern Death Valley National Park, normal faulting has exposed a steep cliff face on the western margin of the Last Chance range with four kilometers of vertical relief from the valley floor and an angle of repose of nearly 38 degrees. The cliff face is composed of Cambrian limestone and dolomite, including the Bonanza King, Carrara and Wood Canyon formations. Interacting with local normal faulting, these units preferentially break off the cliff face in coherent blocks, which result in landslide deposits rather than as finer grained material found within the basin. The valley is well known for a large sand dune, which derives its sediment from distal sources to the north, instead of from the adjacent Last Chance Range cliff face. During the Holocene, sediment is sourced primary from the northerly Willow Wash and Cucomungo canyon, a relatively small drainage (less than 80 km2) within the Sylvan Mountains. Within this drainage, the Jurassic quartz monzonite of Beer Creek is heavily fractured due to motion of the Fish Valley Lake - Death Valley fault zone. Thus, the quartz monzonite is more easily eroded than the well-consolidated limestone and dolomite that forms the Last Change Range cliff face. As well, the resultant eroded material is smaller grained, and thus more easily transported than the limestone. Consequently, this work highlights an excellent example of the strong influence that source material can have on basin sedimentation.

  2. Lake Austin uranium deposit, Western Australia

    International Nuclear Information System (INIS)

    Heath, A.G.; Deutscher, R.L.; Butt, C.R.M.

    1984-01-01

    The Lake Austin uranium deposit is a calcrete type deposit in the Yilgarn Block, near Cue, in a catchment area of granitoids and greenstones. The uranium is in valley fill and the sediments of the Lake Austin playa. The mineralization occurs over 1 to 6 meter thickness close to the water table in calcrete overlying clays and/or weathered bedrock. The principal uranium mineral is carnotite. Waters in nearby channels have an uranium content of over 30 ppb. The chloride content of the water increases downstream in the nearby drainages, as does the uranium and vanadium content. (author)

  3. Water resources of Parowan Valley, Iron County, Utah

    Science.gov (United States)

    Marston, Thomas M.

    2017-08-29

    . Groundwater flows from the high-altitude recharge areas downward toward the basin-fill aquifer in Parowan Valley. Almost all groundwater discharge occurs as withdrawals from irrigation wells in the valley with a small amount of discharge from phreatophytic evapotranspiration. Subsurface groundwater discharge to Cedar Valley is likely minimal. Withdrawals from wells during 2013 were about 32,000 acre-ft. The estimated withdrawals from wells from 1994 to 2013 have ranged from 22,000 to 39,000 acre-ft per year. Declining water levels are an indication of the estimated average annual decrease in groundwater storage of 15,000 acre-ft from 1994 to 2013.Groundwater and surface-water samples were collected from 46 sites in Parowan Valley and Cedar Valley near the town of Enoch during June 2013. Groundwater samples from 34 wells were submitted for geochemical analysis. The total dissolved-solids concentration in water from these wells ranged from 142 to 886 milligrams per liter. Results of stable isotope analysis of oxygen and deuterium from groundwater and surface-water samples indicate that most of the groundwater in Parowan Valley and in Cedar Valley near Enoch is similar in isotopic composition to water from mountain streams, which reflects meteoric water recharged in high-altitude areas east of the valley. In addition, results of stable isotope analysis of a subset of samples from wells located near Little Salt Lake may indicate recharge of precipitation that occurred during cooler climatic conditions of the Pleistocene Epoch.

  4. Principles of lake sedimentology

    International Nuclear Information System (INIS)

    Janasson, L.

    1983-01-01

    This book presents a comprehensive outline on the basic sedimentological principles for lakes, and focuses on environmental aspects and matters related to lake management and control-on lake ecology rather than lake geology. This is a guide for those who plan, perform and evaluate lake sedimentological investigations. Contents abridged: Lake types and sediment types. Sedimentation in lakes and water dynamics. Lake bottom dynamics. Sediment dynamics and sediment age. Sediments in aquatic pollution control programmes. Subject index

  5. Ice-dammed lateral lake and epishelf lake insights into Holocene dynamics of Marguerite Trough Ice Stream and George VI Ice Shelf, Alexander Island, Antarctic Peninsula

    Science.gov (United States)

    Davies, Bethan J.; Hambrey, Michael J.; Glasser, Neil F.; Holt, Tom; Rodés, Angél; Smellie, John L.; Carrivick, Jonathan L.; Blockley, Simon P. E.

    2017-12-01

    We present new data regarding the past dynamics of Marguerite Trough Ice Stream, George VI Ice Shelf and valley glaciers from Ablation Point Massif on Alexander Island, Antarctic Peninsula. This ice-free oasis preserves a geological record of ice stream lateral moraines, ice-dammed lakes, ice-shelf moraines and valley glacier moraines, which we dated using cosmogenic nuclide ages. We provide one of the first detailed sediment-landform assemblage descriptions of epishelf lake shorelines. Marguerite Trough Ice Stream imprinted lateral moraines against eastern Alexander Island at 120 m at Ablation Point Massif. During deglaciation, lateral lakes formed in the Ablation and Moutonnée valleys, dammed against the ice stream in George VI Sound. Exposure ages from boulders on these shorelines yielded ages of 13.9 to 9.7 ka. Following recession of the ice stream, George VI Ice Shelf formed in George VI Sound. An epishelf lake formed at 15-20 m asl in Ablation and Moutonnée valleys, dated from 9.4 to 4.6 ka, suggesting that the lake was stable and persistent for some 5000 years. Lake-level lowering occurred after this, with the lake level at 12 m at 3.1 ± 0.4 ka and at 5 m asl today. A readvance of the valley glaciers on Alexander Island at 4.4 ± 0.7 ka is recorded by valley glacier moraines overlying epishelf lake sediments. We speculate that the glacier readvance, which occurred during a period of warmth, may have been caused by a dynamic response of the glaciers to a lowering in surface elevation of George VI Ice Shelf.

  6. Great Lakes

    Science.gov (United States)

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    The Great Lakes region, as defined here, includes the Great Lakes and their drainage basins in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Pennsylvania, and New York. The region also includes the portions of Minnesota, Wisconsin, and the 21 northernmost counties of Illinois that lie in the Mississippi River drainage basin, outside the floodplain of the river. The region spans about 9º of latitude and 20º of longitude and lies roughly halfway between the equator and the North Pole in a lowland corridor that extends from the Gulf of Mexico to the Arctic Ocean.The Great Lakes are the most prominent natural feature of the region (Fig. 1). They have a combined surface area of about 245,000 square kilometers and are among the largest, deepest lakes in the world. They are the largest single aggregation of fresh water on the planet (excluding the polar ice caps) and are the only glacial feature on Earth visible from the surface of the moon (The Nature Conservancy 1994a).The Great Lakes moderate the region’s climate, which presently ranges from subarctic in the north to humid continental warm in the south (Fig. 2), reflecting the movement of major weather masses from the north and south (U.S. Department of the Interior 1970; Eichenlaub 1979). The lakes act as heat sinks in summer and heat sources in winter and are major reservoirs that help humidify much of the region. They also create local precipitation belts in areas where air masses are pushed across the lakes by prevailing winds, pick up moisture from the lake surface, and then drop that moisture over land on the other side of the lake. The mean annual frost-free period—a general measure of the growing-season length for plants and some cold-blooded animals—varies from 60 days at higher elevations in the north to 160 days in lakeshore areas in the south. The climate influences the general distribution of wild plants and animals in the region and also influences the activities and distribution of the human

  7. Breathing Valley Fever

    Centers for Disease Control (CDC) Podcasts

    2014-02-04

    Dr. Duc Vugia, chief of the Infectious Diseases Branch in the California Department of Public Health, discusses Valley Fever.  Created: 2/4/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/5/2014.

  8. Glacial geology of the upper Wairau Valley, Marlborough, New Zealand

    International Nuclear Information System (INIS)

    McCalpin, J.P.

    1992-01-01

    Late Pleistocene glaciers in the upper Wairau Valley deposited four groups of moraines inferred to represent one Waimean ice advance, two Otiran ice advances, and an advance of early Aranuian age. The Waimean and early Otiran glaciers advanced into Tarndale Valley, deposited terminal moraines, and shed outwash down both the Alma River and Travellers Valley. The middle Otiran glacier terminated in northern Tarndale Valley and shed outwash from the southern part of its terminus down the Alma River. The north side of the terminus abutted a large ice-dammed lake in the Wairau Gorge, and fan-deltas graded to an old shore level at an elevation of 1040 m. Well-preserved moraines at the mouths of four glaciated tributaries may be middle Otiran recessional, or late Otiran terminal moraines. The latest ice advance extended 11 km down the upper Wairau Valley and deposited a subdued moraine at Island Gully. The composite chronology of the latest glacial advance based on 10 radiocarbon ages suggests it occurred between about 9.5 and 10.2 ka. This age span is similar to that of early Aranuian glacial advances dated by other workers in the Southern Alps, and may reflect Younger Dryas cooling. (author). 22 refs., 10 figs., 3 tabs

  9. Floodplain lakes and alluviation cycles of the lower Colorado River

    Science.gov (United States)

    Malmon, D.; Felger, T. J.; Howard, K. A.

    2007-05-01

    The broad valleys along the lower Colorado River contain numerous bodies of still water that provide critical habitat for bird, fish, and other species. This chain of floodplain lakes is an important part of the Pacific Flyway - the major north-south route of travel for migratory birds in the western Hemisphere - and is also used by many resident bird species. In addition, isolated floodplain lakes may provide the only viable habitat for endangered native fish such as the razorback sucker, vulnerable to predation by introduced species in the main stem of the Colorado River. Floodplain lakes typically occupy former channel courses of the river and formed as a result of river meandering or avulsion. Persistent fluvial sediment deposition (aggradation) creates conditions that favor rapid formation and destruction of floodplain lakes, while long term river downcutting (degradation) inhibits their formation and evolution. New radiocarbon dates from wood recovered from drill cores near Topock, AZ indicate that the river aggraded an average of 3 mm/yr in the middle and late Holocene. Aggradational conditions before Hoover Dam was built were associated with rapid channel shifting and frequent lake formation. Lakes had short life spans due to rapid infilling with fine-grained sediment during turbid floods on the unregulated Colorado River. The building of dams and of armored banks had a major impact on floodplain lakes, not only by drowning large portions of the valley beneath reservoirs, but by preventing new lake formation in some areas and accelerating it in others. GIS analyses of three sets of historical maps show that both the number and total area of isolated (i.e., not linked to the main channel by a surface water connection) lakes in the lower Colorado River valley increased between 1902 and the 1950s, and then decreased though the 1970s. River bed degradation below dams inhibits channel shifting and floodplain lake formation, and the capture of fines behind the

  10. 77 FR 8895 - Jimbilnan, Pinto Valley, Black Canyon, Eldorado, Ireteba Peaks, Nellis Wash, Spirit Mountain, and...

    Science.gov (United States)

    2012-02-15

    ..., Pinto Valley, Black Canyon, Eldorado, Ireteba Peaks, Nellis Wash, Spirit Mountain, and Bridge Canyon..., Eldorado, Ireteba Peaks, Nellis Wash, Spirit Mountain, and Bridge Canyon Wilderness Areas, Lake Mead... wilderness character; providing for reasonable use of Spirit Mountain and adjacent areas in a manner meeting...

  11. Site records of softshell turtles (Chelonia: Trionychidae from Barak Valley, Assam, northeastern India

    Directory of Open Access Journals (Sweden)

    K.C. Das

    2011-04-01

    Full Text Available We report for the first time the occurrence of four species of Trionychid turtles Nilssonia gangetica, N. hurum, Chitra indica and Lissemys punctata andersonii from 57 sites in the Barak Valley region of Assam, northeastern India. Sites of occurrence include rivers, small streams, floodplain lakes and ox-bows.

  12. Snake River Sockeye Salmon Sawtooth Valley Project Conservation and Rebuilding Program : Supplemental Fnal Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-03-01

    This document announces Bonneville Power Administration`s (BPA) proposal to fund three separate but interrelated actions which are integral components of the overall Sawtooth Valley Project to conserve and rebuild the Snake River Sockeye salmon run in the Sawtooth Valley of south-central Idaho. The three actions are as follows: (1) removing a rough fish barrier dam on Pettit Lake Creek and constructing a weir and trapping facilities to monitor future sockeye salmon adult and smolt migration into and out of Pettit Lake; (2) artificially fertilizing Readfish Lake to enhance the food supply for Snake River sockeye salmon juveniles released into the lake; and (3) trapping kokanee fry and adults to monitor the fry population and to reduce the population of kokanee in Redfish Lake. BPA has prepared a supplemental EA (included) which builds on an EA compled in 1994 on the Sawtooth Valley Project. Based on the analysis in this Supplemental EA, BPA has determined that the proposed actions are not major Federal actions significantly affecting the quality of the human environment. Therefore an Environmental Impact Statement is not required.

  13. Tracing the sources of PCDD/Fs and PCBs in Lake Baikal

    Energy Technology Data Exchange (ETDEWEB)

    Mamontov, A.A.; Mamontova, E.A.; Tarasova, E.N.; McLachlan, M.S.

    2000-03-01

    Lake Baikal is a unique freshwater ecosystem that has been declared a UNESCO World Heritage Site. It contains high levels of PCBs, and Baikal seal were recently found to have PCDD/F concentrations comparable to those in the Baltic Sea. In this work fish and soil were analyzed to trace the sources of these compounds to the lake. The fish samples indicated that the PCDD/F and PCB contamination of Lake Baikal does not originate from background inputs and that the contamination increases from north to south. The soil inventory was determined at 34 sites around Lake Baikal and in the Angara River valley. For the PCDD/Fs and most PCBs, the soil inventory is a good approximation of the cumulative atmospheric deposition. It varied over a factor of 1,000, with the highest levels in Usol'ye Sibirskoe, a city 110 km north of the southwestern tip of the lake in the highly industrialized Angara River valley, and the lowest values in the pristine areas to the northeast of the lake. A continuous decrease in the soil inventory was observed moving from Usol'ye S. up the Angara River valley to Lake Baikal and from there northeastward along the lake.

  14. Cold-Active, Heterotrophic Bacteria from the Highly Oligotrophic Waters of Lake Vanda, Antarctica

    Directory of Open Access Journals (Sweden)

    Nicole A. Vander Schaaf

    2015-07-01

    Full Text Available The permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica are distinctive ecosystems that consist strictly of microbial communities. In this study, water samples were collected from Lake Vanda, a stratified Dry Valley lake whose upper waters (from just below the ice cover to nearly 60 m are highly oligotrophic, and used to establish enrichment cultures. Six strains of psychrotolerant, heterotrophic bacteria were isolated from lake water samples from a depth of 50 or 55 m. Phylogenetic analyses showed the Lake Vanda strains to be species of Nocardiaceae, Caulobacteraceae, Sphingomonadaceae, and Bradyrhizobiaceae. All Lake Vanda strains grew at temperatures near or below 0 °C, but optimal growth occurred from 18 to 24 °C. Some strains showed significant halotolerance, but no strains required NaCl for growth. The isolates described herein include cold-active species not previously reported from Dry Valley lakes, and their physiological and phylogenetic characterization broadens our understanding of these limnologically unique lakes.

  15. Hydrogeologic implications of increased septic-tank-soil-absorption system density, Ogden Valley, Weber County, Utah

    Science.gov (United States)

    Lowe, Mike; Miner, Michael L.; ,

    1990-01-01

    Ground water in Ogden Valley occurs in perched, confined, and unconfined aquifers in the valley fill to depths of 600 feet and more. The confined aquifer, which underlies only the western portion of the valley, is overlain by cleyey silt lacustrine sediments probably deposited during the Bonneville Basin's Little Valley lake cycle sometime between 90,000 and 150,000 years ago. The top of this cleyey silt confining layer is generally 25 to 60 feet below the ground surface. Unconfined conditions occur above and beyond the outer margin of the confining layer. The sediments overlying the confining layer are primarily Lake Bonneville deposits. Water samples from springs, streams, and wells around Pineview Reservoir, and from the reservoir itself, were collected and analyzed. These samples indicate that water quality in Ogden Valley is presently good. Average nitrate concentrations in the shallow unconfined aquifer increase toward the center of Ogden Valley. This trend was not observed in the confined aquifer. There is no evidence, however, of significant water-quality deterioration, even in the vicinity of Huntsville, a town that has been densely developed using septic-tank-soil-absorption systems for much of the time since it was founded in 1860.

  16. Bathymetry of Lake Michigan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Michigan has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  17. Bathymetry of Lake Ontario

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Ontario has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  18. Bathymetry of Lake Superior

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Superior has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  19. Great Lakes Bathymetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lakes Michigan, Erie, Saint Clair, Ontario and Huron has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and...

  20. Bathymetry of Lake Huron

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Huron has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and make it more...

  1. Great Lakes Science Center

    Data.gov (United States)

    Federal Laboratory Consortium — Since 1927, Great Lakes Science Center (GLSC) research has provided critical information for the sound management of Great Lakes fish populations and other important...

  2. THE SOMEŞAN PLATEAU LAKES: GENESIS, EVOLUTION AND TERRITORIAL REPARTITION

    Directory of Open Access Journals (Sweden)

    Victor SOROCOVSCHI

    2010-06-01

    Full Text Available The present paper analyzes the genesis of the lake depressions in the Someşan Plateau and the way they evolved in time and space, as well as the morphometric elements characteristic of the different genetic types of lakes. The natural lakes in this region are few and their dimensions are small; they generally appear solitarily and only rarely as lake complexes. In this category have been included the valley lakes, the lakes formed in abandoned meanders and the lakes formed in areas with landslides. The artificial lakes are more numerous and include several genetic types. The most representative are the remnant lakes formed in the depressions resulted from the exploitation of different construction materials (kaolin sands, lime stones and the anthropic salty lakes lakes formed in abandoned salt mines from the diapir area of the Hills of Dej. The rapid evolution of these types of lakes has been highlighted through the comparative analysis of the morphometric elements obtained on the basis of topometric and bathymetric measurements. The lakes arranged for pisciculture include several subtypes (ponds, fish ponds that have been identified and characterized for the fist time, their morphometric elements being determined using digital data bases, satellite images and detailed topometric maps.

  3. 77 FR 33237 - Saline Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National...

    Science.gov (United States)

    2012-06-05

    ... Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National Park, Inyo... an Environmental Impact Statement for the Saline Valley Warm Springs Management Plan, Death Valley... analysis process for the Saline Valley Warm Springs Management Plan for Death Valley [[Page 33238...

  4. Terrestrial Cosmogenic-Nuclide Dating of Alluvial Fans in Death Valley, California

    Science.gov (United States)

    Machette, Michael N.; Slate, Janet L.; Phillips, Fred M.

    2008-01-01

    We have used terrestrial cosmogenic nuclides (TCN) to establish the age of some of the most extensive Quaternary alluvial fans in Death Valley, California. These intermediate-age alluvial fans are most extensive on the western side of the valley, where tectonic deformation is considerably less pronounced than on the eastern side of the valley. These fans are characterized by a relatively smooth, densely packed desert pavement formed by well-varnished (blackened) clasts. These surfaces have been mapped as the Q2 gravel by previous workers and as unit Qai (intermediate age) by us. However, the intermediate-age gravels probably contain multiple subunits, as evidenced by slight differences in morphologic expression, soil formation, and inset geomorphic relations. The TCN technique used herein sums the cosmogenic 36Cl in approximately 2.5-meter-deep profiles through soil and host alluvium, thus avoiding some of the problems associated with the more typical surface-exposure dating of boulders or smaller clasts. Our TCN 36Cl dating of 12 depth profiles indicates that these intermediate-age (Qai) alluvial fans range from about 100 to 40 kilo-annum (ka), with a mean age of about 70 ka. An alternative interpretation is that alluvial unit Qai was deposited in two discrete episodes from 90 to 80 ka and from 60 to 50 ka, before and after MIS (marine oxygen-isotope stage) 4 (respectively). Without an intermediate-age unit, such as MIS 4 lake deposits, we can neither disprove nor prove that Qai was deposited in two discrete intervals or over a longer range of time. Thus, in Death Valley, alluvial unit Qai largely brackets MIS 4, which is not associated with a deep phase of Lake Manly. These Qai fans extend to elevations of about -46 meters (150 feet below sea level) and have not been transgressed by Lake Manly, suggesting that MIS 4 or MIS 2 lakes were rather shallow in Death Valley, perhaps because they lacked inflow from surface runoff of the Sierra Nevada drainages through

  5. Lake Cadagno

    DEFF Research Database (Denmark)

    Tonolla, Mauro; Storelli, Nicola; Danza, Francesco

    2017-01-01

    cycles. The chemocline lies at about 12 m depth, stabilized by density differences of salt-rich water supplied by sub-aquatic springs to the monimolimnion and of electrolyte-poor surface water feeding the mixolimnion. Steep sulphide and light gradients in the chemocline support the growth of a large...... in the chemocline. Small-celled PSB together with the sulfate-reducing bacterium Desulfocapsa thiozymogenes sp. form stable aggregates in the lake, which represent small microenvironments with an internal sulphur cycle. Eukaryotic primary producers in the anoxic zones are dominated by Cryptomonas phaseolus...

  6. The California Valley grassland

    Science.gov (United States)

    Keeley, J.E.; Schoenherr, Allan A.

    1990-01-01

    Grasslands are distributed throughout California from Oregon to Baja California Norte and from the coast to the desert (Brown 1982) (Figure 1). This review will focus on the dominant formation in cismontane California, a community referred to as Valley Grassland (Munz 1959). Today, Valley Grassland is dominated by non-native annual grasses in genera such as Avena (wild oat), Bromus (brome grass), and Hordeum (barley), and is often referred to as the California annual grassland. On localized sites, native perennial bunchgrasses such as Stipa pultra (purple needle grass) may dominate and such sites are interpreted to be remnants of the pristine valley grassland. In northwestern California a floristically distinct formation of the Valley Grassland, known as Coast Prairie (Munz 1959) or Northern Coastal Grassland (Holland and Keil 1989) is recognized. The dominant grasses include many native perennial bunchgrasses in genera such as Agrostis, Calamagrostis, Danthonia, Deschampsia, Festuca, Koeleria and Poa (Heady et al. 1977). Non-native annuals do not dominate, but on some sites non-native perennials like Anthoxanthum odoratum may colonize the native grassland (Foin and Hektner 1986). Elevationally, California's grasslands extend from sea level to at leas 1500 m. The upper boundary is vague because montane grassland formations are commonly referred to as meadows; a community which Munz (1959) does not recognize. Holland and Keil (1989) describe the montane meadow as an azonal community; that is, a community restricted not so much to a particular climatic zone but rather controlled by substrate characteristics. They consider poor soil-drainage an over-riding factor in the development of montane meadows and, in contrast to grasslands, meadows often remain green through the summer drought. Floristically, meadows are composed of graminoids; Cyperaceae, Juncaceae, and rhizomatous grasses such as Agropyron (wheat grass). Some bunchgrasses, such as Muhlenbergia rigens, are

  7. Detailed Aggregate Resources Study, Dry Lake Valley, Nevada.

    Science.gov (United States)

    1981-05-29

    LOCAL SAND SOURCES IGENERALLY CYLINDERS. DRYING SHRINKAGE I COLLECTED WITHIN A FEW MILES OF CORRESPONDING LEDGE-ROCK SOURCES) SUPPLIED FINE MENS...COMPRESSIVE AND TENSILE STh LEDGE-ROCK SOURCES SUPPLIED COARSE AGGREGATES; LOCAL SAND SOURCES IGENERALLY CYLINDERS. DRYING SHRINKAGE COLLECTED WITHIN A FEW

  8. Rift Valley Fever.

    Science.gov (United States)

    Hartman, Amy

    2017-06-01

    Rift Valley fever (RVF) is a severe veterinary disease of livestock that also causes moderate to severe illness in people. The life cycle of RVF is complex and involves mosquitoes, livestock, people, and the environment. RVF virus is transmitted from either mosquitoes or farm animals to humans, but is generally not transmitted from person to person. People can develop different diseases after infection, including febrile illness, ocular disease, hemorrhagic fever, or encephalitis. There is a significant risk for emergence of RVF into new locations, which would affect human health and livestock industries. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Analysis of overdeepened valleys using the digital elevation model of the bedrock surface of Northern Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, P.

    2010-11-15

    Based on surface and borehole information, together with pre-existing regional and local interpretations, a 7,150 square kilometre Raster Digital Elevation Model (DEM) of the bedrock surface of northern Switzerland was constructed using a 25 m cell size. This model represents a further important step in the understanding of Quaternary sediment distribution and is open to a broad field of application and analysis, including hydrogeological, geotechnical and geophysical studies as well as research in the field of Pleistocene landscape evolution. An analysis of the overdeepened valleys in the whole model area and, more specifically in the Reuss area, shows that, in most cases, overdeepening is restricted to the areas covered by the Last Glaciation Maximum (LGM). However, at various locations relatively narrow overdeepened valleys outreach the tongue basins and the LGM ice shield limits. Therefore, an earlier and further-reaching glacial event has probably contributed significantly to the overdeepening of these valleys. No significant overdeepening has been identified downstream of Boettstein (Aare) and Kaiserstuhl (Rhine), although the ice extended considerably further downstream, at least during the most extensive glaciation. Except for the bedrock between Brugg and Boettstein, no overdeepened valleys are found significantly north of the outcrop of Mesozoic limestone of the Folded and Tabular Jura. A detailed analysis of the Reuss area shows that the Lake and Suhre valleys are separated from the Emmen-Gisikon Reuss valley basin by a significant bedrock barrier. The individual bedrock valleys are divided into several sub-basins, indicating a multiphase evolution of the valleys. Some of the swells or barriers separating the sub-basins coincide with known late LGM retreat stages. In the Suhre valley, an old fluvial valley floor with restricted overdeepened sections is documented. (author)

  10. Aburra Valley: Quo vadis?

    International Nuclear Information System (INIS)

    Hermelin, Michel

    2008-01-01

    These paper intents a brief description of the evolution that characterised natural risk prevention in the area surrounding the city of Medellin, Colombia, called the Aburra Valley. Both the lithological and structural composition of the Valle and its topographic and climatic conditions contribute to the abundance of destructive natural phenomena as earthquakes, slope movements, flash floods and, in a lower proportion, to floods. The population increase, which reaches now 3.5 millions inhabitants and the frequent occupation of sites exposed to natural hazards have resulted in numerous disasters. At present two entities called SIMPAD and DAPARD work on risk prevention, on city and department scale respectively. The amount of knowledge about physical environment is considered to be insufficient, together with regulations which should direct land use in accordance to restrictions related to natural hazards. Several seminars on this topic have already been carried out and the organisers of the present one, destined to commemorate the twentieth anniversary of the Villatina disaster, should make the decision to meet each two years. Furthermore, the creation of a permanent commission dedicated to study past events, to foster information broadcasting and to seek a better knowledge of the Aburra Valley, should be considered

  11. Rapid changes in the level of Kluane Lake in Yukon Territory over the last millennium

    Science.gov (United States)

    Clague, John J.; Luckman, Brian H.; Van Dorp, Richard D.; Gilbert, Robert; Froese, Duane; Jensen, Britta J. L.; Reyes, Alberto V.

    2006-09-01

    The level of Kluane Lake, the largest lake in Yukon Territory, was lower than at present during most of the Holocene. The lake rose rapidly in the late seventeenth century to a level 12 m above present, drowning forest and stranding driftwood on a conspicuous high-stand beach, remnants of which are preserved at the south end of the lake. Kluane Lake fell back to near its present level by the end of the eighteenth century and has fluctuated within a range of about 3 m over the last 50 yr. The primary control on historic fluctuations in lake level is the discharge of Slims River, the largest source of water to the lake. We use tree ring and radiocarbon ages, stratigraphy and sub-bottom acoustic data to evaluate two explanations for the dramatic changes in the level of Kluane Lake. Our data support the hypothesis of Hugh Bostock, who suggested in 1969 that the maximum Little Ice Age advance of Kaskawulsh Glacier deposited large amounts of sediment in the Slims River valley and established the present course of Slims River into Kluane Lake. Bostock argued that these events caused the lake to rise and eventually overflow to the north. The overflowing waters incised the Duke River fan at the north end of Kluane Lake and lowered the lake to its present level. This study highlights the potentially dramatic impacts of climate change on regional hydrology during the Little Ice Age in glacierised mountains.

  12. Limnology of Eifel maar lakes

    National Research Council Canada - National Science Library

    Scharf, Burkhard W; Björk, Sven

    1992-01-01

    ... & morphometry - Physical & chemical characteristics - Calcite precipitation & solution in Lake Laacher See - Investigations using sediment traps in Lake Gemundener Maar - Phytoplankton of Lake Weinfelder Maar...

  13. Sediment deposition and sources into a Mississippi River floodplain lake; Catahoula Lake, Louisiana

    Science.gov (United States)

    Latuso, Karen D.; Keim, Richard F.; King, Sammy L.; Weindorf, David C.; DeLaune, Ronald D.

    2017-01-01

    Floodplain lakes are important wetlands on many lowland floodplains of the world but depressional floodplain lakes are rare in the Mississippi River Alluvial Valley. One of the largest is Catahoula Lake, which has existed with seasonally fluctuating water levels for several thousand years but is now in an increasingly hydrologically altered floodplain. Woody vegetation has been encroaching into the lake bed and the rate of this expansion has increased since major human hydrologic modifications, such as channelization, levee construction, and dredging for improvement of navigation, but it remains unknown what role those modifications may have played in altering lake sedimentation processes. Profiles of thirteen 137Cs sediment cores indicate sedimentation has been about 0.26 cm y− 1 over the past 60 years and has been near this rate since land use changes began about 200 years ago (210Pb, and 14C in Tedford, 2009). Carbon sequestration was low (10.4 g m− 2 y− 1), likely because annual drying promotes mineralization and export. Elemental composition (high Zr and Ti and low Ca and K) and low pH of recent (sediments suggest Gulf Coastal Plain origin, but below the recent sediment deposits, 51% of sediment profiles showed influence of Mississippi River alluvium, rich in base cations such as K+, Ca2 +, and Mg2 +. The recent shift to dominance of Coastal Plain sediments on the lake-bed surface suggests hydrologic modification has disconnected the lake from sediment-bearing flows from the Mississippi River. Compared to its condition prior to hydrologic alterations that intensified in the 1930s, Catahoula Lake is about 15 cm shallower and surficial sediments are more acidic. Although these results are not sufficient to attribute ecological changes directly to sedimentological changes, it is likely the altered sedimentary and hydrologic environment is contributing to the increased dominance of woody vegetation.

  14. Global Lakes Sentinel Services: Evaluation of Chl-a Trends in Deep Clear Lakes

    Science.gov (United States)

    Cazzaniga, Ilaria; Giardino, Claudia; Bresciani, Mariano; Poser, Kathrin; Peters, Steef; Hommersom, Annelies; Schenk, Karin; Heege, Thomas; Philipson, Petra; Ruescas, Ana; Bottcher, Martin; Stelzer, Kerstin

    2016-08-01

    The aim of this study is the analysis of trend in the trophic level evolution in clear deep lakes which, being characterised by good quality state, are important socio- economic resources for their regions. The selected lakes are situated in Europe (Garda, Maggiore, Constance and Vättern), North America (Michigan) and Africa (Malawi and Tanganyika) and cover a range of eco- regions (continental, perialpine, boreal, rift valley) distributed globally.To evaluate trophic level tendency we mainly focused on chlorophyll-a concentrations (chl-a) which is a direct proxy of trophic status. The chl-a concentrations were obtained from 5216 cloud-free MERIS imagery from 2002 to 2012.The 'GLaSS RoIStats tool' available within the GLaSS project was used to extract chl-a in a number of region of interests (ROI) located in pelagic waters as well as some few other stations depending on lakes morphology. For producing the time-series trend, these extracted data were analysed with the Seasonal Kendall test.The results overall show almost stable conditions with a slight increase in concentration for lakes Maggiore, Constance, and the Green Bay of Lake Michigan; a slight decrease for lakes Garda and Tanganyika and absolutely stable conditions for lakes Vättern and Malawi.The results presented in this work show the great capability of MERIS to perform trend tests analysis on trophic status with focus on chl-a concentration. Being chl-a also a key parameter in water quality monitoring plans, this study also supports the managing practices implemented worldwide for using the water of the lakes.

  15. Field Surveys, IOC Valleys. Biological Resources Survey, Dry Lake Valley, Nevada. Volume II, Part I.

    Science.gov (United States)

    1981-08-01

    years ago; the transplant was considered unsuccessful. Sagebrush is the principal item in the diet of adult sage grouse (Centrocercus urophasianus), and...canyon areas in the normal chukar partridge range but can also extend its range to areas too dry for the chukar. The transplant was not con- sidered...determined. - Ertee E-TR-48-II-I SSL1’N SL xx- C - - _ 0S91’ - - I. 009t N - - 0’J o,, s). N, - . ,o 09 -SW,- - - ,o T z X -4 oseo 0L91 - N - = - ozot ma

  16. Upper Neogene stratigraphy and tectonics of Death Valley — a review

    Science.gov (United States)

    Knott, J. R.; Sarna-Wojcicki, A. M.; Machette, M. N.; Klinger, R. E.

    2005-12-01

    New tephrochronologic, soil-stratigraphic and radiometric-dating studies over the last 10 years have generated a robust numerical stratigraphy for Upper Neogene sedimentary deposits throughout Death Valley. Critical to this improved stratigraphy are correlated or radiometrically-dated tephra beds and tuffs that range in age from > 3.58 Ma to Mormon Point. This new geochronology also establishes maximum and minimum ages for Quaternary alluvial fans and Lake Manly deposits. Facies associated with the tephra beds show that ˜3.3 Ma the Furnace Creek basin was a northwest-southeast-trending lake flanked by alluvial fans. This paleolake extended from the Furnace Creek to Ubehebe. Based on the new stratigraphy, the Death Valley fault system can be divided into four main fault zones: the dextral, Quaternary-age Northern Death Valley fault zone; the dextral, pre-Quaternary Furnace Creek fault zone; the oblique-normal Black Mountains fault zone; and the dextral Southern Death Valley fault zone. Post - 3.3 Ma geometric, structural, and kinematic changes in the Black Mountains and Towne Pass fault zones led to the break up of Furnace Creek basin and uplift of the Copper Canyon and Nova basins. Internal kinematics of northern Death Valley are interpreted as either rotation of blocks or normal slip along the northeast-southwest-trending Towne Pass and Tin Mountain fault zones within the Eastern California shear zone.

  17. Brief description as of April, 1968, of the geology and hydrology of the Lake Minnequa area, Pueblo, Colorado, and suggested solutions for trouble caused by a high water table

    Science.gov (United States)

    Scott, Glenn R.

    1972-01-01

    Lake Minnequa lies in a poorly drained broad upland buried valley west of the valley of Salt Creek. Immediately north of Lake Minnequa the buried valley is sharply constricted in sees. 11 and 12, T. 21 S., R. 65 W., where it is entrenched in a buried ridge of bedrock (see geologic map).  The bedrock throughout the buried valley is composed of calcareous shale, limestone, and chalk of the Smoky Hill Shale Member of the Niobrara Formation.  These beds are relatively impermeable to the flow of ground water, but contribute large quantities of sodium sulfate to both the surface and ground water.

  18. Profundal sideritic mudstone from an Eocene lake in Alaska

    International Nuclear Information System (INIS)

    Dickinson, K.A.

    1987-01-01

    Sideritic lacustrine mudstone was found in drill core from a uranium deposit in the Death Valley area in the eastern part of the Seward Peninsula, Alaska. The precursor sediments for this rock were deposited in an unusual iron-meromictic Eocene lake, herein named Lake Tubutulik, which occupied part of the Boulder Creek basin, a graben that is probably a southern extension of the larger Death Valley basin. The Boulder Creek basin is bounded on the west by granite of the Upper Cretaceous Darby pluton and on the east by Precambrian to Paleozoic metasedimentary rocks. The lake basin was formed by basaltic flows that dammed the valley of the ancestral Tubutulik River in early Eocene time. The lake sediments included a nearshore facies of fine-grained organic mud and an offshore facies of laminated sideritic mud. The offshore (profundal) laminated mudstone consists of alternating layers of authigenic siderite and detrital grains, mostly quartz and clay minerals. Both lacustrine facies contain turbidites. The lacustrine rocks graded laterally into an onshore facies of colluvial and fluvial sandstone, paludal mudstone, and coal. The ancient lake occupied a small, deep basin in a tectonically active area of high relief. Meromixis was apparently stabilized by reduced iron and bicarbonate dissolved in the monimolimnion. The intensity of meromixis decreased as the lake became shallower from sediment filling. The source of the dissolved iron in the monoimolimnion was probably the Eocene basalt. Carbon isotope analysis of the siderite suggests that the dissolved bicarbonate in the profundal facies was largely inorganic. Sideritic carbon in one sample from the onshore paludal facies has an isotopic signature (δ 13 C = +16.9) consistent with residual carbonate formed during methanogenic fermentation

  19. Valley development on Hawaiian volcanoes

    International Nuclear Information System (INIS)

    Baker, V.R.; Gulick, V.C.

    1987-01-01

    Work in progress on Hawaiian drainage evolution indicates an important potential for understanding drainage development on Mars. Similar to Mars, the Hawaiian valleys were initiated by surface runoff, subsequently enlarged by groundwater sapping, and eventually stabilized as aquifers were depleted. Quantitative geomorphic measurements were used to evaluate the following factors in Hawaiian drainage evolution: climate, stream processes, and time. In comparing regions of similar climate, drainage density shows a general increase with the age of the volcani island. With age and climate held constant, sapping dominated valleys, in contrast to runoff-dominated valleys, display the following: lower drainage densities, higher ratios of valley floor width to valley height, and more positive profile concavities. Studies of stream junction angles indicate increasing junction angles with time on the drier leeward sides of the major islands. The quantitative geomorphic studies and earlier field work yielded important insights for Martian geomorphology. The importance of ash mantling in controlling infiltration on Hawaii also seems to apply to Mars. The Hawaiian valley also have implications for the valley networks of Martian heavily cratered terrains

  20. Bathymetry of Lake Erie and Lake Saint Clair

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathymetry of Lake Erie and Lake Saint Clair has been compiled as a component of a NOAA project to rescue Great Lakes lake floor geological and geophysical data and...

  1. Subsurface imaging reveals a confined aquifer beneath an ice-sealed Antarctic lake

    DEFF Research Database (Denmark)

    Dugan, H. A.; Doran, P. T.; Tulaczyk, S.

    2015-01-01

    Liquid water oases are rare under extreme cold desert conditions found in the Antarctic McMurdo Dry Valleys. Here we report geophysical results that indicate that Lake Vida, one of the largest lakes in the region, is nearly frozen and underlain by widespread cryoconcentrated brine. A ground...... this zone to be a confined aquifer situated in sediments with a porosity of 23-42%. Discovery of this aquifer suggests that subsurface liquid water may be more pervasive in regions of continuous permafrost than previously thought and may represent an extensive habitat for microbial populations. Key Points...... Geophysical survey finds low resistivities beneath a lake in Antarctic Dry Valleys Liquid brine abundant beneath Antarctic lake Aquifer provides microbial refugium in cold desert environment...

  2. Landform Evolution of the Zanskar Valley, Ladakh Himalaya.

    Science.gov (United States)

    Chahal, P.; Kumar, A.; Sharma, P.; Sundriyal, Y.; Srivastava, P.

    2017-12-01

    Zanskar River flow from south-west to north-east, perpendicularly through Higher Himalayan crystalline sequences, Tethyan sedimentary sequences, and Indus Molasses; and finally merge with the Indus River at Nimu. Geologically, the Indus valley is bounded by Ladakh Batholith in the north and highly folded and thrusted Zanskar mountain ranges in the south. Sedimentary sequences of Zanskar ranges are largely of continental origin, which were uplifted and deformed via several north verging thrusts, where Zanskar counter thrust, Choksti and Indus-Bazgo thrusts are important thrust zone, and there is atleast 36 km of crustal shortening in the Zanskar section which continued from middle Miocene to the late Pleistocene. This shortening is accommodated mainly by north or north-east directed Zanskar backthrusts. Two major tributaries of Zanskar: Tsrapchu and Doda, flow in the headwaters, along the strike of South Tibetan Detachment System (STDs), an east-west trending regional fault. The present study incorporate field sedimentology, geomorphology and chronology of landform associated with Zanskar valley. In the upper Zanskar, alluvial fan, valley fill and strath terraces configured the major landforms with paleo-lake deposits­­­ in the area between the fans. The lower catchment, at the confluence of Zanskar and Indus rivers, exhibit mainly valley fill terraces and strath terraces. Chronology suggests diachronous aggradation in the upper and lower Zanskar catchments. In the upper Zanskar large scale valley aggradation took place with simultaneously fan progradation and flooding events from 45-15 ka. Luminescence chronology of the lower Zanskar indicates aggradation from 145-55 ka and 18-12 ka. The two aggradation basins are separated by a deep V-shaped gorge which is approximately 60 km long. The longitudinal profile of the Zanskar River shows several local convexities marking knick point zone, which suggests tectonically controlled topography.

  3. Robinson Rancheria Strategic Energy Plan; Middletown Rancheria Strategic Energy Plan, Scotts Valley Rancheria Strategic Energy Plan, Elem Indian Colony Strategic Energy Plan, Upperlake Rancheria Strategic Energy Plan, Big Valley Rancheria Strategic Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis and Associates LLC

    2008-08-01

    The Scotts Valley Band of Pomo Indians is located in Lake County in Northern California. Similar to the other five federally recognized Indian Tribes in Lake County participating in this project, Scotts Valley Band of Pomo Indians members are challenged by generally increasing energy costs and undeveloped local energy resources. Currently, Tribal decision makers lack sufficient information to make informed decisions about potential renewable energy resources. To meet this challenge efficiently, the Tribes have committed to the Lake County Tribal Energy Program, a multi Tribal program to be based at the Robinson Rancheria and including The Elem Indian Colony, Big Valley Rancheria, Middletown Rancheria, Habematolel Pomo of Upper Lake and the Scotts Valley Pomo Tribe. The mission of this program is to promote Tribal energy efficiency and create employment opportunities and economic opportunities on Tribal Lands through energy resource and energy efficiency development. This program will establish a comprehensive energy strategic plan for the Tribes based on Tribal specific plans that capture economic and environmental benefits while continuing to respect Tribal cultural practices and traditions. The goal is to understand current and future energy consumption and develop both regional and Tribe specific strategic energy plans, including action plans, to clearly identify the energy options for each Tribe.

  4. Assessment and recommendations for two sites with active and potential aquaculture production in Rift Valley and Coast Provinces, Kenya

    Science.gov (United States)

    Kenya has a long history of local fish consumption. The population in the Lake Victoria area (Rift Valley Province) Northwest of Nairobi and coastal communities (Coast Province) have historically included fish in their diet. Migration from villages to urban areas and increasing commerce has created ...

  5. Crop intensification options and trade-offs with the water balance in the Central Rift Valley of Ethiopia

    NARCIS (Netherlands)

    Debas, Mezegebu

    2016-01-01

    The Central Rift Valley (CRV) of Ethiopia is a closed basin for which claims on land and water have strongly increased over the past decade resulting in over-exploitation of the resources. A clear symptom is the declining trend in the water level of the terminal Lake Abyata. The actual

  6. Glacial lakes in South Tyrol: distribution, evolution and potential for GLOFs

    Science.gov (United States)

    Schug, Marie-Claire; Mergili, Martin

    2017-04-01

    All over the world glaciers are currently retreating, leading to the formation or growth of glacial lakes. Some of these lakes are susceptible to sudden drainage. In order to assess the danger of glacial lake outburst floods (GLOFs) in South Tyrol in the Italian Alps, we present (i) an inventory of lakes, (ii) an analysis of the development of selected glacial lakes since 1945, and (iii) the susceptibility to and the possible impact areas of GLOFs. The inventory includes 1010 lakes that are larger than 250 m2 at an elevation above 2000 m asl, most of them of glacial origin. These lakes are mapped manually from orthophotos. Apart from collecting information on the spatial distribution of these lakes, the inventory lists dam material, glacier contact, and further parameters. 89% of the lakes in the investigation area are impounded by bedrock, whereas 93% of the lakes are detached from the associated glacier. The majority of lakes is small to medium sized (selected lakes are analyzed in detail in the field and from multi-temporal orthophotos, including the development of lake size and surroundings in the period since 1945. The majority of the selected lakes, however, was first recorded on orthophotos from the early 1980s. Eight of ten lakes grew significantly in that period. But when the lakes detached from the glacier until the early 2000s, the growth slowed down or ceased. Based on the current development of the selected lakes we conclude that the close surroundings of these lakes have stabilised and the lakes' susceptibility to an outburst has thus decreased. We further conduct broad-scale analyses of the susceptibility of the mapped lakes to GLOFs, and of the potential reach of possible GLOFs. The tool r.glachaz is used to determine the potentially dangerous lakes. Even though some few lakes require closer attention, the overall susceptibility to GLOFs in South Tyrol is relatively low, as most lakes are impounded by bedrock. In some cases, GLOFs caused by impact

  7. The Drentsche Aa valley system

    International Nuclear Information System (INIS)

    Gans, W. de.

    1981-01-01

    This thesis is composed of five papers concerned with Late Quaternary geology and geomorphology of the Aa valley system. The correlation and chronostratigraphic position of the layers have been established by radiocarbon dating. (Auth.)

  8. [Similarities and differences in absorption characteristics and composition of CDOM between Taihu Lake and Chaohu Lake].

    Science.gov (United States)

    Shi, Kun; Li, Yun-mei; Wang, Qiao; Yang, Yu; Jin, Xin; Wang, Yan-fei; Zhang, Hong; Yin, Bin

    2010-05-01

    Field experiments are conducted separately in Taihu Lake and Chaohu Lake on Apr. and Jun. 2009. The changes in absorption spectra of chromophoric dissolved organic matter (CDOM) characteristics are analyzed using spectral differential analysis technology. According the spectral differential characteristic of absorption coefficient; absorption coefficient from 240 to 450 nm is divided into different stages, and the value of spectral slope S is calculated in each stage. In Stage A, S value of CDOM in Taihu Lake and Chaohu Lake are 0.0166-0.0102 nm(-1) [average (0.0132 +/- 0.0017) nm(-1)], 0.029-0.017 nm(-1) [average (0.0214 +/- 0.0024) nm(-1)]. In Stage B, S values are 0.0187-0.0148 nm(-1) [average (0.0169 +/- 0.001) nm(-1)], 0.0179-0.0055 nm(-1) [average (0.0148 +/- 0.002) nm(-1)]. In Stage C, S values are 0.0208-0.0164 nm(-1) [average (0.0186 +/- 0.0009) nm(-1)], 0.0253-0.0161 nm(-1) [average (0.0197 +/- 0.002) nm(-1)]. The results can be concluded as: (1) Absorption coefficient of water in Taihu Lake, and its contribution to absorption of each component is less than that of water in Chaohu Lake, however the standardized absorption coefficient is larger than that in Chaohu Lake. (2) Both in Taihu Lake and Chaohu Lake, derivative spectra of CDOM absorption coefficient reached valley at 260nm, then rise to top at 290 nm, CDOM absorption coefficient can be delivered into three stages. (3) Generally speaking, content of CDOM in Taihu Lake is less than in Chaohu Lake. (4) pectrum slope (S value) of CDOM is related to composition of CDOM, when content of humic acid in CDOM gets higher, S value of Stage B is the most sensitive value, then is the S value of Stage C. Oppositely, S value of Stage B gets the most sensitive value, then is the S value of Stage A; the least sensitive value is in Stage B.

