WorldWideScience

Sample records for valley watershed ecological

  1. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy`s Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings.

  2. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C

    International Nuclear Information System (INIS)

    1996-11-01

    This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy's Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings

  3. Characterization of Solang valley watershed in western Himalaya for bio-resource conservation using remote sensing techniques.

    Science.gov (United States)

    Kumar, Amit; Chawla, Amit; Rajkumar, S

    2011-08-01

    The development activities in mountainous region though provide comfort to the human being and enhance the socioeconomic status of the people but create pressure on the bio-resources. In this paper, the current status of land use/landcover and the vegetation communities of the Solang valley watershed in Himachal Pradesh of Indian western Himalaya has been mapped and presented using remote sensing. This watershed area was dominated by alpine and sub-alpine pastures (30.34%) followed by scree slopes (22.34%) and forests (21.06%). Many tree, shrub, and herb species identified in the study area are among the prioritized species for conservation in the Indian Himalayan Region. Thus, scientific interventions and preparation of action plans based on ecological survey are required for conservation of the Solang valley watershed.

  4. Fena Valley Reservoir watershed and water-balance model updates and expansion of watershed modeling to southern Guam

    Science.gov (United States)

    Rosa, Sarah N.; Hay, Lauren E.

    2017-12-01

    In 2014, the U.S. Geological Survey, in cooperation with the U.S. Department of Defense’s Strategic Environmental Research and Development Program, initiated a project to evaluate the potential impacts of projected climate-change on Department of Defense installations that rely on Guam’s water resources. A major task of that project was to develop a watershed model of southern Guam and a water-balance model for the Fena Valley Reservoir. The southern Guam watershed model provides a physically based tool to estimate surface-water availability in southern Guam. The U.S. Geological Survey’s Precipitation Runoff Modeling System, PRMS-IV, was used to construct the watershed model. The PRMS-IV code simulates different parts of the hydrologic cycle based on a set of user-defined modules. The southern Guam watershed model was constructed by updating a watershed model for the Fena Valley watersheds, and expanding the modeled area to include all of southern Guam. The Fena Valley watershed model was combined with a previously developed, but recently updated and recalibrated Fena Valley Reservoir water-balance model.Two important surface-water resources for the U.S. Navy and the citizens of Guam were modeled in this study; the extended model now includes the Ugum River watershed and improves upon the previous model of the Fena Valley watersheds. Surface water from the Ugum River watershed is diverted and treated for drinking water, and the Fena Valley watersheds feed the largest surface-water reservoir on Guam. The southern Guam watershed model performed “very good,” according to the criteria of Moriasi and others (2007), in the Ugum River watershed above Talofofo Falls with monthly Nash-Sutcliffe efficiency statistic values of 0.97 for the calibration period and 0.93 for the verification period (a value of 1.0 represents perfect model fit). In the Fena Valley watershed, monthly simulated streamflow volumes from the watershed model compared reasonably well with the

  5. People and water: Exploring the social-ecological condition of watersheds of the United States

    Directory of Open Access Journals (Sweden)

    Murray W. Scown

    2017-11-01

    Full Text Available A recent paradigm shift from purely biophysical towards social-ecological assessment of watersheds has been proposed to understand, monitor, and manipulate the myriad interactions between human well-being and the ecosystem services that watersheds provide. However, large-scale, quantitative studies in this endeavour remain limited. We utilised two newly developed ‘big-data’ sets—the Index of Watershed Integrity (IWI and the Human Well-Being Index (HWBI—to explore the social-ecological condition of watersheds throughout the conterminous U.S., and identified environmental and socio-economic influences on watershed integrity and human well-being. Mean county IWI was highly associated with ecoregion, industry-dependence, and state, in a spatially-explicit regression model (R2 = 0.77, 'P' < 0.001, whereas HWBI was not (R2 = 0.31, 'P' < 0.001. HWBI is likely influenced by factors not explored here, such as governance structure and formal and informal organisations and institutions. ‘Win-win’ situations in which both IWI and HWBI were above the 75th percentile were observed in much of Utah, Colorado, and New Hampshire, and lessons from governance that has resulted in desirable outcomes might be learnt from here. Eastern Kentucky and West Virginia, along with large parts of the desert southwest, had intact watersheds but low HWBI, representing areas worthy of further investigation of how ecosystem services might be utilised to improve well-being. The Temperate Prairies and Central USA Plains had widespread areas of low IWI but high HWBI, likely a result of historic exploitation of watershed resources to improve well-being, particularly in farming-dependent counties. The lower Mississippi Valley had low IWI and HWBI, which is likely related to historical (temporal and upstream (spatial impacts on both watershed integrity and well-being. The results emphasise the importance of considering spatial and temporal trade-offs when utilising the

  6. Imperial Contradictions: Is the Valley a Watershed, Region, or Cyborg?

    Science.gov (United States)

    Rudy, Alan P.

    2005-01-01

    Is California's Imperial Valley a watershed? If so, at what level and by what topographic logic? Is it a region? If so, at what level and by what geographic logic? Are its boundaries natural, political, or multivalent on different scales? In short, this essay looks at the special (re)production of environmental conditions within a cyborg world.…

  7. Ecological Researches in the Yagnob Valley

    International Nuclear Information System (INIS)

    Razykov, Z.A.; Yunusov, M.M.; Bezzubov, N.I.; Murtazaev, Kh.; Fajzullaev, B.G.

    2002-01-01

    The article dwells on the resents of the estimation of the ecology surroundings of the Yagnob Valley. The researches included appraisal of radiation background, determination of the amount of heavy and radioactive elements in soil, bottom sedimentations, ashes in plants, water in rivers and wells. Designing on the premise of the researches implemented the ecology surrounding are estimated as propitious man's habitation. (Authors)

  8. Evaluating Hydrologic Transience in Watershed Delineation, Numerical Modeling and Solute Transport in the Great Basin. Clayton Valley, Nevada

    Science.gov (United States)

    Underdown, C. G.; Boutt, D. F.; Hynek, S. A.; Munk, L. A.

    2017-12-01

    Importance of transience in managed groundwater systems is generally determined by timeframe of management decisions. Watersheds with management times shorter than the aquifer (watershed) response time, or the time it takes a watershed to recover from a change in hydrologic state, would not include the new state and are treated as steady-state. However, these watersheds will experience transient response between hydrologic states. Watershed response time is a function of length. Therefore flat, regional watersheds characteristic of the Great Basin have long response times. Defining watershed extents as the area in which the water budget is balanced means inputs equal outputs. Steady-state budgets in the Great Basin have been balanced by extending watershed boundaries to include more area for recharge; however, the length and age of requisite flow paths are poorly constrained and often unrealistic. Inclusion of stored water in hydrologic budget calculations permits water balance within smaller contributing areas. As groundwater flow path lengths, depths, and locations differ between steady-state and transient systems, so do solute transport mechanisms. To observe how transience affects response time and solute transport, a refined (transient) version of the USGS steady-state groundwater flow model of the Great Basin is evaluated. This model is used to assess transient changes in contributing area for Clayton Valley, a lithium-brine producing endorheic basin in southwestern Nevada. Model runs of various recharge, discharge and storage bounds are created from conceptual models based upon historical climate data. Comparing results of the refined model to USGS groundwater observations allows for model validation and comparison against the USGS steady-state model. The transient contributing area to Clayton Valley is 85% smaller than that calculated from the steady-state solution, however several long flow paths important to both water and solute budgets at Clayton Valley

  9. Limnology of the Green Lakes Valley: Phytoplankton ecology and dissolved organic matter biogeochemistry at a long-term ecological research site

    Science.gov (United States)

    Miller, Matthew P.; McKnight, Diane M.

    2015-01-01

    Background: Surface waters are the lowest points in the landscape, and therefore serve as excellent integrators and indicators of changes taking place in the surrounding terrestrial and atmospheric environment.Aims: Here we synthesise the findings of limnological studies conducted during the past 15 years in streams and lakes in the Green Lakes Valley, which is part of the Niwot Ridge Long-term Ecological Research (LTER) Site.Methods: The importance of these studies is discussed in the context of aquatic ecosystems as indicators, integrators, and regulators of environmental change. Specifically, investigations into climatic, hydrologic, and nutrient controls on present-day phytoplankton, and historical diatom, community composition in the alpine lake, Green Lake 4, are reviewed. In addition, studies of spatial and temporal patterns in dissolved organic matter (DOM) biogeochemistry and reactive transport modelling that have taken place in the Green Lakes Valley are highlighted.Results and conclusions: The findings of these studies identify specific shifts in algal community composition and DOM biogeochemistry that are indicative of changing environmental conditions and provide a framework for detecting future environmental change in the Green Lakes Valley and in other alpine watersheds. Moreover, the studies summarised here demonstrate the importance of long-term monitoring programmes such as the LTER programme.

  10. Operationalizing ecological resilience at a landscape scale: A framework and case study from Silicon Valley

    Science.gov (United States)

    Beller, E.; Robinson, A.; Grossinger, R.; Grenier, L.; Davenport, A.

    2015-12-01

    Adaptation to climate change requires redesigning our landscapes and watersheds to maximize ecological resilience at large scales and integrated across urban areas, wildlands, and a diversity of ecosystem types. However, it can be difficult for environmental managers and designers to access, interpret, and apply resilience concepts at meaningful scales and across a range of settings. To address this gap, we produced a Landscape Resilience Framework that synthesizes the latest science on the qualitative mechanisms that drive resilience of ecological functions to climate change and other large-scale stressors. The framework is designed to help translate resilience science into actionable ecosystem conservation and restoration recommendations and adaptation strategies by providing a concise but comprehensive list of considerations that will help integrate resilience concepts into urban design, conservation planning, and natural resource management. The framework is composed of seven principles that represent core attributes which determine the resilience of ecological functions within a landscape. These principles are: setting, process, connectivity, redundancy, diversity/complexity, scale, and people. For each principle we identify several key operationalizable components that help illuminate specific recommendations and actions that are likely to contribute to landscape resilience for locally appropriate species, habitats, and biological processes. We are currently using the framework to develop landscape-scale recommendations for ecological resilience in the heavily urbanized Silicon Valley, California, in collaboration with local agencies, companies, and regional experts. The resilience framework is being applied across the valley, including urban, suburban, and wildland areas and terrestrial and aquatic ecosystems. Ultimately, the framework will underpin the development of strategies that can be implemented to bolster ecological resilience from a site to

  11. Watersheds in Baltimore, Maryland: understanding and application of integrated ecological and social processes

    Science.gov (United States)

    Steward T.A. Pickett; Kenneth T. Belt; Michael F. Galvin; Peter M. Groffman; J. Morgan Grove; Donald C. Outen; Richard V. Pouyat; William P. Stack; Mary L. Cadenasso

    2007-01-01

    The Water and Watersheds program has made significant and lasting contributions to the basic understanding of the complex ecological system of Baltimore, MD. Funded at roughly the same time as the urban Long- Term Ecological Research (LTER) project in Baltimore, the Water and Watersheds grant and the LTER grant together established the Baltimore Ecosystem Study (BES)...

  12. Hydrologic analysis for ecological risk assessment of watersheds with abandoned mine lands

    International Nuclear Information System (INIS)

    Gallagher, D.; Babendreier, J.; Cherry, D.

    1999-01-01

    As part of on-going study of acid mine drainage (AMD), a comprehensive ecological risk assessment was conducted in the Leading Creek Watershed in southeast Ohio. The watershed is influenced by agriculture and active and abandoned coal-mining operations. This work presents a broad overview of several quantitative measures of hydrology and hydraulic watershed properties available for in risk assessment and evaluates their relation to metrics of ecology. Data analysis included statistical comparisons of metrics of ecology, ecotoxicology, water quality, and physically based parameters describing land use, geomorphology, flow, velocity, and particle size. A multiple regression analysis indicated that abandoned mining operations dominated impacts upon aquatic ecology. It also indicated low flow velocity measurements and a ratio of maximum velocity to average velocity at low flow where helpful in describing variation in macroinvertebrate Total Taxa scores. Other key parameters also identified strong impact relationships with biodiversity trends and included pH, simple knowledge of any mining upstream, calculated % of the subshed covered by strip mines, and the measured depth of streambed sediments from site to site

  13. Groundwater quality in the Bear Valley and Lake Arrowhead Watershed, California

    Science.gov (United States)

    Mathany, Timothy; Burton, Carmen; Fram, Miranda S.

    2017-06-20

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Bear Valley and Lake Arrowhead Watershed study areas in southern California compose one of the study units being evaluated.

  14. Land Use-Land Cover dynamics of Huluka watershed, Central Rift Valley, Ethiopia

    Directory of Open Access Journals (Sweden)

    Hagos Gebreslassie

    2014-12-01

    Full Text Available Land Use-Land Cover (LULC dynamic has of human kind age and is one of the phenomenons which interweave the socio economic and environmental issues in Ethiopia. Huluka watershed is one of the watersheds in Central Rift Valley of Ethiopia which drains to Lake Langano. Few decades ago the stated watershed was covered with dense acacia forest. But, nowadays like other part of Ethiopia, it is experiencing complex dynamics of LULC. The aim of this research was thus to evaluate the LULC dynamics seen in between 1973–2009. This was achieved through collecting qualitative and quantitative data using Geographic Information System (GIS and Remote Sensing (RS technique. Field observations, discussion with elders were also employed to validate results from remotely sensed data. Based on the result, eight major dynamic LULC classes were identified from the watershed. Of these LULC classes, only cultivated and open lands had shown continuous and progressive expansion mainly at the expense of grass, shrub and forest lands. The 25% and 0% of cultivated and open land of the watershed in 1973 expanded to 84% and 4% in 2009 respectively while the 29%, 18% and 22% of grass, shrub and forest land of the watershed in 1973 degraded to 3.5%, 4% and 1.5% in 2009 respectively. As a result, land units which had been used for pastoralist before 1973 were identified under mixed agricultural system after 2000. In the end, this study came with a recommendation of an intervention of concerned body to stop the rapid degradation of vegetation on the watershed.

  15. Effects of best-management practices in Eagle and Joos Valley Creeks in the Waumandee Creek Priority Watershed, Wisconsin, 1990-2007

    Science.gov (United States)

    Graczyk, David J.; Walker, John F.; Bannerman, Roger T.; Rutter, Troy D.

    2012-01-01

    In many watersheds, nonpoint-source contamination is a major contributor to water-quality problems. In response to the recognition of the importance of nonpoint sources, the Wisconsin Nonpoint Source Water Pollution Abatement Program (Nonpoint Program) was enacted in 1978. This report summarizes the results of a study to assess the effectiveness of watershed-management practices for controlling nonpoint-source contamination for the Eagle Creek and Joos Valley Creek Watersheds. Streamflow-gaging stations equipped for automated sample collection and continuous recording of stream stage were installed in July 1990 at Eagle and Joos Valley Creeks and were operated through September 2007. In October 1990, three rain gages were installed in each watershed and were operated through September 2007. Best-Management Practices (BMPs) were installed during 1993 to 2000 in Eagle and Joos Valley Creeks and were tracked throughout the study period. By the year 2000, a majority of the BMPs were implemented in the two watersheds and goals set by the Wisconsin Department of Natural Resources and the local Land Conservation Department had been achieved for the two study watersheds (Wisconsin Department of Natural Resources, 1990). The distributions of the rainstorms that produced surface runoff and storm loads were similar in the pre-BMP (1990-93) and post-BMP implementation (2000-07) periods for both Eagle and Joos Valley Creeks. The highest annual streamflow occurred at both sites in water year 1993, which corresponded to the greatest above normal nonfrozen precipitation measured at two nearby NOAA weather stations. The minimum streamflow occurred in water year 2007 at both sites. Base-flow and stormwater samples were collected and analyzed for suspended solids, total phosphorus, and ammonia nitrogen. For both Eagle and Joos Valley Creeks the median concentrations of suspended solids and total phosphorus in base flow were lower during the post-BMP period compared to the pre

  16. People and water: Exploring the social-ecological condition of watersheds of the United States

    Science.gov (United States)

    A recent paradigm shift from purely biophysical towards social-ecological assessment of watersheds has been proposed to understand, monitor, and manipulate the myriad interactions between human well-being and the ecosystem services that watersheds provide. However, large-scale, q...

  17. A novel tool for the communication of ecological risk assessment information in an urbanized watershed

    International Nuclear Information System (INIS)

    Zandbergen, P.

    1995-01-01

    A tool was developed for the communication of ecological risk assessment information on various types of point and nonpoint source pollution in the Brunette River watershed, an urbanized watershed in the Lower Mainland of British Columbia. The communication of ecological risks is a complex task, since the outcomes of quantitative ecological risk assessments are often not well understood by interested parties, and the results of the scientific analysis are generally quite different from the public perception of risk. Scientists should try to assist in the effective communication of their analysis by presenting it in a form more accessible to a variety of stakeholders, exposing the assessment process itself and the uncertainties in the analysis. This was attempted in developing a tool for the effective communication of ecological risk assessment information and management alternatives to the community in the watershed. Longstanding concerns over various forms of point and non-point sources of pollution in the watershed have resulted in a major effort to document the releases of pollutants, the exposure pathways, and the consequences for aquatic life. Extensive monitoring of ecosystem parameters, data-integration by means of a Geographic Information System, and the use of numerous databases and sub-models have resulted in the ecological risk assessment of four types of pollution in the watershed: petroleum fuels, metals, pesticides and basic industrial chemicals. Results will be presented of the attempts to integrate this information into a communication tool, which will demonstrate the principles, values and assumptions underlying the scientific analysis, as well as the quantitative end results and inherent uncertainties. The tool has been developed in close cooperation with several scientists who did most of the original data collection and with the feedback from some of the stakeholders in the community

  18. Altered Ecological Flows Blur Boundaries in Urbanizing Watersheds

    Directory of Open Access Journals (Sweden)

    Todd R. Lookingbill

    2009-12-01

    Full Text Available The relevance of the boundary concept to ecological processes has been recently questioned. Humans in the post-industrial era have created novel lateral transport fluxes that have not been sufficiently considered in watershed studies. We describe patterns of land-use change within the Potomac River basin and demonstrate how these changes have blurred traditional ecosystem boundaries by increasing the movement of people, materials, and energy into and within the basin. We argue that this expansion of ecological commerce requires new science, monitoring, and management strategies focused on large rivers and suggest that traditional geopolitical and economic boundaries for environmental decision making be appropriately revised. Effective mitigation of the consequences of blurred boundaries will benefit from a broad-scale, interdisciplinary framework that can track and explicitly account for ecological fluxes of water, energy, materials, and organisms across human-dominated landscapes.

  19. White Oak Creek watershed: Melton Valley area Remedial Investigation report, at the Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 2, Appendixes A and B

    International Nuclear Information System (INIS)

    1996-11-01

    This document contains Appendixes A ''Source Inventory Information for the Subbasins Evaluated for the White Oak Creek Watershed'' and B ''Human Health Risk Assessment for White Oak Creek / Melton Valley Area'' for the remedial investigation report for the White Oak Creek Watershed and Melton Valley Area. Appendix A identifies the waste types and contaminants for each subbasin in addition to the disposal methods. Appendix B identifies potential human health risks and hazards that may result from contaminants present in the different media within Oak Ridge National Laboratory sites

  20. Establishing ecological and social continuities: new challenges to optimize urban watershed management

    Science.gov (United States)

    Mitroi, V.; de Coninck, A.; Vinçon-Leite, B.; Deroubaix, J.-F.

    2014-09-01

    The (re)construction of the ecological continuity is stated as one of the main objectives of the European Water Framework Directive for watershed management in Europe. Analysing the social, political, technical and scientific processes characterising the implementation of different projects of ecological continuity in two adjacent peri-urban territories in Ile-de-France, we observed science-driven approaches disregarding the social contexts. We show that, in urbanized areas, ecological continuity requires not only important technical and ecological expertise, but also social and political participation to the definition of a common vision and action plan. Being a challenge for both, technical water management institutions and "classical" ecological policies, we propose some social science contributions to deal with ecological unpredictability and reconsider stakeholder resistance to this kind of project.

  1. Regional Ecological Risk Assessment in the Huai River Watershed during 2010–2015

    Directory of Open Access Journals (Sweden)

    Yan Lu

    2017-12-01

    Full Text Available Ecosystem deterioration has been and is still a serious threat to human survival and regional economic development. Theoretical and methodological challenges exist in assessing ecological risk of watershed ecosystem that is imposed by natural changes or human activities. To fill this research gap, this research proposes an interdisciplinary and quantitative methodology based on some techniques such as the Procedure for Ecological Tiered Assessment of Risk (PETAR, the Entropy, and the Celluar Automata Markov (CA-Markov. We focused on six vulnerable environmental variables, namely land-use change, water quantity, water quality, gross domestic product (GDP, environmental pollutants, and soil erosion in the Huai River watershed in the Henan Province in order to build multi-dimensional quantitative method. Further, the Coupling Coordination Degree Model is constructed, and the “threshold index” is also addressed to reflect the limitation of ecological risk. Our results show that the spatio-temperal distribution of the eco-environmental quality has greatly varied across this study area during different time spans. Natural eco-environmental quality has moderately degraded in 70% of this study area (mainly agricultural region, at a prefectural level from 2000 to 2010, and has slightly improved over the agricultural region (<170 m above sea level during 2010–2015. However, when considering negative stressors from human social system on the natural ecosystem, the extent and distribution of the ecological risk varied across the whole area during 2000–2015. The results show that there was almost 90.40% of this region under the ecological risk, with varying extents over the study time, e.g., Kaifeng, Shangqiu, Xuchang, and Xinyang, with a moderate deterioration in the eco-environmental quality, and Zhengzhou with a slight deterioration in the eco-environmental quality. This paper provides a valuable perspective for governments at all levels to manage

  2. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 1 Main Text

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The purpose of this Remedial Investigation (RI) report is to present an analysis of the Melton Valley portion of the White Oak Creek (WOC) watershed, which will enable the US Department of Energy (DOE) to pursue a series of cost-effective remedial actions resulting in site cleanup and stabilization. In this RI existing levels of contamination and radiological exposure are compared to levels acceptable for future industrial and potential recreational use levels at the site. This comparison provides a perspective for the magnitude of remedial actions required to achieve a site condition compatible with relaxed access restrictions over existing conditions. Ecological risk will be assessed to evaluate measures required for ecological receptor protection. For each subbasin, this report will provide site-specific analyses of the physical setting including identification of contaminant source areas, description of contaminant transport pathways, identification of release mechanisms, analysis of contaminant source interactions with groundwater, identification of secondary contaminated media associated with the source and seepage pathways, assessment of potential human health and ecological risks from exposure to contaminants, ranking of each source area within the subwatershed, and outline the conditions that remedial technologies must address to stop present and future contaminant releases, prevent the spread of contamination and achieve the goal of limiting environmental contamination to be consistent with a potential recreational use of the site.

  3. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 1 Main Text

    International Nuclear Information System (INIS)

    1996-11-01

    The purpose of this Remedial Investigation (RI) report is to present an analysis of the Melton Valley portion of the White Oak Creek (WOC) watershed, which will enable the US Department of Energy (DOE) to pursue a series of cost-effective remedial actions resulting in site cleanup and stabilization. In this RI existing levels of contamination and radiological exposure are compared to levels acceptable for future industrial and potential recreational use levels at the site. This comparison provides a perspective for the magnitude of remedial actions required to achieve a site condition compatible with relaxed access restrictions over existing conditions. Ecological risk will be assessed to evaluate measures required for ecological receptor protection. For each subbasin, this report will provide site-specific analyses of the physical setting including identification of contaminant source areas, description of contaminant transport pathways, identification of release mechanisms, analysis of contaminant source interactions with groundwater, identification of secondary contaminated media associated with the source and seepage pathways, assessment of potential human health and ecological risks from exposure to contaminants, ranking of each source area within the subwatershed, and outline the conditions that remedial technologies must address to stop present and future contaminant releases, prevent the spread of contamination and achieve the goal of limiting environmental contamination to be consistent with a potential recreational use of the site

  4. Climate and Land Use Change Effects on Ecological Resources in Three Watersheds: A Synthesis Report (Final Report)

    Science.gov (United States)

    EPA announced the availability of the final report, Climate and Land-Use Change Effects on Ecological Resources in Three Watersheds: A Synthesis Report. This report provides a summary of climate change impacts to selected watersheds and recommendations for how to improv...

  5. Establishing ecological and social continuities: new challenges to optimize urban watershed management

    Directory of Open Access Journals (Sweden)

    V. Mitroi

    2014-09-01

    Full Text Available The (reconstruction of the ecological continuity is stated as one of the main objectives of the European Water Framework Directive for watershed management in Europe. Analysing the social, political, technical and scientific processes characterising the implementation of different projects of ecological continuity in two adjacent peri-urban territories in Ile-de-France, we observed science-driven approaches disregarding the social contexts. We show that, in urbanized areas, ecological continuity requires not only important technical and ecological expertise, but also social and political participation to the definition of a common vision and action plan. Being a challenge for both, technical water management institutions and “classical” ecological policies, we propose some social science contributions to deal with ecological unpredictability and reconsider stakeholder resistance to this kind of project.

  6. Impacts and socio-ecological feedbacks associated with regionalization of water supply in a suburban New England watershed

    Science.gov (United States)

    Wollheim, W. M.; Stewart, R. J.; Polsky, C.; Pontius, R.; Hopkinson, C.

    2012-12-01

    Suburban watersheds often rely on locally derived ecosystem services such as water supply, even as these services are threatened by existing land use and land-use change patterns. At some point, the ability of the watershed to provide such services may become impaired. Socio-ecological feedbacks are likely to emerge, leading to more active management of locally derived water provisioning services, or replacement of services generated locally with those from more distant locations. We applied a spatially distributed hydrological model to explore the impact of multiple interacting and spatially varying human activities, including feedbacks, on the hydrology of a suburban watershed in the Boston, MA, metropolitan area, the Ipswich R. watershed. We accounted for the role of impervious surfaces, lawns and lawn watering, septic systems, and water use, as well as several socio-ecological feedbacks evident in the region (water bans, regional import). The result of human activities on the landscape is that most of the river system is wetter than a hypothetical pristine condition (predicted mean basin runoff during summers of 0.65 mm per day in contemporary vs. 0.10 mm per day in pristine). However, water withdrawals along the large main stem river remove some of this excess, resulting in a reduced net effect of human activities at the large watershed scale (predicted mean basin runoff of 0.54 mm per day). Recent feedbacks in response to low flows have resulted in increasing importance of imported water supplies, removing local constraint to further development. Because suburban watersheds continue to rely on local ecosystem services, suburban watersheds may be useful model systems within which to study socio-ecological feedbacks.

  7. Status and management of watersheds in the Upper Pokhara Valley, Nepal

    Science.gov (United States)

    Thapa, Gopal B.; Weber, Karl E.

    1995-07-01

    Contributing to the debate on the causes of Himalayan environmental degradation, the status and management of four watersheds in the Upper Pokhara Valley were studied using information available from land use analysis, household surveys conducted in 1989 and 1992, deliberations held with villagers, and field observations. Accordingly, areas under forests and grazing lands were found being depleted at relatively high rates between 1957 and 1978 due mainly to the government policy of increasing national revenue by expansion of agricultural lands, nationalization of forests, steadily growing population, and dwindling household economy. Despite the steady growth of population, this process had remarkably slackened since 1978, owing primarily to remaining forests being located in very, steep slopes and implementation of the community forestry program. Forests with relatively sparase tree density, however, and grazing lands in the vicinity of settlements have been undergoing degradation due to fuelwood and fodder collection and livestock grazing. In many instances, this is aggravated by weak resource management institutions. Being particularly aware of the economic implication of land degradation, farmers have adopted assorted land management practices. Still a substantial proportion of bari lands in the hill slopes is vulnerable to accelerating degradation, as the arable cropping system is being practiced there as well. The perpetuation of the local subsistence economy is certain to lead, to a further deterioration of the socioeconomic and environmental conditions of watersheds. To facilitate environmental conservation and ecorestructuring for sustainable development, a broad watershed management strategy is outlined with focus on alleviating pressure on natural resources.

  8. Precipitation and runoff simulations of select perennial and ephemeral watersheds in the middle Carson River basin, Eagle, Dayton, and Churchill Valleys, west-central Nevada

    Science.gov (United States)

    Jeton, Anne E.; Maurer, Douglas K.

    2011-01-01

    The effect that land use may have on streamflow in the Carson River, and ultimately its impact on downstream users can be evaluated by simulating precipitation-runoff processes and estimating groundwater inflow in the middle Carson River in west-central Nevada. To address these concerns, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, began a study in 2008 to evaluate groundwater flow in the Carson River basin extending from Eagle Valley to Churchill Valley, called the middle Carson River basin in this report. This report documents the development and calibration of 12 watershed models and presents model results and the estimated mean annual water budgets for the modeled watersheds. This part of the larger middle Carson River study will provide estimates of runoff tributary to the Carson River and the potential for groundwater inflow (defined here as that component of recharge derived from percolation of excess water from the soil zone to the groundwater reservoir). The model used for the study was the U.S. Geological Survey's Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Models were developed for 2 perennial watersheds in Eagle Valley having gaged daily mean runoff, Ash Canyon Creek and Clear Creek, and for 10 ephemeral watersheds in the Dayton Valley and Churchill Valley hydrologic areas. Model calibration was constrained by daily mean runoff for the 2 perennial watersheds and for the 10 ephemeral watersheds by limited indirect runoff estimates and by mean annual runoff estimates derived from empirical methods. The models were further constrained by limited climate data adjusted for altitude differences using annual precipitation volumes estimated in a previous study. The calibration periods were water years 1980-2007 for Ash Canyon Creek, and water years 1991-2007 for Clear Creek. To

  9. Annotated Bibliography of Publications on Watershed Management and Ecological Studies at Coweeta Hydrologic Laboratory, 1934,1984

    Science.gov (United States)

    Julia W. Gaskin; James E. Douglass; Wayne T. Swank; [Compilers

    1984-01-01

    A collection of 470 citations and annotations for papers published by scientists associated with theCoweeta Hydrologic Laboratory. Major categories in a subject index include watershed management, hydrometeorology, plant-water relationships, soil relationships, stream-flow relationships, ground water, stream ecology, and terrestrial ecology.

  10. Collection and analysis of remotely sensed data from the Rhode River Estuary Watershed. [ecological parameters of Chesapeake Bay

    Science.gov (United States)

    Jenkins, D. W.

    1972-01-01

    NASA chose the watershed of Rhode River, a small sub-estuary of the Bay, as a representative test area for intensive studies of remote sensing, the results of which could be extrapolated to other estuarine watersheds around the Bay. A broad program of ecological research was already underway within the watershed, conducted by the Smithsonian Institution's Chesapeake Bay Center for Environmental Studies (CBCES) and cooperating universities. This research program offered a unique opportunity to explore potential applications for remote sensing techniques. This led to a joint NASA-CBCES project with two basic objectives: to evaluate remote sensing data for the interpretation of ecological parameters, and to provide essential data for ongoing research at the CBCES. A third objective, dependent upon realization of the first two, was to extrapolate photointerpretive expertise gained at the Rhode River watershed to other portions of the Chesapeake Bay.

  11. Remedial investigation report on the Melton Valley watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3: Appendix C

    International Nuclear Information System (INIS)

    1997-05-01

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions. The industrial and recreational exposure scenarios are used to provide a risk assessment reference context to evaluate levels of contamination in surface water, groundwater, soil, and sediment within each subbasin of the Melton Valley watershed. All available analytical results for the media of interest that could be qualified for use in the risk assessment were screened to determine carcinogenic risk values and noncarcinogenic hazard indexes and to identify the chemicals of concern (COCs) for each evaluated media in each subbasin

  12. Remedial investigation report on the Melton Valley watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3: Appendix C

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions. The industrial and recreational exposure scenarios are used to provide a risk assessment reference context to evaluate levels of contamination in surface water, groundwater, soil, and sediment within each subbasin of the Melton Valley watershed. All available analytical results for the media of interest that could be qualified for use in the risk assessment were screened to determine carcinogenic risk values and noncarcinogenic hazard indexes and to identify the chemicals of concern (COCs) for each evaluated media in each subbasin.

  13. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yuzhou [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou, 325000 (China); Zhang Xuyang [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Liu Xingmei [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Institute of Soil, Water and Environmental Science, Zhejiang University, Hangzhou 310029 (China); Ficklin, Darren [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Zhang Minghua [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou, 325000 (China)], E-mail: mhzhang@ucdavis.edu

    2008-12-15

    The hydrology, sediment, and pesticide transport components of the Soil and Water Assessment Tool (SWAT) were evaluated on the northern San Joaquin Valley watershed of California. The Nash-Sutcliffe coefficients for monthly stream flow and sediment load ranged from 0.49 to 0.99 over the watershed during the study period of 1992-2005. The calibrated SWAT model was applied to simulate fate and transport processes of two organophosphate pesticides of diazinon and chlorpyrifos at watershed scale. The model generated satisfactory predictions of dissolved pesticide loads relative to the monitoring data. The model also showed great success in capturing spatial patterns of dissolved diazinon and chlorpyrifos loads according to the soil properties and landscape morphology over the large agricultural watershed. This study indicated that curve number was the major factor influencing the hydrology while pesticide fate and transport were mainly affected by surface runoff and pesticide application and in the study area. - Major factors governing the instream loads of organophosphate pesticides are magnitude and timing of surface runoff and pesticide application.

  14. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California

    International Nuclear Information System (INIS)

    Luo Yuzhou; Zhang Xuyang; Liu Xingmei; Ficklin, Darren; Zhang Minghua

    2008-01-01

    The hydrology, sediment, and pesticide transport components of the Soil and Water Assessment Tool (SWAT) were evaluated on the northern San Joaquin Valley watershed of California. The Nash-Sutcliffe coefficients for monthly stream flow and sediment load ranged from 0.49 to 0.99 over the watershed during the study period of 1992-2005. The calibrated SWAT model was applied to simulate fate and transport processes of two organophosphate pesticides of diazinon and chlorpyrifos at watershed scale. The model generated satisfactory predictions of dissolved pesticide loads relative to the monitoring data. The model also showed great success in capturing spatial patterns of dissolved diazinon and chlorpyrifos loads according to the soil properties and landscape morphology over the large agricultural watershed. This study indicated that curve number was the major factor influencing the hydrology while pesticide fate and transport were mainly affected by surface runoff and pesticide application and in the study area. - Major factors governing the instream loads of organophosphate pesticides are magnitude and timing of surface runoff and pesticide application

  15. Valley plugs, land use, and phytogeomorphic response: Chapter 14

    Science.gov (United States)

    Pierce, Aaron R.; King, Sammy L.; Shroder, John F.

    2013-01-01

    Anthropogenic alteration of fluvial systems can disrupt functional processes that provide valuable ecosystem services. Channelization alters fluvial parameters and the connectivity of river channels to their floodplains which is critical for productivity, nutrient cycling, flood control, and biodiversity. The effects of channelization can be exacerbated by local geology and land-use activities, resulting in dramatic geomorphic readjustments including the formation of valley plugs. Considerable variation in the response of abiotic processes, including surface hydrology, subsurface hydrology, and sedimentation dynamics, to channelization and the formation of valley plugs. Altered abiotic processes associated with these geomorphic features and readjustments influence biotic processes including species composition, abundance, and successional processes. Considerable interest exists for restoring altered fluvial systems and their floodplains because of their social and ecological importance. Understanding abiotic and biotic responses of channelization and valley-plug formation within the context of the watershed is essential to successful restoration. This chapter focuses on the primary causes of valley-plug formation, resulting fluvial-geomorphic responses, vegetation responses, and restoration and research needs for these systems.

  16. Hydro-ecological degradation due to human impacts in the Twin Streams Watershed, Auckland, New Zealand

    Science.gov (United States)

    Torrecillas Nunez, C.; Miguel-rodriguez, A.

    2012-12-01

    As a collaborative project between the Faculties of Engineering of the University of Sinaloa, Mexico and the University of Auckland, an inter-disciplinary team researched historical information, monitoring results and modelling completed over the last ten years to establish the cause-effect relationship of development and human impacts in the watershed and recommend strategies to offset them .The research program analyzed the performance of the Twin Streams watershed over time with modelling of floods, hydrological disturbance indicators, analysis of water quality and ecological information, cost / benefit, harbor modelling and contaminant loads. The watershed is located in the west of Auckland and comprises 10,356 hectare: 8.19% ecologically protected area, 29.70% buffer zone, 6.67% peri-urban, 30.98% urban, 16.04% parks, and 8.42% other; average impermeability is 19.1%. Current population is 129,475 (2011) forecast to grow to 212,798 by 2051. The watershed includes 317.5 km of streams that drain to the Waitemata Harbor. The human impact can be traced back to the 1850s when the colonial settlers logged the native forests, dammed streams and altered the channel hydro-ecology resulting in significant erosion, sediment and changes to flows. In the early 1900s native vegetation started to regenerate in the headwaters, while agriculture and horticulture become established in rest of the watershed leading to the use of quite often very harmful pesticides and insecticides, such as DDT which is still detected in current environmental monitoring programs, and more erosion and channel alterations. As land become unproductive in the 1950s it stared to be urbanized, followed by more intensive urban development in the 1990s. Curiously there was no regulatory regime to control land use in the early stages and consequently over 400 houses were built in the floodplains, as well there were no legislation to control environmental impacts until 1991. Consequently today there is a

  17. Identifying Watershed, Landscape, and Engineering Design Factors that Influence the Biotic Condition of Restored Streams

    Directory of Open Access Journals (Sweden)

    Barbara Doll

    2016-04-01

    Full Text Available Restored stream reaches at 79 sites across North Carolina were sampled for aquatic macroinvertebrates using a rapid bioassessment protocol. Morphological design parameters and geographic factors, including watershed and landscape parameters (e.g., valley slope, substrate, were also compiled for these streams. Principal component regression analyses revealed correlations between design and landscape variables with macroinvertebrate metrics. The correlations were strengthened by adding watershed variables. Ridge regression was used to find the best-fit model for predicting dominant taxa from the “pollution sensitive” orders of Ephemeroptera (mayflies, Plecoptera (stoneflies, and Trichoptera (caddisflies, or EPT taxa, resulting in coefficient weights that were most interpretable relative to site selection and design parameters. Results indicate that larger (wider streams located in the mountains and foothills where there are steeper valleys, larger substrate, and undeveloped watersheds are expected to have higher numbers of dominant EPT taxa. In addition, EPT taxa numbers are positively correlated with accessible floodplain width and negatively correlated with width-to-depth ratio and sinuosity. This study indicates that both site selection and design should be carefully considered in order to maximize the resulting biotic condition and associated potential ecological uplift of the stream.

  18. Remedial investigation report on the Melton Valley watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2: Appendixes A and B

    International Nuclear Information System (INIS)

    1997-05-01

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions. The industrial and recreational exposure scenarios are used to provide a risk assessment reference context to evaluate levels of contamination in surface water, groundwater, soil, and sediment within each subbasin of the Melton Valley watershed. All available analytical results for the media of interest that could be qualified for use in the risk assessment were screened to determine carcinogenic risk values and noncarcinogenic hazard indexes and to identify the chemicals of concern (COCs) for each evaluated media in each subbasin

  19. Remedial investigation report on the Melton Valley watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2: Appendixes A and B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions. The industrial and recreational exposure scenarios are used to provide a risk assessment reference context to evaluate levels of contamination in surface water, groundwater, soil, and sediment within each subbasin of the Melton Valley watershed. All available analytical results for the media of interest that could be qualified for use in the risk assessment were screened to determine carcinogenic risk values and noncarcinogenic hazard indexes and to identify the chemicals of concern (COCs) for each evaluated media in each subbasin.

  20. Watershed Landscape Ecology: Interdisciplinary and Field-based Learning in the Northeast Creek Watershed, Mount Desert Island, Maine

    Science.gov (United States)

    Hall, S. R.; Anderson, J.; Rajakaruna, N.; Cass, D.

    2014-12-01

    At the College of the Atlantic, Bar Harbor, Maine, undergraduate students have the opportunity to design their own curriculum within a major of "Human Ecology." To enable students to have early research experiences, we developed a field-based interdisciplinary program for students to learn and practice field methods in a variety of disciplines, Earth Science, Botany, Chemistry, and Wildlife Biology at three specific field sites within a single watershed on Mt. Desert Island. As the Northeast Creek watershed was the site of previous water quality studies, this program of courses enabled continued monitoring of portions of the watershed. The program includes 4 new courses: Critical Zone 1, Critical Zone 2, Wildlife Biology, and Botany. In Critical Zone 1 students are introduced to general topics in Earth Science and learn to use ArcGIS to make basic maps. In Critical Zone 2, Wildlife Biology, and Botany, students are in the field every week using classic field tools and methods. All three of these courses use the same three general field areas: two with working farms at the middle and lower portion of the watershed and one uninhabited forested property in the higher relief headwaters of the watershed. Students collect daily surface water chemistry data at five stream sites within the watershed, complete basic geologic bedrock and geomorphic mapping, conduct wildlife surveys, botanical surveys, and monitor weather patterns at each of the main sites. Beyond the class data collected and synthesized, students also complete group independent study projects at focused field sites, some of which have turned into much larger research projects. This program is an opportunity for students and faculty with varied interests and expertise to work together to study a specific field locality over multiple years. We see this model as enhancing a number of positive education components: field-based learning, teamwork, problem solving, interdisciplinary discussion, multiple faculty

  1. Development of a socio-ecological environmental justice model for watershed-based management

    Science.gov (United States)

    Sanchez, Georgina M.; Nejadhashemi, A. Pouyan; Zhang, Zhen; Woznicki, Sean A.; Habron, Geoffrey; Marquart-Pyatt, Sandra; Shortridge, Ashton

    2014-10-01

    The dynamics and relationships between society and nature are complex and difficult to predict. Anthropogenic activities affect the ecological integrity of our natural resources, specifically our streams. Further, it is well-established that the costs of these activities are born unequally by different human communities. This study considered the utility of integrating stream health metrics, based on stream health indicators, with socio-economic measures of communities, to better characterize these effects. This study used a spatial multi-factor model and bivariate mapping to produce a novel assessment for watershed management, identification of vulnerable areas, and allocation of resources. The study area is the Saginaw River watershed located in Michigan. In-stream hydrological and water quality data were used to predict fish and macroinvertebrate measures of stream health. These measures include the Index of Biological Integrity (IBI), Hilsenhoff Biotic Index (HBI), Family IBI, and total number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. Stream health indicators were then compared to spatially coincident socio-economic data, obtained from the United States Census Bureau (2010), including race, income, education, housing, and population size. Statistical analysis including spatial regression and cluster analysis were used to examine the correlation between vulnerable human populations and environmental conditions. Overall, limited correlation was observed between the socio-economic data and ecological measures of stream health, with the highest being a negative correlation of 0.18 between HBI and the social parameter household size. Clustering was observed in the datasets with urban areas representing a second order clustering effect over the watershed. Regions with the worst stream health and most vulnerable social populations were most commonly located nearby or down-stream to highly populated areas and agricultural lands.

  2. [Evaluation on the eco-economic benefits of small watershed in Beijing mountainous area: a case of Yanqi River watershed].

    Science.gov (United States)

    Xiao, Hui-Jie; Wei, Zi-Gang; Wang, Qing; Zhu, Xiao-Bo

    2012-12-01

    Based on the theory of harmonious development of ecological economy, a total of 13 evaluation indices were selected from the ecological, economic, and social sub-systems of Yanqi River watershed in Huairou District of Beijing. The selected evaluation indices were normalized by using trapezoid functions, and the weights of the evaluation indices were determined by analytic hierarchy process. Then, the eco-economic benefits of the watershed were evaluated with weighted composite index method. From 2004 to 2011, the ecological, economic, and social benefits of Yanqi River watershed all had somewhat increase, among which, ecological benefit increased most, with the value changed from 0.210 in 2004 to 0.255 in 2011 and an increment of 21.5%. The eco-economic benefits of the watershed increased from 0.734 in 2004 to 0.840 in 2011, with an increment of 14.2%. At present, the watershed reached the stage of advanced ecosystem, being in beneficial circulation and harmonious development of ecology, economy, and society.

  3. Effects of the hippopotamus on the chemistry and ecology of a changing watershed.

    Science.gov (United States)

    Stears, Keenan; McCauley, Douglas J; Finlay, Jacques C; Mpemba, James; Warrington, Ian T; Mutayoba, Benezeth M; Power, Mary E; Dawson, Todd E; Brashares, Justin S

    2018-05-29

    Cross-boundary transfers of nutrients can profoundly shape the ecology of recipient systems. The common hippopotamus, Hippopotamus amphibius , is a significant vector of such subsidies from terrestrial to river ecosystems. We compared river pools with high and low densities of H. amphibius to determine how H. amphibius subsidies shape the chemistry and ecology of aquatic communities. Our study watershed, like many in sub-Saharan Africa, has been severely impacted by anthropogenic water abstraction reducing dry-season flow to zero. We conducted observations for multiple years over wet and dry seasons to identify how hydrological variability influences the impacts of H. amphibius During the wet season, when the river was flowing, we detected no differences in water chemistry and nutrient parameters between pools with high and low densities of H. amphibius Likewise, the diversity and abundance of fish and aquatic insect communities were indistinguishable. During the dry season, however, high-density H. amphibiu s pools differed drastically in almost all measured attributes of water chemistry and exhibited depressed fish and insect diversity and fish abundance compared with low-density H. amphibius pools. Scaled up to the entire watershed, we estimate that H. amphibius in this hydrologically altered watershed reduces dry-season fish abundance and indices of gamma-level diversity by 41% and 16%, respectively, but appears to promote aquatic invertebrate diversity. Widespread human-driven shifts in hydrology appear to redefine the role of H. amphibius , altering their influence on ecosystem diversity and functioning in a fashion that may be more severe than presently appreciated.