  9. Geomorphic controls on Pleistocene knickpoint migration in Alpine valleys

    Science.gov (United States)

    Leith, Kerry; Fox, Matt; Moore, Jeffrey R.; Brosda, Julian; Krautblatter, Michael; Loew, Simon

    2014-05-01

    Recent insights into sub-glacial bedrock stress conditions suggest that the erosional efficiency of glaciers may reduce markedly following a major erosional cycle [Leith et al., 2013]. This implies that the formation of large glacial valleys within the Alps is likely to have occurred shortly after the onset of 100 ky glacial-interglacial cycles (at the mid-Pleistocene Revolution (MPR)). The majority of landscape change since this time may have therefore been driven by sub-aerial processes. This hypothesis is supported by observations of hillslope and channel morphology within Canton Valais (Switzerland), where major tributary valleys display a common morphology along their length, hinting at a shared geomorphic history. Glaciers currently occupy the headwaters of many catchments, while the upper reaches of rivers flow across extensive alluvial planes before abruptly transitioning to steep channels consisting of mixed bedrock and talus fan deposits. The rivers then converge to flow out over the alluvial plane of the Rhone Valley. Characteristically rough topographies within the region are suggested to mark the progressive transition from a glacial to fluvially-dominated landscape, and correlate well with steepened river channel sections determined from a 2.5 m resolution LiDAR DEM. We envisage a landscape in which ongoing tectonic uplift drives the emergence of Alpine bedrock through massive sedimentary valley infills (currently concentrated in the Rhone Valley), whose elevation is fixed by the consistent fluvial baselevel at Lake Geneva. As fluvial incision ceases at the onset of glaciation, continued uplift causes the formation of knickpoints at the former transition from bedrock to sedimentary infill. These knickpoints will then propagate upstream during subsequent interglacial periods. By investigating channel morphologies using an approach based on the steady-state form of the stream power equation, we can correlate steepened channel reaches (degraded

  10. Lake or Pond WBID

    Data.gov (United States)

    Vermont Center for Geographic Information — The VT DEC (Vermont Department of Environmental Conservation) manages an inventory of lake and pond information. The "Lakes and Ponds Inventory" stores the Water...

  11. National Lakes Assessment Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Lakes Assessment (NLA) is a first-ever statistically-valid survey of the biological condition of lakes and reservoirs throughout the U.S. The U.S....

  12. DNR 24K Lakes

    Data.gov (United States)

    Minnesota Department of Natural Resources — Medium scale lake polygons derived from the National Wetlands Inventory (NWI) polygons and MnDOT Basemap lake delineations. Integrated with the DNR 24K Streams...

  13. Speculations on the spatial setting and temporal evolution of a fjord-style lake

    Science.gov (United States)

    Sarnthein, M.; Spötl, C.

    2012-04-01

    The Inn Valley, a classical region of Quaternary research in the Alps, is bordered by terraces that extend over almost 70 km and record an ancient lake with a lake level near 750-830 m above sea level (a.s.l.), about 250-300 m above the modern valley floor. Over large distances, the terrace sediments consist mainly of laminated "Banded Clays", above ~750 m a.s.l. overlain by glaciofluvial gravel and finally, by tills that record the Upper Würmian ice advance of Marine Isotope Stage (MIS) 2. In the (former) clay pit of Baumkirchen this boundary forms the Alpine type locality for the onset of the Upper Würmian, well supported by 14C-based age control first established by Fliri (1971). On the basis of a recently cored sediment section at Baumkirchen, the >200 m thick "Banded Clays" store a continuous, largely undisturbed, highly resolved, and widely varved climatic archive of MIS 3. Major unknowns concern the location and origin of dams that may have barred the vast and deep Inn Valley lake. We discuss potential linkages to the pattern of moraines and ice advance of MIS 4 glaciers, which was less prominent than during MIS 2, thus leading to a distinct east-west segment¬ation of the run-off systems in Tyrol. East of Imst, for example, the lake was possibly barred by both a rock sill reaching up to 830 m a.s.l. and a lateral moraine deposited by an Ötz Valley glacier. 80 km further east, a lateral moraine of a glacier advancing from the Ziller Valley may have barred the ancient Inn Valley lake to the east. The final rapid coarsening of clastic lake sediments at the end of MIS 3 is widely ascribed to major climatic deter¬ioration. However, the MIS 3-2 boundary was linked to an only modest change of global climates and accordingly, different forcings may be considered. In turn, the rapid coarsening may document a date, when the Central Alpine glaciers had already filled the basin of Imst to the west of the Inn Valley lake. This ice mass may have forced the melt

  14. Preliminary results of hydrogeologic investigations Humboldt River Valley, Winnemucca, Nevada

    Science.gov (United States)

    Cohen, Philip M.

    1964-01-01

    Most of the ground water of economic importance and nearly all the ground water closely associated with the flow o# the Humboldt River in the. 40-mile reach near Winnemucca, Nev., are in unconsolidated sedimentary deposits. These deposits range in age from Pliocene to Recent and range in character from coarse poorly sorted fanglomerate to lacustrine strata of clay, silt, sand, and gravel. The most permeable deposit consists of sand and gravel of Lake Lahontan age--the so-called medial gravel unit--which is underlain and overlain by fairly impermeable silt and clay also of Lake Lahontan age. The ultimate source of nearly all the water in the study area is precpitation within the drainage basin of the Humboldt River. Much of this water reaches the study, area as flow or underflow of the Humboldt River and as underflow from other valleys tributary to the study area. Little if any flow from the tributary streams in the study area usually reaches the Humboldt River. Most of the tributary streamflow within the study area evaporates or is transpired by vegetation, but a part percolates downward through unconsolidated deposits of the alluvial fans flanking the mountains and move downgradient as ground-water underflow toward the Humboldt River. Areas that contribute significant amounts of ground-water underflow to. the valley of the Humboldt River within the study area are (1) the valley of the Humboldt River upstream from the study area, (2) the Pole Creek-Rock Creek area, (3) Paradise Valley, and (4) Grass Valley and the northwestern slope of the Sonoma Range. The total average underflow from these areas in the period 1949-61 was about 14,000-19,000 acre-feet per year. Much of this underflow discharged into the Humboldt River within the study area and constituted a large part of the base flow of the river. Streamflow in the Humboldt River increases substantially in the early spring, principally because of runoff to the river in the reaches upstream from the study area

  15. Post-glacial rock avalanches in the Obersee Valley, Glarner Alps, Switzerland

    Science.gov (United States)

    Nagelisen, Jan; Moore, Jeffrey R.; Vockenhuber, Christoph; Ivy-Ochs, Susan

    2015-06-01

    The geological record of prehistoric rock avalanches provides invaluable data for assessing the hazard posed by these rare but destructive mass movements. Here we investigate two large rock avalanches in the Obersee valley of the Glarner Alps, Switzerland, providing detailed mapping of landslide and related Quaternary phenomena, revised volume estimates for each event, and surface exposure dating of rock avalanche deposits. The Rautispitz rock avalanche originated from the southern flank of the Obersee valley, releasing approximately 91 million m3 of limestone on steeply-dipping bedding planes. Debris had maximum horizontal travel distance of ~ 5000 m, a fahrboeschung angle (relating fall height to length) of 18°, and was responsible for the creation of Lake Obersee; deposits are more than 130 m thick in places. The Platten rock avalanche encompassed a source volume of 11 million m3 sliding from the northern flank of the Obersee valley on similar steeply-dipping limestone beds (bedrock forms a syncline under the valley). Debris had a maximum horizontal travel distance of 1600 m with a fahrboeschung angle of 21°, and is more than 80 m thick in places. Deposits of the Platten rock avalanche are superposed atop those from the Rautispitz event at the end of the Obersee valley where they dam Lake Haslensee. Runout for both events was simulated using the dynamic analysis code DAN3D; results showed excellent match to mapped deposit extents and thickness and helped confirm the hypothesized single-event failure scenarios. 36Cl cosmogenic nuclide surface exposure dating of 13 deposited boulders revealed a Younger Dryas age of 12.6 ± 1.0 ka for the Rautispitz rock avalanche and a mid-Holocene age of 6.1 ± 0.8 ka for the Platten rock avalanche. A seismological trigger is proposed for the former event due to potentially correlated turbidite deposits in nearby Lake Zurich.

  16. Response of the St. Joseph River to lake level changes during the last 12,000 years in the Lake Michigan basin

    Science.gov (United States)

    Kincare, K.A.

    2007-01-01

    The water level of the Lake Michigan basin is currently 177 m above sea level. Around 9,800 14C years B.P., the lake level in the Lake Michigan basin had dropped to its lowest level in prehistory, about 70 m above sea level. This low level (Lake Chippewa) had profound effects on the rivers flowing directly into the basin. Recent studies of the St. Joseph River indicate that the extreme low lake level rejuvenated the river, causing massive incision of up to 43 m in a valley no more than 1.6 km wide. The incision is seen 25 km upstream of the present shoreline. As lake level rose from the Chippewa low, the St. Joseph River lost competence and its estuary migrated back upstream. Floodplain and channel sediments partially refilled the recently excavated valley leaving a distinctly non-classical morphology of steep sides with a broad, flat bottom. The valley walls of the lower St. Joseph River are 12-18 m tall and borings reveal up to 30 m of infill sediment below the modern floodplain. About 3 ?? 108 m3 of sediment was removed from the St. Joseph River valley during the Chippewa phase lowstand, a massive volume, some of which likely resides in a lowstand delta approximately 30 km off-shore in Lake Michigan. The active floodplain below Niles, Michigan, is inset into an upper terrace and delta graded to the Calumet level (189 m) of Lake Chicago. In the lower portion of the terrace stratigraphy a 1.5-2.0 m thick section of clast-supported gravel marks the entry of the main St. Joseph River drainage above South Bend, Indiana, into the Lake Michigan basin. This gravel layer represents the consolidation of drainage that probably occurred during final melting out of ice-marginal kettle chains allowing stream piracy to proceed between Niles and South Bend. It is unlikely that the St. Joseph River is palimpsest upon a bedrock valley. The landform it cuts across is a glaciofluvial-deltaic feature rather than a classic unsorted moraine that would drape over pre-glacial topography

  17. Fishes in paleochannels of the Lower Mississippi River alluvial valley: A national treasure

    Science.gov (United States)

    Miranda, Leandro E.

    2016-01-01

    Fluvial geomorphology of the alluvial valley of the Lower Mississippi River reveals a fascinating history. A prominent occupant of the valley was the Ohio River, estimated to have flowed 25,000 years ago over western Tennessee and Mississippi to join the Mississippi River north of Baton Rouge, Louisiana, 750–800 km south of the present confluence. Over time, shifts in the Mississippi and Ohio rivers toward their contemporary positions have left a legacy of abandoned paleochannels supportive of unique fish assemblages. Relative to channels abandoned in the last 500 years, paleochannels exhibit harsher environmental conditions characteristic of hypereutrophic lakes and support tolerant fish assemblages. Considering their ecological, geological, and historical importance, coupled with their primordial scenery, the hundreds of paleochannels in the valley represent a national treasure. Altogether, these waterscapes are endangered by human activities and would benefit from the conservation attention afforded to our national parks and wildlife refuges.

  18. Geochemistry of Mariano lake-lake valley cores, McKinley County, New Mexico

    International Nuclear Information System (INIS)

    Leventhal, J.S.; Lichte, F.E.; Gent, C.A.

    1990-01-01

    The primary goal of the U.S. Geological Survey-Bureau of Indian Affairs drilling project in the Upper Jurassic Morrison Formation in McKinley County, New Mexico, was to better understand the relationship between host-rock stratigraphy and uranium mineralization. As part of this project, geochemical studies of approximately 280 samples from 8 cores and 1 outcrop were undertaken; samples from 4 cores show uranium enrichment. Geochemical relationships between samples of weathered outcrop, oxidized core, reduced (unmineralized) core, and ore-bearing core were contrasted by comparison of element abundances. Special comparative studies of sandstone and clay chemistry were made using results from x-ray diffraction, optical petrography, and chemical analysis. Results of these studies are discussed

  19. Potentially dangerous glacial lakes in Kyrgyzstan - Research overview of 2004-2015

    Science.gov (United States)

    Jansky, Bohumir; Yerokhin, Sergey; Sobr, Miroslav; Engel, Zbynek; Cerny, Michal; Falatkova, Kristyna; Kocum, Jan; Benes, Vojtech

    2016-04-01

    Global warming causes intensive melting and retreat of glaciers in most of high mountains all over the world. This process is also evident in the mountain regions of central Tien Shan. Glacier melt water affects changes in hydrological regime of water streams and causes overfilling of high mountain lake basins. The dams of many lakes are very unstable and can burst open. To determine the degree of such risk, it is necessary to analyse the genesis of lakes, to characterize the morphology of the lake basins and to know the particularities of their hydrological regime. According to the latest inventory within territory of Kyrgyzstan, a total of 1328 lakes have been identified as potentially dangerous, 12 lakes are considered as currently dangerous, other 25 feature high potential hazard. Since 1952 more than 70 disastrous cases of lake outburst have been registered. The hazardous alpine lakes are studied in Kyrgyzstan systematically since 1966. Since 2004, Czech-Kyrgyz research team has been operating in Kyrgyzstan in the field of dangerous glacial lakes. Projects were focused primarily on high-mountain glacial lakes risk assessment, propositions of risk mitigation measures, establishment of permanent research station near one of the studied glacier complexes, preparation of risk analysis for selected endangered valleys, evaluation of climatic and hydrological data and glacier development within observed regions. The most significant portion of data and information has been gathered during field work, complemented by satellite image analysis and surveillance flights over the monitored sites.

  20. Environmental variables measured at multiple spatial scales exert uneven influence on fish assemblages of floodplain lakes

    Science.gov (United States)

    Dembkowski, Daniel J.; Miranda, Leandro E.

    2014-01-01

    We examined the interaction between environmental variables measured at three different scales (i.e., landscape, lake, and in-lake) and fish assemblage descriptors across a range of over 50 floodplain lakes in the Mississippi Alluvial Valley of Mississippi and Arkansas. Our goal was to identify important local- and landscape-level determinants of fish assemblage structure. Relationships between fish assemblage structure and variables measured at broader scales (i.e., landscape-level and lake-level) were hypothesized to be stronger than relationships with variables measured at finer scales (i.e., in-lake variables). Results suggest that fish assemblage structure in floodplain lakes was influenced by variables operating on three different scales. However, and contrary to expectations, canonical correlations between in-lake environmental characteristics and fish assemblage structure were generally stronger than correlations between landscape-level and lake-level variables and fish assemblage structure, suggesting a hierarchy of influence. From a resource management perspective, our study suggests that landscape-level and lake-level variables may be manipulated for conservation or restoration purposes, and in-lake variables and fish assemblage structure may be used to monitor the success of such efforts.

  1. Luminescence dating of paleolake deltas and glacial deposits in Garwood Valley, Antarctica: Implications for climate, Ross ice sheet dynamics, and paleolake duration

    Science.gov (United States)

    Levy, Joseph S.; Rittenour, Tammy M.; Fountain, Andrew G.; O'Connor, Jim E.

    2017-01-01

    The formation of perched deltas and other lacustrine deposits in the McMurdo Dry Valleys of Antarctica is widely considered to be evidence of valley-filling lakes dammed by the grounded Ross Sea ice sheet during the local Last Glacial Maximum, with lake drainage interpreted as a record of grounding line retreat. We used luminescence dating to determine the age of paleolake deltas and glacial tills in Garwood Valley, a coastal dry valley that opens to the Ross Sea. Luminescence ages are stratigraphically consistent with radiocarbon results from algal mats within the same delta deposits but suggest radiocarbon dates from lacustrine carbonates may overestimate deposit ages by thousands of years. Results suggest that late Holocene delta deposition into paleolake Howard in Garwood Valley persisted until ca. 3.5 ka. This is significantly younger than the date when grounded ice is thought to have retreated from the Ross Sea. Our evidence suggests that the local, stranded ice-cored till topography in Garwood Valley, rather than regional ice-sheet dynamics, may have controlled lake levels for some McMurdo Dry Valleys paleolakes. Age control from the supraglacial Ross Sea drift suggests grounding and up-valley advance of the Ross Sea ice sheet into Garwood valley during marine oxygen isotope stage (MIS) 4 (71–78 ka) and the local Last Glacial Maximum (9–10 ka). This work demonstrates the power of combining luminescence dating with existing radiocarbon data sets to improve understanding of the relationships among paleolake formation, glacial position, and stream discharge in response to climate change.

  2. Effect of lighting conditions of coastal zone of Knyaginya lake on composition of macrophyte biohydrocenoses

    Directory of Open Access Journals (Sweden)

    B. O. Baranovsky

    2005-10-01

    Full Text Available In articlе the stuffs of researches of influence of a mode of illuminating intensity of coastal zone of a different exposition flood-land of lake Knyaginya (valley Samara on composition of highest aqueous green and macrozoobentos macrophytes biogeocenose are submitted.

  3. Development of the Awash Valley

    African Journals Online (AJOL)

    favourable geographical location, its proximity to the market centers and to the sea ports and because of ... (1969-1973 G.C.). whose growth rate of food production hardly keeps ... destination in Lake Abe in the Danakil depression. /' . . ~. ., ro-.

  4. Monitoring of Bashkara glacial lakes (the Central Caucasus) and modelling of their potential outburst.

    Science.gov (United States)

    Krylenko, I.; Norin, S.; Petrakov, D.; Tutubalina, O.; Chernomorets, S.

    2009-04-01

    In recent decades due to glacier retreat the glacial lakes in the Central Caucasus, as well as in other high-mountainous areas of the world, have expanded intensively. As result the risk of lake outbursts and destructive floods is raising. In this paper we present one of the most potentially hazardous lakes of this region - a group of glacial lakes near the Bashkara glacier in the upper Adylsu river valley, to the southeast of Mt. Elbrus. Total area of these lakes is about 100,000m2, and a total volume exceeds 1,000,000 m3. The biggest of them - the Bashkara lake has formed in late 1930s - early 1940s and the small Lapa lake has appeared in the end of 1980s. The Bashkara lake outburst occurred twice in the end of 1950s and produced devastating debris flows of ca. 2 million m3. We have monitored these lakes since 1999. Our work includes detailed field research: constant measurements of water level during warm period, annually repeated bathymetric surveys, geodetic surveys, observations on dam condition and some special measurements (i.e. water temperature distribution, current velocity). Also we use aerial and satellite images to obtain data about dynamic of areas for the lakes. From 2001 to 2006 years volume of the Lapa lake has increased 5 times (from 30,000 m3 to 140,000 m3), the Bashkara lake in this period was quasi-stable. In 2006-2008 volume of the Lapa lake has decreased due to sedimentation, however, rapid growth of water level in Bashkara lake (more than 20 sm. per day) has suddenly begun. As a result, volume of the Bashkara lake exceeded 1,000000 m3 in July 2008 whereas in 2001 -2007 year it was about 800,000 m3. Previous maximum of water level was exceeded on 3,5 m, moraine dam with ice core was overtopped and overflow has started. Thus, Bashkara glacier lakes are unstable and risk of outburst is increasing. To assess parameters and zones of potential outburst flood in the Adylsu River valley we have carried out hydrodynamic simulation. Two computer

  5. Evidence for slow late-glacial ice retreat in the upper Rangitata Valley, South Island, New Zealand

    Science.gov (United States)

    Shulmeister, J.; Fink, D.; Winkler, S.; Thackray, G. D.; Borsellino, R.; Hemmingsen, M.; Rittenour, T. M.

    2018-04-01

    A suite of cosmogenic radionuclide ages taken from boulders on lateral and latero-terminal moraines in the Rangitata Valley, eastern South Island, New Zealand demonstrates that relatively thick ice occupied valley reaches inland of the Rangitata Gorge until c. 21 ka. Thereafter ice began to thin, and by c. 17 ka it had retreated 33 km up-valley of the Rangitata Gorge to the Butler-Brabazon Downs, a structurally created basin in the upper Rangitata Valley. Despite its magnitude, this retreat represents a minor ice volume reduction from 21 ka to 17 ka, and numerous lateral moraines preserved suggest a relatively gradual retreat over that 4 ka period. In contrast to records from adjacent valleys, there is no evidence for an ice-collapse at c. 18 ka. We argue that the Rangitata record constitutes a more direct record of glacial response to deglacial climate than other records where glacial dynamics were influenced by proglacial lake development, such as the Rakaia Valley to the North and the major valleys in the Mackenzie Basin to the south-west. Our data supports the concept of a gradual warming during the early deglaciation in the South Island New Zealand.

  6. Western Alaska ESI: LAKES (Lake Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector polygons representing lakes and land masses used in the creation of the Environmental Sensitivity Index (ESI) for Western Alaska. The...

  7. Regional distribution and relevance in paleonvironmental studies of lakes in the Tatra Mts. (Western Carpathians

    Directory of Open Access Journals (Sweden)

    Joanna POCIASK-KARTECZKA

    2014-11-01

    Full Text Available Scientific limnological research in the Tatra Mountains were initiated by Stanislaw Staszic in the early XIX century.  After the World War II, the evolution of Tatra lakes was investigated by Kondracki, Klimaszewski, Baumgart-Kotarba and. Extensive paleolimnological investigations in the Tatra Mountains were started by the group of scientists led by K. Starmach in the beginning of the second half of the 20th century. There has been not much research concerned to the regional distribution of lakes and their properties in the Tatra Mountains (Pociask-Karteczka 2013. Very early division of lakes presented A. Gadomski (1922, which distinguished four types of lakes: a tarns (cirque lake or corrie loch, b bedrock-dammed lakes, c moraine lakes. This division was concerned in subsequent publications (Choiński 2007. M. Lukniš (1973, 1985 recognized additional types: kettles and landslide-dammed lakes and M. Klimaszewski (1988 – inter-sheepback lakes. J. Pacl and K. Wit-Jóźwik in Klima Tatier (Pacl, Wit-Jóźwik 1974 were focused on the temperature of water in lakes in Polish and Slovak parts and M. Borowiak (2000a,b provided a comprehensive analysis of types, dimensions, temperature and chemical composition of water in lakes in the Tatra Mountains.According to present day state of knowledge, one may distinguish following genetic types of lakes: I glacial, II not-glacial. There are four types of the glacial origin lakes in the Tatra Mountains (Fig. 1: a tarns (cirque lakes or corrie loch, b bedrock-moraine dammed lakes, c inter-sheepback lakes, d moraine lakes, e kettles.Most of lakes in the Tatra Mountains are tarns and bedrock-moraine dammed lakes, and they are located at the elevation over 1400 m a.s.l. in the Western Tatra Mountains, and over 1600 m a.s.l. in the High Tatra Mountains. Some of them are paternoster lakes – a series of stair-stepped lakes formed in individual rock basins aligned down the course of a glaciated valley. Lakes in

  8. Pollution at Lake Mariut

    International Nuclear Information System (INIS)

    Nour ElDin, H.; Halim, S. N.; Shalby, E.

    2004-01-01

    Lake Mariut, south Alexandria, Egypt suffered in the recent decades from intensive pollution as a result of a continuous discharge of huge amounts of agriculture wastewater that contains a large concentration of the washed pesticides and fertilizers in addition to domestic and industrial untreated wastewater. The over flow from the lake is discharged directly to the sea through El-Max pumping station via EI-Umum drain. Lake Mariout is surrounded by a huge number of different industrial activities and also the desert road is cutting the lake, this means that a huge number of various pollutants cycle through the air and settle down in the lake, by the time and during different seasons these pollutants after accumulation and different chemical interactions will release again from the lake to the surrounding area affecting the surrounding zone

  9. Application of environmental isotopes to determine the cause of rising water levels in Lake Beseka, Ethiopia

    International Nuclear Information System (INIS)

    Zemedagegnehu, E.; Travi, Y.; Aggarwal, P.

    1999-01-01

    Water level in Lake Beskea, located in the Ethiopian Rift Valley, has been rising continuously for the last about 30 years. The surface area of the lake has increased from about 6 Km 2 to the present 40 Km 2 and has posed serious problems for environmental management, including inundation of grazing and cultivated lands and, potentially, railway tracks. Historically, the lake received recharge from precipitation, surface runoff in the catchment, groundwater discharge, surface runoff from nearby thermal springs. As the lake levels have risen, the thermal springs are now submerged. An increase in the discharge form these thermal springs may be the original cause of lake water rise, or they may have been submerged as a result of the rising water level. An initial study conducted in the 1970s attributed the rising lake levels to increased runoff from adjoining irrigated areas. However, stricter controls on irrigation runoff failed to check the rising lake levels. A multi-disciplinary study, including geophysical, hydrological, geochemical, isotopic, and modeling techniques was then initiated to determine the cause(s) of lake level rise. Results of piezometric and geophysical surveys indicate that the principal cause of rising water levels may be the increased inflow from submerged springs in the southwestern portion of the lake

  10. Great Lakes Literacy Principles

    Science.gov (United States)

    Fortner, Rosanne W.; Manzo, Lyndsey

    2011-03-01

    Lakes Superior, Huron, Michigan, Ontario, and Erie together form North America's Great Lakes, a region that contains 20% of the world's fresh surface water and is home to roughly one quarter of the U.S. population (Figure 1). Supporting a $4 billion sport fishing industry, plus $16 billion annually in boating, 1.5 million U.S. jobs, and $62 billion in annual wages directly, the Great Lakes form the backbone of a regional economy that is vital to the United States as a whole (see http://www.miseagrant.umich.edu/downloads/economy/11-708-Great-Lakes-Jobs.pdf). Yet the grandeur and importance of this freshwater resource are little understood, not only by people in the rest of the country but also by many in the region itself. To help address this lack of knowledge, the Centers for Ocean Sciences Education Excellence (COSEE) Great Lakes, supported by the U.S. National Science Foundation and the National Oceanic and Atmospheric Administration, developed literacy principles for the Great Lakes to serve as a guide for education of students and the public. These “Great Lakes Literacy Principles” represent an understanding of the Great Lakes' influences on society and society's influences on the Great Lakes.

  11. The Key Lake project

    International Nuclear Information System (INIS)

    1991-01-01

    Key Lake is located in the Athabasca sand stone basin, 640 kilometers north of Saskatoon, Saskatchewan, Canada. The three sources of ore at Key Lake contain 70 100 tonnes of uranium. Features of the Key Lake Project were described under the key headings: work force, mining, mill process, tailings storage, permanent camp, environmental features, worker health and safety, and economic benefits. Appendices covering the historical background, construction projects, comparisons of western world mines, mining statistics, Northern Saskatchewan surface lease, and Key Lake development and regulatory agencies were included

  12. Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery

    Directory of Open Access Journals (Sweden)

    T. Bolch

    2008-12-01

    Full Text Available Failures of glacial lake dams can cause outburst floods and represents a serious hazard. The potential danger of outburst floods depends on various factors like the lake's area and volume, glacier change, morphometry of the glacier and its surrounding moraines and valley, and glacier velocity. Remote sensing offers an efficient tool for displacement calculations and risk assessment of the identification of potentially dangerous glacial lakes (PDGLs and is especially helpful for remote mountainous areas. Not all important parameters can, however, be obtained using spaceborne imagery. Additional interpretation by an expert is required. ASTER data has a suitable accuracy to calculate surface velocity. Ikonos data offers more detail but requires more effort for rectification. All investigated debris-covered glacier tongues show areas with no or very slow movement rates. From 1962 to 2003 the number and area of glacial lakes increased, dominated by the occurrence and almost linear areal expansion of the moraine-dammed lakes, like the Imja Lake. Although the Imja Lake will probably still grow in the near future, the risk of an outburst flood (GLOF is considered not higher than for other glacial lakes in the area. Potentially dangerous lakes and areas of lake development are identified. There is a high probability of further lake development at Khumbu Glacier, but a low one at Lhotse Glacier.

  13. Lake Mead Intake No. 3

    Directory of Open Access Journals (Sweden)

    Jon Hurt

    2017-12-01

    Full Text Available As a result of a sustained drought in the Southwestern United States, and in order to maintain existing water capacity in the Las Vegas Valley, the Southern Nevada Water Authority constructed a new deep-water intake (Intake No. 3 located in Lake Mead. The project included a 185 m deep shaft, 4.7 km tunnel under very difficult geological conditions, and marine works for a submerged intake. This paper presents the experience that was gained during the design and construction and the innovative solutions that were developed to handle the difficult conditions that were encountered during tunneling with a dual-mode slurry tunnel-boring machine (TBM in up to 15 bar (1 bar = 105 Pa pressure. Specific attention is given to the main challenges that were overcome during the TBM excavation, which included the mode of operation, face support pressures, pre-excavation grouting, and maintenance; to the construction of the intake, which involved deep underwater shaft excavation with blasting using shaped charges; to the construction of the innovative over 1200 t concrete-and-steel intake structure; to the placement of the intake structure in the underwater shaft; and to the docking and connection to an intake tunnel excavated by hybrid TBM. Keywords: Sub-aqueous tunneling, Tunnel-boring machine excavation, Water intakes

  14. Limnology of Eifel maar lakes

    National Research Council Canada - National Science Library

    Scharf, Burkhard W; Björk, Sven

    1992-01-01

    ... : Species composition & seasonal periodicity - Qualitative & quantitative investigations on cladoceran zooplankton of oligotrophic maar lakes - Population dynamics of pelagic copepods in maar lakes - Population dynamics...

  15. Timing of lake-level changes for a deep last-glacial Lake Missoula: optical dating of the Garden Gulch area, Montana, USA

    DEFF Research Database (Denmark)

    Smith, Larry N.; Sohbati, Reza; Buylaert, Jan-Pieter

    2018-01-01

    Glaciolacustrine sediments in the Clark Fork River valley at Garden Gulch, near Drummond, Montana, USA record highstand positions of the ice-dammed glacial Lake Missoula and repeated subaerial exposure. During these highstands the lake was at greater than 65% of its recognized maximum capacity......-level fluctuation, occurred over time scales of decades to ∼2 ka. Bioturbated sandy slopewash dated at 10.6 ± 0.9 ka and 11.9 ± 1.2 ka unconformably overlies the upper glaciolacustrine deposits. The uppermost sediments, above the glaciolacustrine section, are younger than the Glacier Peak tephra (13.7-13.4 cal ka B...... the lake's highstand position due to ice-dam failure likely led to scour in the downstream portions of the glacial Lake Missoula basin and megafloods in the Channeled Scabland....

  16. Lakes, Lagerstaetten, and Evolution

    Science.gov (United States)

    Kordesch, E. G.; Park, L. E.

    2001-12-01

    The diversity of terrestrial systems is estimated to be greater than in the marine realm. However no hard data yet exists to substantiate this claim. Ancient lacustrine deposits may preserve an exceptionally diverse fossil fauna and aid in determining continental faunal diversities. Fossils preserved in lake deposits, especially those with exceptional preservation (i.e. Konservat Lagerstaetten), may represent a dependable method for determining species diversity changes in the terrestrial environment because of their faunal completeness. Important Konservat Lagerstaetten, such as the Green River Formation (US) and Messel (Germany), both Eocene in age, are found in lake sediments and show a remarkable faunal diversity for both vertebrates and invertebrates. To date information from nearly 25 lake lagerstaetten derived from different types of lake basins from the Carboniferous to the Miocene have been collected and described. Carboniferous sites derive from the cyclothems of Midcontinent of the US while many Cenozoic sites have been described from North and South America as well as Europe and Australia. Asian sites contain fossils from the Mesozoic and Cenozoic. With this data, insight into the evolutionary processes associated with lake systems can be examined. Do lakes act as unique evolutionary crucibles in contrast to marine systems? The speciation of cichlid fishes in present-day African lakes appears to be very high and is attributed to the diversity of environments found in large rift lakes. Is this true of all ancient lakes or just large rift lakes? The longevity of a lake system may be an important factor in allowing speciation and evolutionary processes to occur; marine systems are limited only in the existence of environments as controlled by tectonics and sea level changes, on the order of tens of millions of years. Rift lakes are normally the longest lived in the millions of years. Perhaps there are only certain types of lakes in which speciation of

  17. Groundwater quality in the Indian Wells Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Indian Wells Valley is one of the study areas being evaluated. The Indian Wells study area is approximately 600 square miles (1,554 square kilometers) and includes the Indian Wells Valley groundwater basin (California Department of Water Resources, 2003). Indian Wells Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lake beds in the lower parts of the valley. Land use in the study area is approximately 97.0 percent (%) natural, 0.4% agricultural, and 2.6% urban. The primary natural land cover is shrubland. The largest urban area is the city of Ridgecrest (2010 population of 28,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from the Sierra Nevada to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and direct infiltration from irrigation and septic systems. The primary sources of discharge are pumping wells and evapotranspiration near the dry lakebeds. The primary aquifers in the Indian Wells study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in

  18. Ecology of Meromictic Lakes

    NARCIS (Netherlands)

    Gulati, R.D.; Zadereev, E.S.; Degermendzhy, A.G.

    2017-01-01

    This volume presents recent advances in the research on meromictic lakes and a state-of-the art overview of this area. After an introduction to the terminology and geographic distribution of meromictic lakes, three concise chapters describe their physical, chemical and biological features. The

  19. Lake Afdera: a threatened saline lake in Ethiopia | Getahun | SINET ...

    African Journals Online (AJOL)

    Lake Afdera is a saline lake located in the Afar region, Northern Ethiopia. Because of its inaccessibility it is one of the least studied lakes of the country. It supports life including three species of fish of which two are endemic. Recently, reports are coming out that this lake is used for salt extraction. This paper gives some ...

  20. Lake trout in northern Lake Huron spawn on submerged drumlins

    Science.gov (United States)

    Riley, Stephen C.; Binder, Thomas; Wattrus, Nigel J.; Faust, Matthew D.; Janssen, John; Menzies, John; Marsden, J. Ellen; Ebener, Mark P.; Bronte, Charles R.; He, Ji X.; Tucker, Taaja R.; Hansen, Michael J.; Thompson, Henry T.; Muir, Andrew M.; Krueger, Charles C.

    2014-01-01

    Recent observations of spawning lake trout Salvelinus namaycush near Drummond Island in northern Lake Huron indicate that lake trout use drumlins, landforms created in subglacial environments by the action of ice sheets, as a primary spawning habitat. From these observations, we generated a hypothesis that may in part explain locations chosen by lake trout for spawning. Most salmonines spawn in streams where they rely on streamflows to sort and clean sediments to create good spawning habitat. Flows sufficient to sort larger sediment sizes are generally lacking in lakes, but some glacial bedforms contain large pockets of sorted sediments that can provide the interstitial spaces necessary for lake trout egg incubation, particularly if these bedforms are situated such that lake currents can penetrate these sediments. We hypothesize that sediment inclusions from glacial scavenging and sediment sorting that occurred during the creation of bedforms such as drumlins, end moraines, and eskers create suitable conditions for lake trout egg incubation, particularly where these bedforms interact with lake currents to remove fine sediments. Further, these bedforms may provide high-quality lake trout spawning habitat at many locations in the Great Lakes and may be especially important along the southern edge of the range of the species. A better understanding of the role of glacially-derived bedforms in the creation of lake trout spawning habitat may help develop powerful predictors of lake trout spawning locations, provide insight into the evolution of unique spawning behaviors by lake trout, and aid in lake trout restoration in the Great Lakes.

  1. Better building of valley fills

    Energy Technology Data Exchange (ETDEWEB)

    Chironis, N.P.

    1980-03-01

    Current US regulations for building valley fills or head of hollow fills to hold excess spoil resulting from contour mining are meeting with considerable opposition, particularly from operators in steep-slope areas. An alternative method has been submitted to the Office of Surface Mining by Virgina. Known as the zoned concept method, it has already been used successfully in building water-holding dams and coal refuse embankments on sloping terrain. The ways in which drainage and seepage are managed are described.

  2. Catastrophic valley fills record large Himalayan earthquakes, Pokhara, Nepal

    Science.gov (United States)

    Stolle, Amelie; Bernhardt, Anne; Schwanghart, Wolfgang; Hoelzmann, Philipp; Adhikari, Basanta R.; Fort, Monique; Korup, Oliver

    2017-12-01

    Uncertain timing and magnitudes of past mega-earthquakes continue to confound seismic risk appraisals in the Himalayas. Telltale traces of surface ruptures are rare, while fault trenches document several events at best, so that additional proxies of strong ground motion are needed to complement the paleoseismological record. We study Nepal's Pokhara basin, which has the largest and most extensively dated archive of earthquake-triggered valley fills in the Himalayas. These sediments form a 148-km2 fan that issues from the steep Seti Khola gorge in the Annapurna Massif, invading and plugging 15 tributary valleys with tens of meters of debris, and impounding several lakes. Nearly a dozen new radiocarbon ages corroborate at least three episodes of catastrophic sedimentation on the fan between ∼700 and ∼1700 AD, coinciding with great earthquakes in ∼1100, 1255, and 1344 AD, and emplacing roughly >5 km3 of debris that forms the Pokhara Formation. We offer a first systematic sedimentological study of this formation, revealing four lithofacies characterized by thick sequences of mid-fan fluvial conglomerates, debris-flow beds, and fan-marginal slackwater deposits. New geochemical provenance analyses reveal that these upstream dipping deposits of Higher Himalayan origin contain lenses of locally derived river clasts that mark time gaps between at least three major sediment pulses that buried different parts of the fan. The spatial pattern of 14C dates across the fan and the provenance data are key to distinguishing these individual sediment pulses, as these are not evident from their sedimentology alone. Our study demonstrates how geomorphic and sedimentary evidence of catastrophic valley infill can help to independently verify and augment paleoseismological fault-trench records of great Himalayan earthquakes, while offering unparalleled insights into their long-term geomorphic impacts on major drainage basins.

  3. Preliminary appraisal of ground water in and near the ancestral Missouri River Valley, northeastern Montana

    Science.gov (United States)

    Levings, G.W.

    1986-01-01

    A preliminary appraisal was conducted in and near the ancestral Missouri River valley in northeastern Montana to describe the groundwater resources and to establish a data base for the area. The data base then could be used for future evaluation of possible changes in water levels or water quality. In this area, consolidated aquifers are the Upper Cretaceous Fox Hills-lower Hell Creek aquifer and the overlying Paleocene Fort Union Formation. Unconsolidated aquifers are Pleistocene terrace gravel and glacial deposits and Holocene alluvial deposits. Aquifers are recharged by precipitation, infiltration of streamflow, and possibly leakage from lakes and potholes. Groundwater moves from topographically higher areas to the ancestral valley, then along the ancestral valley to the southwest. Water is discharged from aquifers by evapotranspiration, springs and seeps, movement directly into streams and lakes, and from pumping wells. Average well yields are greatest for irrigation wells completed in outwash gravel (886 gallons/min). Eighteen wells were completed in various aquifers to monitor potential long-term changes in water levels and water quality. Measured water levels declined about 2 ft. or less during the study (1982-85). Chemical analysis of groundwater samples indicated that concentrations of some dissolved constituents exceeded U.S. Environmental Protection Agency standards for drinking water. (USGS)

  4. Lake sturgeon population characteristics in Rainy Lake, Minnesota and Ontario

    Science.gov (United States)

    Adams, W.E.; Kallemeyn, L.W.; Willis, D.W.

    2006-01-01

    Rainy Lake contains a native population of lake sturgeon Acipenser fulvescens that has been largely unstudied. The aims of this study were to document the population characteristics of lake sturgeon in Rainy Lake and to relate environmental factors to year-class strength for this population. Gill-netting efforts throughout the study resulted in the capture of 322 lake sturgeon, including 50 recaptures. Lake sturgeon in Rainy Lake was relatively plump and fast growing compared with a 32-population summary. Population samples were dominated by lake sturgeon between 110 and 150 cm total length. Age–structure analysis of the samples indicated few younger (<10 years) lake sturgeon, but the smallest gill net mesh size used for sampling was 102 mm (bar measure) and would not retain small sturgeon. Few lake sturgeon older than age 50 years were captured, and maximum age of sampled fish was 59 years. Few correlations existed between lake sturgeon year-class indices and both annual and monthly climate variables, except that mean June air temperature was positively correlated with year-class strength. Analysis of Rainy Lake water elevation and resulting lake sturgeon year-class strength indices across years yielded consistent but weak negative correlations between late April and early June, when spawning of lake sturgeon occurs. The baseline data collected in this study should allow Rainy Lake biologists to establish more specific research questions in the future.

  5. Yellowstone Lake Nanoarchaeota

    Directory of Open Access Journals (Sweden)

    Scott eClingenpeel

    2013-09-01

    Full Text Available Considerable Nanoarchaeota novelty and diversity were encountered in Yellowstone Lake, Yellowstone National Park, where sampling targeted lake floor hydrothermal vent fluids, streamers and sediments associated with these vents, and in planktonic photic zones in three different regions of the lake. Significant homonucleotide repeats (HR were observed in pyrosequence reads and in near full-length Sanger sequences, averaging 112 HR per 1,349 bp clone and could confound diversity estimates derived from pyrosequencing, resulting in false nucleotide insertions or deletions (indels. However, Sanger sequencing of two different sets of PCR clones (110 bp, 1349 bp demonstrated that at least some of these indels are real. The majority of the Nanoarchaeota PCR amplicons were vent associated; however, curiously, one relatively small Nanoarchaeota OTU (70 pyrosequencing reads was only found in photic zone water samples obtained from a region of the lake furthest removed from the hydrothermal regions of the lake. Extensive pyrosequencing failed to demonstrate the presence of an Ignicoccus lineage in this lake, suggesting the Nanoarchaeota in this environment are associated with novel Archaea hosts. Defined phylogroups based on near full-length PCR clones document the significant Nanoarchaeota 16S rRNA gene diversity in this lake and firmly establish a terrestrial clade distinct from the marine Nanoarcheota as well as from other geographical locations.

  6. Whiting in Lake Michigan

    Science.gov (United States)

    2002-01-01

    Satellites provide a view from space of changes on the Earth's surface. This series of images from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) aboard the Orbview-2 satellite shows the dramatic change in the color of Lake Michigan during the summer. The bright color that appears in late summer is probably caused by calcium carbonate-chalk-in the water. Lake Michigan always has a lot of calcium carbonate in it because the floor of the lake is limestone. During most of the year the calcium carbonate remains dissolved in the cold water, but at the end of summer the lake warms up, lowering the solubility of calcium carbonate. As a result, the calcium carbonate precipitates out of the water, forming clouds of very small solid particles that appear as bright swirls from above. The phenomenon is appropriately called a whiting event. A similar event occured in 1999, but appears to have started later and subsided earlier. It is also possible that a bloom of the algae Microcystis is responsible for the color change, but unlikely because of Lake Michigan's depth and size. Microcystis blooms have occured in other lakes in the region, however. On the shore of the lake it is possible to see the cities of Chicago, Illinois, and Milwaukee, Wisconsin. Both appear as clusters of gray-brown pixels. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  7. Hydrochemistry of the Lake Magadi basin, Kenya

    Science.gov (United States)

    Jones, B.F.; Eugster, H.P.; Rettig, S.L.

    1977-01-01

    New and more complete compositional data are presented for a large number of water samples from the Lake Magadi area, Kenya. These water samples range from dilute inflow (300 g/kg dissolved solids). Five distinct hydrologic stages can be recognized in the evolution of the water compositions: dilute streamflow, dilute ground water, saline ground water (or hot spring reservoir), saturated brines, and residual brines. Based on the assumption that chloride is conserved in the waters during evaporative concentration, these stages are related to each other by the concentration factors of about 1:28:870:7600:16,800. Dilute streamflow is represented by perennial streams entering the Rift Valley from the west. All but one (Ewaso Ngiro) of these streams disappear in the alluvium and do not reach the valley floor. Dilute ground water was collected from shallow pits and wells dug into lake sediments and alluvial channels. Saline ground water is roughly equivalent to the hot springs reservoir postulated by Eugster (1970) and is represented by the hottest of the major springs. Saturated brines represent surficial lake brines just at the point of saturation with respect to trona (Na2CO3.NaHCO3.2H2O), while residual brines are essentially interstitial to the evaporite deposit and have been subjected to a complex history of precipitation and re-solution. The new data confirm the basic hydrologic model presented by Eugster (1970) which has now been refined, particularly with respect to the early stages of evaporative concentration. Budget calculations show that only bromide is conserved as completely as chloride. Sodium follows chloride closely until trona precipitation, whereas silica and sulfate are largely lost during the very first concentration' step (dilute streamflow-dilute ground water). A large fraction of potassium and all calcium plus magnesium are removed during the first two concentration steps (dilute streamflow-dilute ground water-saline ground water). Carbonate and

  8. Lake-level variation in the Lahontan basin for the past 50,000 years

    Science.gov (United States)

    Benson, L.V.; Thompson, R.S.

    1987-01-01

    Selected radiocarbon data on surficial materials from the Lahontan basin, Nevada and California, provide a chronology of lake-level variation for the past 50,000 yr. A moderate-sized lake connected three western Lahontan subbasins (the Smoke Creek-Black Rock Desert subbasin, the Pyramid Lake subbasin, and the Winnemucca Dry Lake subbasin) from about 45,000 to 16,500 yr B.P. Between 50,000 and 45,000 yr B.P., Walker Lake rose to its sill level in Adrian Valley and spilled to the Carson Desert subbasin. By 20,000 yr B.P., lake level in the western Lahontan subbasins had risen to about 1265 m above sea level, where it remained for 3500 yr. By 16,000 yr B.P., lake level in the western Lahontan subbasins had fallen to 1240 m. This recession appears synchronous with a desiccation of Walker Lake; however, whether the Walker Lake desiccation resulted from climate change or from diversion of the Walker River is not known. From about 15,000 to 13,500 yr B.P., lake level rapidly rose, so that Lake Lahontan was a single body of water by 14,000 yr B.P. The lake appears to have reached a maximum highstand altitude of 1330 m by 13,500 yr B.P., a condition that persisted until about 12,500 yr B.P., at which time lake level fell ???100 m. No data exist that indicate the level of lakes in the various subbasins between 12,000 and 10,000 yr B.P. During the Holocene, the Lahontan basin was the site of shallow lakes, with many subbasins being the site of one or more periods of desiccation. The shape of the lake-level curve for the three western subbasins indicates that past changes in the hydrologic balance (and hence climate) of the Lahontan basin were large in magnitude and took place in a rapid step-like manner. The rapid changes in lake level are hypothesized to have resulted from changes in the mean position of the jet stream, as it was forced north or south by the changing size and shape of the continental ice sheet. ?? 1987.

  9. Gravity anomaly at a Pleistocene lake bed in NW Alaska interpreted by analogy with Greenland's Lake Taserssauq and its floating ice tongue

    Science.gov (United States)

    Barnes, D.F.

    1987-01-01

    A possible example of a very deep glacial excavation is provided by a distinctive gravity low located at the front of a valley glacier that once flowed into glacial Lake Aniuk (formerly Lake Noatak) in the western Brooks Range. Geologic and geophysical data suggest that sediments or ice filling a glacially excavated valley are the most probable cause of the 30-50 mGal anomaly. Reasonable choices of geometric models and density contrasts indicate that the former excavation is now filled with a buried-ice thickness of 700 m or sediment thicknesses greater than 1 km. No direct evidence of efficient excavation was observed in Greenland, but efficient glacial erosion behind a floating polar ice tongue could explain the excavation that caused the Alaskan gravity anomaly. -from Author

  10. Ecology of playa lakes

    Science.gov (United States)

    Haukos, David A.; Smith, Loren M.

    1992-01-01

    Between 25,000 and 30,000 playa lakes are in the playa lakes region of the southern high plains (Fig. 1). Most playas are in west Texas (about 20,000), and fewer, in New Mexico, Oklahoma, Kansas, and Colorado. The playa lakes region is one of the most intensively cultivated areas of North America. Dominant crops range from cotton in southern areas to cereal grains in the north. Therefore, most of the native short-grass prairie is gone, replaced by crops and, recently, grasses of the Conservation Reserve Program. Playas are the predominant wetlands and major wildlife habitat of the region.More than 115 bird species, including 20 species of waterfowl, and 10 mammal species have been documented in playas. Waterfowl nest in the area, producing up to 250,000 ducklings in wetter years. Dominant breeding and nesting species are mallards and blue-winged teals. During the very protracted breeding season, birds hatch from April through August. Several million shorebirds and waterfowl migrate through the area each spring and fall. More than 400,000 sandhill cranes migrate through and winter in the region, concentrating primarily on the larger saline lakes in the southern portion of the playa lakes region.The primary importance of the playa lakes region to waterfowl is as a wintering area. Wintering waterfowl populations in the playa lakes region range from 1 to 3 million birds, depending on fall precipitation patterns that determine the number of flooded playas. The most common wintering ducks are mallards, northern pintails, green-winged teals, and American wigeons. About 500,000 Canada geese and 100,000 lesser snow geese winter in the playa lakes region, and numbers of geese have increased annually since the early 1980’s. This chapter describes the physiography and ecology of playa lakes and their attributes that benefit waterfowl.

  11. California's restless giant: the Long Valley Caldera

    Science.gov (United States)

    Hill, David P.; Bailey, Roy A.; Hendley, James W.; Stauffer, Peter H.; Marcaida, Mae

    2014-01-01

    Scientists have monitored geologic unrest in the Long Valley, California, area since 1980. In that year, following a swarm of strong earthquakes, they discovered that the central part of the Long Valley Caldera had begun actively rising. Unrest in the area persists today. The U.S. Geological Survey (USGS) continues to provide the public and civil authorities with current information on the volcanic hazard at Long Valley and is prepared to give timely warnings of any impending eruption.

  12. Influence of the Sostanj coal-fired thermal power plant on mercury and methyl mercury concentrations in Lake Velenje, Slovenia

    Energy Technology Data Exchange (ETDEWEB)

    Kotnik, J.; Horvat, M.; Mandic, V.; Logar, M. [Department of Environmental Sciences, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2000-10-02

    Lake Velenje is located in one of the most polluted regions in Slovenia, the Salek Valley. The major source of pollution in the valley is the coal-fired thermal power plant in Sostanj (STPP, capacity 775 MW). It has five separate units. All units have electrostatic precipitators for fly ash removal. Unit 4 also has installed a wet flue gas desulfurisation system (FGD system). Total mercury (THg) concentrations were measured in lignite, slag and ash samples from the STPP. In flue gas, different mercury species (THg, MeHg, Hg{sup 2+}, Hg{sup 0}) were determined separately for unit 4 and unit 5 which use different flue gas cleaning technology. Mercury and methyl mercury (MeHg) concentrations were also measured in lake water at different depths, in inflow water, outflow water, rain, snow and lake sediments in order to establish the influence of the power plant on the lake. Most mercury emitted from the power plant is in the elemental form. The ratio between oxidised and elemental Hg depends on the flue gas cleaning technology. Mass balance calculations have been performed for the STPP. The results show that the major sources of mercury in Lake Velenje are wet deposition and lake inflows. Total and MeHg concentrations in the water column are very low and can be compared to other non-contaminated freshwater lakes in the world.

  13. Influence of the Sostanj coal-fired thermal power plant on mercury and methyl mercury concentrations in Lake Velenje, Slovenia

    Science.gov (United States)

    Kotnik; Horvat; Mandic; Logar

    2000-10-02

    Lake Velenje is located in one of the most polluted regions in Slovenia, the Salek Valley. The major source of pollution in the valley is the coal-fired thermal power plant in Sostanj (STPP, capacity 775 MW). It has five separate units. All units have electrostatic precipitators for fly ash removal. Unit 4 also has installed a wet flue gas desulfurisation system (FGD system). Total mercury (THg) concentrations were measured in lignite, slag and ash samples from the STPP. In flue gas, different mercury species (THg, MeHg, Hg2+, Hg0) were determined separately for unit 4 and unit 5 which use different flue gas cleaning technology. Mercury and methyl mercury (MeHg) concentrations were also measured in lake water at different depths, in inflow water, outflow water, rain, snow and lake sediments in order to establish the influence of the power plant on the lake. Most mercury emitted from the power plant is in the elemental form. The ratio between oxidised and elemental Hg depends on the flue gas cleaning technology. Mass balance calculations have been performed for the STPP. The results show that the major sources of mercury in Lake Velenje are wet deposition and lake inflows. Total and MeHg concentrations in the water column are very low and can be compared to other non-contaminated freshwater lakes in the world.

  14. A mass balance mercury budget for a mine-dominated lake: Clear Lake, California

    Science.gov (United States)

    Suchanek, T.H.; Cooke, J.; Keller, K.; Jorgensen, S.; Richerson, P.J.; Eagles-Smith, Collin A.; Harner, E.J.; Adam, D.P.

    2009-01-01

    The Sulphur Bank Mercury Mine (SBMM), active intermittently from 1873–1957 and now a USEPA Superfund site, was previously estimated to have contributed at least 100 metric tons (105 kg) of mercury (Hg) into the Clear Lake aquatic ecosystem. We have confirmed this minimum estimate. To better quantify the contribution of the mine in relation to other sources of Hg loading into Clear Lake and provide data that might help reduce that loading, we analyzed Inputs and Outputs of Hg to Clear Lake and Storage of Hg in lakebed sediments using a mass balance approach. We evaluated Inputs from (1) wet and dry atmospheric deposition from both global/regional and local sources, (2) watershed tributaries, (3) groundwater inflows, (4) lakebed springs and (5) the mine. Outputs were quantified from (1) efflux (volatilization) of Hg from the lake surface to the atmosphere, (2) municipal and agricultural water diversions, (3) losses from out-flowing drainage of Cache Creek that feeds into the California Central Valley and (4) biotic Hg removal by humans and wildlife. Storage estimates include (1) sediment burial from historic and prehistoric periods (over the past 150–3,000 years) from sediment cores to ca. 2.5m depth dated using dichloro diphenyl dichloroethane (DDD), 210Pb and 14C and (2) recent Hg deposition in surficial sediments. Surficial sediments collected in October 2003 (11 years after mine site remediation) indicate no reduction (but a possible increase) in sediment Hg concentrations over that time and suggest that remediation has not significantly reduced overall Hg loading to the lake. Currently, the mine is believed to contribute ca. 322–331 kg of Hg annually to Clear Lake, which represents ca. 86–99% of the total Hg loading to the lake. We estimate that natural sedimentation would cover the existing contaminated sediments within ca. 150–300 years.

  15. Hydraulic, geomorphic, and trout habitat conditions of the Lake Fork of the Gunnison River in Hinsdale County, Lake City, Colorado, Water Years 2010-2011

    Science.gov (United States)

    Williams, Cory A.; Richards, Rodney J.; Schaffrath, Keelin R.

    2015-01-01

    Channel rehabilitation, or reconfiguration, to mitigate a variety of riverine problems has become a common practice in the western United States. However, additional work to monitor and assess the channel response to, and the effectiveness of, these modifications over longer periods of time (decadal or longer) is still needed. The Lake Fork of the Gunnison River has been an area of active channel modification to accommodate the needs of the Lake City community since the 1950s. The Lake Fork Valley Conservancy District began a planning process to assess restoration options for a reach of the Lake Fork in Lake City to enhance hydraulic and ecologic characteristics of the reach. Geomorphic channel form is affected by land-use changes within the basin and geologic controls within the reach. The historic channel was defined as a dynamic, braided channel with an active flood plain. This can result in a natural tendency for the channel to braid. A braided channel can affect channel stability of reconfigured reaches when a single-thread meandering channel is imposed on the stream. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board and Colorado River Water Conservation District, began a study in 2010 to quantify existing hydraulic and habitat conditions for a reach of the Lake Fork of the Gunnison River in Lake City, Colorado. The purpose of this report is to quantify existing Lake Fork hydraulic and habitat conditions and establish a baseline against which post-reconfiguration conditions can be compared. This report (1) quantifies the existing hydraulic and geomorphic conditions in a 1.1-kilometer section of the Lake Fork at Lake City that has been proposed as a location for future channel-rehabilitation efforts, (2) characterizes the habitat suitability of the reach for two trout species based on physical conditions within the stream, and (3) characterizes the current riparian canopy density.

  16. Using satellite images to monitor glacial-lake outburst floods: Lago Cachet Dos drainage, Chile

    Science.gov (United States)

    Friesen, Beverly A.; Cole, Christopher J.; Nimick, David A.; Wilson, Earl M.; Fahey, Mark J.; McGrath, Daniel J.; Leidich, Jonathan

    2015-01-01

    The U.S. Geological Survey (USGS) is monitoring and analyzing glacial-lake outburst floods (GLOFs) in the Colonia valley in the Patagonia region of southern Chile. A GLOF is a type of flood that occurs when water impounded by a glacier or a glacial moraine is released catastrophically. In the Colonia valley, GLOFs originating from Lago Cachet Dos, which is dammed by the Colonia Glacier, have recurred periodically since 2008. The water discharged during these GLOFs flows under or through the Colonia Glacier, into Lago Colonia and then the Río Colonia, and finally into the Río Baker—Chile's largest river in terms of volume of water.

  17. Investigating Groundwater Depletion and Aquifer Degradation in Central Valley California from Space

    Science.gov (United States)

    Ojha, C.; Shirzaei, M.; Werth, S.; Argus, D. F.

    2017-12-01

    The Central Valley in California includes one of the world's largest and yet most stressed aquifer systems. The large demand for groundwater, accelerated by population growth and extreme droughts, has been depleting the region's groundwater resources for decades. However, the lack of dense monitoring networks and inaccurate information on geophysical aquifer response pose serious challenges to water management efforts in the area and put the groundwater at high risk. Here, we performed a joint analysis of large SAR interferometric data sets acquired by ALOS L-band satellite in conjunction with the groundwater level observations across the Central Valley. We used 420 L-band SAR images acquired on the ascending orbit track during period Dec 24, 2006 - Jan 1, 2010, and generated more than 1600 interferograms with a pixel size of 100 m × 100 m. We also use data from 1600 observational wells providing continuous measurements of groundwater level within the study period for our analysis. We find that in the south and near Tulare Lake, north of Tule and south of Kaweah basin in San Joaquin valley, the subsidence rate is greatest at up to 20-25 cm/yr, while in Sacramento Valley the subsidence rate is lower at 1-3 cm/yr. From the characterization of the elastic and inelastic storage coefficients, we find that Kern, Tule, Tulare, Kaweah and Merced basins in the San Joaquin Valley are more susceptible to permanent compaction and aquifer storage loss. Kern County shows 0.23%-1.8% of aquifer storage loss during the study period, and has higher percentage loss than adjacent basins such as Tule and Tulare Lake with 0.15%-1.2% and 0.2 %-1.5% loss, respectively. Overall, we estimate that the aquifers across the valley lost a total of 28 km3 of groundwater and 2% of their storage capacity during the study period. Our unique observational evidence including valley-wide estimate of mechanical properties of aquifers and model results will not only facilitate monitoring water deficits

  18. Small martian valleys: Pristine and degraded morphology

    International Nuclear Information System (INIS)

    Baker, V.R.; Partridge, J.B.

    1986-01-01

    The equatorial heavily cratered uplands of Mars are dissected by two classes of small valleys that are intimately associated in compound networks. Pristine valleys with steep valley walls preferentially occupy downstream portions of compound basins. Degraded valleys with eroded walls are laterally more extensive and have higher drainage densities than pristine valleys. Morphometric and crater-counting studies indicate that relatively dense drainage networks were emplaced on Mars during the heavy bombardment about 4.0 b.y. ago. Over a period of approximately 10 8 years, these networks were degraded and subsequently invaded by headwardly extending pristine valleys. The pristine valleys locally reactivated the compound networks, probably through sapping processes dependent upon high water tables. Fluvial activity in the heavily cratered uplands generally ceased approximately 3.8--3.9 b.y. ago, coincident with the rapid decline in cratering rates. The relict compound valleys on Mars are morphometrically distinct from most terrestrial drainage systems. The differences might be caused by a Martian valley formation episode characterized by hyperaridity, by inadequate time for network growth, by very permeable rock types, or by a combination of factors

  19. EPA Region 1 - Valley Depth in Meters

    Science.gov (United States)

    Raster of the Depth in meters of EPA-delimited Valleys in Region 1.Valleys (areas that are lower than their neighbors) were extracted from a Digital Elevation Model (USGS, 30m) by finding the local average elevation, subtracting the actual elevation from the average, and selecting areas where the actual elevation was below the average. The landscape was sampled at seven scales (circles of 1, 2, 4, 7, 11, 16, and 22 km radius) to take into account the diversity of valley shapes and sizes. Areas selected in at least four scales were designated as valleys.

  20. A landscape scale valley confinement algorithm: Delineating unconfined valley bottoms for geomorphic, aquatic, and riparian applications

    Science.gov (United States)

    David E. Nagel; John M. Buffington; Sharon L. Parkes; Seth Wenger; Jaime R. Goode

    2014-01-01

    Valley confinement is an important landscape characteristic linked to aquatic habitat, riparian diversity, and geomorphic processes. This report describes a GIS program called the Valley Confinement Algorithm (VCA), which identifies unconfined valleys in montane landscapes. The algorithm uses nationally available digital elevation models (DEMs) at 10-30 m resolution to...

  1. Glacial lakes in Austria - Distribution and formation since the Little Ice Age

    Science.gov (United States)

    Buckel, J.; Otto, J. C.; Prasicek, G.; Keuschnig, M.

    2018-05-01

    Glacial lakes constitute a substantial part of the legacy of vanishing mountain glaciation and act as water storage, sediment traps and sources of both natural hazards and leisure activities. For these reasons, they receive growing attention by scientists and society. However, while the evolution of glacial lakes has been studied intensively over timescales tied to remote sensing-based approaches, the longer-term perspective has been omitted due a lack of suitable data sources. We mapped and analyzed the spatial distribution of glacial lakes in the Austrian Alps. We trace the development of number and area of glacial lakes in the Austrian Alps since the Little Ice Age (LIA) based on a unique combination of a lake inventory and an extensive record of glacier retreat. We find that bedrock-dammed lakes are the dominant lake type in the inventory. Bedrock- and moraine-dammed lakes populate the highest landscape domains located in cirques and hanging valleys. We observe lakes embedded in glacial deposits at lower locations on average below 2000 m a.s.l. In general, the distribution of glacial lakes over elevation reflects glacier erosional and depositional dynamics rather than the distribution of total area. The rate of formation of new glacial lakes (number, area) has continuously accelerated over time with present rates showing an eight-fold increase since LIA. At the same time the total glacier area decreased by two-thirds. This development coincides with a long-term trend of rising temperatures and a significant stepping up of this trend within the last 20 years in the Austrian Alps.

  2. Patterns in the Physical, Chemical, and Biological Composition of Icelandic Lakes and the Dominant Factors Controlling Variability Across Watersheds

    Science.gov (United States)

    Greco, A.; Strock, K.; Edwards, B. R.

    2017-12-01

    Fourteen lakes were sampled in the southern and western area of Iceland in June of 2017. The southern systems, within the Eastern Volcanic Zone, have minimal soil development and active volcanoes that produce ash input to lakes. Lakes in the Western Volcanic Zone were more diverse and located in older bedrock with more extensively weathered soil. Physical variables (temperature, oxygen concentration, and water clarity), chemical variables (pH, conductivity, dissolved and total nitrogen and phosphorus concentrations, and dissolved organic carbon concentration), and biological variables (algal biomass) were compared across the lakes sampled in these geographic regions. There was a large range in lake characteristics, including five to eighteen times higher algal biomass in the southern systems that experience active ash input to lakes. The lakes located in the Eastern Volcanic Zone also had higher conductivity and lower pH, especially in systems receiving substantial geothermal input. These results were analyzed in the context of more extensive lake sampling efforts across Iceland (46 lakes) to determine defining characteristics of lakes in each region and to identify variables that drive heterogeneous patterns in physical, chemical, and biological lake features within each region. Coastal systems, characterized by high conductivity, and glacially-fed systems, characterized by high iron concentrations, were unique from lakes in all other regions. Clustering and principal component analyses revealed that lake type (plateau, valley, spring-fed, and direct-runoff) was not the primary factor explaining variability in lake chemistry outside of the coastal and glacial lake types. Instead, lakes differentiated along a gradient of iron concentration and total nitrogen concentration. The physical and chemical properties of subarctic lakes are especially susceptible to both natural and human-induced environmental impacts. However, relatively little is known about the

  3. Halls Lake 1990

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Salt marsh habitats along the shoreline of Halls Lake are threatened by wave erosion, but the reconstruction of barrier islands to reduce this erosion will modify or...

  4. Lake Level Reconstructions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past lake levels, mostly related to changes in moisture balance (evaporation-precipitation). Parameter keywords describe what was measured in this data...

  5. The Key Lake project

    International Nuclear Information System (INIS)

    Glattes, G.

    1985-01-01

    Aspects of project financing for the share of the Canadian subsidiary of Uranerzbergbau-GmbH, Bonn, in the uranium mining and milling facility at Key Lake, Saskatchewan, by a Canadian bank syndicate. (orig.) [de

  6. Great Lakes Ice Charts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Charts show ice extent and concentration three times weekly during the ice season, for all lakes except Ontario, from the 1973/74 ice season through the 2001/2002...

  7. Foy Lake paleodiatom data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Percent abundance of 109 diatom species collected from a Foy Lake (Montana, USA) sediment core that was sampled every ∼5–20 years, yielding a ∼7 kyr record over 800...

  8. Catastrophic flooding origin of shelf valley systems in the English Channel.

    Science.gov (United States)

    Gupta, Sanjeev; Collier, Jenny S; Palmer-Felgate, Andy; Potter, Graeme

    2007-07-19

    Megaflood events involving sudden discharges of exceptionally large volumes of water are rare, but can significantly affect landscape evolution, continental-scale drainage patterns and climate change. It has been proposed that a significant flood event eroded a network of large ancient valleys on the floor of the English Channel-the narrow seaway between England and France. This hypothesis has remained untested through lack of direct evidence, and alternative non-catastrophist ideas have been entertained for valley formation. Here we analyse a new regional bathymetric map of part of the English Channel derived from high-resolution sonar data, which shows the morphology of the valley in unprecedented detail. We observe a large bedrock-floored valley that contains a distinct assemblage of landforms, including streamlined islands and longitudinal erosional grooves, which are indicative of large-scale subaerial erosion by high-magnitude water discharges. Our observations support the megaflood model, in which breaching of a rock dam at the Dover Strait instigated catastrophic drainage of a large pro-glacial lake in the southern North Sea basin. We suggest that megaflooding provides an explanation for the permanent isolation of Britain from mainland Europe during interglacial high-sea-level stands, and consequently for patterns of early human colonisation of Britain together with the large-scale reorganization of palaeodrainage in northwest Europe.

  9. Transient electromagnetic mapping of clay units in the San Luis Valley, Colorado

    Science.gov (United States)

    Fitterman, David V.; Grauch, V.J.S.

    2010-01-01

    Transient electromagnetic soundings were used to obtain information needed to refine hydrologic models of the San Luis Valley, Colorado. The soundings were able to map an aquitard called the blue clay that separates an unconfined surface aquifer from a deeper confined aquifer. The blue clay forms a conductor with an average resistivity of 6.9 ohm‐m. Above the conductor are found a mixture of gray clay and sand. The gray clay has an average resistivity of 21 ohm‐m, while the sand has a resistivity of greater than 100 ohm‐m. The large difference in resistivity of these units makes mapping them with a surface geophysical method relatively easy. The blue clay was deposited at the bottom of Lake Alamosa which filled most of the San Luis Valley during the Pleistocene. The geometry of the blue clay is influenced by a graben on the eastern side of the valley. The depth to the blue clay is greater over the graben. Along the eastern edge of valley the blue clay appears to be truncated by faults.

  10. West Valley Demonstration Project, West Valley, New York: Annual report

    International Nuclear Information System (INIS)

    1989-01-01

    Under the West Valley Demonstration Project Act, Public Law 96-368, liquid high-level radioactive waste stored at the Western New York Nuclear Services Center, West Valley, New York, that resulted from spent nuclear fuel reprocessing operations conducted between 1966 and 1972, is to be solidified in borosilicate glass and transported to a federal repository for geologic disposal. A major milestone was reached in May 1988 when the Project began reducing the volume of the liquid high-level waste. By the end of 1988, approximately 15 percent of the initial inventory had been processed into two waste streams. The decontaminated low-level liquid waste is being solidified in cement. The high-level waste stream is being stored in an underground tank pending its incorporation into borosilicate glass. Four tests of the waste glass melter system were completed. These tests confirmed equipment operability, control system reliability, and provided samples of waste glass for durability testing. In mid-1988, the Department validated an integrated cost and schedule plan for activities required to complete the production of the waste borosilicate glass. Design of the radioactive Vitrification Facility continued

  11. Dragon Lake, Siberia

    Science.gov (United States)

    2002-01-01

    Nicknamed 'Dragon Lake,' this body of water is formed by the Bratskove Reservoir, built along the Angara river in southern Siberia, near the city of Bratsk. This image was acquired in winter, when the lake is frozen. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on December 19, 1999. This is a natural color composite image made using blue, green, and red wavelengths. Image provided by the USGS EROS Data Center Satellite Systems Branch

  12. The Pocatello Valley, Idaho, earthquake

    Science.gov (United States)

    Rogers, A. M.; Langer, C.J.; Bucknam, R.C.

    1975-01-01

    A Richter magnitude 6.3 earthquake occurred at 8:31 p.m mountain daylight time on March 27, 1975, near the Utah-Idaho border in Pocatello Valley. The epicenter of the main shock was located at 42.094° N, 112.478° W, and had a focal depth of 5.5 km. This earthquake was the largest in the continental United States since the destructive San Fernando earthquake of February 1971. The main shock was preceded by a magnitude 4.5 foreshock on March 26. 

  13. Radwaste challenge at Beaver Valley

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Duquesne Light Company met the problem of accumulating low-level radioactive waste at its Beaver Valley nuclear plant with an aggressive program to reduce the quantity of contaminated material and demonstrate that the plant was improving its radiological protection. There was also an economic incentive to reduce low-level wastes. The imaginative campaign involved workers in the reduction effort through training and the adoption of practical approaches to reducing the amount of material exposed to radiation that include sorting trash by radiation level and a compacting system. 4 figures

  14. The Owens Valley Millimeter Array

    International Nuclear Information System (INIS)

    Padin, S.; Scott, S.L.; Woody, D.P.; Scoville, N.Z.; Seling, T.V.

    1991-01-01

    The telescopes and signal processing systems of the Owens Valley Millimeter Array are considered, and improvements in the sensitivity and stability of the instrument are characterized. The instrument can be applied to map sources in the 85 to 115 GHz and 218 to 265 GHz bands with a resolution of about 1 arcsec in the higher frequency band. The operation of the array is fully automated. The current scientific programs for the array encompass high-resolution imaging of protoplanetary/protostellar disk structures, observations of molecular cloud complexes associated with spiral structure in nearby galaxies, and observations of molecular structures in the nuclei of spiral and luminous IRAS galaxies. 9 refs

  15. Resilience and Restoration of Lakes

    Directory of Open Access Journals (Sweden)

    Stephen R. Carpenter

    1997-06-01

    Full Text Available Lake water quality and ecosystem services are normally maintained by several feedbacks. Among these are nutrient retention and humic production by wetlands, nutrient retention and woody habitat production by riparian forests, food web structures that cha nnel phosphorus to consumers rather than phytoplankton, and biogeochemical mechanisms that inhibit phosphorus recycling from sediments. In degraded lakes, these resilience mechanisms are replaced by new ones that connect lakes to larger, regional economi c and social systems. New controls that maintain degraded lakes include runoff from agricultural and urban areas, absence of wetlands and riparian forests, and changes in lake food webs and biogeochemistry that channel phosphorus to blooms of nuisance al gae. Economic analyses show that degraded lakes are significantly less valuable than normal lakes. Because of this difference in value, the economic benefits of restoring lakes could be used to create incentives for lake restoration.

  16. Mid-latitude Ozone Depletion Events Caused by Halogens from the Great Salt Lake in Utah

    Science.gov (United States)

    Fibiger, D. L.; Goldberger, L.; Womack, C.; McDuffie, E. E.; Dube, W. P.; Franchin, A.; Middlebrook, A. M.; Thornton, J. A.; Brown, S. S.

    2017-12-01

    Halogens are highly reactive chemicals and play an important role in atmospheric chemistry. They can be involved in many cycles which influence the oxidizing capacity of the atmosphere, including through destruction of ozone (O3). While the influence of halogens on O3 is well documented in the arctic, there are very few observations of O3 depletion driven by halogens in the mid-latitudes. To date, the most comprehensive study observed co-occurring plumes of BrO and depleted O3 near the Dead Sea in 1997. During the Utah Wintertime Fine Particulate Study (UWFPS) in winter 2017, simultaneous measurements of a comprehensive suite of halogen measurements by I- chemical ionization mass spectrometry and O3 from cavity ring-down spectroscopy, both at 1-second time resolution, were taken on a NOAA Twin Otter Aircraft over the Great Salt Lake and in the surrounding valleys. Many O3 depletion events were observed over the lake with O3 values sometimes below the instrument detection limit of 0.5 ppbv. Corresponding increases in BrO and/or ClO were observed. Many of these events were caused by extremely high levels of halogens (up to 1 ppmv Cl2) emitted from the U.S. Magnesium plant on the edge of the lake. The O3 depletion caused by U.S. Magnesium was usually isolated to a distinct vertical layer, but in other cases O3 depletion was vertically mixed and the origin of halogen activation was not immediately clear. The most complete O3 depletion was observed over the lake, but there were smaller events of a few ppbv observed in the adjacent valleys, including the highly populated Salt Lake Valley, with corresponding plumes of BrO and ClO, due to transport from the lake. Additionally, meteorology played a role in the observed O3 depletion. The strongest O3 depletion was observed during inversion events, when there is a low boundary layer and little mixing out of the air above the lake. During non-inversion conditions, only small depletions were observed, covering a much smaller

  17. Geochemistry of waters in the Valley of Ten Thousand Smokes region, Alaska

    Science.gov (United States)

    Keith, T.E.C.; Thompson, J.M.; Hutchinson, R.A.; White, L.D.

    1992-01-01

    Meteoric waters from cold springs and streams outside of the 1912 eruptive deposits filling the Valley of Ten Thousand Smokes (VTTS) and in the upper parts of the two major rivers draining the 1912 deposits have similar chemical trends. Thermal springs issue in the mid-valley area along a 300-m lateral section of ash-flow tuff, and range in temperature from 21 to 29.8??C in early summer and from 15 to 17??C in mid-summer. Concentrations of major and minor chemical constituents in the thermal waters are nearly identical regardless of temperature. Waters in the downvalley parts of the rivers draining the 1912 deposits are mainly mixtures of cold meteoric waters and thermal waters of which the mid-valley thermal spring waters are representative. The weathering reactions of cold waters with the 1912 deposits appear to have stabilized and add only subordinate amounts of chemical constituents to the rivers relative to those contributed by the thermal waters. Isotopic data indicate that the mid-valley thermal spring waters are meteoric, but data is inconclusive regarding the heat source. The thermal waters could be either from a shallow part of a hydrothermal system beneath the 1912 vent region or from an incompletely cooled, welded tuff lens deep in the 1912 ash-flow sheet of the upper River Lethe area. Bicarbonate-sulfate waters resulting from interaction of near-surface waters and the cooling 1953-1968 southwest Trident plug issue from thermal springs south of Katmai Pass and near Mageik Creek, although the Mageik Creek spring waters are from a well-established, more deeply circulating hydrothermal system. Katmai caldera lake waters are a result of acid gases from vigorous drowned fumaroles dissolving in lake waters composed of snowmelt and precipitation. ?? 1992.

  18. Glacial lake inventory and lake outburst potential in Uzbekistan.

    Science.gov (United States)

    Petrov, Maxim A; Sabitov, Timur Y; Tomashevskaya, Irina G; Glazirin, Gleb E; Chernomorets, Sergey S; Savernyuk, Elena A; Tutubalina, Olga V; Petrakov, Dmitriy A; Sokolov, Leonid S; Dokukin, Mikhail D; Mountrakis, Giorgos; Ruiz-Villanueva, Virginia; Stoffel, Markus

    2017-08-15

    Climate change has been shown to increase the number of mountain lakes across various mountain ranges in the World. In Central Asia, and in particular on the territory of Uzbekistan, a detailed assessment of glacier lakes and their evolution over time is, however lacking. For this reason we created the first detailed inventory of mountain lakes of Uzbekistan based on recent (2002-2014) satellite observations using WorldView-2, SPOT5, and IKONOS imagery with a spatial resolution from 2 to 10m. This record was complemented with data from field studies of the last 50years. The previous data were mostly in the form of inventories of lakes, available in Soviet archives, and primarily included localized in-situ data. The inventory of mountain lakes presented here, by contrast, includes an overview of all lakes of the territory of Uzbekistan. Lakes were considered if they were located at altitudes above 1500m and if lakes had an area exceeding 100m 2 . As in other mountain regions of the World, the ongoing increase of air temperatures has led to an increase in lake number and area. Moreover, the frequency and overall number of lake outburst events have been on the rise as well. Therefore, we also present the first outburst assessment with an updated version of well-known approaches considering local climate features and event histories. As a result, out of the 242 lakes identified on the territory of Uzbekistan, 15% are considered prone to outburst, 10% of these lakes have been assigned low outburst potential and the remainder of the lakes have an average level of outburst potential. We conclude that the distribution of lakes by elevation shows a significant influence on lake area and hazard potential. No significant differences, by contrast, exist between the distribution of lake area, outburst potential, and lake location with respect to glaciers by regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Valley-dependent band structure and valley polarization in periodically modulated graphene

    Science.gov (United States)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  20. Sustainable agricultural development in inland valleys

    NARCIS (Netherlands)

    Zwart, S.J.

    2018-01-01

    The inland valley in Africa are common landscapes that have favorable conditions for agricultural production. Compared to the surrounding uplands they are characterized by a relatively high and secure water availability and high soil fertility levels. Inland valleys thus have a high agricultural

  1. Valley dependent transport in graphene L junction

    Science.gov (United States)

    Chan, K. S.

    2018-05-01

    We studied the valley dependent transport in graphene L junctions connecting an armchair lead and a zigzag lead. The junction can be used in valleytronic devices and circuits. Electrons injected from the armchair lead into the junction is not valley polarized, but they can become valley polarized in the zigzag lead. There are Fermi energies, where the current in the zigzag lead is highly valley polarized and the junction is an efficient generator of valley polarized current. The features of the valley polarized current depend sensitively on the widths of the two leads, as well as the number of dimers in the armchair lead, because this number has a sensitive effect on the band structure of the armchair lead. When an external potential is applied to the junction, the energy range with high valley polarization is enlarged enhancing its function as a generator of highly valley polarized current. The scaling behavior found in other graphene devices is also found in L junctions, which means that the results presented here can be extended to junctions with larger dimensions after appropriate scaling of the energy.

  2. The hydrogeology of the Tully Valley, Onondaga County, New York: an overview of research, 1992-2012

    Science.gov (United States)

    Kappel, William M.

    2014-01-01

    Onondaga Creek begins approximately 15 miles south of Syracuse, New York, and flows north through the Onondaga Indian Nation, then through Syracuse, and finally into Onondaga Lake in central New York. Tully Valley is in the upper part of the Onondaga Creek watershed between U.S. Route 20 and the Valley Heads end moraine near Tully, N.Y. Tully Valley has a history of several unusual hydrogeologic phenomena that affected past land use and the water quality of Onondaga Creek; the phenomena are still present and continue to affect the area today (2014). These phenomena include mud volcanoes or mudboils, landslides, and land-surface subsidence; all are considered to be naturally occurring but may also have been influenced by human activity. The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency and the Onondaga Lake Partnership, began a study of the Tully Valley mudboils beginning in October 1991 in hopes of understanding (1) what drives mudboil activity in order to remediate mudboil influence on the water quality of Onondaga Creek, and (2) land-surface subsidence issues that have caused a road bridge to collapse, a major pipeline to be rerouted, and threatened nearby homes. Two years into this study, the 1993 Tully Valley landslide occurred just over 1 mile northwest of the mudboils. This earth slump-mud flow was the largest landslide in New York in more than 70 years (Fickies, 1993); this event provided additional insight into the geology and hydrology of the valley. As the study of the Tully Valley mudboils progressed, other unusual hydrogeologic phenomena were found within the Tully Valley and provided the opportunity to perform short-term, small-scale studies, some of which became graduate student theses—Burgmeier (1998), Curran (1999), Morales-Muniz (2000), Baldauf (2003), Epp (2005), Hackett, (2007), Tamulonis (2010), and Sinclair (2013). The unusual geology and hydrology of the Tully Valley, having been investigated for

  3. Beaver assisted river valley formation

    Science.gov (United States)

    Westbrook, Cherie J.; Cooper, D.J.; Baker, B.W.

    2011-01-01

    We examined how beaver dams affect key ecosystem processes, including pattern and process of sediment deposition, the composition and spatial pattern of vegetation, and nutrient loading and processing. We provide new evidence for the formation of heterogeneous beaver meadows on riverine system floodplains and terraces where dynamic flows are capable of breaching in-channel beaver dams. Our data show a 1.7-m high beaver dam triggered overbank flooding that drowned vegetation in areas deeply flooded, deposited nutrient-rich sediment in a spatially heterogeneous pattern on the floodplain and terrace, and scoured soils in other areas. The site quickly de-watered following the dam breach by high stream flows, protecting the deposited sediment from future re-mobilization by overbank floods. Bare sediment either exposed by scouring or deposited by the beaver flood was quickly colonized by a spatially heterogeneous plant community, forming a beaver meadow. Many willow and some aspen seedlings established in the more heavily disturbed areas, suggesting the site may succeed to a willow carr plant community suitable for future beaver re-occupation. We expand existing theory beyond the beaver pond to include terraces within valleys. This more fully explains how beavers can help drive the formation of alluvial valleys and their complex vegetation patterns as was first postulated by Ruedemann and Schoonmaker in 1938. ?? 2010 John Wiley & Sons, Ltd.

  4. Preliminary Water-Table Map and Water-Quality Data for Part of the Matanuska-Susitna Valley, Alaska, 2005

    Science.gov (United States)

    Moran, Edward H.; Solin, Gary L.

    2006-01-01

    The Matanuska-Susitna Valley is in the northeastern part of the Cook Inlet Basin, Alaska, an area experiencing rapid population growth and development proximal to many lakes. Here water commonly flows between lakes and ground water, indicating interrelation between water quantity and quality. Thus concerns exist that poorer quality ground water may degrade local lake ecosystems. This concern has led to water-quality sampling in cooperation with the Alaska Department of Environmental Conservation and the Matanuska-Susitna Borough. A map showing the estimated altitude of the water table illustrates potential ground-water flow directions and areas where ground- and surface-water exchanges and interactions might occur. Water quality measured in selected wells and lakes indicates some differences between ground water and surface water. 'The temporal and spatial scarcity of ground-water-level and water-quality data limits the analysis of flow direction and water quality. Regionally, the water-table map indicates that ground water in the eastern and southern parts of the study area flows southerly. In the northcentral area, ground water flows predominately westerly then southerly. Although ground and surface water in most areas of the Matanuska-Susitna Valley are interconnected, they are chemically different. Analyses of the few water-quality samples collected in the area indicate that dissolved nitrite plus nitrate and orthophosphorus concentrations are higher in ground water than in surface water.'

  5. Investigating palaeo-subglacial lakes in the central Barents Sea

    Science.gov (United States)

    Esteves, M.; Shackleton, C.; Winsborrow, M.; Andreassen, K.; Bjarnadóttir, L. R.

    2017-12-01

    In the past decade hundreds of subglacial lakes have been detected beneath the Antarctic Ice Sheet, and several more beneath the Greenland Ice Sheet. These are important components of the subglacial hydrological system and can influence basal shear stress, with implications for ice sheet dynamics and mass balance, potentially on rapid timescales. Improvements in our understanding of subglacial hydrological systems are therefore important, but challenging due to the inaccessibility of contemporary subglacial environments. Whilst the beds of palaeo-ice sheets are easier to access, few palaeo-subglacial lakes have been identified due to uncertainties in the sedimentological and geomorphological diagnostic criteria. In this study we address these uncertainties, using a suite of sedimentological, geomorphological and modelling approaches to investigate sites of potential palaeo-subglacial lakes in the central Barents Sea. Geomorphological signatures of hydraulic activity in the area include large meltwater channels, tunnel valleys, and several interlinked basins. Modelling efforts indicate the potential for subglacial hydraulic sinks within the area during the early stages of ice retreat since the Last Glacial Maximum. In support of this, sedimentological observations indicate the presence of a dynamic glaciolacustrine depositional environment. Using the combined results of the modelling, geomorphology, and sedimentological analyses, we conclude that palaeo-subglacial lakes are likely to have formed on the northwestern banks of Thor Iversenbanken, central Barents Sea, and suggest that numerous other subglacial lakes may have been present beneath the Barents Sea Ice Sheet. Furthermore, we investigate and refine the existing diagnostic criteria for the identification of palaeo-subglacial lakes.

  6. Lake Morphometry for NHD Lakes in Tennessee Region 6 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  7. Lake Morphometry for NHD Lakes in Ohio Region 5 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  8. Lake Morphometry for NHD Lakes in California Region 18 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  9. Land, lake, and fish: Investigation of fish remains from Gesher Benot Ya'aqov (paleo-Lake Hula).

    Science.gov (United States)

    Zohar, Irit; Biton, Rebecca

    2011-04-01

    The question of whether or not pre-modern hominins were responsible for the accumulation of fish remains is discussed through analyses of remains recovered from two lacustrine facies (I-4 and I-5) from Area A of the Acheulian site of Gesher Benot Ya'aqov (GBY) in the Jordan Rift Valley, Israel. The fish remains provide the first glimpse into the naturally accumulated fish assemblage from the fluctuating shores of a lake that had been continually exploited by early hominins some 780,000 years ago. Preliminary analysis of the remains show that thirteen of the seventeen species native to Lake Hula were identified at GBY. These represent three of the five freshwater fish families native to the lake: Cyprinidae (carps), Cichlidae (tilapini, St. Peter's fish), and Clariidae (catfish). From a taphonomical perspective, a significant difference is found between the two lithofacies (Layers I-4 and I-5) in terms of species composition, richness, diversity, and skeleton completeness. It appears that the fish remains recovered from Layer I-4 (clay) are better preserved than those from Layer I-5 (coquina). In both lithofacies, Cyprinidae are highly abundant while Cichlidae and Clariidae are rare and under-represented, especially when compared to the Lake Hula fishery report from the 1950s. All of these identified species may have contributed significantly to the diet of GBY hominins. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Real-estate lakes

    Science.gov (United States)

    Rickert, David A.; Spieker, Andrew Maute

    1971-01-01

    Since the dawn of civilization waterfront land has been an irresistible attraction to man. Throughout history he has sought out locations fronting on oceans, rivers, and lakes. Originally sought for proximity .to water supply and transportation, such locations are now sought more for their esthetic qualities and for recreation. Usable natural waterfront property is limited, however, and the more desirable sites in many of our urban areas have already been taken. The lack of available waterfront sites has led to the creation of many artificial bodies of water. The rapid suburbanization that has characterized urban growth in America since the end of World War II, together with increasing affluence and le-isure time, has created a ready market for waterfront property. Accordingly, lake-centered subdivisions and developments dot the suburban landscape in many of our major urban areas. Literally thousands of lakes surrounded by homes have materialized during this period of rapid growth. Recently, several "new town" communities have been planned around this lake-centered concept. A lake can be either an asset or a liaoility to a community. A clean, clear, attractively landscaped lake is a definite asset, whereas a weed-choked, foul-smelling mudhole is a distinct liability. The urban environment poses both problems and imaginative opportunities in the development of lakes. Creation of a lake causes changes in all aspects of the environment. Hydrologic systems and ecological patterns are usually most severely altered. The developer should be aware of the potential changes; it is not sufficient merely to build a dam across a stream or to dig a hole in the ground. Development of Gl a successful lake requires careful planning for site selection and design, followed by thorough and cc ntinual management. The purpose of this report is to describe the characteristics of real-estate lakes, to pinpoint potential pmblems, and to suggest possible planning and management guidelines

  11. Lake Michigan lake trout PCB model forecast post audit

    Science.gov (United States)

    Scenario forecasts for total PCBs in Lake Michigan (LM) lake trout were conducted using the linked LM2-Toxics and LM Food Chain models, supported by a suite of additional LM models. Efforts were conducted under the Lake Michigan Mass Balance Study and the post audit represents th...

  12. Methane emissions from permafrost thaw lakes limited by lake drainage.

    NARCIS (Netherlands)

    van Huissteden, J.; Berrittella, C.; Parmentier, F.J.W.; Mi, Y.; Maximov, T.C.; Dolman, A.J.

    2011-01-01

    Thaw lakes in permafrost areas are sources of the strong greenhouse gas methane. They develop mostly in sedimentary lowlands with permafrost and a high excess ground ice volume, resulting in large areas covered with lakes and drained thaw-lake basins (DTLBs; refs,). Their expansion is enhanced by

  13. Great Lakes Environmental Database (GLENDA)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Great Lakes Environmental Database (GLENDA) houses environmental data on a wide variety of constituents in water, biota, sediment, and air in the Great Lakes area.

  14. Functional microbiology of soda lakes

    NARCIS (Netherlands)

    Sorokin, D.Y.; Banciu, H.L.; Muyzer, G.

    2015-01-01

    Soda lakes represent unique permanently haloalkaline system. Despite the harsh conditions, they are inhabited by abundant, mostly prokaryotic, microbial communities. This review summarizes results of studies of main functional groups of the soda lake prokaryotes responsible for carbon, nitrogen and

  15. Snake River sockeye salmon Sawtooth Valley project: 1992 Juvenile and Adult Trapping Program

    International Nuclear Information System (INIS)

    1992-04-01

    Sockeye salmon (Oncorhynchus nerka) runs in the Snake River Basin have severely declined. Redfish Lake near Stanley, Idaho is the only lake in the drainage known to still support a run. In 1989, two adults were observed returning to this lake and in 1990, none returned. In the summer of 1991, only four adults returned. If no action is taken, the Snake River sockeye salmon will probably cease to exist. On November 20, 1991, the National Marine Fisheries Service (NMFS) declared the Snake River sockeye salmon ''endangered'' (effective December 20, 1991), pursuant to the Endangered Species Act (ESA) of 1973. In 1991, in response to a request from the Idaho Department of Fish and Game and the Shoshone-Bannock Tribes, the Bonneville Power Administration (BPA) funded efforts to conserve and begin rebuilding the Snake River sockeye salmon run. The initial efforts were focused on Redfish Lake in the Sawtooth Valley of southcentral Idaho. The 1991 measures involved: trapping some of the juvenile outmigrants (O. nerka) from Redfish Lake and rearing them in the Eagle Fish Health Facility (Idaho Department of Fish and Game) near Boise, Idaho; Upgrading of the Eagle Facility where the outmigrants are being reared; and trapping adult Snake River sockeye salmon returning to Redfish Lake and holding and spawning them at the Sawtooth Hatchery near Stanley, Idaho. This Environmental Assessment (EA) evaluates the potential environmental effects of the proposed actions for 1992. It has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) of 1969 and section 7 of the ESA of 1973

  16. Chemical quality of surface waters in Devils Lake basin, North Dakota

    Science.gov (United States)

    Swenson, Herbert; Colby, Bruce R.

    1955-01-01

    Devils Lake basin, a closed basin in northeastern North Dakota, covers about 3,900 square miles of land, the topography of which is morainal and of glacial origin. In this basin lies a chain of waterways, which begins with the Sweetwater group and extends successively through Mauvais Coulee, Devils Lake, East Bay Devils Lake, and East Devils Lake, to Stump Lake. In former years when lake levels were high, Mauvais Coulee drained the Sweetwater group and discharged considerable water into Devils Lake. Converging coulees also transported excess water to Stump Lake. For at least 70 years prior to 1941, Mauvais Coulee flowed only intermittently, and the levels of major lakes in this region gradually declined. Devils Lake, for example, covered an area of about 90,000 acres in 1867 but had shrunk to approximately 6,500 acres by 1941. Plans to restore the recreational appeal of Devils Lake propose the dilution and eventual displacement of the brackish lake water by fresh water that would be diverted from the Missouri River. Freshening of the lake water would permit restocking Devils Lake with fish. Devils and Stump Lake have irregular outlines and numerous windings and have been described as lying in the valley of a preglacial river, the main stem and tributaries of which are partly filled with drift. Prominent morainal hills along the south shore of Devils Lake contrast sharply with level farmland to the north. The mean annual temperature of Devils Lake basin ranges between 36 ? and 42 ? F. Summer temperatures above 100 ? F and winter temperatures below -30 ? Fare not uncommon. The annual precipitation for 77 years at the city of Devils Lake averaged 17.5 inches. Usually, from 75 to 80 percent of the precipitation in the basin falls during the growing season, April to September. From 1867 to 1941 the net fall of the water surface of Devils Lake was about 38 feet. By 1951 the surface had risen fully 14 feet from its lowest altitude, 1,400.9 feet. Since 1951, the level has

  17. Hidden Valley Search at ATLAS

    CERN Document Server

    Verducci, M

    2011-01-01

    A number of extensions of the Standard Model result in neutral and weakly-coupled particles that decay to multi hadrons or multi leptons with macroscopic decay lengths. These particles with decay paths that can be comparable with ATLAS detector dimensions represent, from an experimental point of view, a challenge both for the trigger and for the reconstruction capabilities of the ATLAS detector. We will present a set of signature driven triggers for the ATLAS detector that target such displaced decays and evaluate their performances for some benchmark models and describe analysis strategies and limits on the production of such long-lived particles. A first estimation of the Hidden Valley trigger rates has been evaluated with 6 pb-1 of data collected at ATLAS during the data taking of 2010.