  4. Assessment of integrated watershed health based on the natural environment, hydrology, water quality, and aquatic ecology

    Directory of Open Access Journals (Sweden)

    S. R. Ahn

    2017-11-01

    Full Text Available Watershed health, including the natural environment, hydrology, water quality, and aquatic ecology, is assessed for the Han River basin (34 148 km2 in South Korea by using the Soil and Water Assessment Tool (SWAT. The evaluation procedures follow those of the Healthy Watersheds Assessment by the U.S. Environmental Protection Agency (EPA. Six components of the watershed landscape are examined to evaluate the watershed health (basin natural capacity: stream geomorphology, hydrology, water quality, aquatic habitat condition, and biological condition. In particular, the SWAT is applied to the study basin for the hydrology and water-quality components, including 237 sub-watersheds (within a standard watershed on the Korea Hydrologic Unit Map along with three multipurpose dams, one hydroelectric dam, and three multifunction weirs. The SWAT is calibrated (2005–2009 and validated (2010–2014 by using each dam and weir operation, the flux-tower evapotranspiration, the time-domain reflectometry (TDR soil moisture, and groundwater-level data for the hydrology assessment, and by using sediment, total phosphorus, and total nitrogen data for the water-quality assessment. The water balance, which considers the surface–groundwater interactions and variations in the stream-water quality, is quantified according to the sub-watershed-scale relationship between the watershed hydrologic cycle and stream-water quality. We assess the integrated watershed health according to the U.S. EPA evaluation process based on the vulnerability levels of the natural environment, water resources, water quality, and ecosystem components. The results indicate that the watershed's health declined during the most recent 10-year period of 2005–2014, as indicated by the worse results for the surface process metric and soil water dynamics compared to those of the 1995–2004 period. The integrated watershed health tended to decrease farther downstream within the watershed.

  5. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 6: Appendix G -- Baseline ecological risk assessment report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix G contains ecological risks for fish, benthic invertebrates, soil invertebrates, plants, small mammals, deer, and predator/scavengers (hawks and fox). This risk assessment identified significant ecological risks from chemicals in water, sediment, soil, and shallow ground water. Metals and PCBs are the primary contaminants of concern.

  6. Dynamics and ecological risk assessment of chromophoric dissolved organic matter in the Yinma River Watershed: Rivers, reservoirs, and urban waters.

    Science.gov (United States)

    Li, Sijia; Zhang, Jiquan; Guo, Enliang; Zhang, Feng; Ma, Qiyun; Mu, Guangyi

    2017-10-01

    The extensive use of a geographic information system (GIS) and remote sensing in ecological risk assessment from a spatiotemporal perspective complements ecological environment management. Chromophoric dissolved organic matter (CDOM), which is a complex mixture of organic matter that can be estimated via remote sensing, carries and produces carcinogenic disinfection by-products and organic pollutants in various aquatic environments. This paper reports the first ecological risk assessment, which was conducted in 2016, of CDOM in the Yinma River watershed including riverine waters, reservoir waters, and urban waters. Referring to the risk formation theory of natural disaster, the entropy evaluation method and DPSIR (driving force-pressure-state-impact-response) framework were coupled to establish a hazard and vulnerability index with multisource data, i.e., meteorological, remote sensing, experimental, and socioeconomic data, of this watershed. This ecological vulnerability assessment indicator system contains 23 indicators with respect to ecological sensitivity, ecological pressure, and self-resilience. The characteristics of CDOM absorption parameters from different waters showed higher aromatic content and molecular weights in May because of increased terrestrial inputs. The assessment results indicated that the overall ecosystem risk in the study area was focused in the extremely, heavily, and moderately vulnerable regions. The ecological risk assessment results objectively reflect the regional ecological environment and demonstrate the potential of ecological risk assessment of pollutants over traditional chemical measurements. Copyright © 2017. Published by Elsevier Inc.

  7. Application of a virtual watershed in academic education

    OpenAIRE

    Horn , A. L.; Hörmann , G.; Fohrer , N.

    2005-01-01

    International audience; Hydrologic models of watersheds often represent complex systems which are difficult to understand regarding to their structure and dynamics. Virtual watersheds, i.e. watersheds which exist only in the virtual reality of a computer system, are an approach to simplify access to this real-world complexity. In this study we present the virtual watershed KIELSHED-1, a 117 km2 v-shaped valley with grassland on a "Cambisol" soil type. Two weather scenarios are delivered with ...

  8. Integrative analysis of the Lake Simcoe watershed (Ontario, Canada) as a socio-ecological system.

    Science.gov (United States)

    Neumann, Alex; Kim, Dong-Kyun; Perhar, Gurbir; Arhonditsis, George B

    2017-03-01

    Striving for long-term sustainability in catchments dominated by human activities requires development of interdisciplinary research methods to account for the interplay between environmental concerns and socio-economic pressures. In this study, we present an integrative analysis of the Lake Simcoe watershed, Ontario, Canada, as viewed from the perspective of a socio-ecological system. Key features of our analysis are (i) the equally weighted consideration of environmental attributes with socioeconomic priorities and (ii) the identification of the minimal number of key socio-hydrological variables that should be included in a parsimonious watershed management framework, aiming to establish linkages between urbanization trends and nutrient export. Drawing parallels with the concept of Hydrological Response Units, we used Self-Organizing Mapping to delineate spatial organizations with similar socio-economic and environmental attributes, also referred to as Socio-Environmental Management Units (SEMUs). Our analysis provides evidence of two SEMUs with contrasting features, the "undisturbed" and "anthropogenically-influenced", within the Lake Simcoe watershed. The "undisturbed" cluster occupies approximately half of the Lake Simcoe catchment (45%) and is characterized by low landscape diversity and low average population density watershed management practices and provides directions in order to promote environmental programs for lake conservation and to increase public awareness and engagement in stewardship initiatives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Ecological effects of contaminants and remedial actions in Bear Creek

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, G.R.; Loar, J.M.; Ryon, M.G.; Smith, J.G.; Stewart, A.J. (Oak Ridge National Lab., TN (United States)); Burris, J.A. (C. E. Environmental, Inc., Tallahassee, FL (United States))

    1992-01-01

    Ecological studies of the Bear Creek watershed, which drains the area surrounding several Oak Ridge Y-12 Plant waste disposal facilities, were initiated in May 1984 and are continuing at present. These studies consisted of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek, and they were followed by a presently ongoing monitoring phase that involves reduced sampling intensities. The characterization phase utilized two approaches: (1) instream sampling of benthic invertebrate and fish communities in Bear Creek to identify spatial and temporal patterns in distribution and abundance and (2) laboratory bioassays on water samples from Bear Creek and selected tributaries to identify potential sources of toxicity to biota. The monitoring phase of the ecological program relates to the long-term goals of identifying and prioritizing contaminant sources and assessing the effectiveness of remedial actions. It continues activities of the characterization phase at less frequent intervals. The Bear Greek Valley is a watershed that drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. Extensive remedial actions have been proposed at waste sites, and some of the have been implemented or are now underway. The proposed study plan consists of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek in the first year followed by a reduction in sampling intensity during the monitoring phase of the plan. The results of sampling conducted from May 1984 through early 1989 are presented in this report.

  10. Ecological effects of contaminants and remedial actions in Bear Creek

    International Nuclear Information System (INIS)

    Southworth, G.R.; Loar, J.M.; Ryon, M.G.; Smith, J.G.; Stewart, A.J.; Burris, J.A.

    1992-01-01

    Ecological studies of the Bear Creek watershed, which drains the area surrounding several Oak Ridge Y-12 Plant waste disposal facilities, were initiated in May 1984 and are continuing at present. These studies consisted of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek, and they were followed by a presently ongoing monitoring phase that involves reduced sampling intensities. The characterization phase utilized two approaches: (1) instream sampling of benthic invertebrate and fish communities in Bear Creek to identify spatial and temporal patterns in distribution and abundance and (2) laboratory bioassays on water samples from Bear Creek and selected tributaries to identify potential sources of toxicity to biota. The monitoring phase of the ecological program relates to the long-term goals of identifying and prioritizing contaminant sources and assessing the effectiveness of remedial actions. It continues activities of the characterization phase at less frequent intervals. The Bear Greek Valley is a watershed that drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. Extensive remedial actions have been proposed at waste sites, and some of the have been implemented or are now underway. The proposed study plan consists of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek in the first year followed by a reduction in sampling intensity during the monitoring phase of the plan. The results of sampling conducted from May 1984 through early 1989 are presented in this report

  11. 3D Agro-ecological Land Use Planning Using Surfer Tool for Sustainable Land Management in Sumani Watershed, West Sumatra Indonesia

    Directory of Open Access Journals (Sweden)

    Aflizar

    2013-09-01

    Full Text Available Estimation of soil erosion 3D (E3D provides basic information that can help manage agricultural areas sustainably, which has not been sufficiently conducted in Indonesia. Sumani watershed is main rice production area in West Sumatra which has experienced environmental problem such as soil erosion and production problem in recent years. 3D Agro-ecological land use planning based on soil erosion 3D hazard and economic feasibility analyses consist of production cost and prize data for each crop. Using a kriging method in Surfer tool program, have been developed data base from topographic map, Landsat TM image, climatic data and soil psychochemical properties. Using these data, the Universal Soil Loss Equation was used for spatial map of soil erosion 3D and proposed a 3D agro-ecological land use planning for sustainable land management in Sumani watershed. A 3D Agro-ecological land use planning was planned under which the land use type would not cause more than tolerable soil erosion (TER and would be economically feasible. The study revealed that the annual average soil erosion from Sumani watershed was approximately 76.70 Mg ha-1yr-1 in 2011 where more than 100 Mg ha-1yr-1 was found on the cultivated sloping lands at agricultural field, which constitutes large portion of soil erosion in the watershed. Modification of land use with high CP values to one with lower CP values such as erosion control practices by reforestation, combination of mixed garden+beef+chicken (MBC, terrace (TBC or contour cropping+beef+chicken (CBC and sawah+buffalo+chicken (SBC could reduce soil erosion rate by 83.2%, from 76.70 to 12.9 Mg ha-1 yr-1, with an increase in total profit from agricultural production of about 9.2% in whole Sumani watershed.

  12. Functional ecology of an Antarctic Dry Valley

    Science.gov (United States)

    Chan, Yuki; Van Nostrand, Joy D.; Zhou, Jizhong; Pointing, Stephen B.

    2013-01-01

    The McMurdo Dry Valleys are the largest ice-free region in Antarctica and are critically at risk from climate change. The terrestrial landscape is dominated by oligotrophic mineral soils and extensive exposed rocky surfaces where biota are largely restricted to microbial communities, although their ability to perform the majority of geobiological processes has remained largely uncharacterized. Here, we identified functional traits that drive microbial survival and community assembly, using a metagenomic approach with GeoChip-based functional gene arrays to establish metabolic capabilities in communities inhabiting soil and rock surface niches in McKelvey Valley. Major pathways in primary metabolism were identified, indicating significant plasticity in autotrophic, heterotrophic, and diazotrophic strategies supporting microbial communities. This represents a major advance beyond biodiversity surveys in that we have now identified how putative functional ecology drives microbial community assembly. Significant differences were apparent between open soil, hypolithic, chasmoendolithic, and cryptoendolithic communities. A suite of previously unappreciated Antarctic microbial stress response pathways, thermal, osmotic, and nutrient limitation responses were identified and related to environmental stressors, offering tangible clues to the mechanisms behind the enduring success of microorganisms in this seemingly inhospitable terrain. Rocky substrates exposed to larger fluctuations in environmental stress supported greater functional diversity in stress-response pathways than soils. Soils comprised a unique reservoir of genes involved in transformation of organic hydrocarbons and lignin-like degradative pathways. This has major implications for the evolutionary origin of the organisms, turnover of recalcitrant substrates in Antarctic soils, and predicting future responses to anthropogenic pollution. PMID:23671121

  13. A Watershed Integrity Definition and Assessment Approach to Support Strategic Management of Watersheds

    Science.gov (United States)

    Although defined hydrologically as a drainage basin, watersheds are systems that physically link the individual social and ecological attributes that comprise them. Hence the structure, function, and feedback systems of watersheds are dependent on interactions between these soci...

  14. Waste area grouping 2 Phase I task data report: Ecological risk assessment and White Oak Creek watershed screening ecological risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Efroymson, R.A.; Jackson, B.L.; Jones, D.S. [and others

    1996-05-01

    This report presents an ecological risk assessment for Waste Area Grouping (WAG) 2 based on the data collected in the Phase I remedial investigation (RI). It serves as an update to the WAG 2 screening ecological risk assessment that was performed using historic data. In addition to identifying potential ecological risks in WAG 2 that may require additional data collection, this report serves to determine whether there are ecological risks of sufficient magnitude to require a removal action or some other expedited remedial process. WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the Oak Ridge National Laboratory (ORNL) main plant area, White Oak Lake (WOL), the White Oak Creek Embayment of the Clinch River, associated flood plains, and the associated groundwater. The WOC system drains the WOC watershed, an area of approximately 16.8 km{sup 2} that includes ORNL and associated WAGs. The WOC system has been exposed to contaminants released from ORNL and associated operations since 1943 and continues to receive contaminants from adjacent WAGs.

  15. Alaska Index of Watershed Integrity

    Science.gov (United States)

    The US Environmental Protection Agency’s (EPA) Index of Watershed Integrity (IWI) is used to calculate and visualize the status of natural watershed infrastructure that supports ecological processes (e.g., nutrient cycling) and services provided to society (e.g., subsistenc...

  16. The Human Threat to River Ecosystems at the Watershed Scale: An Ecological Security Assessment of the Songhua River Basin, Northeast China

    Directory of Open Access Journals (Sweden)

    Yuan Shen

    2017-03-01

    Full Text Available Human disturbances impact river basins by reducing the quality of, and services provided by, aquatic ecosystems. Conducting quantitative assessments of ecological security at the watershed scale is important for enhancing the water quality of river basins and promoting environmental management. In this study, China’s Songhua River Basin was divided into 204 assessment units by combining watershed and administrative boundaries. Ten human threat factors were identified based on their significant influence on the river ecosystem. A modified ecological threat index was used to synthetically evaluate the ecological security, where frequency was weighted by flow length from the grids to the main rivers, while severity was weighted by the potential hazard of the factors on variables of river ecosystem integrity. The results showed that individual factors related to urbanization, agricultural development and facility construction presented different spatial distribution characteristics. At the center of the plain area, the provincial capital cities posed the highest level of threat, as did the municipal districts of prefecture-level cities. The spatial relationships between hot spot locations of the ecological threat index and water quality, as well as the distribution areas of critically endangered species, were analyzed. The sensitivity analysis illustrated that alteration of agricultural development largely changed the ecological security level of the basin. By offering a reference for assessing ecological security, this study can enhance water environmental planning and management.

  17. Connecting Social Networks with Ecosystem Services for Watershed Governance: a Social-Ecological Network Perspective Highlights the Critical Role of Bridging Organizations

    Directory of Open Access Journals (Sweden)

    Kaitlyn J. Rathwell

    2012-06-01

    Full Text Available In many densely settled agricultural watersheds, water quality is a point of conflict between amenity and agricultural activities because of the varied demands and impacts on shared water resources. Successful governance of these watersheds requires coordination among different activities. Recent research has highlighted the role that social networks between management entities can play to facilitate cross-scale interaction in watershed governance. For example, bridging organizations can be positioned in social networks to bridge local initiatives done by single municipalities across whole watersheds. To better understand the role of social networks in social-ecological system dynamics, we combine a social network analysis of the water quality management networks held by local governments with a social-ecological analysis of variation in water management and ecosystem services across the Montérégie, an agricultural landscape near Montréal, Québec, Canada. We analyze municipal water management networks by using one-mode networks to represent direct collaboration between municipalities, and two-mode networks to capture how bridging organizations indirectly connect municipalities. We find that municipalities do not collaborate directly with one another but instead are connected via bridging organizations that span the water quality management network. We also discovered that more connected municipalities engaged in more water management activities. However, bridging organizations preferentially connected with municipalities that used more tourism related ecosystem services rather than those that used more agricultural ecosystem services. Many agricultural municipalities were relatively isolated, despite being the main producers of water quality problems. In combination, these findings suggest that further strengthening the water management network in the Montérégie will contribute to improving water quality in the region. However, such

  18. LANDSCAPE ECOLOGICAL METHOD TO STUDY AGRICULTURAL VEGETATION: SOME EXAMPLES FROM THE PO VALLEY

    Directory of Open Access Journals (Sweden)

    E. GIGLIO

    2006-01-01

    Full Text Available Vegetation is the most important landscape component, as regards to its ability to catch solar energy and to transform it, but also to shape the landscape, to structure the space, to create the fit environment for different animal species, to contribute to the maintenance of a correct metastability level for the landscape, etc. It is a biological system which acts under the constraints of the principles of the System Theory and owns the same properties of any other living system: so, it is a complex adaptive, hierarchical, dynamic, dissipative, self-organizing, self-transcendent, autocatalytic, self-maintaining system and follows the non-equilibrium thermodynamic. Its ecological state can be investigated through the comparison between “gathered data” (pathology and “normal data” (physiology for analogous types of vegetation. The Biological Integrated School of Landscape Ecology provides an integrated methodology to define ecological threshold limits of the different Agricultural Landscape types and applies to agricultural vegetation the specific part of the new methodology already tested to studying forests (the Landscape Biological Survey of Vegetation. Ecological quality, better and worst parameters, biological territorial capacity of vegetated corridors, agricultural field, poplar groves, orchards and woody remnant patches are investigated. Some examples from diverse agricultural landscapes of the Po Valley will be discussed. KEY WORDS: agricultural landscape, vegetation, landscape ecology, landscape health, Biological Integrated Landscape Ecology, Landscape Biological Survey of vegetation.

  19. LANDSCAPE ECOLOGICAL METHOD TO STUDY AGRICULTURAL VEGETATION: SOME EXAMPLES FROM THE PO VALLEY

    Directory of Open Access Journals (Sweden)

    E. GIGLIO

    2006-05-01

    Full Text Available Vegetation is the most important landscape component, as regards to its ability to catch solar energy and to transform it, but also to shape the landscape, to structure the space, to create the fit environment for different animal species, to contribute to the maintenance of a correct metastability level for the landscape, etc. It is a biological system which acts under the constraints of the principles of the System Theory and owns the same properties of any other living system: so, it is a complex adaptive, hierarchical, dynamic, dissipative, self-organizing, self-transcendent, autocatalytic, self-maintaining system and follows the non-equilibrium thermodynamic. Its ecological state can be investigated through the comparison between “gathered data” (pathology and “normal data” (physiology for analogous types of vegetation. The Biological Integrated School of Landscape Ecology provides an integrated methodology to define ecological threshold limits of the different Agricultural Landscape types and applies to agricultural vegetation the specific part of the new methodology already tested to studying forests (the Landscape Biological Survey of Vegetation. Ecological quality, better and worst parameters, biological territorial capacity of vegetated corridors, agricultural field, poplar groves, orchards and woody remnant patches are investigated. Some examples from diverse agricultural landscapes of the Po Valley will be discussed. KEY WORDS: agricultural landscape, vegetation, landscape ecology, landscape health, Biological Integrated Landscape Ecology, Landscape Biological Survey of vegetation.

  20. Remedial investigation report on the Melton Valley Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Evaluation, interpretation, and data summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions.

  1. Remedial investigation report on the Melton Valley Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Evaluation, interpretation, and data summary

    International Nuclear Information System (INIS)

    1997-05-01

    The Melton Valley watershed presents a multifaceted management and decision-making challenge because of the very heterogeneous conditions that exist with respect to contaminant type, disposal unit age, mode of disposal, release mechanism, and potential risk-producing pathways. The investigation presented here has assembled relevant site data in the geographic context with the intent of enabling program managers and decision-makers to understand site conditions and evaluate the necessity, relative priority, and scope of potential remedial actions

  2. Hydrologic Responses to Projected Climate Change in Ecologically-Vulnerable Watersheds of the Gulf Coast, USA

    Science.gov (United States)

    Neupane, R. P.; Ficklin, D. L.; Knouft, J.

    2017-12-01

    Climate change is likely to have significant effects on the water cycle of the Gulf Coast watersheds in the United States, which contain some of the highest levels of biodiversity of all freshwater systems in North America. Understanding potential hydrologic responses to continued climate change in these watersheds is important for management of water resources and to sustain ecological diversity. We used the Soil and Water Assessment Tool (SWAT) to simulate hydrologic processes and estimate the potential hydrological changes for the mid-21st century (2050s) and the late-21st century (2080s) in the Mobile River, Apalachicola River, and Suwannee River watersheds located in the Gulf Coast, USA. These estimates were based on downscaled future climate projections from 20 Global Circulation Models (GCMs) under two Representative Concentration Pathways (RCPs 4.5 and 8.5). Models were calibrated and validated using observed data from 58, 19, and 14 streamflow gauges in the Mobile River, Apalachicola River, and Suwannee River watersheds, respectively. Evaluation indices including the Nash-Sutcliffe efficiency (NSE), coefficient of determination (R2), and refined index of agreement (dr) were used to assess model quality. The mean values derived during calibration (NSE=0.68, R2=0.77, and dr=0.73) and validation (NSE=0.70, R2=0.78, and dr=0.74) of all watersheds indicated that the models performed well at simulating monthly streamflow. Our simulation results indicated an overall increase in mean annual streamflow for all the watersheds with a maximum increase in discharge of 28.6% for the Suwannee River watershed for RCP 4.5 during the 2080s, which is associated with a 6.8% increase in precipitation during the same time period. We observed an overall warming (4.2oC) with an increase in future precipitation (3.8%) in all watersheds during the 2080s under the worst-case RCP 8.5 scenario compared to the historical time period. Despite an increase in future precipitation, surface

  3. Ecology of litterfall production of giant bamboo Dendrocalamus asper in a watershed area

    Directory of Open Access Journals (Sweden)

    A.G. Toledo Bruno

    2017-12-01

    Full Text Available Giant bamboo Dendrocalamus asper is recommended in environmental and livelihood programs in the Philippines due to its various ecological, economic and social benefits. However, there are limited data on the ecology of giant bamboo litterfall production, which contributes to soil nutrient availability. Bamboo also contributed in carbon sequestration. The study was conducted within the Taganibong Watershed in Bukidnon, Philippines. Nine litterfall traps measuring 1mx1m were established within the giant bamboo stand in the study area. Results show that giant bamboo litterfall is dominated by leaves. Biological characteristics of bamboo litterfall do no not influence litterfall production but temperature, wind speed and humidity correlate with the amount of litterfall. Findings of the study further revealed that fresh giant bamboo tissue contains high carbon content and the soil in the bamboo stand has higher organic matter than the open clearing. These data indicate the role of giant bamboo in carbon sequestration and soil nutrient availability.

  4. Hydrology of modern and late Holocene lakes, Death Valley, California

    International Nuclear Information System (INIS)

    Grasso, D.N.

    1996-01-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi 2 , closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area

  5. Hydrology of modern and late Holocene lakes, Death Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, D.N.

    1996-07-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi{sup 2}, closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area.

  6. [Aquatic Ecological Index based on freshwater (ICE(RN-MAE)) for the Rio Negro watershed, Colombia].

    Science.gov (United States)

    Forero, Laura Cristina; Longo, Magnolia; John Jairo, Ramirez; Guillermo, Chalar

    2014-04-01

    Aquatic Ecological Index based on freshwater (ICE(RN-MAE)) for the Rio Negro watershed, Colombia. Available indices to assess the ecological status of rivers in Colombia are mostly based on subjective hypotheses about macroinvertebrate tolerance to pollution, which have important limitations. Here we present the application of a method to establish an index of ecological quality for lotic systems in Colombia. The index, based on macroinvertebrate abundance and physicochemical variables, was developed as an alternative to the BMWP-Col index. The method consists on determining an environmental gradient from correlations between physicochemical variables and abundance. The scores obtained in each sampling point are used in a standardized correlation for a model of weighted averages (WA). In the WA model abundances are also weighted to estimate the optimum and tolerance values of each taxon; using this information we estimated the index of ecological quality based also on macroinvertebrate (ICE(RN-MAE)) abundance in each sampling site. Subsequently, we classified all sites using the index and concentrations of total phosphorus (TP) in a cluster analysis. Using TP and ICE(RN-MAE), mean, maximum, minimum and standard deviation, we defined threshold values corresponding to three categories of ecological status: good, fair and critical.

  7. Studying dissolved organic carbon export from the Penobscot Watershed in to Gulf of Maine using Regional Hydro-Ecological Simulation System (RHESSys)

    Science.gov (United States)

    Rouhani, S. F. B. B.; Schaaf, C.; Douglas, E. M.; Choate, J. S.; Yang, Y.; Kim, J.

    2014-12-01

    The movement of Dissolved Organic Carbon (DOC) from terrestrial system into aquatic system plays an important role for carbon sequestration in ecosystems and affects the formation of soil organic matters.Carbon cycling, storage, and transport to marine systems have become critical issues in global-change science, especially with regard to northern latitudes (Freeman et al., 2001; Benner et al., 2004). DOC, as an important composition of the carbon cycling, leaches from the terrestrial watersheds is a large source of marine DOC. The Penobscot River basin in north-central Maine is the second largest watershed in New England, which drains in to Gulf of Maine. Approximately 89% of the watershed is forested (Griffith and Alerich, 1996).Studying temporal and spatial changes in DOC export can help us to understand terrestrial carbon cycling and to detect any shifts from carbon sink to carbon source or visa versa in northern latitude forested ecosystems.Despite for the importance of understanding carbon cycling in terrestrial and aquatic biogeochemistry, the Doc export, especially the combination of DOC production from bio-system and DOC transportation from the terrestrial in to stream has been lightly discussed in most conceptual or numerical models. The Regional Hydro-Ecological Simulation System (RHESSys), which has been successfully applied in many study sites, is a physical process based terrestrial model that has the ability to simulate both the source and transportation of DOC by combining both hydrological and ecological processes. The focus of this study is on simulating the DOC concentration and flux from the land to the water using RHESSys in the Penobscot watershed. The simulated results will be compared with field measurement of DOC from the watershed to explore the spatial and temporal DOC export pattern. This study will also enhance our knowledge to select sampling locations properly and also improve our understanding on DOC production and transportation in

  8. Application of a virtual watershed in academic education

    Directory of Open Access Journals (Sweden)

    A. L. Horn

    2005-01-01

    Full Text Available Hydrologic models of watersheds often represent complex systems which are difficult to understand regarding to their structure and dynamics. Virtual watersheds, i.e. watersheds which exist only in the virtual reality of a computer system, are an approach to simplify access to this real-world complexity. In this study we present the virtual watershed KIELSHED-1, a 117 km2 v-shaped valley with grassland on a "Cambisol" soil type. Two weather scenarios are delivered with the watershed: a simplified artificial weather scenario based on long-term data of a German weather station as well as an unmodified data record. The input data and parameters are compiled according to the conventions of the SWAT 2000 hydrological model. KIELSHED-1 is mainly used for education, and illustrative application examples, i.e. calculation of water balance, model calibration, development of land use scenarios, give an insight to the capabilities of the virtual watershed.

  9. Microbial ecology of extreme environments: Antarctic dry valley yeasts and growth in substrate-limited habitats

    Science.gov (United States)

    Vishniac, H. S.

    1982-01-01

    The success of the Antarctic Dry Valley yeasts presumeably results from adaptations to multiple stresses, to low temperatures and substrate-limitation as well as prolonged resting periods enforced by low water availability. Previous investigations have suggested that the crucial stress is substrate limitation. Specific adaptations may be pinpointed by comparing the physiology of the Cryptococcus vishniacii complex, the yeasts of the Tyrol Valley, with their congeners from other habitats. Progress was made in methods of isolation and definition of ecological niches, in the design of experiments in competition for limited substrate, and in establishing the relationships of the Cryptococcus vishniacii complex with other yeasts. In the course of investigating relationships, a new method for 25SrRNA homology was developed. For the first time it appears that 25SrRNA homology may reflect parallel or convergent evolution.

  10. When Everything Changes: Mountaintop Mining Effects on Watershed Hydrology

    Science.gov (United States)

    Nippgen, F.; Ross, M. R.; McGlynn, B. L.; Bernhardt, E. S.

    2015-12-01

    Mountaintop removal coal mining (MTM) in the Central Appalachians has expanded over the last 40 years to cover ~7% of this mountainous landscape. MTM operations remove mountaintops and ridges with explosives and machinery to access underlying coal seams. Much of this crushed rock overburden is subsequently deposited into nearby valleys, creating valley fills that often bury headwater streams. In contrast to other disturbances such as forest clear-cutting, perturbations from MTM can extend hundreds of meters deep into the critical zone and completely reshape landscapes. Despite the expansiveness and intensity of the disturbance, MTM has only recently begun to receive focused attention from the hydrologic community and the effect of MTM on the hydrology of impacted watersheds is still not well understood. We are using a two-pronged approach consisting of GIS analysis to quantify spoil volumes and landscape change, together with empirical analysis and modeling of rainfall and runoff data collected in two sets of paired watersheds. We seek to investigate how MTM affects basic hydrologic metrics, including storm peakflows, runoff response times, baseflow, statistics of flow duration curves, and longer-term water balances. Each pair consists of a mined and an unmined watershed; the first set contains headwater streams (size ~100ha), the second set consists of 3rd order streams, draining ~3500ha. Mining covers ~ 95% of the headwater watershed, and 40% of the 3rd-order watershed. Initial GIS analysis indicates that the overburden moved during the mining process could be up to three times greater than previously estimated. Storm runoff peaks in the mined watersheds were muted as compared to the unmined watersheds and runoff ratios were reduced by up to 75% during both wet and dry antecedent conditions. The natural reference watersheds were highly responsive while the additional storage in the mined watersheds led to decreased peak flows during storms and enhanced baseflow

  11. Ecologically relevant geomorphic attributes of streams are impaired by even low levels of watershed effective imperviousness

    Science.gov (United States)

    Vietz, Geoff J.; Sammonds, Michael J.; Walsh, Christopher J.; Fletcher, Tim D.; Rutherfurd, Ian D.; Stewardson, Michael J.

    2014-02-01

    Urbanization almost inevitably results in changes to stream morphology. Understanding the mechanisms for such impacts is a prerequisite to minimizing stream degradation and achieving restoration goals. However, investigations of urban-induced changes to stream morphology typically use indicators of watershed urbanization that may not adequately represent degrading mechanisms and commonly focus on geomorphic attributes such as channel dimensions that may be of little significance to the ecological goals for restoration. We address these shortcomings by testing if a measure characterizing urban stormwater drainage system connections to streams (effective imperviousness, EI) is a better predictor of change to ecologically relevant geomorphic attributes than a more general measure of urban density (total imperviousness, TI). We test this for 17 sites in independent watersheds across a gradient of urbanization. We found that EI was a better predictor of all geomorphic variables tested than was TI. Bank instability was positively correlated with EI, while width/depth (a measure of channel incision), bedload sediment depth, and frequency of bars, benches, and large wood were negatively correlated. Large changes in all geomorphic variables were detected at very low levels of EI (Urbanization influences stream morphology more than any other land use (Douglas, 2011): it alters hydrology and sediment inputs leading to deepening and widening of streams (Chin, 2006). Concomitantly, urbanization often directly impairs stream morphology through channel and riparian zone interventions, e.g., culverts (Hawley et al., 2012), rock protection (Vietz et al., 2012b), and constricted floodplains (Gurnell et al., 2007). These changes to channel geomorphology in turn contribute to poor in-stream ecological condition (Morley and Karr, 2002; Walsh et al., 2005b; Gurnell et al., 2007; Elosegi et al., 2010).The common conception is that channels undergo gross morphologic alterations if > 10

  12. Cumulative watershed effects: a research perspective

    Science.gov (United States)

    Leslie M. Reid; Robert R. Ziemer

    1989-01-01

    A cumulative watershed effect (CWE) is any response to multiple land-use activities that is caused by, or results in, altered watershed function. The CWE issue is politically defined, as is the significance of particular impacts. But the processes generating CWEs are the traditional focus of geomorphology and ecology, and have thus been studied for decades. The CWE...

  13. Report on the biological monitoring program for Bear Creek at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, 1989-1994

    International Nuclear Information System (INIS)

    Hinzman, R.L.; Beauchamp, J.J.; Cada, G.F.; Peterson, M.J.

    1996-04-01

    The Bear Creek Valley watershed drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in the Bear Creek Valley resulted in the contamination of Bear Creek and consequent ecological damage. Ecological monitoring by the Biological Monitoring and Abatement Program (BMAP) was initiated in the Bear Creek watershed in May 1984 and continues at present. Studies conducted during the first year provided a detailed characterization of the benthic invertebrate and fish communities in Bear Creek. The initial characterization was followed by a biological monitoring phase in which studies were conducted at reduced intensities

  14. Report on the biological monitoring program for Bear Creek at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, 1989-1994

    Energy Technology Data Exchange (ETDEWEB)

    Hinzman, R.L. [ed.; Beauchamp, J.J.; Cada, G.F.; Peterson, M.J. [and others

    1996-04-01

    The Bear Creek Valley watershed drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in the Bear Creek Valley resulted in the contamination of Bear Creek and consequent ecological damage. Ecological monitoring by the Biological Monitoring and Abatement Program (BMAP) was initiated in the Bear Creek watershed in May 1984 and continues at present. Studies conducted during the first year provided a detailed characterization of the benthic invertebrate and fish communities in Bear Creek. The initial characterization was followed by a biological monitoring phase in which studies were conducted at reduced intensities.

  15. Workshop to transfer VELMA watershed model results to Washington state tribes and state agencies engaged in watershed restoration and salmon recovery planning

    Science.gov (United States)

    An EPA Western Ecology Division (WED) watershed modeling team has been working with the Snoqualmie Tribe Environmental and Natural Resources Department to develop VELMA watershed model simulations of the effects of historical and future restoration and land use practices on strea...

  16. Balancing lake ecological condition and agriculture irrigation needs in the Mississippi Alluvial Valley

    Science.gov (United States)

    Miranda, Leandro E.; Omer, A.R.; Killgore, K.J.

    2017-01-01

    The Mississippi Alluvial Valley includes hundreds of floodplain lakes that support unique fish assemblages and high biodiversity. Irrigation practices in the valley have lowered the water table, increasing the cost of pumping water, and necessitating the use of floodplain lakes as a source of water for irrigation. This development has prompted the need to regulate water withdrawals to protect aquatic resources, but it is unknown how much water can be withdrawn from lakes before ecological integrity is compromised. To estimate withdrawal limits, we examined descriptors of lake water quality (i.e., total nitrogen, total phosphorus, turbidity, Secchi visibility, chlorophyll-a) and fish assemblages (species richness, diversity, composition) relative to maximum depth in 59 floodplain lakes. Change-point regression analysis was applied to identify critical depths at which the relationships between depth and lake descriptors exhibited a rapid shift in slope, suggesting possible thresholds. All our water quality and fish assemblage descriptors showed rapid changes relative to depth near 1.2–2.0 m maximum depth. This threshold span may help inform regulatory decisions about water withdrawal limits. Alternatives to explain the triggers of the observed threshold span are considered.

  17. Civic Ecology: Linking Social and Ecological Approaches in Extension

    Science.gov (United States)

    Krasny, Marianne E.; Tidball, Keith G.

    2010-01-01

    Civic ecology refers to the philosophy and science of community forestry, community gardening, watershed enhancement, and other volunteer-driven restoration practices in cities and elsewhere. Such practices, although often viewed as initiatives to improve a degraded environment, also foster social attributes of resilient social-ecological systems,…

  18. Watershed characterization and analysis using the VELMA ...

    Science.gov (United States)

    We developed a broadly applicable watershed simulator – VELMA (Visualizing Ecosystem and Land Management Assessments) – to characterize hydrological and ecological processes essential to the healthy functioning of watersheds, and to identify best management practices (BMPs) for restoring ecosystem services such as provisioning of clean water, food and fiber, and habitat for fish and wildlife. VELMA has been applied to agricultural, forest, rangeland and arctic watersheds across North America. Urban applications are under development. This seminar will discuss how VELMA is being used to help inform (1) salmon recovery planning in Puget Sound, and (2) water quality protection in Chesapeake Bay agricultural landscapes. These examples highlight the importance of model validation; how VELMA is being linked with additional models to aid BMP identification; and how the model is being transferred to community groups, tribes, and state and federal agencies engaged in environmental decision making. This invited seminar for the Washington State Department of Ecology will provide an overview of EPA’s VELMA watershed simulator and its applications for identifying best management practices for protecting and restoring vital ecosystem services, such as provisioning of clean water, food and fiber, and habitat for fish and wildlife. After the seminar, the presenter will meet with Department of Ecology staff to discuss the feasibility of including VELMA in their Puget Sound

  19. Distribution and Ecological Risk Assessment of Heavy Metals in Arable Soils in Bijiang Watershed, China

    Directory of Open Access Journals (Sweden)

    HUANG Wei-heng

    2017-08-01

    Full Text Available It has been paid much attention to soil heavy metal pollution in the Bijiang watershed caused by the Lanping lead-zinc mine. We collected 35 arable soil samples along Bijiang, then sampled and tested the contents of As, Cu, Zn, Cd, Pb, Hg. And then with Nemerow Multi-Factor Index and the Potential Ecological Risk Index method, we evaluated the heavy metal pollution risk. The results showed:(1The accumulation of Pb, Zn, Cd was in a relatively high level, the average was 1 146.97, 579.15, 4.85 mg·kg-1 respectively, which was seriously polluted; the average accumulation of As was 26.85 mg·kg-1; but Cu, Hg was slightly polluted. (2Statistical analysis showed that Lanping area was a main point source pollution of As, Zn, Pb, Cd, while Cu, Hg was pollution caused by different non-point source pollution.(3Within this basin, the Nemerow index was 17.69, which was serious heavy metal pollution, while the comprehensive potential ecological risk index was 773.38, which was a strong potential ecological risk. The contribution of pollutants was Cd > Pb > Zn> As> Hg > Cu. (4As a whole, the soil heavy metal pollution of paddy field was higher than of the dry land.

  20. NetMap: a new tool in support of watershed science and resource management.

    Science.gov (United States)

    L. Benda; D. Miller; K. Andras; P. Bigelow; G. Reeves; D. Michael

    2007-01-01

    In this paper, we show how application of principles of river ecology can guide use of a comprehensive terrain database within geographic information system (GIS) to facilitate watershed analysis relevant to natural resource management. We present a unique arrangement of a terrain database, GIS, and principles of riverine ecology for the purpose of advancing watershed...

  1. Watershed restoration: planning and implementing small dam removals to maximize ecosystem services

    Science.gov (United States)

    Tonitto, C.; Riha, S. J.

    2016-12-01

    River restoration and enhancing watershed connectivity is of growing concern in industrialized nations. The past two decades have seen a number of small dam removals, though many removals remain unstudied and poorly documented. We summarize socio-economic and biophysical lessons learned during the past two decades of accelerated activity regarding small dam removals throughout the United States. We present frameworks for planning and implementing removals developed by interdisciplinary engagement. Toward the goal of achieving thorough dam removal planning, we present outcomes from well-documented small dam removals covering ecological, chemical, and physical change in rivers post-dam removal, including field observation and modeling methodologies. Guiding principles of a dam removal process should include: 1) stakeholder engagement to navigate the complexity of watershed landuse, 2) an impacts assessment to inform the planning process, 3) pre- and post-dam removal observations of ecological, chemical and physical properties, 4) the expectation that there are short- and long-term ecological dynamics with population recovery depending on whether dam impacts were largely related to dispersion or to habitat destruction, 5) an expectation that changes in watershed chemistry are dependent on sediment type, sediment transport and watershed landuse, and 6) rigorous assessment of physical changes resulting from dam removal, understanding that alteration in hydrologic flows, sediment transport, and channel evolution will shape ecological and chemical dynamics, and shape how stakeholders engage with the watershed.

  2. A systematic approach for watershed ecological restoration strategy making: An application in the Taizi River Basin in northern China.

    Science.gov (United States)

    Li, Mengdi; Fan, Juntao; Zhang, Yuan; Guo, Fen; Liu, Lusan; Xia, Rui; Xu, Zongxue; Wu, Fengchang

    2018-05-15

    Aiming to protect freshwater ecosystems, river ecological restoration has been brought into the research spotlight. However, it is challenging for decision makers to set appropriate objectives and select a combination of rehabilitation acts from numerous possible solutions to meet ecological, economic, and social demands. In this study, we developed a systematic approach to help make an optimal strategy for watershed restoration, which incorporated ecological security assessment and multi-objectives optimization (MOO) into the planning process to enhance restoration efficiency and effectiveness. The river ecological security status was evaluated by using a pressure-state-function-response (PSFR) assessment framework, and MOO was achieved by searching for the Pareto optimal solutions via Non-dominated Sorting Genetic Algorithm II (NSGA-II) to balance tradeoffs between different objectives. Further, we clustered the searched solutions into three types in terms of different optimized objective function values in order to provide insightful information for decision makers. The proposed method was applied in an example rehabilitation project in the Taizi River Basin in northern China. The MOO result in the Taizi River presented a set of Pareto optimal solutions that were classified into three types: I - high ecological improvement, high cost and high benefits solution; II - medial ecological improvement, medial cost and medial economic benefits solution; III - low ecological improvement, low cost and low economic benefits solution. The proposed systematic approach in our study can enhance the effectiveness of riverine ecological restoration project and could provide valuable reference for other ecological restoration planning. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Using remotely sensed vegetation indices to model ecological pasture conditions in Kara-Unkur watershed, Kyrgyzstan

    Science.gov (United States)

    Masselink, Loes; Baartman, Jantiene; Verbesselt, Jan; Borchardt, Peter

    2017-04-01

    Kyrgyzstan has a long history of nomadic lifestyle in which pastures play an important role. However, currently the pastures are subject to severe grazing-induced degradation. Deteriorating levels of biomass, palatability and biodiversity reduce the pastures' productivity. To counter this and introduce sustainable pasture management, up-to-date information regarding the ecological conditions of the pastures is essential. This research aimed to investigate the potential of a remote sensing-based methodology to detect changing ecological pasture conditions in the Kara-Unkur watershed, Kyrgyzstan. The relations between Vegetation Indices (VIs) from Landsat ETM+ images and biomass, palatability and species richness field data were investigated. Both simple and multiple linear regression (MLR) analyses, including terrain attributes, were applied. Subsequently, trends of these three pasture conditions were mapped using time series analysis. The results show that biomass is most accurately estimated by a model including the Modified Soil Adjusted Vegetation Index (MSAVI) and a slope factor (R2 = 0.65, F = 0.0006). Regarding palatability, a model including the Enhanced Vegetation Index (EVI), Northness Index, Near Infrared (NIR) and Red band was most accurate (R2 = 0.61, F = 0.0160). Species richness was most accurately estimated by a model including Topographic Wetness Index (TWI), Eastness Index and estimated biomass (R2 = 0.81, F = 0.0028). Subsequent trend analyses of all three estimated ecological pasture conditions presented very similar trend patterns. Despite the need for a more robust validation, this study confirms the high potential of a remote sensing based methodology to detect changing ecological pasture conditions.

  4. Ecological niche modelling of Rift Valley fever virus vectors in Baringo, Kenya

    Directory of Open Access Journals (Sweden)

    Alfred O. Ochieng

    2016-11-01

    Full Text Available Background: Rift Valley fever (RVF is a vector-borne zoonotic disease that has an impact on human health and animal productivity. Here, we explore the use of vector presence modelling to predict the distribution of RVF vector species under climate change scenario to demonstrate the potential for geographic spread of Rift Valley fever virus (RVFV. Objectives: To evaluate the effect of climate change on RVF vector distribution in Baringo County, Kenya, with an aim of developing a risk map for spatial prediction of RVF outbreaks. Methodology: The study used data on vector presence and ecological niche modelling (MaxEnt algorithm to predict the effect of climatic change on habitat suitability and the spatial distribution of RVF vectors in Baringo County. Data on species occurrence were obtained from longitudinal sampling of adult mosquitoes and larvae in the study area. We used present (2000 and future (2050 Bioclim climate databases to model the vector distribution. Results: Model results predicted potential suitable areas with high success rates for Culex quinquefasciatus, Culex univitattus, Mansonia africana, and Mansonia uniformis. Under the present climatic conditions, the lowlands were found to be highly suitable for all the species. Future climatic conditions indicate an increase in the spatial distribution of Cx. quinquefasciatus and M. africana. Model performance was statistically significant. Conclusion: Soil types, precipitation in the driest quarter, precipitation seasonality, and isothermality showed the highest predictive potential for the four species.

  5. Ecological and Socio-Economic Modeling of Consequences of Biological Management Scenarios Implementation in Integrated Watershed Management (Case Study: Simindasht Catchment

    Directory of Open Access Journals (Sweden)

    A. R. Keshtkar

    2016-09-01

    Full Text Available Integrated watershed management is considered as a new principle for development planning and management of water and soil resources emphasizing on socio-economic characteristics of the region to sustainable livelihoods without vulnerability for plants and the residents of an area. This research, in line with the objectives of integrated management, has been carried out for modelling and evaluating the effects of ecological, socio-economic consequences resulting from the implementation of the proposed management plans on the vegetation changes with a focus on the problems in Simindasht catchment, located in Semnan and Tehran Provinces. After standardization of indices by distance method and weighing them, the scenarios were prioritized using multi-criteria decision-making technique. Trade-off analysis of the results indicates that in the integrated management of Simindasht catchment more than one single management solution, covering all aspects of the system can be recommended in different weighting approaches. The approach used herein, considering the results of different models and comparing the results, is an efficient tool to represent the watershed system as a whole and to facilitate decision making for integrated watershed management.

  6. Ecological risk assessment

    National Research Council Canada - National Science Library

    Suter, Glenn W; Barnthouse, L. W. (Lawrence W)

    2007-01-01

    Ecological risk assessment is commonly applied to the regulation of chemicals, the remediation of contaminated sites, the monitoring of importation of exotic organisms, the management of watersheds...

  7. California's Central Valley Groundwater Study: A Powerful New Tool to Assess Water Resources in California's Central Valley

    Science.gov (United States)

    Faunt, Claudia C.; Hanson, Randall T.; Belitz, Kenneth; Rogers, Laurel

    2009-01-01

    Competition for water resources is growing throughout California, particularly in the Central Valley. Since 1980, the Central Valley's population has nearly doubled to 3.8 million people. It is expected to increase to 6 million by 2020. Statewide population growth, anticipated reductions in Colorado River water deliveries, drought, and the ecological crisis in the Sacramento-San Joaquin Delta have created an intense demand for water. Tools and information can be used to help manage the Central Valley aquifer system, an important State and national resource.

  8. Phosphorus export across an urban to rural gradient in the Chesapeake Bay watershed

    Science.gov (United States)

    Shuiwang Duan; Sujay S. Kaushal; Peter Groffman; Lawrence E. Band; Kenneth Belt

    2012-01-01

    Watershed export of phosphorus (P) from anthropogenic sources has contributed to eutrophication in freshwater and coastal ecosystems. We explore impacts of watershed urbanization on the magnitude and export flow distribution of P along an urban-rural gradient in eight watersheds monitored as part of the Baltimore Ecosystem Study Long-Term Ecological Research site....