  18. Microplastic pollution in lakes and lake shoreline sediments - A case study on Lake Bolsena and Lake Chiusi (central Italy).

    Science.gov (United States)

    Fischer, Elke Kerstin; Paglialonga, Lisa; Czech, Elisa; Tamminga, Matthias

    2016-06-01

    Rivers and effluents have been identified as major pathways for microplastics of terrestrial sources. Moreover, lakes of different dimensions and even in remote locations contain microplastics in striking abundances. This study investigates concentrations of microplastic particles at two lakes in central Italy (Lake Bolsena, Lake Chiusi). A total number of six Manta Trawls have been carried out, two of them one day after heavy winds occurred on Lake Bolsena showing effects on particle distribution of fragments and fibers of varying size categories. Additionally, 36 sediment samples from lakeshores were analyzed for microplastic content. In the surface waters 2.68 to 3.36 particles/m(3) (Lake Chiusi) and 0.82 to 4.42 particles/m(3) (Lake Bolsena) were detected, respectively. Main differences between the lakes are attributed to lake characteristics such as surface and catchment area, depth and the presence of local wind patterns and tide range at Lake Bolsena. An event of heavy winds and moderate rainfall prior to one sampling led to an increase of concentrations at Lake Bolsena which is most probable related to lateral land-based and sewage effluent inputs. The abundances of microplastic particles in sediments vary from mean values of 112 (Lake Bolsena) to 234 particles/kg dry weight (Lake Chiusi). Lake Chiusi results reveal elevated fiber concentrations compared to those of Lake Bolsena what might be a result of higher organic content and a shift in grain size distribution towards the silt and clay fraction at the shallow and highly eutrophic Lake Chiusi. The distribution of particles along different beach levels revealed no significant differences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Glacial and postglacial geology near Lake Tennyson, Clarence River, New Zealand

    International Nuclear Information System (INIS)

    McCalpin, J.P.

    1992-01-01

    Otiran valley glaciers extended 15 km down the upper Clarence Valley in central Marlborough, South Island, New Zealand. A massive Otiran terminal moraine complex, composed of moraines of three glacial advances, impounds Lake Tennyson. The moraines are early and middle Otiran, and possibly late Otiran-early Aranuian in age, based on relative position and differences in moraine morphology, weathering rinds, and soils. Radiocarbon ages from a tributary (Serpentine Creek) suggest the latest major episode of aggradation in the Clarence Valley was in progress by 11.3 ka, and had ended by 9.2 ka. Postglacial history was dominated by incision of glacial outwash, deposition of small alluvial fans, and landsliding near the trace of the Awatere Fault. Fault scarps of the Awatere Fault and of unnamed parallel splays displace early Otiran moraines up to 19 m and early Holocene terraces up to 2.6 m. (author). 25 refs., 10 figs., 3 tabs

  20. Sanctuaries for lake trout in the Great Lakes

    Science.gov (United States)

    Stanley, Jon G.; Eshenroder, Randy L.; Hartman, Wilbur L.

    1987-01-01

    Populations of lake trout, severely depleted in Lake Superior and virtually extirpated from the other Great Lakes because of sea lamprey predation and intense fishing, are now maintained by annual plantings of hatchery-reared fish in Lakes Michigan, Huron, and Ontario and parts of Lake Superior. The extensive coastal areas of the Great Lakes and proximity to large populations resulted in fishing pressure on planted lake trout heavy enough to push annual mortality associated with sport and commercial fisheries well above the critical level needed to reestablish self-sustaining stocks. The interagency, international program for rehabilitating lake trout includes controlling sea lamprey abundance, stocking hatchery-reared lake trout, managing the catch, and establishing sanctuaries where harvest is prohibited. Three lake trout sanctuaries have been established in Lake Michigan: the Fox Island Sanctuary of 121, 500 ha, in the Chippewa-Ottawa Treaty fishing zone in the northern region of the lake; the Milwaukee Reef Sanctuary of 160, 000 ha in midlake, in boundary waters of Michigan and Wisconsin; and Julian's Reef Sanctuary of 6, 500 ha, in Illinois waters. In northern Lake Huron, Drummond Island Sanctuary of 55, 000 ha is two thirds in Indian treaty-ceded waters in Michigan and one third in Ontario waters of Canada. A second sanctuary, Six Fathom Bank-Yankee Reef Sanctuary, in central Lake Huron contains 168, 000 ha. Sanctuary status for the Canadian areas remains to be approved by the Provincial government. In Lake Superior, sanctuaries protect the spawning grounds of Gull Island Shoal (70, 000 ha) and Devils Island Shoal (44, 000 ha) in Wisconsin's Apostle Island area. These seven sanctuaries, established by the several States and agreed upon by the States, Indian tribes, the U.S. Department of the Interior, and the Province of Ontario, contribute toward solving an interjurisdictional fishery problem.

  1. Lake-level increasing under the climate cryoaridization conditions during the Last Glacial Maximum

    Science.gov (United States)

    Amosov, Mikhail; Strelkov, Ivan

    2017-04-01

    precipitations. For example, the paleo-lakes of Bonneville and Lahontan located in the Great Basin, US vividly present the pluvial hypothesis. However, the lake-level of Central Asia and Altiplano altered because of a simultaneous climate cooling and moisture decrease. This phenomenon is called a climate cryoaridization. The moisture reduction in two studied regions is proved by the palinologic data. Beside the fact above, the climate cryoaridization of Altiplano lakes is also confirmed by the data taken from the flatland water bodies of South America that are located to the north of the described region. Even though they had an influence from Amazon convective center with its humid air masses moved towards Altiplano, these flatland lakes used to have lower level at the LGM stage. According to the explained hypothesis, there is one more assumption supporting an increasing effect of cryoaridic lakes. These water bodies occurred on the endorheic basins due to the snow accumulation in the surrounding mountain ranges, hence the snow line moved down closer to the Altiplano valleys.

  2. Water quality of Lake Austin and Town Lake, Austin, Texas

    Science.gov (United States)

    Andrews, Freeman L.; Wells, Frank C.; Shelby, Wanda J.; McPherson, Emma

    1988-01-01

    Lake Austin and Town Lake are located on the Colorado River in Travis County, central Texas, and serve as a source of water for municipal and industrial water supplies, electrical-power generation, and recreation for more than 500,000 people in the Austin metropolitan area. Lake Austin, located immediately downstream of Lake Travis, extends for more than 20 miles into the western edge of the city of Austin. Town Lake extends through the downtown area of the city of Austin for nearly 6 miles where the Colorado River is impounded by Longhorn Dam.

  3. Lake Morphometry for NHD Lakes in Great Lakes Region 4 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  4. Technologies for lake restoration

    Directory of Open Access Journals (Sweden)

    Helmut KLAPPER

    2003-09-01

    Full Text Available Lakes are suffering from different stress factors and need to be restored using different approaches. The eutrophication remains as the main water quality management problem for inland waters: both lakes and reservoirs. The way to curb the degradation is to stop the nutrient sources and to accelerate the restoration with help of in-lake technologies. Especially lakes with a long retention time need (eco- technological help to decrease the nutrient content in the free water. The microbial and other organic matter from sewage and other autochthonous biomasses, causes oxygen depletion, which has many adverse effects. In less developed countries big reservoirs function as sewage treatment plants. Natural aeration solves problems only partly and many pollutants tend to accumulate in the sediments. The acidification by acid rain and by pyrite oxidation has to be controlled by acid neutralizing technologies. Addition of alkaline chemicals is useful only for soft waters, and technologies for (microbial alkalinization of very acidic hardwater mining lakes are in development. The corrective measures differ from those in use for eutrophication control. The salinization and water shortage mostly occurs if more water is used than available. L. Aral, L. Tschad, the Dead Sea or L. Nasser belong to waters with most severe environmental problems on a global scale. Their hydrologic regime needs to be evaluated. The inflow of salt water at the bottom of some mining lakes adds to stability of stratification, and thus accumulation of hydrogen sulphide in the monimolimnion of the meromictic lakes. Destratification, which is the most used technology, is only restricted applicable because of the dangerous concentrations of the byproducts of biological degradation. The contamination of lakes with hazardous substances from industry and agriculture require different restoration technologies, including subhydric isolation and storage, addition of nutrients for better self

  5. Lakes on Mars

    CERN Document Server

    Cabrol, Nathalie A

    2014-01-01

    On Earth, lakes provide favorable environments for the development of life and its preservation as fossils. They are extremely sensitive to climate fluctuations and to conditions within their watersheds. As such, lakes are unique markers of the impact of environmental changes. Past and current missions have now demonstrated that water once flowed at the surface of Mars early in its history. Evidence of ancient ponding has been uncovered at scales ranging from a few kilometers to possibly that of the Arctic ocean. Whether life existed on Mars is still unknown; upcoming missions may find critic

  6. Terrestrial CDOM in Lakes of Yamal Peninsula: Connection to Lake and Lake Catchment Properties

    Directory of Open Access Journals (Sweden)

    Yury Dvornikov

    2018-01-01

    Full Text Available In this study, we analyze interactions in lake and lake catchment systems of a continuous permafrost area. We assessed colored dissolved organic matter (CDOM absorption at 440 nm (a(440CDOM and absorption slope (S300–500 in lakes using field sampling and optical remote sensing data for an area of 350 km2 in Central Yamal, Siberia. Applying a CDOM algorithm (ratio of green and red band reflectance for two high spatial resolution multispectral GeoEye-1 and Worldview-2 satellite images, we were able to extrapolate the a(λCDOM data from 18 lakes sampled in the field to 356 lakes in the study area (model R2 = 0.79. Values of a(440CDOM in 356 lakes varied from 0.48 to 8.35 m−1 with a median of 1.43 m−1. This a(λCDOM dataset was used to relate lake CDOM to 17 lake and lake catchment parameters derived from optical and radar remote sensing data and from digital elevation model analysis in order to establish the parameters controlling CDOM in lakes on the Yamal Peninsula. Regression tree model and boosted regression tree analysis showed that the activity of cryogenic processes (thermocirques in the lake shores and lake water level were the two most important controls, explaining 48.4% and 28.4% of lake CDOM, respectively (R2 = 0.61. Activation of thermocirques led to a large input of terrestrial organic matter and sediments from catchments and thawed permafrost to lakes (n = 15, mean a(440CDOM = 5.3 m−1. Large lakes on the floodplain with a connection to Mordy-Yakha River received more CDOM (n = 7, mean a(440CDOM = 3.8 m−1 compared to lakes located on higher terraces.

  7. Valley-filtered edge states and quantum valley Hall effect in gated bilayer graphene.

    Science.gov (United States)

    Zhang, Xu-Long; Xu, Lei; Zhang, Jun

    2017-05-10

    Electron edge states in gated bilayer graphene in the quantum valley Hall (QVH) effect regime can carry both charge and valley currents. We show that an interlayer potential splits the zero-energy level and opens a bulk gap, yielding counter-propagating edge modes with different valleys. A rich variety of valley current states can be obtained by tuning the applied boundary potential and lead to the QVH effect, as well as to the unbalanced QVH effect. A method to individually manipulate the edge states by the boundary potentials is proposed.

  8. Microbial community composition of transiently wetted Antarctic Dry Valley soils.

    Science.gov (United States)

    Niederberger, Thomas D; Sohm, Jill A; Gunderson, Troy E; Parker, Alexander E; Tirindelli, Joëlle; Capone, Douglas G; Carpenter, Edward J; Cary, Stephen C

    2015-01-01

    During the summer months, wet (hyporheic) soils associated with ephemeral streams and lake edges in the Antarctic Dry Valleys (DVs) become hotspots of biological activity and are hypothesized to be an important source of carbon and nitrogen for arid DV soils. Recent research in the DV has focused on the geochemistry and microbial ecology of lakes and arid soils, with substantially less information being available on hyporheic soils. Here, we determined the unique properties of hyporheic microbial communities, resolved their relationship to environmental parameters and compared them to archetypal arid DV soils. Generally, pH increased and chlorophyll a concentrations decreased along transects from wet to arid soils (9.0 to ~7.0 for pH and ~0.8 to ~5 μg/cm(3) for chlorophyll a, respectively). Soil water content decreased to below ~3% in the arid soils. Community fingerprinting-based principle component analyses revealed that bacterial communities formed distinct clusters specific to arid and wet soils; however, eukaryotic communities that clustered together did not have similar soil moisture content nor did they group together based on sampling location. Collectively, rRNA pyrosequencing indicated a considerably higher abundance of Cyanobacteria in wet soils and a higher abundance of Acidobacterial, Actinobacterial, Deinococcus/Thermus, Bacteroidetes, Firmicutes, Gemmatimonadetes, Nitrospira, and Planctomycetes in arid soils. The two most significant differences at the genus level were Gillisia signatures present in arid soils and chloroplast signatures related to Streptophyta that were common in wet soils. Fungal dominance was observed in arid soils and Viridiplantae were more common in wet soils. This research represents an in-depth characterization of microbial communities inhabiting wet DV soils. Results indicate that the repeated wetting of hyporheic zones has a profound impact on the bacterial and eukaryotic communities inhabiting in these areas.

  9. Vegetation - San Felipe Valley [ds172

    Data.gov (United States)

    California Natural Resource Agency — This Vegetation Map of the San Felipe Valley Wildlife Area in San Diego County, California is based on vegetation samples collected in the field in 2002 and 2005 and...

  10. Babesiosis in Lower Hudson Valley, New York

    Centers for Disease Control (CDC) Podcasts

    This podcast discusses a study about an increase in babesiosis in the Lower Hudson Valley of New York state. Dr. Julie Joseph, Assistant Professor of Medicine at New York Medical College, shares details of this study.

  11. Meie mees Silicon Valleys / Kertu Ruus

    Index Scriptorium Estoniae

    Ruus, Kertu, 1977-

    2007-01-01

    Ilmunud ka: Delovõje Vedomosti 5. dets. lk. 4. Peaminister Andrus Ansip avas Eesti Ettevõtluse Sihtasutuse esinduse Silicon Valley pealinnas San Joses. Vt. samas: Ränioru kliima on tehnoloogiasõbralik; Andrus Viirg

  12. Meie ingel Silicon Valleys / Raigo Neudorf

    Index Scriptorium Estoniae

    Neudorf, Raigo

    2008-01-01

    Ettevõtluse Arendamise Sihtasutuse esinduse töölepanekust USAs Silicon Valleys räägib esinduse juht Andrus Viirg. Vt. ka: Eestlasi leidub San Franciscos omajagu; Muljetavaldav karjäär; USAga ammune tuttav

  13. Burrowing Owl - Palo Verde Valley [ds197

    Data.gov (United States)

    California Natural Resource Agency — These burrowing owl observations were collected during the spring and early summer of 1976 in the Palo Verde Valley, eastern Riverside County, California. This is an...

  14. Source Water Assessment for the Las Vegas Valley Surface Waters

    Science.gov (United States)

    Albuquerque, S. P.; Piechota, T. C.

    2003-12-01

    The 1996 amendment to the Safe Drinking Water Act of 1974 created the Source Water Assessment Program (SWAP) with an objective to evaluate potential sources of contamination to drinking water intakes. The development of a Source Water Assessment Plan for Las Vegas Valley surface water runoff into Lake Mead is important since it will guide future work on source water protection of the main source of water. The first step was the identification of the watershed boundary and source water protection area. Two protection zones were delineated. Zone A extends 500 ft around water bodies, and Zone B extends 3000 ft from the boundaries of Zone A. These Zones extend upstream to the limits of dry weather flows in the storm channels within the Las Vegas Valley. After the protection areas were identified, the potential sources of contamination in the protection area were inventoried. Field work was conducted to identify possible sources of contamination. A GIS coverage obtained from local data sources was used to identify the septic tank locations. Finally, the National Pollutant Discharge Elimination System (NPDES) Permits were obtained from the State of Nevada, and included in the inventory. After the inventory was completed, a level of risk was assigned to each potential contaminating activity (PCA). The contaminants of concern were grouped into five categories: volatile organic compounds (VOCs), synthetic organic compounds (SOCs), inorganic compounds (IOCs), microbiological, and radionuclides. The vulnerability of the water intake to each of the PCAs was assigned based on these five categories, and also on three other factors: the physical barrier effectiveness, the risk potential, and the time of travel. The vulnerability analysis shows that the PCAs with the highest vulnerability rating include septic systems, golf courses/parks, storm channels, gas stations, auto repair shops, construction, and the wastewater treatment plant discharges. Based on the current water quality

  15. Poet Lake Crystal Approval

    Science.gov (United States)

    This September 19, 2016 letter from EPA approves the petition from Poet Biorefining-Lake Crystal, regarding non-grandfathered ethanol produced through a dry mill process, qualifying under the Clean Air Act for renewable fuel (D-code 6) RINs under the RFS

  16. Lake Kariba, Zimbabwe

    African Journals Online (AJOL)

    1984-02-01

    Feb 1, 1984 ... rings word opgesom terwyl sommige van die lesse wat by Kariba geleer is en 'n ... one area of the lake must have an effect, directly or indirectly, on other consumer organisms in the aquatic environment. Con- sidering ... are liable to attain their high density at the price of other taxa. ... be measured. Data on ...

  17. IN LAKE TANA, ETHIOPIA

    African Journals Online (AJOL)

    Turbidity showed depressed effect on biomass ... Key words/phrases: Biomass, duration of development, Lake Tana, large-turbid ... 36°45'-38°14'E and at an altitude of 1830 In, a.s.l. ... 30 cm mouth opening, 1.2 m cod end), which was ... times of the three copepods were measured under .... The greatest density values were.

  18. Lake whitefish diet, condition, and energy density in Lake Champlain and the lower four Great Lakes following dreissenid invasions

    Science.gov (United States)

    Herbst, Seth J.; Marsden, J. Ellen; Lantry, Brian F.

    2013-01-01

    Lake Whitefish Coregonus clupeaformis support some of the most valuable commercial freshwater fisheries in North America. Recent growth and condition decreases in Lake Whitefish populations in the Great Lakes have been attributed to the invasion of the dreissenid mussels, zebra mussels Dreissena polymorpha and quagga mussels D. bugensis, and the subsequent collapse of the amphipod, Diporeia, a once-abundant high energy prey source. Since 1993, Lake Champlain has also experienced the invasion and proliferation of zebra mussels, but in contrast to the Great Lakes, Diporeia were not historically abundant. We compared the diet, condition, and energy density of Lake Whitefish from Lake Champlain after the dreissenid mussel invasion to values for those of Lake Whitefish from Lakes Michigan, Huron, Erie, and Ontario. Lake Whitefish were collected using gill nets and bottom trawls, and their diets were quantified seasonally. Condition was estimated using Fulton's condition factor (K) and by determining energy density. In contrast to Lake Whitefish from some of the Great Lakes, those from Lake Champlain Lake Whitefish did not show a dietary shift towards dreissenid mussels, but instead fed primarily on fish eggs in spring, Mysis diluviana in summer, and gastropods and sphaeriids in fall and winter. Along with these dietary differences, the condition and energy density of Lake Whitefish from Lake Champlain were high compared with those of Lake Whitefish from Lakes Michigan, Huron, and Ontario after the dreissenid invasion, and were similar to Lake Whitefish from Lake Erie; fish from Lakes Michigan, Huron, and Ontario consumed dreissenids, whereas fish from Lake Erie did not. Our comparisons of Lake Whitefish populations in Lake Champlain to those in the Great Lakes indicate that diet and condition of Lake Champlain Lake Whitefish were not negatively affected by the dreissenid mussel invasion.

  19. Carbon dioxide dynamics in a lake and a reservoir on a tropical island (Bali, Indonesia).

    Science.gov (United States)

    Macklin, Paul A; Suryaputra, I Gusti Ngurah Agung; Maher, Damien T; Santos, Isaac R

    2018-01-01

    Water-to-air carbon dioxide fluxes from tropical lakes and reservoirs (artificial lakes) may be an important but understudied component of global carbon fluxes. Here, we investigate the seasonal dissolved carbon dioxide (CO2) dynamics in a lake and a reservoir on a tropical volcanic island (Bali, Indonesia). Observations were performed over four seasonal surveys in Bali's largest natural lake (Lake Batur) and largest reservoir (Palasari Reservoir). Average CO2 partial pressures in the natural lake and reservoir were 263.7±12.2 μatm and 785.0±283.6 μatm respectively, with the highest area-weighted partial pressures in the wet season for both systems. The strong correlations between seasonal mean values of dissolved oxygen (DO) and pCO2 in the natural lake (r2 = 0.92) suggest that surface water metabolism was an important driver of CO2 dynamics in this deep system. Radon (222Rn, a natural groundwater discharge tracer) explained up to 77% of the variability in pCO2 in the shallow reservoir, suggesting that groundwater seepage was the major CO2 driver in the reservoir. Overall, the natural lake was a sink of atmospheric CO2 (average fluxes of -2.8 mmol m-2 d-1) while the reservoir was a source of CO2 to the atmosphere (average fluxes of 7.3 mmol m-2 d-1). Reservoirs are replacing river valleys and terrestrial ecosystems, particularly throughout developing tropical regions. While the net effect of this conversion on atmospheric CO2 fluxes remains to be resolved, we speculate that reservoir construction will partially offset the CO2 sink provided by deep, volcanic, natural lakes and terrestrial environments.

  20. Potential impacts of damming the Juba Valley, western Somalia: Insights from geomorphology and alluvial history

    Science.gov (United States)

    Williams, Martin

    2014-05-01

    In 1988 plans were well advanced to dam the Juba River in western Somalia. The aims of the Baardheere Dam Project were to generate hydroelectric power for the capital Mogadishu, and to provide water for irrigation in the Juba Valley. A reconnaissance survey on foot along 500 km of the river upstream of the proposed dam site at Baardheere and detailed geomorphic mapping from air photos provided a basis for reconstructing the late Quaternary alluvial history of the river and for assessing the potential impact of the proposed dam. The Juba River rises in the Ethiopian Highlands and is the only river in Somalia that flows to the sea. Its history reflects climatic events in Ethiopia, where the Rift Valley lakes were very low during the LGM (21±2 ka), and high for about 5, 000 years before and after then. Cave deposits in Somalia indicate wetter conditions at 13, 10, 7.5 and 1.5 ka. Alluvial terraces in the Juba Valley range in age from late Pleistocene to late Holocene but only attain a few metres above the present floodplain. This is because the dry tributary valleys contain limestone caves and fissures that divert any high flows from the parent river underground, a process not known when the project was first approved. The oldest preserved terrace was cemented by calcrete by 40 ka. Alluvial gravels were deposited at the outlet of dry tributary valleys during times of episodic high-energy flow between 26 ka and 28 ka. Finely laminated shelly sands accumulated at 10 ka to form the 5 m terrace. The 2 m terrace was laid down 3.2 ka ago as a slackwater deposit. The lack of high-level alluvial terraces raises doubts over plans to dam the river, since rapid leakage would occur from side valleys and the reservoir would not attain the height needed to generate hydroelectric power. It would submerge all existing arable land along the river. Finally, the presence in the late Holocene alluvium of the sub-fossil gastropods Bulinus truncatus and Biomphalaria pfeifferi, which are

  1. Energy Balance, Evapo-transpiration and Dew deposition in the Dead Sea Valley

    Science.gov (United States)

    Metzger, Jutta; Corsmeier, Ulrich

    2016-04-01

    The Dead Sea is a unique place on earth. It is a terminal hypersaline lake, located at the lowest point on earth with a lake level of currently -429 m above mean sea level (amsl). It is located in a transition zone of semiarid to arid climate conditions, which makes it highly sensible to climate change (Alpert1997, Smiatek2011). The Virtual Institute DEad SEa Research Venue (DESERVE) is an international project funded by the German Helmholtz Association and was established to study coupled atmospheric hydrological, and lithospheric processes in the changing environment of the Dead Sea. At the moment the most prominent environmental change is the lake level decline of approximately 1 m / year due to anthropogenic interferences (Gertman, 2002). This leads to noticeable changes in the fractions of the existing terrestrial surfaces - water, bare soil and vegetated areas - in the valley. Thus, the partitioning of the net radiation in the valley changes as well. To thoroughly study the atmospheric and hydrological processes in the Dead Sea valley, which are driven by the energy balance components, sound data of the energy fluxes of the different surfaces are necessary. Before DESERVE no long-term monitoring network simultaneously measuring the energy balance components of the different surfaces in the Dead Sea valley was available. Therefore, three energy balance stations were installed at three characteristic sites at the coast-line, over bare soil, and within vegetation, measuring all energy balance components by using the eddy covariance method. The results show, that the partitioning of the energy into sensible and latent heat flux on a diurnal scale is totally different at the three sites. This results in gradients between the sites, which are e.g. responsible for the typical diurnal wind systems at the Dead Sea. Furthermore, driving forces of evapo-transpiration at the sites were identified and a detailed analysis of the daily evaporation and dew deposition rates

  2. High-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region, California

    Science.gov (United States)

    Ponce, D. A.; Mangan, M.; McPhee, D.

    2013-12-01

    A new high-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region greatly enhances previous magnetic interpretations that were based on older, low-resolution, and regional aeromagnetic data sets and provides new insights into volcano-tectonic processes. The surveyed area covers a 8,750 km2 NNW-trending swath situated between the Sierra Nevada to the west and the Basin and Range Province to the east. The surveyed area includes the volcanic centers of Mono Lake, Mono-Inyo Craters, Mammoth Mountain, Devils Postpile, and Long Valley Caldera. The NW-trending eastern Sierra frontal fault zone crosses through the study area, including the active Mono Lake, Silver Lake, Hartley Springs, Laurel Creek, and Hilton Creek faults. Over 6,000 line-kilometers of aeromagnetic data were collected at a constant terrain clearance of 150 m, a flight-line spacing of 400 m, and a tie-line spacing of 4 km. Data were collected via helicopter with an attached stinger housing a magnetic sensor using a Scintrex CS-3 cesium magnetometer. In the northern part of the survey area, data improve the magnetic resolution of the individual domes and coulees along Mono Craters and a circular shaped magnetic anomaly that coincides with a poorly defined ring fracture mapped by Kistler (1966). Here, aeromagnetic data combined with other geophysical data suggests that Mono Craters may have preferentially followed a pre-existing plutonic basement feature that may have controlled the sickle shape of the volcanic chain. In the northeastern part of the survey, aeromagnetic data reveal a linear magnetic anomaly that correlates with and extends a mapped fault. In the southern part of the survey, in the Sierra Nevada block just south of Long Valley Caldera, aeromagnetic anomalies correlate with NNW-trending Sierran frontal faults rather than to linear NNE-trends observed in recent seismicity over the last 30 years. These data provide an important framework for the further analysis of the

  3. Electrical valley filtering in transition metal dichalcogenides

    Science.gov (United States)

    Hsieh, Tzu-Chi; Chou, Mei-Yin; Wu, Yu-Shu

    2018-03-01

    This work investigates the feasibility of electrical valley filtering for holes in transition metal dichalcogenides. We look specifically into the scheme that utilizes a potential barrier to produce valley-dependent tunneling rates, and perform the study with both a k .p -based analytic method and a recursive Green's function-based numerical method. The study yields the transmission coefficient as a function of incident energy and transverse wave vector, for holes going through lateral quantum barriers oriented in either armchair or zigzag directions, in both homogeneous and heterogeneous systems. The main findings are the following: (1) The tunneling current valley polarization increases with increasing barrier width or height; (2) both the valley-orbit interaction and band structure warping contribute to valley-dependent tunneling, with the former contribution being manifest in structures with asymmetric potential barriers, and the latter being orientation dependent and reaching maximum for transmission in the armchair direction; and (3) for transmission ˜0.1 , a tunneling current valley polarization of the order of 10 % can be achieved.

  4. Lake trout rehabilitation in Lake Erie: a case history

    Science.gov (United States)

    Cornelius, Floyd C.; Muth, Kenneth M.; Kenyon, Roger

    1995-01-01

    Native lake trout (Salvelinus namaycush) once thrived in the deep waters of eastern Lake Erie. The impact of nearly 70 years of unregulated exploitation and over 100 years of progressively severe cultural eutrophication resulted in the elimination of lake trout stocks by 1950. Early attempts to restore lake trout by stocking were unsuccessful in establishing a self-sustaining population. In the early 1980s, New York's Department of Environmental Conservation, Pennsylvania's Fish and Boat Commission, and the U.S. Fish and Wildlife Service entered into a cooperative program to rehabilitate lake trout in the eastern basin of Lake Erie. After 11 years of stocking selected strains of lake trout in U.S. waters, followed by effective sea lamprey control, lake trout appear to be successfully recolonizing their native habitat. Adult stocks have built up significantly and are expanding their range in the lake. Preliminary investigations suggest that lake trout reproductive habitat is still adequate for natural reproduction, but natural recruitment has not been documented. Future assessments will be directed toward evaluation of spawning success and tracking age-class cohorts as they move through the fishery.

  5. The Location of Lake Titicaca's Coastal Area During the Tiwanaku and Inca Periods: Methodology and Strategies of Underwater Archaeology

    Science.gov (United States)

    Delaere, Christophe

    2017-12-01

    For more than 30 years, numerous research projects have revealed the dense and complex human settlement of the lacustrine basin of Lake Titicaca in Bolivia and Peru. Physical evidence of such establishments has been discovered in plains, valleys, and highlands connected to the lake. These remains confirm human occupation and development in this environment, particularly during the Tiwanaku (AD 500-1150) and Inca (AD 1400-1532) Periods. The research project discussed in this paper includes consideration of submerged areas through underwater archaeology. This investigation involves analysis of two areas that have evidence of ancient human occupation but are poorly documented: the coastal and lacustrine regions. Due to its dominance in the landscape, Lake Titicaca has always been a major feature in the life and identity of populations of this vicinity. These inhabitants have developed socio-economic and ritual behaviours directly associated with the lake that have left cultural and material prints that are the foci of the present study.

  6. Connectedness of land use, nutrients, primary production, and fish assemblages in oxbow lakes

    Science.gov (United States)

    Miranda, Leandro E.; Andrews, Caroline S.; Kroger, Robert

    2013-01-01

    We explored the strength of connectedness among hierarchical system components associated with oxbow lakes in the alluvial valley of the Lower Mississippi River. Specifically, we examined the degree of canonical correlation between land use (agriculture and forests), lake morphometry (depth and size), nutrients (total nitrogen and total phosphorus), primary production (chlorophyll-a), and various fish assemblage descriptors. Watershed (p < 0.01) and riparian (p = 0.02) land use, and lake depth (p = 0.05) but not size (p = 0.28), were associated with nutrient concentrations. In turn, nutrients were associated with primary production (p < 0.01), and primary production was associated with sunfish (Centrarchidae) assemblages (p < 0.01) and fish biodiversity (p = 0.08), but not with those of other taxa and functional guilds. Multiple chemical and biological components of oxbow lake ecosystems are connected to landscape characteristics such as land use and lake depth. Therefore, a top-down hierarchical approach can be useful in developing management and conservation plans for oxbow lakes in a region impacted by widespread landscape changes due to agriculture.

  7. Holocene environmental change and archaeology, Yangtze River Valley, China: Review and prospects

    Directory of Open Access Journals (Sweden)

    Li Wu

    2012-11-01

    Full Text Available Holocene environmental change and environmental archaeology are important components of an international project studying the human-earth interaction system. This paper reviews the progress of Holocene environmental change and environmental archaeology research in the Yangtze River Valley over the last three decades, that includes the evolution of large freshwater lakes, Holocene transgression and sea-level changes, Holocene climate change and East Asian monsoon variation, relationship between the rise and fall of primitive civilizations and environmental changes, cultural interruptions and palaeoflood events, as well as relationship between the origin of agriculture and climate change. These research components are underpinned by the dating of lacustrine sediments, stalagmites and peat to establish a chronology of regional environmental and cultural evolution. Interdisciplinary and other environment proxy indicators need to be used in comparative studies of archaeological site formation and natural sedimentary environment in the upper, middle and lower reaches of the Yangtze River Valley. Modern technology such as remote sensing, molecular bioarchaeology, and virtual reality, should be integrated with currently used dating, geochemical, sedimentological, and palaeobotanical methods of analysis in environmental archaeology macro- and micro-studies, so as to provide a greater comprehensive insight into Holocene environmental and cultural interaction and change in the Yangtze River Valley area.

  8. Groundwater discharge by evapotranspiration, Dixie Valley, west-central Nevada, March 2009-September 2011

    Science.gov (United States)

    Garcia, C. Amanda; Huntington, Jena M; Buto, Susan G.; Moreo, Michael T.; Smith, J. LaRue; Andraski, Brian J.

    2014-01-01

    With increasing population growth and land-use change, urban communities in the desert Southwest are progressively looking toward remote basins to supplement existing water supplies. Pending applications by Churchill County for groundwater appropriations from Dixie Valley, Nevada, a primarily undeveloped basin east of the Carson Desert, have prompted a reevaluation of the quantity of naturally discharging groundwater. The objective of this study was to develop a revised, independent estimate of groundwater discharge by evapotranspiration (ETg) from Dixie Valley using a combination of eddy-covariance evapotranspiration (ET) measurements and multispectral satellite imagery. Mean annual ETg was estimated during water years 2010 and 2011 at four eddy-covariance sites. Two sites were in phreatophytic shrubland dominated by greasewood, and two sites were on a playa. Estimates of total ET and ETg were supported with vegetation cover mapping, soil physics considerations, water‑level measurements from wells, and isotopic water sourcing analyses to allow partitioning of ETg into evaporation and transpiration components. Site-based ETg estimates were scaled to the basin level by combining remotely sensed imagery with field reconnaissance. Enhanced vegetation index and brightness temperature data were compared with mapped vegetation cover to partition Dixie Valley into five discharging ET units and compute basin-scale ETg. Evapotranspiration units were defined within a delineated groundwater discharge area and were partitioned as (1) playa lake, (2) playa, (3) sparse shrubland, (4) moderate-to-dense shrubland, and (5) grassland.

  9. Evolution of alkaline lakes - Lake Van case study

    Science.gov (United States)

    Tillman Meyer, Felix; Viehberg, Finn; Bahroun, Sonya; Wolf, Annabel; Immenhauser, Adrian; Kwiecien, Ola

    2017-04-01

    Lake Van in Eastern Anatolia (Turkey) is the largest terminal soda lake on Earth. The lake sedimentary profile covers ca. 600 ka (Stockhecke et al. 2014) Based on lithological changes, the presence of freshwater microfossils and close-to-freshwater pH value in the pore water, members of ICDP PALEOVAN concluded that Lake Van might have started as an open lake. Here we show paleontological and geochemical evidence in favour of this idea and constrain the time, when Lake Van likely transformed into a closed lake. Additionally we provide the first conceptual model of how this closure may have happened. Our archives of choice are inorganic and biogenic carbonates, separated by wet sieving. We identified microfossil assemblages (fraction > 125 µm) and performed high-resolution oxygen isotope (delta18O) and elemental (Mg/Ca, Sr/Ca) analyses of the fraction plants growing in the photic zone as food supply. These two aspects point to an increasing salinity in a shallowing lake. The delta18O values of inorganic carbonates are relatively low during the initial phase of Lake Van and increase abruptly (ca. 7‰) after 530 ka BP. At approximately the same time combination of Sr/Ca and Mg/Ca data suggest first occurrence of aragonite. Again, these findings suggest geochemical changes of the lake water concurrent with transition documented by microfossils. Comparison between Lake Van and Lake Ohrid (Lacey et al. 2016) delta18O data, precludes regional climate change (e.g.: increased evaporation) as the main driver of observed changes. With no evidence for increased volcanic or tectonic activity (e.g.: tephra layers, deformation structures, slumping) in the Lake Van sedimentary profile around 530 ka, it seems unlikely that a pyroclastic flow blocked the outflow of the lake. Alternatively, a portion of inflow has been diverged which might have caused a change in the hydrological balance and lake level falling below its outlet. However, as no geomorphological data confirming this

  10. A conceptual geochemical model of the geothermal system at Surprise Valley, CA

    Science.gov (United States)

    Fowler, Andrew P. G.; Ferguson, Colin; Cantwell, Carolyn A.; Zierenberg, Robert A.; McClain, James; Spycher, Nicolas; Dobson, Patrick

    2018-03-01

    Characterizing the geothermal system at Surprise Valley (SV), northeastern California, is important for determining the sustainability of the energy resource, and mitigating hazards associated with hydrothermal eruptions that last occurred in 1951. Previous geochemical studies of the area attempted to reconcile different hot spring compositions on the western and eastern sides of the valley using scenarios of dilution, equilibration at low temperatures, surface evaporation, and differences in rock type along flow paths. These models were primarily supported using classical geothermometry methods, and generally assumed that fluids in the Lake City mud volcano area on the western side of the valley best reflect the composition of a deep geothermal fluid. In this contribution, we address controls on hot spring compositions using a different suite of geochemical tools, including optimized multicomponent geochemistry (GeoT) models, hot spring fluid major and trace element measurements, mineralogical observations, and stable isotope measurements of hot spring fluids and precipitated carbonates. We synthesize the results into a conceptual geochemical model of the Surprise Valley geothermal system, and show that high-temperature (quartz, Na/K, Na/K/Ca) classical geothermometers fail to predict maximum subsurface temperatures because fluids re-equilibrated at progressively lower temperatures during outflow, including in the Lake City area. We propose a model where hot spring fluids originate as a mixture between a deep thermal brine and modern meteoric fluids, with a seasonally variable mixing ratio. The deep brine has deuterium values at least 3 to 4‰ lighter than any known groundwater or high-elevation snow previously measured in and adjacent to SV, suggesting it was recharged during the Pleistocene when meteoric fluids had lower deuterium values. The deuterium values and compositional characteristics of the deep brine have only been identified in thermal springs and

  11. Skaha Lake crossing, innovations in pipeline installation

    International Nuclear Information System (INIS)

    Fernandez, M.L.; Bryce, P.W.; Smith, J.D.

    1995-01-01

    This paper describes the construction of a 10.8 km long NPS16 (406 mm, 16 inch diameter) pipeline, across Skaha Lake, in the south Okanagan valley, British Columbia, Canada. The water crossing is part of the 32 km South Okanagan Natural Gas Pipeline Project (SONG) operated by BC Gas. The pipeline is located in a region dependent on year-round tourism. Therefore, the design and construction was influenced by sensitive environmental and land use concerns. From earlier studies, BC Gas identified surface tow or lay as preferred installation methods. The contractor, Fraser River Pile and Dredge departed from a conventional laybarge methodology after evaluating environmental data and assessing locally available equipment. The contractor proposed a surface tow with multiple surface tie-ins. This approach modification to the ''Surface Tow and Buoy Release Method'' (STBRM) used previously with success on relatively short underwater pipelines. A total of 10 pipe strings, up to 1 km long, were towed into position on the lake and tied-in using a floating platform. The joined pipeline was lowered to the lakebed by divers releasing buoys while tension was maintained from a winch barge at the free end of the pipeline. From analysis and field verified measurement the installation stresses were well below the allowable limits during all phases of construction. The entire construction, including mobilization and demobilization, lasted less than three months, and actual pipelaying less than three weeks. Installation was completed within budget and on schedule, without any environmental or safety related incidents. The SONG pipeline became operational in December 1994

  12. Predicting Maximum Lake Depth from Surrounding Topography

    Science.gov (United States)

    Lake volume aids understanding of the physical and ecological dynamics of lakes, yet is often not readily available. The data needed to calculate lake volume (i.e. bathymetry) are usually only collected on a lake by lake basis and are difficult to obtain across broad regions. ...

  13. Lake-level frequency analysis for Devils Lake, North Dakota

    Science.gov (United States)

    Wiche, Gregg J.; Vecchia, Aldo V.

    1996-01-01

    Two approaches were used to estimate future lake-level probabilities for Devils Lake. The first approach is based on an annual lake-volume model, and the second approach is based on a statistical water mass-balance model that generates seasonal lake volumes on the basis of seasonal precipitation, evaporation, and inflow. Autoregressive moving average models were used to model the annual mean lake volume and the difference between the annual maximum lake volume and the annual mean lake volume. Residuals from both models were determined to be uncorrelated with zero mean and constant variance. However, a nonlinear relation between the residuals of the two models was included in the final annual lakevolume model.Because of high autocorrelation in the annual lake levels of Devils Lake, the annual lake-volume model was verified using annual lake-level changes. The annual lake-volume model closely reproduced the statistics of the recorded lake-level changes for 1901-93 except for the skewness coefficient. However, the model output is less skewed than the data indicate because of some unrealistically large lake-level declines. The statistical water mass-balance model requires as inputs seasonal precipitation, evaporation, and inflow data for Devils Lake. Analysis of annual precipitation, evaporation, and inflow data for 1950-93 revealed no significant trends or long-range dependence so the input time series were assumed to be stationary and short-range dependent.Normality transformations were used to approximately maintain the marginal probability distributions; and a multivariate, periodic autoregressive model was used to reproduce the correlation structure. Each of the coefficients in the model is significantly different from zero at the 5-percent significance level. Coefficients relating spring inflow from one year to spring and fall inflows from the previous year had the largest effect on the lake-level frequency analysis.Inclusion of parameter uncertainty in the model

  14. Lake-wide distribution of Dreissena in Lake Michigan, 1999

    Science.gov (United States)

    Fleischer, Guy W.; DeSorcie, Timothy J.; Holuszko, Jeffrey D.

    2001-01-01

    The Great Lakes Science Center has conducted lake-wide bottom trawl surveys of the fish community in Lake Michigan each fall since 1973. These systematic surveys are performed at depths of 9 to 110 m at each of seven index sites around Lake Michigan. Zebra mussel (Dreissena polymorpha) populations have expanded to all survey locations and at a level to sufficiently contribute to the bottom trawl catches. The quagga (Dreissena bugensis), recently reported in Lake Michigan, was likely in the catches though not recognized. Dreissena spp. biomass ranged from about 0.6 to 15 kg/ha at the various sites in 1999. Dreissenid mussels were found at depths of 9 to 82 m, with their peak biomass at 27 to 46 m. The colonization of these exotic mussels has ecological implications as well as potential ramifications on the ability to sample fish consistently and effectively with bottom trawls in Lake Michigan.

  15. Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.

    Science.gov (United States)

    Yang, Yuting; Jiang, Hua; Hang, Zhi Hong

    2018-01-25

    Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.

  16. The diversity of benthic mollusks of Lake Victoria and Lake Burigi ...

    African Journals Online (AJOL)

    Molluscan diversity, abundance and distribution in sediments of Lake Victoria and its satellite lake, Lake Burigi, were investigated. The survey was carried out in January and February 2002 for Lake Victoria and in March and April 2002 for Lake Burigi. Ten genera were recorded from four zones of Lake Victoria while only ...

  17. Seeing Water in Early Twentieth-Century Mexico City: Henry Wellge's Perspective Plan of the City and Valley of Mexico, D.F. 1906

    OpenAIRE

    Widdifield, Stacie G.; Banister, Jeffrey M.

    2015-01-01

    We examine Henry Wellge's 1906 chromolithograph, Perspective Plan of the City and Valley of Mexico, D.F., a panoramic view that organizes the capital and its lacustrine environs through close up and distant perspectives. The Plan depicts a landscape integrated by canals, rivers, and lakes, recording a pivotal moment before modern hydraulic infrastructure would remove surface water from view. We thus interrogate this image as a visual register of hydraulic-control ideals in vogue around 1900, ...

  18. Ground-water flow and quality, and geochemical processes, in Indian Wells Valley, Kern, Inyo, and San Bernardino counties, California, 1987-88

    Science.gov (United States)

    Berenbrock, Charles; Schroeder, R.A.

    1994-01-01

    An existing water-quality data base for the 300- square-mile Indian Wells Valley was updated by means of chemical and isotopic analysis of ground water. The wide range in measured concentrations of major ions and of minor constituents such as fluoride, borate, nitrate, manganese, and iron is attributed to geochemical reactions within lacustrine deposits of the valley floor. These reactions include sulfate reduction accompanied by generation of alkalinity, precipitation of carbonates, exchange of aqueous alkaline-earth ions for sodium on clays, and dissolution of evaporite minerals. Differences in timing and location of recharge, which originates primarily in the Sierra Nevada to the west, and evapotranspiration from a shallow water table on the valley floor result in a wide range in ratios of stable hydrogen and oxygen isotopes. As ground water moves from alluvium into lustrine deposits of the ancestral China Lake, dissolved-solids concen- trations increase from about 200 to more than 1,000 milligrams per liter; further large increases to several thousand milligrams per liter occur beneath the China Lake playa. Historical data show an increase during the past 20 years in dissolved- solids concentration in several wells in the principal pumping areas at Ridgecrest and between Ridgecrest and Inyokern. The increase apparently is caused by induced flow of saline ground water from nearby China, Mirror, and Satellite Lakes. A simplified advective-transport model calculates ground-water travel times between parts of the valley of at least several thousand years, indi- cating the presence of old ground water. A local ground-water line and an evaporation line estimated using isotopic data from the China Lake area inter- sect at a delta-deuterium value of about -125 permil. This indicates that late Pleistocene recharge was 15 to 35 permil more negative than current recharge.

  19. Elliot Lake progress report

    International Nuclear Information System (INIS)

    Findlay, W.; Scott, A.S.

    1980-01-01

    The intent of the Elliot Lake remedial program is to identify houses in Elliot Lake with annual average WL's in excess of 0.02, discover the routes of radon entry into identified houses and close enough of them to reduce the annual average WL to an acceptable level, and to demonstrate that the annual average WL is below 0.02 in houses where remedial work was not thought necessary as well as in houses where remedial work has been completed. The remedial program is organized into two subprograms, the survey program and the remedial action program. By December 31, 1979 more than 17000 survey measurements had been carried out, identifying 157 houses where remedial action was required and confirming that no action was needed in 413 houses. Remedial work had been completed on 98 houses

  20. Localized Glacier Deformation Associated with Filling and Draining of a Glacier-Dammed Lake and Implications for Outburst Flood Hydraulics

    Science.gov (United States)

    Cunico, M. L.; Walder, J. S.; Fountain, A. G.; Trabant, D. C.

    2001-12-01

    During the summer of 2000, we measured displacements of 22 survey targets on the surface of Kennicott Glacier, Alaska, in the vicinity of Hidden Creek Lake, an ice-dammed lake in a tributary valley that fills and drains annually. Targets were distributed over a domain about equal in width to the lake, from near the glacier/lake margin to a distance of about 1 km from the margin. Targets were surveyed over a 24-day period as the lake filled and then drained. Lake stage was independently monitored. Vertical movement of targets generally fell off with distance d from the lake. As the lake filled, targets with d typically about 0.5 m/d--with a few targets rising slightly faster than the lake. The rate of vertical movement fell off rapidly with distance from the lake: for d = ca. 600 m--roughly twice the local ice thickness--targets moved upward only about 10% as fast as lake stage. Vertical movement of targets with d > ca. 1 km seemed to be uncorrelated with lake stage. The general pattern is consistent with the idea that a wedge of water extended beneath the glacier to a distance of perhaps 300 to 400 m from the visible margin of the lake and exerts buoyant stresses on the ice that were transmitted into the main body of the glacier and caused flexure. This scenario bears some resemblance to tidal deflections of ice shelves or tidewater glaciers. For a given value of lake stage, target elevations were invariably higher as the lake drained than as the lake filled. Moreover, survey targets at a distance of about 400 m or more from the lake continued to rise for some time even after the lake began to drain. The lag time between the beginning of lake drainage and the beginning of target downdrop increased with distance from the lake, with the lag being about 14 hours at a distance of 400 m from the lake. (The lake drained completely in approximately 75 hours.) The likeliest explanations for the departure from reversibility and the existence of the time lag are either (i) a

  1. Great Lakes Energy Institute

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J. Iwan [Case Western Reserve Univ., Cleveland, OH (United States)

    2012-11-18

    The vision of the Great Lakes Energy Institute is to enable the transition to advanced, sustainable energy generation, storage, distribution and utilization through coordinated research, development, and education. The Institute will place emphasis on translating leading edge research into next generation energy technology. The Institute’s research thrusts focus on coordinated research in decentralized power generation devices (e.g. fuel cells, wind turbines, solar photovoltaic devices), management of electrical power transmission and distribution, energy storage, and energy efficiency.

  2. Limnology of Lake Midmar

    CSIR Research Space (South Africa)

    Breen, CM

    1983-12-01

    Full Text Available goals. Those which seem important to us are: the identification of the limnological responses affecting water quality which are of universal application. Some such as phosphorus load are well known whereas others may still require to be identified... Figure 17 Pattern of release of total nitrogen and phosphorus from decomposing vegetation ............................. 56 Figure 18 Changes in the amounts of total phosphorus within the lake, the inflow and the outflow on a weekly basis....... 59...

  3. Restoring life to acidified lakes

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, M

    1986-05-01

    In 1983 EPRI initiated the lake acidification mitigation project (LAMP) in order to examine the long-term ecosystem effects of liming lakes, and to develop a model for calculating optimal liming doses. Investigations were carried out at lakes under 3 sets of conditions: reacidification, maintenance liming and preventive maintenance liming. The research so far has indicated that liming is a safe and effective technique.

  4. Radioecological characteristics of Lake Zarnowieckie

    International Nuclear Information System (INIS)

    Soszka, G.J.; Grzybowska, D.; Rostek, J.; Pietruszewski, A.; Wardaszko, T.; Kalinowska, A.; Tomczak, J.

    1986-01-01

    Results are presented of the radioecological studies carried out in Lake Zarnowieckie as a part of pre-operational investigations related to the construction of a nuclear power station at this lake. Concentrations of essential radionuclides were determined in water, bottom sediments and selected plants and animals. Analyses were made of the distribution and spreading of 90 Sr and 137 Cs in the lake ecosystem and in the near-by meadows. 28 refs., 6 figs., 6 tabs. (author)

  5. Evaluating Water Supply and Water Quality Management Options for Las Vegas Valley

    Science.gov (United States)

    Ahmad, S.

    2007-05-01

    The ever increasing population in Las Vegas is generating huge demand for water supply on one hand and need for infrastructure to collect and treat the wastewater on the other hand. Current plans to address water demand include importing water from Muddy and Virgin Rivers and northern counties, desalination of seawater with trade- payoff in California, water banking in Arizona and California, and more intense water conservation efforts in the Las Vegas Valley (LVV). Water and wastewater in the LVV are intrinsically related because treated wastewater effluent is returned back to Lake Mead, the drinking water source for the Valley, to get a return credit thereby augmenting Nevada's water allocation from the Colorado River. The return of treated wastewater however, is a major contributor of nutrients and other yet unregulated pollutants to Lake Mead. Parameters that influence the quantity of water include growth of permanent and transient population (i.e., tourists), indoor and outdoor water use, wastewater generation, wastewater reuse, water conservation, and return flow credits. The water quality of Lake Mead and the Colorado River is affected by the level of treatment of wastewater, urban runoff, groundwater seepage, and a few industrial inputs. We developed an integrated simulation model, using system dynamics modeling approach, to account for both water quantity and quality in the LVV. The model captures the interrelationships among many variables that influence both, water quantity and water quality. The model provides a valuable tool for understanding past, present and future pathways of water and its constituents in the LVV. The model is calibrated and validated using the available data on water quantity (flows at water and wastewater treatment facilities and return water credit flow rates) and water quality parameters (TDS and phosphorus concentrations). We used the model to explore important questions: a)What would be the effect of the water transported from

  6. Environmental Monitoring, Water Quality - Lakes Assessments - Attaining

    Data.gov (United States)

    NSGIC Education | GIS Inventory — This layer shows only attaining lakes of the Integrated List. The Lakes Integrated List represents lake assessments in an integrated format for the Clean Water Act...

  7. Geologic investigation of the Virgin River Valley salt deposits, Clark County, southeastern Nevada, to investigate their suitability for possible storage of radioactive waste material as of September 1977

    International Nuclear Information System (INIS)

    1977-01-01

    The results from a geologic investigation of the Virgin River Valley salt deposits, Clark County, southeastern Nevada, to examine their suitability for further study and consideration in connection with the possible storage of radioactive waste material are given. The results indicate that (1) approximately one-half of the salt body underlies the Overton Arm of Lake Mead and that the dry land portion of the salt body that has a thickness of 1,000 feet or more covers an area of about four and one-half square miles; (2) current tectonic activity in the area of the salt deposits is believed to be confined to seismic events associated with crustal adjustments following the filling of Lake Mead; (3) detailed information on the hydrology of the salt deposit area is not available at present but it is reported that a groundwater study by the U.S. Geological Survey is now in progress; (4) there is no evidence of exploitable minerals in the salt deposit area other than evaporites such as salt, gypsum, and possibly sand and gravel; (5) the salt deposit area is located inside the Lake Mead Recreation Area, outlined on the accompanying Location Plat, and several Federal, State, and Local agencies share regulatory responsibilities for the activities in the area; (6) other salt deposit areas of Arizona and Nevada, such as the Detrital Valley, Red Lake Dome, Luke Dome, and Mormon Mesa area, and several playa lake areas of central Nevada may merit further study; and (7) additional information, as outlined, is needed to more thoroughly evaluate the salt deposits of the Virgin River Valley and other areas referred to above

  8. Algae Bloom in a Lake

    Directory of Open Access Journals (Sweden)

    David Sanabria

    2008-01-01

    Full Text Available The objective of this paper is to determine the likelihood of an algae bloom in a particular lake located in upstate New York. The growth of algae in this lake is caused by a high concentration of phosphorous that diffuses to the surface of the lake. Our calculations, based on Fick's Law, are used to create a mathematical model of the driving force of diffusion for phosphorous. Empirical observations are also used to predict whether the concentration of phosphorous will diffuse to the surface of this lake within a specified time and under specified conditions.

  9. Transient Electromagnetic Soundings Near Great Sand Dunes National Park and Preserve, San Luis Valley, Colorado (2006 Field Season)

    Science.gov (United States)

    Fitterman, David V.; de Sozua Filho, Oderson A.

    2009-01-01

    Time-domain electromagnetic (TEM) soundings were made near Great Sand Dunes National Park and Preserve in the San Luis Valley of southern Colorado to obtain subsurface information of use to hydrologic modeling. Seventeen soundings were made to the east and north of the sand dunes. Using a small loop TEM system, maximum exploration depths of about 75 to 150 m were obtained. In general, layered earth interpretations of the data found that resistivity decreases with depth. Comparison of soundings with geologic logs from nearby wells found that zones logged as having increased clay content usually corresponded with a significant resistivity decrease in the TEM determined model. This result supports the use of TEM soundings to map the location of the top of the clay unit deposited at the bottom of the ancient Lake Alamosa that filled the San Luis Valley from Pliocene to middle Pleistocene time.

  10. Lake Charles CCS Project

    Energy Technology Data Exchange (ETDEWEB)

    Leib, Thomas [Leucadia Energy, LLC, Salt Lake City, UT (United States); Cole, Dan [Denbury Onshore, LLC, Plano, TX (United States)

    2015-06-30

    In late September 2014 development of the Lake Charles Clean Energy (LCCE) Plant was abandoned resulting in termination of Lake Charles Carbon Capture and Sequestration (CCS) Project which was a subset the LCCE Plant. As a result, the project was only funded through Phase 2A (Design) and did not enter Phase 2B (Construction) or Phase 2C (Operations). This report was prepared relying on information prepared and provided by engineering companies which were engaged by Leucadia Energy, LLC to prepare or review Front End Engineering and Design (FEED) for the Lake Charles Clean Energy Project, which includes the Carbon Capture and Sequestration (CCS) Project in Lake Charles, Louisiana. The Lake Charles Carbon Capture and Sequestration (CCS) Project was to be a large-scale industrial CCS project intended to demonstrate advanced technologies that capture and sequester carbon dioxide (CO2) emissions from industrial sources into underground formations. The Scope of work was divided into two discrete sections; 1) Capture and Compression prepared by the Recipient Leucadia Energy, LLC, and 2) Transport and Sequestration prepared by sub-Recipient Denbury Onshore, LLC. Capture and Compression-The Lake Charles CCS Project Final Technical Report describes the systems and equipment that would be necessary to capture CO2 generated in a large industrial gasification process and sequester the CO2 into underground formations. The purpose of each system is defined along with a description of its equipment and operation. Criteria for selection of major equipment are provided and ancillary utilities necessary for safe and reliable operation in compliance with environmental regulations are described. Construction considerations are described including a general arrangement of the CCS process units within the overall gasification project. A cost estimate is provided, delineated by system area with cost breakdown showing equipment, piping and materials

  11. Analysis of Mining-induced Valley Closure Movements

    Science.gov (United States)

    Zhang, C.; Mitra, R.; Oh, J.; Hebblewhite, B.

    2016-05-01

    Valley closure movements have been observed for decades in Australia and overseas when underground mining occurred beneath or in close proximity to valleys and other forms of irregular topographies. Valley closure is defined as the inward movements of the valley sides towards the valley centreline. Due to the complexity of the local geology and the interplay between several geological, topographical and mining factors, the underlying mechanisms that actually cause this behaviour are not completely understood. A comprehensive programme of numerical modelling investigations has been carried out to further evaluate and quantify the influence of a number of these mining and geological factors and their inter-relationships. The factors investigated in this paper include longwall positional factors, horizontal stress, panel width, depth of cover and geological structures around the valley. It is found that mining in a series passing beneath the valley dramatically increases valley closure, and mining parallel to valley induces much more closure than other mining orientations. The redistribution of horizontal stress and influence of mining activity have also been recognised as important factors promoting valley closure, and the effect of geological structure around the valley is found to be relatively small. This paper provides further insight into both the valley closure mechanisms and how these mechanisms should be considered in valley closure prediction models.

  12. Glacial lake monitoring in the Karakoram Range using historical Landsat Thematic Mapper archive (1982 - 2014)

    Science.gov (United States)

    Chan, J. Y. H.; Kelly, R. E. J.; Evans, S. G.

    2014-12-01

    Glacierized regions are one of the most dynamic land surface environments on the planet (Evans and Delaney, In Press). They are susceptible to various types of natural hazards such as landslides, glacier avalanches, and glacial lake outburst floods (GLOF). GLOF events are increasingly common and present catastrophic flood hazards, the causes of which are sensitive to climate change in complex high mountain topography (IPCC, 2013). Inundation and debris flows from GLOF events have repeatedly caused significant infrastructure damages and loss of human lives in the high mountain regions of the world (Huggel et al, 2002). The research is designed to develop methods for the consistent detection of glacier lakes formation during the Landsat Thematic Mapper (TM) era (1982 - present), to quantify the frequency of glacier lake development and estimate lake volume using Landsat imagery and digital elevation model (DEM) data. Landsat TM scenes are used to identify glacier lakes in the Shimshal and Shaksgam valley, particularly the development of Lake Virjeab in year 2000 and Kyagar Lake in 1998. A simple thresholding technique using Landsat TM infrared bands, along with object-based segmentation approaches are used to isolate lake extent. Lake volume is extracted by intersecting the lake extent with the DEM surface. Based on previous studies and DEM characterization in the region, Shuttle Radar Topography Mission (SRTM) DEM is preferred over Advanced Spaceborne Thermal Emission and Reflection (ASTER) GDEM due to higher accuracy. Calculated errors in SRTM height estimates are 5.81 m compared with 8.34 m for ASTER. SRTM data are preferred because the DEM measurements were made over short duration making the DEM internally consistent. Lake volume derived from the Landsat TM imagery and DEM are incorporated into a simple GLOF model identified by Clague and Matthews (1973) to estimate the potential peak discharge (Qmax) of a GLOF event. We compare the simple Qmax estimates with

  13. A new Proposal to Mexico Valley Zonification

    Science.gov (United States)

    Flores-Estrella, H. C.; Yussim, S.; Lomnitz, C.

    2004-12-01

    The effects of the Michoacan earthquake (19th September, 1985, Mw 8.1) in Mexico City caused a significant change in the political, social and scientific history, as it was considered the worst seismic disaster ever lived in Mexico. Since then, numerous efforts have been made to understand and determine the parameters that caused the special features registered. One of these efforts had began on 1960 with the work by Marsal and Masari, who published the Mexico Valley seismological and geotechnical zonification (1969), based on gravimetric and shallow borehole data. In this work, we present a revision of the studies that proposed the zonification, a description of the valley geology, and basing on it we propose a new zonification for Mexico Valley.

  14. Near Fault Strong Ground Motion Records in the Kathmandu Valley during the 2015 Gorkha Nepal Earthquake

    Science.gov (United States)

    Takai, N.; Shigefuji, M.; Rajaure, S.; Bijukchhen, S.; Ichiyanagi, M.; Dhital, M. R.; Sasatani, T.

    2015-12-01

    Kathmandu is the capital of Nepal and is located in the Kathmandu Valley, which is formed by soft lake sediments of Plio-Pleistocene origin. Large earthquakes in the past have caused significant damage as the seismic waves were amplified in the soft sediments. To understand the site effect of the valley structure, we installed continuous recording accelerometers in four different parts of the valley. Four stations were installed along a west-to-east profile of the valley at KTP (Kirtipur; hill top), TVU (Kirtipur; hill side), PTN (Patan) and THM (Thimi). On 25 April 2015, a large interplate earthquake Mw 7.8 occurred in the Himalayan Range of Nepal. The focal area estimated was about 200 km long and 150 km wide, with a large slip area under the Kathmandu Valley where our strong motion observation stations were installed. The strong ground motions were observed during this large damaging earthquake. The maximum horizontal peak ground acceleration at the rock site was 271 cm s-2, and the maximum horizontal peak ground velocity at the sediment sites reached 112 cm s-1. We compared these values with the empirical attenuation formula for strong ground motions. We found the peak accelerations were smaller and the peak velocities were approximately the same as the predicted values. The rock site KTP motions are less affected by site amplification and were analysed further. The horizontal components were rotated to the fault normal (N205E) and fault parallel (N115E) directions using the USGS fault model. The velocity waveforms at KTP showed about 5 s triangular pulses on the N205E and the up-down components; however the N115E component was not a triangular pulse but one cycle sinusoidal wave. The velocity waveforms at KTP were integrated to derive the displacement waveforms. The derived displacements at KTP are characterized by a monotonic step on the N205E normal and up-down components. The displacement waveforms of KTP show permanent displacements of 130 cm in the fault

  15. Holocene Lake-Level Fluctuations of Lake Aricota, Southern Peru

    Science.gov (United States)

    Placzek, Christa; Quade, Jay; Betancourt, Julio L.

    2001-09-01

    Lacustrine deposits exposed around Lake Aricota, Peru (17° 22‧S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (<350 yr). Diatomites associated with highstands several meters above the modern lake level indicate wet episodes. Maximum Holocene lake level was attained before 6100 14C yr B.P. and ended ∼2700 14C yr B.P. Moderately high lake levels occurred at 1700 and 1300 14C yr B.P. The highstand at Lake Aricota during the middle Holocene is coeval with a major lowstand at Lake Titicaca (16°S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes.

  16. Groundwater quality in Coachella Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Coachella Valley is one of the study areas being evaluated. The Coachella study area is approximately 820 square miles (2,124 square kilometers) and includes the Coachella Valley groundwater basin (California Department of Water Resources, 2003). Coachella Valley has an arid climate, with average annual rainfall of about 6 inches (15 centimeters). The runoff from the surrounding mountains drains to rivers that flow east and south out of the study area to the Salton Sea. Land use in the study area is approximately 67 percent (%) natural, 21% agricultural, and 12% urban. The primary natural land cover is shrubland. The largest urban areas are the cities of Indio and Palm Springs (2010 populations of 76,000 and 44,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Coachella Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Coachella Valley are completed to depths between 490 and 900 feet (149 to 274 meters), consist of solid casing from the land surface to a depth of 260 to 510 feet (79 to 155 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to

  17. Direct measurement of exciton valley coherence in monolayer WSe2

    KAUST Repository

    Hao, Kai; Moody, Galan; Wu, Fengcheng; Dass, Chandriker Kavir; Xu, Lixiang; Chen, Chang Hsiao; Sun, Liuyang; Li, Ming-yang; Li, Lain-Jong; MacDonald, Allan H.; Li, Xiaoqin

    2016-01-01

    In crystals, energy band extrema in momentum space can be identified by a valley index. The internal quantum degree of freedom associated with valley pseudospin indices can act as a useful information carrier, analogous to electronic charge

  18. Goldstone-Apple Valley Radio Telescope System Theory of Operation

    Science.gov (United States)

    Stephan, George R.

    1997-01-01

    The purpose of this learning module is to enable learners to describe how the Goldstone-Apple Valley Radio Telescope (GAVRT) system functions in support of Apple Valley Science and Technology Center's (AVSTC) client schools' radio astronomy activities.

  19. Mechanical control over valley magnetotransport in strained graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ning, E-mail: maning@stu.xjtu.edu.cn [Department of Physics, MOE Key Laboratory of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Shengli, E-mail: zhangsl@mail.xjtu.edu.cn [Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Daqing, E-mail: liudq@cczu.edu.cn [School of Mathematics and Physics, Changzhou University, Changzhou 213164 (China)

    2016-05-06

    Recent experiments report that the graphene exhibits Landau levels (LLs) that form in the presence of a uniform strain pseudomagnetic field with magnitudes up to hundreds of tesla. We further reveal that the strain removes the valley degeneracy in LLs, and leads to a significant valley polarization with inversion symmetry broken. This accordingly gives rise to the well separated valley Hall plateaus and Shubnikov–de Haas oscillations. These effects are absent in strainless graphene, and can be used to generate and detect valley polarization by mechanical means, forming the basis for the new paradigm “valleytronics” applications. - Highlights: • We explore the mechanical strain effects on the valley magnetotransport in graphene. • We analytically derive the dc collisional and Hall conductivities under strain. • The strain removes the valley degeneracy in Landau levels. • The strain causes a significant valley polarization with inversion symmetry broken. • The strain leads to the well separated valley Hall and Shubnikov–de Haas effects.

  20. Solar energy innovation and Silicon Valley

    Science.gov (United States)

    Kammen, Daniel M.

    2015-03-01

    The growth of the U. S. and global solar energy industry depends on a strong relationship between science and engineering innovation, manufacturing, and cycles of policy design and advancement. The mixture of the academic and industrial engine of innovation that is Silicon Valley, and the strong suite of environmental policies for which California is a leader work together to both drive the solar energy industry, and keep Silicon Valley competitive as China, Europe and other area of solar energy strength continue to build their clean energy sectors.

  1. Clean Cities Award Winning Coalition: Coachella Valley

    Energy Technology Data Exchange (ETDEWEB)

    ICF Kaiser

    1999-05-20

    Southern California's Coachella Valley became a Clean Cities region in 1996. Since then, they've made great strides. SunLine Transit, the regional public transit provider, was the first transit provider to replace its entire fleet with compressed natural gas buses. They've also built the foundation for a nationally recognized model in the clean air movement, by partnering with Southern California Gas Company to install a refueling station and developing a curriculum for AFV maintenance with the College of the Desert. Today the valley is home to more than 275 AFVs and 15 refueling stations.

  2. Pleistocene glaciers, lakes, and floods in north-central Washington State

    Science.gov (United States)

    Waitt, Richard B.; Haugerud, Ralph A.; Kelsey, Harvey M.

    2017-01-01

    The Methow, Chelan, Wenatchee, and other terrane blocks accreted in late Mesozoic to Eocene times. Methow valley is excavated in an exotic terrane of folded Mesozoic sedimentary and volcanic rocks faulted between crystalline blocks. Repeated floods of Columbia River Basalt about 16 Ma drowned a backarc basin to the southeast. Cirques, aretes, and U-shaped hanging troughs brand the Methow, Skagit, and Chelan headwaters. The Late Wisconsin Cordilleran icesheet beveled the alpine topography and deposited drift. Cordilleran ice flowed into the heads of Methow tributaries and overflowed from Skagit tributaries to greatly augment Chelan trough's glacier. Joined Okanogan and Methow ice flowed down Columbia valley and up lower Chelan trough. This tongue met the icesheet tongue flowing southeast down Chelan valley. Successively lower ice-marginal channels and kame terraces show that the icesheet withered away largely by downwasting. Immense late Wisconsin floods from glacial Lake Missoula occasionally swept the Chelan-Vantage reach of Columbia valley by different routes. The earliest debacles, nearly 19,000 cal yr BP (by radiocarbon methods), raged 335 m deep down the Columbia and built high Pangborn bar at Wenatchee. As Cordilleran ice blocked the northwest of Columbia valley, several giant floods descended Moses Coulee and backflooded up the Columbia. As advancing ice then blocked Moses Coulee, Grand Coulee to Quincy basin became the westmost floodway. From Quincy basin many Missoula floods backflowed 50 km upvalley past Wenatchee 18,000 to 15,500 years ago. Receding ice dammed glacial Lake Columbia centuries more--till it burst about 15,000 years ago. After Glacier Peak ashfall about 13,600 years ago, smaller great flood(s) swept down the Columbia from glacial Lake Kootenay in British Columbia. A cache of huge fluted Clovis points had been laid atop Pangborn bar (East Wenatchee) after the Glacier Peak ashfall. Clovis people came two and a half millennia after the last

  3. Landscape history and man-induced landscape changes in the young morainic area of the North European Plain — a case study from the Bäke Valley, Berlin

    Science.gov (United States)

    Böse, Margot; Brande, Arthur

    2010-10-01

    The Bäke creek valley is part of the young morainic area in Berlin. Its origin is related to meltwater flow and dead-ice persistence resulting in a valley with a lake-creek system. During the Late Glacial, the slopes of the valley were affected by solifluction. A Holocene brown soil developed in this material, whereas parts of the lakes were filled with limnic-telmatic sediments. The excavation site at Goerzallee revealed Bronze Age and Iron Age burial places at the upper part of the slope, as well as a fireplace further downslope, but the slope itself remained stable. Only German settlements in the 12th and 13th centuries changed the processes in the creek-lake system: the construction of water mills created a retention system with higher ground water levels in the surrounding areas. On the other hand, deforestation on the till plain and on the slope triggered erosion. Therefore, in medieval time interfingering organic sediments and sand layers were deposited in the lower part of the slope on top of the Holocene soil. The new soil which formed on top of these sediments was transformed by ploughing until the 19th century. In 1905/06 the lower part of the slope was reshaped by the construction of the Teltow Canal, following the valley of the former Bäke creek. Finally, the whole area was levelled by infill after World War II.

  4. PYRAMID LAKE RENEWEABLE ENERGY PLAN

    Energy Technology Data Exchange (ETDEWEB)

    HIGH DESERT GEOCULTURE, LLC

    2009-06-06

    The Pyramid Lake Renewable Energy Plan covers these areas: energy potential (primarily focusing on geothermal resource potential, but also more generally addressing wind energy potential); renewable energy market potential; transmission system development; geothermal direct use potential; and business structures to accomplish the development objectives of the Pyramid Lake Paiute Tribe.

  5. Timing of lake-level changes for a deep last-glacial Lake Missoula: optical dating of the Garden Gulch area, Montana, USA

    Science.gov (United States)

    Smith, Larry N.; Sohbati, Reza; Buylaert, Jan-Pieter; Lian, Olav B.; Murray, Andrew; Jain, Mayank

    2018-03-01

    Glaciolacustrine sediments in the Clark Fork River valley at Garden Gulch, near Drummond, Montana, USA record highstand positions of the ice-dammed glacial Lake Missoula and repeated subaerial exposure. During these highstands the lake was at greater than 65% of its recognized maximum capacity. The initial lake transgression deposited a basal sand unit. Subsequent cycles of lake-level fluctuations are recorded by sequences of laminated and cross laminated silt, sand, and clay deformed by periglacial processes during intervening periods of lower lake levels. Optically stimulated luminescence (OSL) dating of quartz sand grains, using single-aliquot regenerative-dose procedures, was carried out on 17 samples. Comparison of infrared stimulated luminescence (IRSL) from K-rich feldspar to OSL from quartz for all the samples suggests that they were well bleached prior to deposition and burial. Ages for the basal sand and overlying glaciolacustrine exposure surfaces are indistinguishable within one standard deviation, and give a weighted mean age of 20.9 ± 1.3 ka (n = 11). Based on sedimentological and stratigraphic analysis we infer that the initial transgression, and at least six cycles of lake-level fluctuation, occurred over time scales of decades to ∼2 ka. Bioturbated sandy slopewash dated at 10.6 ± 0.9 ka and 11.9 ± 1.2 ka unconformably overlies the upper glaciolacustrine deposits. The uppermost sediments, above the glaciolacustrine section, are younger than the Glacier Peak tephra (13.7-13.4 cal ka B.P.), which was deposited across parts of the drained lake basin, but has not been found at Garden Gulch. Our study indicates that glacial Lake Missoula reached >65 percent of maximum capacity by about 20.9 ± 1.3 ka and either partially or completely drained twelve times from this position. Rapid lowering from the lake's highstand position due to ice-dam failure likely led to scour in the downstream portions of the glacial Lake Missoula basin and megafloods in the

  6. Choking Lake Winnipeg

    Science.gov (United States)

    Byrne, J. M.; Little, L. J.; Dodgson, K. A.; MacDonald, R. J.; Graham, J.

    2009-12-01

    The problems of waterway eutrophication and coastal zone hypoxia are reaching epidemic proportions. Fresh water and coastal marine environments around the world are suffering unprecedented pollution loadings. We are developing an education program to address the dramatic need for public, community and K-12 education about the harsh impacts of elevated nutrient loads on fresh and marine water environments. The Lake Winnipeg watershed is adopted as the poster child of fresh water eutrophication in western North America. The watershed, one of the largest on the continent, is in rapid decline due to pollution, population pressures and water diversion. A concerted education program is needed to change personal and society actions that negatively impact the Winnipeg watershed; and the confluence of the watershed - Lake Winnipeg. But the education program goes beyond Lake Winnipeg. Negative impacts of nutrient loads are adversely affecting environments right to the oceans. Major dead zones that are expanding on our continental shelves due to nutrient overloading threaten to coalesce into extensive regions of marine life die-off. This presentation outlines the documentary education production process under development. We are building a series of Public Service Announcements (PSAs) for national television networks. The PSAs will direct educators, stakeholders and citizens to an associated website with educational video clips detailing the issues of eutrophication and hypoxia. The video clips or webisodes, present interviews with leading scientists. The discussions address the causes of the problems, and presents workable solutions to nutrient overloads from a variety of sources. The webisodes are accompanied by notes and advice to teachers on ways and means to use the webisodes in classrooms. The project is fully funed by a group of Canadian Community Foundations, with the understanding the work wil be available free to educators anywhere in the world. Our education

  7. Lake Carnegie, Western Australia

    Science.gov (United States)

    2002-01-01

    Ephemeral Lake Carnegie, in Western Australia, fills with water only during periods of significant rainfall. In dry years, it is reduced to a muddy marsh. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on May 19, 1999. This is a false-color composite image made using shortwave infrared, infrared, and red wavelengths. The image has also been sharpened using the sensor's panchromatic band. Image provided by the USGS EROS Data Center Satellite Systems Branch. This image is part of the ongoing Landsat Earth as Art series.

  8. Spatio-temporal segregation and size distribution of fish assemblages as related to non-native species occurrence in the middle rio Doce Valley, MG, Brazil

    Directory of Open Access Journals (Sweden)

    Henrique Corrêa Giacomini

    Full Text Available The lakes in the middle rio Doce Valley (MG are suffering impacts due to the introduction of invasive fish species, mainly piscivorous species like red piranha Pygocentrus nattereri and peacock bass Cichla kelberi. Fishes were collected in bimonthly samples conducted at ten lakes along a year. The present study showed that the composition of native fish assemblages is significantly related to the presence and type of non-native species. Fish species distribution among lakes can be explained by differences in species body size: smaller native species are less concentrated in lakes with invasive piscivores, which is in accordance with the hypothesis that they have greater susceptibility to predation by invaders. Another probable cause for this correlation is the proximity of lakes to the drainage system, which could explain both the non-native incidence and the turnover of native species composition. Furthermore, temporal variability in species composition was significantly higher in invaded lakes. This last factor may be linked to seasonal flood pulses, which carry immigrant fishes from streams in the vicinity. The metacommunity framework can bring insights for future studies in such spatially structured systems, and the approach should improve our understanding of processes underlying species composition as well as help direct conservation-focused management plans.

  9. 27 CFR 9.27 - Lime Kiln Valley.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Lime Kiln Valley. 9.27... OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.27 Lime Kiln Valley. (a) Name. The name of the viticultural area described in this section is “Lime Kiln Valley...

  10. An example of Alaknanda valley, Garhwal Himalaya, India

    Indian Academy of Sciences (India)

    2014) have been best explained by the geometry .... flows through narrow valley confined by the steep valley slopes. ... valley (figure 3b) which opens up around Srina- ... Method. 4.1 Drainage basin and stream network. Digital Elevation Model (DEM) helps in extracting ... was processed to fill the pits or sinks, and to obtain.

  11. L-Lake macroinvertebrate community

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.

    1996-06-01

    To characterize the present benthic macroinvertebrate community of L-Lake, Regions 5 and 7 of the reservoir were sampled in September 1995 at the same locations sampled in 1988 and 1989 during the L-Lake monitoring program. The macroinvertebrate community of 1995 is compared to that of 1988 and 1989. The species composition of L-Lake`s macroinvertebrate community has changed considerably since 1988-1989, due primarily to maturation of the reservoir ecosystem. L-Lake contains a reasonably diverse macroinvertebrate community that is capable of supporting higher trophic levels, including a diverse assemblage of fish species. The L-Lake macroinvertebrate community is similar to those of many other southeastern reservoirs, and there is no indication that the macroinvertebrate community is perturbed by chemical or physical stressors.

  12. L-Lake macroinvertebrate community

    International Nuclear Information System (INIS)

    Specht, W.L.

    1996-06-01

    To characterize the present benthic macroinvertebrate community of L-Lake, Regions 5 and 7 of the reservoir were sampled in September 1995 at the same locations sampled in 1988 and 1989 during the L-Lake monitoring program. The macroinvertebrate community of 1995 is compared to that of 1988 and 1989. The species composition of L-Lake's macroinvertebrate community has changed considerably since 1988-1989, due primarily to maturation of the reservoir ecosystem. L-Lake contains a reasonably diverse macroinvertebrate community that is capable of supporting higher trophic levels, including a diverse assemblage of fish species. The L-Lake macroinvertebrate community is similar to those of many other southeastern reservoirs, and there is no indication that the macroinvertebrate community is perturbed by chemical or physical stressors

  13. Origin, Extent, and Thickness of Quaternary Geologic Units in the Willamette Valley, Oregon

    Science.gov (United States)

    O'Connor, Jim E.; Sarna-Wojcicki, Andrei M.; Wozniak, Karl C.; Polette, Danial J.; Fleck, Robert J.

    2001-01-01

    major tributaries. 3) Between 15,000 and 12,700 years ago, dozens of floods from Glacial Lake Missoula flowed up the Willamette Valley from the Columbia River, depositing up to 35 m of gravel, sand, silt, and clay. 4) Subsequent to 12,000 years ago, Willamette River sediment and flow regimes changed significantly: the Pleistocene braided river systems that had formed vast plains of sand and gravel evolved to incised and meandering rivers that are constructing today's fine-grained floodplains and gravelly channel deposits. Sub-surface channel facies of this unit are loose and unconsolidated and are highly permeable zones of substantial groundwater flow that is likely to be well connected to surface flow in the Willamette River and major tributaries. Stratigraphic exposures and drillers' logs indicate that this unit is mostly between 5 and 15 m thick.

  14. Babesiosis in Lower Hudson Valley, New York

    Centers for Disease Control (CDC) Podcasts

    2011-05-12

    This podcast discusses a study about an increase in babesiosis in the Lower Hudson Valley of New York state. Dr. Julie Joseph, Assistant Professor of Medicine at New York Medical College, shares details of this study.  Created: 5/12/2011 by National Center for Emerging Zoonotic and Infectious Diseases (NCEZID).   Date Released: 5/23/2011.

  15. Rift Valley Fever, Mayotte, 2007–2008

    Science.gov (United States)

    Giry, Claude; Gabrie, Philippe; Tarantola, Arnaud; Pettinelli, François; Collet, Louis; D’Ortenzio, Eric; Renault, Philippe; Pierre, Vincent

    2009-01-01

    After the 2006–2007 epidemic wave of Rift Valley fever (RVF) in East Africa and its circulation in the Comoros, laboratory case-finding of RVF was conducted in Mayotte from September 2007 through May 2008. Ten recent human RVF cases were detected, which confirms the indigenous transmission of RFV virus in Mayotte. PMID:19331733

  16. SADF EARLYIRON AGE EXCAVATIONS IN THETUGELA VALLEY

    African Journals Online (AJOL)

    effect of the high flanking ridges of the Tugela. Valley. The high ... fire. Police intervention and the Bhengu superior- ity in numbers brought an end to the fights just prior to the ..... The tail and three legs of the reptile are miss- ing . . ~C£.'.':.-:".

  17. Potential hydrologic characterization wells in Amargosa Valley

    International Nuclear Information System (INIS)

    Lyles, B.; Mihevc, T.

    1994-09-01

    More than 500 domestic, agricultural, and monitoring wells were identified in the Amargosa Valley. From this list, 80 wells were identified as potential hydrologic characterization wells, in support of the US Department of Energy (DOE) Underground Test Area/Remedial Investigation and Feasibility Study (UGTA/RIFS). Previous hydrogeologic studies have shown that groundwater flow in the basin is complex and that aquifers may have little lateral continuity. Wells located more than 10 km or so from the Nevada Test Site (NTS) boundary may yield data that are difficult to correlate to sources from the NTS. Also, monitoring well locations should be chosen within the guidelines of a hydrologic conceptual model and monitoring plan. Since these do not exist at this time, recompletion recommendations will be restricted to wells relatively close (approximately 20 km) to the NTS boundary. Recompletion recommendations were made for two abandoned agricultural irrigation wells near the town of Amargosa Valley (previously Lathrop Wells), for two abandoned wildcat oil wells about 10 km southwest of Amargosa Valley, and for Test Well 5 (TW-5), about 10 km east of Amargosa Valley

  18. Geomorphological hazards in Swat valley, Pakistan

    International Nuclear Information System (INIS)

    Usman, A.

    1999-01-01

    This study attempts to describe, interpret and analyze, in depth, the varied geomorphological hazards and their impacts prevailing in the swat valley locate in the northern hilly and mountainous regions of Pakistan. The hills and mountains re zones of high geomorphological activity with rapid rates of weathering, active tectonic activities, abundant precipitation, rapid runoff and heavy sediment transport. Due to the varied topography, lithology, steep slope, erodible soil, heavy winter snowfall and intensive rainfall in the spring and summer seasons, several kinds of geomorphological hazards, such as geomorphic gravitational hazards, Fluvial hazards, Glacial hazards, Geo tectonic hazards, are occurring frequently in swat valley. Amongst them, geomorphic gravitational hazards, such as rock fall rock slide, debris slide mud flow avalanches, are major hazards in mountains and hills while fluvial hazards and sedimentation are mainly confined to the alluvial plain and lowlands of the valley. The Getechtonic hazards, on the other hand, have wide spread distribution in the valley the magnitude and occurrence of each king of hazard is thus, varied according to intensity of process and physical geographic environment. This paper discusses the type distribution and damage due to the various geomorphological hazards and their reduction treatments. The study would to be of particular importance and interest to both natural and social scientists, as well as planner, environmentalists and decision-makers for successful developmental interventions in the region. (author)

  19. Antelope Valley Community College District Education Center.

    Science.gov (United States)

    Newmyer, Joe

    An analysis is provided of a proposal to the Board of Governors of the California Community Colleges by the Antelope Valley Community College District (AVCCD) to develop an education center in Palmdale to accommodate rapid growth. First, pros and cons are discussed for the following major options: (1) increase utilization and/or expand the…

  20. Ecological Researches in the Yagnob Valley

    International Nuclear Information System (INIS)

    Razykov, Z.A.; Yunusov, M.M.; Bezzubov, N.I.; Murtazaev, Kh.; Fajzullaev, B.G.

    2002-01-01

    The article dwells on the resents of the estimation of the ecology surroundings of the Yagnob Valley. The researches included appraisal of radiation background, determination of the amount of heavy and radioactive elements in soil, bottom sedimentations, ashes in plants, water in rivers and wells. Designing on the premise of the researches implemented the ecology surrounding are estimated as propitious man's habitation. (Authors)

  1. 27 CFR 9.174 - Yadkin Valley.

    Science.gov (United States)

    2010-04-01

    ...”. (b) Approved maps. The appropriate maps for determining the boundaries of the Yadkin Valley...-Salem, N.C.; VA; Tenn. (1953, Limited Revision 1962), and, (2) Charlotte, North Carolina; South Carolina... North Carolina within Wilkes, Surry, Yadkin and portions of Stokes, Forsyth, Davidson, and Davie...

  2. 27 CFR 9.41 - Lancaster Valley.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Lancaster Valley. 9.41 Section 9.41 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... through the town of Gap and along Mine Ridge to the 76°07′30″ west longitude line in Paradise Township. (9...

  3. NNSS Soils Monitoring: Plutonium Valley (CAU 366)

    International Nuclear Information System (INIS)

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George; Campbell, Scott

    2012-01-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

  4. College in Paradise! (Paradise Valley Shopping Mall).

    Science.gov (United States)

    Schoolland, Lucile B.

    Rio Salado Community College (RSCC), a non-campus college within the Maricopa Community College District, offers hundreds of day, late afternoon, and evening classes at locations throughout the county. The Paradise Valley community had always participated heavily in the evening classes offered by RSCC at local high schools. In fall 1982, an effort…

  5. Temperature profiles from Salt Valley, Utah

    Science.gov (United States)

    Sass, J. H.; Lachenbruch, A. H.; Smith, E. P.

    Temperature profiles were obtained in the nine drilled wells as part of a thermal study of the Salt Valley anticline, Paradox Basin, Utha. Thermal conductivities were also measured on 10 samples judged to be representative of the rocks encountered in the deepest hole. The temperature profiles and thermal conductivities are presented, together with preliminary interpretive remarks and suggestions for additional work.

  6. Poultry Slaughter facility Zambezi Valley, Mozambique

    NARCIS (Netherlands)

    Vernooij, A.G.; Wilschut, S.

    2015-01-01

    This business plan focuses on the establishment of a slaughterhouse, one of the essential elements of a sustainable and profitable poultry meat value chain. There is a growing demand for poultry meat in the Zambezi Valley, and currently a large part of the consumed broilers comes from other parts of

  7. Business plan Hatchery Facility Zambezi Valley, Mozambique

    NARCIS (Netherlands)

    Vernooij, A.G.; Wilschut, S.

    2015-01-01

    This business plan focuses on the establishment of a hatchery, one of the essential elements of a sustainable and profitable poultry meat value chain. There is a growing demand for poultry meat in the Zambezi Valley, and currently a large part of the consumed broilers comes from other parts of the

  8. Eco-Hydrological Modelling of Stream Valleys

    DEFF Research Database (Denmark)

    Johansen, Ole

    a flow reduction in the order of 20 % in a natural spring, whereas no effect could be measured in neither short nor deep piezometers in the river valley 50 m from the spring. Problems of measuring effects of pumping are partly caused by disturbances from natural water level fluctuations. In this aspect...

  9. On applied state estimation and observation theory to simulation modelling of Prespa-Ohrid Lakes system

    International Nuclear Information System (INIS)

    Kolemishevska-Gugulovska, Tanja; Dimirovski, Georgi; Gough, N.E.

    1997-01-01

    In the south-west of the Republic of Macedonia, on the cross boundary area with Republic of Albania and Republic of Greece, Prespa-Ohrid hydrologic region is located. To this region belong Prespa and Ohrid valleys, on the bottom of which the lakes of Prespa and Ohrid reside. Due to the fact that there is no surface hydrologic link and that they are separated by high mountain Galichica, both valleys and lakes constitute almost mutually autonomous hydrologic entities. This paper presents a study on the hydrologic cycle of Prespa Lake basin for the purpose of developing and identifying a simulation model for the long term dynamics of the water level. The actual simulation modelling technique makes use of available apriori knowledge and available recorder or observed data on phenomena involving the whole cycle from precipitation to evaporation and evapotranspiration in Prespa basin. Also, a modelling account for the functional impact due to strong interaction with Ohrid basin, is included. The resulting simulation model is a set of discrete-time state equation, derived on the grounds of the conceptual model of interconnected multiple tanks and of discrete-time observation (output) equation. The dynamic structure of Kalman filter for both linear and non-linear modelling case is derived and a discussion on applicability and further research is given. (author)

  10. Computational Fluid Dynamics simulations of the Late Pleistocene Lake Bonneville Flood

    Science.gov (United States)

    Abril-Hernández, José M.; Periáñez, Raúl; O'Connor, Jim E.; Garcia-Castellanos, Daniel

    2018-06-01

    At approximately 18.0 ka, pluvial Lake Bonneville reached its maximum level. At its northeastern extent it was impounded by alluvium of the Marsh Creek Fan, which breached at some point north of Red Rock Pass (Idaho), leading to one of the largest floods on Earth. About 5320 km3 of water was discharged into the Snake River drainage and ultimately into the Columbia River. We use a 0D model and a 2D non-linear depth-averaged hydrodynamic model to aid understanding of outflow dynamics, specifically evaluating controls on the amount of water exiting the Lake Bonneville basin exerted by the Red Rock Pass outlet lithology and geometry as well as those imposed by the internal lake geometry of the Bonneville basin. These models are based on field evidence of prominent lake levels, hypsometry and terrain elevations corrected for post-flood isostatic deformation of the lake basin, as well as reconstructions of the topography at the outlet for both the initial and final stages of the flood. Internal flow dynamics in the northern Lake Bonneville basin during the flood were affected by the narrow passages separating the Cache Valley from the main body of Lake Bonneville. This constriction imposed a water-level drop of up to 2.7 m at the time of peak-flow conditions and likely reduced the peak discharge at the lake outlet by about 6%. The modeled peak outlet flow is 0.85·106 m3 s-1. Energy balance calculations give an estimate for the erodibility coefficient for the alluvial Marsh Creek divide of ∼0.005 m y-1 Pa-1.5, at least two orders of magnitude greater than for the underlying bedrock at the outlet. Computing quasi steady-state water flows, water elevations, water currents and shear stresses as a function of the water-level drop in the lake and for the sequential stages of erosion in the outlet gives estimates of the incision rates and an estimate of the outflow hydrograph during the Bonneville Flood: About 18 days would have been required for the outflow to grow from 10

  11. Computational fluid dynamics simulations of the Late Pleistocene Lake Bonneville flood

    Science.gov (United States)

    Abril-Hernández, José M.; Periáñez, Raúl; O'Connor, Jim E.; Garcia-Castellanos, Daniel

    2018-01-01

    At approximately 18.0 ka, pluvial Lake Bonneville reached its maximum level. At its northeastern extent it was impounded by alluvium of the Marsh Creek Fan, which breached at some point north of Red Rock Pass (Idaho), leading to one of the largest floods on Earth. About 5320 km3 of water was discharged into the Snake River drainage and ultimately into the Columbia River. We use a 0D model and a 2D non-linear depth-averaged hydrodynamic model to aid understanding of outflow dynamics, specifically evaluating controls on the amount of water exiting the Lake Bonneville basin exerted by the Red Rock Pass outlet lithology and geometry as well as those imposed by the internal lake geometry of the Bonneville basin. These models are based on field evidence of prominent lake levels, hypsometry and terrain elevations corrected for post-flood isostatic deformation of the lake basin, as well as reconstructions of the topography at the outlet for both the initial and final stages of the flood. Internal flow dynamics in the northern Lake Bonneville basin during the flood were affected by the narrow passages separating the Cache Valley from the main body of Lake Bonneville. This constriction imposed a water-level drop of up to 2.7 m at the time of peak-flow conditions and likely reduced the peak discharge at the lake outlet by about 6%. The modeled peak outlet flow is 0.85·106 m3 s−1. Energy balance calculations give an estimate for the erodibility coefficient for the alluvial Marsh Creek divide of ∼0.005 m y−1 Pa−1.5, at least two orders of magnitude greater than for the underlying bedrock at the outlet. Computing quasi steady-state water flows, water elevations, water currents and shear stresses as a function of the water-level drop in the lake and for the sequential stages of erosion in the outlet gives estimates of the incision rates and an estimate of the outflow hydrograph during the Bonneville Flood: About 18 days would have been required for the

  12. Geology and hydrology between Lake McMillan and Carlsbad Springs, Eddy County, New Mexico

    Science.gov (United States)

    Cox, Edward Riley

    1967-01-01

    The hydrology of the Pecos River valley between Lake McMillan and Carlsbad Springs, Eddy County, N. Mex., is influenced by facies changes in rocks of Permian age. Water stored for irrigation leaks from Lake McMillan into evaporite rocks, principally gypsum, of the Seven Rivers Formation and from Lake Avalon into carbonate rocks of the Tansill Formation. This leakage returns to the Pecos River at Major Johnson Springs and Carlsbad Springs. The river has perennial flow between Major Johnson Springs and Lake Avalon, but it loses water into evaporite rocks of the Yates Formation in this reach. Ground-water movement is generally toward the Pecos River in aquifers in the Pecos River valley except in the Rustler Formation east of the river where it moves southeastward toward playas east of Lake Avalon. The chloride content of ground and surface waters indicates that surface water moves from some reaches of the Pecos River and from surface-storage reservoirs to aquifers and also indicates the degree of mixing of ground and surface waters. About 45,000 acre-feet of ground water is stored in highly permeable rocks in a 3-mile wide part of the Seven Rivers Formation between Lake McMillan and Major Johnson Springs. This water in storage comes from leakage from Lake McMillan and from alluvium north of the springs. The flow of Major Johnson Springs is derived from this aquifer. That part of the flow derived from the alluvium north of the springs averaged 13 cfs (cubic feet per second) from 1953 through 1959 ; about 8 cfs of this flow had not been previously measured at gaging stations on the Pecos River and its tributaries. The most favorable plans for increasing terminal storage of the Carlsbad Irrigation District are to construct a dam at the Brantley site (at the downstream end of Major Johnson Springs), or to use underground storage in the permeable Seven Rivers Formation between Lake McMillan and Major Johnson brings in conjunction with surface storage. To avoid excessive

  13. The geochemistry of groundwater resources in the Jordan Valley: The impact of the Rift Valley brines

    Science.gov (United States)

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Polak, A.; Shavit, U.