  9. Impacts of reforestation upon sediment load and water outflow in the Lower Yazoo River Watershed, Mississippi

    Science.gov (United States)

    Ying Ouyang; Theodor D. Leininger; Matt Moran

    2013-01-01

    Among the world’s largest coastal and river basins, the Lower Mississippi River Alluvial Valley (LMRAV)is one of the most disturbed by human activities. This study ascertained the impacts of reforestation on water outflow attenuation (i.e., water flow out of the watershed outlet) and sediment load reduction in the Lower Yazoo River Watershed (LYRW) within the LMRAV...

  10. About the Western Ecology Division (WED) of EPA's National Health and Environmental Effects Research Laboratory

    Science.gov (United States)

    The Western Ecology Division (WED) conducts innovative research on watershed ecological epidemiology and the development of tools to achieve sustainable and resilient watersheds for application by stakeholders.

  11. South Fork Salmon River Watershed Restoration, 2008-2009 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Reaney, Mark D. [Nez Perce Tribe Department of Fisheries Resource Management

    2009-04-15

    The watershed restoration work elements within the project area, the South Fork Salmon River Watershed, follow the watershed restoration approach adopted by the Nez Perce Tribe Department of Fisheries Resource Management (DFRM) - Watershed Division. The vision of the Nez Perce Tribe DFRM-Watershed Division focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects and strategies that rely on natural fish production and healthy river ecosystems. The Nez Perce Tribe DFRM-Watershed Division strives towards maximizing historic ecosystem productivity and health for the restoration of anadromous and resident fish populations and the habitat on which all depend on for future generations Originally, this project was funded to create a step/pool stream channel that was appropriate to restore fish passage where the 'Glory Hole Cascade' is currently located at the Stibnite Mine. Due to unforeseen circumstances at the time, the project is unable to move forward as planned and a request for a change in scope of the project and an expansion of the geographic area in which to complete project work was submitted. No additional funds were being requested. The ultimate goal of this project is to work with the holistic, ridge top to ridge top approach to protect and restore the ecological and biological functions of the South Fork Salmon River Watershed to assist in the recovery of threatened and endangered anadromous and resident fish species. FY 2008 Work Elements included two aquatic organism passage (AOP) projects to restore habitat connectivity to two fish-bearing tributaries to the East Fork South Fork Salmon River, Salt and Profile Creeks. The Work Elements also included road survey and assessment

  12. 3D Agro-ecological Land Use Planning Using Surfer Tool for Sustainable Land Management in Sumani Watershed, West Sumatra Indonesia

    OpenAIRE

    Aflizar; Alarima Cornelius Idowu; Roni Afrizal; Jamaluddin; Husnain; Tsugiyuki Masunaga; Edi Syafri; Muzakir

    2013-01-01

    Estimation of soil erosion 3D (E3D) provides basic information that can help manage agricultural areas sustainably, which has not been sufficiently conducted in Indonesia. Sumani watershed is main rice production area in West Sumatra which has experienced environmental problem such as soil erosion and production problem in recent years. 3D Agro-ecological land use planning based on soil erosion 3D hazard and economic feasibility analyses consist of production cost and prize data for each crop...

  13. Seasonal Variation in Water Chemistry Parameters in the Clayburn - Willband Watershed, Abbotsford, British Columbia.

    Science.gov (United States)

    Gillies, S. L.; Marsh, S. J.; Peucker-Ehrenbrink, B.; Janmaat, A.; Bourdages, M.; Paulson, D.; Bogaerts, P.; Robertson, K.; Clemence, E.; Smith, S.; Yakemchuk, A.; Faber, A.

    2017-12-01

    Faculty and students from the University of the Fraser Valley (UFV) have conducted time series sampling of the Fraser River at Fort Langley and six Fraser Valley tributaries as a member of the Global Rivers Observatory (GRO, www.globalrivers.org) coordinated by Woods Hole Oceanographic Institution and Woods Hole Research Center. The Clayburn - Willband - Stoney watershed has become a focus of the sampling being conducted by faculty and students from the Geography and Biology Departments at UFV. Water chemistry data (water temperature, dissolved oxygen, conductivity, pH and turbidity) and samples (nutrients, major ions and bacteria) have been collected weekly from sites on these creeks. These watersheds are threatened by increasing urban development, increasing idustrial activity, and expansion of agricultural landuse within the watershed. Documenting the seasonal changes in the water chemistry as measured during the onset of the heavy fall and winter precipitation events, the wet and cool winters and springs, and the hot and dry summers will assist in attempts to protect these important salmon spawning streams from anthropogenic activity.

  14. Assessing the ecological base flow in an experimental watershed of Central Taiwan

    Science.gov (United States)

    Wei, Chiang; Yang, Ping-Shih; Tian, Pei-Ling

    2010-05-01

    The ecological base flow is crucial for the assessment and design for habitat rehabilitation and recovery. The amount of discharge affects the aquatic creatures and may damage the existence and balance of the community under extreme low conditions. Aquatic insect is selected as the target species in this study to evaluate the influence of the discharge and to estimate the ecological base flow. The distribution of the number of species and abundance (density) versus discharge is assessed to define the critical discharge. A stream located at the alpine area in central Taiwan is selected as the study area to evaluate the base flow. From the preliminary data (Aug 2008 to May 2009) collected from Creek C of Sitou watershed (area: 1.3 km^2) shows that the abundance of several species varies with the discharge. The dominate family and genus of aquatic insects is Baetidae (Order Ephemeroptera) and Baetis spp. that accounts for 26.3 and 17.2 %, respectively. The Hilsenhoff family biotic index (FBI) shows that the water quality is classified to "Excellent" and "Good" level while the EPT Index (Index of three orders: Ephemeroptera, Plecoptera, and Trichoptera) indicates that the stream is non-polluted. The discharge of base flow interpreted from the 90%, 95% and 96% curve of duration for the daily discharge is 0.1582, 0.0476 and 0.0378 cms; the threshold value evaluated by curve of abundance vs. discharge is 0.0154 cms. Consistent observations are yet to be collected to yield more accurate results.

  15. Hydrogeology and water quality of the Pepacton Reservoir Watershed in southeastern New York. Part 4. Quantity and quality of ground-water and tributary contributions to stream base flow in selected main-valley reaches

    Science.gov (United States)

    Heisig, Paul M.

    2004-01-01

    Estimates of the quantity and quality of ground-water discharge from valley-fill deposits were calculated for nine valley reaches within the Pepacton watershed in southeastern New York in July and August of 2001. Streamflow and water quality at the upstream and downstream end of each reach and at intervening tributaries were measured under base-flow conditions and used in mass-balance equations to determine quantity and quality of ground-water discharge. These measurements and estimates define the relative magnitudes of upland (tributary inflow) and valley-fill (ground-water discharge) contributions to the main-valley streams and provide a basis for understanding the effects of hydrogeologic setting on these contributions. Estimates of the water-quality of ground-water discharge also provide an indication of the effects of road salt, manure, and human wastewater from villages on the water quality of streams that feed the Pepacton Reservoir. The most common contaminant in ground-water discharge was chloride from road salt; concentrations were less than 15 mg/L.Investigation of ground-water quality within a large watershed by measurement of stream base-flow quantity and quality followed by mass-balance calculations has benefits and drawbacks in comparison to direct ground-water sampling from wells. First, sampling streams is far less expensive than siting, installing, and sampling a watershed-wide network of wells. Second, base-flow samples represent composite samples of ground-water discharge from the most active part of the ground-water flow system across a drainage area, whereas a well network would only be representative of discrete points within local ground-water flow systems. Drawbacks to this method include limited reach selection because of unfavorable or unrepresentative hydrologic conditions, potential errors associated with a large number of streamflow and water-quality measurements, and limited ability to estimate concentrations of nonconservative

  16. Irrigation runoff insecticide pollution of rivers in the Imperial Valley, California (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Vlaming, V. de [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States)]. E-mail: vldevlaming@ucdavis.edu; DiGiorgio, C. [Department of Water Resources, P.O. Box 942836, Sacramento, CA 94236 (United States); Fong, S. [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States); Deanovic, L.A. [Aquatic Toxicology Laboratory, VM: APC, 1321 Haring Hall, University of California, Davis, CA 95616 (United States); Paz Carpio-Obeso, M. de la [Colorado River Basin Region Water Quality Control Board, 73-720 Fred Waring Drive, Suite 100, Palm Desert, CA 92260 (United States); Miller, J.L. [AQUA-Science, 17 Arboretum Drive, Davis, CA 95616 (United States); Miller, M.J. [AQUA-Science, 17 Arboretum Drive, Davis, CA 95616 (United States); Richard, N.J. [Division of Water Quality, State Water Resources Control Board, 1001 I Street, Sacramento, CA 95814 (United States)

    2004-11-01

    The Alamo and New Rivers located in the Imperial Valley, California receive large volumes of irrigation runoff and discharge into the ecologically sensitive Salton Sea. Between 1993 and 2002 we conducted a series of studies to assess water quality using three aquatic species: a cladoceran (Ceriodaphnia dubia), a mysid (Neomysis mercedis), and a larval fish (Pimephales promelas). Although no mortality was observed with the P. promelas, high-level toxicity to the invertebrate species was documented in samples from both rivers during many months of each year. Toxicity identifications and chemical analyses identified the organophosphorus insecticides (OP), chlorpyrifos and diazinon, as the cause of C. dubia toxicity. The extent of the C. dubia mortality was highly correlated with quantities of these OPs applied in the river watersheds. C. dubia mortality occurred during more months of our 2001/2002 study than in the 1990s investigations. During 2001/2002, the extensive C. dubia mortality observed in New River samples was caused by OP insecticide pollution that originated from Mexico. Mortality to N. mercedis in New River samples was likely caused by contaminants other than OP insecticides. Our studies document OP insecticide-caused pollution of the Alamo River over a 10-year period and provide the necessary information for remediation efforts. - Capsule: Organophosphorous insecticides in runoff water from the USA and Mexico have impacted rivers in the Imperial Valley, California.

  17. Irrigation runoff insecticide pollution of rivers in the Imperial Valley, California (USA)

    International Nuclear Information System (INIS)

    Vlaming, V. de; DiGiorgio, C.; Fong, S.; Deanovic, L.A.; Paz Carpio-Obeso, M. de la; Miller, J.L.; Miller, M.J.; Richard, N.J.

    2004-01-01

    The Alamo and New Rivers located in the Imperial Valley, California receive large volumes of irrigation runoff and discharge into the ecologically sensitive Salton Sea. Between 1993 and 2002 we conducted a series of studies to assess water quality using three aquatic species: a cladoceran (Ceriodaphnia dubia), a mysid (Neomysis mercedis), and a larval fish (Pimephales promelas). Although no mortality was observed with the P. promelas, high-level toxicity to the invertebrate species was documented in samples from both rivers during many months of each year. Toxicity identifications and chemical analyses identified the organophosphorus insecticides (OP), chlorpyrifos and diazinon, as the cause of C. dubia toxicity. The extent of the C. dubia mortality was highly correlated with quantities of these OPs applied in the river watersheds. C. dubia mortality occurred during more months of our 2001/2002 study than in the 1990s investigations. During 2001/2002, the extensive C. dubia mortality observed in New River samples was caused by OP insecticide pollution that originated from Mexico. Mortality to N. mercedis in New River samples was likely caused by contaminants other than OP insecticides. Our studies document OP insecticide-caused pollution of the Alamo River over a 10-year period and provide the necessary information for remediation efforts. - Capsule: Organophosphorous insecticides in runoff water from the USA and Mexico have impacted rivers in the Imperial Valley, California

  18. High value of ecological information for river connectivity restoration

    Science.gov (United States)

    Sethi, Suresh; O'Hanley, Jesse R.; Gerken, Jonathon; Ashline, Joshua; Bradley, Catherine

    2017-01-01

    ContextEfficient restoration of longitudinal river connectivity relies on barrier mitigation prioritization tools that incorporate stream network spatial structure to maximize ecological benefits given limited resources. Typically, ecological benefits of barrier mitigation are measured using proxies such as the amount of accessible riverine habitat.ObjectivesWe developed an optimization approach for barrier mitigation planning which directly incorporates the ecology of managed taxa, and applied it to an urbanizing salmon-bearing watershed in Alaska.MethodsA novel river connectivity metric that exploits information on the distribution and movement of managed taxon was embedded into a barrier prioritization framework to identify optimal mitigation actions given limited restoration budgets. The value of ecological information on managed taxa was estimated by comparing costs to achieve restoration targets across alternative barrier prioritization approaches.ResultsBarrier mitigation solutions informed by life history information outperformed those using only river connectivity proxies, demonstrating high value of ecological information for watershed restoration. In our study area, information on salmon ecology was typically valued at 0.8–1.2 M USD in costs savings to achieve a given benefit level relative to solutions derived only from stream network information, equating to 16–28% of the restoration budget.ConclusionsInvesting in ecological studies may achieve win–win outcomes of improved understanding of aquatic ecology and greater watershed restoration efficiency.

  19. A Method for Gauging Landscape Change as a Prelude to Urban Watershed Regeneration: The Case of the Carioca River, Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Vera Regina Tangari

    2012-08-01

    Full Text Available Natural systems undergo processes, flows, and rhythms that differ from those of urban sociocultural systems. While the former takes place over eras or many generations, the latter may occur within years or even months. Natural systems change includes no principle of intentional progress or enhancement of complexity. In contrast, sociocultural systems change occurs through inherited characteristics, learning, and cultural transmission [1]. Both are dynamic, heterogeneous, and vulnerable to regime shifts, and are inextricably linked. The interrelations among natural and anthropogenic factors affecting sustainability vary spatially and temporally. This paper focuses on landscape changes along the Carioca River valley in Rio de Janeiro, located in the Brazilian Neotropical Southeastern Region, and its implications for local urban sustainability. The study incorporates a transdisciplinary approach that integrates landscape ecology and urban morphology methodologies to gauge landscape change and assess social-ecological systems dynamics. The methodology includes a variety of landscape change assessments; including on-site landscape ecological, landscape morphology, biological and urbanistic surveys, to gauge urban watershed quality. It presents an adapted inventory for assessment of urban tropical rivers, Neotropical Urban Stream Visual Assessment Protocol (NUSVAP, and correlates the level of stream and rainforest integrity to local urban environmental patterns and processes. How can urban regional land managers, planners and communities work together to promote shifts toward more desirable configurations and processes? An understanding of the transient behavior of social-ecological systems and how they respond to change and disturbance is fundamental to building appropriate management strategies and fostering resilience, regenerative capacity, and sustainable development in urban watersheds. The sociocultural patterns, processes and dynamics of Rio

  20. Diversity and ecological ranges of plant species from dry inter-Andean valleys

    DEFF Research Database (Denmark)

    Quintana, Catalina

    found on steep slopes and in ravines. These areas of original dry valley vegetation preserve many wild relatives of cultivated plants on the one hand and old lineages of other wild plant groups. Dry inter-Andean valleys (DIAVs) in Ecuador therefore makeup a biodiversity hot spot for both plants......Dry valleys in the American Andes and other mountains have provided excellent agricultural lands since millennia. Besides agriculture, wood extraction and the establishment of urban areas have diminished the native vegetation of these valleys. Consequently the original vegetation is now mostly...... and animals, but unfortunately only very few botanical studies have been carried out in these areas. This thesis intends to shed light on the vegetation of the Dry Ecuadorean Inter-Andean Valleys in four chapters, each with a different focus. 1) A review paper that summarizes all scientific knowledge...

  1. National Biological Service Research Supports Watershed Planning

    Science.gov (United States)

    Snyder, Craig D.

    1996-01-01

    The National Biological Service's Leetown Science Center is investigating how human impacts on watershed, riparian, and in-stream habitats affect fish communities. The research will provide the basis for a Ridge and Valley model that will allow resource managers to accurately predict and effectively mitigate human impacts on water quality. The study takes place in the Opequon Creek drainage basin of West Virginia. A fourth-order tributary of the Potomac, the basin falls within the Ridge and Valley. The study will identify biological components sensitive to land use patterns and the condition of the riparian zone; the effect of stream size, location, and other characteristics on fish communities; the extent to which remote sensing can reliable measure the riparian zone; and the relationship between the rate of landscape change and the structure of fish communities.

  2. River basins as social-ecological systems: linking levels of societal and ecosystem water metabolism in a semiarid watershed

    Directory of Open Access Journals (Sweden)

    Violeta Cabello

    2015-09-01

    Full Text Available River basin modeling under complexity requires analytical frameworks capable of dealing with the multiple scales and dimensions of environmental problems as well as uncertainty in the evolution of social systems. Conceptual and methodological developments can now be framed using the wide socio-eco-hydrological approach. We add hierarchy theory into the mix to discuss the conceptualization of river basins as complex, holarchic social-ecological systems. We operationalize the social-ecological systems water metabolism framework in a semiarid watershed in Spain, and add the governance dimension that shapes human-environment reciprocity. To this purpose, we integrate an eco-hydrological model with the societal metabolism accounting scheme for land use, human activity, and water use. We explore four types of interactions: between societal organization and water uses/demands, between ecosystem organization and their water requirements/supplies, between societal metabolism and aquatic ecosystem health, and between water demand and availability. Our results reveal a metabolic pattern of a high mountain rural system striving to face exodus and agricultural land abandonment with a multifunctional economy. Centuries of social-ecological evolution shaping waterscapes through traditional water management practices have influenced the eco-hydrological functioning of the basin, enabling adaptation to aridity. We found a marked spatial gradient on water supply, use pattern, and impact on water bodies from the head to the mouth of the basin. Management challenges posed by the European water regulatory framework as a new driver of social-ecological change are highlighted.

  3. Exploring an innovative watershed management approach: From feasibility to sustainability

    International Nuclear Information System (INIS)

    Said, A.; Sehlke, G.; Stevens, D.K.; Sorensen, D.; Walker, W.; Hardy, T.; Glover, T.

    2006-01-01

    Watershed management is dedicated to solving watershed problems on a sustainable basis. Managing watershed development on a sustainable basis usually entails a balance between the needs of humans and nature, both in the present and in the future. From a watershed or water resources development basis, these problems can be classified into five general categories: lack of water quantity, deterioration in water quality, ecological impacts, weak public participation, and weak economic value. The first three categories can be combined to make up physical sustainability while the last two categories can be defined as social and economic sustainability. Therefore, integrated watershed management should be designed to achieve physical sustainability utilizing, to the greatest extent possible, public participation in an economically viable manner. This study demonstrates an innovative approach using scientific, social, and motivational feasibilities that can be used to improve watershed management. Scientific feasibility is tied to the nature of environmental problems and the scientific means to solve them. Social feasibility is associated with public participation. Motivational feasibility is related to economic stimulation for the stakeholders to take actions. The ecological impacts, lack of water quantity and deterioration in water quality are problems that need scientific means in order to improve watershed health. However, the implementation of these means is typically not achievable without the right public participation. In addition, public participation is typically accelerated by economic motivation for the stakeholders to use the resources in a manner that improves watershed health. The Big Lost River in south-central Idaho has been used as an illustration for implementing scientific, social and motivational feasibilities and in a manner that can achieve sustainability relative to water resources management. However, the same approach can be used elsewhere after

  4. Exploring an innovative watershed management approach: From feasibility to sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Said, A. [Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States); Sehlke, G. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Stevens, D.K.; Sorensen, D.; Walker, W.; Hardy, T. [Civil and Environmental Department, Utah State University, Logan, UT 84321 (United States); Glover, T. [Economics Department, Utah State University, Logan, UT 84321 (United States)

    2006-10-15

    Watershed management is dedicated to solving watershed problems on a sustainable basis. Managing watershed development on a sustainable basis usually entails a balance between the needs of humans and nature, both in the present and in the future. From a watershed or water resources development basis, these problems can be classified into five general categories: lack of water quantity, deterioration in water quality, ecological impacts, weak public participation, and weak economic value. The first three categories can be combined to make up physical sustainability while the last two categories can be defined as social and economic sustainability. Therefore, integrated watershed management should be designed to achieve physical sustainability utilizing, to the greatest extent possible, public participation in an economically viable manner. This study demonstrates an innovative approach using scientific, social, and motivational feasibilities that can be used to improve watershed management. Scientific feasibility is tied to the nature of environmental problems and the scientific means to solve them. Social feasibility is associated with public participation. Motivational feasibility is related to economic stimulation for the stakeholders to take actions. The ecological impacts, lack of water quantity and deterioration in water quality are problems that need scientific means in order to improve watershed health. However, the implementation of these means is typically not achievable without the right public participation. In addition, public participation is typically accelerated by economic motivation for the stakeholders to use the resources in a manner that improves watershed health. The Big Lost River in south-central Idaho has been used as an illustration for implementing scientific, social and motivational feasibilities and in a manner that can achieve sustainability relative to water resources management. However, the same approach can be used elsewhere after

  5. Uneven Access and Underuse of Ecological Amenities in Urban Parks of the Río Piedras Watershed

    Directory of Open Access Journals (Sweden)

    Luis E. Santiago

    2014-03-01

    Full Text Available The association between consumption of ecological amenities in a park setting and improved physical and mental health substantiates the need for improved accessibility to green areas in lower-income neighborhoods. We measured green area accessibility, considering income variation, and park use in a densely populated tropical urban watershed. Park use was explored with 442 in-person interviews, and U.S. Census and Puerto Rico Commonwealth data were used to measure accessibility. Nearly 20% of residents earning ≤ $15,000 lived within park service areas with the highest crime incidence in the region, whereas 90% of those earning > $75,000 lived within park service areas with lower crime rates. Innovative nonexclusionary activities such as growing vegetable gardens are needed to attract lower-income residents and increase their sense of safety in urban parks.

  6. Hydrogeology of the Ramapo River-Woodbury Creek valley-fill aquifer system and adjacent areas in eastern Orange County, New York

    Science.gov (United States)

    Heisig, Paul M.

    2015-01-01

    The hydrogeology of the valley-fill aquifer system and surrounding watershed areas was investigated within a 23-mile long, fault-controlled valley in eastern Orange County, New York. Glacial deposits form a divide within the valley that is drained to the north by Woodbury Creek and is drained to the south by the Ramapo River. Surficial geology, extent and saturated thickness of sand and gravel aquifers, extent of confining units, bedrock-surface elevation beneath valleys, major lineaments, and the locations of wells for which records are available were delineated on an interactive map.

  7. Bladder segmentation in MR images with watershed segmentation and graph cut algorithm

    Science.gov (United States)

    Blaffert, Thomas; Renisch, Steffen; Schadewaldt, Nicole; Schulz, Heinrich; Wiemker, Rafael

    2014-03-01

    Prostate and cervix cancer diagnosis and treatment planning that is based on MR images benefit from superior soft tissue contrast compared to CT images. For these images an automatic delineation of the prostate or cervix and the organs at risk such as the bladder is highly desirable. This paper describes a method for bladder segmentation that is based on a watershed transform on high image gradient values and gray value valleys together with the classification of watershed regions into bladder contents and tissue by a graph cut algorithm. The obtained results are superior if compared to a simple region-after-region classification.

  8. Water resources of the Pomme de Terre River Watershed, West-central Minnesota

    Science.gov (United States)

    Cotter, R.D.; Bidwell, L.E.

    1966-01-01

    The watershed is underlain by water-bearing glacial drift, cretaceous rocks, and Precambrian crystalline rocks.  It is an elongate basin 92 miles long and has a drainage area of 977 square miles.  The Pomme de Terre River flows within an outwash valley discharging into the Minnesota River at Marsh Lake.

  9. Metadata Modelling of the IPv6 Wireless Sensor Network in the Heihe River Watershed

    Directory of Open Access Journals (Sweden)

    Wanming Luo

    2013-03-01

    Full Text Available Environmental monitoring in ecological and hydrological watershed-scale research is an important and promising area of application for wireless sensor networks. This paper presents the system design of the IPv6 wireless sensor network (IPv6WSN in the Heihe River watershed in the Gansu province of China to assist ecological and hydrological scientists collecting field scientific data in an extremely harsh environment. To solve the challenging problems they face, this paper focuses on the key technologies adopted in our project, metadata modeling for the IPv6WSN. The system design introduced in this paper provides a solid foundation for effective use of a self-developed IPv6 wireless sensor network by ecological and hydrological scientists.

  10. Forest Ecosystem Processes at the Watershed Scale: Ecosystem services, feedback and evolution in developing mountainous catchments

    Science.gov (United States)

    Band, Larry

    2010-05-01

    significant increase in population in the Southern Appalachians, with new building of second homes in steep headwaters, requiring significant expansion in high altitude roads, in contrast with traditional valley bottom development. With additional increases in hydrologic extremes (heavy precipitation and drought), and progressive changes in forest composition there has been increases in hazard from flash flooding, landslide activity and degraded water quality. The evaluation of integrated watershed impacts of the expected changes in climate and land management requires an interdisciplinary approach including direct feedbacks between ecological, hydrological, geomorphic and atmospheric processes within the framework of an adapting social system. Advances in this type of interdisciplinary research require a network of ecohydrologic observatories generating long term, multi-dimensional data, and a science community working across the interface of multiple fields. Adding individual and institutional behavior as an input or interactive component of watershed ecosystems remains a challenge that spans ecological, hydrological and social science.

  11. Social Infrastructure to Integrate Science and Practice: the Experience of the Long Tom Watershed Council

    Directory of Open Access Journals (Sweden)

    Rebecca L. Flitcroft

    2009-12-01

    Full Text Available Ecological problem solving requires a flexible social infrastructure that can incorporate scientific insights and adapt to changing conditions. As applied to watershed management, social infrastructure includes mechanisms to design, carry out, evaluate, and modify plans for resource protection or restoration. Efforts to apply the best science will not bring anticipated results without the appropriate social infrastructure. For the Long Tom Watershed Council, social infrastructure includes a management structure, membership, vision, priorities, partners, resources, and the acquisition of scientific knowledge, as well as the communication with and education of people associated with and affected by actions to protect and restore the watershed. Key to integrating science and practice is keeping science in the loop, using data collection as an outreach tool, and the Long Tom Watershed Council's subwatershed enhancement program approach. Resulting from these methods are ecological leadership, restoration projects, and partnerships that catalyze landscape-level change.

  12. Structural organization of process zones in upland watersheds of central Nevada and its influence on basin connectivity, dynamics, and wet meadow complexes

    Science.gov (United States)

    Jerry R. Miller; Mark L. Lord; Lionel F. Villarroel; Dru Germanoski; Jeanne C. Chambers

    2012-01-01

    The drainage network within upland watersheds in central Nevada can be subdivided into distinct zones each dominated by a unique set of processes on the basis of valley form, the geological materials that comprise the valley floor, and the presence or absence of surficial channels. On hillslopes, the type and structure (frequency, length, and spatial arrangement) of...

  13. Developing a Forest Health Index for public engagement and decision support using local climatic, ecological, and socioeconomic data

    Science.gov (United States)

    Arnott, J. C.; Katzenberger, J.; Cundiff, J.

    2013-12-01

    Forest health is an oft-used term without a generally accepted definition. Nonetheless, the concept of forest health continues to permeate scientific, resource management, and public discourse, and it is viewed as a helpful communication device for engagement on issues of concern to forests and their surrounding communities. Notwithstanding the challenges associated with defining the concept of 'forest health,' we present a model for assessing forest health at a watershed scale. Utilizing the Roaring Fork Valley, Colorado--a mountain watershed of 640,000 forested acres--as a case study, we have created a Forest Health Index that integrates a range of climatic, ecological, and socioeconomic data into an assessment organized along a series of public goals including, 1) Ecosystem Services, 2) Public Health & Safety, 3) Sustainable Use & Management, and 4) Ecological Integrity. Methods for this index were adopted from an earlier effort called the Ocean Health Index by Halpern et al, 2012. Indicators that represent drivers of change, such as temperature and precipitation, as well as effects of change, such as primary productivity and phenology, were selected. Each indicator is assessed by comparing a current status of that indicator to a reference scenario obtained through one of the following methods: a) statistical analysis of baseline data from the indicator record, b) commonly accepted normals, thresholds, limits, concentrations, etc., and c) subjective expert judgment. The result of this assessment is a presentation of graphical data and accompanying ratings that combine to form an index of health for the watershed forest ecosystem. We find this product to have potential merit for communities working to assess the range of conditions affecting forest health as well as making sense of the outcomes of those affects. Here, we present a description of the index methodology, data results from engagement with forest watershed stakeholders, example results of data

  14. Analysis of streamflow distribution of non-point source nitrogen export from long-term urban-rural catchments to guide watershed management in the Chesapeake Bay watershed

    Science.gov (United States)

    Duncan, J. M.; Band, L. E.; Groffman, P.

    2017-12-01

    Discharge, land use, and watershed management practices (stream restoration and stormwater control measures) have been found to be important determinants of nitrogen (N) export to receiving waters. We used long-term water quality stations from the Baltimore Ecosystem Study Long-Term Ecological Research (BES LTER) Site to quantify nitrogen export across streamflow conditions at the small watershed scale. We calculated nitrate and total nitrogen fluxes using methodology that allows for changes over time; weighted regressions on time, discharge, and seasonality. Here we tested the hypotheses that a) while the largest N stream fluxes occur during storm events, there is not a clear relationship between N flux and discharge and b) N export patterns are aseasonal in developed watersheds where sources are larger and retention capacity is lower. The goal is to scale understanding from small watersheds to larger ones. Developing a better understanding of hydrologic controls on nitrogen export is essential for successful adaptive watershed management at societally meaningful spatial scales.

  15. TEK and biodiversity management in agroforestry systems of different socio-ecological contexts of the Tehuacán Valley.

    Science.gov (United States)

    Vallejo-Ramos, Mariana; Moreno-Calles, Ana I; Casas, Alejandro

    2016-07-22

    Transformation of natural ecosystems into intensive agriculture is a main factor causing biodiversity loss worldwide. Agroforestry systems (AFS) may maintain biodiversity, ecosystem benefits and human wellbeing, they have therefore high potential for concealing production and conservation. However, promotion of intensive agriculture and disparagement of TEK endanger their permanence. A high diversity of AFS still exist in the world and their potentialities vary with the socio-ecological contexts. We analysed AFS in tropical, temperate, and arid environments, of the Tehuacan Valley, Mexico, to investigate how their capacity varies to conserve biodiversity and role of TEK influencing differences in those contexts. We hypothesized that biodiversity in AFS is related to that of forests types associated and the vigour of TEK and management. We conducted studies in a matrix of environments and human cultures in the Tehuacán Valley. In addition, we reviewed, systematized and compared information from other regions of Mexico and the world with comparable socio-ecological contexts in order to explore possible general patterns. Our study found from 26 % to nearly 90 % of wild plants species richness conserved in AFS, the decreasing proportion mainly associated to pressures for intensifying agricultural production and abandoning traditional techniques. Native species richness preserved in AFS is influenced by richness existing in the associated forests, but the main driver is how people preserve benefits of components and functions of ecosystems. Elements of modern agricultural production may coexist with traditional management patterns, but imposition of modern models may break possible balances. TEK influences decisions on what and how modern techniques may be advantageous for preserving biodiversity, ecosystem integrity in AFS and people's wellbeing. TEK, agroecology and other sciences may interact for maintaining and improving traditional AFS to increase biodiversity

  16. Land degradation and integrated watershed management in India

    Directory of Open Access Journals (Sweden)

    Suraj Bhan

    2013-06-01

    Government of India has launched various centre-sector, state-sector and foreign aided schemes for prevention of land degradation, reclamation of special problem areas for ensuring productivity of the land, preservation of land resources and improvement of ecology and environment. These schemes are being implemented on watershed basis in rainfed areas. Soil conservation measures and reclamation of degraded lands are decided considering the land capability and land uses. The efforts made so far resulted in enhancement of agricultural production and productivity of lands, increase in employment generation, improving the environment of the areas and socio-economic upgradation of the people. Integrated watershed management approach has been adopted as a key national strategy for sustainable development of rural areas. This has been proved by conducting monitoring and impact evaluation studies of the integrated watershed projects by external agencies.

  17. Status and understanding of groundwater quality in the Bear Valley and Lake Arrowhead Watershed Study Unit, 2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Mathany, Timothy; Burton, Carmen

    2017-06-20

    Groundwater quality in the 112-square-mile Bear Valley and Lake Arrowhead Watershed (BEAR) study unit was investigated as part of the Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit comprises two study areas (Bear Valley and Lake Arrowhead Watershed) in southern California in San Bernardino County. The GAMA-PBP is conducted by the California State Water Resources Control Board (SWRCB) in cooperation with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory.The GAMA BEAR study was designed to provide a spatially balanced, robust assessment of the quality of untreated (raw) groundwater from the primary aquifer systems in the two study areas of the BEAR study unit. The assessment is based on water-quality collected by the USGS from 38 sites (27 grid and 11 understanding) during 2010 and on water-quality data from the SWRCB-Division of Drinking Water (DDW) database. The primary aquifer system is defined by springs and the perforation intervals of wells listed in the SWRCB-DDW water-quality database for the BEAR study unit.This study included two types of assessments: (1) a status assessment, which characterized the status of the quality of the groundwater resource as of 2010 by using data from samples analyzed for volatile organic compounds, pesticides, and naturally present inorganic constituents, such as major ions and trace elements, and (2) an understanding assessment, which evaluated the natural and human factors potentially affecting the groundwater quality. The assessments were intended to characterize the quality of groundwater resources in the primary aquifer system of the BEAR study unit, not the treated drinking water delivered to consumers. Bear Valley study area and the Lake Arrowhead Watershed study area were also compared statistically on the basis of water-quality results and factors potentially affecting the groundwater quality.Relative concentrations (RCs

  18. Watershed Planning within a Quantitative Scenario Analysis Framework.

    Science.gov (United States)

    Merriam, Eric R; Petty, J Todd; Strager, Michael P

    2016-07-24

    There is a critical need for tools and methodologies capable of managing aquatic systems within heavily impacted watersheds. Current efforts often fall short as a result of an inability to quantify and predict complex cumulative effects of current and future land use scenarios at relevant spatial scales. The goal of this manuscript is to provide methods for conducting a targeted watershed assessment that enables resource managers to produce landscape-based cumulative effects models for use within a scenario analysis management framework. Sites are first selected for inclusion within the watershed assessment by identifying sites that fall along independent gradients and combinations of known stressors. Field and laboratory techniques are then used to obtain data on the physical, chemical, and biological effects of multiple land use activities. Multiple linear regression analysis is then used to produce landscape-based cumulative effects models for predicting aquatic conditions. Lastly, methods for incorporating cumulative effects models within a scenario analysis framework for guiding management and regulatory decisions (e.g., permitting and mitigation) within actively developing watersheds are discussed and demonstrated for 2 sub-watersheds within the mountaintop mining region of central Appalachia. The watershed assessment and management approach provided herein enables resource managers to facilitate economic and development activity while protecting aquatic resources and producing opportunity for net ecological benefits through targeted remediation.

  19. Space and habitat use by black bears in the Elwha valley prior to dam removal

    Science.gov (United States)

    Sager-Fradkin, K.A.; Jenkins, K.J.; Happe, P.J.; Beecham, J.J.; Wright, R.G.; Hoffman, R.A.

    2008-01-01

    Dam removal and subsequent restoration of salmon to the Elwha River is expected to cause a shift in nutrient dynamics within the watershed. To document how this influx of nutrients and energy may affect black bear (Ursus americanus) ecology, we used radio-telemetry to record movements of 11 male and two female black bears in the Elwha Valley from 2002-06. Our objective was to collect baseline data on bear movements prior to dam removal. We calculated annual home ranges, described seasonal timing of den entry and emergence, and described seasonal patterns of distribution and habitat use. Adaptive kernel home ranges were larger formales (mean = 151.1 km2, SE = 21.4) than females (mean = 38.8 km2, SE = 13.0). Males ranged widely and frequently left the watershed during late summer. Further, they exhibited predictable and synchronous patterns of elevation change throughout each year. Bears entered their winter dens between 8 October and 15 December and emerged from dens between 10 March and 9 May. Male bears used low-elevation conifer and hardwood forests along the Elwha floodplain during spring, mid- to high-elevation forests and meadows during early summer, high-elevation forests, meadows and shrubs during late summer, and mid-elevation forests, shrubs and meadows during fall. Data acquired during this study provide important baseline information for comparison after dam removal, when bears may alter their late summer and fall movement and denning patterns to take advantage of energy-rich spawning salmon.

  20. Coffee agroforestry for sustainability of Upper Sekampung Watershed management

    Science.gov (United States)

    Fitriani; Arifin, Bustanul; Zakaria, Wan Abbas; Hanung Ismono, R.

    2018-03-01

    The main objective of watershed management is to ensure the optimal hydrological and natural resource use for ecological, social and economic importance. One important adaptive management step in dealing with the risk of damage to forest ecosystems is the practice of agroforestry coffee. This study aimed to (1) assess the farmer's response to ecological service responsibility and (2) analyze the Sekampung watersheds management by providing environmental services. The research location was Air Naningan sub-district, Tanggamus, Lampung Province, Indonesia. The research was conducted from July until November 2016. Stratification random sampling based on the pattern of ownership of land rights is used to determine the respondents. Data were analyzed using descriptive statistics and logistic regression analysis. Based on the analysis, it was concluded that coffee farmers' participation in the practice of coffee agroforestry in the form of 38% shade plants and multiple cropping (62%). The logistic regression analysis indicated that the variables of experience and status of land ownership, and incentive-size plans were able to explain variations in the willingness of coffee growers to follow the scheme of providing environmental services. The existence of farmer with partnership and CBFM scheme on different land tenure on upper Sekampung has a strategic position to minimize the deforestation and recovery watersheds destruction.

  1. Effects of watershed experiments on water chemistry at the Marcell Experimental Forest. Chapter 14.

    Science.gov (United States)

    Stephen D. Sebestyen; Elon S. Verry

    2011-01-01

    The Marcell Experimental Forest (MEF) was established during the 1960s to study the hydrology and ecology of lowland watersheds where upland mineral soils drain to central peatlands (Boelter and Verry 1977). The effects of seven large-scale manipulations on water chemistry have been studied on the MEF watersheds and the data now span up to four decades. In this chapter...

  2. Simulation of net infiltration and potential recharge using a distributed-parameter watershed model of the Death Valley region, Nevada and California

    Science.gov (United States)

    Hevesi, Joseph A.; Flint, Alan L.; Flint, Lorraine E.

    2003-01-01

    This report presents the development and application of the distributed-parameter watershed model, INFILv3, for estimating the temporal and spatial distribution of net infiltration and potential recharge in the Death Valley region, Nevada and California. The estimates of net infiltration quantify the downward drainage of water across the lower boundary of the root zone and are used to indicate potential recharge under variable climate conditions and drainage basin characteristics. Spatial variability in recharge in the Death Valley region likely is high owing to large differences in precipitation, potential evapotranspiration, bedrock permeability, soil thickness, vegetation characteristics, and contributions to recharge along active stream channels. The quantity and spatial distribution of recharge representing the effects of variable climatic conditions and drainage basin characteristics on recharge are needed to reduce uncertainty in modeling ground-water flow. The U.S. Geological Survey, in cooperation with the Department of Energy, developed a regional saturated-zone ground-water flow model of the Death Valley regional ground-water flow system to help evaluate the current hydrogeologic system and the potential effects of natural or human-induced changes. Although previous estimates of recharge have been made for most areas of the Death Valley region, including the area defined by the boundary of the Death Valley regional ground-water flow system, the uncertainty of these estimates is high, and the spatial and temporal variability of the recharge in these basins has not been quantified. To estimate the magnitude and distribution of potential recharge in response to variable climate and spatially varying drainage basin characteristics, the INFILv3 model uses a daily water-balance model of the root zone with a primarily deterministic representation of the processes controlling net infiltration and potential recharge. The daily water balance includes precipitation

  3. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  4. [Measuring water ecological carrying capacity with the ecosystem-service-based ecological footprint (ESEF) method: Theory, models and application].

    Science.gov (United States)

    Jiao, Wen-jun; Min, Qing-wen; Li, Wen-hua; Fuller, Anthony M

    2015-04-01

    Integrated watershed management based on aquatic ecosystems has been increasingly acknowledged. Such a change in the philosophy of water environment management requires recognizing the carrying capacity of aquatic ecosystems for human society from a more general perspective. The concept of the water ecological carrying capacity is therefore put forward, which considers both water resources and water environment, connects socio-economic development to aquatic ecosystems and provides strong support for integrated watershed management. In this paper, the authors proposed an ESEF-based measure of water ecological carrying capacity and constructed ESEF-based models of water ecological footprint and capacity, aiming to evaluate water ecological carrying capacity with footprint methods. A regional model of Taihu Lake Basin was constructed and applied to evaluate the water ecological carrying capacity in Changzhou City which located in the upper reaches of the basin. Results showed that human demand for water ecosystem services in this city had exceeded the supply capacity of local aquatic ecosystems and the significant gap between demand and supply had jeopardized the sustainability of local aquatic ecosystems. Considering aqua-product provision, water supply and pollutant absorption in an integrated way, the scale of population and economy aquatic ecosystems in Changzhou could bear only 54% of the current status.

  5. Linking Resilience of Aquatic Species to Watershed Condition

    Science.gov (United States)

    Flitcroft, R. L.

    2017-12-01

    Watershed condition means different things to different people. From the perspective of aquatic ecology, watershed condition may be interpreted to mean the capacity of a watershed to support life history diversity of native species. Diversity in expression of life history is thought to confer resilience allowing portions of the broader population to survive stressful conditions. Different species have different life history strategies, many of which were developed through adaptation to regional or local environmental conditions and natural disturbance regimes. By reviewing adaptation strategies for species of interest at regional scales, characteristics of watersheds that confer resilience may be determined. Such assessments must be completed at multiple levels of spatial organization (i.e. sub-watershed, watershed, region) allowing assessments to be inferred across broad spatial extents. In a project on the Wenatchee River watershed, we guided models of wildfire effects on bull trout and spring Chinook from a meta-population perspective to determine risks to survival at local and population scales over multiple extents of spatial organization. In other work in the Oregon Coast Range, we found that historic landslides continue to exert habitat-forming pressure at local scales, leading to patchiness in distribution of habitats for different life stages of coho salmon. Further, climate change work in Oregon estuaries identified different vulnerabilities in terms of juvenile rearing habitat depending on the species of interest and the intensity of future changes in climate. All of these studies point to the importance of considering physical conditions in watersheds at multiple spatial extents from the perspective of native aquatic species in order to understand risks to long-term survival. The broader implications of watershed condition, from this perspective, is the determination of physical attributes that confer resilience to native biota. This may require

  6. Using Ecological Indicators and a Decision Support System for Integrated Ecological Assessment at Two National Park Units in the Mid-Atlantic Region, USA

    Science.gov (United States)

    Mahan, Carolyn G.; Young, John A.; Miller, Bruce J.; Saunders, Michael C.

    2015-02-01

    We implemented an integrated ecological assessment using a GIS-based decision support system model for Upper Delaware Scenic and Recreational River (UPDE) and Delaware Water Gap National Recreation Area (DEWA)—national park units with the mid-Atlantic region of the United States. Our assessment examined a variety of aquatic and terrestrial indicators of ecosystem components that reflect the parks' conservation purpose and reference condition. Our assessment compared these indicators to ecological thresholds to determine the condition of park watersheds. Selected indicators included chemical and physical measures of water quality, biologic indicators of water quality, and landscape condition measures. For the chemical and physical measures of water quality, we used a water quality index and each of its nine components to assess the condition of water quality in each watershed. For biologic measures of water quality, we used the Ephemeroptera, Plecoptera, Trichoptera aquatic macroinvertebrate index and, secondarily, the Hilsenhoff aquatic macroinvertebrate index. Finally, for the landscape condition measures of our model, we used percent forest and percent impervious surface. Based on our overall assessment, UPDE and DEWA watersheds had an ecological assessment score of 0.433 on a -1 to 1 fuzzy logic scale. This score indicates that, in general, the natural resource condition within watersheds at these parks is healthy or ecologically unimpaired; however, we had only partial data for many of our indicators. Our model is iterative and new data may be incorporated as they become available. These natural parks are located within a rapidly urbanizing landscape—we recommend that natural resource managers remain vigilant to surrounding land uses that may adversely affect natural resources within the parks.

  7. Evaluating the impacts of crop rotations on groundwater storage and recharge in an agricultural watershed

    Science.gov (United States)

    Abdullah O. Dakhlalla; Prem B. Parajuli; Ying Ouyang; Darrel W. Schmitz

    2016-01-01

    The Mississippi River Valley Alluvial Aquifer, which underlies the Big Sunflower River Watershed (BSRW),is the most heavily used aquifer in Mississippi. Because the aquifer is primarily used for irrigating cropssuch as corn, cotton, soybean, and rice, the water levels have been declining rapidly over the past fewdecades. The objectives of this study are to...

  8. Wild European apple (Malus sylvestris (L.) Mill.) population dynamics: insight from genetics and ecology in the Rhine Valley. Priorities for a future conservation programme.

    Science.gov (United States)

    Schnitzler, Annik; Arnold, Claire; Cornille, Amandine; Bachmann, Olivier; Schnitzler, Christophe

    2014-01-01

    The increasing fragmentation of forest habitats and the omnipresence of cultivars potentially threaten the genetic integrity of the European wild apple (Malus sylvestris (L.) Mill). However, the conservation status of this species remains unclear in Europe, other than in Belgium and the Czech Republic, where it has been declared an endangered species. The population density of M. sylvestris is higher in the forests of the upper Rhine Valley (France) than in most European forests, with an unbalanced age-structure, an overrepresentation of adults and a tendency to clump. We characterize here the ecology, age-structure and genetic diversity of wild apple populations in the Rhine Valley. We use these data to highlight links to the history of this species and to propose guidelines for future conservation strategies. In total, 255 individual wild apple trees from six forest stands (five floodplain forests and one forest growing in drier conditions) were analysed in the field, collected and genotyped on the basis of data for 15 microsatellite markers. Genetic analyses showed no escaped cultivars and few hybrids with the cultivated apple. Excluding the hybrids, the genetically "pure" populations displayed high levels of genetic diversity and a weak population structure. Age-structure and ecology studies of wild apple populations identified four categories that were not randomly distributed across the forests, reflecting the history of the Rhine forest over the last century. The Rhine wild apple populations, with their ecological strategies, high genetic diversity, and weak traces of crop-to-wild gene flow associated with the history of these floodplain forests, constitute candidate populations for inclusion in future conservation programmes for European wild apple.