    2007-01-01

    The chemical composition of groundwater in the Jordan Valley, along the section between the Sea of Galilee and the Dead Sea, is investigated in order to evaluate the origin of the groundwater resources and, in particular, to elucidate the role of deep brines on the chemical composition of the regional groundwater resources in the Jordan Valley. Samples were collected from shallow groundwater in research boreholes on two sites in the northern and southern parts of the Jordan Valley, adjacent to the Jordan River. Data is also compiled from previous published studies. Geochemical data (e.g., Br/Cl, Na/Cl and SO4/Cl ratios) and B, O, Sr and S isotopic compositions are used to define groundwater groups, to map their distribution in the Jordan valley, and to evaluate their origin. The combined geochemical tools enabled the delineation of three major sources of solutes that differentially affect the quality of groundwater in the Jordan Valley: (1) flow and mixing with hypersaline brines with high Br/Cl (>2 ?? 10-3) and low Na/Cl (shallow saline groundwaters influenced by brine mixing exhibit a north-south variation in their Br/Cl and Na/Cl ratios. This chemical trend was observed also in hypersaline brines in the Jordan valley, which suggests a local mixing process between the water bodies. ?? 2007 Elsevier Ltd. All rights reserved.

  14. 75 FR 34934 - Safety Zone; Fireworks for the Virginia Lake Festival, Buggs Island Lake, Clarksville, VA

    Science.gov (United States)

    2010-06-21

    ...-AA00 Safety Zone; Fireworks for the Virginia Lake Festival, Buggs Island Lake, Clarksville, VA AGENCY... Fireworks for the Virginia Lake Festival event. This action is intended to restrict vessel traffic movement... Virginia Lake Festival, Buggs Island Lake, Clarksville, VA (a) Regulated Area. The following area is a...

  15. Holocene lake-level fluctuations of Lake Aricota, Southern Peru

    Science.gov (United States)

    Placzek, C.; Quade, Jay; Betancourt, J.L.

    2001-01-01

    Lacustrine deposits exposed around Lake Aricota, Peru (17?? 22???S), a 7.5-km2 lake dammed by debris flows, provide a middle to late Holocene record of lake-level fluctuations. Chronological context for shoreline deposits was obtained from radiocarbon dating of vascular plant remains and other datable material with minimal 14C reservoir effects (Titicaca (16?? S), which is only 130 km to the northeast and shares a similar climatology. Comparisons with other marine and terrestrial records highlight emerging contradictions over the nature of mid-Holocene climate in the central Andes. ?? 2001 University of Washington.

  16. Small changes in climate can profoundly alter the dynamics and ecosystem services of tropical crater lakes.

    Directory of Open Access Journals (Sweden)

    Émilie Saulnier-Talbot

    Full Text Available African tropical lakes provide vital ecosystem services including food and water to some of the fastest growing human populations, yet they are among the most understudied ecosystems in the world. The consequences of climate change and other stressors on the tropical lakes of Africa have been informed by long-term analyses, but these studies have largely focused on the massive Great Rift Valley lakes. Our objective was to evaluate how recent climate change has altered the functioning and services of smaller tropical lakes, which are far more abundant on the landscape. Based on a paired analysis of 20 years of high-resolution water column data and a paleolimnological record from a small crater lake in western Uganda, we present evidence that even a modest warming of the air (∼0.9°C increase over 20 years and changes in the timing and intensity of rainfall can have significant consequences on the dynamics of this common tropical lake type. For example, we observed a significant nonlinear increase (R(2 adj  = 0.23, e.d.f. = 7, p<0.0001 in thermal stability over the past 20 years. This resulted in the expansion of anoxic waters and consequent deterioration of fish habitat and appears to have abated primary production; processes that may impair ecosystem services for a vulnerable human population. This study on a system representative of small tropical crater lakes highlights the far-reaching effects of global climatic change on tropical waters. Increased research efforts into tropical aquatic ecosystem health and the development of sound management practices are necessary in order to strengthen adaptive capabilities in tropical regions.

  17. Small changes in climate can profoundly alter the dynamics and ecosystem services of tropical crater lakes.

    Science.gov (United States)

    Saulnier-Talbot, Émilie; Gregory-Eaves, Irene; Simpson, Kyle G; Efitre, Jackson; Nowlan, Tobias E; Taranu, Zofia E; Chapman, Lauren J

    2014-01-01

    African tropical lakes provide vital ecosystem services including food and water to some of the fastest growing human populations, yet they are among the most understudied ecosystems in the world. The consequences of climate change and other stressors on the tropical lakes of Africa have been informed by long-term analyses, but these studies have largely focused on the massive Great Rift Valley lakes. Our objective was to evaluate how recent climate change has altered the functioning and services of smaller tropical lakes, which are far more abundant on the landscape. Based on a paired analysis of 20 years of high-resolution water column data and a paleolimnological record from a small crater lake in western Uganda, we present evidence that even a modest warming of the air (∼0.9°C increase over 20 years) and changes in the timing and intensity of rainfall can have significant consequences on the dynamics of this common tropical lake type. For example, we observed a significant nonlinear increase (R(2) adj  = 0.23, e.d.f. = 7, pdeterioration of fish habitat and appears to have abated primary production; processes that may impair ecosystem services for a vulnerable human population. This study on a system representative of small tropical crater lakes highlights the far-reaching effects of global climatic change on tropical waters. Increased research efforts into tropical aquatic ecosystem health and the development of sound management practices are necessary in order to strengthen adaptive capabilities in tropical regions.

  18. A valley-filtering switch based on strained graphene.

    Science.gov (United States)

    Zhai, Feng; Ma, Yanling; Zhang, Ying-Tao

    2011-09-28

    We investigate valley-dependent transport through a graphene sheet modulated by both the substrate strain and the fringe field of two parallel ferromagnetic metal (FM) stripes. When the magnetizations of the two FM stripes are switched from the parallel to the antiparallel alignment, the total conductance, valley polarization and valley conductance excess change greatly over a wide range of Fermi energy, which results from the dependence of the valley-related transmission suppression on the polarity configuration of inhomogeneous magnetic fields. Thus the proposed structure exhibits the significant features of a valley-filtering switch and a magnetoresistance device.

  19. A valley-filtering switch based on strained graphene

    International Nuclear Information System (INIS)

    Zhai Feng; Ma Yanling; Zhang Yingtao

    2011-01-01

    We investigate valley-dependent transport through a graphene sheet modulated by both the substrate strain and the fringe field of two parallel ferromagnetic metal (FM) stripes. When the magnetizations of the two FM stripes are switched from the parallel to the antiparallel alignment, the total conductance, valley polarization and valley conductance excess change greatly over a wide range of Fermi energy, which results from the dependence of the valley-related transmission suppression on the polarity configuration of inhomogeneous magnetic fields. Thus the proposed structure exhibits the significant features of a valley-filtering switch and a magnetoresistance device. (paper)

  20. Reactivation of a cryptobiotic stream ecosystem in the McMurdo Dry Valleys, Antarctica: A long-term geomorphological experiment

    Science.gov (United States)

    McKnight, Diane M.; Tate, C.M.; Andrews, E.D.; Niyogi, D.K.; Cozzetto, K.; Welch, K.; Lyons, W.B.; Capone, D.G.

    2007-01-01

    The McMurdo Dry Valleys of Antarctica contain many glacial meltwater streams that flow for 6 to 12??weeks during the austral summer and link the glaciers to the lakes on the valley floors. Dry valley streams gain solutes longitudinally through weathering reactions and microbial processes occurring in the hyporheic zone. Some streams have thriving cyanobacterial mats. In streams with regular summer flow, the mats are freeze-dried through the winter and begin photosynthesizing with the onset of flow. To evaluate the longer term persistence of cyanobacterial mats, we diverted flow to an abandoned channel, which had not received substantial flow for approximately two decades. Monitoring of specific conductance showed that for the first 3??years after the diversion, the solute concentrations were greater in the reactivated channel than in most other dry valley streams. We observed that cyanobacterial mats became abundant in the reactivated channel within a week, indicating that the mats had been preserved in a cryptobiotic state in the channel. Over the next several years, these mats had high rates of productivity and nitrogen fixation compared to mats from other streams. Experiments in which mats from the reactivated channel and another stream were incubated in water from both of the streams indicated that the greater solute concentrations in the reactivated channel stimulated net primary productivity of mats from both streams. These stream-scale experimental results indicate that the cryptobiotic preservation of cyanobacterial mats in abandoned channels in the dry valleys allows for rapid response of these stream ecosystems to climatic and geomorphological change, similar to other arid zone stream ecosystems. ?? 2006 Elsevier B.V. All rights reserved.

  1. Forest blowdown and lake acidification

    International Nuclear Information System (INIS)

    Dobson, J.E.; Rush, R.M.; Peplies, R.W.

    1990-01-01

    The authors examine the role of forest blowdown in lake acidification. The approach combines geographic information systems (GIS) and digital remote sensing with traditional field methods. The methods of analysis consist of direct observation, interpretation of satellite imagery and aerial photographs, and statistical comparison of two geographical distributions-one representing forest blow-down and another representing lake chemistry. Spatial and temporal associations between surface water pH and landscape disturbance are strong and consistent in the Adirondack Mountains of New York. In 43 Adirondack Mountain watersheds, lake pH is associated with the percentage of the watershed area blown down and with hydrogen ion deposition (Spearman rank correlation coefficients of -0.67 and -0.73, respectively). Evidence of a temporal association is found at Big Moose Lake and Jerseyfield Lake in New York and the Lygners Vider Plateau of Sweden. They conclude that forest blowdown facilities the acidification of some lakes by altering hydrologic pathways so that waters (previously acidified by acid deposition and/or other sources) do not experience the neutralization normally available through contact with subsurface soils and bedrock. Increased pipeflow is suggested as a mechanism that may link the biogeochemical impacts of forest blowdown to lake chemistry

  2. Microplastics in Taihu Lake, China.

    Science.gov (United States)

    Su, Lei; Xue, Yingang; Li, Lingyun; Yang, Dongqi; Kolandhasamy, Prabhu; Li, Daoji; Shi, Huahong

    2016-09-01

    In comparison with marine environments, the occurrence of microplastics in freshwater environments is less understood. In the present study, we investigated microplastic pollution levels during 2015 in Taihu Lake, the third largest Chinese lake located in one of the most developed areas of China. The abundance of microplastics reached 0.01 × 10(6)-6.8 × 10(6) items/km(2) in plankton net samples, 3.4-25.8 items/L in surface water, 11.0-234.6 items/kg dw in sediments and 0.2-12.5 items/g ww in Asian clams (Corbicula fluminea). The average abundance of microplastics was the highest in plankton net samples from the southeast area of the lake and in the sediments from the northwest area of the lake. The northwest area of the lake was the most heavily contaminated area of the lake, as indicated by chlorophyll-α and total phosphorus. The microplastics were dominated by fiber, 100-1000 μm in size and cellophane in composition. To our best knowledge, the microplastic levels measured in plankton net samples collected from Taihu Lake were the highest found in freshwater lakes worldwide. The ratio of the microplastics in clams to each sediment sample ranged from 38 to 3810 and was negatively correlated to the microplastic level in sediments. In brief, our results strongly suggest that high levels of microplastics occurred not only in water but also in organisms in Taihu Lake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Key Lake spill. Final report

    International Nuclear Information System (INIS)

    1984-03-01

    On January 5, 1984 contaminated water overflowed a storage reservoir at the Key Lake uranium mill onto the ice on a neighboring lake, into a muskeg area and onto a road. Outflow continued for two days, partially undercutting a retaining dyke. This report concludes the spill was the result of poor operation by the Key Lake Mining Corp.. The environmental impact will be minimal after cleanup. Improvements can be made in the regulatory process, and it is necessary to prepare for possible future mishaps

  4. 2010 Great Lakes Restoration Initiative Bathymetric Lidar: Lake Superior

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data contained in this file contain hydrographic and topographic data collected by the Fugro LADS Mk II system along the Lake Superior coast of Minnessota,...

  5. Geology, selected geophysics, and hydrogeology of the White River and parts of the Great Salt Lake Desert regional groundwater flow systems, Utah and Nevada

    Science.gov (United States)

    Rowley, Peter D.; Dixon, Gary L.; Watrus , James M.; Burns, Andrews G.; Mankinen, Edward A.; McKee, Edwin H.; Pari, Keith T.; Ekren, E. Bartlett; Patrick , William G.; Comer, John B.; Inkenbrandt, Paul C.; Krahulec, K.A.; Pinnell, Michael L.

    2016-01-01

    The east-central Great Basin near the Utah-Nevada border contains two great groundwater flow systems. The first, the White River regional groundwater flow system, consists of a string of hydraulically connected hydrographic basins in Nevada spanning about 270 miles from north to south. The northernmost basin is Long Valley and the southernmost basin is the Black Mountain area, a valley bordering the Colorado River. The general regional groundwater flow direction is north to south. The second flow system, the Great Salt Lake Desert regional groundwater flow system, consists of hydrographic basins that straddle

  6. Multi-proxy paleoenvironmental reconstruction of saline lake carbonates: Paleoclimatic and paleogeographic implications (Priabonian-Rupelian, Issirac Basin, SE France)

    Science.gov (United States)

    Lettéron, Alexandre; Fournier, François; Hamon, Youri; Villier, Loïc; Margerel, Jean-Pierre; Bouche, Alexandre; Feist, Monique; Joseph, Philippe

    2017-08-01

    A 200-m thick carbonate succession has been deposited in shallow-water, saline lake environments during the Priabonian-Rupelian in the Issirac Basin (South-East France). The palaeoenvironmental and palaeogeographic significance of such saline lake carbonates has been characterized on the basis of a multi-proxy analysis including 1) depositional and diagenetic features, 2) biological components (molluscs, ostracods, benthic foraminifers, characean) and 3) carbon, oxygen and strontium stable isotopes. Biological associations are indicative of dominantly shallow (climate (dry versus humid) are the three key factors controlling the water composition, carbonate production and depositional environments in the Issirac lake. Although the ASCI (Alès-Issirac-Saint-Chaptes) lacustrine system likely represents an athalassic (inland) lake system evolving through times, the stable isotope composition (C, O and Sr) of carbonates strongly suggests the occurrence of transient connections of the ASCI lake water with water bodies influenced by seawater and/or fed with sulfates deriving from Triassic evaporites. The Issirac Basin may be therefore interpreted as a sill area connecting the ASCI lacustrine system with the Rhône valley (Mormoiron and Valence) saline lake systems during maximum flooding periods. Finally, changes in depositional features, biota and stable isotope composition of carbonates in unit U3 suggest a transition from relatively dry to more humid climate during the uppermost Priabonian or earliest Rupelian.

  7. Observing Seasonal and Diurnal Hydrometeorological Variability Within a Tropical Alpine Valley: Implications for Evapotranspiration

    Science.gov (United States)

    Hellstrom, R. A.; Mark, B. G.

    2007-12-01

    up through the valley. Humidity and temperature measurements were analyzed to show significant effects of elevation and proximity to melt-water lakes on vapor pressure deficit.

  8. Groundwater quality in the Antelope Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Antelope Valley is one of the study areas being evaluated. The Antelope study area is approximately 1,600 square miles (4,144 square kilometers) and includes the Antelope Valley groundwater basin (California Department of Water Resources, 2003). Antelope Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lakebeds in the lower parts of the valley. Land use in the study area is approximately 68 percent (%) natural (mostly shrubland and grassland), 24% agricultural, and 8% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Palmdale and Lancaster (2010 populations of 152,000 and 156,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Antelope Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Antelope Valley are completed to depths between 360 and 700 feet (110 to 213 meters), consist of solid casing from the land surface to a depth of 180 to 350 feet (55 to 107 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation and sewer and septic

  9. An Evaluation of Mesoscale Model Predictions of Down-Valley and Canyon Flows and Their Consequences Using Doppler Lidar Measurements During VTMX 2000

    International Nuclear Information System (INIS)

    Fast, Jerome D.; Darby, Lisa S.

    2004-01-01

    A mesoscale model, a Lagrangian particle dispersion model, and extensive Doppler lidar wind measurements during the VTMX 2000 field campaign were used to examine converging flows over the Salt Lake Valley and their effect on vertical mixing of tracers at night and during the morning transition period. The simulated wind components were transformed into radial velocities to make a direct comparison with about 1.3 million Doppler lidar data points and critically evaluate, using correlation coefficients, the spatial variations in the simulated wind fields aloft. The mesoscale model captured reasonably well the general features of the observed circulations including the daytime up-valley flow, the nighttime slope, canyon, and down-valley flows, and the convergence of the flows over the valley. When there were errors in the simulated wind fields, they were usually associated with the timing, structure, or strength of specific flows. Simulated outflows from canyons along the Wasatch Mountains propagated over the valley and converged with the down-valley flow, but the advance and retreat of these simulated flows was often out of phase with the lidar measurements. While the flow reversal during the evening transition period produced rising motions over much of the valley atmosphere in the absence of significant ambient winds, average vertical velocities became close to zero as the down-valley flow developed. Still, vertical velocities between 5 and 15 cm s-1 occurred where down-slope, canyon and down-valley flows converged and vertical velocities greater than 50 cm s-1 were produced by hydraulic jumps at the base of the canyons. The presence of strong ambient winds resulted in smaller average rising motions during the evening transition period and larger average vertical velocities after that. A fraction of the tracer released at the surface was transported up to the height of the surrounding mountains; however, higher concentrations were produced aloft for evening s

  10. Bibliography of literature pertaining to Long Valley Caldera and associated volcanic fields

    Science.gov (United States)

    Ewert, John W.; Harpel, Christopher J.; Brooks, Suzanna K.; Marcaida, Mae

    2011-01-01

    On May 25-27, 1980, Long Valley caldera was rocked by four M=6 earthquakes that heralded the onset of a wave of seismic activity within the caldera which has continued through the present. Unrest has taken the form of seismic swarms, uplift of the resurgent dome, and areas of vegetation killed by increased CO2 emissions, all interpreted as resulting from magma injection into different levels beneath the caldera, as well as beneath Mammoth Mountain along the southwest rim of the caldera. Continuing economic development in the Mammoth Lakes area has swelled the local population, increasing the risk to people and property if an eruption were to occur. The U.S. Geological Survey (USGS) has been monitoring geophysical activity in the Long Valley area since the mid-1970s and continues to track the unrest in real time with a sophisticated network of geophysical sensors. Hazards information obtained by this monitoring is provided to local, State, and Federal officials and to the public through the Long Valley Observatory. The Long Valley area also was scientifically important before the onset of current unrest. Lying at the eastern foot of the Sierra Nevada, the deposits from this active volcanic system have provided fertile ground for research into Neogene tectonics, Quaternary geology and geomorphology, regional stratigraphy, and volcanology. In the early 1970s, intensive studies of the area began through the USGS Geothermal Investigations Program, owing to the presence of a large young silicic volcanic system. The paroxysmal eruption of Long Valley caldera about 760,000 years ago produced the Bishop Tuff and associated Bishop ash. The Bishop Tuff is a well-preserved ignimbrite deposit that has continued to provide new and developing insights into the dynamics of ignimbrite-forming eruptions. Another extremely important aspect of the Bishop Tuff is that it is the oldest known normally magnetized unit of the Brunhes Chron. Thus, the age of the Bishop Tuff is used to

  11. 77 FR 64033 - Establishment of the Ancient Lakes of Columbia Valley Viticultural Area

    Science.gov (United States)

    2012-10-18

    ... rule; Treasury decision. SUMMARY: The Alcohol and Tobacco Tax and Trade Bureau (TTB) establishes the... wines and to allow consumers to better identify wines they may purchase. DATES: Effective Date: November... consumers to identify wines they may purchase. Establishment of a viticultural area is neither an approval...

  12. High endemicity of human fascioliasis between Lake Titicaca and La Paz valley, Bolivia.

    Science.gov (United States)

    Esteban, J G; Flores, A; Angles, R; Mas-Coma, S

    1999-01-01

    Over a 6-year period, an epidemiological study of human infection by Fasciola hepatica in the Northern Bolivian Altiplano was carried out. Prevalences and intensities were analysed from coprological results obtained in 31 surveys performed in 24 localities and proved to be the highest known so far. The global prevalence was 15.4%, with local prevalences ranging from 0% to 68.2%. Significant differences between prevalence rates were detected and the highest prevalences were in subjects aged < 20 years. However, prevalences showed no gender difference. The global intensity (eggs per gram of faeces, epg) ranged from 24 to 5064 epg and showed arithmetic and geometric means respectively of 446 and 191 epg, with highest local arithmetic and geometric means of 1345 and 678 epg. Significant differences in mean egg output were detected between localities. The significantly higher F. hepatica egg counts shown by girls in school surveys is worth mentioning. Although the distributions of intensities according to age-groups did not show any significant difference, a decrease of egg output counts with an increase of age was detected. It is concluded that fascioliasis is a very important human health problem in this region.

  13. Oligocene stratigraphy across the Eocene and Miocene boundaries in the Valley of Lakes (Mongolia).

    Science.gov (United States)

    Daxner-Höck, Gudrun; Badamgarav, Demchig; Barsbold, Rinchen; Bayarmaa, Baatarjav; Erbajeva, Margarita; Göhlich, Ursula Bettina; Harzhauser, Mathias; Höck, Eva; Höck, Volker; Ichinnorov, Niiden; Khand, Yondon; López-Guerrero, Paloma; Maridet, Olivier; Neubauer, Thomas; Oliver, Adriana; Piller, Werner; Tsogtbaatar, Khishigjav; Ziegler, Reinhard

    2017-01-01

    Cenozoic sediments of the Taatsiin Gol and TaatsiinTsagaan Nuur area are rich in fossils that provide unique evidence of mammal evolution in Mongolia. The strata are intercalated with basalt flows. 40 Ar/ 39 Ar data of the basalts frame the time of sediment deposition and mammal evolution and enable a composite age chronology for the studied area. We investigated 20 geological sections and 6 fossil localities of Oligocene and early Miocene deposits from this region. Seventy fossil beds yielded more than 19,000 mammal fossils. This huge collection encompasses 175 mammal species: 50% Rodentia, 13% Eulipotyphla and Didelphomorphia, and 12% Lagomorpha. The remaining 25% of species are distributed among herbivorous and carnivorous large mammals. The representation of lower vertebrates and gastropods is comparatively poor. Several hundred SEM images illustrate the diversity of Marsupialia, Eulipotyphla, and Rodentia dentition and give insight into small mammal evolution in Mongolia during the Oligocene and early Miocene. This dataset, the radiometric ages of basalt I (∼31.5 Ma) and basalt II (∼27 Ma), and the magnetostratigraphic data provide ages of mammal assemblages and time ranges of the Mongolian biozones: letter zone A ranges from ∼33 to ∼31.5 Ma, letter zone B from ∼31.5 to ∼28 Ma, letter zone C from ∼28 to 25.6 Ma, letter zone C1 from 25.6 to 24 Ma, letter zone C1-D from 24 to ∼23 Ma, and letter zone D from ∼23 to ∼21 Ma.

  14. MX Siting Investigation. Geotechnical Evaluation. Verification Study - Lake Valley, Nevada. Volume II. Geotechnical Data.

    Science.gov (United States)

    1981-07-31

    to subrounded, calcarous some sigihtly - * *. * platic clay; stmpgs:cishe 42.W’- 3.51. 2 ::.:. SC doe 1SANDY CLAY, brnon moist slihtly 1 425727...8217:: ;:. -,-.::::"_ __ _ __ _ __ _ _ __ _ __ tegw ////77/* SANDY CLAY. light brown, "moi st slightly platic , calcareous; some fine 8 / / to medium subengular to wubrounded sand. 0

  15. Jordan Lake Watershed Protection District

    Data.gov (United States)

    Town of Chapel Hill, North Carolina — Polygon representing the area of the Jordan Lake Watershed Protection District. The Watershed Protection District (PDF) is a sensitive area of land that drains to...

  16. Great Lakes Environmental Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NOAA-GLERL and its partners conduct innovative research on the dynamic environments and ecosystems of the Great Lakes and coastal regions to provide information for...

  17. Paleosecular variations from lake sediments

    International Nuclear Information System (INIS)

    Lund, S.P.; Banerjee, S.K.

    1979-01-01

    Data are presented on the secular variations of the magnetization of wet and dry lake sediments for 17 North American locations. The usefullness of this data in terms of the geomagnetic field is discussed

  18. The influence of south Foehn on the ozone distribution in the Alpine Rhine valley - results from the MAP field phase

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, K.; Maurer, H.; Rau, G. [Central Institute for Meteorology and Geodynamics, Vienna (AT)] (and others)

    2001-07-01

    During the Mesoscale Alpine Programme (MAP) special observation period (SOP) between 7 September and 15 November 1999, ground-based and airborne measurements have been conducted in the Rhine valley south of the Lake of Constance to investigate the unstationary aspects of Foehn and related phenomena, like the impact of Foehn on the ozone concentrations in the valley. Foehn events occurred with above-average frequency and high diversity. Foehn induced ozone peaks in October and November are found to be much lower than the September Foehn case of the period. An inversion layer in the lake area with ozone concentrations below 10ppb often shields the monitoring stations from the Foehn air aloft. Trajectory calculations for the Foehn period between 19 and 24 October 1999 reveal that the Foehn air originated from below 1 to 1.5km above the Po Basin and the Mediterranean Sea. Tethered balloon soundings in the source area south of the Alps, ozone measurements at the mountain station Jungfraujoch (3580m a.s.l.) and airborne measurements across the Alpine crests reveal that the ozone levels found in the Foehn air correspond to the concentrations just above the mixing height in the Po Basin and are transported across the Alpine crest within the lowest flow layer. (author)

  19. Valley Topological Phases in Bilayer Sonic Crystals

    Science.gov (United States)

    Lu, Jiuyang; Qiu, Chunyin; Deng, Weiyin; Huang, Xueqin; Li, Feng; Zhang, Fan; Chen, Shuqi; Liu, Zhengyou

    2018-03-01

    Recently, the topological physics in artificial crystals for classical waves has become an emerging research area. In this Letter, we propose a unique bilayer design of sonic crystals that are constructed by two layers of coupled hexagonal array of triangular scatterers. Assisted by the additional layer degree of freedom, a rich topological phase diagram is achieved by simply rotating scatterers in both layers. Under a unified theoretical framework, two kinds of valley-projected topological acoustic insulators are distinguished analytically, i.e., the layer-mixed and layer-polarized topological valley Hall phases, respectively. The theory is evidently confirmed by our numerical and experimental observations of the nontrivial edge states that propagate along the interfaces separating different topological phases. Various applications such as sound communications in integrated devices can be anticipated by the intriguing acoustic edge states enriched by the layer information.

  20. Spatial distribution of seepage at a flow-through lake: Lake Hampen, Western Denmark

    DEFF Research Database (Denmark)

    Kidmose, Jacob Baarstrøm; Engesgaard, Peter Knudegaard; Nilsson, Bertel

    2011-01-01

    recharge patiern of the lake and relating these to the geologic history of the lake. Recharge of the surrounding aquifer by lake water occurs off shore in a narrow zone, as measured from lake–groundwater gradients. A 33-m-deep d18O profi le at the recharge side shows a lake d18O plume at depths...... that corroborates the interpretation of lake water recharging off shore and moving down gradient. Inclusion of lake bed heterogeneity in the model improved the comparison of simulated and observed discharge to the lake. The apparent age of the discharging groundwater to the lake was determined by CFCs, resulting...

  1. Can small zooplankton mix lakes?

    OpenAIRE

    Simoncelli, S.; Thackeray, S.J.; Wain, D.J.

    2017-01-01

    The idea that living organisms may contribute to turbulence and mixing in lakes and oceans (biomixing) dates to the 1960s, but has attracted increasing attention in recent years. Recent modeling and experimental studies suggest that marine organisms can enhance turbulence as much as winds and tides in oceans, with an impact on mixing. However, other studies show opposite and contradictory results, precluding definitive conclusions regarding the potential importance of biomixing. For lakes, on...

  2. Radiocarbon dating of lake sediments

    OpenAIRE

    Pocevičius, Matas

    2016-01-01

    Matas Pocevičius, Radiocarbon dating of lake sediments, bachelor thesis, Vilnius University, Faculty of Physics, Department of General Physics and Spectroscopy, physics, Vilnius, 45 p., 2016. The aim of this study is to evaluate the possibility of radiocarbon dating application for Tapeliai lake bottom sediments. The literature review discusses topics related to accelerator mass spectrometry, principles of radiocarbon formation, importance of nuclear fallout for 14C, possible applications of ...

  3. Latest Pleistocene and Holocene glacial events in the Colonia valley, Northern Patagonia Icefield, southern Chile

    Science.gov (United States)

    Nimick, David A.; Mcgrath, Daniel; Mahan, Shannon; Friesen, Beverly A.; Leidich, Jonathan

    2016-01-01

    The Northern Patagonia Icefield (NPI) is the primary glaciated terrain worldwide at its latitude (46.5–47.5°S), and constraining its glacial history provides unique information for reconstructing Southern Hemisphere paleoclimate. The Colonia Glacier is the largest outlet glacier draining the eastern NPI. Ages were determined using dendrochronology, lichenometry, radiocarbon, cosmogenic 10Be and optically stimulated luminescence. Dated moraines in the Colonia valley defined advances at 13.2 ± 0.95, 11.0 ± 0.47 and 4.96 ± 0.21 ka, with the last being the first constraint on the onset of Neoglaciation for the eastern NPI from a directly dated landform. Dating in the tributary Cachet valley, which contains an ice-dammed lake during periods of Colonia Glacier expansion, defined an advance at ca. 2.95 ± 0.21 ka, periods of advancement at 810 ± 49 cal a BP and 245 ± 13 cal a BP, and retreat during the intervening periods. Recent Colonia Glacier thinning, which began in the late 1800s, opened a lower-elevation outlet channel for Lago Cachet Dos in ca. 1960. Our data provide the most comprehensive set of Latest Pleistocene and Holocene ages for a single NPI outlet glacier and expand previously developed NPI glacial chronologies.

  4. 27 CFR 9.74 - Columbia Valley.

    Science.gov (United States)

    2010-04-01

    .... and T. 31 N. west of Alkali Lake; (22) Then northeast in a straight line for approximately 10.7 miles... Deschutes River; (50) Then north following the Deschutes River to the Willamette Base Line; (51) Then west following the Willamette Base Line to the township line between R. 12 E. and R. 13 E.; (52) Then north...

  5. Ward Valley transfer stalled by Babbitt

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Interior Secretary Bruce Babbitt announced on November 24 that he would not authorize the land transfer for the proposed low-level waste disposal site at Ward Valley, California, until a legal challenge to the facility's license and environmental impact statement is resolved. Even if the matter is resolved quickly, there exists the possibility that yet another hearing will be held on the project, even though state courts in California have stated flatly that no such hearings are required

  6. Ward Valley transfer stalled by Babbitt

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    Interior Secretary Bruce Babbitt announced on November 24 that he would not authorize the land transfer for the proposed low-level waste disposal site at Ward Valley, California, until a legal challenge to the facility's license and environmental impact statement is resolved. Even if the matter is resolved quickly, there exists the possibility that yet another hearing will be held on the project, even though state courts in California have stated flatly that no such hearings are required.

  7. Limnological study of Lake Shastina, Siskiyou County, California

    Science.gov (United States)

    Dong, Alex E.; Beatty, Kenneth W.; Averett, Robert C.

    1974-01-01

    Lake Shastina provides water for irrigation in Shasta Valley, as well as recreation. Presently, its shoreline is being developed for summer homes. Surface water constituted more than 90 percent of the approximately 50,000 acre-foot (62-cubic hectometre) inflow to Lake Shastina in the 1972 water year. Controlled outflow is via the Montague Main Canal; however, leakage from the lake through volcanic rocks to the northwest was estimated to be greater than the measured outflow. Appreciable annual changes in the quantity of water in storage in the lake are related mainly to variations in annual inflow.From June through August the lake was thermally stratified. In the spring and summer the epilimnion was often supersaturated with oxygen, while at the same time the hypolimnion was undersaturated and 'often devoid of dissolved oxygen. Vertical stratification of carbon dioxide, carbonate, bicarbonate, hydrogen ion, nitrogen, and phosphorus was also recorded during the spring and summer. Orthophosphate, total phosphorus, and total nitrogen concentrations (organic, ammonium, and nitrate) were highest in the hypolimnion during the period of thermal stratification.Ten-inch (25-centimetre) core samples from the reservoir bottom were chemically analyzed at 0.8-inch (2-centimetre) intervals. The concentrations ranged from 6.3 to 28.9 milligrams per gram of iron, 0.07 to 0.43 milligrams per gram of manganese, 0.4 to 2.7 milligrams per gram of organic nitrogen plus ammonium, and 0.06 to 1.3 milligrams per gram of total phosphorus. Organic matter in the cores ranged from 4 to 14 percent.Green algae and diatoms were the dominant algal types, reaching maximum concentrations of about 7 and 30 million cells per litre, respectively. These phytoplankton occurred near the surface during thermally stratified periods, but were distributed at greater depths during nonthermally stratified periods. Blue-green algae were present only in the spring samples, and reached a maximum concentration of

  8. Water Budgets of the Walker River Basin and Walker Lake, California and Nevada

    Science.gov (United States)

    Lopes, Thomas J.; Allander, Kip K.

    2009-01-01

    The Walker River is the main source of inflow to Walker Lake, a closed-basin lake in west-central Nevada. The only outflow from Walker Lake is evaporation from the lake surface. Between 1882 and 2008, upstream agricultural diversions resulted in a lake-level decline of more than 150 feet and storage loss of 7,400,000 acre-feet. Evaporative concentration increased dissolved solids from 2,500 to 17,000 milligrams per liter. The increase in salinity threatens the survival of the Lahontan cutthroat trout, a native species listed as threatened under the Endangered Species Act. This report describes streamflow in the Walker River basin and an updated water budget of Walker Lake with emphasis on the lower Walker River basin downstream from Wabuska, Nevada. Water budgets are based on average annual flows for a 30-year period (1971-2000). Total surface-water inflow to the upper Walker River basin upstream from Wabuska was estimated to be 387,000 acre-feet per year (acre-ft/yr). About 223,000 acre-ft/yr (58 percent) is from the West Fork of the Walker River; 145,000 acre-ft/yr (37 percent) is from the East Fork of the Walker River; 17,000 acre-ft/yr (4 percent) is from the Sweetwater Range; and 2,000 acre-ft/yr (less than 1 percent) is from the Bodie Mountains, Pine Grove Hills, and western Wassuk Range. Outflow from the upper Walker River basin is 138,000 acre-ft/yr at Wabuska. About 249,000 acre-ft/yr (64 percent) of inflow is diverted for irrigation, transpired by riparian vegetation, evaporates from lakes and reservoirs, and recharges alluvial aquifers. Stream losses in Antelope, Smith, and Bridgeport Valleys are due to evaporation from reservoirs and agricultural diversions with negligible stream infiltration or riparian evapotranspiration. Diversion rates in Antelope and Smith Valleys were estimated to be 3.0 feet per year (ft/yr) in each valley. Irrigated fields receive an additional 0.8 ft of precipitation, groundwater pumpage, or both for a total applied-water rate

  9. Uranium favorability of tertiary sedimentary rocks of the western Okanogan highlands and of the upper Columbia River valley, Washington

    International Nuclear Information System (INIS)

    Marjaniemi, D.K.; Robins, J.W.

    1975-08-01

    Tertiary sedimentary rocks in the northern portions of the western Okanogan highlands and in the upper Columbia River valley were investigated during a regional study to determine the favorability for potential uranium resources of the Tertiary sedimentary rocks of northeastern Washington. This project involved measurement and sampling of surface sections, collection of samples from isolated outcrops, and chemical and mineralogical analyses of samples. No portion of the project area of this report is rated of high or of medium favorability for potential uranium resources. Low favorability ratings are given to Oroville, Tonasket, and Pine Creek areas of the Okanogan River valley; to the Republic graben; and to the William Lakes, Colville, and Sheep Creek areas of the upper Columbia River valley. All these areas contain some fluvial, poorly sorted feldspathic or arkosic sandstones and conglomerates. These rocks are characterized by very low permeability and a consistently high siliceous matrix suggesting very low initial permeability. There are no known uranium deposits in any of these areas, and low level uranium anomalies are rare

  10. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down gradient of the Proposed Yucca Mountain Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Inyo County

    2006-01-01

    Inyo County has participated in oversight activities associated with the Yucca Mountain Nuclear Waste Repository since 1987. The overall goal of these studies are the evaluation of far-field issues related to potential transport, by ground water, or radionuclides into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. In addition to the potential of radionuclide transport through the LCA, Czarnecki (1997), with the US Geological Survey, research indicate potential radionuclide transport through the shallower Tertiary-age aquifer materials with ultimate discharge into the Franklin Lake Playa in Inyo County. The specific purpose of this Cooperative Agreement drilling program was to acquire geological, subsurface geology, and hydrologic data to: (1) establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin; (2) characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and (3) Evaluation the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA

  11. Landslide activity as a threat to infrastructure in river valleys - An example from outer Western Carpathians (Poland)

    Science.gov (United States)

    Łuszczyńska, Katarzyna; Wistuba, Małgorzata; Malik, Ireneusz

    2017-11-01

    Intensive development of the area of Polish Carpathians increases the scale of landslide risk. Thus detecting landslide hazards and risks became important issue for spatial planning in the area. We applied dendrochronological methods and GIS analysis for better understanding of landslide activity and related hazards in the test area (3,75 km2): Salomonka valley and nearby slopes in the Beskid Żywiecki Mts., Outer Western Carpathians, southern Poland. We applied eccentricity index of radial growth of trees to date past landslide events. Dendrochronological results allowed us to determine the mean frequency of landsliding at each sampling point which were next interpolated into a map of landslide hazard. In total we took samples at 46 points. In each point we sampled 3 coniferous trees. Landslide hazard map shows a medium (23 sampling points) and low (20 sampling points) level of landslide activity for most of the area. The highest level of activity was recorded for the largest landslide. Results of the dendrochronological study suggest that all landslides reaching downslope to Salomonka valley floor are active. LiDAR-based analysis of relief shows that there is an active coupling between those landslides and river channel. Thus channel damming and formation of an episodic lake are probable. The hazard of flooding valley floor upstream of active landslides should be included in the local spatial planning system and crisis management system.

  12. Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency, and lake area

    DEFF Research Database (Denmark)

    Vestergaard, Ole Skafte; Sand-Jensen, Kaj

    2000-01-01

    We examined the relationship between environmental factors and the richness of submerged macrophytes species in 73 Danish lakes, which are mainly small, shallow, and have mesotrophic to hypertrophic conditions. We found that mean species richness per lake was only 4.5 in acid lakes of low...... alkalinity but 12.3 in lakes of high alkalinity due to a greater occurrence of the species-rich group of elodeids. Mean species richness per lake also increased significantly with increasing Secchi depth. No significant relationship between species richness and lake surface area was observed among the entire...... group of lakes or a subset of eutrophic lakes, as the growth of submerged macrophytes in large lakes may be restricted by wave action in shallow water and light restriction in deep water. In contrast, macrophyte species richness increased with lake surface area in transparent lakes, presumably due...

  13. Virgin Valley opal district, Humboldt County, Nevada

    Science.gov (United States)

    Staatz, Mortimer Hay; Bauer, Herman L.

    1951-01-01

    The Virgin Valley opal district, Humboldt County, Nevada, is near the Oregon-Nevada border in the Sheldon Game Refuge. Nineteen claims owned by Jack and Toni Crane were examined, sampled, and tested radiometrically for uranium. Numerous discontinuous layers of opal are interbedded with a gently-dipping series of vitric tuff and ash which is at least 300 ft thick. The tuff and ash are capped by a dark, vesicular basalt in the eastern part of the area and by a thin layer of terrace qravels in the area along the west side of Virgin Valley. Silicification of the ash and tuff has produced a rock that ranges from partly opalized rock that resembles silicified shale to completely altered rock that is entirely translucent, and consists of massive, brown and pale-green opal. Carnotite, the only identified uranium mineral, occurs as fracture coatings or fine layers in the opal; in places, no uranium minerals are visible in the radioactive opal. The opal layers are irregular in extent and thickness. The exposed length of the layers ranges from 8 to 1, 200 ft or more, and the thickness of the layers ranges from 0. 1 to 3. 9 ft. The uranium content of each opal layer, and of different parts of the same layer, differs widely. On the east side of Virgin Valley four of the seven observed opal layers, nos. 3, 4, 5, and 7, are more radioactive than the average; and the uranium content ranges from 0. 002 to 0. 12 percent. Two samples, taken 5 ft apart across opal layer no. 7, contained 0. 003 and 0. -049 percent uranium. On the west side of the valley only four of the fifteen observed opal layers, nos; 9, , 10, 14, and 15, are more radioactive than the average; and the uranium content ranges from 0. 004 to 0. 047 percent. Material of the highest grade was found in a small discontinuous layer of pale-green opal (no. 4) on the east side of Virgin Valley. The grade of this layer ranged from 0. 027 to 0. 12 percent uranium.

  14. A fugacity model for source determination of the Lake Baikal region pollution with polychlorinated Biphenyls

    Energy Technology Data Exchange (ETDEWEB)

    Sofiev, M. [Finnish Meteorological Inst., Helsinki (Finland); Galperin, M.; Maslyaev, A. [Inst. of Program Systems, Pereslavl-Zalesskiy (Russian Federation); McLachlan, M. [Stockholm Univ. (Sweden); Wania, F. [Toronto Univ. (Canada)

    2004-09-15

    PCBs were discovered in the Lake Baikal ecosystem by Malakhov et al. and Bobovnikova et al. A follow up to the initial study showed no decrease over 1981-1989 4, in contrast to what has been observed in other water bodies in the industrialised world. Further studies also showed the contamination in pinnipeds to be among the highest measured anywhere. Above studies and other data suggested a presence of a strong local PCB source (or several ones), which has had a widespread adverse effect for the whole region. To locate the source, Mamontov et al. collected samples from 34 sites over the region, the analysis of which showed a gradient of a factor of 1000, with the lowest concentrations at the north-east of Lake Baikal and the highest concentrations close to the city of Usolye Sibirskoye, a centre of the chemical industry in the Angara River valley. A continuous decrease in the soil contamination was observed along the path from Usolye Sibirskoye up the Angara River valley to Lake Baikal and from there north-eastward along the lake. These results indicate that there was (and perhaps still is) a major source of PCBs in the Usolye area, from where the PCBs are dispersed over the region. However, various obstacles prevent direct observations of potential sources. Therefore, a mathematical modelling approach was adopted in a currently ongoing INTAS project aiming to shed some more light on this problem. The model principles, setup and the results of the first experiments are presented in the current paper.

  15. Effects of lake trout refuges on lake whitefish and cisco in the Apostle Islands Region of Lake Superior

    Science.gov (United States)

    Zuccarino-Crowe , Chiara M.; Taylor, William W.; Hansen, Michael J.; Seider, Michael J.; Krueger, Charles C.

    2016-01-01

    Lake trout refuges in the Apostle Islands region of Lake Superior are analogous to the concept of marine protected areas. These refuges, established specifically for lake trout (Salvelinus namaycush) and closed to most forms of recreational and commercial fishing, were implicated as one of several management actions leading to successful rehabilitation of Lake Superior lake trout. To investigate the potential significance of Gull Island Shoal and Devils Island Shoal refuges for populations of not only lake trout but also other fish species, relative abundances of lake trout, lake whitefish (Coregonus clupeaformis), and cisco (Coregonus artedi) were compared between areas sampled inside versus outside of refuge boundaries. During 1982–2010, lake trout relative abundance was higher and increased faster inside the refuges, where lake trout fishing was prohibited, than outside the refuges. Over the same period, lake whitefish relative abundance increased faster inside than outside the refuges. Both evaluations provided clear evidence that refuges protected these species. In contrast, trends in relative abundance of cisco, a prey item of lake trout, did not differ significantly between areas inside and outside the refuges. This result did not suggest indirect or cascading refuge effects due to changes in predator levels. Overall, this study highlights the potential of species-specific refuges to benefit other fish species beyond those that were the refuges' original target. Improved understanding of refuge effects on multiple species of Great Lakes fishes can be valuable for developing rationales for refuge establishment and predicting associated fish community-level effects.

  16. The Wintertime Covariation of CO2 and Criteria Pollutants in an Urban Valley of the Western United States

    Science.gov (United States)

    Bares, Ryan; Lin, John C.; Hoch, Sebastian W.; Baasandorj, Munkhbayar; Mendoza, Daniel L.; Fasoli, Ben; Mitchell, Logan; Catharine, Douglas; Stephens, Britton B.