  9. Wild European Apple (Malus sylvestris (L.) Mill.) Population Dynamics: Insight from Genetics and Ecology in the Rhine Valley. Priorities for a Future Conservation Programme

    Science.gov (United States)

    Schnitzler, Annik; Arnold, Claire; Cornille, Amandine; Bachmann, Olivier; Schnitzler, Christophe

    2014-01-01

    The increasing fragmentation of forest habitats and the omnipresence of cultivars potentially threaten the genetic integrity of the European wild apple (Malus sylvestris (L.) Mill). However, the conservation status of this species remains unclear in Europe, other than in Belgium and the Czech Republic, where it has been declared an endangered species. The population density of M. sylvestris is higher in the forests of the upper Rhine Valley (France) than in most European forests, with an unbalanced age-structure, an overrepresentation of adults and a tendency to clump. We characterize here the ecology, age-structure and genetic diversity of wild apple populations in the Rhine Valley. We use these data to highlight links to the history of this species and to propose guidelines for future conservation strategies. In total, 255 individual wild apple trees from six forest stands (five floodplain forests and one forest growing in drier conditions) were analysed in the field, collected and genotyped on the basis of data for 15 microsatellite markers. Genetic analyses showed no escaped cultivars and few hybrids with the cultivated apple. Excluding the hybrids, the genetically “pure” populations displayed high levels of genetic diversity and a weak population structure. Age-structure and ecology studies of wild apple populations identified four categories that were not randomly distributed across the forests, reflecting the history of the Rhine forest over the last century. The Rhine wild apple populations, with their ecological strategies, high genetic diversity, and weak traces of crop-to-wild gene flow associated with the history of these floodplain forests, constitute candidate populations for inclusion in future conservation programmes for European wild apple. PMID:24827575

  10. Integrated Modeling System for Analysis of Watershed Water Balance: A Case Study in the Tims Branch Watershed, South Carolina

    Science.gov (United States)

    Setegn, S. G.; Mahmoudi, M.; Lawrence, A.; Duque, N.

    2015-12-01

    The Applied Research Center at Florida International University (ARC-FIU) is supporting the soil and groundwater remediation efforts of the U.S. Department of Energy (DOE) Savannah River Site (SRS) by developing a surface water model to simulate the hydrology and the fate and transport of contaminants and sediment in the Tims Branch watershed. Hydrological models are useful tool in water and land resource development and decision-making for watershed management. Moreover, simulation of hydrological processes improves understanding of the environmental dynamics and helps to manage and protect water resources and the environment. MIKE SHE, an advanced integrated modeling system is used to simulate the hydrological processes of the Tim Branch watershed with the objective of developing an integrated modeling system to improve understanding of the physical, chemical and biological processes within the Tims Branch watershed. MIKE SHE simulates water flow in the entire land based phase of the hydrological cycle from rainfall to river flow, via various flow processes such as, overland flow, infiltration, evapotranspiration, and groundwater flow. In this study a MIKE SHE model is developed and applied to the Tim branch watershed to study the watershed response to storm events and understand the water balance of the watershed under different climatic and catchment characteristics. The preliminary result of the integrated model indicated that variation in the depth of overland flow highly depend on the amount and distribution of rainfall in the watershed. The ultimate goal of this project is to couple the MIKE SHE and MIKE 11 models to integrate the hydrological component in the land phase of hydrological cycle and stream flow process. The coupled MIKE SHE/MIKE 11 model will further be integrated with an Ecolab module to represent a range of water quality, contaminant transport, and ecological processes with respect to the stream, surface water and groundwater in the Tims

  11. Computational modeling for eco engineering: Making the connections between engineering and ecology (Invited)

    Science.gov (United States)

    Bowles, C.

    2013-12-01

    Ecological engineering, or eco engineering, is an emerging field in the study of integrating ecology and engineering, concerned with the design, monitoring, and construction of ecosystems. According to Mitsch (1996) 'the design of sustainable ecosystems intends to integrate human society with its natural environment for the benefit of both'. Eco engineering emerged as a new idea in the early 1960s, and the concept has seen refinement since then. As a commonly practiced field of engineering it is relatively novel. Howard Odum (1963) and others first introduced it as 'utilizing natural energy sources as the predominant input to manipulate and control environmental systems'. Mtisch and Jorgensen (1989) were the first to define eco engineering, to provide eco engineering principles and conceptual eco engineering models. Later they refined the definition and increased the number of principles. They suggested that the goals of eco engineering are: a) the restoration of ecosystems that have been substantially disturbed by human activities such as environmental pollution or land disturbance, and b) the development of new sustainable ecosystems that have both human and ecological values. Here a more detailed overview of eco engineering is provided, particularly with regard to how engineers and ecologists are utilizing multi-dimensional computational models to link ecology and engineering, resulting in increasingly successful project implementation. Descriptions are provided pertaining to 1-, 2- and 3-dimensional hydrodynamic models and their use at small- and large-scale applications. A range of conceptual models that have been developed to aid the in the creation of linkages between ecology and engineering are discussed. Finally, several case studies that link ecology and engineering via computational modeling are provided. These studies include localized stream rehabilitation, spawning gravel enhancement on a large river system, and watershed-wide floodplain modeling of

  12. Exploring the Non-Stationary Effects of Forests and Developed Land within Watersheds on Biological Indicators of Streams Using Geographically-Weighted Regression

    Directory of Open Access Journals (Sweden)

    Kyoung-Jin An

    2016-03-01

    Full Text Available This study examined the non-stationary relationship between the ecological condition of streams and the proportions of forest and developed land in watersheds using geographically-weighted regression (GWR. Most previous studies have adopted the ordinary least squares (OLS method, which assumes stationarity of the relationship between land use and biological indicators. However, these conventional OLS models cannot provide any insight into local variations in the land use effects within watersheds. Here, we compared the performance of the OLS and GWR statistical models applied to benthic diatom, macroinvertebrate, and fish communities in sub-watershed management areas. We extracted land use datasets from the Ministry of Environment LULC map and data on biological indicators in Nakdong river systems from the National Aquatic Ecological Monitoring Program in Korea. We found that the GWR model had superior performance compared with the OLS model, as assessed based on R2, Akaike’s Information Criterion, and Moran’s I values. Furthermore, GWR models revealed specific localized effects of land use on biological indicators, which we investigated further. The results of this study can be used to inform more effective policies on watershed management and to enhance ecological integrity by prioritizing sub-watershed management areas

  13. Water quality trading opportunities in two sub-watersheds in the northern Lake Okeechobee watershed.

    Science.gov (United States)

    Corrales, Juliana; Naja, G Melodie; Bhat, Mahadev G; Miralles-Wilhelm, Fernando

    2017-07-01

    For decades, the increase of nutrient enrichment has threatened the ecological integrity and economic sustainability of many rivers, lakes, and coastal waters, including Lake Okeechobee, the second largest freshwater lake in the contiguous United States. Water quality trading programs have been an area of active development to both, reduce nutrient pollution and minimize abatement costs. The objective of this study was to apply a comprehensive modeling framework, integrating a hydrologic-water quality model with an economic model, to assess and compare the cost-effectiveness of a water quality trading program over a command-and-control approach in order to reduce phosphorus loadings to Lake Okeechobee. The Upper Kissimmee (UK) and Taylor Creek/Nubbin Slough (TCNS) sub-watersheds, identified as major sources of total phosphorus (TP) loadings to the lake, were selected for this analysis. The effect of different caps on the market potential was assessed while considering four factors: the least-cost abatement solutions, credit prices, potential cost savings, and credit supply and demand. Hypothetical trading scenarios were also developed, using the optimal caps selected for the two sub-watersheds. In both sub-watersheds, a phosphorus credit trading program was less expensive than the conventional command-and-control approach. While attaining cost-effectiveness, keeping optimal credit prices, and fostering market competition, phosphorus reduction targets of 46% and 32% were selected as the most appropriate caps in the UK and TCNS sub-watersheds, respectively. Wastewater treatment facilities and urban areas in the UK, and concentrated animal feeding operations in the TCNS sub-watershed were identified as potential credit buyers, whereas improved pastures were identified as the major credit sellers in both sub-watersheds. The estimated net cost savings resulting from implementing a phosphorus trading program in the UK and TCNS sub-watersheds were 76% ($ 34.9 million per

  14. Land suitability assessment on a watershed of Loess Plateau using the analytic hierarchy process.

    Science.gov (United States)

    Yi, Xiaobo; Wang, Li

    2013-01-01

    In order to reduce soil erosion and desertification, the Sloping Land Conversion Program has been conducted in China for more than 15 years, and large areas of farmland have been converted to forest and grassland. However, this large-scale vegetation-restoration project has faced some key problems (e.g. soil drying) that have limited the successful development of the current ecological-recovery policy. Therefore, it is necessary to know about the land use, vegetation, and soil, and their inter-relationships in order to identify the suitability of vegetation restoration. This study was conducted at the watershed level in the ecologically vulnerable region of the Loess Plateau, to evaluate the land suitability using the analytic hierarchy process (AHP). The results showed that (1) the area unsuitable for crops accounted for 73.3% of the watershed, and the main factors restricting cropland development were soil physical properties and soil nutrients; (2) the area suitable for grassland was about 86.7% of the watershed, with the remaining 13.3% being unsuitable; (3) an area of 3.95 km(2), accounting for 66.7% of the watershed, was unsuitable for forest. Overall, the grassland was found to be the most suitable land-use to support the aims of the Sloping Land Conversion Program in the Liudaogou watershed. Under the constraints of soil water shortage and nutrient deficits, crops and forests were considered to be inappropriate land uses in the study area, especially on sloping land. When selecting species for re-vegetation, non-native grass species with high water requirements should be avoided so as to guarantee the sustainable development of grassland and effective ecological functioning. Our study provides local land managers and farmers with valuable information about the inappropriateness of growing trees in the study area along with some information on species selection for planting in the semi-arid area of the Loess Plateau.

  15. About the Atlantic Ecology Division (AED) of EPA's National Health and Environmental Effects Research Laboratory

    Science.gov (United States)

    The Atlantic Ecology Division (AED), conducts innovative research and predictive modeling to assess and forecast the risks of anthropogenic stressors to near coastal waters and their watersheds, to develop tools to support resilient watersheds.

  16. Imbalance of Nature due to Contaminant Loads in the Culiacan River Watershed, Sinaloa, México

    Science.gov (United States)

    García Páez, F.; Ley-Aispuro, E.

    2013-05-01

    The Culiacan River discharges runoff from a large agricultural watershed into the wetlands at Ensenada de Pabellones ranked as a priority marine region of Mexico due to its high biodiversity and the economic importance of its fishing resources. This research estimated potential contaminant loads for BOD5, TSS, N and P from stormwater runoff and associated land use in the watershed. Previous studies had demonstrated the imbalance of nature due to land use change causing contamination by heavy metals, pesticides, sediment, phosphorus and eutrophication (Lopez and Osuna, 2002; Green and Paez, 2004, Gonzalez et al., 2006; Osuna et al., 2007). The methodology included: Characterizing the watershed according to land use, soil, vegetation, annual runoff and population density by sub-watershed; estimating the potential contaminant load and annual average concentrations of contaminants using the PLOAD program, comparing the result with monitored contaminant concentrations; and identifying the impact of pollutant loads in the watershed and coastal ecosystems and proposing management strategies to reduce or reverse the imbalance of nature caused by contamination in the Culiacan River watershed. Calculated contaminant loads in tonne/year were 13,682.4 of BOD5; 503,621.8 of TSS; 5,975.7 of N and 1,789.1 of P. The Tamazula and Humaya rivers watersheds provide 72% of the total load of BOD5, 68.5% of TSS, 77.6% of N and 62.7% of P discharged to the wetlands. Monitored results include: 89% of temperature observations were above 21°C, which is stressful to aquatic life due to a subsequent decrease in dissolved oxygen; 100% of the observations of P exceeded the ecological criteria for water quality; 71.5% of the observations for DO from 2001 to 2011, were above the ecological criteria for protection of aquatic life and 91.5% met the criteria for use in drinking water; 100% of the observations for BOD5 values remained in the range of Excellent to Good; 22% of the observations for the

  17. Integrated approach for prioritizing watersheds for management: a study of lidder catchment of kashmir himalayas.

    Science.gov (United States)

    Malik, Mohammad Imran; Bhat, M Sultan

    2014-12-01

    The Himalayan watersheds are susceptible to various forms of degradation due to their sensitive and fragile ecological disposition coupled with increasing anthropogenic disturbances. Owing to the paucity of appropriate technology and financial resources, the prioritization of watersheds has become an inevitable process for effective planning and management of natural resources. Lidder catchment constitutes a segment of the western Himalayas with an area of 1,159.38 km(2). The study is based on integrated analysis of remote sensing, geographic information system, field study, and socioeconomic data. Multicriteria evaluation of geophysical, land-use and land-cover (LULC) change, and socioeconomic indicators is carried out to prioritize watersheds for natural resource conservation and management. Knowledge-based weights and ranks are normalized, and weighted linear combination technique is adopted to determine final priority value. The watersheds are classified into four priority zones (very high priority, high priority, medium priority, and low priority) on the basis of quartiles of the priority value, thus indicating their ecological status in terms of degradation caused by anthropogenic disturbances. The correlation between priority ranks of individual indicators and integrated indicators is drawn. The results reveal that socioeconomic indicators are the most important drivers of LULC change and environmental degradation in the catchment. Moreover, the magnitude and intensity of anthropogenic impact is not uniform in different watersheds of Lidder catchment. Therefore, any conservation and management strategy must be formulated on the basis of watershed prioritization.

  18. Impact of India's watershed development programs on biomass productivity

    Science.gov (United States)

    Bhalla, R. S.; Devi Prasad, K. V.; Pelkey, Neil W.

    2013-03-01

    Watershed development (WSD) is an important and expensive rural development initiative in India. Proponents of the approach contend that treating watersheds will increase agricultural and overall biomass productivity, which in turn will reduce rural poverty. We used satellite-measured normalized differenced vegetation index as a proxy for land productivity to test this crucial contention. We compared microwatersheds that had received funding and completed watershed restoration with adjacent untreated microwatersheds in the same region. As the criteria used can influence results, we analyzed microwatersheds grouped by catchment, state, ecological region, and biogeographical zones for analysis. We also analyzed pre treatment and posttreatment changes for the same watersheds in those schemes. Our findings show that WSD has not resulted in a significant increase in productivity in treated microwatersheds at any grouping, when compared to adjacent untreated microwatershed or the same microwatershed prior to treatment. We conclude that the well-intentioned people-centric WSD efforts may be inhibited by failing to adequately address the basic geomorphology and hydraulic condition of the catchment areas at all scales.

  19. Using ecological indicators and a decision support system for integrated ecological assessment at two national park units in the Mid-Atlantic region, U.S.A.

    Science.gov (United States)

    Mahan, Carolyn G.; Young, John A.; Miller, Bruce; Saunders, Michael C.

    2014-01-01

    We implemented an integrated ecological assessment using a GIS-based decision support system model for Upper Delaware Scenic and Recreational River (UPDE) and Delaware Water Gap National Recreation Area (DEWA)—national park units with the mid-Atlantic region of the United States. Our assessment examined a variety of aquatic and terrestrial indicators of ecosystem components that reflect the parks’ conservation purpose and reference condition. Our assessment compared these indicators to ecological thresholds to determine the condition of park watersheds. Selected indicators included chemical and physical measures of water quality, biologic indicators of water quality, and landscape condition measures. For the chemical and physical measures of water quality, we used a water quality index and each of its nine components to assess the condition of water quality in each watershed. For biologic measures of water quality, we used the Ephemeroptera, Plecoptera, Trichoptera aquatic macroinvertebrate index and, secondarily, the Hilsenhoff aquatic macroinvertebrate index. Finally, for the landscape condition measures of our model, we used percent forest and percent impervious surface. Based on our overall assessment, UPDE and DEWA watersheds had an ecological assessment score of 0.433 on a −1 to 1 fuzzy logic scale. This score indicates that, in general, the natural resource condition within watersheds at these parks is healthy or ecologically unimpaired; however, we had only partial data for many of our indicators. Our model is iterative and new data may be incorporated as they become available. These natural parks are located within a rapidly urbanizing landscape—we recommend that natural resource managers remain vigilant to surrounding land uses that may adversely affect natural resources within the parks.

  20. Morphometric Change Detection of Lake Hawassa in the Ethiopian Rift Valley

    Directory of Open Access Journals (Sweden)

    Yonas Abebe

    2018-05-01

    Full Text Available The Ethiopian Rift Valley lakes have been subjected to environmental and ecological changes due to recent development endeavors and natural phenomena, which are visible in the alterations to the quality and quantity of the water resources. Monitoring lakes for temporal and spatial alterations has become a valuable indicator of environmental change. In this regard, hydrographic information has a paramount importance. The first extensive hydrographic survey of Lake Hawassa was conducted in 1999. In this study, a bathymetric map was prepared using advances in global positioning systems, portable sonar sounder technology, geostatistics, remote sensing and geographic information system (GIS software analysis tools with the aim of detecting morphometric changes. Results showed that the surface area of Lake Hawassa increased by 7.5% in 1999 and 3.2% in 2011 from that of 1985. Water volume decreased by 17% between 1999 and 2011. Silt accumulated over more than 50% of the bed surface has caused a 4% loss of the lake’s storage capacity. The sedimentation patterns identified may have been strongly impacted by anthropogenic activities including urbanization and farming practices located on the northern, eastern and western sides of the lake watershed. The study demonstrated this geostatistical modeling approach to be a rapid and cost-effective method for bathymetric mapping.

  1. Estimating the erosion and deposition rates in a small watershed by the 137Cs tracing method

    International Nuclear Information System (INIS)

    Li Mian; Li Zhanbin; Yao Wenyi; Liu Puling

    2009-01-01

    Understanding the erosion and deposition rates in a small watershed is important for designing soil and water conservation measures. The objective of this study is to estimate the net soil loss and gain at points with various land use types and landform positions in a small watershed in the Sichuan Hilly Basin of China by the 137 Cs tracing technique. Among various land use types, the order of erosion rate was bare rock > sloping cultivated land > forest land. The paddy field and Caotu (a kind of cultivated land located at the foot of hills) were depositional areas. The erosion rate under different landform was in this order: hillside > saddle > hilltop. The footslope and the valley were depositional areas. The 137 Cs technique was shown to provide an effective means of documenting the spatial distribution of soil erosion and deposition within the small watershed

  2. Evaluating expected outcomes of acid remediation in an intensively mined Appalachian watershed.

    Science.gov (United States)

    Watson, Andrew S; Merovich, George T; Petty, J Todd; Gutta, J Brady

    2017-07-01

    Assessments of watershed-based restoration efforts are rare but are essential for the science of stream restoration to advance. We conducted a watershed scale assessment of Abram Creek before and after implementation of a watershed-based plan designed to maximize ecological recovery from acid mine drainage (AMD) impairment. We surveyed water chemistry, physical habitat, benthic macroinvertebrates, and fish community structure in three stream types: AMD-impacted (14 streams), AMD-treated (13 streams), and unimpaired reference (4 streams). We used in-stream measurements to quantify ecological loss from AMD, the amount of ecological recovery expected through remediation, and the observed degree of post-treatment recovery. Sites impaired by AMD improved in water quality with AMD treatment. Dissolved metals and acidity declined significantly in treated streams, but sulfate and specific conductance did not. Likewise, sites impaired by AMD improved in bio-condition scores with AMD treatment. EPT genera increased significantly but were lower compared to unimpaired streams. We found fish at nine treated sites that had none before treatment. Community-level analyses indicated improved but altered assemblages with AMD treatment. Analysis of pre-treatment conditions indicated that only 30% of the historic fishery remained. Remediation was expected to recover 66% of the historic fishery value, and assessment of post-treatment conditions indicates that 52% of the historic fishery has been recovered after 3 years. Developing expected endpoints for restoration outcomes provides a tool to objectively evaluate successes and can guide adaptive management strategies.

  3. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 4: Appendix E -- Valley-wide fate and transport report

    International Nuclear Information System (INIS)

    1996-01-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix E addresses contaminant releases and migration pathways from a valley-wide perspective and provides estimates of changes in contaminant fluxes in BCV

  4. A multi-dimensional analysis of the upper Rio Grande-San Luis Valley social-ecological system

    Science.gov (United States)

    Mix, Ken

    The Upper Rio Grande (URG), located in the San Luis Valley (SLV) of southern Colorado, is the primary contributor to streamflow to the Rio Grande Basin, upstream of the confluence of the Rio Conchos at Presidio, TX. The URG-SLV includes a complex irrigation-dependent agricultural social-ecological system (SES), which began development in 1852, and today generates more than 30% of the SLV revenue. The diversions of Rio Grande water for irrigation in the SLV have had a disproportionate impact on the downstream portion of the river. These diversions caused the flow to cease at Ciudad Juarez, Mexico in the late 1880s, creating international conflict. Similarly, low flows in New Mexico and Texas led to interstate conflict. Understanding changes in the URG-SLV that led to this event and the interactions among various drivers of change in the URG-SLV is a difficult task. One reason is that complex social-ecological systems are adaptive, contain feedbacks, emergent properties, cross-scale linkages, large-scale dynamics and non-linearities. Further, most analyses of SES to date have been qualitative, utilizing conceptual models to understand driver interactions. This study utilizes both qualitative and quantitative techniques to develop an innovative approach for analyzing driver interactions in the URG-SLV. Five drivers were identified for the URG-SLV social-ecological system: water (streamflow), water rights, climate, agriculture, and internal and external water policy. The drivers contained several longitudes (data aspect) relevant to the system, except water policy, for which only discreet events were present. Change point and statistical analyses were applied to the longitudes to identify quantifiable changes, to allow detection of cross-scale linkages between drivers, and presence of feedback cycles. Agricultural was identified as the driver signal. Change points for agricultural expansion defined four distinct periods: 1852--1923, 1924--1948, 1949--1978 and 1979

  5. Ecological Compensation Mechanism in Water Conservation Area: A Case Study of Dongjiang River

    Directory of Open Access Journals (Sweden)

    Kong Fanbin

    2015-07-01

    Full Text Available The appropriate economic compensation from downstream to upstream watershed is important to solve China’s social and economic imbalances between regions and can potentially enhance water resources protection and ecological security. The study analyzes the implementation of ecological compensation policy and related legal basis under ecological compensation mechanism theory and practice patterns, based on current natural environment and socio-economic development of national origin in Dongjiang water conservation areas. Under the principle of “Users pay”, the Dongjiang River is the subject of ecological compensation and recipient. By using the “cost-benefit analysis” and “cost method of industrial development opportunity”, we estimate that the total ecological compensation amounted to 513.35 million yuan. When estimated by the indicators such as water quantity, water quality and water use efficiency, we establish the “environmental and ecological protection cost sharing model” and measure the total cost of protecting downstream watershed areas, the Guangdong Province, is about 108.61 million yuan. The implementation of the Dongjiang source region that follows the principles of ecological compensation and approaches are also designed

  6. Ecological drought: Accounting for the non-human impacts of water shortage in the Upper Missouri Headwaters Basin, Montana, USA

    Science.gov (United States)

    McEvoy, Jamie; Bathke, Deborah J.; Burkardt, Nina; Cravens, Amanda; Haigh, Tonya; Hall, Kimberly R.; Hayes, Michael J.; Jedd, Theresa; Podebradska, Marketa; Wickham, Elliot

    2018-01-01

    Water laws and drought plans are used to prioritize and allocate scarce water resources. Both have historically been human-centric, failing to account for non-human water needs. In this paper, we examine the development of instream flow legislation and the evolution of drought planning to highlight the growing concern for the non-human impacts of water scarcity. Utilizing a new framework for ecological drought, we analyzed five watershed-scale drought plans in southwestern Montana, USA to understand if, and how, the ecological impacts of drought are currently being assessed. We found that while these plans do account for some ecological impacts, it is primarily through the narrow lens of impacts to fish as measured by water temperature and streamflow. The latter is typically based on the same ecological principles used to determine instream flow requirements. We also found that other resource plans in the same watersheds (e.g., Watershed Restoration Plans, Bureau of Land Management (BLM) Watershed Assessments or United States Forest Service (USFS) Forest Plans) identify a broader range of ecological drought risks. Given limited resources and the potential for mutual benefits and synergies, we suggest greater integration between various planning processes could result in a more holistic consideration of water needs and uses across the landscape.

  7. A systematic assessment of watershed-scale nonpoint source pollution during rainfall-runoff events in the Miyun Reservoir watershed.

    Science.gov (United States)

    Qiu, Jiali; Shen, Zhenyao; Wei, Guoyuan; Wang, Guobo; Xie, Hui; Lv, Guanping

    2018-03-01

    The assessment of peak flow rate, total runoff volume, and pollutant loads during rainfall process are very important for the watershed management and the ecological restoration of aquatic environment. Real-time measurements of rainfall-runoff and pollutant loads are always the most reliable approach but are difficult to carry out at all desired location in the watersheds considering the large consumption of material and financial resources. An integrated environmental modeling approach for the estimation of flash streamflow that combines the various hydrological and quality processes during rainstorms within the agricultural watersheds is essential to develop targeted management strategies for the endangered drinking water. This study applied the Hydrological Simulation Program-Fortran (HSPF) to simulate the spatial and temporal variation in hydrological processes and pollutant transport processes during rainstorm events in the Miyun Reservoir watershed, a drinking water resource area in Beijing. The model performance indicators ensured the acceptable applicability of the HSPF model to simulate flow and pollutant loads in the studied watershed and to establish a relationship between land use and the parameter values. The proportion of soil and land use was then identified as the influencing factors of the pollution intensities. The results indicated that the flush concentrations were much higher than those observed during normal flow periods and considerably exceeded the limits of Class III Environmental Quality Standards for Surface Water (GB3838-2002) for the secondary protection zones of the drinking water resource in China. Agricultural land and leached cinnamon soils were identified as the key sources of sediment, nutrients, and fecal coliforms. Precipitation volume was identified as a driving factor that determined the amount of runoff and pollutant loads during rainfall processes. These results are useful to improve the streamflow predictions, provide

  8. Leaf Area Index (LAI) in different type of agroforestry systems based on hemispherical photographs in Cidanau Watershed

    Science.gov (United States)

    Nur Khairiah, Rahmi; Setiawan, Yudi; Budi Prasetyo, Lilik; Ayu Permatasari, Prita

    2017-01-01

    Ecological functions of agroforestry systems have perceived benefit to people around Cidanau Watershed, especially in the protection of water quality. The main causes of the problems encountered in the Cidanau Watershed are associated with the human factors, especially encroachment and conversion of forest into farmland. The encroachment has made most forest in Cidanau Watershed become bare land. To preserve the ecological function of agroforestry systems in Cidanau Watershed, monitoring of the condition of the vegetation canopy in agroforestry systems is really needed. High intensity thinning of crown density due to deforestation can change stand leaf area index dramatically. By knowing LAI, we can assess the condition of the vegetation canopy in agroforestry systems. LAI in this research was obtained from Hemispherical Photographs analysis using the threshold method in HemiView Canopy Analysis Software. Our research results indicate that there are six types of agroforestry in Cidanau Watershed i.e. Sengon Agroforestry, Clove Agroforestry, Melinjo Agroforestry, Chocolate Agroforestry, Coffee Agroforestry, and Complex Agroforestry. Several factors potentially contribute to variations in the value of LAI in different types of agroforestry. The simple assumptions about differences ranges of LAI values on six types of agroforestry is closely related to leaf area and plant population density.

  9. Topography significantly influencing low flows in snow-dominated watersheds

    Science.gov (United States)

    Li, Qiang; Wei, Xiaohua; Yang, Xin; Giles-Hansen, Krysta; Zhang, Mingfang; Liu, Wenfei

    2018-03-01

    Watershed topography plays an important role in determining the spatial heterogeneity of ecological, geomorphological, and hydrological processes. Few studies have quantified the role of topography in various flow variables. In this study, 28 watersheds with snow-dominated hydrological regimes were selected with daily flow records from 1989 to 1996. These watersheds are located in the Southern Interior of British Columbia, Canada, and range in size from 2.6 to 1780 km2. For each watershed, 22 topographic indices (TIs) were derived, including those commonly used in hydrology and other environmental fields. Flow variables include annual mean flow (Qmean), Q10 %, Q25 %, Q50 %, Q75 %, Q90 %, and annual minimum flow (Qmin), where Qx % is defined as the daily flow that occurred each year at a given percentage (x). Factor analysis (FA) was first adopted to exclude some redundant or repetitive TIs. Then, multiple linear regression models were employed to quantify the relative contributions of TIs to each flow variable in each year. Our results show that topography plays a more important role in low flows (flow magnitudes ≤ Q75 %) than high flows. However, the effects of TIs on different flow magnitudes are not consistent. Our analysis also determined five significant TIs: perimeter, slope length factor, surface area, openness, and terrain characterization index. These can be used to compare watersheds when low flow assessments are conducted, specifically in snow-dominated regions with the watershed size less than several thousand square kilometres.

  10. Grays River Watershed and Biological Assessment Final Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  11. Grays River Watershed and Biological Assessment, 2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  12. Minnesota Watersheds

    Data.gov (United States)

    Minnesota Department of Natural Resources — Statewide minor watershed delineations with major/minor watershed identifiers and names for provinces, major watersheds, and basins. Also included are watershed...

  13. Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay Watershed

    Science.gov (United States)

    Lindsey, Bruce D.; Phillips, Scott; Donnelly, Colleen A.; Speiran, Gary K.; Plummer, Niel; Bohlke, John Karl; Focazio, Michael J.; Burton, William C.; Busenberg, Eurybiades

    2003-01-01

    One of the major water-quality problems in the Chesapeake Bay is an overabundance of nutrients from the streams and rivers that discharge to the Bay. Some of these nutrients are from nonpoint sources such as atmospheric deposition, agricultural manure and fertilizer, and septic systems. The effects of efforts to control nonpoint sources, however, can be difficult to quantify because of the lag time between changes at the land surface and the response in the base-flow (ground water) component of streams. To help resource managers understand the lag time between implementation of management practices and subsequent response in the nutrient concentrations in the base-flow component of streamflow, a study of ground-water discharge, residence time, and nitrate transport in springs throughout the Chesapeake Bay Watershed and in four smaller watersheds in selected hydrogeomorphic regions (HGMRs) was conducted. The four watersheds were in the Coastal Plain Uplands, Piedmont crystalline, Valley and Ridge carbonate, and Valley and Ridge siliciclastic HGMRs.A study of springs to estimate an apparent age of the ground water was based on analyses for concentrations of chlorofluorocarbons in water samples collected from 48 springs in the Chesapeake Bay Watershed. Results of the analysis indicate that median age for all the samples was 10 years, with the 25th percentile having an age of 7 years and the 75th percentile having an age of 13 years. Although the number of samples collected in each HGMR was limited, there did not appear to be distinct differences in the ages between the HGMRs. The ranges were similar between the major HGMRs above the Fall Line (modern to about 50 years), with only two HGMRs of small geographic extent (Piedmont carbonate and Mesozoic Lowland) having ranges of modern to about 10 years. The median values of all the HGMRs ranged from 7 to 11 years. Not enough samples were collected in the Coastal Plain for comparison. Spring samples showed slightly younger

  14. The Reynolds Creek Experimental Watershed: A Hydro-Geo-Climatic Observatory for the 21^{st} Century

    Science.gov (United States)

    Marks, D.; Seyfried, M.; Flerchinger, G.

    2006-12-01

    Long-term hydro-climatic data on a watershed scale are critical to improving our understanding of basic hydrologic and ecologic processes because they provide a context to assess inter-annual variability and allow us to document longer-term trends. In addition, a scientific infrastructure that captures the spatial variations within a watershed are required to identify recharge areas, describe the amount and timing of streamflow generation and understand the variability of vegetation. These basic data, combined with soil microclimate information, are required to describe the milieu for geochemical weathering and soil formation. Data from watersheds that include significant human activities, such as grazing, farming, irrigation, and urbanization, represent conditions typical to most watersheds and are critical for determining the signature of human induced changes on hydrologic processes and the water cycle. The Reynolds Creek Experimental Watershed (RCEW), a 239 km2 drainage in the Owyhee Mountains near Boise, Idaho, was added to the USDA Agricultural Research Service watershed program in 1960. The vision for RCEW as an outdoor laboratory to support watershed research was described 1965 in the first volume of Water Resources Research [Robins et al., 1965]. The RCEW has supported a sustained data collection network for over 45 years. The first 35 years of data were presented in a series of papers in 2001 [Marks, 2001]. More recently, there has been an effort to better describe spatial variations within the watershed, and research is currently supported by 9 weirs, 32 primary and 5 secondary meteorological measurement stations, 26 precipitation stations, 8 snow course and 5 snow study sites, and 5 eddy covariance systems. In addition, soil microclimate (moisture and temperature) profile data are collected eight sites with surface data collected at an additional 19 sites. These support a wide range of experimental investigations including snow hydrology and physics

  15. Land suitability assessment on a watershed of Loess Plateau using the analytic hierarchy process.

    Directory of Open Access Journals (Sweden)

    Xiaobo Yi

    Full Text Available In order to reduce soil erosion and desertification, the Sloping Land Conversion Program has been conducted in China for more than 15 years, and large areas of farmland have been converted to forest and grassland. However, this large-scale vegetation-restoration project has faced some key problems (e.g. soil drying that have limited the successful development of the current ecological-recovery policy. Therefore, it is necessary to know about the land use, vegetation, and soil, and their inter-relationships in order to identify the suitability of vegetation restoration. This study was conducted at the watershed level in the ecologically vulnerable region of the Loess Plateau, to evaluate the land suitability using the analytic hierarchy process (AHP. The results showed that (1 the area unsuitable for crops accounted for 73.3% of the watershed, and the main factors restricting cropland development were soil physical properties and soil nutrients; (2 the area suitable for grassland was about 86.7% of the watershed, with the remaining 13.3% being unsuitable; (3 an area of 3.95 km(2, accounting for 66.7% of the watershed, was unsuitable for forest. Overall, the grassland was found to be the most suitable land-use to support the aims of the Sloping Land Conversion Program in the Liudaogou watershed. Under the constraints of soil water shortage and nutrient deficits, crops and forests were considered to be inappropriate land uses in the study area, especially on sloping land. When selecting species for re-vegetation, non-native grass species with high water requirements should be avoided so as to guarantee the sustainable development of grassland and effective ecological functioning. Our study provides local land managers and farmers with valuable information about the inappropriateness of growing trees in the study area along with some information on species selection for planting in the semi-arid area of the Loess Plateau.

  16. The Ecological Perspective of Landslides at Soils with High Clay Content in the Middle Bogowonto Watershed, Central Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Junun Sartohadi

    2018-01-01

    Full Text Available The clay layers at hilly regions in the study area were very thick. The presence of very thick clay caused several difficulties in terms of environmental management, particularly in reducing georisk due to landslide. However, initial observations proved that areas of active landslides had better vegetation cover. The objective of this study was to find out ecological roles of landslides in livelihood in the Middle Bogowonto Watershed. The ecological roles of landslide were examined through field empirical evidences. Texture, bulk density, permeability, structure, and index plasticity were conducted for analyses of soil physical properties. Stepwise interpretation was made using 1 : 100,000–1 : 25,000 Indonesian topographic maps and remote sensing images of 30 m–<10 m spatial resolution. The results showed that landslides formed three landform zones: residual, erosional, and depositional zones. The area that did not slid, the residual zone, had massive soil structure and very hard consistency. Crops cultivated in this zone did not grow well. In the areas of active landslide, the environmental conditions seemed to be more favorable for living creatures. The landslides resulted in depositional zones with gentle slopes (4° to 15°, higher water availability, and easier soil management. The landslides also acted as the rearrangement process of landforms for better living environment.

  17. Strategy for an assessment of cumulative ecological impacts

    International Nuclear Information System (INIS)

    Boucher, P.; Collins, J.; Nelsen, J.

    1995-01-01

    The US Department of Energy (DOE) has developed a strategy to conduct an assessment of the cumulative ecological impact of operations at the 300-square-mile Savannah River Site. This facility has over 400 identified waste units and contains several large watersheds. In addition to individual waste units, residual contamination must be evaluated in terms of its contribution to ecological risks at zonal and site-wide levels. DOE must be able to generate sufficient information to facilitate cleanup in the immediate future within the context of a site-wide ecological risk assessment that may not be completed for many years. The strategy superimposes a more global perspective on ecological assessments of individual waste units and provides strategic underpinnings for conducting individual screening-level and baseline risk assessments at the operable unit and zonal or watershed levels. It identifies ecological endpoints and risk assessment tools appropriate for each level of the risk assessment. In addition, it provides a clear mechanism for identifying clean sites through screening-level risk assessments and for elevating sites with residual contamination to the next level of assessment. Whereas screening-level and operable unit-level risk assessments relate directly to cleanup, zonal and site-wide assessments verity or confirm the overall effectiveness of remediation. The latter assessments must show, for example, whether multiple small areas with residual pesticide contamination that have minimal individual impact would pose a cumulative risk from bioaccumulation because they are within the habitat range of an ecological receptor

  18. Linking ecosystem service supply to stakeholder concerns on both land and sea: An example from Guánica Bay watershed, Puerto Rico

    Science.gov (United States)

    Policies to protect coastal resources may lead to greater social, economic, and ecological returns when they consider potential co-benefits and trade-offs on land. In Guánica Bay watershed, Puerto Rico, a watershed management plan is being implemented to restore declining quality...

  19. Fourth annual Walker Branch Watershed research symposium: Program and abstracts

    International Nuclear Information System (INIS)

    1993-03-01

    The methods and concepts of watershed research, originally applied in an experimental or monitoring mode to relatively small catchments, are increasingly being used at larger scales and for specific applied problems. Research at Oak Ridge National Laboratory, the Tennessee Valley Authority, the US Forest Service, and other agencies and institutions participating in this symposium reflects research over a broad range of spatial scales that is being integrated through large-scale experiments along with computer modeling and graphical interfaces. These research projects address the basic atmospheric, geophysical, biogeochemical, and biological processes that regulate the responses of forested ecosystems to natural environmental variation and anthropogenic stresses. This symposium highlights the use of large-scale ecosystem experiments to address environmental issues of global concern. These experiments provide the only effective way to test models of ecosystem response that are based on the current state of knowledge of hydrology, biogeochemistry, plant physiology, and other ecosystem processes. Major environmental problems that are being addressed include acidic deposition and nitrogen loading (Bear Brook Watershed, Maine; and the Girdsjoen Covered Catchment, Sweden); climate warming (Soil Warming Experiment, Maine); and altered rainfall amounts (Savannah River Loblolly Pine Soil Water Manipulation and the Walker Branch Watershed Throughfall Displacement Experiment)

  20. Mapping Ecosystem Services in the Jordan Valley, Jordan

    Science.gov (United States)

    Luz, Ana; Marques, Ana; Ribeiro, Inês; Alho, Maria; Catarina Afonso, Ana; Almeida, Erika; Branquinho, Cristina; Talozi, Samer; Pinho, Pedro

    2016-04-01

    In the last decade researchers started using ecosystem services as a new framework to understand the relationships between environment and society. Habitat quality and water quality are related with ecosystem services regulation and maintenance, or even provision. According to the Common International Classification of Ecosystem Services (CICES) both habitat quality and water quality are associated with lifecycle maintenance, habitat and gene pool protection, and water conditions, among others. As there is increased pressure on habitats and rivers especially for agricultural development, mapping and evaluating habitat and water quality has important implications for resource management and conservation, as well as for rural development. Here, we model and map habitat and water quality in the Jordan Valley, Jordan. In this study, we aim to identify and analyse ecosystem services both through 1) habitat quality and 2) water quality modelling using InVest, an integrated valuation of ecosystem services and tradeoffs. The data used in this study mainly includes the LULC, Jordan River watershed and main threats and pollutants in the study area, such as agriculture, industry, fish farms and urbanization. Results suggest a higher pressure on natural habitats in the Northern region of the Jordan Valley, where industry is dominant. Agriculture is present along the Jordan Valley and limits the few natural forested areas. Further, water pollution is mainly concentrated in disposal sites due to the low flow of the Jordan River. Our results can help to identify areas where natural resources and water resource management is most needed in the Jordan Valley. Acknowledgements: Transbasin FP7 project

  1. Development of online tools to support GIS watershed analyses

    Science.gov (United States)

    William J. Elliot

    2016-01-01

    In 1996 there was a meeting in Tucson of hydrologists from every Forest Service region, as well as Forest Service research scientists engaged in watershed-related activities. This meeting was organized by the Stream Team (which has since been enveloped by the National Stream and Aquatic Ecology Center). The focus of the meeting was to identify tools that needed to be...

  2. Development of the Hydrological-Ecological Integrated watershed Flow Model (HEIFLOW): an application to the Heihe River Basin

    Science.gov (United States)

    Tian, Y.; Zheng, Y.; Zheng, C.; Han, F., Sr.

    2017-12-01

    Physically based and fully-distributed integrated hydrological models (IHMs) can quantitatively depict hydrological processes, both surface and subsurface, with sufficient spatial and temporal details. However, the complexity involved in pre-processing data and setting up models seriously hindered the wider application of IHMs in scientific research and management practice. This study introduces our design and development of Visual HEIFLOW, hereafter referred to as VHF, a comprehensive graphical data processing and modeling system for integrated hydrological simulation. The current version of VHF has been structured to accommodate an IHM named HEIFLOW (Hydrological-Ecological Integrated watershed-scale FLOW model). HEIFLOW is a model being developed by the authors, which has all typical elements of physically based and fully-distributed IHMs. It is based on GSFLOW, a representative integrated surface water-groundwater model developed by USGS. HEIFLOW provides several ecological modules that enable to simulate growth cycle of general vegetation and special plants (maize and populus euphratica). VHF incorporates and streamlines all key steps of the integrated modeling, and accommodates all types of GIS data necessary to hydrological simulation. It provides a GIS-based data processing framework to prepare an IHM for simulations, and has functionalities to flexibly display and modify model features (e.g., model grids, streams, boundary conditions, observational sites, etc.) and their associated data. It enables visualization and various spatio-temporal analyses of all model inputs and outputs at different scales (i.e., computing unit, sub-basin, basin, or user-defined spatial extent). The above system features, as well as many others, can significantly reduce the difficulty and time cost of building and using a complex IHM. The case study in the Heihe River Basin demonstrated the applicability of VHF for large scale integrated SW-GW modeling. Visualization and spatial

  3. Water Resources and Groundwater in a Glaciated Andean Watershed (Cordillera Blanca, Peru)

    Science.gov (United States)

    McKenzie, J. M.; Gordon, R.; Baraer, M.; Lautz, L.; Mark, B. G.; Wigmore, O.; Chavez, D.; Aubry-Wake, C.

    2014-12-01

    It is estimated that almost 400 million people live in watersheds where glaciers provide at least 10% of the runoff, yet many questions remain regarding the impact of climate change and glacier recession on water resources derived from these high mountain watersheds. We present research from the Cordillera Blanca, Peru, an area with the highest density of glaciers in the tropics. While glacier meltwater buffers stream discharge throughout the range, groundwater is a major component of dry season runoff, contributing up to 50-70% of outflow in some tributaries. In order to predict future changes to water resources it is critical to understand how groundwater can offset future hydrologic stress by maintaining stream baseflow, including recharge mechanisms, subsurface pathways, storage, and net fluxes to rivers. We present a synthesis of results based on hydrologic modeling, drilling/piezometers, geophysics, and artificial and natural hydrologic tracers. Our findings show that 'pampas', low-relief mountain valleys, are critical for baseflow generation by storing groundwater on interannual timescales. Pampas have a total area of ~65 km2 and are comprised of unconsolidated glacial, talus, lacustrine and wetland (bofedales) deposits. The valleys commonly have buried talus aquifers that are overlain by low permeability, glaciolacustrine deposits. Glaciofluvial outwash deposits and small wetlands also act as unconfined aquifers. These groundwater systems appear to be primarily recharged by wet season precipitation, and at higher elevations also by glacial meltwater. Additionally a ubiquitous feature in the valleys are springs, often located at the base of talus deposits, which generate a large hydrologic flux within the hydrologic systems. While glaciers are the most visible and vulnerable component of the Andean waterscape, we argue that it is crucial to understand the complete mountain hydrologic cycle, including groundwater, in order to understand the ongoing

  4. Hydrogeologic and Hydrochemical Studies in a Semi-arid Watershed in Northern Mexico

    Science.gov (United States)

    Kretzschmar, T.; Vazquez, R.; Hinojosa, A.

    2006-12-01

    Within the Baja California panhandle exist quite a significant number of valleys which hydrogeology conditions are of great importance for the communities of the region. The Guadalupe Valley for example, located 30 km Northeast of Ensenada, hosts an important wine industry which presents a mayor factor for agriculture and tourism in Baja California. The irrigation is carried out basically by groundwater extracted from quaternary sediments filling this post-Miocene depression. Besides the intensive usage of the water by the wine industry in the Guadalupe Valley, the local waterworks installed in 1985 a gallery of 10 wells extracting around 320 l/s or 30 % of the total water extraction in the valley to supply the city of Ensenada with drinking water. A total of more than 500 wells with a combined annual consumption of about 28 Mio m3 are at the moment active in the valley. In the arid portions of northern Mexico Mountain front recharge presents an important recharge source for the alluvial aquifers. Other important sources directly related to precipitation are direct infiltration, recharge by surface water runoff in the arroyos as well as by active fault systems. The principal recharge sources for the Guadalupe Valley aquifer are the Sierra Juárez and the Guadalupe River. To be able to address the state of equilibrium of aquifer, recharge estimates for the watershed were calculated determining the runoff/infiltration relationships obtained by curve number determinations combined with the interpretation of satellite images. These results were integrated into an evaluation and hydrologic modeling of the hydrologic data pointing towards differences of up to over 50 percent in the recharge estimation in comparison to earlier studies carried out in the area. Furthermore hydrochemical and isotopic studies were carried out to show the effects of the excessive ground water extraction on the water quality of the aquifer. The hydrochemical data indicate that intense use of

  5. Estimating the erosion and deposition rates in a small watershed by the {sup 137}Cs tracing method

    Energy Technology Data Exchange (ETDEWEB)

    Li Mian [Yellow River Institute of Hydraulic Research, Key Laboratory of Sediment Research of Yellow River of Ministry of Water Resources, Zhengzhou, Henan 450003 (China)], E-mail: hnli-mian@163.com; Li Zhanbin [Xi' an University of Technology, Xi' an, Shaanxi 710048 (China); Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100 (China); Yao Wenyi [Yellow River Institute of Hydraulic Research, Key Laboratory of Sediment Research of Yellow River of Ministry of Water Resources, Zhengzhou, Henan 450003 (China); Liu Puling [Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100 (China)

    2009-02-15

    Understanding the erosion and deposition rates in a small watershed is important for designing soil and water conservation measures. The objective of this study is to estimate the net soil loss and gain at points with various land use types and landform positions in a small watershed in the Sichuan Hilly Basin of China by the {sup 137}Cs tracing technique. Among various land use types, the order of erosion rate was bare rock > sloping cultivated land > forest land. The paddy field and Caotu (a kind of cultivated land located at the foot of hills) were depositional areas. The erosion rate under different landform was in this order: hillside > saddle > hilltop. The footslope and the valley were depositional areas. The {sup 137}Cs technique was shown to provide an effective means of documenting the spatial distribution of soil erosion and deposition within the small watershed.

  6. Loch Vale Watershed Long-Term Ecological Research and Monitoring Program: Quality Assurance Report, 2003-09

    Science.gov (United States)

    Richer, Eric E.; Baron, Jill S.

    2011-01-01

    The Loch Vale watershed project is a long-term research and monitoring program located in Rocky Mountain National Park that addresses watershed-scale ecosystem processes, particularly as they respond to atmospheric deposition and climate variability. Measurements of precipitation depth, precipitation chemistry, discharge, and surface-water quality are made within the watershed and elsewhere in Rocky Mountain National Park. As data collected for the program are used by resource managers, scientists, policy makers, and students, it is important that all data collected in Loch Vale watershed meet high standards of quality. In this report, data quality was evaluated for precipitation, discharge, and surface-water chemistry measurements collected during 2003-09. Equipment upgrades were made at the Loch Vale National Atmospheric Deposition Program monitoring site to improve precipitation measurements and evaluate variability in precipitation depth and chemistry. Additional solar panels and batteries have been installed to improve the power supply, and data completeness, at the NADP site. As a result of equipment malfunction, discharge data for the Loch Outlet were estimated from October 18, 2005, to August 17, 2006. Quality-assurance results indicate that more than 98 percent of all surface-water chemistry measurements were accurate and precise. Records that did not meet quality criteria were removed from the database. Measurements of precipitation depth, precipitation chemistry, discharge, and surface-water quality were all sufficiently complete and consistent to support project data needs.

  7. Hydrogeology and ground-water/surface water interactions in the Des Moines River valley, southwestern Minnesota, 1997-2001

    Science.gov (United States)

    Cowdery, Timothy K.

    2005-01-01

    Increased water demand in and around Windom led the U.S. Geological Survey, in cooperation with the Minnesota Department of Natural Resources, local water suppliers, and Cottonwood County, to study the hydrology of aquifers in the Des Moines River Valley near Windom. The study area is the watershed of a 30-kilometer (19-mile) reach of the Des Moines River upstream from Windom.

  8. Watershed analysis

    Science.gov (United States)

    Alan Gallegos

    2002-01-01

    Watershed analyses and assessments for the Kings River Sustainable Forest Ecosystems Project were done on about 33,000 acres of the 45,500-acre Big Creek watershed and 32,000 acres of the 85,100-acre Dinkey Creek watershed. Following procedures developed for analysis of cumulative watershed effects (CWE) in the Pacific Northwest Region of the USDA Forest Service, the...

  9. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reaches of Minjiang River watershed in China

    Science.gov (United States)

    Cui, X.; Liu, S.; Wei, X.

    2012-11-01

    the lowest in old-growth natural coniferous forests (Abies faxoniana Rehd. et Wils.) and the highest in coniferous plantations (e.g. Picea asperata Mast.) among major forest types in the study watershed. This suggests that selection of different types of forests can have an important role in ET and consequently water yield. Our synthesis indicates that future reforestation and climate change would likely produce the hydrological effects in the same direction and thus place double the pressure on water resource as both key drivers may lead to water yield reduction. The findings can support designing management strategies for protection of watershed ecological functions in the context of future land cover and climate changes.

  10. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reaches of Minjiang River watershed in China

    Directory of Open Access Journals (Sweden)

    X. Cui

    2012-11-01

    evapotranspiration (ET, with the lowest in old-growth natural coniferous forests (Abies faxoniana Rehd. et Wils. and the highest in coniferous plantations (e.g. Picea asperata Mast. among major forest types in the study watershed. This suggests that selection of different types of forests can have an important role in ET and consequently water yield. Our synthesis indicates that future reforestation and climate change would likely produce the hydrological effects in the same direction and thus place double the pressure on water resource as both key drivers may lead to water yield reduction. The findings can support designing management strategies for protection of watershed ecological functions in the context of future land cover and climate changes.

  11. Hydrologic connectivity and implications for ecosystem processes - Lessons from naked watersheds

    Science.gov (United States)

    Gooseff, Michael N.; Wlostowski, Adam; McKnight, Diane M.; Jaros, Chris

    2017-01-01

    Hydrologic connectivity has received great attention recently as our conceptual models of watersheds and water quality have evolved in the past several decades. However, the structural complexity of most temperate watersheds (i.e. connections among shallow soils, deep aquifers, the atmosphere and streams) and the dynamic seasonal changes that occur within them (i.e., plant senescence which impacts evapotranspiration) create significant challenges to characterizing or quantifying hydrologic connectivity. The McMurdo Dry Valleys, a polar desert in Antarctica, provide a unique opportunity to study hydrologic connectivity because there is no vegetative cover (and therefore no transpiration), and no deep aquifers connected to surface soils or streams. Glacier melt provides stream flow to well-established channels and closed-basin, ice-covered lakes on the valley floor. Streams are also connected to shallow hyporheic zones along their lengths, which are bounded at 75 cm depth by ice-cemented permafrost. These hydrologic features and connections provide water for and underpin biological communities. Hence, exchange of water among them provides a vector for exchange of energy and dissolved solutes. Connectivity is dynamic on timescales of a day to a flow season (6-12 weeks), as streamflow varies over these timescales. The timescales over which these connections occur is also dynamic. Exchanges between streams and hyporheic zones, for example, have been estimated to be as short as hours to as long as several weeks. These exchanges have significant implications for the biogeochemistry of these systems and the biotic communities in each feature. Here we evaluate the lessons we can learn about hydrologic connectivity in the MDV watersheds that are simplified in the context of processes occurring and water reservoirs included in the landscape, yet are sensitive to climate controls and contain substantial physical heterogeneity. We specifically explore several metrics that are

  12. Livelihood Strategies in Shaxi, Southwest China: Conceptualizing Mountain–Valley Interactions as a Human–Environment System

    Directory of Open Access Journals (Sweden)

    Franz K. Huber

    2015-03-01

    Full Text Available This paper investigates the socio-ecological differences and interactions between upland and lowland areas in Shaxi Valley, Yunnan Province, Southwest China. As an analytical tool we used an extended Human–Environment System Framework by focusing particularly on the dynamics and sustainability of livelihood strategies and mountain–valley interactions. Drawing from household surveys conducted in two mountain and two valley communities in 2005 and 2009, we show that the distinct income gap between mountain and valley households in 2005 ceased to exist in 2009. The main drivers for this development are the local tourist industry, persistent demand for forest resources, as well as local off-farm and seasonal migrant employment.

  13. An Analysis of Microbial Pollution in the Sinclair-Dyes Inlet Watershed

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; Cullinan, Valerie I.

    2005-09-21

    This assessment of fecal coliform sources and pathways in Sinclair and Dyes Inlets is part of the Project ENVironmental InVESTment (ENVVEST) being conducted by the Navy's Puget Sound Naval Shipyard and Intermediate Maintenance Facility in cooperation with the US Environmental Protection Agency, Washington State Department of Ecology, the Suquamish Tribe, Kitsap County, the City of Bremerton, the City of Port Orchard, and other local stakeholders. The goal of this study was to identify microbial pollution problems within the Sinclair-Dyes Inlet watershed and to provide a comprehensive assessment of fecal coliform (FC) contamination from all identifiable sources in the watershed. This study quantifies levels of contamination and estimated loadings from known sources within the watersheds and describes pollutant transport mechanisms found in the study area. In addition, the effectiveness of pollution prevention and mitigation measures currently in place within the Sinclair-Dyes Inlet watershed are discussed. This comprehensive study relies on historical data collected by several cooperating agencies, in addition to data collected during the study period from spring 2001 through summer 2005. This report is intended to provide the technical information needed to continue current water quality cleanup efforts and to help implement future efforts.

  14. FACT. New image parameters based on the watershed-algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Linhoff, Lena; Bruegge, Kai Arno; Buss, Jens [TU Dortmund (Germany). Experimentelle Physik 5b; Collaboration: FACT-Collaboration

    2016-07-01

    FACT, the First G-APD Cherenkov Telescope, is the first imaging atmospheric Cherenkov telescope that is using Geiger-mode avalanche photodiodes (G-APDs) as photo sensors. The raw data produced by this telescope are processed in an analysis chain, which leads to a classification of the primary particle that induce a shower and to an estimation of its energy. One important step in this analysis chain is the parameter extraction from shower images. By the application of a watershed algorithm to the camera image, new parameters are computed. Perceiving the brightness of a pixel as height, a set of pixels can be seen as 'landscape' with hills and valleys. A watershed algorithm groups all pixels to a cluster that belongs to the same hill. From the emerging segmented image, one can find new parameters for later analysis steps, e.g. number of clusters, their shape and containing photon charge. For FACT data, the FellWalker algorithm was chosen from the class of watershed algorithms, because it was designed to work on discrete distributions, in this case the pixels of a camera image. The FellWalker algorithm is implemented in FACT-tools, which provides the low level analysis framework for FACT. This talk will focus on the computation of new, FellWalker based, image parameters, which can be used for the gamma-hadron separation. Additionally, their distributions concerning real and Monte Carlo Data are compared.

  15. Winter flooding in Dutch stream valley floodplains: biogeochemical effects and vegetation consequences

    NARCIS (Netherlands)

    Beumer, V.

    2009-01-01

    Winter flooding in Dutch stream valley floodplains: biogeochemical effects and vegetation consequences Victor Beumer Climatic change has great impacts on stream catchments and their ecology. Expectations are that more extreme climate events will result in undesired flooding in stream catchments. In

  16. Integration of a Hydrological Model within a Geographical Information System: Application to a Forest Watershed

    Directory of Open Access Journals (Sweden)

    Dimitris Fotakis

    2014-03-01

    Full Text Available Watershed simulation software used for operational purposes must possess both dependability of results and flexibility in parameter selection and testing. The UBC watershed model (UBCWM contains a wide spectrum of parameters expressing meteorological, geological, as well as ecological watershed characteristics. The hydrological model was coupled to the MapInfo GIS and the software created was named Watershed Mapper (WM. WM is endowed with several features permitting operational utilization. These include input data and basin geometry visualization, land use/cover and soil simulation, exporting of statistical results and thematic maps and interactive variation of disputed parameters. For the application of WM two hypothetical scenarios of forest fires were examined in a study watershed. Four major rainfall events were selected from 12-year daily precipitation data and the corresponding peak flows were estimated for the base line data and hypothetical scenarios. A significant increase was observed as an impact of forest fires on peak flows. Due to its flexibility the combined tool described herein may be utilized in modeling long-term hydrological changes in the context of unsteady hydrological analyses.

  17. Bhakra Beas complex - socio economic and ecological impacts

    International Nuclear Information System (INIS)

    Sukhani, K.T.

    1991-01-01

    Bhakra Beas complex (comprising Bhakra Nangal Project and Beas Project Unit I and II) is one of the major multi-purpose Valley Projects of India. The socio economic and ecological impacts of the project are discussed. (author)

  18. Bank-derived material dominates fluvial sediment in a suburban Chesapeake Bay watershed

    Science.gov (United States)

    Cashman, M. J.; Gellis, A.; Gorman-Sanisaca, L.; Noe, G. B.; Cogliandro, V.; Baker, A.

    2017-12-01

    Excess fine sediment is a leading cause of ecological degradation within the Chesapeake Bay watershed. The Piedmont physiographic province, which includes parts of the Washington, D.C. metro area, has the highest sediment yields in the Chesapeake Bay. In order to effectively employ sediment mitigation measures, it is necessary to identify and quantify the contributions of sediments sources within rapidly urbanizing areas in the Piedmont. This sediment fingerprinting study examines the inputs of various sediment sources to Upper Difficult Run (14.2 km2; 22.6% impervious surface), an urbanized watershed in Fairfax County, Virginia. A source sediment library was constructed from collections of stream bank material, forest soils, and road dust from across the watershed. Target fluvial sediments were collected from fine channel margin deposits and from suspended sediment using an autosampler during 16 storm events from 2008 - 2012. Apportionment of the target samples to the source sediments was performed using Sed_SAT, a publically available toolkit for sediment fingerprinting. Bed sediment was found to be dominated by stream bank sources (mean: 96%), with minor contributions from forest (4%) and no detectable contribution from roads (0%). Suspended fine sediments were also found to predominantly originate from stream bank sources (SSC-weighted mean: 91%), with minor contributions from roads (8%), and negligible contributions from forests (1%). Stream bank sources dominated at all discharges, with the greatest contributions from overland sources found only at low discharges. On the rising limb of the hydrograph and at peak flow, sediment concentrations increased due to increasing contributions of bank material rather than surface erosion caused by overland flow. Results demonstrate that stream bank erosion is responsible for the vast majority of fine sediment occurring in this suburban basin of the Chesapeake Bay watershed. This is likely a consequence of storm

  19. Agroforestry buffers for nonpoint source pollution reductions from agricultural watersheds.

    Science.gov (United States)

    Udawatta, Ranjith P; Garrett, Harold E; Kallenbach, Robert

    2011-01-01

    Despite increased attention and demand for the adoption of agroforestry practices throughout the world, rigorous long-term scientific studies confirming environmental benefits from the use of agroforestry practices are limited. The objective was to examine nonpoint-source pollution (NPSP) reduction as influenced by agroforestry buffers in watersheds under grazing and row crop management. The grazing study consists of six watersheds in the Central Mississippi Valley wooded slopes and the row crop study site consists of three watersheds in a paired watershed design in Central Claypan areas. Runoff water samples were analyzed for sediment, total nitrogen (TN), and total phosphorus (TP) for the 2004 to 2008 period. Results indicate that agroforestry and grass buffers on grazed and row crop management sites significantly reduce runoff, sediment, TN, and TP losses to streams. Buffers in association with grazing and row crop management reduced runoff by 49 and 19%, respectively, during the study period as compared with respective control treatments. Average sediment loss for grazing and row crop management systems was 13.8 and 17.9 kg ha yr, respectively. On average, grass and agroforestry buffers reduced sediment, TN, and TP losses by 32, 42, and 46% compared with the control treatments. Buffers were more effective in the grazing management practice than row crop management practice. These differences could in part be attributed to the differences in soils, management, and landscape features. Results from this study strongly indicate that agroforestry and grass buffers can be designed to improve water quality while minimizing the amount of land taken out of production. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  20. Hydrological, ecological, land use, economic, and sociocultural evidence for resilience of traditional irrigation communities in New Mexico, USA

    Science.gov (United States)

    Fernald, A.; Guldan, S.; Boykin, K.; Cibils, A.; Gonzales, M.; Hurd, B. H.; Lopez, S.; Ochoa, C. G.; Ortiz, M.; Rivera, J.; Rodriguez, S.; Steele, C. M.

    2014-02-01

    Southwestern US irrigated landscapes are facing upheaval due to climate change-induced water scarcity and economic change-induced land use conversion. Clues to community longevity are found in the traditionally irrigated valleys of northern New Mexico. Human systems have interacted with hydrologic processes over the last 400 yr in river fed irrigated valleys to create linked systems. In this study, we asked if concurrent data from multiple disciplines show that human adapted hydrologic and socioeconomic systems have created conditions for resilience. We identify and describe several areas of resilience: hydrological, ecological, land use, economic, and sociocultural. We found that there are multiple hydrologic benefits of the water seepage from the traditional irrigation systems; it recharges groundwater that recharges rivers, supports threatened biodiversity by maintaining riparian vegetation, and ameliorates impacts of climate change by prolonging streamflow hydrographs. In terms of land use and economics, place-based adaptability manifests itself in transformations of irrigation infrastructure and specific animal and crop systems; as grazing has diminished over time on public land watersheds, it has increased on irrigated valley pastures while outside income allows irrigators to retain their land. Sociocultural evidence shows that traditional local knowledge about the hydrosocial cycle of acequia operations is a key factor in acequia resilience. When irrigators are confronted with unexpected disturbances or changing climate that affect water supply, they adapt specific practices while maintaining community cohesion. Our ongoing work will quantify the multiple disciplinary components of these systems, translate them into a common language of causal loop diagrams, and model future scenarios to identify thresholds and tipping points of sustainability. Early indications are that these systems are not immune to upheaval, but have astonishing resilience.

  1. 77 FR 23740 - Sears Point Wetland and Watershed Restoration Project, Sonoma County, CA; Final Environmental...

    Science.gov (United States)

    2012-04-20

    ...-FF08RSFC00] Sears Point Wetland and Watershed Restoration Project, Sonoma County, CA; Final Environmental... environmental impact report and environmental impact statement (EIR/EIS) for the Sears Point Wetland and..., while providing public access and recreational and educational opportunities compatible with ecological...

  2. Watershed management in Myanmar

    International Nuclear Information System (INIS)

    Choi, K.S.

    1993-01-01

    Watershed degradation, watershed management, background of watershed management in Myanmar (condition of watershed, manpower), discussion and recommendation (proposed administrative structure, the need for watershed survey and planning, bottom-up approach) are emphasized. Watershed management, after all can be seen that it is the interphase between the forest, agriculture, soil, wildlife and the local communities

  3. Watershed management in Myanmar

    Energy Technology Data Exchange (ETDEWEB)

    Choi, K S

    1993-10-01

    Watershed degradation, watershed management, background of watershed management in Myanmar (condition of watershed, manpower), discussion and recommendation (proposed administrative structure, the need for watershed survey and planning, bottom-up approach) are emphasized. Watershed management, after all can be seen that it is the interphase between the forest, agriculture, soil, wildlife and the local communities

  4. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  5. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    International Nuclear Information System (INIS)

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards

  6. Measuring the Erosion of River Channel Widths Impacted by Watershed Urbanization Using Historic Aerial Photographs and Modern Surveys

    Science.gov (United States)

    Galster, J. C.; Pazzaglia, F. J.; Germanoski, D.

    2007-12-01

    Land use in a watershed exerts a strong influence on trunk channel form and process. Land use changes act over human time scales which is short enough to measure their effects directly using historic aerial photographs. We show that high-resolution topographic surveys comparing channel form for paired watersheds in the Lehigh Valley, PA are indistinguishable, but have channel widths that have changed dramatically in the past five decades. The two watersheds, Little Lehigh Creek and Sacony Creek, are similar in all respects except they have different amount of urban land use. Aerial photographs of the urbanized Little Lehigh Creek show that a majority of the measured widths (67 of 85) were statistically wider in 1999 than in 1947. In contrast, the measured widths from the agricultural Sacony Creek are more evenly distributed among those that widened (18), narrowed (28), and those that were statistically unchanged (6) from 1946 to 1999. From 1946 to 1999 the only section of Sacony creek that widened was that reach downstream of the only sizable urban area in the watershed. The current land use in Sacony Creek watershed resembles that of 1946, while the Little Lehigh Creek watershed has more than tripled its urban area. These data suggest that the increase in urban areas that subsequently increases peak discharges is the mechanism behind the widening that occurred in the Little Lehigh Creek. These wider channels can affect water quality, aquatic habitat, suspended sediment loads, and river aesthetics.

  7. Predictive Understanding of Mountainous Watershed Hydro-Biogeochemical Function and Response to Perturbations

    Science.gov (United States)

    Hubbard, S. S.; Williams, K. H.; Agarwal, D.; Banfield, J. F.; Beller, H. R.; Bouskill, N.; Brodie, E.; Maxwell, R. M.; Nico, P. S.; Steefel, C. I.; Steltzer, H.; Tokunaga, T. K.; Wainwright, H. M.; Dwivedi, D.; Newcomer, M. E.

    2017-12-01

    Recognizing the societal importance, vulnerability and complexity of mountainous watersheds, the `Watershed Function' project is developing a predictive understanding of how mountainous watersheds retain and release downgradient water, nutrients, carbon, and metals. In particular, the project is exploring how early snowmelt, drought, floods and other disturbances will influence mountainous watershed dynamics at seasonal to decadal timescales. Located in the 300km2 East River headwater catchment of the Upper Colorado River Basin, the project is guided by several constructs. First, the project considers the integrated role of surface and subsurface flow and biogeochemical reactions - from bedrock to the top of the vegetative canopy, from terrestrial through aquatic compartments, and from summit to receiving waters. The project takes a system-of-systems perspective, focused on developing new methods to quantify the cumulative watershed hydrobiogeochemical response to perturbations based on information from select subsystems within the watershed, each having distinct vegetation-subsurface biogeochemical-hydrological characteristics. A `scale-adaptive' modeling capability, in development using adaptive mesh refinement methods, serves as the organizing framework for the SFA. The scale-adaptive approach is intended to permit simulation of system-within-systems behavior - and aggregation of that behavior - from genome through watershed scales. This presentation will describe several early project discoveries and advances made using experimental, observational and numerical approaches. Among others, examples may include:quantiying how seasonal hydrological perturbations drive biogeochemical responses across critical zone compartments, with a focus on N and C transformations; metagenomic documentation of the spatial variability in floodplain meander microbial ecology; 3D reactive transport simulations of couped hydrological-biogeochemical behavior in the hyporheic zone; and

  8. Is a clean river fun for all? Recognizing social vulnerability in watershed planning.

    Science.gov (United States)

    Cutts, Bethany B; Greenlee, Andrew J; Prochaska, Natalie K; Chantrill, Carolina V; Contractor, Annie B; Wilhoit, Juliana M; Abts, Nancy; Hornik, Kaitlyn

    2018-01-01

    Watershed planning can lead to policy innovation and action toward environmental protection. However, groups often suffer from low engagement with communities that experience disparate impacts from flooding and water pollution. This can limit the capacity of watershed efforts to dismantle pernicious forms of social inequality. As a result, the benefits of environmental changes often flow to more empowered residents, short-changing the power of watershed-based planning as a tool to transform ecological, economic, and social relationships. The objectives of this paper are to assess whether the worldview of watershed planning actors are sufficiently attuned to local patterns of social vulnerability and whether locally significant patterns of social vulnerability can be adequately differentiated using conventional data sources. Drawing from 35 in-depth interviews with watershed planners and community stakeholders in the Milwaukee River Basin (WI, USA), we identify five unique definitions of social vulnerability. Watershed planners in our sample articulate a narrower range of social vulnerability definitions than other participants. All five definitions emphasize spatial and demographic characteristics consistent with existing ways of measuring social vulnerability. However, existing measures do not adequately differentiate among the spatio-temporal dynamics used to distinguish definitions. In response, we develop two new social vulnerability measures. The combination of interviews and demographic analyses in this study provides an assessment technique that can help watershed planners (a) understand the limits of their own conceptualization of social vulnerability and (b) acknowledge the importance of place-based vulnerabilities that may otherwise be obscured. We conclude by discussing how our methods can be a useful tool for identifying opportunities to disrupt social vulnerability in a watershed by evaluating how issue frames, outreach messages, and engagement tactics

  9. Is a clean river fun for all? Recognizing social vulnerability in watershed planning

    Science.gov (United States)

    Greenlee, Andrew J.; Prochaska, Natalie K.; Chantrill, Carolina V.; Contractor, Annie B.; Wilhoit, Juliana M.; Abts, Nancy; Hornik, Kaitlyn

    2018-01-01

    Watershed planning can lead to policy innovation and action toward environmental protection. However, groups often suffer from low engagement with communities that experience disparate impacts from flooding and water pollution. This can limit the capacity of watershed efforts to dismantle pernicious forms of social inequality. As a result, the benefits of environmental changes often flow to more empowered residents, short-changing the power of watershed-based planning as a tool to transform ecological, economic, and social relationships. The objectives of this paper are to assess whether the worldview of watershed planning actors are sufficiently attuned to local patterns of social vulnerability and whether locally significant patterns of social vulnerability can be adequately differentiated using conventional data sources. Drawing from 35 in-depth interviews with watershed planners and community stakeholders in the Milwaukee River Basin (WI, USA), we identify five unique definitions of social vulnerability. Watershed planners in our sample articulate a narrower range of social vulnerability definitions than other participants. All five definitions emphasize spatial and demographic characteristics consistent with existing ways of measuring social vulnerability. However, existing measures do not adequately differentiate among the spatio-temporal dynamics used to distinguish definitions. In response, we develop two new social vulnerability measures. The combination of interviews and demographic analyses in this study provides an assessment technique that can help watershed planners (a) understand the limits of their own conceptualization of social vulnerability and (b) acknowledge the importance of place-based vulnerabilities that may otherwise be obscured. We conclude by discussing how our methods can be a useful tool for identifying opportunities to disrupt social vulnerability in a watershed by evaluating how issue frames, outreach messages, and engagement tactics

  10. Down by the riverside: urban riparian ecology

    Science.gov (United States)

    Peter M. Groffman; Daniel J. Bain; Lawrence E. Band; Kenneth T. Belt; Grace S. Brush; J. Morgan Grove; Richard V. Pouyat; Ian C. Yesilonis; Wayne C. Zipperer

    2003-01-01

    Riparian areas are hotspots of interactions between plants, soil, water, microbes, and people. While urban land use change has been shown to have dramatic effects on watershed hydrology, there has been surprisingly little analysis of its effects on riparian areas. Here we examine the ecology of urban riparian zones, focusing on work done in the Baltimore Ecosystem...

  11. Microbial ecology of extreme environments: Antarctic dry valley yeasts and growth in substrate limited habitats

    Science.gov (United States)

    Vishniac, H. S.

    1981-01-01

    The multiple stresses temperature, moisture, and for chemoheterotrophs, sources of carbon and energy of the Dry Valley Antarctica soils allow at best depauperate communities, low in species diversity and population density. The nature of community structure, the operation of biogeochemical cycles, the evolution and mechanisms of adaptation to this habitat are of interest in informing speculations upon life on other planets as well as in modeling the limits of gene life. Yeasts of the Cryptococcus vishniacil complex (Basidiobiastomycetes) are investigated, as the only known indigenes of the most hostile, lichen free, parts of the Dry Valleys. Methods were developed for isolating these yeasts (methods which do not exclude the recovery of other microbiota). The definition of the complex was refined and the importance of nitrogen sources was established as well as substrate competition in fitness to the Dry Valley habitats.

  12. Analysis of stable isotope ratios (δ18O and δ2H) in precipitation of the Verde River watershed, Arizona 2003 through 2014

    Science.gov (United States)

    Beisner, Kimberly R.; Paretti, Nicholas V.; Tucci, Rachel S.

    2016-04-25

    Stable isotope delta values (δ18O and δ2H) of precipitation can vary with elevation, and quantification of the precipitation elevation gradient can be used to predict recharge elevation within a watershed. Precipitation samples were analyzed for stable isotope delta values between 2003 and 2014 from the Verde River watershed of north-central Arizona. Results indicate a significant decrease in summer isotopic values overtime at 3,100-, 4,100-, 6,100-, 7,100-, and 8,100-feet elevation. The updated local meteoric water line for the area is δ2H = 7.11 δ18O + 3.40. Equations to predict stable isotopic values based on elevation were updated from previous publications in Blasch and others (2006), Blasch and Bryson (2007), and Bryson and others (2007). New equations were separated for samples from the Camp Verde to Flagstaff transect and the Prescott to Chino Valley transect. For the Camp Verde to Flagstaff transect, the new equations for winter precipitation are δ18O = -0.0004z − 8.87 and δ2H = -0.0029z − 59.8 (where z represents elevation in feet) and the summer precipitation equations were not statistically significant. For the Prescott to Chino Valley transect, the new equations for summer precipitation are δ18O = -0.0005z − 3.22 and δ2H = -0.0022z − 27.9; the winter precipitation equations were not statistically significant and, notably, stable isotope values were similar across all elevations. Interpretation of elevation of recharge contributing to surface and groundwaters in the Verde River watershed using the updated equations for the Camp Verde to Flagstaff transect will give lower elevation values compared with interpretations presented in the previous studies. For waters in the Prescott and Chino Valley area, more information is needed to understand local controls on stable isotope values related to elevation.

  13. Spatial Analysis of Agricultural Landscape and Hymenoptera Biodiversity at Cianjur Watershed

    Directory of Open Access Journals (Sweden)

    YAHERWANDI

    2006-12-01

    Full Text Available Hymenoptera is one of the four largest insect order (the other three are Coleoptera, Diptera, and Lepidoptera. There are curerently over 115 000 described Hymenoptera species. It is clear that Hymenoptera is one of the major components of insect biodiversity. However, Hymenoptera biodiversity is affected by ecology, environment, and ecosystem management. In an agricultural areas, the spatial structure, habitat diversity, and habitat composition may vary from cleared landscapes to structurally rich landscape. Thus, it is very likely that such large-scale spatial patterns (landscape effects may influence local biodiversity and ecological functions. Therefore, the objective of this research were to study diversity and configuration elements of agricultural landscapes at Cianjur Watershed with geographical information sytems (GIS and its influence on Hymenoptera biodiversity. The structural differences between agricultural landscapes of Nyalindung, Gasol, and Selajambe were characterized by patch analyst with ArcView 3.2 of digital land use data. Results indicated that class of land uses of Cianjur Watershed landscape were housing, mixed gardens, talun and rice, vegetable, and corn fields. Landscape structure influenced the biodiversity of Hymenoptera. Species richness and the species diversity were higher in Nyalindung landscape compare to Gasol and Selajambe landscape.

  14. Managing Watersheds as Couple Human-Natural Systems: A Review of Research Opportunities

    Science.gov (United States)

    Cai, X.

    2011-12-01

    Many watersheds around the world are impaired with severe social and environmental problems due to heavy anthropogenic stresses. Humans have transformed hydrological and biochemical processes in watersheds from a stationary to non-stationary status through direct (e.g., water withdrawals) and indirect (e.g., altering vegetation and land cover) interferences. It has been found that in many watersheds that socio-economic drivers, which have caused increasingly intensive alteration of natural processes, have even overcome natural variability to become the dominant factor affecting the behavior of watershed systems. Reversing this trend requires an understanding of the drivers of this intensification trajectory, and needs tremendous policy reform and investment. As stressed by several recent National Research Council (NRC) reports, watershed management will pose an enormous challenge in the coming decades. Correspondingly, the focus of research has started an evolution from the management of reservoir, stormwater and aquifer systems to the management of integrated watershed systems, to which policy instruments designed to make more rational economic use of water resources are likely to be applied. To provide a few examples: reservoir operation studies have moved from a local to a watershed scale in order to consider upstream best management practices in soil conservation and erosion control and downstream ecological flow requirements and water rights; watersheds have been modeled as integrated hydrologic-economic systems with multidisciplinary modeling efforts, instead of traditional isolated physical systems. Today's watershed management calls for a re-definition of watersheds from isolated natural systems to coupled human-natural systems (CHNS), which are characterized by the interactions between human activities and natural processes, crossing various spatial and temporal scales within the context of a watershed. The importance of the conceptual innovation has been

  15. Accumulation of some heavy metals in spice herbs in open-air hydroponics and soil cultures of the Ararat valley

    International Nuclear Information System (INIS)

    Ghalachyan, L.M.; Kocharyan, K.A.; Aristakesyan, A.A.; Asatryan, A.Z.

    2015-01-01

    Peculiarities of some heavy metals (HM), (Mn, Ni, Ti, V, Co, Cu, Pb, Mo, Cr, Zr) accumulation have been studied in spice herbs (basil, dill, coriander, savory) grown in open-air hydroponics and soil cultures of the Ararat Valley. It turned out that the amount of HM content in spice herbs grown in open-air hydroponic conditions was less than in the ones grown in soil conditions. The content of Pb and Ni in spice herbs exceeded the allowed concentration limits (ACL), especially in soil plants. Practical recommendations on obtaining ecologically safe agricultural products have been prepared. The biotechnological hydroponics method of producing spice herbs in the Ararat Valley is ecologically more beneficial than the soil method. Practical proposals of obtaining ecologically safe agricultural products have been developed

  16. Plant Water Use in Owens Valley, CA: Understanding the Influence of Climate and Depth to Groundwater

    OpenAIRE

    Pataki, Diane E

    2008-01-01

    There is a long-standing controversy in Owens Valley, California about the potential impacts of water exports on the local ecosystem. It is currently extremely difficult to attribute changes in plant cover and community composition to hydrologic change, as the interactions between ecological and hydrologic processes are relatively poorly understood. Underlying predictions about losses of grasslands and expansion of shrublands in response to declining water tables in Owens Valley are assumptio...

  17. Contribution of local knowledge to understand socio-hydrological dynamics. Examples from a study in Senegal river valley

    Science.gov (United States)

    Bruckmann, Laurent

    2017-04-01

    In developing countries many watersheds are low monitored. However, rivers and its floodplains provides ecosystem services to societies, especially for agriculture, grazing and fishing. This uses of rivers and floodplains offer to communities an important local knowledge about hydrological dynamics. This knowledge can be useful to researchers studying ecological or hydrological processes. This presentation aims to discuss and present the interest of using qualitative data from surveys and interviews to understand relations between society and hydrology in floodplain from developing countries, but also to understand changes in hydrological dynamics. This communication is based on a PhD thesis held on from 2012 and 2016, that analyzes socio-ecological changes in the floodplain of the Senegal river floodplain following thirty years of transboundary water management. The results of this work along Senegal river valley suggest that the use of social data and qualitative study are beneficial in understanding the hydrological dynamics in two dimensions. First, it established the importance of perception of hydrological dynamics, particularly floods, on local water management and socio-agricultural trajectories. This perception of people is strictly derived from ecosystems services provided by river and its floodplain. Second, surveys have enlightened new questions concerning the hydrology of the river that are often cited by people, like a decrease of flood water fertility. This type of socio-hydrological study, combining hydrological and qualitative data, has great potential for guiding water management policies. Using local knowledge in their analyzes, researchers also legitimize river users, who are for the most part forgotten by water policies.

  18. [Ecological regionalization of national cotton fiber quality in China using GGE biplot analysis method].

    Science.gov (United States)

    Xu, Nai Yin; Jin, Shi Qiao; Li, Jian

    2017-01-01

    The distinctive regional characteristics of cotton fiber quality in the major cotton-producing areas in China enhance the textile use efficiency of raw cotton yarn by improving fiber quality through ecological regionalization. The "environment vs. trait" GGE biplot analysis method was adopted to explore the interaction between conventional cotton sub-regions and cotton fiber quality traits based on the datasets collected from the national cotton regional trials from 2011 to 2015. The results showed that the major cotton-producing area in China were divided into four fiber quality ecological regions, namely, the "high fiber quality ecological region", the "low micronaire ecological region", the "high fiber strength and micronaire ecological region", and the "moderate fiber quality ecological region". The high fiber quality ecological region was characterized by harmonious development of cotton fiber length, strength, micronaire value and the highest spinning consistency index, and located in the conventional cotton regions in the upper and lower reaches of Yangtze River Valley. The low micronaire value ecological region composed of the northern and south Xinjiang cotton regions was characterized by low micronaire value, relatively lower fiber strength, and relatively high spinning consistency index performance. The high fiber strength and micronaire value ecological region covered the middle reaches of Yangtze River Valley, Nanxiang Basin and Huaibei Plain, and was prominently characterized by high strength and micronaire value, and moderate performance of other traits. The moderate fiber quality ecological region included North China Plain and Loess Plateau cotton growing regions in the Yellow River Valley, and was characterized by moderate or lower performances of all fiber quality traits. This study effectively applied "environment vs. trait" GGE biplot to regionalize cotton fiber quality, which provided a helpful reference for the regiona-lized cotton growing

  19. Integrating Interdisciplinary Studies Across a Range of Spatiotemporal Scales for the Design of Effective Flood Mitigation and Habitat Restoration Strategies, Green Valley Creek, California

    Science.gov (United States)

    Kobor, J. S.; O'Connor, M. D.; Sherwood, M. N.

    2014-12-01

    Green Valley Creek provides some of the most critical habitat for endangered coho salmon in the Russian River Watershed. Extensive changes in land-use over the past century have resulted in a dynamic system characterized by ongoing incision in the upper watershed and deposition and increased flood risk in the lower watershed. Effective management requires a watershed-scale understanding of the underlying controls on sediment erosion and transport as well as site-specific studies to understand local habitat conditions and flood dynamics. Here we combine an evaluation of historical changes in watershed conditions with a regional sediment source assessment and detailed numerical hydraulic and sediment transport models to find a sustainable solution to a chronic flooding problem at the Green Valley Road bridge crossing. Ongoing bank erosion in the upper watershed has been identified as the primary source of coarse sediment being deposited in the rapidly aggrading flood-prone reach upstream of the bridge. Efforts at bank stabilization are part of the overall strategy, however elevated sediment loads can be expected to continue in the near-term. The cessation of historical vegetation removal and maintenance dredging has resulted in a substantial increase in channel roughness as riparian cover has expanded. A positive feedback loop has been developed whereby increased vegetation roughness reduces sediment transport capacity, inducing additional deposition, and providing fresh sediment for continued vegetation recruitment. Our analysis revealed that traditional engineering approaches are ineffective. Dredging is not viable owning to the habitat impacts and short timeframes over which the dredged channel would be maintained. Roadway elevation results in a strong backwater effect increasing flood risk upstream. Initial efforts at designing a bypass channel also proved ineffective due to backwater effects below the bridge. The only viable solution involved reducing the

  20. The carbon stable isotope biogeochemistry of streams, Taylor Valley, Antarctica

    International Nuclear Information System (INIS)

    Lyons, W.B.; Leslie, D.L.; Harmon, R.S.; Neumann, K.; Welch, K.A.; Bisson, K.M.; McKnight, D.M.

    2013-01-01

    Highlights: ► δ 13 C-DIC reported from McMurdo Dry Valleys, Antarctica, streams. ► Stream water δ 13 C PDB values range −9.4‰ to +5.1‰, largely inorganic in character. ► Atmospheric exchange is the dominant control on δ 13 C-DIC. - Abstract: The McMurdo Dry Valleys region of Antarctica is the largest ice-free region on the continent. This study reports the first C stable isotope measurements for dissolved inorganic C present in ephemeral streams in four dry valleys that flow for four to twelve weeks during the austral summer. One of these valleys, Taylor Valley, has been the focus of the McMurdo Dry Valleys Long-Term Ecological Research (MCM-LTER) program since 1993. Within Taylor Valley, numerous ephemeral streams deliver water to three perennially ice-covered, closed-basin lakes: Lake Fryxell, Lake Hoare, and Lake Bonney. The Onyx River in the Wright Valley, the longest river in Antarctica, flows for 40 km from the Wright Lower Glacier and Lake Brownworth at the foot of the glacier to Lake Vanda. Streamflow in the McMurdo Dry Valley streams is produced primarily from glacial melt, as there is no overland flow. However, hyporheic zone exchange can be a major hydrogeochemical process in these streams. Depending on landscape position, these streams vary in gradient, channel substrate, biomass abundance, and hyporheic zone extent. This study sampled streams from Taylor, Wright, Garwood, and Miers Valleys and conducted diurnal sampling of two streams of different character in Taylor Valley. In addition, transect sampling was undertaken of the Onyx River in Wright Valley. The δ 13 C PDB values from these streams span a range of greater than 14‰, from −9.4‰ to +5.1‰, with the majority of samples falling between −3‰ and +2‰, suggesting that the C stable isotope composition of dissolved C in McMurdo Dry Valley streams is largely inorganic in character. Because there are no vascular plants on this landscape and no groundwater input to these

  1. Sediment sources of Yan'gou watershed in the Loess Hilly region China under a certain rainstorm event.

    Science.gov (United States)

    Xu, Xue-Xuan; Ju, Tong-Jun; Zheng, Shi-Qing

    2013-01-01

    -reaching influence of land-use changes on the distribution of sediment source area but also put forward some new ideas about returning farming to green in Loess Plateau [7, 8]. However, we were still not sure the contribution of returning farmland to forest and grassland on reducing sediment yield of the valley and known it was difficult to identify its contribution to the total sediment yield. Analysis on the contribution of the stream channel and slope sediment yield had some results already [9, 10]. It was still too early to make clear the relationship between the sediment sources changes of the valley and the management. At present, Ecological restoration in the Loess Plateau caused the sediment form the slope land declining [3]. Due to human economic activities, the mountain road developed rapidly, it is inevitable that road erosion has been intensified [11]. A. Rijsdijk and LA Bruijnzeel (1991), [12] based the valley Konto observation, pointed out that although the rural road in the area accounts for only 3% of the area, but the impact on the sediment of this area was tremendous. Nyssen J, Moneryersons J. et al (2002) [13] also think that road without protection is one of the main sources of sediment. Many kinds of protective measures have great importance to the road erosion control. So attentions were paid to the study on the protection all kind of roads. Then what will happen to the soil erosion of the watershed, driven by the vegetation restoration and new road construction? What will happen to the proportion of sediment quality from slope land, road area and gully? A correct understanding of the sediment sources pattern of the typical watershed is of great significance on assessment the roles of vegetation to slope management and the roles of prevention the linear path erosion.

  2. Lake Superior Coastal Wetland Fish Assemblages and Habitat Conditions in Relation to Watershed Connectivity and Landcover

    Science.gov (United States)

    The role of the coastal margin and the watershed context in defining the ecology of even very large lakes is increasingly being recognized and examined. Coastal wetlands are both important contributors to the biodiversity and productivity of large lakes and important mediators o...

  3. Wetland survey of the X-10 Bethel Valley and Melton Valley groundwater operable units at Oak Ridge National Labortory Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Rosensteel, B.A.

    1996-03-01

    Executive Order 11990, Protection of Wetlands, (May 24, 1977) requires that federal agencies avoid, to the extent possible, adverse impacts associated with the destruction and modification of wetlands and that they avoid direct and indirect support of wetlands development when there is a practicable alternative. In accordance with Department of Energy (DOE) Regulations for Compliance with Floodplains and Wetlands Environmental Review Requirements (Subpart B, 10 CFR 1022.11), surveys for wetland presence or absence were conducted in both the Melton Valley and the Bethel Valley Groundwater Operable Units (GWOU) on the DOE Oak Ridge Reservation (ORR) from October 1994 through September 1995. As required by the Energy and Water Development Appropriations Act of 1992, wetlands were identified using the criteria and methods set forth in the Wetlands Delineation Manual (Army Corps of Engineers, 1987). Wetlands were identified during field surveys that examined and documented vegetation, soils, and hydrologic evidence. Most of the wetland boundary locations and wetland sizes are approximate. Boundaries of wetlands in Waste Area Grouping (WAG) 2 and on the former proposed site of the Advanced Neutron Source in the upper Melton Branch watershed were located by civil survey during previous wetland surveys; thus, the boundary locations and areal sizes in these areas are accurate. The wetlands were classified according to the system developed by Cowardin et al. (1979) for wetland and deepwater habitats of the United States. A total of 215 individual wetland areas ranging in size from 0.002 ha to 9.97 ha were identified in the Bethel Valley and Melton Valley GWOUs. The wetlands are classified as palustrine forested broad-leaved deciduous (PFO1), palustrine scrub-shrub broad-leaved deciduous (PSS1), and palustrine persistent emergent (PEM1)

  4. Coho Salmon Habitat in a Changing Environment-Green Valley Creek, Graton, California

    Science.gov (United States)

    O'Connor, M. D.; Kobor, J. S.; Sherwood, M. N.

    2013-12-01

    Green Valley Creek (GVC) is a small (101 sq km) aquatic habitat refugium in the Russian River watershed (3,840 sq km) in coastal northern California. Coho salmon (Onchorhynchus kisutch) is endangered per the Federal Endangered Species Act, and GVC is one stream where coho have persisted. Fish surveys in GVC have found high species diversity, growth rates, and over-summer survival. The upper portion of GVC comprises a principal tributary (20 sq km) that provides spawning and rearing habitat for coho. The second principal tributary, Atascadero Creek, is comparable in size, but has few fish. Atascadero Creek and lower GVC have broad, densely vegetated floodplains. A Recovery Plan for the Central Coastal California coho Evolutionarily Significant Unit has been developed by the National Marine Fisheries Service (NMFS), which applies to the Russian River and its tributaries. Cooperative research regarding fish populations and habitat, a captive breeding and release program for native coho salmon, and efforts to plan for and restore habitat are ongoing. These regional efforts are particularly active in GVC, and participants include NMFS, the California Department of Fish and Wildlife, the Gold Ridge Resource Conservation District, the California Coastal Conservancy, the University of California Cooperative Extension, and the National Fish and Wildlife Foundation, among others. Our research focuses on hydrologic, geomorphic and hydrogeologic characteristics of the watershed in relation to aquatic habitat. Natural watershed factors contributing to habitat for coho include proximity to the coastal summer fog belt with cool temperatures, the Wilson Grove Formation aquifer that maintains dry season stream flow, and structural geology favorable for active floodplain morphology. Human impacts include water use and agriculture and rural residential development. Historic human impacts include stream clearing and draining of wetlands and floodplain for agriculture, which likely

  5. Modeling nutrient sources, transport and management strategies in a coastal watershed, Southeast China.

    Science.gov (United States)

    Zhou, Pei; Huang, Jinliang; Hong, Huasheng

    2018-01-01

    Integrated watershed management requires an analytical model capable of revealing the full range of impacts that would be caused by the uses and developments in the watershed. The SPAtially Referenced Regressions On Watershed Attributes (SPARROW) model was developed in this study to provide empirical estimates of the sources, transport of total nitrogen (TN) and total phosphorus (TP) and to develop nutrient management strategies in the Jiulong River Watershed, southeast China that has enormous influence on the region's ecological safety. We calibrated the model using data related to daily streamflow, monthly TN and TP concentrations in 2014 at 30 locations. The model produced R 2 values for TN with 0.95 and TP with 0.94. It was found that for the entire watershed, TN came from fertilizer application (43%), livestock breeding (39%) and sewage discharge (18%), while TP came from livestock breeding (46%), fertilizer application (46%), and industrial discharge (8%). Fifty-eight percent of the TN and 80% of the TP in upstream reaches are delivered to the outlets of North and West rivers. A scenario analysis with SPARROW was coupled to develop suitable management strategies. Results revealed that controlling nutrient sources was effective in improving water quality. Normally sharp reduction in nutrient sources is not operational feasible. Hence, it is recommended that preventing nutrient on land from entering into the river as a suitable strategy in watershed management. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Land Use and Climate Alter Carbon Dynamics in Watersheds of Chesapeake Bay

    Science.gov (United States)

    Kaushal, S.; Duan, S.; Grese, M.; Pennino, M. J.; Belt, K. T.; Findlay, S.; Groffman, P. M.; Mayer, P. M.; Murthy, S.; Blomquist, J.