    2018-03-01

    Numerous mountain valleys experience wintertime particulate pollution events, when persistent cold air pools (PCAPs) develop and inhibit atmospheric mixing, leading to the accumulation of pollutants. Here we examine the relationships between trace gases and criteria pollutants during winter in Utah's Salt Lake Valley, in an effort to better understand the roles of transport versus chemical processes during differing meteorological conditions as well as insights into how targeted reductions in greenhouse gases will impact local air quality in varying meteorological conditions. CO2 is a chemically inert gas that is coemitted during fossil fuel combustion with pollutants. Many of these coemitted pollutants are precursors that react chemically to form secondary particulate matter. Thus, CO2 can serve as a stable tracer and potentially help distinguish transport versus chemical influences on pollutants. During the winter of 2015-2016, we isolated enhancements in CO2 over baseline levels due to urban emissions ("CO2ex"). CO2ex was paired with similar excesses in other pollutant concentrations. These relationships were examined during different wintertime conditions and stages of pollution episodes: (a) Non-PCAP, (b) beginning, and (c) latter stages of an episode. We found that CO2ex is a good indicator of the presence of gaseous criteria pollutants and a reasonable indicator of PM2.5. Additionally, the relationships between CO2ex and criteria pollutants differ during different phases of PCAP events which provide insight into meteorological and transport processes. Lastly, we found a slight overestimation of CO:CO2 emission ratios and a considerable overestimation of NOx:CO2 by existing inventories for the Salt Lake Valley.

  17. Changes in Rongbuk lake and Imja lake in the Everest region of Himalaya

    Science.gov (United States)

    Chen, W.; Doko, T.; Liu, C.; Ichinose, T.; Fukui, H.; Feng, Q.; Gou, P.

    2014-12-01

    The Himalaya holds the world record in terms of range and elevation. It is one of the most extensively glacierized regions in the world except the Polar Regions. The Himalaya is a region sensitive to climate change. Changes in the glacial regime are indicators of global climate changes. Since the second half of the last century, most Himalayan glaciers have melted due to climate change. These changes directly affected the changes of glacial lakes in the Himalayan region due to the glacier retreat. New glacial lakes are formed, and a number of them have expanded in the Everest region of the Himalayas. This paper focuses on the two glacial lakes which are Imja Lake, located at the southern slope, and Rongbuk Lake, located at the northern slope in the Mt. Everest region, Himalaya to present the spatio-temporal changes from 1976 to 2008. Topographical conditions between two lakes were different (Kruskal-Wallis test, p < 0.05). Rongbuk Lake was located at 623 m higher than Imja Lake, and radiation of Rongbuk Lake was higher than the Imja Lake. Although size of Imja Lake was larger than the Rongbuk Lake in 2008, the growth speed of Rongbuk Lake was accelerating since 2000 and exceeds Imja Lake in 2000-2008. This trend of expansion of Rongbuk Lake is anticipated to be continued in the 21st century. Rongbuk Lake would be the biggest potential risk of glacial lake outburst flood (GLOF) at the Everest region of Himalaya in the future.

  18. Late quaternary environmental changes in the upper Las Vegas valley, Nevada

    Science.gov (United States)

    Quade, Jay

    1986-11-01

    Five stratigraphic units and five soils of late Pleistocene to Holocene age crop out in dissected badlands on Corn Creek Flat, 30 km northwest of Las Vegas, Nevada, and at Tule Springs, nearer to Las Vegas. The record is dominantly fluvial but contains evidence of several moister, marsh-forming periods: the oldest (Unit B) dates perhaps to the middle Wisconsin, and the more widespread Unit D falls between 30,000 and 15,000 yr B.P. Unit D therefore correlates with pluvial maximum lacustrine deposits elsewhere in the Great Basin. Standing water was not of sufficient depth or extent during either period to form lake strandlines. Between 14,000 and 7200 yr B.P. (Unit E), standing surface water gradually decreased, a trend also apparent in Great Basin pluvial lake chronologies during the same period. Groundwater carbonate cementation and burrowing by cicadas (Cicadae) accompany the moist-phase units. After 7200 yr B.P., increased wind action, decreased biotic activity, and at least 25 m of water-table lowering accompanied widespread erosion of older fine-grained deposits. Based on pack-rat midden and pollen evidence, this coincides with major vegetation changes in the valley, from sagebrush-dominated steppe to lower Mohave desertscrub.

  19. Habitat associations of chorusing anurans in the Lower Mississippi River Alluvial valley

    Science.gov (United States)

    Lichtenberg, J.S.; King, S.L.; Grace, J.B.; Walls, S.C.

    2006-01-01

    Amphibian populations have declined worldwide. To pursue conservation efforts adequately, land managers need more information concerning amphibian habitat requirements. To address this need, we examined relationships between anurans and habitat characteristics of wetlands in the Lower Mississippi River Alluvial Valley (LMAV). We surveyed chorusing anurans in 31 wetlands in 2000 and 28 wetlands in 2001, and measured microhabitat variables along the shoreline within the week following each survey. We recorded 12 species of anurans during our study. Species richness was significantly lower in 2000 than 2001 (t-test, P < 0.001) and correlated with an ongoing drought. We found species richness to be significantly greater at lake sites compared to impoundment, swale, and riverine sites (ANOVA, P = 0.002). We used stepwise regression to investigate the wetland types and microhabitat characteristics associated with species richness of chorusing anurans. Microhabitat characteristics associated with species richness included dense herbaceous vegetation and accumulated litter along the shoreline. Individual species showed species-specific habitat associations. The bronze frog, American bullfrog, and northern cricket frog were positively associated with lake sites (Fisher's Exact Test, P < 0.05), however wetland type did not significantly influence any additional species. Using bivariate correlations, we found that six of the seven most common species had significant associations with microhabitat variables. Overall, our findings support the view that conservation and enhancement of amphibian communities in the LMAV and elsewhere requires a matrix of diverse wetland types and habitat conditions. ?? 2006, The Society of Wetland Scientists.

  20. Valley and spin thermoelectric transport in ferromagnetic silicene junctions

    International Nuclear Information System (INIS)

    Ping Niu, Zhi; Dong, Shihao

    2014-01-01

    We have investigated the valley and spin resolved thermoelectric transport in a normal/ferromagnetic/normal silicene junction. Due to the coupling between the valley and spin degrees of freedom, thermally induced pure valley and spin currents can be demonstrated. The magnitude and sign of these currents can be manipulated by adjusting the ferromagnetic exchange field and local external electric field, thus the currents are controllable. We also find fully valley and/or spin polarized currents. Similar to the currents, owing to the band structure symmetry, tunable pure spin and/or valley thermopowers with zero charge counterpart are generated. The results obtained here suggest a feasible way of generating a pure valley (spin) current and thermopower in silicene

  1. Valley-orbit hybrid states in Si quantum dots

    Science.gov (United States)

    Gamble, John; Friesen, Mark; Coppersmith, S. N.

    2013-03-01

    The conduction band for electrons in layered Si nanostructures oriented along (001) has two low-lying valleys. Most theoretical treatments assume that these valleys are decoupled from the long-wavelength physics of electron confinement. In this work, we show that even a minimal amount of disorder (a single atomic step at the quantum well interface) is sufficient to mix valley states and electron orbitals, causing a significant distortion of the long-wavelength electron envelope. For physically realistic electric fields and dot sizes, this valley-orbit coupling impacts all electronic states in Si quantum dots, implying that one must always consider valley-orbit hybrid states, rather than distinct valley and orbital degrees of freedom. We discuss the ramifications of our results on silicon quantum dot qubits. This work was supported in part by ARO (W911NF-08-1-0482) and NSF (DMR-0805045).

  2. Valley Hall effect and Nernst effect in strain engineered graphene

    Science.gov (United States)

    Niu, Zhi Ping; Yao, Jian-ming

    2018-04-01

    We theoretically predict the existence of tunneling valley Hall effect and Nernst effect in the normal/strain/normal graphene junctions, where a strained graphene is sandwiched by two normal graphene electrodes. By applying an electric bias a pure transverse valley Hall current with longitudinal charge current is generated. If the system is driven by a temperature bias, a valley Nernst effect is observed, where a pure transverse valley current without charge current propagates. Furthermore, the transverse valley current can be modulated by the Fermi energy and crystallographic orientation. When the magnetic field is further considered, we obtain a fully valley-polarized current. It is expected these features may be helpful in the design of the controllable valleytronic devices.

  3. Phallodrilus hallae, a new tubificid oligochaete from the St. Lawrence Great Lakes

    Science.gov (United States)

    Cook, David G.; Hiltunen, Jarl K.

    1975-01-01

    The predominantly marine tubificid genus Phallodrilus is defined, a key to its nine species constructed, and an illustrated description of Phallodrilus hallae n. sp. from the St. Lawrence Great Lakes presented. The species is distinguished from other members of the genus by its well-developed atrial musculature, extensions of which ensheath the posterior prostatic ducts.Phallodrilus hallae n. sp. is a small worm which is widely distributed in the sublittoral and profundal benthos of Lake Superior; lakewide it occurred in mean densities of 50 individuals per square metre. Available records indicate a more restricted distribution in Lake Huron and Georgian Bay. We suggest that P. hallae n. sp. is either a glaciomarine relict species, or that it entered the Great Lakes system at the time of the marine transgression of the St. Lawrence valley. The apparent restriction of P. hallae n. sp. to waters of high quality suggests that it may be a sensitive oligotrophic indicator species.

  4. Water quality and fish dynamics in forested wetlands associated with an oxbow lake

    Science.gov (United States)

    Andrews, Caroline S.; Miranda, Leandro E.; Kroger, Robert

    2015-01-01

    Forested wetlands represent some of the most distinct environments in the Lower Mississippi Alluvial Valley. Depending on season, water in forested wetlands can be warm, stagnant, and oxygen-depleted, yet may support high fish diversity. Fish assemblages in forested wetlands are not well studied because of difficulties in sampling heavily structured environments. During the April–July period, we surveyed and compared the water quality and assemblages of small fish in a margin wetland (forested fringe along a lake shore), contiguous wetland (forested wetland adjacent to a lake), and the open water of an oxbow lake. Dissolved-oxygen levels measured hourly 0.5 m below the surface were higher in the open water than in either of the forested wetlands. Despite reduced water quality, fish-species richness and catch rates estimated with light traps were greater in the forested wetlands than in the open water. The forested wetlands supported large numbers of fish and unique fish assemblages that included some rare species, likely because of their structural complexity. Programs developed to refine agricultural practices, preserve riparian zones, and restore lakes should include guidance to protect and reestablish forested wetlands.

  5. High resolution analysis of northern Patagonia lake sediments

    Science.gov (United States)

    Jarvis, S. W.; Croudace, I. W.; Langdon, P. G.; Rindby, A.

    2009-04-01

    Sediment cores covering the period from the last glacial maximum through the Holocene to the present have been collected from sites in the Chacubuco valley, southern Chile (around 47°08'S, 72°25'W, to the east of the North Patagonian Icecap). Cores were taken from five lakes and one recently dried lake bed. Short cores (0.2 to 0.5m), covering approximately the last two hundred years, were taken from all the lakes. Additionally, long sequences were obtained from one of the lakes and from the dried lake bed, the latter sequence extending back to the last glacial maximum as indicated by thick clay at the base. Each of the lakes are small-medium sized and are open systems situated at 300-1000m above sea level. The shorter cores comprise predominantly clastic gyttja but show a number of distinct changes in colour and chemical composition that suggest major environmental changes over the period of sediment accumulation. This is also reflected in variations in the loss on ignition of samples from the cores and in elemental profiles produced by scanning the cores with the Itrax micro-XRF corescanner at 200μm resolution. The long sequence from the dried lake bed has very low organic content glacial clay at the base, interpreted as last glacial maximum basal clay following determination in the field that this layer exceeded 2m in thickness. Similar sediments occur within a stratigraphically discrete section of approximately 14cm and may relate to a stadial event. The latter section also shows a drop in organic content and appears to be glacial clay incorporating some coarse sandy components indicative of detrital input from the catchment. The second long sequence, from a carbonate lake, includes two mineral layers indicating increased detrital input from the catchment. The deeper and thicker of these layers appears similar to the 14cm layer in the first long sequence, while the upper layer comprises a fine grain size indicative of rock flour and hence also of glacial

  6. Geohydrology of Big Bear Valley, California: phase 1--geologic framework, recharge, and preliminary assessment of the source and age of groundwater

    Science.gov (United States)

    Flint, Lorraine E.; Brandt, Justin; Christensen, Allen H.; Flint, Alan L.; Hevesi, Joseph A.; Jachens, Robert; Kulongoski, Justin T.; Martin, Peter; Sneed, Michelle

    2012-01-01

    The Big Bear Valley, located in the San Bernardino Mountains of southern California, has increased in population in recent years. Most of the water supply for the area is pumped from the alluvial deposits that form the Big Bear Valley groundwater basin. This study was conducted to better understand the thickness and structure of the groundwater basin in order to estimate the quantity and distribution of natural recharge to Big Bear Valley. A gravity survey was used to estimate the thickness of the alluvial deposits that form the Big Bear Valley groundwater basin. This determined that the alluvial deposits reach a maximum thickness of 1,500 to 2,000 feet beneath the center of Big Bear Lake and the area between Big Bear and Baldwin Lakes, and decrease to less than 500 feet thick beneath the eastern end of Big Bear Lake. Interferometric Synthetic Aperture Radar (InSAR) was used to measure pumping-induced land subsidence and to locate structures, such as faults, that could affect groundwater movement. The measurements indicated small amounts of land deformation (uplift and subsidence) in the area between Big Bear Lake and Baldwin Lake, the area near the city of Big Bear Lake, and the area near Sugarloaf, California. Both the gravity and InSAR measurements indicated the possible presence of subsurface faults in subbasins between Big Bear and Baldwin Lakes, but additional data are required for confirmation. The distribution and quantity of groundwater recharge in the area were evaluated by using a regional water-balance model (Basin Characterization Model, or BCM) and a daily rainfall-runoff model (INFILv3). The BCM calculated spatially distributed potential recharge in the study area of approximately 12,700 acre-feet per year (acre-ft/yr) of potential in-place recharge and 30,800 acre-ft/yr of potential runoff. Using the assumption that only 10 percent of the runoff becomes recharge, this approach indicated there is approximately 15,800 acre-ft/yr of total recharge in

  7. Spruce Lake Dam reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, G. [SGE Acres Ltd., Fredericton, NB (Canada); Barnard, J. [SGE Acres Ltd., St. John' s, NF (Canada); Vriezen, C. [City of Saint John, NF (Canada); Stephenson, M. [Jacques Whitford Environment Ltd., Fredericton, NB (Canada)

    2004-09-01

    Spruce Lake Dam was constructed in 1898 as part of the water supply system for Saint John, New Brunswick. The original dam was a 6 meter high, 140 meter long concrete gravity dam with an intake structure at its mid point and an overflow spillway at the left abutment. A rehabilitation project was launched in 2001 to bring the deteriorated dam into conformance with the dam safety guidelines of the Canadian Dam Association. The project criteria included minimal disruption to normal operation of water supply facilities and no negative effect on water quality. The project involved installation of a new low level outlet, removal of a gate house and water intake pipes, replacement of an access road culvert in the spillway channel, and raising the earth dam section by 1.8 meters to allow for increased water storage. The new raised section has an impervious core. The project also involved site and geotechnical investigations as well as hydrotechnical and environmental studies. This presentation described the final design of the remedial work and the environmental permitting procedures. Raising the operating level of the system proved successful as demonstrated by the fewer number of pumping days required after dam rehabilitation. The dam safety assessment under the Canadian Environmental Assessment Act began in April 2001, and the rehabilitation was completed by the end of 2002. 1 tab., 8 figs.

  8. Spray Lakes reclamation project

    International Nuclear Information System (INIS)

    Zacaruk, M.R.

    1996-01-01

    When the level of the Spray Lakes (Alberta) reservoir was lowered by four metres, 208 ha of shoreline was exposed offering little to no wildlife benefit and only limited recreation potential. A reclamation plan for 128 ha of shoreline was therefore developed. A wild life-palatable, self-sustaining vegetation cover was established. Approximately 90 ha was scarified, and/or had tree stumps removed prior to seeding, while approximately 40 ha was seeded and fertilized only. The remaining 80 ha of shoreline was not revegetated due to limited access; these areas will be allowed to re-establish naturally from the forested edge. The species were selected based on their adaptation to alkaline soils, drought tolerance, persistence in a stand and rooting characteristics, as well as palatability to wildlife. Alfalfa, white clover and fall rye were seeded. In general, all areas of the reclamation plan are successfully revegetated. Areas which were recontoured are stable and non-eroding. Success was most significant in areas which had been scarified, then seeded and trackpacked. Areas that were seeded and fertilized only were less well established at the end of the first year, but showed improvement in the second and third years. The area will be monitored to ensure the reclaimed vegetation is self-sustaining

  9. MX Siting Investigation. Gravity Survey - Sevier Desert Valley, Utah.

    Science.gov (United States)

    1981-01-24

    Cheyenne, Wyoming. DMAHTC reduces the data to Simple Bouguer Anomaly (see Section A1.4, Appendix Al.0). The Defense Mapping Agency Aerospace Center...Desert Valley, Utah ......... 2 2 Topographic Setting - Sevier Desert Valley, Utah . 3 LIST OF DRAWINGS Drawing Number 1 Complete Bouguer Anomaly...gravity stations were distributed throughout the valley at an approxi- mate interval of 1.4 miles (2.3 km). Drawing 1 is a Complete Bouguer Anomaly

  10. Late Quaternary loess-like paleosols and pedocomplexes, geochemistry, provenance and source area weathering, Manasbal, Kashmir Valley, India

    Science.gov (United States)

    Babeesh, C.; Achyuthan, Hema; Jaiswal, Manoj Kumar; Lone, Aasif

    2017-05-01

    The late Quaternary loess and loess-like deposits in Kashmir Valley are natural archives that have preserved paleoclimate and paleoenvironmental records of the region. We present a loess-like paleosol located along the margin of the Manasbal Lake, Ganderbal, which was studied in detail for understanding the pedological processes and reconstructing the late Quaternary soil formation. In this paper we present loess-like paleosol formation of a nearly 10.6 m thick sequence exposed along the margin of Manasbal Lake, Ganderbal District, Srinagar, Kashmir. Geochemical and textural data of this loess-like sedimentary sequence fluctuate reflecting the varied depositional processes operating in the valley, differential intensity of weathering, and processes of pedogenesis. Weathering indices such as chemical index of alteration, chemical index of weathering, and plagioclase index of alteration reveal weak to moderate weathering of the parent material. Provenance discrimination diagrams of the present study disclose that the Manasbal loess-like paleosol sediments are derived from the mixed source rocks suggesting a variety of provenance with variable geological settings, which apparently have undergone weak to moderate recycling processes. The Manasbal paleosol horizons have been dated by the optically stimulated luminescence (OSL) method to the marine isotope stages mid-MIS-3 (41.7 ± 8.0 ka) and late-MIS-2 (14.6 ± 3.8 ka). During the MIS-3 period, the climate was wetter, forming a strong AhBtk paleosol as inferred from the geochemical data. A steady increase in the CaCO3 content and C/N ratio in the paleosols from 6.50 m (MIS-3) indicates arid and drier climatic conditions. The area around Manasbal Lake incised because of climate change and neotectonic activity since post-14 ka.

  11. Baseline Channel Geometry and Aquatic Habitat Data for Selected Streams in the Matanuska-Susitna Valley, Alaska

    Science.gov (United States)

    Curran, Janet H.; Rice, William J.

    2009-01-01

    Small streams in the rapidly developing Matanuska-Susitna Valley in south-central Alaska are known to support anadromous and resident fish but little is known about their hydrologic and riparian conditions, or their sensitivity to the rapid development of the area or climate variability. To help address this need, channel geometry and aquatic habitat data were collected in 2005 as a baseline of stream conditions for selected streams. Three streams were selected as representative of various stream types, and one drainage network, the Big Lake drainage basin, was selected for a systematic assessment. Streams in the Big Lake basin were drawn in a Geographic Information System (GIS), and 55 reaches along 16 miles of Meadow Creek and its primary tributary Little Meadow Creek were identified from orthoimagery and field observations on the basis of distinctive physical and habitat parameters, most commonly gradient, substrate, and vegetation. Data-collection methods for sites at the three representative reaches and the 55 systematically studied reaches consisted of a field survey of channel and flood-plain geometry and collection of 14 habitat attributes using published protocols or slight modifications. Width/depth and entrenchment ratios along the Meadow-Little Meadow Creek corridor were large and highly variable upstream of Parks Highway and lower and more consistent downstream of Parks Highway. Channel width was strongly correlated with distance, increasing downstream in a log-linear relation. Runs formed the most common habitat type, and instream vegetation dominated the habitat cover types, which collectively covered 53 percent of the channel. Gravel suitable for spawning covered isolated areas along Meadow Creek and about 29 percent of Little Meadow Creek. Broad wetlands were common along both streams. For a comprehensive assessment of small streams in the Mat-Su Valley, critical additional data needs include hydrologic, geologic and geomorphic, and biologic data

  12. Disorder-dependent valley properties in monolayer WSe2

    KAUST Repository

    Tran, Kha

    2017-07-19

    We investigate the effect of disorder on exciton valley polarization and valley coherence in monolayer WSe2. By analyzing the polarization properties of photoluminescence, the valley coherence (VC) and valley polarization (VP) are quantified across the inhomogeneously broadened exciton resonance. We find that disorder plays a critical role in the exciton VC, while affecting VP less. For different monolayer samples with disorder characterized by their Stokes shift (SS), VC decreases in samples with higher SS while VP does not follow a simple trend. These two methods consistently demonstrate that VC as defined by the degree of linearly polarized photoluminescence is more sensitive to disorder, motivating further theoretical studies.

  13. A multiple-tracer approach to understanding regional groundwater flow in the Snake Valley area of the eastern Great Basin, USA

    International Nuclear Information System (INIS)

    Gardner, Philip M.; Heilweil, Victor M.

    2014-01-01

    Highlights: • Age tracers and noble gases constrain intra- and inter-basin groundwater flow. • Tritium indicates modern (<60 yr) recharge occurring in all mountain areas. • Noble-gas data identify an important interbasin hydraulic discontinuity. • Further groundwater development may significantly impact Snake Valley springs. - Abstract: Groundwater in Snake Valley and surrounding basins in the eastern Great Basin province of the western United States is being targeted for large-scale groundwater extraction and export. Concern about declining groundwater levels and spring flows in western Utah as a result of the proposed groundwater withdrawals has led to efforts that have improved the understanding of this regional groundwater flow system. In this study, environmental tracers (δ 2 H, δ 18 O, 3 H, 14 C, 3 He, 4 He, 20 Ne, 40 Ar, 84 Kr, and 129 Xe) and major ions from 142 sites were evaluated to investigate groundwater recharge and flow-path characteristics. With few exceptions, δ 2 H and δ 18 O show that most valley groundwater has similar ratios to mountain springs, indicating recharge is dominated by relatively high-altitude precipitation. The spatial distribution of 3 H, terrigenic helium ( 4 He terr ), and 3 H/ 3 He ages shows that modern groundwater (<60 yr) in valley aquifers is found only in the western third of the study area. Pleistocene and late-Holocene groundwater is found in the eastern parts of the study area. The age of Pleistocene groundwater is supported by minimum adjusted radiocarbon ages of up to 32 ka. Noble gas recharge temperatures (NGTs) are generally 1–11 °C in Snake and southern Spring Valleys and >11 °C to the east of Snake Valley and indicate a hydraulic discontinuity between Snake and Tule Valleys across the northern Confusion Range. The combination of NGTs and 4 He terr shows that the majority of Snake Valley groundwater discharges as springs, evapotranspiration, and well withdrawals within Snake Valley rather than

  14. Rift Valley fever virus seroprevalence in human rural populations of Gabon.

    Directory of Open Access Journals (Sweden)

    Xavier Pourrut

    Full Text Available BACKGROUND: Rift Valley fever (RVF is a mosquito-borne viral zoonosis caused by a phlebovirus and transmitted by Aedes mosquitoes. Humans can also be infected through direct contact with blood (aerosols or tissues (placenta, stillborn of infected animals. Although severe clinical cases can be observed, infection with RVF virus (RVFV in humans is, in most cases, asymptomatic or causes a febrile illness without serious symptoms. In small ruminants RVFV mainly causes abortion and neonatal death. The distribution of RVFV has been well documented in many African countries, particularly in the north (Egypt, Sudan, east (Kenya, Tanzania, Somalia, west (Senegal, Mauritania and south (South Africa, but also in the Indian Ocean (Madagascar, Mayotte and the Arabian Peninsula. In contrast, the prevalence of RVFV has rarely been investigated in central African countries. METHODOLOGY/PRINCIPAL FINDINGS: We therefore conducted a large serological survey of rural populations in Gabon, involving 4,323 individuals from 212 randomly selected villages (10.3% of all Gabonese villages. RVFV-specific IgG was found in a total of 145 individuals (3.3% suggesting the wide circulation of Rift Valley fever virus in Gabon. The seroprevalence was significantly higher in the lakes region than in forest and savannas zones, with respective rates of 8.3%, 2.9% and 2.2%. In the lakes region, RVFV-specific IgG was significantly more prevalent in males than in females (respectively 12.8% and 3.8% and the seroprevalence increased gradually with age in males but not in females. CONCLUSIONS/SIGNIFICANCE: Although RVFV was suggested to circulate at a relatively high level in Gabon, no outbreaks or even isolated cases have been documented in the country. The higher prevalence in the lakes region is likely to be driven by specific ecologic conditions favorable to certain mosquito vector species. Males may be more at risk of infection than females because they spend more time farming and

  15. The reproduction of lake trout in southern Lake Superior

    Science.gov (United States)

    Eschmeyer, Paul H.

    1955-01-01

    The principal spawning grounds of lake trout (Salvelinus namaycush namaycush) in United States waters of southern Lake Superior are on rocky shoals at depths of less than 20 fathoms. Most spawning occurs in October and early November. Of the mature fish collected on or near the spawning grounds, 60 to 69 percent were males. Among mature fish the average length of females was greater than that of males; few males less than 24 inches or females less than 26 inches in total length were caught. Recoveries of lake trout tagged on the spawning grounds showed that some males remained in the immediate area for a period of several weeks during the spawning season. Marked fish showed a tendency to return during later years to spawning grounds on which they had been tagged, even though many of them ranged long distances between spawning seasons.

  16. Geologic history of the Neogene “Qena Lake” developed during the evolution of the Nile Valley: A sedimentological, mineralogical and geochemical approach

    Science.gov (United States)

    Philobbos, Emad R.; Essa, Mahmoud A.; Ismail, Mustafa M.

    2015-01-01

    Siliciclastic and carbonate sediments were laid down in southern Wadi Qena and around the Qena Nile bend (Middle Egypt) in a lacustrine-alluvial environment which dominated a relatively wide lake, the "Qena Lake" that interrupted the Nile course during the Neogene time. These sediments are represented mainly by the oldest dominantly lacustrine chocolate brown mudstones of the Khuzam Formation that accumulated nearer to the center of that lake (now forming a 185 m terrace above sea level), overlain by the dominantly lacustrine carbonates and marls of the Durri Formation which accumulated during semi-arid conditions, mainly nearer to the periphery of the lake (now forming 170, 180 and 185 m terraces a.s.l. in the studied sections). The water level of the "Qena Lake" reached 240 m. above sea level, as indicated by the maximum carbonate elevation reached in the region. Finally fanglomerates of the Higaza Formation with its chert and limestone conglomerates accumulated during torrential periods at higher elevations (forming 240, 300 and 400 m terraces a.s.l.). These three formations accumulated in this particular area before and during the unroofing of the basement rocks of the Eastern Desert, west of the watershed. According to the known Early Miocene initial development of the Nile Valley, beside the occurrence of similar deposits of Oligocene age along the eastern side of the basement range, the earlier known Pliocene age given for these sediments in the Qena area is here questioned. It might belong to earlier Miocene?-Pliocene times. As the basement rocks of the Eastern Desert were still covered by Cretaceous-Paleogene sedimentary rocks while the Khuzam, Durri and Higaza Formations were accumulating in the Qena Lake region, it is believed, contrary to the belief of some authors, that the basement rocks of the Eastern Desert were not the source of these sediments. The carbonate petrographic study, beside the X-ray, and the11 major oxides and 22 trace elements

  17. Recent warming of lake Kivu.

    Science.gov (United States)

    Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  18. Recent warming of lake Kivu.

    Directory of Open Access Journals (Sweden)

    Sergei Katsev

    Full Text Available Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  19. 33 CFR 162.134 - Connecting waters from Lake Huron to Lake Erie; traffic rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; traffic rules. 162.134 Section 162.134 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.134 Connecting waters from Lake Huron to Lake Erie; traffic rules. (a) Detroit River. The...

  20. 33 CFR 162.132 - Connecting waters from Lake Huron to Lake Erie; communications rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; communications rules. 162.132 Section 162.132 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.132 Connecting waters from Lake Huron to Lake Erie; communications rules. (a...

  1. 33 CFR 162.130 - Connecting waters from Lake Huron to Lake Erie; general rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; general rules. 162.130 Section 162.130 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.130 Connecting waters from Lake Huron to Lake Erie; general rules. (a) Purpose. The...

  2. 33 CFR 162.138 - Connecting waters from Lake Huron to Lake Erie; speed rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; speed rules. 162.138 Section 162.138 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.138 Connecting waters from Lake Huron to Lake Erie; speed rules. (a) Maximum speed limit for...

  3. 33 CFR 162.136 - Connecting waters from Lake Huron to Lake Erie; anchorage grounds.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; anchorage grounds. 162.136 Section 162.136 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.136 Connecting waters from Lake Huron to Lake Erie; anchorage grounds. (a) In the Detroit...

  4. 33 CFR 162.140 - Connecting waters from Lake Huron to Lake Erie; miscellaneous rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; miscellaneous rules. 162.140 Section 162.140 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.140 Connecting waters from Lake Huron to Lake Erie; miscellaneous rules. (a...

  5. Energy density of lake whitefish Coregonus clupeaformis in Lakes Huron and Michigan

    Science.gov (United States)

    Pothoven, S.A.; Nalepa, T.F.; Madenjian, C.P.; Rediske, R.R.; Schneeberger, P.J.; He, J.X.

    2006-01-01

    We collected lake whitefish Coregonus clupeaformis off Alpena and Tawas City, Michigan, USA in Lake Huron and off Muskegon, Michigan USA in Lake Michigan during 2002–2004. We determined energy density and percent dry weight for lake whitefish from both lakes and lipid content for Lake Michigan fish. Energy density increased with increasing fish weight up to 800 g, and then remained relatively constant with further increases in fish weight. Energy density, adjusted for weight, was lower in Lake Huron than in Lake Michigan for both small (≤800 g) and large fish (>800 g). Energy density did not differ seasonally for small or large lake whitefish or between adult male and female fish. Energy density was strongly correlated with percent dry weight and percent lipid content. Based on data from commercially caught lake whitefish, body condition was lower in Lake Huron than Lake Michigan during 1981–2003, indicating that the dissimilarity in body condition between the lakes could be long standing. Energy density and lipid content in 2002–2004 in Lake Michigan were lower than data for comparable sized fish collected in 1969–1971. Differences in energy density between lakes were attributed to variation in diet and prey energy content as well as factors that affect feeding rates such as lake whitefish density and prey abundance.

  6. Research objectives to support the South Florida Ecosystem Restoration initiative-Water Conservation Areas, Lake Okeechobee, and the East/West waterways

    OpenAIRE

    Kitchens, Wiley M.

    1994-01-01

    The South Florida Ecosystem encompasses an area of approximately 28,000 km2 comprising at least 11 major physiographic provinces, including the Kissimmee River Valley, Lake Okeechobee, the Immokalee Rise, the Big Cypress, the Everglades, Florida Bay, the Atlantic Coastal Ridge, Biscayne Bay, the Florida Keys, the Florida Reef Tract, and nearshore coastal waters. South Florida is a heterogeneous system of wetlands, uplands, coastal areas, and marine areas, dominated by the watershe...

  7. Inverted topographic features, now submerged beneath the water of Lake Nasser, document a morphostratigraphic sequence of high-amplitude late-Pleistocene climate oscillation in Egyptian Nubia

    Science.gov (United States)

    Giegengack, Robert; Zaki, Abdallah S.

    2017-12-01

    The Nile Valley between the Second Cataract at Wadi Halfa and the First Cataract at Aswan has been inundated behind two dams - the Aswan Dam, first built in 1902, and the High Dam (Sa'ad el A'ali), that blocked the flow of the Nile in 1964. The anticipated loss of archeological monuments in Lake Nasser, the reservoir behind the High Dam, initiated an international campaign to protect, move, or at least document as many of those monuments as possible.

  8. Preparation of aluminium lakes by electrocoagulation

    OpenAIRE

    Prapai Pradabkham

    2008-01-01

    Aluminium lakes have been prepared by electrocoagulation employing aluminium as electrodes. The electrocoagulation is conducted in an aqueous alcoholic solution and is completed within one hour. The dye content in the lake ranges approximately between 4-32%.

  9. Global Lake and River Ice Phenology Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Lake and River Ice Phenology Database contains freeze and thaw/breakup dates as well as other descriptive ice cover data for 865 lakes and rivers in the...

  10. Lake Tahoe Water Quality Improvement Programs

    Science.gov (United States)

    Information on the Lake Tahoe watershed, EPA's protection efforts, water quality issues, effects of climate, change, Lake Tahoe Total Maximum Daily Load (TMDL), EPA-sponsored projects, and list of partner agencies.

  11. Biota - 2011 Vegetation Inventory - Marsh Lake, MN

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — 2011 Vegetation Classification for Marsh Lake, MN Vegetation Project Report, OMBIL Environmental Stewardship - Level 1 Inventory. Marsh Lake is located on the...

  12. Zooplankton communities in a large prealpine lake, Lake Constance: comparison between the Upper and the Lower Lake

    Directory of Open Access Journals (Sweden)

    Gerhard MAIER

    2005-08-01

    Full Text Available The zooplankton communities of two basins of a large lake, Lake Constance, were compared during the years 2002 and 2003. The two basins differ in morphology, physical and chemical conditions. The Upper Lake basin has a surface area of 470 km2, a mean depth of 100 and a maximum depth of 250 m; the Lower Lake basin has a surface area of 62 km2, a mean depth of only 13 and a maximum depth of 40 m. Nutrient, chlorophyll-a concentrations and mean temperatures are somewhat higher in the Lower than in the Upper Lake. Total abundance of rotifers (number per m2 lake surface was higher and rotifer development started earlier in the year in the Lower than in the Upper Lake. Total abundance of crustaceans was higher in the Upper Lake in the year 2002; in the year 2003 no difference in abundance could be detected between the lake basins, although in summer crustacean abundance was higher in the Lower than in the Upper Lake. Crustacean communities differed significantly between lake basins while there was no apparent difference in rotifer communities. In the Lower Lake small crustaceans, like Bosmina spp., Ceriodaphnia pulchella and Thermocyclops oithonoides prevailed. Abundance (number per m2 lake surface of predatory cladocerans, large daphnids and large copepods was much lower in the Lower than in the Upper Lake, in particular during the summer months. Ordination with nonmetric multidimensional scaling (NMS separated communities of both lakes along gradients that correlated with temperature and chlorophyll a concentration. Clutches of copepods were larger in the Lower than in the Upper Lake. No difference could be detected in clutch size of large daphnids between lake basins. Our results show that zooplankton communities in different basins of Lake Constance can be very different. They further suggest that the lack of large crustaceans in particular the lack of large predatory cladocerans in the Lower Lake can have negative effects on growth and

  13. 33 CFR 162.220 - Hoover Dam, Lake Mead, and Lake Mohave (Colorado River), Ariz.-Nev.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Hoover Dam, Lake Mead, and Lake... REGULATIONS § 162.220 Hoover Dam, Lake Mead, and Lake Mohave (Colorado River), Ariz.-Nev. (a) Lake Mead and... the axis of Hoover Dam and that portion of Lake Mohave (Colorado River) extending 4,500 feet...

  14. Surface slip during large Owens Valley earthquakes

    KAUST Repository

    Haddon, E. K.; Amos, C. B.; Zielke, Olaf; Jayko, A. S.; Burgmann, R.

    2016-01-01

    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from approximate to 1.0 to 6.0 m and average 3.31.1 m (2 sigma). Vertical offsets are predominantly east-down between approximate to 0.1 and 2.4 m, with a mean of 0.80.5 m. The average lateral-to-vertical ratio compiled at specific sites is approximate to 6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7-11 m and net average of 4.41.5 m, corresponding to a geologic M-w approximate to 7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.12.0 m, 12.8 +/- 1.5 m, and 16.6 +/- 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between approximate to 0.6 and 1.6 mm/yr (1 sigma) over the late Quaternary.

  15. Surface slip during large Owens Valley earthquakes

    KAUST Repository

    Haddon, E. K.

    2016-01-10

    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from approximate to 1.0 to 6.0 m and average 3.31.1 m (2 sigma). Vertical offsets are predominantly east-down between approximate to 0.1 and 2.4 m, with a mean of 0.80.5 m. The average lateral-to-vertical ratio compiled at specific sites is approximate to 6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7-11 m and net average of 4.41.5 m, corresponding to a geologic M-w approximate to 7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.12.0 m, 12.8 +/- 1.5 m, and 16.6 +/- 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between approximate to 0.6 and 1.6 mm/yr (1 sigma) over the late Quaternary.

  16. Engineering assessment of inactive uranium mill tailings: Monument Valley Site, Monument Valley, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive.

  17. Engineering assessment of inactive uranium mill tailings: Monument Valley Site, Monument Valley, Arizona

    International Nuclear Information System (INIS)

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive

  18. 78 FR 59840 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2013-09-30

    ...] Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management District... of plan. * * * * * (c) * * * (428) * * * (i) * * * (B) Antelope Valley Air Quality Management...) * * * (i) * * * (B) Antelope Valley Air Quality Management District. (1) Rule 431.1, ``Sulfur Content of...

  19. 78 FR 45114 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Science.gov (United States)

    2013-07-26

    ... the California State Implementation Plan, Antelope Valley Air Quality Management District AGENCY... the Antelope Valley Air Quality Management District (AVAQMD) portion of the California State... for the South Coast Air Quality Management District (SCAQMD). The Antelope Valley Air Pollution...

  20. The uncanny valley in games and animation

    CERN Document Server

    Tinwell, Angela

    2014-01-01

    Advances in technology have enabled animators and video game designers to design increasingly realistic, human-like characters in animation and games. Although it was intended that this increased realism would allow viewers to appreciate the emotional state of characters, research has shown that audiences often have a negative reaction as the human likeness of a character increases. This phenomenon, known as the Uncanny Valley, has become a benchmark for measuring if a character is believably realistic and authentically human like. This book is an essential guide on how to overcome the Uncanny

  1. Neuroimaging Features of San Luis Valley Syndrome

    Directory of Open Access Journals (Sweden)

    Matthew T. Whitehead

    2015-01-01

    Full Text Available A 14-month-old Hispanic female with a history of double-outlet right ventricle and developmental delay in the setting of recombinant chromosome 8 syndrome was referred for neurologic imaging. Brain MR revealed multiple abnormalities primarily affecting midline structures, including commissural dysgenesis, vermian and brainstem hypoplasia/dysplasia, an interhypothalamic adhesion, and an epidermoid between the frontal lobes that enlarged over time. Spine MR demonstrated hypoplastic C1 and C2 posterior elements, scoliosis, and a borderline low conus medullaris position. Presented herein is the first illustration of neuroimaging findings from a patient with San Luis Valley syndrome.

  2. Subsidence due to Excessive Groundwater Withdrawal in the San Joaquin Valley, California

    Science.gov (United States)

    Corbett, F.; Harter, T.; Sneed, M.

    2011-12-01

    Francis Corbett1, Thomas Harter1 and Michelle Sneed2 1Department of Land Air and Water Resources, University of California, Davis. 2U.S. Geological Survey Western Remote Sensing and Visualization Center, Sacramento. Abstract: Groundwater development within the Central Valley of California began approximately a century ago. Water was needed to supplement limited surface water supplies for the burgeoning population and agricultural industries, especially within the arid but fertile San Joaquin Valley. Groundwater levels have recovered only partially during wet years from drought-induced lows creating long-term groundwater storage overdraft. Surface water deliveries from Federal and State sources led to a partial alleviation of these pressure head declines from the late 1960s. However, in recent decades, surface water deliveries have declined owing to increasing environmental pressures, whilst water demands have remained steady. Today, a large portion of the San Joaquin Valley population, and especially agriculture, rely upon groundwater. Groundwater levels are again rapidly declining except in wet years. There is significant concern that subsidence due to groundwater withdrawal, first observed at a large scale in the middle 20th century, will resume as groundwater resources continue to be depleted. Previous subsidence has led to problems such as infrastructure damage and flooding. To provide a support tool for groundwater management on a naval air station in the southern San Joaquin Valley (Tulare Lake Basin), a one-dimensional MODFLOW subsidence model covering the period 1925 to 2010 was developed incorporating extensive reconstruction of historical subsidence and water level data from various sources. The stratigraphy used for model input was interpreted from geophysical logs and well completion reports. Gaining good quality data proved problematic, and often values needed to be estimated. In part, this was due to the historical lack of awareness/understanding of

  3. lakemorpho: Calculating lake morphometry metrics in R.

    Science.gov (United States)

    Hollister, Jeffrey; Stachelek, Joseph

    2017-01-01

    Metrics describing the shape and size of lakes, known as lake morphometry metrics, are important for any limnological study. In cases where a lake has long been the subject of study these data are often already collected and are openly available. Many other lakes have these data collected, but access is challenging as it is often stored on individual computers (or worse, in filing cabinets) and is available only to the primary investigators. The vast majority of lakes fall into a third category in which the data are not available. This makes broad scale modelling of lake ecology a challenge as some of the key information about in-lake processes are unavailable. While this valuable in situ information may be difficult to obtain, several national datasets exist that may be used to model and estimate lake morphometry. In particular, digital elevation models and hydrography have been shown to be predictive of several lake morphometry metrics. The R package lakemorpho has been developed to utilize these data and estimate the following morphometry metrics: surface area, shoreline length, major axis length, minor axis length, major and minor axis length ratio, shoreline development, maximum depth, mean depth, volume, maximum lake length, mean lake width, maximum lake width, and fetch. In this software tool article we describe the motivation behind developing lakemorpho , discuss the implementation in R, and describe the use of lakemorpho with an example of a typical use case.

  4. Study of pollution in Rawal lake

    International Nuclear Information System (INIS)

    Ahmad, M.; Khan, M.I.A.; Nisar, M.; Kaleem, M.Y.

    1999-01-01

    It was intended to establish effects of pollution on quality of water of Rawal Lake, Islamabad. Six stations were located for collection of water. The data collected and analyzed so far indicated increasing pollution in the lake Increase in growth of hydrophytes in quite evident, leading towards process of eutrophication of the lake. (author)

  5. Decline of the world's saline lakes

    Science.gov (United States)

    Wayne A. Wurtsbaugh; Craig Miller; Sarah E. Null; R. Justin DeRose; Peter Wilcock; Maura Hahnenberger; Frank Howe; Johnnie Moore

    2017-01-01

    Many of the world’s saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and...

  6. A reactive nitrogen budget for Lake Michigan

    Science.gov (United States)

    The reactive nitrogen budget for Lake Michigan was reviewed and updated, making use of recent estimates of watershed and atmospheric nitrogen loads. The updated total N load to Lake Michigan was approximately double the previous estimate from the Lake Michigan Mass Balance study ...

  7. Historical changes to Lake Washington and route of the Lake Washington Ship Canal, King County, Washington

    Science.gov (United States)

    Chrzastowski, Michael J.

    1983-01-01

    Lake Washington, in the midst of the greater Seattle metropolitan area of the Puget Sound region (fig. 1), is an exceptional commercial, recreational, and esthetic resource for the region . In the past 130 years, Lake Washington has been changed from a " wild " lake in a wilderness setting to a regulated lake surrounded by a growing metropolis--a transformation that provides an unusual opportunity to study changes to a lake's shoreline and hydrologic characteristics -resulting from urbanization.

  8. First evidence of successful natural reproduction by planted lake trout in Lake Huron

    Science.gov (United States)

    Nester, Robert T.; Poe, Thomas P.

    1984-01-01

    Twenty-two lake trout (Salvelinus namaycush) swim-up fry, 24-27 mm long, were captured with emergent fry traps and a tow net in northwestern Lake Huron on a small nearshore reef off Alpena, Michigan, between May 10 and June 1, 1982. These catches represent the first evidence of successful production of swim-up fry by planted, hatchery-reared lake trout in Lake Huron since the lake trout rehabilitation program began in 1973.

  9. Field Surveys, IOC Valleys. Volumes II-I and II-II. Biological Resources Survey, Dry Lake Valley, Nevada and Pine and Wah Wah Valleys, Utah. Supplement. Spring Survey of the IOC Valleys.

    Science.gov (United States)

    1981-08-01

    pinnata X K CACTACEAE Coryphantha vivipara x Opuntia echinocarpa K 0 x K K K 5putaerinacea K Op’untia sp. x X -12- TABLE 3-1 (Cont.) Shelter site...pilosus x Lepidium montanun X CACTACEAE Opuntia echinocarpa x x Opuntia erinacea X X X CHENOPODIACEAE Atriplex canescens X X X Ceratoides lanata X X X X...Stanleya pinnata X CACTACEAE Coryphantha vivipara var. rosea X Echinocereus engelmannii X opuntia echinocarpa X X X X X X X X Opuntia erinacea XX X X X X x

  10. Use of ground-water reservoirs for storage of surface water in the San Joaquin Valley, California

    Science.gov (United States)

    Davis, G.H.; Lofgren, B.E.; Mack, Seymour

    1964-01-01

    The San Joaquin Valley includes roughly the southern two-thirds of the Central Valley of California, extending 250 miles from Stockton on the north to Grapevine at the foot of the Tehachapi Mountains. The valley floor ranges in width from 25 miles near Bakersfield to about 55 miles near Visalia; it has a surface area of about 10,000 square miles. More than one-quarter of all the ground water pumped for irrigation in the United States is used in this highly productive valley. Withdrawal of ground water from storage by heavy pumping not only provides a needed irrigation water supply, but it also lowers the ground-water level and makes storage space available in which to conserve excess water during periods of heavy runoff. A storage capacity estimated to be 93 million acre-feet to a depth of 200 feet is available in this ground-water reservoir. This is about nine times the combined capacity of the existing and proposed surface-water reservoirs in the San Joaquin Valley under the California Water Plan. The landforms of the San Joaquin Valley include dissected uplands, low plains and fans, river flood plains and channels, and overflow lands and lake bottoms. Below the land surface, unconsolidated sediments derived from the surrounding mountain highlands extend downward for hundreds of feet. These unconsolidated deposits, consisting chiefly of alluvial deposits, but including some widespread lacustrine sediments, are the principal source of ground water in the valley. Ground water occurs under confined and unconfined conditions in the San Joaquin Valley. In much of the western, central, and southeastern parts of the valley, three distinct ground-water reservoirs are present. In downward succession these are 1) a body of unconfined and semiconfined fresh water in alluvial deposits of Recent, Pleistocene, and possibly later Pliocene age, overlying the Corcoran clay member of the Tulare formation; 2) a body of fresh water confined beneath the Corcoran clay member, which

  11. Horizontal drilling under Lake Erie

    Energy Technology Data Exchange (ETDEWEB)

    Meller, R.