    2011-12-01

    There have been long-term changes in the quantity of organic carbon in streams and rivers globally. Shifts in the quality of organic carbon due to environmental changes may also impact downstream ecosystem metabolism and fate and transport of contaminants. We investigated long-term impacts of land use and hydrologic variability on organic carbon transport in watersheds of the Baltimore Long-Term Ecological Research (LTER) site and large rivers of the Chesapeake Bay. In small and medium-sized watersheds of the Baltimore LTER site, urban land use increased organic carbon concentrations in streams several-fold compared to forest and agricultural watersheds. Enzymatic activities of stream microbes were significantly altered across watershed land use during a record wet year. During the wet year, short-term bioassays showed that bioavailable dissolved organic carbon varied seasonally, but comprised a substantial proportion of the dissolved organic carbon pool. Similarly, measurements of biochemical oxygen demand across hydrologic variability suggest that reactive organic carbon export from small and medium-sized urban watersheds during storms can be substantial. At a larger regional scale, major tributaries such as the Potomac, Susquehanna, Patuxent, and Choptank rivers also showed similar variability as smaller watersheds in quantity and quality of organic carbon based on land use and climate. There were distinct isotopic values of d13C of particulate organic matter and fluorescence excitation emission matrices for rivers influenced by different land uses. Stable isotopic values of d13C of particulate organic matter and fluorescence excitation emission matrices showed marked seasonal changes in organic matter quality during spring floods in the Potomac River at Washington D.C. Across watershed size, there appeared to be differences in seasonal cycles of organic carbon quality and this may have been based on the degree of hydrologic connectivity between watersheds and

  7. Torrential floods: A potential hazard at the Aburra valley

    International Nuclear Information System (INIS)

    Caballero Acosta, Jose Humberto

    2011-01-01

    Torrential foods are a type of mass movement generally moving through the channels of the creeks, leading to transport large volumes of sediment and debris, unsafe speeds for the people and infrastructure located in areas of accumulation of mountain watersheds susceptible to this phenomenon. Although there is no adequate historical record of such events to the valley of Aburra, if there are some experiences that validate the growing concern about this threat in the region. The geomorphologic and climatic conditions in the valley allow us to call attention to this problem, especially when we consider that the basins have been practically occupied in low or accumulation areas are being subjected to strong constructive pressure, without concern in the negative impact that the inappropriate intervention, can have in the lowlands. It requires interdisciplinary research programs of these phenomena in order to have the scientific information needed to advance threat assessments appropriated to our conditions. It is also important that the authorities and people understand that, in part, the protection of the settlements of the lowland areas of accumulation, depending on management given to the upper reaches of the escarpment and transportation areas.

  8. Probability of Elevated Nitrate Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Science.gov (United States)

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of elevated nitrate concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps was developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  9. New developments in ecological hydrology expand research opportunities

    Science.gov (United States)

    D.A. Post; G. E. Grant; J. A. Jones

    1998-01-01

    Interdisciplinary research efforts to integrate the ecological aspects of water with its physical and societal roles have a long history as well as some interesting new developments. Small, paired, experimental watersheds, with their long-term monitoring systems for data collection and their integrated ecosystem approach to analysis, have been at the center of recent...

  10. Construction of a Distributed-network Digital Watershed Management System with B/S Techniques

    Science.gov (United States)

    Zhang, W. C.; Liu, Y. M.; Fang, J.

    2017-07-01

    interpret results. The utility of WAGWA-GIS in jointing hydrologic and ecological investigations has been demonstrated on such diverse landscapes as Jinhe and Weihe watersheds, and will be extended to be utilized in the other watersheds in China step by step in coming years

  11. Regional scale selenium loading associated with surface coal mining, Elk Valley, British Columbia, Canada.

    Science.gov (United States)

    Wellen, Christopher C; Shatilla, Nadine J; Carey, Sean K

    2015-11-01

    Selenium (Se) concentrations in surface water downstream of surface mining operations have been reported at levels in excess of water quality guidelines for the protection of wildlife. Previous research in surface mining environments has focused on downstream water quality impacts, yet little is known about the fundamental controls on Se loading. This study investigated the relationship between mining practices, stream flows and Se concentrations using a SPAtially Referenced Regression On Watershed attributes (SPARROW) model. This work is part of a R&D program examining the influence of surface coal mining on hydrological and water quality responses in the Elk Valley, British Columbia, Canada, aimed at informing effective management responses. Results indicate that waste rock volume, a product of mining activity, accounted for roughly 80% of the Se load from the Elk Valley, while background sources accounted for roughly 13%. Wet years were characterized by more than twice the Se load of dry years. A number of variables regarding placement of waste rock within the catchments, length of buried streams, and the construction of rock drains did not significantly influence the Se load. The age of the waste rock, the proportion of waste rock surface reclaimed, and the ratio of waste rock pile side area to top area all varied inversely with the Se load from watersheds containing waste rock. These results suggest operational practices that are likely to reduce the release of Se to surface waters. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Natural Recharge to the Unconfined Aquifer System on the Hanford Site from the Greater Cold Creek Watershed: Progress Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Waichler, Scott R.; Wigmosta, Mark S.; Coleman, Andre M.

    2004-09-14

    Movement of contaminants in groundwater at the Hanford Site is heavily dependent on recharge to the unconfined aquifer. As the effects of past artificial discharges dissipate, the water table is expected to return to more natural conditions, and natural recharge will become the driving force when evaluating future groundwater flow conditions and related contaminant transport. Previous work on the relationship of natural recharge to groundwater movement at the Hanford Site has focused on direct recharge from infiltrating rainfall and snowmelt within the area represented by the Sitewide Groundwater Model (SGM) domain. However, part of the groundwater recharge at Hanford is provided by flow from Greater Cold Creek watershed (GCC), a large drainage area on the western boundary of the Hanford Site that includes Cold Creek Valley, Dry Creek Valley, and the Hanford side of Rattlesnake Mountain. This study was undertaken to estimate the recharge from GCC, which is believed to enter the unconfined aquifer as both infiltrating streamflow and shallow subsurface flow. To estimate recharge, the Distributed Hydrology-Soil-Vegetation Model (DHSVM) was used to simulate a detailed water balance of GCC from 1956 to 2001 at a spatial resolution of 200~m and a temporal resolution of one hour. For estimating natural recharge to Hanford from watersheds along its western and southwestern boundaries, the most important aspects that need to be considered are 1)~distribution and relative magnitude of precipitation and evapotranspiration over the watershed, 2)~streamflow generation at upper elevations and infiltration at lower elevations during rare runoff events, and 3)~permeability of the basalt bedrock surface underlying the soil mantle.

  13. Preface: long-term response of a forest watershed ecosystem, clearcutting in the Southern Appalachians

    Science.gov (United States)

    Wayne Swank; Jackson Webster

    2014-01-01

    Our North American forests are no longer the wild areas of past centuries; they are an economic and ecological resource undergoing changes from both natural and management disturbances. A watershed-scale and long-term perspective of forest ecosystem responses is requisite to understanding and predicting cause and effect relationships. This book synthesizes...

  14. Wolbachia Effects on Rift Valley Virus Infection in Culex tarsalis Mosquitoes

    Science.gov (United States)

    2017-04-25

    Wolbachia density in mosquitoes. 109" 110" Materials and Methods 111" Ethics statement 112" TR-17-113 Mosquitoes were maintained on commercially available...fever virus. 379" Vet Med Today. 2009; 883–893. 380" 29. Wilson M. Rift Valley fever virus ecology and the epidemiology of disease emergence. 381

  15. Grassland ecology and diversity (Ecologia y diversidad de pastizales)

    Science.gov (United States)

    Laurie B. Abbott

    2006-01-01

    Grasslands of the Chihuahuan Desert region are ecologically and economically important. These grasslands are valued for their rangeland, wildlife, watershed, and recreation resources. Biological diversity also raises the value of grassland communities. The potential for multiple uses within the region increases as the diversity of the resource base increases. In order...

  16. Disease Vector Ecology Profile: Ecuador

    Science.gov (United States)

    1998-12-01

    years occurred in Peru in the northern departments bordering Ecuador in 1992-1994. Sylvatic plague is endemic in the southern provinces of Loja and... Ecuador ) Micrurus bocourti (Pacific lowlands of western Ecuador ) Micrurus catamayensis (Catamayo Valley, Loja Province) Micrurus dumerilii spp...Disease Vector Ecology Profile Ecuador -~· ""’ -.. ~ """ Defense Pest Management Information Analysis Center’ Armed Forces Pest Management

  17. Environment, agroecological and socioeconomic Analysis of the livestock breeding of the microregion of the Cesar valley

    International Nuclear Information System (INIS)

    Silva Zakzuk, J.E.

    1998-01-01

    It describes the micro region of the Cesar Valley from the point of view of their geographical location, their ecological factors agriculture and socioeconomic factors. In the aspect ecological agriculture they are detailed: climate, soils, waters and biodiversity. As for the socioeconomic aspect they are considered the current use of the soil, the holding of the earth, size of the properties, socioeconomic aspects and production systems

  18. The economic benefits of vegetation in the upstream area of Ciliwung watershed

    Science.gov (United States)

    Saridewi, T. R.; Nazaruddin

    2018-04-01

    Ciliwung watershed has strategic values since its entire downstream area is located in the Special Administrative Region of Jakarta (DKI Jakarta), the capital of Indonesia. This causes forest and farmland areas are converted into open areas or built-up areas. The existence of these areas provides enormous environmental and economic benefits. Economic benefit values are very important to be considered in developing a policy development plan, but they have not been calculated yet. This study aims to determine the economic benefits provided by trees and other vegetation anddevelops a development policy that takes into account simultaneously ecological and economic aspects. The study is conducted in the upstream Ciliwung watershed, by using land cover patterns in 1989, 2000, 2010 and 2014, and employs GIS and CITY green analysis. The results show that conversion of forest and farmland areas reduces the ability of Ciliwung upstream watershed to store water. Therefore, its ability to reduce the flow of surface has been decreased. This creates a decrease in the cost savings of annual stormwater, from US 15,175,721 in 1989 to US 13,317,469 in 2014. The Environmental Services Payment Policy (PES) for upstream community groups managing the watershed has been considered as a fairly effective policy.

  19. Nitrogen input from residential lawn care practices in suburban watersheds in Baltimore county, MD

    Science.gov (United States)

    Neely L. Law; Lawrence E. Band; J. Morgan. Grove

    2004-01-01

    A residential lawn care survey was conducted as part of the Baltimore Ecosystem Study, a Long-term Ecological Research project funded by the National Science Foundation and collaborating agencies, to estimate the nitrogen input to urban watersheds from lawn care practices. The variability in the fertilizer N application rates and the factors affecting the application...

  20. Social infrastructure to integrate science and practice: the experience of the Long Tom Watershed Council

    Science.gov (United States)

    Rebecca L. Flitcroft; Dana C. Dedrick; Courtland L. Smith; Cynthia A. Thieman; John P. Bolte

    2009-01-01

    Ecological problem solving requires a flexible social infrastructure that can incorporate scientific insights and adapt to changing conditions. As applied to watershed management, social infrastructure includes mechanisms to design, carry out, evaluate, and modify plans for resource protection or restoration. Efforts to apply the best science will not bring anticipated...

  1. Charcterization of meadow ecosystems based on watershed and valley segment/reach scale characteristics [chapter 7

    Science.gov (United States)

    Wendy Trowbridge; Jeanne C. Chambers; Dru Germanoski; Mark L. Lord; Jerry R. Miller; David G. Jewett

    2011-01-01

    Great Basin riparian meadows are highly sensitive to both natural and anthropogenic disturbance. As detailed in earlier chapters, streams in the central Great Basin have a natural tendency to incise due to their geomorphic history (Miller and others 2001, 2004). Anthropogenic disturbances, including overgrazing by livestock, mining activities, and roads in the valley...

  2. Landscape approach to the formation of the ecological frame of Moscow

    Science.gov (United States)

    Nizovtsev, Vyacheslav; Natalia, Erman

    2015-04-01

    operating transit functions should include unified landscape systems of river valleys, their hollow-beam upstreams and drained lows. The most important elements of environmental infrastructure include the most valuable forest and wetland complexes, springs and other landscape and aquatic complexes, cultural and historical landscape complexes, landscape complexes with high concentration of cultural heritage sites, sites of natural and green areas with great potential of natural and recreational resources, natural and recreational parks, natural monuments. They can serve as centers of landscape and biological diversity and perform partial transit (migration) and buffer functions. The territory of the ecological framework can be used for strictly regulated or limited recreation (tourism, short leisure). The adjacent natural and green spaces and natural parks may play a buffer role for the SPNAs and valuable landscape complexes. The spatial pattern of the landscape complexes of Moscow allows to create a single ecological framework based on the landscape, distinct for its interrelated and complementary components. Its basis may be consisted of uniform landscape complexes of valley outwash plains and river valleys, their hollow-beam upstreams and drained lows which perform system forming, environmental and transit functions. In the plan river valleys and small erosional forms are as if enclosed in the gullies and constitute single paradynamic systems unified by lateral flows. Therefore not only the edges of river valleys, but also the rear seams of the valley outwash plains should become important natural boundaries, limiting urban development of the area. Their most important functional feature is that they serve as local collectors and surface water runoff channels. These landscape complexes are distinct for most dynamic natural processes and thus negative exogenous processes. The authors have drawn indigenous (conditionally restored) and modern landscapes of Moscow on a scale

  3. DEVELOP Chesapeake Bay Watershed Hydrology - UAV Sensor Web

    Science.gov (United States)

    Holley, S. D.; Baruah, A.

    2008-12-01

    The Chesapeake Bay is the largest estuary in the United States, with a watershed extending through six states and the nation's capital. Urbanization and agriculture practices have led to an excess runoff of nutrients and sediment into the bay. Nutrients and sediment loading stimulate the growth of algal blooms associated with various problems including localized dissolved oxygen deficiencies, toxic algal blooms and death of marine life. The Chesapeake Bay Program, among other stakeholder organizations, contributes greatly to the restoration efforts of the Chesapeake Bay. These stakeholders contribute in many ways such as monitoring the water quality, leading clean-up projects, and actively restoring native habitats. The first stage of the DEVELOP Chesapeake Bay Coastal Management project, relating to water quality, contributed to the restoration efforts by introducing NASA satellite-based water quality data products to the stakeholders as a complement to their current monitoring methods. The second stage, to be initiated in the fall 2008 internship term, will focus on the impacts of land cover variability within the Chesapeake Bay Watershed. Multiple student led discussions with members of the Land Cover team at the Chesapeake Bay Program Office in the DEVELOP GSFC 2008 summer term uncovered the need for remote sensing data for hydrological mapping in the watershed. The Chesapeake Bay Program expressed in repeated discussions on Land Cover mapping that significant portions of upper river areas, streams, and the land directly interfacing those waters are not accurately depicted in the watershed model. Without such hydrological mapping correlated with land cover data the model will not be useful in depicting source areas of nutrient loading which has an ecological and economic impact in and around the Chesapeake Bay. The fall 2008 DEVELOP team will examine the use of UAV flown sensors in connection with in-situ and Earth Observation satellite data. To maximize the

  4. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Jha

    2011-06-01

    Full Text Available This paper describes the hydrological assessment of an agricultural watershed in the Midwestern United States through the use of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT model was applied to the Maquoketa River watershed, located in northeast Iowa, draining an agriculture intensive area of about 5,000 km2. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science Integrating Point and Nonpoint Sources (BASINS. Meteorological input, including precipitation and temperature from six weather stations located in and around the watershed, and measured streamflow data at the watershed outlet, were used in the simulation. A sensitivity analysis was performed using an influence coefficient method to evaluate surface runoff and baseflow variations in response to changes in model input hydrologic parameters. The curve number, evaporation compensation factor, and soil available water capacity were found to be the most sensitive parameters among eight selected parameters. Model calibration, facilitated by the sensitivity analysis, was performed for the period 1988 through 1993, and validation was performed for 1982 through 1987. The model was found to explain at least 86% and 69% of the variability in the measured streamflow data for calibration and validation periods, respectively. This initial hydrologic assessment will facilitate future modeling applications using SWAT to the Maquoketa River watershed for various watershed analyses, including watershed assessment for water quality management, such as total maximum daily loads, impacts of land use and climate change, and impacts of alternate management practices.

  5. Ecological benefits of passive wetland treatment systems designed for acid mine drainage: With emphasis on watershed restoration

    International Nuclear Information System (INIS)

    McCleary, E.C.; Kepler, D.A.

    1994-01-01

    Western Pennsylvania has been a large source of coal for much of the US since the late 1800's. During the extraction of the coal resources, acid mine drainage (AMD) often resulted. AMD from abandoned discharges has effectively rendered thousands of kilometers of streams lifeless in the Appalachian coal region. Restoration of these streams has been limited in previous years primarily because of the lack of cost-effective treatment for AMD. Conventional treatment can treat AMD effectively but is costly to operate and maintain and is effective only when receiving human attention. Passive wetland treatment systems have proven to be the only realistic AMD treatment strategy, in terms of watershed restoration activities. If ecosystem health is the reason for implementing effluent standards then it can be reasonably argued that passive wetland treatment systems supply the most effective overall treatment, even if they do not meet one or more of the current effluent standards. Recent advancements in passive wetland treatment system technology have provided a management tool that could be used to treat the majority of AMD discharges cost-effectively, and when used strategically could reasonably be employed to restore the thousands of kilometers of AMD-affected streams in the coal regions of Appalachia. Secondary benefits that have been observed with passive wetland treatment systems suggest that these systems may be providing for accelerated ecological recovery independent of regulated effluent standards

  6. About the Mid-Continent Ecology Division (MED) of EPA's National Health and Environmental Effects Research Laboratory

    Science.gov (United States)

    The Mid-Continent Ecology Division (MED) conducts innovative research and predictive modeling to document and forecast the effects of pollutants on the integrity of watersheds and freshwater ecosystems.

  7. Sturgeon in the Sacramento–San Joaquin Watershed: New Insights to Support Conservation and Management

    Directory of Open Access Journals (Sweden)

    A. Peter Klimley

    2015-12-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2015v13iss4art1The goal of a day-long symposium on March 3, 2015, Sturgeon in the Sacramento–San Joaquin Watershed: New Insights to Support Conservation and Management, was to present new information about the physiology, behavior, and ecology of the green (Acipenser medirostris and white sturgeon (Acipenser transmontanus to help guide enhanced management and conservation efforts within the Sacramento–San Joaquin watershed. This symposium identified current unknowns and highlighted new electronic tracking technologies and physiological techniques to address these knowledge gaps. A number of presentations, each reviewing ongoing research on the two species, was followed by a round-table discussion, in which each of the participants was asked to share recom-mendations for future research on sturgeon in the watershed. This article presents an in-depth review of the scientific information presented at the sympo-sium with a summary of recommendations for future research.

  8. Relating Landscape Development Intensity to Coral Reef Condition in the Watersheds of St. Croix, U.S. Virgin Islands

    Science.gov (United States)

    Diagnosing the degree to which local landscape activities impact coral reef ecosystems and their ecological services is critically important to coastal and watershed decision-makers. We report, for the first time, a study that relates coral reef condition metrics to metrics of h...

  9. The hydrogeology of the Tully Valley, Onondaga County, New York: an overview of research, 1992-2012

    Science.gov (United States)

    Kappel, William M.

    2014-01-01

    Onondaga Creek begins approximately 15 miles south of Syracuse, New York, and flows north through the Onondaga Indian Nation, then through Syracuse, and finally into Onondaga Lake in central New York. Tully Valley is in the upper part of the Onondaga Creek watershed between U.S. Route 20 and the Valley Heads end moraine near Tully, N.Y. Tully Valley has a history of several unusual hydrogeologic phenomena that affected past land use and the water quality of Onondaga Creek; the phenomena are still present and continue to affect the area today (2014). These phenomena include mud volcanoes or mudboils, landslides, and land-surface subsidence; all are considered to be naturally occurring but may also have been influenced by human activity. The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency and the Onondaga Lake Partnership, began a study of the Tully Valley mudboils beginning in October 1991 in hopes of understanding (1) what drives mudboil activity in order to remediate mudboil influence on the water quality of Onondaga Creek, and (2) land-surface subsidence issues that have caused a road bridge to collapse, a major pipeline to be rerouted, and threatened nearby homes. Two years into this study, the 1993 Tully Valley landslide occurred just over 1 mile northwest of the mudboils. This earth slump-mud flow was the largest landslide in New York in more than 70 years (Fickies, 1993); this event provided additional insight into the geology and hydrology of the valley. As the study of the Tully Valley mudboils progressed, other unusual hydrogeologic phenomena were found within the Tully Valley and provided the opportunity to perform short-term, small-scale studies, some of which became graduate student theses—Burgmeier (1998), Curran (1999), Morales-Muniz (2000), Baldauf (2003), Epp (2005), Hackett, (2007), Tamulonis (2010), and Sinclair (2013). The unusual geology and hydrology of the Tully Valley, having been investigated for

  10. Agricultural non-point source pollution management in a reservoir watershed based on ecological network analysis of soil nitrogen cycling.

    Science.gov (United States)

    Xu, Wen; Cai, Yanpeng; Rong, Qiangqiang; Yang, Zhifeng; Li, Chunhui; Wang, Xuan

    2018-03-01

    The Miyun Reservoir plays a pivotal role in providing drinking water for the city of Beijing. In this research, ecological network analysis and scenario analysis were integrated to explore soil nitrogen cycling of chestnut and Chinese pine forests in the upper basin of the Miyun Reservoir, as well as to seek favorable fertilization modes to reduce agricultural non-point source pollution. Ecological network analysis results showed that (1) the turnover time was 0.04 to 0.37 year in the NH 4 + compartment and were 15.78 to 138.36 years in the organic N compartment; (2) the Finn cycling index and the ratio of indirect to direct flow were 0.73 and 11.92 for the chestnut forest model, respectively. Those of the Chinese pine forest model were 0.88 and 29.23, respectively; and (3) in the chestnut forest model, NO 3 - accounted for 96% of the total soil nitrogen loss, followed by plant N (2%), NH 4 + (1%), and organic N (1%). In the Chinese pine forest, NH 4 + accounted for 56% of the total soil nitrogen loss, followed by organic N (34%) and NO 3 - (10%). Fertilization mode was identified as the main factor affecting soil N export. To minimize NH 4 + and NO 3 - outputs while maintaining the current plant yield (i.e., 7.85e0 kg N/year), a fertilization mode of 162.50 kg N/year offered by manure should be adopted. Whereas, to achieve a maximum plant yield (i.e., 3.35e1 kg N/year) while reducing NH 4 + and NO 3 - outputs, a fertilization mode of 325.00 kg N/year offered by manure should be utilized. This research is of wide suitability to support agricultural non-point source pollution management at the watershed scale.

  11. Understanding Urban Watersheds through Digital Interactive Maps, San Francisco Bay Area, California

    Science.gov (United States)

    Sowers, J. M.; Ticci, M. G.; Mulvey, P.

    2014-12-01

    Dense urbanization has resulted in the "disappearance" of many local creeks in urbanized areas surrounding the San Francisco Bay. Long reaches of creeks now flow in underground pipes. Municipalities and water agencies trying to reduce non-point-source pollution are faced with a public that cannot see and therefore does not understand the interconnected nature of the drainage system or its ultimate discharge to the bay. Since 1993, we have collaborated with the Oakland Museum, the San Francisco Estuary Institute, public agencies, and municipalities to create creek and watershed maps to address the need for public understanding of watershed concepts. Fifteen paper maps are now published (www.museumca.org/creeks), which have become a standard reference for educators and anyone working on local creek-related issues. We now present digital interactive creek and watershed maps in Google Earth. Four maps are completed covering urbanized areas of Santa Clara and Alameda Counties. The maps provide a 3D visualization of the watersheds, with cartography draped over the landscape in transparent colors. Each mapped area includes both Present and Past (circa 1800s) layers which can be clicked on or off by the user. The Present layers include the modern drainage network, watershed boundaries, and reservoirs. The Past layers include the 1800s-era creek systems, tidal marshes, lagoons, and other habitats. All data are developed in ArcGIS software and converted to Google Earth format. To ensure the maps are interesting and engaging, clickable icons pop-up provide information on places to visit, restoration projects, history, plants, and animals. Maps of Santa Clara Valley are available at http://www.valleywater.org/WOW.aspx. Maps of western Alameda County will soon be available at http://acfloodcontrol.org/. Digital interactive maps provide several advantages over paper maps. They are seamless within each map area, and the user can zoom in or out, and tilt, and fly over to explore

  12. Climate-change-driven deterioration of water quality in a mineralized watershed.

    Science.gov (United States)

    Todd, Andrew S; Manning, Andrew H; Verplanck, Philip L; Crouch, Caitlin; McKnight, Diane M; Dunham, Ryan

    2012-09-04

    A unique 30-year streamwater chemistry data set from a mineralized alpine watershed with naturally acidic, metal-rich water displays dissolved concentrations of Zn and other metals of ecological concern increasing by 100-400% (400-2000 μg/L) during low-flow months, when metal concentrations are highest. SO(4) and other major ions show similar increases. A lack of natural or anthropogenic land disturbances in the watershed during the study period suggests that climate change is the underlying cause. Local mean annual and mean summer air temperatures have increased at a rate of 0.2-1.2 °C/decade since the 1980s. Other climatic and hydrologic indices, including stream discharge during low-flow months, do not display statistically significant trends. Consideration of potential specific causal mechanisms driven by rising temperatures suggests that melting of permafrost and falling water tables (from decreased recharge) are probable explanations for the increasing concentrations. The prospect of future widespread increases in dissolved solutes from mineralized watersheds is concerning given likely negative impacts on downstream ecosystems and water resources, and complications created for the establishment of attainable remediation objectives at mine sites.

  13. Watershed assessment-watershed analysis: What are the limits and what must be considered

    Science.gov (United States)

    Robert R. Ziemer

    2000-01-01

    Watershed assessment or watershed analysis describes processes and interactions that influence ecosystems and resources in a watershed. Objectives and methods differ because issues and opportunities differ.

  14. Hydrological Responses of Weather Conditions and Crop Change of Agricultural Area in the Rincon Valley, New Mexico

    Science.gov (United States)

    Ahn, S.; Sheng, Z.; Abudu, S.

    2017-12-01

    Hydrologic cycle of agricultural area has been changing due to the impacts of climate and land use changes (crop coverage changes) in an arid region of Rincon Valley, New Mexico. This study is to evaluate the impacts of weather condition and crop coverage change on hydrologic behavior of agricultural area in Rincon Valley (2,466km2) for agricultural watershed management using a watershed-scale hydrologic model, SWAT (Soil and Water Assessment Tool). The SWAT model was developed to incorporate irrigation of different crops using auto irrigation function. For the weather condition and crop coverage change evaluation, three spatial crop coverages including a normal (2008), wet (2009), and dry (2011) years were prepared using USDA crop data layer (CDL) for fourteen different crops. The SWAT model was calibrated for the period of 2001-2003 and validated for the period of 2004-2006 using daily-observed streamflow data. Scenario analysis was performed for wet and dry years based on the unique combinations of crop coverages and releases from Caballo Reservoir. The SWAT model simulated the present vertical water budget and horizontal water transfer considering irrigation practices in the Rincon Valley. Simulation results indicated the temporal and spatial variability for irrigation and non-irrigation seasons of hydrologic cycle in agricultural area in terms of surface runoff, evapotranspiration, infiltration, percolation, baseflow, soil moisture, and groundwater recharge. The water supply of the dry year could not fully cover whole irrigation period due to dry weather conditions, resulting in reduction of crop acreage. For extreme weather conditions, the temporal variation of water budget became robust, which requires careful irrigation management of the agricultural area. The results could provide guidelines for farmers to decide crop patterns in response to different weather conditions and water availability.

  15. Application of Watershed Scale Models to Predict Nitrogen Loading From Coastal Plain Watersheds

    Science.gov (United States)

    George M. Chescheir; Glenn P Fernandez; R. Wayne Skaggs; Devendra M. Amatya

    2004-01-01

    DRAINMOD-based watershed models have been developed and tested using data collected from an intensively instrumented research site on Kendricks Creek watershed near Plymouth. NC. These models were applied to simulate the hydrology and nitrate nitrogen (NO3-N) loading from two other watersheds in the Coastal Plain of North Carolina, the 11600 ha Chicod Creek watershed...

  16. Potential effects of geothermal energy conversion on Imperial Valley ecosystems. [Seven workshop presentations

    Energy Technology Data Exchange (ETDEWEB)

    Shinn, J.H. (ed.)

    1976-12-17

    This workshop on potential effcts of geothermal energy conversion on the ecology of Imperial Valley brought together personnel of Lawrence Livermore Laboratory and many collaborators under the sponsorship of the ERDA Imperial Valley Environmental Project (IVEP). The LLL Integrated Assessment Team identified the electric power potential and its associated effluents, discharges, subsidence, water requirements, land use, and noise. The Working Groups addressed the ecological problems. Water resource management problems include forces on water use, irrigation methods and water use for crops, water production, and water allocation. Agricultural problems are the contamination of edible crops and the reclamation of soil. A strategy is discussed for predevelopment baseline data and for identification of source term tracers. Wildlife resources might be threatened by habitat destruction, powerline impacts, noise and disturbance effects, gas emissions, and secondary impacts such as population pressure. Aquatic ecosystems in both the Salton Sea and fresh waters have potential hazards of salinity and trace metal effects, as well as existing stresses; baseline and bioassay studies are discussed. Problems from air pollution resulting from geothermal resource development might occur, particularly to vegetation and pollinator insects. Conversion of injury data to predicted economic damage isneeded. Finally, Imperial Valley desert ecosystems might be threatened by destruction of habitat and the possible effects on community structure such as those resulting from brine spills.

  17. Application of an Ecological Model for the Cibolo Creek Watershed

    National Research Council Canada - National Science Library

    Price, David

    2004-01-01

    The U.S. Army Engineer District, Fort Worth (CESWF) is involved in demon- strating the utility of an ecological model in the performance and interpretation of a comprehensive General Investigations (GI...

  18. Landscaping practices, land use patterns and stormwater quantity and quality in urban watersheds

    Science.gov (United States)

    Miles, B.; Band, L. E.

    2011-12-01

    Increasing quantity and decreasing quality of urban stormwater threatens biodiversity in local streams and reservoirs, jeopardizes water supplies, and ultimately contributes to estuarine eutrophication. To estimate the effects that present and alternative landscaping practices and land use patterns may have on urban stormwater quantity and quality, simulations of existing land use/land cover using the Regional Hydro-Ecologic Simulation System (RHESSys), a process-based surface hydrology and biogeochemistry model, were developed for watersheds in Baltimore, MD (as part of the Baltimore Ecosystem Study (BES) NSF Long-Term Ecological Research (LTER) site) and Durham, NC (as part of the NSF Urban Long-Term Research Area (ULTRA) program). The influence of land use patterns and landscaping practices on nutrient export in urban watersheds has been explored as part of the BES; this work has focused on improving our understanding of how residential landscaping practices (i.e. lawn fertilization rates) vary across land use and socioeconomic gradients. Elsewhere, others have explored the political ecology of residential landscaping practices - seeking to understand the economic, political, and cultural influences on the practice of high-input residential turf-grass management. Going forward, my research will synthesize and extend this prior work. Rather than pre-supposing predominant residential land use patterns and landscaping practices (i.e. lower-density periphery development incorporating high-input turf landscapes) alternate land use and landscaping scenarios (e.g. higher-density/transit-oriented development, rain gardens, vegetable gardens, native plant/xeriscaping) will be developed through interviews/focus groups with stakeholders (citizens, public officials, developers, non-profits). These scenarios will then be applied to the RHESSys models already developed for catchments in Baltimore and Durham. The modeled scenario results will be used to identify alternate land

  19. Third annual Walker Branch watershed research symposium: Programs and abstracts

    International Nuclear Information System (INIS)

    1992-03-01

    The methods and concepts of watershed research, originally applied in an experimental or monitoring mode to relatively small catchments, are increasingly being used at larger scales and for specific applied problems. Research at Oak Ridge National Laboratory, the Tennessee Valley Authority, the US Forest Service, and other agencies and institutions participating in this symposium reflects research over a broad range of spatial scales. These research projects address the basic atmospheric, geophysical, biogeochemical, and biological processes that regulate the responses of forested ecosystems to natural environmental variation and anthropogenic stresses. Regional and global issues addressed by presentations include emissions of carbon dioxide, methane, and other hydrocarbons; deposition of sulfate, nitrate, and mercury; land-use changes; biological diversity; droughts; and water quality. The Department of Energy's local research site, Walker Branch Watershed, is a long-term ecosystem research project initiated on the Oak Ridge Reservation in 1967. Walker Branch provides a well-characterized site where many of these methods can be tested and applied.In addition, other large-scale experiments represented in this symposium include experiments on the effects of clearcutting and burning on forest structure and productivity associated with Coweeta Hydrologic Laboratory, and whole-tree ozone exposure chambers constructed by TVA and ORNL researchers

  20. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis

    OpenAIRE

    Manoj Kumar Jha

    2011-01-01

    This paper describes the hydrological assessment of an agricultural watershed in the Midwestern United States through the use of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT) model was applied to the Maquoketa River watershed, located in northeast Iowa, draining an agriculture intensive area of about 5,000 km2. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science...

  1. Engaging Watershed Stakeholders for Cost-Effective Environmental Management Planning with "Watershed Manager"

    Science.gov (United States)

    Williams, Jeffery R.; Smith, Craig M.; Roe, Josh D.; Leatherman, John C.; Wilson, Robert M.

    2012-01-01

    "Watershed Manager" is a spreadsheet-based model that is used in extension education programs for learning about and selecting cost-effective watershed management practices to reduce soil, nitrogen, and phosphorus losses from cropland. It can facilitate Watershed Restoration and Protection Strategy (WRAPS) stakeholder groups' development…

  2. The Hidden Watershed's Journals: the Informational Characteristics of Biomarkers in Sedimentary Deposits

    Science.gov (United States)

    Guerrero, F. J.; Hatten, J. A.

    2014-12-01

    The historical reconstruction of past environmental changes in watersheds is essential to understand watershed response to disturbances and how those diturbances could affect the provision of valuable goods like water. That reconstruction requires the interpretation of natural records, mainly associated to sedimentary deposits that store detailed information in the form of specific biogenic molecules (i.e. biomarkers). In forested watersheds terrestrial vegetation is an important source of biomarkers like those associated to Lignin, a complex organic polymer used by plants to provide physical support in its tissues. Through litter inputs Lignin is deposited in soils and then is transported to sedimentary environments by rivers (e.g. floodplains, lake bottoms), serving as a source of information about vegetation changes in watersheds. In spite of the critical character of the information extracted from biomarkers in sedimentary records, the very concept of information is still used in a metaphorical sense, even though it was formally defined more than 60 years ago and has been applied extensively in ecology (e.g. Shannon's diversity index). Furthermore, sophisticated techniques are being used to deliver more complex molecular data that require examination and validation as indicators for watershed historical reconstructions. My research aims to explore the applicability of some information metrics (i.e. diversity indices, information coefficients) to a diverse molecular set derived from the chemical depolymerization of lignin deposited in floodplains and lake sediments in different basins. This approach attempts to assess the informational characteristics of Lignin as an indicator of natural/human-induced perturbations in forested watersheds. The formal assessment of the informational characteristics of natural records could have a profound impact not only in our methodological approaches but also in our philosophical view about information and communication in

  3. 50 years of change at 14 headwater snowmelt-dominated watersheds in Wyoming

    Science.gov (United States)

    Voutchkova, D. D.; Miller, S. N.

    2017-12-01

    Wyoming is a headwater state contributing to the water resources of four major US basins: Columbia River, Colorado River, Great Basin, and Missouri River. Most of the annual precipitation in this semi-arid state is received at high elevations as snow. Water availability for drinking water supply, reservoir storage, industrial, agricultural, and ecological needs - all depends on the variable and potentially changing annual snowmelt. Thus, characterizing snowmelt and snowmelt-dominated runoff variability and change at high-elevation headwater watersheds in Wyoming is of utmost importance. Next to quantifying variability and changes in total precipitation, snow-water equivalent (SWE), annual runoff and low flows at 14 selected and representative high-elevation watersheds during the previous 50 years, we also explore past watershed disturbances. Wildfires, forest management (e.g. timber harvest), and recent bark beetle outbakes have altered the vegetation and potentially the hydrology of these high-elevation watersheds. We present a synthesis and trend analysis of 49-75 complete water years (wy) of daily streamflow data for 14 high-elevation watersheds, 25-36 complete wy of daily SWE and precipitation data for the closest SNOTEL stations, and spatiotemporal data on burned areas for 20 wy, tree mortality for 18 wy, timber harvest during the 20th century, as well as overview on legacy tie-drive related distrbances. These results are discussed with respect to the differing watershed characteristics in order to present a spectrum of possible hydrologic responses. The importance of our work lies in extending our understanding of snowmelt headwater annual runoff and low-flow dynamics in Wyoming specifically. Such regional synthesis would inform and facilitate water managers and planners both at local state-wide level, but also in the intermountain US West.

  4. United States‐Mexican border watershed assessment: Modeling nonpoint source pollution in Ambos Nogales

    Science.gov (United States)

    Norman, Laura M.

    2007-01-01

    Ecological considerations need to be interwoven with economic policy and planning along the United States‐Mexican border. Non‐point source pollution can have significant implications for the availability of potable water and the continued health of borderland ecosystems in arid lands. However, environmental assessments in this region present a host of unique issues and problems. A common obstacle to the solution of these problems is the integration of data with different resolutions, naming conventions, and quality to create a consistent database across the binational study area. This report presents a simple modeling approach to predict nonpoint source pollution that can be used for border watersheds. The modeling approach links a hillslopescale erosion‐prediction model and a spatially derived sediment‐delivery model within a geographic information system to estimate erosion, sediment yield, and sediment deposition across the Ambos Nogales watershed in Sonora, Mexico, and Arizona. This paper discusses the procedures used for creating a watershed database to apply the models and presents an example of the modeling approach applied to a conservation‐planning problem.

  5. Study on Plan of Rural Waterfront Greenway in Beijing Based On Valley Economy

    Science.gov (United States)

    Feng, Li; Ma, Xiaoyan

    2018-01-01

    Valley economy is a major strategy for the development of Beijing mountainous area. This paper tried to apply the theory of rural waterfront greenway in valley, propose the grade system of rural greenway, which has important meaning to the refining of ecological network, the integration of tourism resources, and the promotion of agricultural industry in rural area. By way of illustration, according to the detailed analysis of the hydrology, altitude, slope, aspect, soil and vegetation conditions by GIS, the waterfront greenway, named ‘four seasons flowers’, in Yanqing county area was planned, so as to provide scientific guidance for the rural waterfront greenway construction.

  6. Watershed-based survey designs

    Science.gov (United States)

    Detenbeck, N.E.; Cincotta, D.; Denver, J.M.; Greenlee, S.K.; Olsen, A.R.; Pitchford, A.M.

    2005-01-01

    Watershed-based sampling design and assessment tools help serve the multiple goals for water quality monitoring required under the Clean Water Act, including assessment of regional conditions to meet Section 305(b), identification of impaired water bodies or watersheds to meet Section 303(d), and development of empirical relationships between causes or sources of impairment and biological responses. Creation of GIS databases for hydrography, hydrologically corrected digital elevation models, and hydrologic derivatives such as watershed boundaries and upstream–downstream topology of subcatchments would provide a consistent seamless nationwide framework for these designs. The elements of a watershed-based sample framework can be represented either as a continuous infinite set defined by points along a linear stream network, or as a discrete set of watershed polygons. Watershed-based designs can be developed with existing probabilistic survey methods, including the use of unequal probability weighting, stratification, and two-stage frames for sampling. Case studies for monitoring of Atlantic Coastal Plain streams, West Virginia wadeable streams, and coastal Oregon streams illustrate three different approaches for selecting sites for watershed-based survey designs.

  7. Migration of 137Cs artificial radionuclide in the valley of the Takhtakushuk river of the Degelen massif

    International Nuclear Information System (INIS)

    Panitskij, A.V.

    2005-01-01

    Study of horizontal and vertical radionuclide distribution in the valley of the Takhtakushuk River of the 'Degelen' Massif is carried out in the framework of ecological and biological investigations of soil and plant cover within radioactive contaminated areas, and radionuclide migration in biological chain 'soil - plant - animal'. For the first time, the pool-type method was used in the studies of soil of the valley that allows tracing solid and liquid substances migrating by means of surface and soil drainage from its head to final part. This paper presents some physical and chemical properties of the study landscape's soils, radionuclide content in soil genetic horizons of the valley. The study results showed that major mass of 137 Cs radionuclide is sorbed by soil humus and fine-dispersed clay particles of grass soils within the valley. (author)

  8. Aquatic habitats of Canaan Valley, West Virginia: Diversity and environmental threats

    Science.gov (United States)

    Snyder, C.D.; Young, J.A.; Stout, B. M.

    2006-01-01

    We conducted surveys of aquatic habitats during the spring and summer of 1995 in Canaan Valley, WV, to describe the diversity of aquatic habitats in the valley and identify issues that may threaten the viability of aquatic species. We assessed physical habitat and water chemistry of 126 ponds and 82 stream sites, and related habitat characteristics to landscape variables such as geology and terrain. Based on our analyses, we found two issues likely to affect the viability of aquatic populations in the valley. The first issue was acid rain and the extent to which it potentially limits the distribution of aquatic and semi-aquatic species, particularly in headwater portions of the watershed. We estimate that nearly 46%, or 56 kilometers of stream, had pH levels that would not support survival and reproduction of Salvelinuw fontinalis (brook trout), one of the most acid-tolerant fishes in the eastern US. The second issue was the influence of Castor canadensis (beaver) activity. In the Canaan Valley State Park portion of the valley, beaver have transformed 4.7 kilometers of stream (approximately 17% of the total) to pond habitat through their dam building. This has resulted in an increase in pond habitat, a decrease in stream habitat, and a fragmented stream network (i.e., beaver ponds dispersed among stream reaches). In addition, beaver have eliminated an undetermined amount of forested riparian area through their foraging activities. Depending on the perspective, beaver-mediated changes can be viewed as positive or negative. Increases in pond habitat may increase habitat heterogeneity with consequent increases in biological diversity. In contrast, flooding associated with beaver activity may eliminate lowland wetlands and associated species, create barriers to fish dispersal, and possibly contribute to low dissolved oxygen levels in the Blackwater River. We recommend that future management strategies for the wildlife refuge be viewed in the context of these two issues

  9. Watershed Central: Harnessing a social media tool to organize local technical knowledge and find the right watershed resources for your watershed

    Science.gov (United States)

    Watershed Central was developed to be a bridge between sharing and searching for information relating to watershed issues. This is dependent upon active user support through additions and updates to the Watershed Central Wiki. Since the wiki is user driven, the content and applic...

  10. Floodplain trapping and cycling compared to streambank erosion of sediment and nutrients in an agricultural watershed

    Science.gov (United States)

    Gillespie, Jaimie; Noe, Gregory; Hupp, Cliff R.; Gellis, Allen; Schenk, Edward R.

    2018-01-01

    Floodplains and streambanks can positively and negatively influence downstream water quality through interacting geomorphic and biogeochemical processes. Few studies have measured those processes in agricultural watersheds. We measured inputs (floodplain sedimentation and dissolved inorganic loading), cycling (floodplain soil nitrogen [N] and phosphorus [P] mineralization), and losses (bank erosion) of sediment, N, and P longitudinally in stream reaches of Smith Creek, an agricultural watershed in the Valley and Ridge physiographic province. All study reaches were net depositional (floodplain deposition > bank erosion), had high N and P sedimentation and loading rates to the floodplain, high soil concentrations of N and P, and high rates of floodplain soil N and P mineralization. High sediment, N, and P inputs to floodplains are attributed to agricultural activity in the region. Rates of P mineralization were much greater than those measured in other studies of nontidal floodplains that used the same method. Floodplain connectivity and sediment deposition decreased longitudinally, contrary to patterns in most watersheds. The net trapping function of Smith Creek floodplains indicates a benefit to water quality. Further research is needed to determine if future decreases in floodplain deposition, continued bank erosion, and the potential for nitrate leaching from nutrient-enriched floodplain soils could pose a long-term source of sediment and nutrients to downstream rivers.

  11. Fishes in paleochannels of the Lower Mississippi River alluvial valley: A national treasure

    Science.gov (United States)

    Miranda, Leandro E.

    2016-01-01

    Fluvial geomorphology of the alluvial valley of the Lower Mississippi River reveals a fascinating history. A prominent occupant of the valley was the Ohio River, estimated to have flowed 25,000 years ago over western Tennessee and Mississippi to join the Mississippi River north of Baton Rouge, Louisiana, 750–800 km south of the present confluence. Over time, shifts in the Mississippi and Ohio rivers toward their contemporary positions have left a legacy of abandoned paleochannels supportive of unique fish assemblages. Relative to channels abandoned in the last 500 years, paleochannels exhibit harsher environmental conditions characteristic of hypereutrophic lakes and support tolerant fish assemblages. Considering their ecological, geological, and historical importance, coupled with their primordial scenery, the hundreds of paleochannels in the valley represent a national treasure. Altogether, these waterscapes are endangered by human activities and would benefit from the conservation attention afforded to our national parks and wildlife refuges.

  12. Valley-dependent band structure and valley polarization in periodically modulated graphene

    Science.gov (United States)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  13. TRIPLE-VALUE SIMULATION MODELING CASES TACKLE NUTRIENT AND WATERSHED MANAGEMENT FROM A SOCIAL-ECOLOGICAL SYSTEMS PERSPECTIVE

    Science.gov (United States)

    Decision makers often need assistance in understanding dynamic interactions and linkages among economic, environmental and social systems in coastal watersheds. They also need scientific input to better evaluate potential costs and benefits of alternative policy interventions. EP...

  14. The experimental watersheds in Slovenia

    International Nuclear Information System (INIS)

    Sraj, M; Rusjan, S; Petan, S; Vidmar, A; Mikos, M; Globevnik, L; Brilly, M

    2008-01-01

    Experimental watersheds are critical to the advancement of hydrological science. By setting up three experimental watersheds, Slovenia also obtained its grounds for further development of the science and discipline. In the Dragonja experimental watershed the studies are focused on the afforestation of the watershed in a mediterranean climate, on the Reka river the water balance in a partly karstic area is examined, and on the case of the Glinscica stream the implications of the urban environment are studied. We have obtained valuable experience and tested new measuring equipment on all three experimental watersheds. Measurements and analysis on the experimental watersheds improved the current understanding of hydrological processes. They resulted in several PhD Theses, Master Theses and scientific articles. At the same time the experimental watersheds provide support to the teaching and studying process.

  15. Lessons From Watershed-Based Climate Smart Agricultural Practices In Jogo-Gudedo Watershed Ethiopia

    Directory of Open Access Journals (Sweden)

    Abera Assefa

    2015-08-01

    Full Text Available Abstract Land degradation is the most chronic problem in the Ethiopia. Soil erosion and denudation of vegetation covers are tending to enlarge the area of degraded and west land in semi-arid watersheds. It is therefore watershed management is believed as a holistic approach to create a climate smart landscape that integrate forestry agriculture pasture and soil water management with an objective of sustainable management of natural resources to improve livelihood. This approach pursues to promote interactions among multiple stakeholders and their interests within and between the upstream and downstream locations of a watershed. Melkassa Agricultural Research Centre MARC has been implementing integrated watershed management research project in the Jogo-gudedo watershed from 2010-2014 and lessons from Jogo-gudedo watershed are presented in this research report. Participatory action research PAR was implemented on Soil and Water Conservation SWC area enclosure Agroforestry AF Conservation Tillage CT energy saving stove drought resistance crop varieties in the Jogo-gudedo watershed. Empirical research and action research at plot level and evaluation of introduced technologies with farmers through experimental learning approach and documentation were employed. The participatory evaluation and collective action of SWC and improved practices brought high degree of acceptance of the practices and technologies. This had been ratified by the implementation of comprehensive watershed management action research which in turn enabled to taste and exploit benefits of climate-smart agricultural practices. Eventually significant reduction on soil loss and fuel wood consumption improvements on vegetation cover and crop production were quantitatively recorded as a good indicator and success. Field visit meetings trainings and frequent dialogues between practitioners and communities at watershed level have had a help in promoting the climate smart agriculture

  16. Public participation in watershed management: International practices for inclusiveness

    Science.gov (United States)

    Perkins, Patricia E. (Ellie)

    This paper outlines a number of examples from around the world of participatory processes for watershed decision-making, and discusses how they work, why they are important, their social and ecological potential, and the practical details of how to start, expand and develop them. Because of long-standing power differentials in all societies along gender, class and ethnic lines, equitable public participation requires the recognition that different members of society have different kinds of relationships with the environment in general, and with water in particular. From a range of political perspectives, inclusive participatory governance processes have many benefits. The author has recently completed a 5 year project linking universities and NGOs in Brazil and Canada to develop methods of broadening public engagement in local watershed management committees, with a special focus on gender and marginalized communities. The innovative environmental education and multi-lingual international public engagement practices of the Centre for Socio-Environmental Knowledge and Care of the La Plata Basin (which spans Brazil, Argentina, Uruguay, Paraguay and Bolivia) are also discussed in this paper.

  17. A comparative analysis of hydrologic responses of tropical deciduous and temperate deciduous watershed ecosystems to climatic change

    Science.gov (United States)

    James M. Vose; Jose Manuel Maass

    1999-01-01

    Long-term monitoring of ecological and hydrological processes is critical to understanding ecosystem function and responses to anthropogenic and natural disturbances. Much of the world's knowledge of ecosystem responses to disturbance comes from long-term studies on gaged watersheds. However, there are relatively few long-term sites due to the large cost and...

  18. Extracting Vegetation Coverage in Dry-hot Valley Regions Based on Alternating Angle Minimum Algorithm

    Science.gov (United States)

    Y Yang, M.; Wang, J.; Zhang, Q.

    2017-07-01

    Vegetation coverage is one of the most important indicators for ecological environment change, and is also an effective index for the assessment of land degradation and desertification. The dry-hot valley regions have sparse surface vegetation, and the spectral information about the vegetation in such regions usually has a weak representation in remote sensing, so there are considerable limitations for applying the commonly-used vegetation index method to calculate the vegetation coverage in the dry-hot valley regions. Therefore, in this paper, Alternating Angle Minimum (AAM) algorithm of deterministic model is adopted for selective endmember for pixel unmixing of MODIS image in order to extract the vegetation coverage, and accuracy test is carried out by the use of the Landsat TM image over the same period. As shown by the results, in the dry-hot valley regions with sparse vegetation, AAM model has a high unmixing accuracy, and the extracted vegetation coverage is close to the actual situation, so it is promising to apply the AAM model to the extraction of vegetation coverage in the dry-hot valley regions.

  19. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    Energy Technology Data Exchange (ETDEWEB)

    Coty, J

    2009-03-16

    is largely developed yet its surface water system encompasses two arroyos, an engineered detention basin (Lake Haussmann), storm channels, and wetlands. Conversely, the more rural Site 300 includes approximately 7,000 acres of largely undeveloped land with many natural tributaries, riparian habitats, and wetland areas. These wetlands include vernal pools, perennial seeps, and emergent wetlands. The watersheds within which the Laboratory's sites lie provide local and community ecological functions and services which require protection. These functions and services include water supply, flood attenuation, groundwater recharge, water quality improvement, wildlife and aquatic habitats, erosion control, and (downstream) recreational opportunities. The Laboratory employs a watershed approach to protect these surface water systems. The intent of this approach, presented in this document, is to provide an integrated effort to eliminate or minimize any adverse environmental impacts of the Laboratory's operations and enhance the attributes of these surface water systems, as possible and when reasonable, to protect their value to the community and watershed. The Laboratory's watershed approach to surface water protection will use the U.S. Environmental Protection Agency's Watershed Framework and guiding principles of geographic focus, scientifically based management and partnerships1 as a foundation. While the Laboratory's unique site characteristics result in objectives and priorities that may differ from other industrial sites, these underlying guiding principles provide a structure for surface water protection to ensure the Laboratory's role in environmental stewardship and as a community partner in watershed protection. The approach includes pollution prevention, continual environmental improvement, and supporting, as possible, community objectives (e.g., protection of the San Francisco Bay watershed).

  20. Adopt Your Watershed

    Data.gov (United States)

    U.S. Environmental Protection Agency — Adopt Your Watershed is a Website that encourages stewardship of the nation's water resources and serves as a national inventory of local watershed groups and...

  1. Modelling the Impacts of Changing Land Cover/Land Use and Climate on Flooding in the Elk River Watershed, British Columbia

    Science.gov (United States)

    Barnes, C. C.; Byrne, J. M.; Hopkinson, C.; MacDonald, R. J.; Johnson, D. L.

    2015-12-01

    The Elk River is a mountain watershed located along the eastern border of British Columbia, Canada. The Elk River is confined by railway bridges, roads, and urban areas. Flooding has been a concern in the valley for more than a century. The most recent major flood event occurred in 2013 affecting several communities. River modifications such as riprapped dykes, channelization, and dredging have occurred in an attempt to reduce inundation, with limited success. Significant changes in land cover/land use (LCLU) such as natural state to urban, forestry practices, and mining from underground to mountaintop/valley fill have changed terrain and ground surfaces thereby altering water infiltration and runoff processes in the watershed. Future climate change in this region is expected to alter air temperature and precipitation as well as produce an earlier seasonal spring freshet potentially impacting future flood events. The objective of this research is to model historical and future hydrological conditions to identify flood frequency and risk under a range of climate and LCLU change scenarios in the Elk River watershed. Historic remote sensing data, forest management plans, and mining industry production/post-mining reclamation plans will be used to create a predictive past and future LCLU time series. A range of future air temperature and precipitation scenarios will be developed based on accepted Global Climate Modelling (GCM) research to examine how the hydrometeorological conditions may be altered under a range of future climate scenarios. The GENESYS (GENerate Earth SYstems Science input) hydrometeorological model will be used to simulate climate and LCLU to assess historic and potential future flood frequency and magnitude. Results will be used to create innovative flood mitigation, adaptation, and management strategies for the Elk River with the intent of being wildlife friendly and non-destructive to ecosystems and habitats for native species.

  2. Automated riverine landscape characterization: GIS-based tools for watershed-scale research, assessment, and management.

    Science.gov (United States)

    Williams, Bradley S; D'Amico, Ellen; Kastens, Jude H; Thorp, James H; Flotemersch, Joseph E; Thoms, Martin C

    2013-09-01

    River systems consist of hydrogeomorphic patches (HPs) that emerge at multiple spatiotemporal scales. Functional process zones (FPZs) are HPs that exist at the river valley scale and are important strata for framing whole-watershed research questions and management plans. Hierarchical classification procedures aid in HP identification by grouping sections of river based on their hydrogeomorphic character; however, collecting data required for such procedures with field-based methods is often impractical. We developed a set of GIS-based tools that facilitate rapid, low cost riverine landscape characterization and FPZ classification. Our tools, termed RESonate, consist of a custom toolbox designed for ESRI ArcGIS®. RESonate automatically extracts 13 hydrogeomorphic variables from readily available geospatial datasets and datasets derived from modeling procedures. An advanced 2D flood model, FLDPLN, designed for MATLAB® is used to determine valley morphology by systematically flooding river networks. When used in conjunction with other modeling procedures, RESonate and FLDPLN can assess the character of large river networks quickly and at very low costs. Here we describe tool and model functions in addition to their benefits, limitations, and applications.

  3. Specialization of Bacillus in the Geochemically Challenged Environment of Death Valley

    Science.gov (United States)

    Kopac, S.

    2014-04-01

    Death Valley is the hottest, driest place in North America, a desert with soils containing toxic elements such as boron and lead. While most organisms are unable to survive under these conditions, a diverse community of bacteria survives here. What has enabled bacteria to adapt and thrive in a plethora of extreme and stressful environments where other organisms are unable to grow? The unique environmental adaptations that distinguish ecologically distinct bacterial groups (ecotypes) remain a mystery, in contrast to many animal species (perhaps most notably Darwin's ecologically distinct finch species). We resolve the ecological factors associated with recently diverged ecotypes of the soil bacteria Bacillus subtilis and Bacillus licheniformis, isolated from the dry, geochemically challenging soils of Death Valley, CA. To investigate speciation associated with challenging environmental parameters, we sampled soil transects along a 400m stretch that parallels a decrease in salinity adjacent to a salt flat; transects also encompass gradients in soil B, Cu, Fe, NO3, and P, all of which were quantified in our soil samples. We demarcated strains using Ecotype Simulation, a sequence-based algorithm. Each ecotype's habitat associations were determined with respect to salinity, B, Cu, Fe, NO3, and P. In addition, our sample strains were tested for tolerance of copper, boron and salinity (all known to inhibit growth at high concentrations) by comparing their growth over a 20 hour period. Ecotypes differed in their habitat associations with salinity, boron, copper, iron, and other ecological factors; these environmental dimensions are likely causing speciation of B. subtilis-licheniformis ecotypes at our sample site. Strains also differed in tolerance of boron and copper, providing evidence that our sequence-based demarcations reflect real differences in metabolism. By better understanding the relationship between bacterial speciation and the environment, we can begin to

  4. Comprehensive Evaluation of Urban Sprawl on Ecological Environment Using Multi-Source Data: a Case Study of Beijing

    Science.gov (United States)

    Wang, Hao; Ning, Xiaogang; Zhu, Weiwei; Li, Fei

    2016-06-01

    With urban population growing and urban sprawling, urban ecological environment problems appear. Study on spatiotemporal characteristics of urban sprawl and its impact on ecological environment is useful for ecological civilization construction. Although a lot of work has been conducted on urban sprawl and its impact on ecological environment, resolution of images to extract urban boundary was relatively coarse and most studies only focused on certain indicators of ecological environment, rather than comprehensive evaluation of urban ecological environmental impact. In this study, high-resolution remote sensing images of Beijing from aerial photography in 2002 and 2013 respectively are employed to extract urban boundary with manual interpretation. Fractional Vegetation Coverage (FVC), Water Density (WD), Impervious Surfaces Coverage (ISC), Net Primary Production (NPP), and Land Surface Temperature (LST) are adopted to represent ecological environment. The ecological environment indicators are measured with some general algorithms by combining Landsat images, GIS data and metrological data of 243 day, 2001 and 244 day, 2013. In order to evaluate the impact of urban sprawl on ecological environment, pseudo changes due to metrological variation and other noise in this time period are removed after images calibration. The impact of urban sprawl on ecological environment is evaluated at different scales of urban extent, Beijing ring road and watershed. Results show that Beijing had been undergoing a rapid urbanization from 2002 to 2013, with urban area increase from 600 square kilometres to 987 square kilometres. All ecological environment indicators except LST became terrible in urban sprawl region, with carbon reduction of approximate 40508 tons. The Beiyun River watershed of Beijing degraded seriously since ISC increased to 0.59. Gratifyingly, ecological environment indicators including NDVI, NPP, and LST inside of 4th Ring Road became well.

  5. COMPREHENSIVE EVALUATION OF URBAN SPRAWL ON ECOLOGICAL ENVIRONMENT USING MULTI-SOURCE DATA: A CASE STUDY OF BEIJING

    Directory of Open Access Journals (Sweden)

    H. Wang

    2016-06-01

    Full Text Available With urban population growing and urban sprawling, urban ecological environment problems appear. Study on spatiotemporal characteristics of urban sprawl and its impact on ecological environment is useful for ecological civilization construction. Although a lot of work has been conducted on urban sprawl and its impact on ecological environment, resolution of images to extract urban boundary was relatively coarse and most studies only focused on certain indicators of ecological environment, rather than comprehensive evaluation of urban ecological environmental impact. In this study, high-resolution remote sensing images of Beijing from aerial photography in 2002 and 2013 respectively are employed to extract urban boundary with manual interpretation. Fractional Vegetation Coverage (FVC, Water Density (WD, Impervious Surfaces Coverage (ISC, Net Primary Production (NPP, and Land Surface Temperature (LST are adopted to represent ecological environment. The ecological environment indicators are measured with some general algorithms by combining Landsat images, GIS data and metrological data of 243 day, 2001 and 244 day, 2013. In order to evaluate the impact of urban sprawl on ecological environment, pseudo changes due to metrological variation and other noise in this time period are removed after images calibration. The impact of urban sprawl on ecological environment is evaluated at different scales of urban extent, Beijing ring road and watershed. Results show that Beijing had been undergoing a rapid urbanization from 2002 to 2013, with urban area increase from 600 square kilometres to 987 square kilometres. All ecological environment indicators except LST became terrible in urban sprawl region, with carbon reduction of approximate 40508 tons. The Beiyun River watershed of Beijing degraded seriously since ISC increased to 0.59. Gratifyingly, ecological environment indicators including NDVI, NPP, and LST inside of 4th Ring Road became well.

  6. Sources, fate, and transport of nitrogen and phosphorus in the Chesapeake Bay watershed-An empirical model

    Science.gov (United States)

    Ator, Scott W.; Brakebill, John W.; Blomquist, Joel D.

    2011-01-01

    Spatially Referenced Regression on Watershed Attributes (SPARROW) was used to provide empirical estimates of the sources, fate, and transport of total nitrogen (TN) and total phosphorus (TP) in the Chesapeake Bay watershed, and the mean annual TN and TP flux to the bay and in each of 80,579 nontidal tributary stream reaches. Restoration efforts in recent decades have been insufficient to meet established standards for water quality and ecological conditions in Chesapeake Bay. The bay watershed includes 166,000 square kilometers of mixed land uses, multiple nutrient sources, and variable hydrogeologic, soil, and weather conditions, and bay restoration is complicated by the multitude of nutrient sources and complex interacting factors affecting the occurrence, fate, and transport of nitrogen and phosphorus from source areas to streams and the estuary. Effective and efficient nutrient management at the regional scale in support of Chesapeake Bay restoration requires a comprehensive understanding of the sources, fate, and transport of nitrogen and phosphorus in the watershed, which is only available through regional models. The current models, Chesapeake Bay nutrient SPARROW models, version 4 (CBTN_v4 and CBTP_v4), were constructed at a finer spatial resolution than previous SPARROW models for the Chesapeake Bay watershed (versions 1, 2, and 3), and include an updated timeframe and modified sources and other explantory terms.

  7. Using Eco-hydrologic modeling in the Penobscot River Watershed to explore the role of climate and land use change on DOC concentration and flux

    Science.gov (United States)

    Rouhani, S. F. B. B.; Schaaf, C.; Douglas, E. M.; Huntington, T. G.; Kim, J.

    2017-12-01

    Dissolved Organic Carbon leaches from the terrestrial watersheds to serve as one of the largest sources of marine DOC. Runoff, slope, soil organic matter and land cover characteristics are the primary spatial factors controlling the variability of fluvial Dissolved Organic Carbon fluxes through the catchment. In large, more heterogeneous catchments, streamflow dissolved organic carbon dynamics are regulated by the combined effect of hydrological mechanisms and the proportion of major landscape elements, such as wetland and forested areas. A number of studies have demonstrated that the amount of wetlands, especially peatlands, controls the watershed level transport of DOC in streams.The Penobscot River Watershed is located in north-central Maine and drains into the Gulf of Maine. It is the second largest watershed in New England. The Penobscot River Watershed is primarily forested but also contains extensive bogs, marshes, and wooded swamps.Studying the spatial and temporal changes in DOC export in the Penobscot River Watershed allows us to better understand and detect carbon sinks to carbon source shifts (or vice versa) in northern forested ecosystems.The Regional Hydro-Ecological Simulation System, is a physical process based terrestrial model that has the ability to simulate both the source and transportation of DOC by combining both hydrological and ecological processes. The study is focused on simulating the DOC concentration and flux with RHESSys in the Penobscot River Watershed. The simulated results are compared with field measurements of DOC from the watershed and the model results from the LOADEST and the temporal DOC export patterns are explored. Future changes in the amount of streamflow DOC will also be investigated by using projected land cover and climate change scenarios. Incremental increases in the loss of wetland areas have been implemented to explore the sensitivity of this watershed to wetland loss and progressive changes in forested land cover

  8. Climate Change Impacts on Sediment Transport In a Lowland Watershed System: Controlling Processes and Projection

    Science.gov (United States)

    al Aamery, N. M. H.; Mahoney, D. T.; Fox, J.

    2017-12-01

    Future climate change projections suggest extreme impacts on watershed hydrologic systems for some regions of the world including pronounced increases in surface runoff and instream flows. Yet, there remains a lack of research focused on how future changes in hydrologic extremes, as well as relative hydrologic mean changes, impact sediment redistribution within a watershed and sediment flux from a watershed. The authors hypothesized that variations in mean and extreme changes in turn may impact sediments in depositional and erosional dominance in a manner that may not be obvious to the watershed manager. Therefore, the objectives of this study were to investigate the inner processes connecting the combined effect of extreme climate change projections on the vegetation, upland erosion, and instream processes to produce changes in sediment redistribution within watersheds. To do so, research methods were carried out by the authors including simulating sediment processes in forecast and hindcast periods for a lowland watershed system. Publically available climate realizations from several climate factors and the Soil Water Assessment Tool (SWAT) were used to predict hydrologic conditions for the South Elkhorn Watershed in central Kentucky, USA to 2050. The results of the simulated extreme and mean hydrological components were used in simulating upland erosion with the connectivity processes consideration and thereafter used in building and simulating the instream erosion and deposition of sediment processes with the consideration of surface fine grain lamina (SFGL) layer controlling the benthic ecosystem. Results are used to suggest the dominance of erosional and depositional redistribution of sediments under different scenarios associated with extreme and mean hydrologic forecasting. The results are discussed in reference to the benthic ecology of the stream system providing insight on how water managers might consider sediment redistribution in a changing climate.

  9. Federal Facility Agreement Annual Progress Report for Fiscal Year 1999 Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Jacobs Company LLC

    2000-01-01

    The U.S. Department of Energy-Oak Ridge Operations (DOE-ORO) EM Program adopted a watershed approach for performing Remedial Investigations (RIs) and characterizations for ORR because it is an effective system for determining the best methods for protecting and restoring aquatic ecosystems and protecting human health. The basic concept is that water quality and ecosystem problems are best solved at the watershed level rather than at the individual water-body or discharger level. The watershed approach requires consideration of all environmental concerns, including needs to protect public health, critical habitats such as wetlands, biological integrity, and surface and ground waters. The watershed approach provides an improved basis for management decisions concerning contaminant sources and containment. It allows more direct focus by stakeholders on achieving ecological goals and water quality standards rather than a measurement of program activities based on numbers of permits or samples. The watershed approach allows better management strategies for investigations, therefore maximizing the utilization of scarce resources. Feasibility studies (FSs) evaluate various alternatives in terms of environmental standards, the protection of human health and the environment, and the costs of implementation to find the optimum solution among them. Society has to decide how much it is willing to spend to meet the standards and to be protective. Conducting FSs is the process of trading off those criteria to pick that optimum point that society wants to achieve. Performing this analysis at the watershed scale allows those trade-offs to be made meaningfully. In addition, a Land Use Control Assurance Plan for the ORR was prepared to identify the strategy for assuring the long-term effectiveness of land use controls. These land use controls will be relied upon to protect human health and the environment at areas of the ORR undergoing remediation pursuant to the Comprehensive

  10. Goddard DEVELOP Students: Using NASA Remote Sensing Technology to Study the Chesapeake Bay Watershed

    Science.gov (United States)

    Moore, Rachel

    2011-01-01

    The DEVELOP National Program is an Earth Science research internship, operating under NASA s Applied Sciences Program. Each spring, summer, and fall, DEVELOP interns form teams to investigate Earth Science related issues. Since the Fall of 2003, Goddard Space Flight Center (GSFC) has been home to one of 10 national DEVELOP teams. In past terms, students completed a variety of projects related to the Applied Sciences Applications of National Priority, such as Public Health, Natural Disasters, Water Resources, and Ecological Forecasting. These projects have focused on areas all over the world, including the United States, Africa, and Asia. Recently, Goddard DEVELOP students have turned their attention to a local environment, the Chesapeake Bay Watershed. The Chesapeake Bay Watershed is a complex and diverse ecosystem, spanning approximately 64,000 square miles. The watershed encompasses parts of six states: Delaware, Maryland, New York, Pennsylvania, Virginia, and West Virginia, as well as the District of Columbia. The Bay itself is the biggest estuary in the United States, with over 100,000 tributaries feeding into it. The ratio of fresh water to salt water varies throughout the Bay, allowing for a variety of habitats. The Bay s wetlands, marshes, forests, reefs, and rivers support more than 3,600 plant and animal species, including birds, mammals, reptiles, amphibians, fish, and crabs. The Bay is also commercially significant. It is ranked third in the nation in fishery catch, and supplies approximately 500 million pounds of seafood annually. In addition to its abundant flora and fauna, the Chesapeake Bay watershed is home to approximately 16.6 million people, who live and work throughout the watershed, and who use its diverse resources for recreational purposes. Over the past several decades, the population throughout the watershed has increased rapidly, resulting in land use changes, and ultimately decreasing the health of the Chesapeake Bay Watershed. Over the

  11. Incorporating aquatic ecology into decisions on prioritization of road decommissioning

    Science.gov (United States)

    Charles H. Luce; Bruce E. Rieman; Jason B. Dunham; James L. Clayton; John G. King; Thomas A. Black

    2001-01-01

    Roads provide increased access to lands rich in natural resources and beauty, but they can also damage those lands and the ecological values therein. In particular, much interest has been focused on the hydrologic and geomorphic changes in roaded watersheds and their effects on aquatic ecosystems (Lee et al., 1997; Dunham and Rieman, 1999; also see papers in Luce and...

  12. Probability of Elevated Volatile Organic Compound (VOC) Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Science.gov (United States)

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of elevated volatile organic compound (VOC) concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps was developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  13. The role of interior watershed processes in improving parameter estimation and performance of watershed models.

    Science.gov (United States)

    Yen, Haw; Bailey, Ryan T; Arabi, Mazdak; Ahmadi, Mehdi; White, Michael J; Arnold, Jeffrey G

    2014-09-01

    Watershed models typically are evaluated solely through comparison of in-stream water and nutrient fluxes with measured data using established performance criteria, whereas processes and responses within the interior of the watershed that govern these global fluxes often are neglected. Due to the large number of parameters at the disposal of these models, circumstances may arise in which excellent global results are achieved using inaccurate magnitudes of these "intra-watershed" responses. When used for scenario analysis, a given model hence may inaccurately predict the global, in-stream effect of implementing land-use practices at the interior of the watershed. In this study, data regarding internal watershed behavior are used to constrain parameter estimation to maintain realistic intra-watershed responses while also matching available in-stream monitoring data. The methodology is demonstrated for the Eagle Creek Watershed in central Indiana. Streamflow and nitrate (NO) loading are used as global in-stream comparisons, with two process responses, the annual mass of denitrification and the ratio of NO losses from subsurface and surface flow, used to constrain parameter estimation. Results show that imposing these constraints not only yields realistic internal watershed behavior but also provides good in-stream comparisons. Results further demonstrate that in the absence of incorporating intra-watershed constraints, evaluation of nutrient abatement strategies could be misleading, even though typical performance criteria are satisfied. Incorporating intra-watershed responses yields a watershed model that more accurately represents the observed behavior of the system and hence a tool that can be used with confidence in scenario evaluation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Developing ecological site and state-and-transition models for grazed riparian pastures at Tejon Ranch, California

    Science.gov (United States)

    Felix P. Ratcliff; James Bartolome; Michele Hammond; Sheri Spiegal; Michael White

    2015-01-01

    Ecological site descriptions and associated state-and-transition models are useful tools for understanding the variable effects of management and environment on range resources. Models for woody riparian sites have yet to be fully developed. At Tejon Ranch, in the southern San Joaquin Valley of California, we are using ecological site theory to investigate the role of...

  15. Accumulated state assessment of the Yukon River watershed: part II quantitative effects-based analysis integrating Western science and traditional ecological knowledge.

    Science.gov (United States)

    Dubé, Monique G; Wilson, Julie E; Waterhouse, Jon

    2013-07-01

    This article is the second in a 2-part series assessing the accumulated state of the transboundary Yukon River (YR) basin in northern Canada and the United States. The determination of accumulated state based on available long-term (LT) discharge and water quality data is the first step in watershed cumulative effect assessment in the absence of sufficient biological monitoring data. Long-term trends in water quantity and quality were determined and a benchmark against which to measure change was defined for 5 major reaches along the YR for nitrate, total and dissolved organic carbon (TOC and DOC, respectively), total phosphate (TP), orthophosphate, pH, and specific conductivity. Deviations from the reference condition were identified as "hot moments" in time, nested within a reach. Significant increasing LT trends in discharge were found on the Canadian portion of the YR. There were significant LT decreases in nitrate, TOC, and TP at the Headwater reach, and significant increases in nitrate and specific conductivity at the Lower reach. Deviations from reference condition were found in all water quality variables but most notably during the ice-free period of the YR (May-Sept) and in the Lower reach. The greatest magnitudes of outliers were found during the spring freshet. This study also incorporated traditional ecological knowledge (TEK) into its assessment of accumulated state. In the summer of 2007 the YR Inter Tribal Watershed Council organized a team of people to paddle down the length of the YR as part of a "Healing Journey," where both Western Science and TEK paradigms were used. Water quality data were continuously collected and stories were shared between the team and communities along the YR. Healing Journey data were compared to the LT reference conditions and showed the summer of 2007 was abnormal compared to the LT water quality. This study showed the importance of establishing a reference condition by reach and season for key indicators of water

  16. Low-flow water-quality characterization of the Gore Creek watershed, upper Colorado River basin, Colorado, August 1996

    Science.gov (United States)

    Wynn, Kirby H.; Spahr, Norman E.

    1998-01-01

    sampling is needed to determine the distribution and sources of water-quality constituents at one point in time. In August 1996, a low-flow synoptic sampling for analyses of water-quality properties and constituents at sites in the Gore Creek watershed was done by the U.S. Geological Survey, in cooperation with the Town of Vail, Eagle River Water and Sanitation District, Upper Eagle River Water Authority, and Northwest Colorado Council of Governments, to evaluate the water quality of Gore Creek. The August low-flow period can be important from water-quality and stream ecology perspectives. There is less water available to dilute any contaminants entering the streams, and stream temperatures are highest during August. Physical habitat for aquatic plants and animals is smaller than during most other times of the year. To address these more extreme water-quality and ecological conditions, the synoptic sampling was conducted during the summer low-flow period. Specific objectives of this sampling included: 1. Establish a current data set representing the spatial characteristics of low-flow water-quality conditions in the Gore Creek watershed, and 2. Develop some understanding of land-use and water-quality relations in the watershed. This fact sheet presents hydrologic background information and an analysis of general water-quality properties and constituents, trace elements, and nutrients collected in water samples during low-flow synoptic sampling of the Gore Creek watershed. The U.S. Geological Survey also is conducting a study of the algae and macroinvertebrate communities and physical habitat of streams in the Gore Creek watershed during low flow. This study is designed to provide information about land-use and stream ecology relations in the watershed.

  17. First occurrence of Limnoperna fortunei (Dunker, 1857) in the Rio Tietê watershed (São Paulo State, Brazil).

    Science.gov (United States)

    Pareschi, D C; Matsumura-Tundisi, T; Medeiros, G R; Luzia, A P; Tundisi, J G

    2008-11-01

    This paper describes the recent expansion of the geographical distribution of Limnoperna fortunei (Dunker, 1857) in the Tietê River watershed, São Paulo State, Brazil. Estimations related to the velocity of invasion and its causes are presented. Ecological implications related to biodiversity and possible changes in the food chain are discussed.

  18. Fish assemblage structure and relations with environmental conditions in a Rocky Mountain watershed

    Science.gov (United States)

    Quist, M.C.; Hubert, W.A.; Isaak, D.J.

    2004-01-01

    Fish and habitat were sampled from 110 reaches in the Salt River basin (Idaho and Wyoming) during 1996 and 1997 to assess patterns in fish assemblage structure across a Rocky Mountain watershed. We identified four distinct fish assemblages using cluster analysis: (1) allopatric cutthroat trout (Oncorhynchus clarki (Richardson, 1836)); (2) cutthroat trout - brook trout (Salvelinus fontinalis (Mitchell, 1814)) - Paiute sculpin (Cottus beldingi Eigenmann and Eigenmann, 1891); (3) cutthroat trout - brown trout (Salmo trutta L., 1758) - mottled sculpin (Cottus bairdi Girard, 1850); and (4) Cyprinidae-Catostomidae. The distribution of fish assemblages was explained by thermal characteristics, stream geomorphology, and local habitat features. Reaches with allopatric cutthroat trout and the cutthroat trout - brook trout - Paiute sculpin assemblage were located in high-elevation, high-gradient streams. The other two fish assemblages were generally located in low-elevation streams. Associations between habitat gradients, locations of reaches in the watershed, and occurrence of species were further examined using canonical correspondence analysis. The results suggest that stream geomorphology, thermal conditions, and local habitat characteristics influence fish assemblage structure across a Rocky Mountain watershed, and they provide information on the ecology of individual species that can guide conservation activities. ?? 2004 NRC Canada.

  19. Third annual Walker Branch Watershed research symposium. Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The methods and concepts of watershed research, originally applied in an experimental or monitoring mode to relatively small catchments, are increasingly being used at larger scales and for specific applied problems. Research at Oak Ridge National Laboratory, the Tennessee Valley Authority, the US Forest Service, and other agencies and institutions participating in this symposium reflects research over a broad range of spatial scales that is being integrated through large-scale experiments along with computer modeling and graphical interfaces. These research projects address the basic atmospheric, geophysical, biogeochemical, and biological processes that regulate the responses of forested ecosystems to natural environmental variation and anthropogenic stresses. Regional and global issues addressed by presentations include emissions of carbon dioxide, methane, and other hydrocarbons; deposition of sulfate, nitrate, and mercury; land-use changes; biological diversity; droughts; and water quality. The reports presented in this symposium illustrate a wide range of methods and approaches and focus more on concepts and techniques than on a specific physical site. Sites and projects that have contributed research results to this symposium include Walker Branch Watershed (DOE), the Coweeta Hydrologic Laboratory and LTER site (USFS and NSF), Great Smoky Mountains National Park (research funded by NPS, TVA, and EPRI), Imnavait Creek, Alaska (DOE), the TVA-Norris Whole-tree Facility (TVA and EPRI), and DOE`s Biomass Program.

  20. A Lidar-derived evaluation of watershed-scale large woody debris sources and recruitment mechanisms: costal Maine, USA

    Science.gov (United States)

    A. ​Kasprak; F. J. Magilligan; K. H. Nislow; N. P. Snyder

    2012-01-01

    In‐channel large woody debris (LWD) promotes quality aquatic habitat through sediment sorting, pool scouring and in‐stream nutrient retention and transport. LWD recruitment occurs by numerous ecological and geomorphic mechanisms including channel migration, mass wasting and natural tree fall, yet LWD sourcing on the watershed scale remains poorly constrained. We...

  1. Predicting the spatial distribution of Lonicera japonica, based on species occurrence data from two watersheds in Western Kentucky and Tennessee

    Science.gov (United States)

    Dongjiao Liu; Hao Jiang; Robin Zhang; Kate S. He

    2011-01-01

    The spatial distribution of most invasive plants is poorly documented and studied. This project examined and compared the spatial distribution of a successful invasive plant, Japanese honeysuckle (Lonicera japonica), in two similar-sized but ecologically distinct watersheds in western Kentucky (Ledbetter Creek) and western Tennessee (Panther Creek)....

  2. Watershed Fact Sheet: Improving Utah's Water Quality, Upper Bear River Watershed

    OpenAIRE

    Extension, USU

    2012-01-01

    The Upper Watershed of the Bear River Basin extends from the river's headwaters to Pixley Dam in Wyoming. This is the largest watershed in the Bear River Basin, with an area of about 2,000 square miles.

  3. Holistic impact assessment and cost savings of rainwater harvesting at the watershed scale

    Directory of Open Access Journals (Sweden)

    Santosh R. Ghimire

    2017-03-01

    Full Text Available We evaluated the impacts of domestic and agricultural rainwater harvesting (RWH systems in three watersheds within the Albemarle-Pamlico river basin (southeastern U.S. using life cycle assessment (LCA and life cycle cost assessment. Life cycle impact assessment (LCIA categories included energy demand, fossil fuel, metals, ozone depletion, global warming, acidification, smog, blue and green water use, ecotoxicity, eutrophication, and human health effects. Building upon previous LCAs of near-optimal domestic and agricultural RWH systems in the region, we scaled functional unit LCIA scores for adoption rates of 25%, 50%, 75%, and 100% and compared these to conventional municipal water and well water systems. In addition to investigating watershed-scale impacts of RWH adoption, which few studies have addressed, potential life cycle cost savings due to reduced cumulative energy demand were scaled in each watershed for a more comprehensive analysis. The importance of managing the holistic water balance, including blue water (surface/ground water, green water (rainwater use, and annual precipitation and their relationship to RWH are also addressed. RWH contributes to water resource sustainability by offsetting surface and ground water consumption and by reducing environmental and human health impacts compared to conventional sources. A watershed-wide RWH adoption rate of 25% has a number of ecological and human health benefits including blue water use reduction ranging from 2–39 Mm3, cumulative energy savings of 12–210 TJ, and reduced global warming potential of 600–10,100 Mg CO2 eq. Potential maximum lifetime energy cost savings were estimated at $5M and $24M corresponding to domestic RWH in Greens Mill and agricultural RWH in Back Creek watersheds.

  4. Risk Communication and Climate Justice Planning: A Case of Michigan’s Huron River Watershed

    Directory of Open Access Journals (Sweden)

    Chingwen Cheng

    2017-10-01

    Full Text Available Communicating climate risks is crucial when engaging the public to support climate action planning and addressing climate justice. How does evidence-based communication influence local residents’ risk perception and potential behavior change in support of climate planning? Built upon our previous study of Climate Justice maps illustrating high scores of both social and ecological vulnerability in Michigan’s Huron River watershed, USA, a quasi-experiment was conducted to examine the effects of Climate Justice mapping intervention on residents’ perceptions and preparedness for climate change associated hazards in Michigan. Two groups were compared: residents in Climate Justice areas with high social and ecological vulnerability scores in the watershed (n=76 and residents in comparison areas in Michigan (n=69. Measurements for risk perception include perceived exposure, sensitivity, and adaptability to hazards. Results indicate that risk information has a significant effect on perceived sensitivity and level of preparedness for future climate extremes among participants living in Climate Justice areas. Findings highlight the value of integrating scientific risk assessment information in risk communication to align calculated and perceived risks. This study suggests effective risk communication can influence local support of climate action plans and implementation of strategies that address climate justice and achieve social sustainability in local communities.

  5. Legacy effects of wildfire on stream thermal regimes and rainbow trout ecology: an integrated analysis of observation and individual-based models

    Science.gov (United States)

    Rosenberger, Amanda E.; Dunham, Jason B.; Neuswanger, Jason R.; Railsback, Steven F.

    2015-01-01

    Management of aquatic resources in fire-prone areas requires understanding of fish species’ responses to wildfire and of the intermediate- and long-term consequences of these disturbances. We examined Rainbow Trout populations in 9 headwater streams 10 y after a major wildfire: 3 with no history of severe wildfire in the watershed (unburned), 3 in severely burned watersheds (burned), and 3 in severely burned watersheds subjected to immediate events that scoured the stream channel and eliminated streamside vegetation (burned and reorganized). Results of a previous study of this system suggested the primary lasting effects of this wildfire history on headwater stream habitat were differences in canopy cover and solar radiation, which led to higher summer stream temperatures. Nevertheless, trout were present throughout streams in burned watersheds. Older age classes were least abundant in streams draining watersheds with a burned and reorganized history, and individuals >1 y old were most abundant in streams draining watersheds with an unburned history. Burned history corresponded with fast growth, low lipid content, and early maturity of Rainbow Trout. We used an individual-based model of Rainbow Trout growth and demographic patterns to determine if temperature interactions with bioenergetics and competition among individuals could lead to observed phenotypic and ecological differences among populations in the absence of other plausible mechanisms. Modeling suggested that moderate warming associated with wildfire and channel disturbance history leads to faster individual growth, which exacerbates competition for limited food, leading to decreases in population densities. The inferred mechanisms from this modeling exercise suggest the transferability of ecological patterns to a variety of temperature-warming scenarios.

  6. 77 FR 33237 - Saline Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National...

    Science.gov (United States)

    2012-06-05

    ... Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National Park, Inyo... an Environmental Impact Statement for the Saline Valley Warm Springs Management Plan, Death Valley... analysis process for the Saline Valley Warm Springs Management Plan for Death Valley [[Page 33238...

  7. New records of Pteridophytes for Kashmir Valley, India

    Directory of Open Access Journals (Sweden)

    SHAKOOR A. MIR

    2014-10-01

    Full Text Available Mir SA, Mishra AK, Reshi ZA, Sharma MP. 2014. New Records of Pteridophytes for Kashmir Valley, India. Biodiversitas 15: 131-136. During the recent field survey of district Shopian four species of Pteridophytes are reported for the first time that constitutes new records for Kashmir valley. These species are Hypolepis polypodioides (Blume Hook, Pteris stenophylla Wall. ex Hook. & Grev., Dryopteris subimpressa Loyal and Dryopteris wallichiana (Spreng. Hylander. The diagnostic features of H. polypodioides are presence of long-creeping slender rhizome and eglandular, colorless or brown tinged hairs throughout the frond. P. stenophylla is characterized by having dimorphic fronds and 3 to 5 pinnae clustered at stipe apex. D. subimpressa is marked by pale-green lamina and the largest basiscopic basal pinnule in the lowest pair of pinnae. Similarly, the characteristic features of D. wallichiana are presence of huge frond size, glossier and dark-green lamina and dense browner scales in stipe and rachis. In present communication taxonomic description, synonyms, ecology and photographs are provided for each of these newly recorded species.

  8. Hydrologic connectivity in the McMurdo Dry Valleys of Antarctica: System function and changes over two decades

    Science.gov (United States)

    Wlostowski, A. N.; Gooseff, M. N.; Bernzott, E. D.; McKnight, D. M.; Jaros, C.; Lyons, W.

    2013-12-01

    The McMurdo Dry Valleys of Antarctica is one of the coldest (average annual air temperature of -18°C) and driest (ecological connections in the McMurdo Dry Valleys. Intermittent glacial meltwater streams connect glaciers to closed basin lakes and compose the most prominent hydrologic nexus in the valleys. This study uses of 20+ years of stream temperature, electrical conductivity (EC), and discharge data to enhance our quantitative understanding of the temporal dynamics of hydrologic connections along the glacier-stream-lake continuum. Annually, streamflow occurs for a relatively brief 10-12 week period of the austral summer. Longer streams are more prone to intermittent dry periods during the flow season, making for a harsher ecological environment than shorter streams. Diurnal streamflow variation occurs primarily as a result of changing solar postion relative to the source-glacier surfaces. Therfore, different streams predictably experience high flows and low flows at different times of the day. Electrical conductivity also exhibits diel variations, but the nature of EC-discharge relationships differs among streams throughout the valley. Longer streams have higher EC values and lower discharges than shorter streams, suggesting that hyporheic zones act as a significant solute source and hydrologic reservoir along longer streams. Water temperatures are consistently warmer in longer streams, relative to shorter streams, likely due to prolonged exposure to incident radiation with longer surface water residence times. Inter-annually, several shorter streams in the region show significant increases in Q10, Q30, Q50, Q70, Q90, and/or Q100 flows across the 20+ year record, indicating a long-term non-stationarity in hydrologic system dynamics. The tight coupling between surface waters and the glacier surface energy balance bring forth remarkably consistent hydrologic patterns on the daily and annual timescales, providing a model system for understanding fundamental

  9. Report on the Watershed Monitoring Program at the Paducah Site January-December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Peterson, M.J.; Ryon, M.G.; Southworth, G.R.

    1999-03-01

    Watershed Monitoring of Big Bayou and Little Bayou creeks has been conducted since 1987. The monitoring was conducted by the University of Kentucky between 1987 and 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 to present. The goals of monitoring are to (1) demonstrate that the effluent limitations established for DOE protect and maintain the use of Little Bayour and Big Bayou creeks for frowth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, and (3) document the effects of pollution abatement facilities on stream biota. The watershed (biological) monitoring discussed in this report was conducted under DOE Order 5400.1, General Environmental Protection Program. Future monitoring will be conducted as required by the Kentucky Pollutant Discharge Elimination System (KPDES) permit issued to the Department of Energy (DOE) in March 1998. A draft Watershed Monitoring Program plan was approved by the Kentucky Division of Water and will be finalized in 1999. The DOE permit also requires toxicity monitoring of one continuous outfall and of three intermittent outfalls on a quarterly basis. The Watershed Monitoring Program for the Paducah Site during calendar year 1998 consisted of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of fish communities. This report focuses on ESD activities occurring from january 1998 to December 1998, although activities conducted outside this time period are included as appropriate.

  10. Quantifying the Relative Contributions of Forest Change and Climatic Variability to Hydrology in Large Watersheds: A Critical Review of Research Methods

    Directory of Open Access Journals (Sweden)

    Xiaohua Wei

    2013-06-01

    Full Text Available Forest change and climatic variability are two major drivers for influencing change in watershed hydrology in forest–dominated watersheds. Quantifying their relative contributions is important to fully understand their individual effects. This review paper summarizes the progress on quantifying the relative contributions of forest or land cover change and climatic variability to hydrology in large watersheds using available case studies. It compared pros and cons of various research methods, identified research challenges and proposed future research priorities. Our synthesis shows that the relative hydrological effects of forest changes and climatic variability are largely dependent on their own change magnitudes and watershed characteristics. In some severely disturbed watersheds, impacts of forest changes or land use changes can be as important as those from climatic variability. This paper provides a brief review on eight selected research methods for this type of research. Because each method or technique has its own strengths and weaknesses, combining two or more methods is a more robust approach than using any single method alone. Future research priorities include conducting more case studies, refining research methods, and considering mechanism-based research using landscape ecology and geochemistry approaches.

  11. Sacaton riparian grasslands of the Sky Islands: Mapping distribution and ecological condition using state-and-transition models in Upper Cienega Creek Watershed

    Science.gov (United States)

    Ron Tiller; Melissa Hughes; Gita Bodner

    2013-01-01

    Riparian grasslands dominated by Sporobolus wrightii (big sacaton) were once widely distributed in the intermountain basins of the Madrean Archipelago. These alluvial grasslands are still recognized as key resources for watershed function, livestock, and wildlife. The upper Cienega Creek watershed in SE Arizona is thought to harbor some of the region’s most extensive...

  12. Hydrological cycle research by D & 18 O tracing in small watershed in the loess hilly region

    Directory of Open Access Journals (Sweden)

    Xu Xuexuan

    2013-12-01

    Full Text Available The objective of this study was to determine the mechanisms of the hydrologic cycle in the loess area in China. Sixty eight water samples from precipitation, soil water of the 0 – 4 m layer, surface water in the valley, ground water (spring and well were collected and the Deuterium (D and Oxygen – 18 (O of these water samples were analyzed to interpret the relationship among those waters in the watershed in the loess hilly region during 2005 – 2009. The results show that: the D & 18O of precipitation in Yangou was consistent with that of Xi'an, apparently the north migration of water vapor in Xi'an; according to the correlations among the differential waters in D & 18 O, confirmed that precipitation recharge could account for most of the sources of valley flow, with part of the recharge water going to soil water recharge. The D & 18O of groundwater were very close to that of precipitation, likely the soil preferential flow was dominant in groundwater recharge although the infiltration had a certain lag. Under the influence of rainfall and evaporation, the response of the soil moisture profile, and its D & 18O profile were different. The soil moisture had the strong influenced layer in the 0 60 cm range, a weak impacted layer in 60 160 cm, and a stable layer below 160 cm. It was shown that the soil evaporation depth could be up to 160 cm because the D & 18O changed in that depth. The study could increase our understanding of the magnitude and pattern of the hydrologic cycle, which should improve water resources management in the watershed scale.