    2001-07-01

    Drilling oil wells under Lake Erie calls for horizontal drilling wells to be drilled from shore out into the pay-zone under the lake. The nature and characteristics of horizontal wells as compared to vertical wells are explored. Considerations that have to be taken into account in drilling horizontal wells are explained (the degree of curvature, drilling fluid quality, geosteering in the pay-zone, steering instrumentation, measurements while drilling (MWD), logging while drilling (LWD)). The concept and reasons for extended reach wells are outlined, along with characteristic features of multilateral wells.

  12. The Lake and the City

    Directory of Open Access Journals (Sweden)

    Konstantin Lidin

    2013-09-01

    Full Text Available The article considers relations between the city of Irkutsk and Lake Baikal in terms of cultural geography. Baikal is included in the UNESCO world heritage list. Unlike the majority of lakes also included in this list, Baikal’s coast is inhabited, especially its southern part. Similar situation is, for example, in the cluster “the city of Bergen – Geiranger village – Geirangerfjord” in Norway. The comparative analysis shows how Norway’s positive experience of the system “a city – a village – a natural phenomenon” could be used in order to make Irkutsk more attractive for tourists and citizens.

  13. Protecting the endangered lake salmon

    International Nuclear Information System (INIS)

    Soimakallio, H.; Oesch, P.

    1997-01-01

    In addition to the Ringed Seal, the labyrinthine Saimaa lake system created after the Ice Age also trapped a species of salmon, whose entire life cycle became adapted to fresh water. In order to improve the living conditions of this lake salmon which - like the ringed seal - is today classified as an endangered species, an intensive research programme has been launched. The partners include the Finnish Game and Fisheries Research Institute, fishing and environmental authorities and - in collaboration with UPM-Kymmene Oy and Kuurnan Voima Oy - the IVO subsidiary Pamilo Oy

  14. LAKE BAIKAL: Underwater neutrino detector

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    A new underwater detector soon to be deployed in Lake Baikal in Siberia, the world's deepest lake with depths down to 1.7 kilometres, could help probe the deepest mysteries of physics. One of the big unsolved problems of astrophysics is the origin of very energetic cosmic rays. However there are many ideas on how particles could be accelerated by exotic concentrations of matter and provide the majority of the Galaxy's high energy particles. Clarification would come from new detectors picking up the energetic photons and neutrinos from these sources

  15. Protecting the endangered lake salmon

    Energy Technology Data Exchange (ETDEWEB)

    Soimakallio, H.; Oesch, P. [ed.

    1997-11-01

    In addition to the Ringed Seal, the labyrinthine Saimaa lake system created after the Ice Age also trapped a species of salmon, whose entire life cycle became adapted to fresh water. In order to improve the living conditions of this lake salmon which - like the ringed seal - is today classified as an endangered species, an intensive research programme has been launched. The partners include the Finnish Game and Fisheries Research Institute, fishing and environmental authorities and - in collaboration with UPM-Kymmene Oy and Kuurnan Voima Oy - the IVO subsidiary Pamilo Oy

  16. Post Audit of Lake Michigan Lake Trout PCB Model Forecasts

    Science.gov (United States)

    The Lake Michigan (LM) Mass Balance Study was conducted to measure and model polychlorinated biphenyls (PCBs) and other anthropogenic substances to gain a better understanding of the transport, fate, and effects of these substances within the system and to aid managers in the env...

  17. Feeding ecology of lake whitefish larvae in eastern Lake Ontario

    Science.gov (United States)

    Johnson, James H.; McKenna, James E.; Chalupnicki, Marc A.; Wallbridge, Tim; Chiavelli, Rich

    2009-01-01

    We examined the feeding ecology of larval lake whitefish (Coregonus clupeaformis) in Chaumont Bay, Lake Ontario, during April and May 2004-2006. Larvae were collected with towed ichthyoplankton nets offshore and with larval seines along the shoreline. Larval feeding periodicity was examined from collections made at 4-h intervals over one 24-h period in 2005. Inter-annual variation in diet composition (% dry weight) was low, as was spatial variation among collection sites within the bay. Copepods (81.4%), primarily cyclopoids (59.1%), were the primary prey of larvae over the 3-year period. Cladocerans (8.1%; mainly daphnids, 6.7%) and chironomids (7.3%) were the other major prey consumed. Larvae did not exhibit a preference for any specific prey taxa. Food consumption of lake whitefish larvae was significantly lower at night (i.e., 2400 and 0400 h). Substantial variation in diet composition occurred over the 24-h diel study. For the 24-h period, copepods were the major prey consumed (50.4%) and their contribution in the diet ranged from 29.3% (0400 h) to 85.9% (1200 h). Chironomids made up 33.4% of the diel diet, ranging from 8.0% (0800 h) to 69.9% (0400 h). Diel variation in the diet composition of lake whitefish larvae may require samples taken at several intervals over a 24-h period to gain adequate representation of their feeding ecology.

  18. Medicinal plants of Usherai valley, Dir, NWFP, Pakistan

    International Nuclear Information System (INIS)

    Hazarat, A.; Shah, J.; Ahmad, S.; Nasir, M.; Jan, A.K.; Skindar

    2010-01-01

    This research is based on the results of an ethno-botanical research conducted in Usherai Valley. The main objective was to enlist the wealth of medicinal plants. In total 50 species, belonging to 32 families of wild herbs, shrubs and trees were found to be used as medicinal plants by the inhabitants in the valley. (author)

  19. Esophageal cancer in north rift valley of western Kenya | Wakhisi ...

    African Journals Online (AJOL)

    Esophageal cancer in north rift valley of western Kenya. ... Our finding also contrast with an earlier reported study that indicated that Rift Valley is a low prevalence area for this type of cancer. The mean age ... This may lead to identification of molecular biomarkers to be used in future for the early detection of this neoplasm.

  20. 27 CFR 9.208 - Snake River Valley.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Snake River Valley. 9.208... Snake River Valley. (a) Name. The name of the viticultural area described in this section is “Snake River Valley”. For purposes of part 4 of this chapter, “Snake River Valley” is a term of viticultural...

  1. Rift Valley fever potential mosquito vectors and their infection status ...

    African Journals Online (AJOL)

    Background: Rift Valley fever (RVF) is a mosquito-borne viral zoonotic disease. Rift Valley fever virus (RVFV) has been isolated from more than 40 species of mosquitoes from eight genera. This study was conducted to determine the abundance of potential mosquito vectors and their RVFV infection status in Ngorongoro ...

  2. Nematic and Valley Ordering in Anisotropic Quantum Hall Systems

    Science.gov (United States)

    Parameswaran, S. A.; Abanin, D. A.; Kivelson, S. A.; Sondhi, S. L.

    2010-03-01

    We consider a multi-valley two dimensional electron system in the quantum Hall effect (QHE) regime. We focus on QHE states that arise due to spontaneous breaking of the valley symmetry by the Coulomb interactions. We show that the anisotropy of the Fermi surface in each valley, which is generally present in such systems, favors states where all the electrons reside in one of the valleys. In a clean system, the valley ordering occurs via a finite temperature Ising-like phase transition, which, owing to the Fermi surface anisotropy, is accompanied by the onset of nematic order. In a disordered system, domains of opposite polarization are formed, and therefore long-range valley order is destroyed, however, the resulting state is still compressible. We discuss the transport properties in ordered and disordered regimes, and point out the possible relation of our results to recent experiments in AlAs [1]. [1] Y. P. Shkolnikov, S. Misra, N. C. Bishop, E. P. De Poortere, and M. Shayegan, Observation of Quantum Hall ``Valley Skyrmions", Phys. Rev. Lett. 95, 068809 (2005)[2] D.A. Abanin, S.A. Parameswaran, S.A. Kivelson and S.L. Sondhi, Nematic and Valley Ordering in Anisotropic Quantum Hall Systems, to be published.

  3. Some Environmental Issues of Inland Valleys: A Case Study | Asiam ...

    African Journals Online (AJOL)

    The study concluded that inland valleys can be real environmental liability because produce from such valleys can be polluted and hence can be a source of social conflict particularly when they fringe mineral concessions as the adverse impacts could be unfortunately attributed to mining activity and similar land uses.

  4. West Valley Reprocessing Plant. Safety analysis plant, supplement 18

    International Nuclear Information System (INIS)

    1975-01-01

    Supplement 18 contains the following additions to Appendix II--5.0 Geology and Seismology: Section 12 ''Seismic Investigations for Spent Fuel Reprocessing Facility at West Valley, New York,'' October 20, 1975, and Section 13 ''Earthquake Return Period Analysis at West Valley, New York, for Nuclear Fuel Services, Inc.'' November 5, 1975

  5. Salts in the dry valleys of Antartica

    Science.gov (United States)

    Gibson, E. K., Jr.; Presley, B. J.; Hatfield, J.

    1984-01-01

    The Dry Valleys of Antarctica are examples of polar deserts which are rare geological features on the Earth. Such deserts typically have high salinities associated with their closed-basin waters and on many surficial materials throughout them. In order to examine the possible sources for the salts observed in association with the soils in the Dry Valleys. The chloride and bromide concentrations of the water leachates from 58 soils and core samples were measured. The Cl/Br ratio for seawater is 289 and ratios measured for most of the 58 soils studied (greater than 85% of the soils studied) was larger than the seawater ratio (ratios typically were greater than 1000 and ranged up to 50,000). The enrichment in Cl relative to Br is strong evidence that the alts present within the soils were derived from seawater during ordinary evaporation processes, and not from the deposition of Cl and Br from aerosols or from rock weathering as has often been suggested.

  6. West Valley waste removal system study

    International Nuclear Information System (INIS)

    Janicek, G.P.

    1981-04-01

    This study addresses the specific task of removing high-level wastes from underground tanks at Western New York Nuclear Center and delivering them to an onsite waste solidification plant. It begins with a review of the design and construction features of the waste storage tanks pertinent to the waste removal task with particular emphasis on the unique and complex tank internals which severely complicate the task of removal. It follows with a review of tank cleaning techniques used and under study at both Hanford and Savannah River and previous studies proposing the use of these techniques at West Valley. It concludes from these reviews that existing techniques are not directly transferable to West Valley and that a new approach is required utilizing selected feature and attributes from existing methodology. The study also concludes, from an investigation of the constraints imposed by the processing facility, that waste removal will be intermittent, requiring batch transfer over the anticipated 3 years of processing operations. Based on these reviews and conclusions, the study proposes that the acid waste be processed first and that one of the 15,000-gallon acid tanks then be used for batch feeding the neutralized waste. The proposed system would employ commercially available pumping equipment to transfer the wastes from the batch tank to processing via existing process piping. A commercially available mixed-flow pump and eight turbine pumps would homogenize the neutralized waste in conjunction with eight custom-fabricated sluicers for periodic transfer to the batch tank

  7. Hoopa Valley Small Scale Hydroelectric Feasibility Project

    Energy Technology Data Exchange (ETDEWEB)

    Curtis Miller

    2009-03-22

    This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

  8. Four newly recorded species of Dryopteridaceae from Kashmir valley, India

    Directory of Open Access Journals (Sweden)

    SHAKOOR AHMAD MIR

    2014-04-01

    Full Text Available Mir SA, Mishra AK, Reshi ZA, Sharma MP. 2014. Four newly recorded species of Dryopteridaceae from Kashmir valley, India. Biodiversitas 15: 6-11. Habitat diversity, elevation, cloud cover, rainfall, seasonal and temperature variations have created many ideal sites for the luxuriant growth of pteridophytes in the Kashmir valley, yet all the regions of the valley have not been surveyed. In Kashmir valley the family Dryopteridaceae is represented by 31 species. During the recent extensive field surveys of Shopian district four more species viz., Dryopteris caroli-hopei Fraser-Jenkins, Dryopteris blanfordii subsp. nigrosquamosa (Ching Fraser-Jenkins, Dryopteris pulvinulifera (Bedd. Kuntze and Polystichum Nepalense (Spreng C. Chr. have been recorded for the first time from the valley. The taxonomic description, synonyms, distribution and photographs of each species are given in this article.

  9. The quasi-steady state of the valley wind system

    Directory of Open Access Journals (Sweden)

    Juerg eSchmidli

    2015-12-01

    Full Text Available The quasi-steady-state limit of the diurnal valley wind system is investigated overidealized three-dimensional topography. Although this limit is rarely attained inreality due to ever-changing forcings, the investigation of this limit canprovide valuable insight, in particular on the mass and heat fluxes associatedwith the along-valley wind. We derive a scaling relation for the quasi-steady-state along-valleymass flux as a function of valley geometry, valley size, atmospheric stratification,and surface sensible heat flux forcing. The scaling relation is tested by comparisonwith the mass flux diagnosed from numerical simulations of the valleywind system. Good agreement is found. The results also provide insight into the relationbetween surface friction and the strength of the along-valley pressure gradient.

  10. Isotope techniques in lake water studies

    International Nuclear Information System (INIS)

    Gourcy, L.

    1999-01-01

    Freshwater lakes are among the most easily exploitable freshwater resources. Lakes are also recognized as major sedimentological features in which stored material can be used to study recent climate and pollution evolution. To adequately preserve these important landscape features, and to use them as climatic archives, an improved understanding of processes controlling their hydrologic and bio-geochemical environments if necessary. This article briefly describes the IAEA activities related to the study of lakes in such areas as lake budget, lake dynamics, water contamination, and paleolimnological investigations

  11. Life Detection and Characterization of Subsurface Ice and Brine in the McMurdo Dry Valleys Using an Ultrasonic Gopher: A NASA ASTEP Project

    Science.gov (United States)

    Doran, P. T.; Bar-Cohen, Y.; Fritsen, C.; Kenig, F.; McKay, C. P.; Murray, A.; Sherrit, S.

    2003-01-01

    Evidence for the presence of ice and fluids near the surface of Mars in both the distant and recent past is growing with each new mission to the Planet. One explanation for fluids forming springlike features on Mars is the discharge of subsurface brines. Brines offer potential refugia for extant Martian life, and near surface ice could preserve a record of past life on the planet. Proven techniques to get underground to sample these environments, and get below the disruptive influence of the surface oxidant and radiation regime, will be critical for future astrobiology missions to Mars. Our Astrobiology for Science and Technology for Exploring Planets (ASTEP) project has the goal to develop and test a novel ultrasonic corer in a Mars analog environment, the McMurdo Dry valleys, Antarctica, and to detect and describe life in a previously unstudied extreme ecosystem; Lake Vida (Fig. 1), an ice-sealed lake.

  12. Satellite Monitoring and Characterization of the 2010 Rockslide-Dammed Lake Gojal, North Pakistan

    Science.gov (United States)

    Leonard, G. J.; Kargel, J. S.; Crippen, R. E.; Evans, S. G.; Delaney, K. B.; Schneider, J. F.

    2010-12-01

    On January 4, 2010, a landslide blocked the Hunza River at Attabad, northern Pakistan (36.308°N, 74.820°E). The landslide destroyed the village of Attabad killing 19 people, and formed a dam approximately 1200m long, 350 meters wide, and 125 meters high. The flow of the Hunza river was blocked for 144 days, forming Lake Gojal. In addition to inundating several villages and submerging 22 km of the regionally critical Karakoram Highway, >25,000 people have been displaced or remain cut off from overland connection with the rest of the country. Lake overtopping began on May 29 via a 15m deep spillway excavated through the saddle of the dam. Remarkably, the slowly eroding natural structure remains largely intact and currently represents a new geologic feature, although a threat remains from possible catastrophic outburst flooding. We have monitored growth of the lake with multi-temporal satellite imagery collected from ASTER (Advanced Spaceborne Thermal and Reflection Radiometer) and ALI (Advanced Land Imager) sensors. We applied NASA’s ASTER Global Digital Elevation Model (GDEM) and SRTM-3 digital terrain data, along with field data obtained onsite by Schneider, and by Pakistan’s NDMA to derive volumes of the growing lake. Lake size peaked during mid-summer when it was ~22 km long, 12 km2, 119m deep, and contained 540 to 620 Mm3 water (SRTM-3 and GDEM +5m global correction estimates respectively). Our estimates indicated lake volumes three to four times higher than media quotes, and before spillover, were used to improve predictions of possible flood discharge and disaster management planning. Estimates of valley inflow based on a 31-year hydrographic history (Archer, D., 2003, Jour. Hydrology 274, 198-210) are consistent with our volume infilling estimates. As early as April 14 our volume assessments, coupled with hydrographic and seepage data were used to project a spillover date range of May 28-June 2, bracketing the actual overflow date. Additionally, we have

  13. Geohydrologic reconnaissance of Lake Mead National Recreation Area; Las Vegas Wash to Opal Mountain, Nevada

    Science.gov (United States)

    Laney, R.L.

    1981-01-01

    . Transbasin movement of ground water probably occurs , and perhaps the larger part of the spring discharge is underflow from Eldorado Valley. The more favorable sites for ground-water development are along the shores of Lakes Mead and Mohave and are the Fire Mountain, Opal Mountain to Aztec Wash, and Hemenway Wash sites. Wells yielding several hundred gallons per minute of water of acceptable chemical quality can be developed at these sites. (USGS)

  14. A new 10,000 year pollen record from Lake Kinneret (Israel) - first results

    Science.gov (United States)

    Schiebel, V.; Litt, T.; Nowaczyk, N.; Stein, M.; Wennrich, V.

    2012-04-01

    Lake Kinneret - as part of the Jordan Rift Valley in Israel - is situated in the southern Levant, which is affected by Eastern Mediterranean climate. The present lake level is around 212 m below msl. Lake Kinneret has a surface of ca. 165 km2 and its watershed comprises the Galilee, the Golan Heights, the Hermon Range and the Anti-Lebanon Mountains. Its most important tributary is the Jordan River. The geography of the Lake Kinneret region is characterised by big differences in altitude. Steep slopes rise up to 560 m above the lake level in the west, north, and east. Mount Hermon (2814 m above mean sea level, amsl) is the highest summit of the Anti-Lebanon Range, and Mount Meron (1208 m amsl) located in the Upper Galilee encircle Lake Kinneret within a 100-km range in the northwest. Due to the pattern of average precipitation, distinct plant-geographical territories converge in the region: The Mediterranean and the Irano-Turanian biom (after Zohary). Varying ratios of characteristic pollen taxa representing certain plant associations serve as proxy data for the reconstruction of paleovegetation, paleoenvironment, and paleoclimate. We present a pollen record based on analyses of sediment cores obtained during a drilling campaign on Lake Kinneret in March 2010. A composite profile of 17.8 m length was established by correlating two parallel cores by using magnetic susceptibility data. Our record encompasses the past ca. 10,000 years of a region, which has been discussed as migration corridor of humans to Europe and, being part of the Fertile Crescent, as the cradle of agriculture in West Asia. Conclusions concerning human impact on vegetation and therefore population density can be drawn by analysing changes of ratios of certain plant taxa such as Olea europaea cultivated in this region since the Chalcolithic Period (6,500 BP). In addition, stable isotope data were produced from discrete bulk samples, and the elemental composition of the sediments was determined by

  15. Geologic map of the Harvard Lakes 7.5' quadrangle, Park and Chaffee Counties, Colorado

    Science.gov (United States)

    Kellogg, Karl S.; Lee, Keenan; Premo, Wayne R.; Cosca, Michael A.

    2013-01-01

    The Harvard Lakes 1:24,000-scale quadrangle spans the Arkansas River Valley in central Colorado, and includes the foothills of the Sawatch Range on the west and Mosquito Range on the east. The Arkansas River valley lies in the northern end of the Rio Grande rift and is structurally controlled by Oligocene and younger normal faults mostly along the west side of the valley. Five separate pediment surfaces were mapped, and distinctions were made between terraces formed by the Arkansas River and surfaces that formed from erosion and alluviation that emanated from the Sawatch Range. Three flood deposits containing boulders as long as 15 m were deposited from glacial breakouts just north of the quadrangle. Miocene and Pliocene basin-fill deposits of the Dry Union Formation are exposed beneath terrace or pediment deposits in several places. The southwestern part of the late Eocene Buffalo Peaks volcanic center, mostly andesitic breccias and flows and ash-flow tuffs, occupy the northeastern corner of the map. Dated Tertiary intrusive rocks include Late Cretaceous or early Paleocene hornblende gabbro and hornblende monzonite. Numerous rhyolite and dacite dikes of inferred early Tertiary or Late Cretaceous age also intrude the basement rocks. Basement rocks are predominantly Mesoproterozoic granites, and subordinately Paleoproterozoic biotite gneiss and granitic gneiss.

  16. Decline of the world's saline lakes

    Science.gov (United States)

    Wurtsbaugh, Wayne A.; Miller, Craig; Null, Sarah E.; Derose, R. Justin; Wilcock, Peter; Hahnenberger, Maura; Howe, Frank; Moore, Johnnie

    2017-11-01

    Many of the world's saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and levels. Quantifying the relative contributions of natural variability and human impacts to lake inflows is needed to preserve these lakes. With a credible water balance, causes of lake decline from water diversions or climate variability can be identified and the inflow needed to maintain lake health can be defined. Without a water balance, natural variability can be an excuse for inaction. Here we describe the decline of several of the world's large saline lakes and use a water balance for Great Salt Lake (USA) to demonstrate that consumptive water use rather than long-term climate change has greatly reduced its size. The inflow needed to maintain bird habitat, support lake-related industries and prevent dust storms that threaten human health and agriculture can be identified and provides the information to evaluate the difficult tradeoffs between direct benefits of consumptive water use and ecosystem services provided by saline lakes.

  17. Ohio Lake Erie Commission Homepage

    Science.gov (United States)

    management of Lake Erie: including, water quality protection, fisheries management, wetlands restoration over 365 projects since 1993. Projects have focused on an array of issues critical to the effective quality of its waters and ecosystem, and to promote economic development of the region by ensuring the

  18. Schistosomiasis in Lake Malawi villages

    DEFF Research Database (Denmark)

    Madsen, Henry; Bloch, Paul; Makaula, Peter

    2011-01-01

    Historically, open shorelines of Lake Malawi were free from schistosome, Schistosoma haematobium, transmission, but this changed in the mid-1980s, possibly as a result of over-fishing reducing density of molluscivore fishes. Very little information is available on schistosome infections among...

  19. Pollutant transformations over Lake Michigan

    International Nuclear Information System (INIS)

    Alkezweeny, A.J.; Arbuthnot, D.R.; Busness, K.M.; Easter, R.C.; Hales, J.M.; Lee, R.N.; Young, J.M.

    1979-01-01

    An aircraft, a chartered boat, and a constant altitude balloon were used to study pollutant transformations over Lake Michigan in a Lagrangian frame of reference. The experiments were conducted during the summer under strong atmospheric stability where diffusion and dry deposition of pollutants can be neglected

  20. Eutrophication potential of Payette Lake, Idaho

    Science.gov (United States)

    Woods, Paul F.

    1997-01-01

    Payette Lake was studied during water years 1995-96 to determine the 20.5-square-kilometer lake's assimilative capacity for nutrients and, thus, its eutrophication potential. The study included quantification of hydrologic and nutrient budgets, characterization of water quality in the limnetic and littoral zones, development of an empirical nutrient load/lake response model, and estimation of the limnological effects of a large-scale forest fire in the lake's 373-square-kilometer watershed during the autumn of 1994. Streamflow from the North Fork Payette River, the lake's primary tributary, delivered about 73 percent of the lake's inflow over the 2 years. Outflow from the lake, measured since 1908, was 128 and 148 percent of the long-term average in 1995 and 1996, respectively. The larger volumes of outflow reduced the long-term average water-

  1. Groundwater flux and nutrient loading in the northeast section of Bear Lake, Muskegon County, Michigan, 2015

    Science.gov (United States)

    Totten, Alexander R.; Maurer, Jessica A.; Duris, Joseph W.

    2017-11-30

    Bear Lake in North Muskegon, Michigan, is listed as part of the Muskegon Lake area of concern as designated by the U.S. Environmental Protection Agency. This area of concern was designated as a result of eutrophication and beneficial use impairments. On the northeast end of Bear Lake, two man-made retention ponds (Willbrandt Pond East and Willbrandt Pond West), formerly used for celery farming, may contribute nutrients to Bear Lake. Willbrandt Ponds (East and West) were previously muck fields that were actively used for celery farming from the early 1900s until 2002. The restoration and reconnection of the Willbrandt Ponds into Bear Lake prompted concerns of groundwater nutrient loading into Bear Lake. Studies done by the State of Michigan and Grand Valley State University revised initial internal phosphorus load estimates and indicated an imbalance in the phosphorus budget in Bear Lake. From June through November 2015, the U.S. Geological Survey (USGS) did an investigative study to quantify the load of nutrients from shallow groundwater around the Willbrandt Ponds in an effort to update the phosphorus budget to Bear Lake. Seven sampling locations were established, including five shallow groundwater wells and two surface-water sites, in the Willbrandt pond study area and Bear Lake. A total of 12 nutrient samples and discrete water-level measurements were collected from each site from June through November 2015. Continuous water-level data were recorded for both surface-water monitoring locations for the entire sampling period.Water-level data indicated that Willbrandt Pond West had the highest average water-level elevation of all sites monitored, which indicated the general direction of flux is from Willbrandt Pond West to Bear Lake. Nutrient and chloride loading from Willbrandt Pond West to Bear Lake was calculated using two distinct methods: Dupuit and direct seepage methods. Shallow groundwater loading calculations were determined by using groundwater levels to

  2. Hydrologic connectivity in the McMurdo Dry Valleys of Antarctica: System function and changes over two decades

    Science.gov (United States)

    Wlostowski, A. N.; Gooseff, M. N.; Bernzott, E. D.; McKnight, D. M.; Jaros, C.; Lyons, W.

    2013-12-01

    The McMurdo Dry Valleys of Antarctica is one of the coldest (average annual air temperature of -18°C) and driest (ecological connections in the McMurdo Dry Valleys. Intermittent glacial meltwater streams connect glaciers to closed basin lakes and compose the most prominent hydrologic nexus in the valleys. This study uses of 20+ years of stream temperature, electrical conductivity (EC), and discharge data to enhance our quantitative understanding of the temporal dynamics of hydrologic connections along the glacier-stream-lake continuum. Annually, streamflow occurs for a relatively brief 10-12 week period of the austral summer. Longer streams are more prone to intermittent dry periods during the flow season, making for a harsher ecological environment than shorter streams. Diurnal streamflow variation occurs primarily as a result of changing solar postion relative to the source-glacier surfaces. Therfore, different streams predictably experience high flows and low flows at different times of the day. Electrical conductivity also exhibits diel variations, but the nature of EC-discharge relationships differs among streams throughout the valley. Longer streams have higher EC values and lower discharges than shorter streams, suggesting that hyporheic zones act as a significant solute source and hydrologic reservoir along longer streams. Water temperatures are consistently warmer in longer streams, relative to shorter streams, likely due to prolonged exposure to incident radiation with longer surface water residence times. Inter-annually, several shorter streams in the region show significant increases in Q10, Q30, Q50, Q70, Q90, and/or Q100 flows across the 20+ year record, indicating a long-term non-stationarity in hydrologic system dynamics. The tight coupling between surface waters and the glacier surface energy balance bring forth remarkably consistent hydrologic patterns on the daily and annual timescales, providing a model system for understanding fundamental

  3. Contaminant Monitoring Strategy for Henrys Lake, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    John S. Irving; R. P. Breckenridge

    1992-12-01

    Henrys Lake, located in southeastern Idaho, is a large, shallow lake (6,600 acres, {approx} 17.1 feet maximum depth) located at 6,472 feet elevation in Fremont Co., Idaho at the headwaters of the Henrys Fork of the Snake River. The upper watershed is comprised of high mountains of the Targhee National Forest and the lakeshore is surrounded by extensive flats and wetlands, which are mostly privately owned. The lake has been dammed since 1922, and the upper 12 feet of the lake waters are allocated for downriver use. Henrys Lake is a naturally productive lake supporting a nationally recognized ''Blue Ribbon'' trout fishery. There is concern that increasing housing development and cattle grazing may accelerate eutrophication and result in winter and early spring fish kills. There has not been a recent thorough assessment of lake water quality. However, the Department of Environmental Quality (DEQ) is currently conducting a study of water quality on Henrys Lake and tributary streams. Septic systems and lawn runoff from housing developments on the north, west, and southwest shores could potentially contribute to the nutrient enrichment of the lake. Many houses are on steep hillsides where runoff from lawns, driveways, etc. drain into wetland flats along the lake or directly into the lake. In addition, seepage from septic systems (drainfields) drain directly into the wetlands enter groundwater areas that seep into the lake. Cattle grazing along the lake margin, riparian areas, and uplands is likely accelerating erosion and nutrient enrichment. Also, cattle grazing along riparian areas likely adds to nutrient enrichment of the lake through subsurface flow and direct runoff. Stream bank and lakeshore erosion may also accelerate eutrophication by increasing the sedimentation of the lake. Approximately nine streams feed the lake (see map), but flows are often severely reduced or completely eliminated due to irrigation diversion. In addition, subsurface

  4. Surface slip during large Owens Valley earthquakes

    Science.gov (United States)

    Haddon, E.K.; Amos, C.B.; Zielke, O.; Jayko, Angela S.; Burgmann, R.

    2016-01-01

    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from ∼1.0 to 6.0 m and average 3.3 ± 1.1 m (2σ). Vertical offsets are predominantly east-down between ∼0.1 and 2.4 m, with a mean of 0.8 ± 0.5 m. The average lateral-to-vertical ratio compiled at specific sites is ∼6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7–11 m and net average of 4.4 ± 1.5 m, corresponding to a geologic Mw ∼7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.1 ± 2.0 m, 12.8 ± 1.5 m, and 16.6 ± 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between ∼0.6 and 1.6 mm/yr (1σ) over the late Quaternary.

  5. Life history of lake herring of Green Bay, Lake Michigan

    Science.gov (United States)

    Smith, Stanford H.

    1956-01-01

    Although the lake herring has been an important contributor to the commercial fish production of Green Bay, little has been known about it. This study is based on field observations and data from about 6,500 lake herring collected over the period 1948 to 1952. Relatively nonselective commercial pound nets were a primary source of material for the study of age and growth. Commercial and experimental gill nets were used to obtain data on gear selectivity and vertical distribution. Scales were employed to investigate age and growth. Age group IV normally dominated commercial catches during the first half of the calendar year and age group III the last half. At these ages the fish averaged about 10.5 inches in length. The season's growth started in May, was most rapid in July, and terminated near the end of October. The sexes grew at the same rate. Selectivity of fishing gear was found to influence the estimation of growth. Geographical and annual differences in growth are shown. Factors that might contribute to discrepancies in calculated growth are evaluated. Possible real and apparent causes of growth compensation are given. The relation between length and weight is shown to vary with sex, season, year, and method of capture. Females were relatively more plentiful in commercial catches in February than in May through December. The percentage of females decreased with increase in age in pound-net catches but increased with age in gill-net samples. Within a year class the percentage of females decreased with increase in age. Most Green Bay lake herring mature during their second or third year of life. They are pelagic spawners with most intensive spawning over shallow areas. Spawning takes place between mid-November and mid-December, and eggs hatch in April and May. Lake herring ovaries contained from 3,500 to 11,200 eggs (averaged 6,375). Progress of spawning by age, sex, and length is given. Lake herring were distributed at all depths in Green Bay in early May, were

  6. Spatial and temporal genetic diversity of lake whitefish (Coregonus clupeaformis (Mitchill)) from Lake Huron and Lake Erie

    Science.gov (United States)

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Hartman, Travis; Johnson, Jim; Roseman, Edward F.

    2013-01-01

    Lake whitefish (Coregonus clupeaformis (Mitchill)) are important commercially, culturally, and ecologically in the Laurentian Great Lakes. Stocks of lake whitefish in the Great Lakes have recovered from low levels of abundance in the 1960s. Reductions in abundance, loss of habitat and environmental degradation can be accompanied by losses of genetic diversity and overall fitness that may persist even as populations recover demographically. Therefore, it is important to be able to identify stocks that have reduced levels of genetic diversity. In this study, we investigated patterns of genetic diversity at microsatellite DNA loci in lake whitefish collected between 1927 and 1929 (historical period) and between 1997 and 2005 (contemporary period) from Lake Huron and Lake Erie. Genetic analysis of lake whitefish from Lakes Huron and Erie shows that the amount of population structuring varies from lake to lake. Greater genetic divergences among collections from Lake Huron may be the result of sampling scale, migration patterns and demographic processes. Fluctuations in abundance of lake whitefish populations may have resulted in periods of increased genetic drift that have resulted in changes in allele frequencies over time, but periodic genetic drift was not severe enough to result in a significant loss of genetic diversity. Migration among stocks may have decreased levels of genetic differentiation while not completely obscuring stock boundaries. Recent changes in spatial boundaries to stocks, the number of stocks and life history characteristics of stocks further demonstrate the potential of coregonids for a swift and varied response to environmental change and emphasise the importance of incorporating both spatial and temporal considerations into management plans to ensure that diversity is preserved.

  7. Physico-chemical, morphological and pasting properties of starches extracted from water Chestnuts (Trapa natans from three Lakes of Kashmir, India

    Directory of Open Access Journals (Sweden)

    Adil Gani

    2010-06-01

    Full Text Available Studies on physicochemical, morphology and pasting properties of starches extracted from water chestnuts of three Lakes of Kashmir valley (Wular, Anchar and Dal Lakes were conducted to determine their application in different food products. The water chestnut starch from Dal Lake had more oval shaped granules than water chestnut starches from the Wular and the Anchar Lakes.The unique feature of the water chestnut starches were shape of starch granules which looked like horn(s protruding from the surface which did not appear in other starches already studied. Proximate analysis of water chestnut starches showed that average protein content were 0.4%, amylose 29.5 % and ash 0.007 on dry weight basis. Increase in water binding capacity, swelling power and solubility was found over a temperature range of 50-90ºC. Water chestnut starches showed an increase in syneresis during freeze thaw cycles and decline in paste clarity upon storage. Starch extracted from the water chestnuts of the Dal Lake showed higher water binding capacity, swelling, solubility, past clarity, freeze thaw stability, peak viscosity, final viscosity and lower protein content, amylose content, pasting temperature and gel firmness than starches extracted from water chestnuts of the Wular and the Anchar Lakes.

  8. Summary of the engineering assessment of inactive uranium mill tailings: Monument Valley site, Monument Valley, Arizona

    International Nuclear Information System (INIS)

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching, treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be more than $500/lb of U 3 O 8 by heap leach or conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is economically unattractive

  9. Land use in the northern Coachella Valley

    Science.gov (United States)

    Bale, J. B.; Bowden, L. W.

    1973-01-01

    Satellite imagery has proved to have great utility for monitoring land use change and as a data source for regional planning. In California, open space desert resources are under severe pressure to serve as a source for recreational gratification to individuals living in the heavily populated southern coastal plain. Concern for these sensitive arid environments has been expressed by both federal and state agencies. The northern half of the Coachella Valley has historically served as a focal point for weekend recreational activity and second homes. Since demand in this area has remained high, land use change from rural to urban residential has been occurring continuously since 1968. This area of rapid change is an ideal site to illustrate the utility of satellite imagery as a data source for planning information, and has served as the areal focus of this investigation.

  10. Israeli Infotech Migrants in Silicon Valley

    Directory of Open Access Journals (Sweden)

    Steven J. Gold

    2018-01-01

    Full Text Available Prior to the 1980s, Israel’s national ideology discouraged emigration and entrepreneurship among its citizens. Yet, by the late 1990s, Israeli emigrants were one of the leading immigrant nationalities in Silicon Valley. Drawing on interviews, fieldwork, a literature review, and perusal of social media, I explore the origins of Israeli involvement in high-tech activities and the extensive linkages between Israeli emigrants and the Israeli high-tech industry. I also summarize the patterns of communal cooperation that permit emigrant families to maintain an Israel-oriented way of life in suburban communities south of San Francisco, and I compare these patterns with those of Indians, a nationality engaged in the same pursuit. I conclude by considering the impact of infotech involvement on Israeli immigrants and on the U.S. economy.

  11. Elk Valley Coal innovation paving the way

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.; Ednie, H.; Weldon, H.

    2006-09-15

    Elk Valley Coal maintains performance optimization across its six metallurgical coal operations. Performance, personnel issues, and training are discussed. Programmes at Fording River, Greenhills, and Coal Mountain are described. Fording River is implementing new computer systems and high-speed wireless networks. The pit control system and the equipment maintenance and remote maintenance programmes are being improved. The Glider Kit program to rebuild major equipment is described. Safety and productivity measures at Greenhills include testing and evaluation of innovations such as the Drilling and Blasting System (DABS), a payload monitor on a shovel, and two GPS-based systems. Blasting methods, a timing study that examines wall stability, fragmentation simulation, and the Six Mine structure at Coal Mountain are described. 5 photos.

  12. Hydrogeological reconnaissance study: Dyfi Valley, Wales

    International Nuclear Information System (INIS)

    Glendining, S.J.

    1981-10-01

    This report describes work carried out for the Department of the Environment as part of its research programme into radioactive waste management. It presents an account of a hydrogeological reconnaissance study in the Dyfi Valley area of Central Wales. Initially the purposes of such a study are given and the assumptions used in deriving parameters such as flow volume, path length and transit time in areas of massive fractured rocks are described. Using these assumptions with geological, topographic and hydrometeorological data the potential ranges in properties such as bulk hydraulic conductivity, path lengths, hydraulic gradients and volumes of groundwater flow have been determined. These ranges have been used to estimate solute transport model parameters. The limitations and usefulness of the reconnaissance study in planning research and siting exploratory boreholes in the Dyfi area are discussed. (author)

  13. Functional ecology of an Antarctic Dry Valley

    Science.gov (United States)

    Chan, Yuki; Van Nostrand, Joy D.; Zhou, Jizhong; Pointing, Stephen B.

    2013-01-01

    The McMurdo Dry Valleys are the largest ice-free region in Antarctica and are critically at risk from climate change. The terrestrial landscape is dominated by oligotrophic mineral soils and extensive exposed rocky surfaces where biota are largely restricted to microbial communities, although their ability to perform the majority of geobiological processes has remained largely uncharacterized. Here, we identified functional traits that drive microbial survival and community assembly, using a metagenomic approach with GeoChip-based functional gene arrays to establish metabolic capabilities in communities inhabiting soil and rock surface niches in McKelvey Valley. Major pathways in primary metabolism were identified, indicating significant plasticity in autotrophic, heterotrophic, and diazotrophic strategies supporting microbial communities. This represents a major advance beyond biodiversity surveys in that we have now identified how putative functional ecology drives microbial community assembly. Significant differences were apparent between open soil, hypolithic, chasmoendolithic, and cryptoendolithic communities. A suite of previously unappreciated Antarctic microbial stress response pathways, thermal, osmotic, and nutrient limitation responses were identified and related to environmental stressors, offering tangible clues to the mechanisms behind the enduring success of microorganisms in this seemingly inhospitable terrain. Rocky substrates exposed to larger fluctuations in environmental stress supported greater functional diversity in stress-response pathways than soils. Soils comprised a unique reservoir of genes involved in transformation of organic hydrocarbons and lignin-like degradative pathways. This has major implications for the evolutionary origin of the organisms, turnover of recalcitrant substrates in Antarctic soils, and predicting future responses to anthropogenic pollution. PMID:23671121

  14. Direct measurement of exciton valley coherence in monolayer WSe2

    KAUST Repository

    Hao, Kai

    2016-02-29

    In crystals, energy band extrema in momentum space can be identified by a valley index. The internal quantum degree of freedom associated with valley pseudospin indices can act as a useful information carrier, analogous to electronic charge or spin. Interest in valleytronics has been revived in recent years following the discovery of atomically thin materials such as graphene and transition metal dichalcogenides. However, the valley coherence time—a crucial quantity for valley pseudospin manipulation—is difficult to directly probe. In this work, we use two-dimensional coherent spectroscopy to resonantly generate and detect valley coherence of excitons (Coulomb-bound electron–hole pairs) in monolayer WSe2 (refs ,). The imposed valley coherence persists for approximately one hundred femtoseconds. We propose that the electron–hole exchange interaction provides an important decoherence mechanism in addition to exciton population recombination. This work provides critical insight into the requirements and strategies for optical manipulation of the valley pseudospin for future valleytronics applications.

  15. Glaciation style and the geomorphological record: evidence for Younger Dryas glaciers in the eastern Lake District, northwest England

    Science.gov (United States)

    McDougall, Derek

    2013-08-01

    The Younger Dryas (c. 12,900-11,700 years ago) in Britain witnessed renewed glaciation, with the readvance of ice masses that had survived the preceding Lateglacial Interstadial as well as the formation of new glaciers. The extents of these former glaciers have been mapped by many workers over the past fifty years, usually as a basis for palaeoclimatic investigations. It has frequently been asserted that the landform record is sufficiently clear to allow accurate ice mass reconstructions at or near maximum extents. Detailed geomorphological mapping in the eastern Lake District in NW England, however, demonstrates that this confidence may not always be warranted. Whereas previous workers have interpreted the well-developed moraines that exist in some locations as evidence for an alpine-style of glaciation, with ice restricted to a small number of valleys, this study shows that the most recent glaciation to affect the area was characterised by: (i) extensive summit icefields, which supplied ice to the surrounding valleys; and (ii) a much greater volume of ice in the valleys than previously thought. The discovery that summit icefields were relatively common at this time is consistent with recent studies elsewhere in the Lake District and beyond. More significant, however, is the recognition that changing glacier-topographic interactions over both space and time appears to have had a profound impact on valley-floor glacial landform development, with the absence of clear moraines not necessarily indicating ice-free conditions at this time. This complicates glacier reconstructions based solely on the geomorphological record. Similar geomorphological complexity may be present in other areas that previously supported summit icefields, and this needs to be taken into account in glacier reconstructions.

  16. Establishment patterns of water-elm at Catahoula Lake, Louisiana

    Science.gov (United States)

    Karen S. Doerr; Sanjeev Joshi; Richard F. Keim

    2015-01-01

    At Catahoula Lake in central Louisiana, an internationally important lake for water fowl, hydrologic alterations to the surrounding rivers and the lake itself have led to an expansion of water-elm (Planera aquatic J.F. Gmel.) into the lake bed. In this study, we used dendrochronology and aerial photography to quantify the expansion of water-elm in the lake and identify...

  17. Valley-chiral quantum Hall state in graphene superlattice structure

    Science.gov (United States)

    Tian, H. Y.; Tao, W. W.; Wang, J.; Cui, Y. H.; Xu, N.; Huang, B. B.; Luo, G. X.; Hao, Y. H.

    2016-05-01

    We theoretically investigate the quantum Hall effect in a graphene superlattice (GS) system, in which the two valleys of graphene are coupled together. In the presence of a perpendicular magnetic field, an ordinary quantum Hall effect is found with the sequence σxy=ν e^2/h(ν=0,+/-1,+/-2,\\cdots) . At the zeroth Hall platform, a valley-chiral Hall state stemming from the single K or K' valley is found and it is localized only on one sample boundary contributing to the longitudinal conductance but not to the Hall conductivity. Our findings may shed light on the graphene-based valleytronics applications.

  18. Groundwater availability of the Central Valley Aquifer, California

    Science.gov (United States)

    Faunt, Claudia C.

    2009-01-01

    California's Central Valley covers about 20,000 square miles and is one of the most productive agricultural regions in the world. More than 250 different crops are grown in the Central Valley with an estimated value of $17 billion per year. This irrigated agriculture relies heavily on surface-water diversions and groundwater pumpage. Approximately one-sixth of the Nation's irrigated land is in the Central Valley, and about one-fifth of the Nation's groundwater demand is supplied from its aquifers. The Central Valley also is rapidly becoming an important area for California's expanding urban population. Since 1980, the population of the Central Valley has nearly doubled from 2 million to 3.8 million people. The Census Bureau projects that the Central Valley's population will increase to 6 million people by 2020. This surge in population has increased the competition for water resources within the Central Valley and statewide, which likely will be exacerbated by anticipated reductions in deliveries of Colorado River water to southern California. In response to this competition for water, a number of water-related issues have gained prominence: conservation of agricultural land, conjunctive use, artificial recharge, hydrologic implications of land-use change, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS Groundwater Resources Program made a detailed assessment of groundwater availability of the Central Valley aquifer system, that includes: (1) the present status of groundwater resources; (2) how these resources have changed over time; and (3) tools to assess system responses to stresses from future human uses and climate variability and change. This effort builds on previous investigations, such as the USGS Central Valley Regional Aquifer System and Analysis (CV-RASA) project and several other groundwater studies in the Valley completed by Federal, State and local agencies at differing scales. The

  19. Aerosolization of cyanobacterial cells across ecosystem boundaries in the McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Trout-Haney, J.; Heindel, R. C.; Virginia, R. A.

    2017-12-01

    Cyanobacteria play a major ecological role in polar freshwaters, occurring predominately as small single cells in the water column, i.e., picocyanobacteria, or large multicellular colonies and mats that reside on the lake bottom. Cyanobacteria are also present in terrestrial polar habitats, including within soils, soil crusts, rocks, and glacial ice. Despite their predominance in polar ecosystems, the extent to which cyanobacteria move between terrestrial and aquatic landscape units remains poorly understood. In polar deserts such as the McMurdo Dry Valleys, aeolian processes influence terrestrial landscape morphology and drive the transport of sediments and other particles. Water surfaces can also act as a source of aerosolized particles, such as the production of sea spray aerosols through wave breaking in marine environments. However, aerosolization from freshwater bodies has been far less studied, especially in polar regions. We conducted a field-study to examine the transport of aerosolized cyanobacterial cells from ponds and soils in the McMurdo Dry Valleys. We used highly portable aerosol collection devices fitted with GF/F filters combusted at 500°C (0.3 µm) to collect small particles, such as picocyanobacteria (0.2 - 2 µm), from near-shore water and adjacent soil. We used epifluorescence microscopy to quantify aerosolized cells, with excitation filters for chlorophyll a (435 nm) and phycobilin pigments (572 nm), to distinguish cyanobacterial cells. We detected aerosolized picocyanobacterial cells from all ponds and soils sampled, indicating that these cells may be quite mobile and transported across ecosystem boundaries. We observed cyanobacterial cells individually, clustered, and associated with other organic material, suggesting multiple modes of cell transport. Further, we investigated the potential for aerosolization of toxin-producing cyanobacterial taxa (or unbound cyanotoxins), and the ecological and ecosystem-scale implications of

  20. 76 FR 18542 - Copper Valley Electric Association; Notice of Scoping Document 2 and Soliciting Scoping Comments...

    Science.gov (United States)

    2011-04-04

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-002] Copper Valley.... Applicant: Copper Valley Electric Association (Copper Valley) d. Name of Project: Allison Creek Project. e.... 791(a)-825(r). g. Applicant Contact: Robert A. Wilkinson, CEO, Copper Valley Electric Association, P.O...