  13. Use of Integrated Landscape Indicators to Evaluate the Health of Linked Watersheds and Coral Reef Environments in the Hawaiian Islands

    Science.gov (United States)

    Rodgers, Ku`ulei S.; Kido, Michael H.; Jokiel, Paul L.; Edmonds, Tim; Brown, Eric K.

    2012-07-01

    A linkage between the condition of watersheds and adjacent nearshore coral reef communities is an assumed paradigm in the concept of integrated coastal management. However, quantitative evidence for this "catchment to sea" or "ridge to reef" relationship on oceanic islands is lacking and would benefit from the use of appropriate marine and terrestrial landscape indicators to quantify and evaluate ecological status on a large spatial scale. To address this need, our study compared the Hawai`i Watershed Health Index (HI-WHI) and Reef Health Index (HI-RHI) derived independently of each other over the past decade. Comparisons were made across 170 coral reef stations at 52 reef sites adjacent to 42 watersheds throughout the main Hawaiian Islands. A significant positive relationship was shown between the health of watersheds and that of adjacent reef environments when all sites and depths were considered. This relationship was strongest for sites facing in a southerly direction, but diminished for north facing coasts exposed to persistent high surf. High surf conditions along the north shore increase local wave driven currents and flush watershed-derived materials away from nearshore waters. Consequently, reefs in these locales are less vulnerable to the deposition of land derived sediments, nutrients and pollutants transported from watersheds to ocean. Use of integrated landscape health indices can be applied to improve regional-scale conservation and resource management.

  14. THE CONSEQUENCES OF LANDSCAPE CHANGE ON ECOLOGICAL RESOURCES: AN ASSESSMENT OF THE UNITED STATES MID-ATLANTIC REGION

    Science.gov (United States)

    Spatially explicit identification of changes in ecological conditions over large areas is key to targeting and prioritizing areas for environmental protection and restoration by managers at watershed, basin, and regional scales. A critical limitation to this point has bee...

  15. Influences on wood load in mountain streams of the Bighorn National Forest, Wyoming, USA.

    Science.gov (United States)

    Nowakowski, Amy L; Wohl, Ellen

    2008-10-01

    We documented valley and channel characteristics and wood loads in 19 reaches of forested headwater mountain streams in the Bighorn National Forest of northern Wyoming. Ten of these reaches were in the Upper Tongue River watershed, which has a history of management including timber harvest, tie floating, and road construction. Nine reaches were in the North Rock Creek watershed, which has little history of management activities. We used these data to test hypotheses that (i) valley geometry correlates with wood load, (ii) stream gradient correlates with wood load, and (iii) wood loads are significantly lower in managed watersheds than in otherwise similar unmanaged watersheds. Statistical analyses of the data support the first and third hypotheses. Stream reaches with steeper valley side slopes tend to have higher wood loads, and reaches in managed watersheds tend to have lower wood loads than reaches in unmanaged watersheds. Results do not support the second hypothesis. Shear stress correlated more strongly with wood load than did stream gradient, but statistical models with valley-scale variables had greater explanatory power than statistical models with channel-scale variables. Wood loads in stream reaches within managed watersheds in the Bighorn National Forest tend to be two to three times lower than wood loads in unmanaged watersheds.

  16. Remote Sensing Contributions to Prediction and Risk Assessment of Natural Disasters Caused by Large Scale Rift Valley Fever Outbreaks

    Science.gov (United States)

    Anyamba, Assaf; Linthicum, Kenneth J.; Small, Jennifer; Britch, S. C.; Tucker, C. J.

    2012-01-01

    Remotely sensed vegetation measurements for the last 30 years combined with other climate data sets such as rainfall and sea surface temperatures have come to play an important role in the study of the ecology of arthropod-borne diseases. We show that epidemics and epizootics of previously unpredictable Rift Valley fever are directly influenced by large scale flooding associated with the El Ni o/Southern Oscillation. This flooding affects the ecology of disease transmitting arthropod vectors through vegetation development and other bioclimatic factors. This information is now utilized to monitor, model, and map areas of potential Rift Valley fever outbreaks and is used as an early warning system for risk reduction of outbreaks to human and animal health, trade, and associated economic impacts. The continuation of such satellite measurements is critical to anticipating, preventing, and managing disease epidemics and epizootics and other climate-related disasters.

  17. U.S. Geological Survey Science—Improving the value of the Chesapeake Bay watershed

    Science.gov (United States)

    Phillips, Scott W.; Hyer, Kenneth; Goldbaum, Elizabeth

    2017-05-05

    IntroductionCongress directed the Federal Government to work with States to restore the Nation’s largest estuary.Chesapeake Bay restoration provides important economic and ecological benefits:18 million people live and work in the Bay watershed and enjoy its benefits.3,600 types of fish, wildlife, and plants underpin the economic value of the Bay ecosystem.Poor water quality and habitat loss threaten restoration and negatively impact the economy.10 Goals to meet by 2025 through the Chesapeake Bay Program, a voluntary partnership.

  18. Retrospective Review of Watershed Characteristics and a Framework for Future Research in the Sarasota Bay Watershed, Florida

    Science.gov (United States)

    Kish, George R.; Harrison, Arnell S.; Alderson, Mark

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Sarasota Bay Estuary Program conducted a retrospective review of characteristics of the Sarasota Bay watershed in west-central Florida. This report describes watershed characteristics, surface- and ground-water processes, and the environmental setting of the Sarasota Bay watershed. Population growth during the last 50 years is transforming the Sarasota Bay watershed from rural and agriculture to urban and suburban. The transition has resulted in land-use changes that influence surface- and ground-water processes in the watershed. Increased impervious cover decreases recharge to ground water and increases overland runoff and the pollutants carried in the runoff. Soil compaction resulting from agriculture, construction, and recreation activities also decreases recharge to ground water. Conventional approaches to stormwater runoff have involved conveyances and large storage areas. Low-impact development approaches, designed to provide recharge near the precipitation point-of-contact, are being used increasingly in the watershed. Simple pollutant loading models applied to the Sarasota Bay watershed have focused on large-scale processes and pollutant loads determined from empirical values and mean event concentrations. Complex watershed models and more intensive data-collection programs can provide the level of information needed to quantify (1) the effects of lot-scale land practices on runoff, storage, and ground-water recharge, (2) dry and wet season flux of nutrients through atmospheric deposition, (3) changes in partitioning of water and contaminants as urbanization alters predevelopment rainfall-runoff relations, and (4) linkages between watershed models and lot-scale models to evaluate the effect of small-scale changes over the entire Sarasota Bay watershed. As urbanization in the Sarasota Bay watershed continues, focused research on water-resources issues can provide information needed by water

  19. Non-Fluvial Controls of Erosion, Sediment Transport and Fluvial Morphology in a mid-Atlantic Piedmont Watershed, White Clay Creek, Pennsylvania, U.S.A.

    Science.gov (United States)

    McCarthy, K.; Affinito, R. A.; Pizzuto, J. E.; Stotts, S.; Henry, T.; Krauthauser, M.; O'Neal, M. A.

    2017-12-01

    Quantifying contemporary sediment budgets is essential for restoration and ecosystem management of mid-Atlantic watersheds, but relevant processes and controls are poorly understood. In the 153 km2 White Clay Creek watershed in southeastern Pennsylvania, longitudinal profiles reflect migration of knickpoints though bedrock over Quaternary timescales. In bank exposures along stream valleys, saprolite, bedrock, and matrix-supported cobbly and bouldery diamicton (likely colluvial) commonly underlie finer-grained clay, silt, sand, and gravel deposits of valley floor depositional environments. Overbank sedimentation rates were quantified by measuring the thickness of sediment deposited over the roots of floodplain trees. The sampled trees range in age from 25-270 years with median sediment accumulation rates of approximately 2 mm/yr (range 0-10 mm/yr). Rates of bank retreat (measured from historical aerial imagery or root-exposure dendrochronology) vary from 6-36 cm/yr, with median rates of 10 cm/yr. While bank erosion rates are subject to a variety of controls, including channel curvature, the density of riparian trees, and freeze-thaw processes, the strongest influence appears to be the grain size and thickness of bouldery diamicton exposed along the toes of retreating banks. Cobbles and boulders supplied by eroding diamicton also mantle the bed of the channel, such that 33- 80% of the bed material remains immobile at bankfull stage. A conceptual model of fluvial processes and sediment budgets for these channels must account for the watershed's history of changing climate, tectonics, and land use, requiring mapping of bedrock, colluvium, former mill dam sediments, and other non-alluvial deposits and controls. Efforts to apply hydraulic geometry principles (requiring a precise adjustment to contemporary hydraulic and sediment regime) or to treat these channels as traditional "threshold" rivers are unlikely to be successful.

  20. Interdisciplinary Adventures in Perceptual Ecology

    Science.gov (United States)

    Bocast, Christopher S.

    A portfolio dissertation that began as acoustic ecology and matured into perceptual ecology, centered on ecomusicology, bioacoustics, and translational audio-based media works with environmental perspectives. The place of music in Western eco-cosmology through time provides a basis for structuring an environmental history of human sound perception. That history suggests that music may stabilize human mental activity, and that an increased musical practice may be essential for the human project. An overview of recent antecedents preceding the emergence of acoustic ecology reveals structural foundations from 20th century culture that underpin modern sound studies. The contextual role that Aldo Leopold, Jacob von Uexkull, John Cage, Marshall McLuhan, and others played in anticipating the development of acoustic ecology as an interdiscipline is detailed. This interdisciplinary aspect of acoustic ecology is defined and defended, while new developments like soundscape ecology are addressed, though ultimately sound studies will need to embrace a broader concept of full-spectrum "sensory" or "perceptual" ecology. The bioacoustic fieldwork done on spawning sturgeon emphasized this necessity. That study yielded scientific recordings and spectrographic analyses of spawning sounds produced by lake sturgeon, Acipenser fulvescens, during reproduction in natural habitats in the Lake Winnebago watershed in Wisconsin. Recordings were made on the Wolf and Embarrass River during the 2011-2013 spawning seasons. Several specimens were dissected to investigate possible sound production mechanisms; no sonic musculature was found. Drumming sounds, ranging from 5 to 7 Hz fundamental frequency, verified the infrasonic nature of previously undocumented "sturgeon thunder". Other characteristic noises of sturgeon spawning including low-frequency rumbles and hydrodynamic sounds were identified. Intriguingly, high-frequency signals resembling electric organ discharges were discovered. These

  1. An ecological function and services approach to total maximum daily load (TMDL) prioritization.

    Science.gov (United States)

    Hall, Robert K; Guiliano, David; Swanson, Sherman; Philbin, Michael J; Lin, John; Aron, Joan L; Schafer, Robin J; Heggem, Daniel T

    2014-04-01

    Prioritizing total maximum daily load (TMDL) development starts by considering the scope and severity of water pollution and risks to public health and aquatic life. Methodology using quantitative assessments of in-stream water quality is appropriate and effective for point source (PS) dominated discharge, but less so in watersheds with mostly nonpoint source (NPS) related impairments. For NPSs, prioritization in TMDL development and implementation of associated best management practices should focus on restoration of ecosystem physical functions, including how restoration effectiveness depends on design, maintenance and placement within the watershed. To refine the approach to TMDL development, regulators and stakeholders must first ask if the watershed, or ecosystem, is at risk of losing riparian or other ecologically based physical attributes and processes. If so, the next step is an assessment of the spatial arrangement of functionality with a focus on the at-risk areas that could be lost, or could, with some help, regain functions. Evaluating stream and wetland riparian function has advantages over the traditional means of water quality and biological assessments for NPS TMDL development. Understanding how an ecosystem functions enables stakeholders and regulators to determine the severity of problem(s), identify source(s) of impairment, and predict and avoid a decline in water quality. The Upper Reese River, Nevada, provides an example of water quality impairment caused by NPS pollution. In this river basin, stream and wetland riparian proper functioning condition (PFC) protocol, water quality data, and remote sensing imagery were used to identify sediment sources, transport, distribution, and its impact on water quality and aquatic resources. This study found that assessments of ecological function could be used to generate leading (early) indicators of water quality degradation for targeting pollution control measures, while traditional in-stream water

  2. THE BEAR BROOK WATERSHED MANIPULATION PROJECT: WATERSHED SCIENCE IN A POLICY PERSPECTIVE

    Science.gov (United States)

    The Bear Brook Watershed Manipulation in Maine is a paired watershed experiment. Monitoring of the paired catchments (East Bear Brook - reference; West Bear Brook - experimental) began in early 1987. Chemical manipulation of West Bear Brook catchment began in November 1989. Proce...

  3. Theoretical Study of Watershed Eco-Compensation Standards

    Science.gov (United States)

    Yan, Dandan; Fu, Yicheng; Liu, Biu; Sha, Jinxia

    2018-01-01

    Watershed eco-compensation is an effective way to solve conflicts over water allocation and ecological destruction problems in the exploitation of water resources. Despite an increasing interest in the topic, the researches has neglected the effect of water quality and lacked systematic calculation method. In this study we reviewed and analyzed the current literature and proposedatheoretical framework to improve the calculation of co-compensation standard.Considering the perspectives of the river ecosystems, forest ecosystems and wetland ecosystems, the benefit compensation standard was determined by the input-output corresponding relationship. Based on the opportunity costs related to limiting development and water conservation loss, the eco-compensation standard was calculated.In order to eliminate the defects of eco-compensation implementation, the improvement suggestions were proposed for the compensation standard calculation and implementation.

  4. 75 FR 11837 - Chesapeake Bay Watershed Initiative

    Science.gov (United States)

    2010-03-12

    ... DEPARTMENT OF AGRICULTURE Commodity Credit Corporation Chesapeake Bay Watershed Initiative AGENCY...: Notice of availability of program funds for the Chesapeake Bay Watershed Initiative. SUMMARY: The... through the Chesapeake Bay Watershed Initiative for agricultural producers in the Chesapeake Bay watershed...

  5. Development of Optimal Water-Resources Management Strategies for Kaidu-Kongque Watershed under Multiple Uncertainties

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2013-01-01

    Full Text Available In this study, an interval-stochastic fractile optimization (ISFO model is advanced for developing optimal water-resources management strategies under multiple uncertainties. The ISFO model can not only handle uncertainties presented in terms of probability distributions and intervals with possibility distribution boundary, but also quantify subjective information (i.e., expected system benefit preference and risk-averse attitude from different decision makers. The ISFO model is then applied to a real case of water-resources systems planning in Kaidu-kongque watershed, China, and a number of scenarios with different ecological water-allocation policies under varied p-necessity fractiles are analyzed. Results indicate that different policies for ecological water allocation can lead to varied water supplies, economic penalties, and system benefits. The solutions obtained can help decision makers identify optimized water-allocation alternatives, alleviate the water supply-demand conflict, and achieve socioeconomic and ecological sustainability, particularly when limited water resources are available for multiple competing users.

  6. Sustaining the grassland sea: Regional perspectives on identifying, protecting and restoring the Sky Island region's most intact grassland valley landscapes

    Science.gov (United States)

    Gitanjali S. Bodner; Peter Warren; David Gori; Karla Sartor; Steven Bassett

    2013-01-01

    Grasslands of the Sky Islands region once covered over 13 million acres in southeastern Arizona and adjacent portions of New Mexico, Sonora, and Chihuahua. Attempts to evaluate current ecological conditions suggest that approximately two thirds of these remain as intact or restorable grassland habitat. These grasslands provide watershed services such as flood control...

  7. Multidimensional Scaling Approach to Evaluate the Level of Community Forestry Sustainability in Babak Watershed, Lombok Island, West Nusa Tenggara

    Directory of Open Access Journals (Sweden)

    Ryke Nandini

    2017-07-01

    Full Text Available Community forestry in Babak watershed is one of the efforts to reduce critical land area. The aim of this research was to evaluate the level of community forestry sustainability in both of community forest (HKm and private forest in Babak watershed. Multidimensional scaling (MDS was used to analyse the level of community forest sustainability based on the five dimensions of ecology, economy, social, institutional, and technology as well as 29 attributes. Leverage analysis was used to know the sensitive attributes of sustainability, while Monte Carlo analysis and goodness of fit was used to find the accuracy of MDS analysis. The result shows that HKm was in moderate sustainability level (sustainability index 54.08% and private forest was in less sustainability level (sustainability index 48.53%. Furthermore, the ecology and technology in HKm were classified as less sustainable, while the institution and technology in private forest were considered less sustainable. There were 11 sensitive attributes of HKm and 19 sensitive attributes of private forest. The priorities of attribute improvement in HKm include land recovering (the dimension of ecology and cooperative development (the dimension of technology. In private forest, the priorities of attribute improvement include leadership capacity building (the institutional dimension and also the use of silviculture intensive and soil conservation (the dimension of technology.

  8. Understanding nutrients in the Chesapeake Bay watershed and implications for management and restoration: the Eastern Shore

    Science.gov (United States)

    Ator, Scott W.; Denver, Judith M.

    2015-03-12

    The Eastern Shore includes only a small part of the Chesapeake Bay watershed, but contributes disproportionately large loads of the excess nitrogen and phosphorus that have contributed to ecological and economic degradation of the bay in recent decades. Chesapeake Bay is the largest estuary in the United States and a vital ecological and economic resource. The bay and its tributaries have been degraded in recent decades by excessive nitrogen and phosphorus in the water column, however, which cause harmful algal blooms and decreased water clarity, submerged aquatic vegetation, and dissolved oxygen. The disproportionately large nitrogen and phosphorus yields from the Eastern Shore to Chesapeake Bay are attributable to human land-use practices as well as natural hydrogeologic and soil conditions. Applications of nitrogen and phosphorus compounds to the Eastern Shore from human activities are intensive. More than 90 percent of nitrogen and phosphorus reaching the land in the Eastern Shore is applied as part of inorganic fertilizers or manure, or (for nitrogen) fixed directly from the atmosphere in cropland. Also, hydrogeologic and soil conditions promote the movement of these compounds from application areas on the landscape to groundwater and (or) surface waters, and the proximity of much of the Eastern Shore to tidal waters limits opportunities for natural removal of these compounds in the landscape. The Eastern Shore only includes 7 percent of the Chesapeake Bay watershed, but receives nearly twice as much nitrogen and phosphorus applications (per area) as the remainder of the watershed and yields greater nitrogen and phosphorus, on average, to the bay. Nitrogen and phosphorus commonly occur in streams at concentrations that may adversely affect aquatic ecosystems and have increased in recent decades.

  9. Ecological characteristics of the main river catchments in Vrachanska Planina Mountains

    Directory of Open Access Journals (Sweden)

    SVETOSLAV CHESHMEDJIEV

    2016-05-01

    Full Text Available Assessment of the ecological status of river ecosystems of the major watersheds in the Vrachanska Planina Mts. (Leva River, Cherna River and some tributaries is made. The assessment is carried out by determining the composition and structure of phytobenthos, benthic macroinvertebrate communities and fish. The following indexes are calculated: diatom pollution index IPS, macrozoobenthic Biotic Index and Fish Based Index (BFI, adopted for assessing the ecological status as required by WFD (Directive 60/2000. Additionally, various physical and hydrochemical analyzes are performed. Based on our results the majority of the mountainous zones of the studied rivers is "good" or "high" ecological status. Deteriorated ecological conditions is observed downstream some villages: for Leva River below the village of Zgorigrad and for Cherna River nearby the village of Dolno Ozirovo. This is probably owing to contamination with organic matter from the human settlements in the area. An accident pollution (with a predominantly protein character was found in the Cherna River near the Lupovaka area.

  10. Preliminary United States-Mexico border watershed analysis, twin cities area of Nogales, Arizona and Nogales, Sonora

    Science.gov (United States)

    Brady, Laura Margaret; Gray, Floyd; Castaneda, Mario; Bultman, Mark; Bolm, Karen Sue

    2002-01-01

    The United States - Mexico border area faces the challenge of integrating aspects of its binational physical boundaries to form a unified or, at least, compatible natural resource management plan. Specified geospatial components such as stream drainages, mineral occurrences, vegetation, wildlife, and land-use can be analyzed in terms of their overlapping impacts upon one another. Watersheds have been utilized as a basic unit in resource analysis because they contain components that are interrelated and can be viewed as a single interactive ecological system. In developing and analyzing critical regional natural resource databases, the Environmental Protection Agency (EPA) and other federal and non-governmental agencies have adopted a ?watershed by watershed? approach to dealing with such complicated issues as ecosystem health, natural resource use, urban growth, and pollutant transport within hydrologic systems. These watersheds can facilitate the delineation of both large scale and locally important hydrologic systems and urban management parameters necessary for sustainable, diversified land-use. The twin border cities area of Nogales, Sonora and Nogales, Arizona, provide the ideal setting to demonstrate the utility and application of a complete, cross-border, geographic information systems (GIS) based, watershed analysis in the characterization of a wide range of natural resource as well as urban features and their interactions. In addition to the delineation of a unified, cross-border watershed, the database contains sewer/water line locations and status, well locations, geology, hydrology, topography, soils, geomorphology, and vegetation data, as well as remotely sensed imagery. This report is preliminary and part of an ongoing project to develop a GIS database that will be widely accessible to the general public, researchers, and the local land management community with a broad range of application and utility.

  11. Applying soil property information for watershed assessment.

    Science.gov (United States)

    Archer, V.; Mayn, C.; Brown, S. R.

    2017-12-01

    The Forest Service uses a priority watershed scheme to guide where to direct watershed restoration work. Initial assessment was done across the nation following the watershed condition framework process. This assessment method uses soils information for a three step ranking across each 12 code hydrologic unit; however, the soil information used in the assessment may not provide adequate detail to guide work on the ground. Modern remote sensing information and terrain derivatives that model the environmental gradients hold promise of showing the influence of soil forming factors on watershed processes. These small scale data products enable the disaggregation of coarse scale soils mapping to show continuous soil property information across a watershed. When this information is coupled with the geomorphic and geologic information, watershed specialists can more aptly understand the controlling influences of drainage within watersheds and focus on where watershed restoration projects can have the most success. A case study on the application of this work shows where road restoration may be most effective.

  12. Social-ecological perspective in the analysis of protected natural areas of the metropolitan area of Barcelona (Spain)

    International Nuclear Information System (INIS)

    Iago Otero, Armengol; Boada Junca, Marti

    2008-01-01

    Socio ecological approach tries to integrate natural sciences and social sciences to study reality from an interdisciplinary perspective. Under this point of view, the article analyses the environmental history in the municipality of Matadepera and studies the socio ecological heritage in Olzinelles valley. Through the two case studies we link socio ecological approach with the improvement of management and conservation of two natural protected areas in the Barcelona Metropolitan Region: Sant Llorenc del Munt i l'Obac Natural Park and Montnegre i el Corredor Park

  13. Valley polarization in bismuth

    Science.gov (United States)

    Fauque, Benoit

    2013-03-01

    The electronic structure of certain crystal lattices can contain multiple degenerate valleys for their charge carriers to occupy. The principal challenge in the development of valleytronics is to lift the valley degeneracy of charge carriers in a controlled way. In bulk semi-metallic bismuth, the Fermi surface includes three cigar-shaped electron valleys lying almost perpendicular to the high symmetry axis known as the trigonal axis. The in-plane mass anisotropy of each valley exceeds 200 as a consequence of Dirac dispersion, which drastically reduces the effective mass along two out of the three orientations. According to our recent study of angle-dependent magnetoresistance in bismuth, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. As a consequence of a unique combination of high mobility and extreme mass anisotropy in bismuth, the effect is visible even at room temperature in a magnetic field of 1 T. Thus, a modest magnetic field can be used as a valley valve in bismuth. The results of our recent investigation of angle-dependent magnetoresistance in other semi-metals and doped semiconductors suggest that a rotating magnetic field can behave as a valley valve in a multi-valley system with sizeable mass anisotropy.

  14. Legacy sediment storage in New England river valleys: anthropogenic processes in a postglacial landscape

    Science.gov (United States)

    Snyder, N. P.; Johnson, K. M.; Waltner, M.; Hopkins, A. J.; Dow, S.; Ames, E.; Merritts, D. J.; Walter, R. C.; Rahnis, M. A.

    2016-12-01

    Walter and Merritts (2008, and subsequent papers) show that legacy sediment associated with deposition in millponds is a common feature in river valleys of the Mid-Atlantic Piedmont region, with 1-5 m of fine sand and silt overlying Holocene soil and Pleistocene periglacial deposits. For this project, we seek to test the hypothesis that these field relationships are seen in New England, a formerly glaciated region with similar history and intensity of forest clearing and milldam construction during the 17-19th centuries. We study three watersheds, using field observations of bank stratigraphy, radiocarbon dating, and mapping of terraces and floodplains using lidar digital elevation models and other GIS datasets. The 68 km2 South River watershed in western Massachusetts exhibits the most extensive evidence for legacy sediment storage. We visited 17 historic dam sites in the watershed and found field evidence for fine sand and silt legacy sediment storage at 14, up to 2.2 m thick. In the 558 km2 Sheepscot River watershed in coastal Maine, we visited 12 historic dam sites, and found likely legacy sediment at six, up to 2.3 m thick. In the 171 km2 upper Charles River watershed in eastern Massachusetts, we investigated 14 dam sites, and found legacy sediment at two, up to 1.8 m thick. Stratigraphically, we identified the base of legacy sediment from a change in grain size to gravel at most sites, or to Pleistocene marine clay at some Sheepscot River sites. In the Sheepscot River, we observed cut timbers underlying historic sediment at several locations, likely associated with sawmill activities. Only at the Charles River were we able to radiocarbon date the underlying gravel (1281-1391 calibrated CE). At no site did we find a buried Holocene soil, in contrast to the field relations commonly observed in the Mid-Atlantic region. This may indicate that the New England sites have eroded to the pre-historic river bed, not floodplain surfaces. We attribute the variation in

  15. Adaptive Management Fitness of Watersheds

    Directory of Open Access Journals (Sweden)

    Ignacio Porzecanski

    2012-09-01

    Full Text Available Adaptive management (AM promises to improve our ability to cope with the inherent uncertainties of managing complex dynamic systems such as watersheds. However, despite the increasing adherence and attempts at implementation, the AM approach is rarely successful in practice. A one-size-fits-all AM strategy fails because some watersheds are better positioned at the outset to succeed at AM than others. We introduce a diagnostic tool called the Index of Management Condition (IMC and apply it to twelve diverse watersheds in order to determine their AM "fitness"; that is, the degree to which favorable adaptive management conditions are in place in a watershed.

  16. Determining Water Quality Trends in the Sacramento-San Joaquin Delta Watershed in the Face of Climate Change

    Science.gov (United States)

    Kynett, K.; Azimi-Gaylon, S.; Doidic, C.

    2014-12-01

    The Sacramento-San Joaquin Delta and Suisun Marsh (Delta) is the largest estuary on the West Coast of the Americas and is a resource of local, State, and national significance. The Delta is simultaneously the most critical component of California's water supply, a primary focus of the state's ecological conservation measures, and a vital resource deeply imperiled by degraded water quality. Delta waterbodies are identified as impaired by salinity, excess nutrients, low dissolved oxygen, pathogens, pesticides, heavy metals, and other contaminants. Climate change is expected to exacerbate the impacts of existing stressors in the Delta and magnify the challenges of managing this natural resource. A clear understanding of the current state of the watershed is needed to better inform scientists, decision makers, and the public about potential impacts from climate change. The Delta Watershed Initiative Network (Delta WIN) leverages the ecological benefits of healthy watersheds, and enhances, expands and creates opportunities for greater watershed health by coordinating with agencies, established programs, and local organizations. At this critical junction, Delta WIN is coordinating data integration and analysis to develop better understanding of the existing and emerging water quality concerns. As first steps, Delta WIN is integrating existing water quality data, analyzing trends, and monitoring to fill data gaps and to evaluate indicators of climate change impacts. Available data will be used for trend analysis; Delta WIN will continue to monitor where data is incomplete and new questions arise. Understanding how climate change conditions may affect water quality will be used to inform efforts to build resilience and maintain water quality levels which sustain aquatic life and human needs. Assessments of historical and new data will aid in recognition of potential climate change impacts and in initiating implementation of best management practices in collaboration with

  17. Greening Turner Valley

    International Nuclear Information System (INIS)

    Byfield, M.

    2010-01-01

    This article discussed remedial activities undertaken in the Turner Valley. Remedial action in the valley must satisfy the financial concerns of engineers and investors as well as the environmental concerns of residents and regulators. Natural gas production in the Turner Valley began in 1914. The production practices were harmful and wasteful. Soil and water pollution was not considered a problem until recently. The impacts of cumulative effects and other pollution hazards are now being considered as part of many oil and gas environmental management programs. Companies know it is cheaper and safer to prevent pollutants from being released, and more efficient to clean them up quickly. Oil and gas companies are also committed to remediating historical problems. Several factors have simplified remediation plans in the Turner Valley. Area real estate values are now among the highest in Alberta. While the valley residents are generally friendly to the petroleum industry, strong communication with all stakeholders in the region is needed. 1 fig.

  18. Chilean central valley beekeeping as socially inclusive conservation practice in a social water scarcity context

    Directory of Open Access Journals (Sweden)

    Felipe Eduardo Trujillo Bilbao

    2017-07-01

    Full Text Available Through an ethnographic approach that complements conversations, tours and surveys of productive characterization is that the present study aims to approach the domestic beekeeping in the valley of Colliguay, Quilpué, fifth region of Chile. This is an activity that emerges as a result of deep transformations detonated by the neoliberalization of nature in general and water in particular. That is why it seeks to contextualize the situation of water scarcity that displaced livestock and put in place the bees. All of this through a political ecology lens. It is discussed how to achieve an anthropological reading of the ecological scenarios that denaturalize metabolic fractures in an area with a threatened presence of native forest. It is discovered that the outsider is the material and symbolic responsible of an increase in water stress and a key element in the social relations of confrontation of the valley. It is then related how bees have diverted the attention of their human counterparts to the affection and care of the forest that allows them to live, thus reinforcing the idea of a socially inclusive conservation.

  19. Selected achievements, science directions, and new opportunities for the WEBB small watershed research program

    Science.gov (United States)

    Glynn, Pierre D.; Larsen, Matthew C.; Greene, Earl A.; Buss, Heather L.; Clow, David W.; Hunt, Randall J.; Mast, M. Alisa; Murphy, Sheila F.; Peters, Norman E.; Sebestyen, Stephen D.; Shanley, James B.; Walker, John F.

    2009-01-01

    Over nearly two decades, the Water, Energy, and Biogeochemical Budgets (WEBB) small watershed research program of the U.S. Geological Survey (USGS) has documented how water and solute fluxes, nutrient, carbon, and mercury dynamics, and weathering and sediment transport respond to natural and humancaused drivers, including climate, climate change, and atmospheric deposition. Together with a continued and increasing focus on the effects of climate change, more investigations are needed that examine ecological effects (e.g., evapotranspiration, nutrient uptake) and responses (e.g., species abundances, biodiversity) that are coupled with the physical and chemical processes historically observed in the WEBB program. Greater use of remote sensing, geographic modeling, and habitat/watershed modeling tools is needed, as is closer integration with the USGS-led National Phenology Network. Better understanding of process and system response times is needed. The analysis and observation of land-use and climate change effects over time should be improved by pooling data obtained by the WEBB program during the last two decades with data obtained earlier and (or) concurrently from other research and monitoring studies conducted at or near the five WEBB watershed sites. These data can be supplemented with historical and paleo-environmental information, such as could be obtained from tree rings and lake cores. Because of the relatively pristine nature and small size of its watersheds, the WEBB program could provide process understanding and basic data to better characterize and quantify ecosystem services and to develop and apply indicators of ecosystem health. In collaboration with other Federal and State watershed research programs, the WEBB program has an opportunity to contribute to tracking the short-term dynamics and long-term evolution of ecosystem services and health indicators at a multiplicity of scales across the landscape. 

  20. Lineament and Morphometric Analysis for Watershed Development of Tarali River Basin, Western India

    Directory of Open Access Journals (Sweden)

    Vikrant Bartakke

    2013-06-01

    Full Text Available Tarali river is major tributary of River Krishna, which is flowing in western India. The study area lies between latitude 17°23' to 17°38' N and longitude 73°48' to 74°7' E. The area has steep to moderate slope and elevation ranges from 584 - 1171m above mean sea level. Basin exhibits hilly and mountain terrain forming ridges and Western Ghats with deep valley, plateaus and plain. The whole area can be obtained in topographical maps i.e. 47 G/14, 47 G/15 47 K/2, 47 K/3 covering area of about 627 sq.km, acquired from Survey of India. Present study includes lineament and morphometric analysis of Tarali River basin for management and conservation of watershed.

  1. An application of the distributed hydrologic model CASC2D to a tropical montane watershed

    Science.gov (United States)

    Marsik, Matt; Waylen, Peter

    2006-11-01

    SummaryIncreased stormflow in the Quebrada Estero watershed (2.5 km 2), in the northwestern Central Valley tectonic depression of Costa Rica, reportedly has caused flooding of the city of San Ramón in recent decades. Although scientifically untested, urban expansion was deemed the cause and remedial measures were recommended by the Programa de Investigación en Desarrollo Humano Sostenible (ProDUS). CASC2D, a physically-based, spatially explicit hydrologic model, was constructed and calibrated to a June 10th 2002 storm that delivered 110.5 mm of precipitation in 4.5 h visibly exceeded the bankfull stage (0.9 m) of the Quebrada flooding portions of San Ramón. The calibrated hydrograph showed a peak discharge 16.68% (2.5 m 3 s -1) higher, an above flood stage duration 20% shorter, and time to peak discharge 11 min later than the same observed discharge hydrograph characteristics. Simulations of changing land cover conditions from 1979 to 1999 showed an increase also in the peak discharge, above flood stage duration, and time to peak discharge. Analysis using a modified location quotient identified increased urbanization in lower portions of the watershed over the time period studied. These results suggest that increased urbanization in the Quebrada Estero watershed have increased flooding peaks, and durations above threshold, confirming the ProDUS report. These results and the CASC2D model offer an easy-to-use, pragmatic planning tool for policymakers in San Ramón to assess future development scenarios and their potential flooding impacts to San Ramón.

  2. Evaluating watershed protection programs in New York City's Cannonsville Reservoir source watershed using SWAT-HS

    Science.gov (United States)

    Hoang, L.; Mukundan, R.; Moore, K. E.; Owens, E. M.; Steenhuis, T. S.

    2017-12-01

    New York City (NYC)'s reservoirs supply over one billion gallons of drinking water each day to over nine million consumers in NYC and upstate communities. The City has invested more than $1.5 billion in watershed protection programs to maintain a waiver from filtration for the Catskill and Delaware Systems. In the last 25 years, the NYC Department of Environmental Protection (NYCDEP) has implemented programs in cooperation with upstate communities that include nutrient management, crop rotations, improvement of barnyards and manure storage, implementing tertiary treatment for Phosphorus (P) in wastewater treatment plants, and replacing failed septic systems in an effort to reduce P loads to water supply reservoirs. There have been several modeling studies evaluating the effect of agricultural Best Management Practices (BMPs) on P control in the Cannonsville watershed in the Delaware System. Although these studies showed that BMPs would reduce dissolved P losses, they were limited to farm-scale or watershed-scale estimates of reduction factors without consideration of the dynamic nature of overland flow and P losses from variable source areas. Recently, we developed the process-based SWAT-Hillslope (SWAT-HS) model, a modified version of the Soil and Water Assessment Tool (SWAT) that can realistically predict variable source runoff processes. The objective of this study is to use the SWAT-HS model to evaluate watershed protection programs addressing both point and non-point sources of P. SWAT-HS predicts streamflow very well for the Cannonsville watershed with a daily Nash Sutcliffe Efficiency (NSE) of 0.85 at the watershed outlet and NSE values ranging from 0.56 - 0.82 at five other locations within the watershed. Based on good hydrological prediction, we applied the model to predict P loads using detailed P inputs that change over time due to the implementation of watershed protection programs. Results from P model predictions provide improved projections of P

  3. Anthropogenic changes in environmental conditions of phytocoenoses of medium sized-sized Ukrainian river valleys (based on the example of the River Tyasmyn – a tributary of the Dnieper

    Directory of Open Access Journals (Sweden)

    V. V. Lavrov

    2016-09-01

    Full Text Available The problem of anthropogenic degradation of rivers is usually marked by its multi-sectoral and often international character as well by the large number of sources of environmental threat. Therefore, its solution requires a systematic approach based on transparent and coordinated interagency and international cooperation. The River Dnieper inUkrainehas undergone a remarkable transformation as a result of the construction of a cascade of reservoirs. Anthropogenic damage to the plants and soil that cover its basin have caused damage to the functioning of ecological regimes of theDnieper’s tributaries. Small and medium-sized rivers are dying. In this article, attention is paid to a typical middle-sized (164 km river of theDnieperBasin, the Tyasmyn. Its middle and lower parts are located in the overtransformed Irdyn-Tyasmyn valley. During the last glaciation it formed the central part of the right arm of the ancientDnieper. Regulation of the Tyasmyn runoff, pollution, the creation of theKremenchugreservoir on theDnieper, grazing and recreational load have led to the threat of the river degrading. Therefore, the aim of this article is to characterize the structure of the herbaceous vegetation in the central and lower parts of the Tyasmyn valley and assess the level of its dependence on anthropogenic changes in the conditions of the ecotypes. The methods used are: retrospective and system analysis, comparative ecology (ecological profile or transect, botanic methods, phytoindication, the mapping method and mathematical statistics. The features of changes in environmental conditions of ecotypes of the river valley have been shown through systematic, biomorphological, ecomorphic structure of the herbaceous cover, the ratio of ecological groups and changes in types of ecological strategy of species, phytodiversity. We found 89 species of vascular plants. The most diverse families were Asteraceae, Poaceae and Lamiaceae. The biomorphological range of

  4. Spatiotemporal variation of watershed health propensity through reliability-resilience-vulnerability based drought index (case study: Shazand Watershed in Iran).

    Science.gov (United States)

    Sadeghi, Seyed Hamidreza; Hazbavi, Zeinab

    2017-06-01

    Quantitative response of the watershed health to climate variability is of critical importance for watershed managers. However, existing studies seldom considered the impact of climate variability on watershed health. The present study therefore aimed to analyze the temporal and spatial variability of reliability (R el ), resilience (R es ) and vulnerability (V ul ) indicators in node years of 1986, 1998, 2008 and 2014 in connection with Standardized Precipitation Index (SPI) for 24 sub-watersheds in the Shazand Watershed of Markazi Province in Iran. The analysis was based on rainfall variability as one of the main climatic drivers. To achieve the study purposes, the monthly rainfall time series of eight rain gauge stations distributed across the watershed or neighboring areas were analyzed and corresponding SPIs and R el R es V ul indicators were calculated. Ultimately, the spatial variation of SPI oriented R el R es V ul was mapped for the study watershed using Geographic Information System (GIS). The average and standard deviation of SPI-R el R es V ul index for the study years of 1986, 1998, 2008 and 2014 was obtained 0.240±0.025, 0.290±0.036, 0.077±0.0280 and 0.241±0.081, respectively. In overall, the results of the study proved the spatiotemporal variations of SPI-R el R es V ul watershed health index in the study area. Accordingly, all the sub-watersheds of the Shazand Watershed were grouped in unhealthy and very unhealthy conditions in all the study years. For 1986 and 1998 all the sub-watersheds were assessed in unhealthy status. Whilst, it declined to very unhealthy condition in 2008 and then some 75% of the watershed ultimately referred again to unhealthy and the rest still remained under very unhealthy conditions in 2014. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Climate change and watershed mercury export in a Coastal Plain watershed

    Science.gov (United States)

    Heather Golden; Christopher D. Knightes; Paul A. Conrads; Toby D. Feaster; Gary M. Davis; Stephen T. Benedict; Paul M. Bradley

    2016-01-01

    Future changes in climatic conditions may affect variations in watershed processes (e.g., hydrological, biogeochemical) and surface water quality across a wide range of physiographic provinces, ecosystems, and spatial scales. How such climatic shifts will impact watershed mercury (Hg) dynamics and hydrologically-driven Hg transport is a significant concern.

  6. Seasonal, Spatial Distribution and Ecological Risk Assessment of Heavy Metals in Surface Sediments from a Watershed Area in Gonghu Bay in Taihu Lake, China

    Directory of Open Access Journals (Sweden)

    Peifang Wang

    2014-01-01

    Full Text Available Surface sediments from five stations within Gonghu Bay in Taihu Lake, China, were sampled for seasonal and spatial metal contamination analysis variations and ecological risks assessment from April 2009 to January 2010. The Contamination Factor (CF and geo-accumulation index (Igeo indicated that the sediments in Gonghu Bay ranged from unpolluted to moderately polluted, except for Cd. The one-way ANOVA analysis results showed that the Pb, Zn, Cr, and Cu concentrations were higher at station 3 (lake inlet and the Cr, Pb, and Zn concentrations were significantly higher in the spring. Additionally, using BCR¡¦s sequential extraction, the results showed that the fractionated metals Zn and Cd were observed as bioavailable fractions in the sediments, which could have potential moderate mobility in the water system. There was a significant increase in the bioavailable form during winter. The ratio of secondary and primary phrase (RSP decreased according to the order Zn > Cu > Ni > Pb > Cd > Cr. Finally, these results indicated that the sediments of Gonghu Bay were polluted by Cd, Zn, and Cu, which provides a scientific basis for effectively protecting sediments in watershed areas from long-term heavy metal accumulation.

  7. Probability of Unmixed Young Groundwater (defined using chlorofluorocarbon-11 concentrations and tritium activities) in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Science.gov (United States)

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    This raster data set delineates the predicted probability of unmixed young groundwater (defined using chlorofluorocarbon-11 concentrations and tritium activities) in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps were developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  8. Assessment of water supply as an ecosystem service in a rural-urban watershed in southwestern Mexico City.

    Science.gov (United States)

    Jujnovsky, Julieta; González-Martínez, Teresa Margarita; Cantoral-Uriza, Enrique Arturo; Almeida-Leñero, Lucia

    2012-03-01

    Studies from the ecosystem services perspective can provide a useful framework because they allow us to fully examine the benefits that humans obtain from socio-ecological systems. Mexico City, the second largest city in the world, has faced severe problems related to water shortages, which have worsened due to increasing population. Demand for space has forced changes in land cover, including covering areas that are essential for groundwater recharge. The city has 880 km(2) of forest areas that are crucial for the water supply. The Magdalena River Watershed was chosen as a model because it is a well-preserved zone within Mexico City and it provides water for the population. The general aim of this study was to assess the ecosystem service of the water supply in the Magdalena River Watershed by determining its water balance (SWAT model) and the number of beneficiaries of the ecosystem services. The results showed that the watershed provides 18.4 hm(3) of water per year. Baseflow was dominant, with a contribution of 85%, while surface runoff only accounted for 15%. The zone provides drinking water to 78,476 inhabitants and could supply 153,203 potential beneficiaries. This work provides an example for understanding how ecosystem processes determine the provision of ecosystem services and benefits to the population in a rural-urban watershed in Mexico City.

  9. The role of hydrologic regimes on dissolved organic carbon composition in an agricultural watershed

    Science.gov (United States)

    Hernes, P.J.; Spencer, R.G.M.; Dyda, R.Y.; Pellerin, B.A.; Bachand, P.A.M.; Bergamaschi, B.A.

    2008-01-01

    Willow Slough, a seasonally irrigated agricultural watershed in the Sacramento River valley, California, was sampled weekly in 2006 in order to investigate seasonal concentrations and compositions of dissolved organic carbon (DOC). Average DOC concentrations nearly doubled from winter baseflow (2.75 mg L-1) to summer irrigation (5.14 mg L-1), while a concomitant increase in carbon-normalized vanillyl phenols (0.11 mg 100 mg OC-1 increasing to 0.31 mg 100 mg OC-1, on average) indicates that this additional carbon is likely vascular plant-derived. A strong linear relationship between lignin concentration and total suspended sediments (r2 = 0.79) demonstrates that agricultural management practices that mobilize sediments will likely have a direct and significant impact on DOC composition. The original source of vascular plant-derived DOC to Willow Slough appears to be the same throughout the year as evidenced by similar syringyl to vanillyl and cinnamyl to vanillyl ratios. However, differing diagenetic pathways during winter baseflow as compared to the rest of the year are evident in acid to aldehyde ratios of both vanillyl and syringyl phenols. The chromophoric dissolved organic matter (CDOM) absorption coefficient at 350 nm showed a strong correlation with lignin concentration (r2 = 0.83). Other CDOM measurements related to aromaticity and molecular weight also showed correlations with carbon-normalized yields (e.g. specific UV absorbance at 254 nm (r2 = 0.57) and spectral slope (r2 = 0.54)). Our overall findings suggest that irrigated agricultural watersheds like Willow Slough can potentially have a significant impact on mainstem DOC concentration and composition when scaled to the entire watershed of the main tributary. ?? 2008 Elsevier Ltd.

  10. The role of hydrologic regimes on dissolved organic carbon composition in an agricultural watershed

    Science.gov (United States)

    Hernes, Peter J.; Spencer, Robert G. M.; Dyda, Rachael Y.; Pellerin, Brian A.; Bachand, Philip A. M.; Bergamaschi, Brian A.

    2008-11-01

    Willow Slough, a seasonally irrigated agricultural watershed in the Sacramento River valley, California, was sampled weekly in 2006 in order to investigate seasonal concentrations and compositions of dissolved organic carbon (DOC). Average DOC concentrations nearly doubled from winter baseflow (2.75 mg L -1) to summer irrigation (5.14 mg L -1), while a concomitant increase in carbon-normalized vanillyl phenols (0.11 mg 100 mg OC -1 increasing to 0.31 mg 100 mg OC -1, on average) indicates that this additional carbon is likely vascular plant-derived. A strong linear relationship between lignin concentration and total suspended sediments ( r2 = 0.79) demonstrates that agricultural management practices that mobilize sediments will likely have a direct and significant impact on DOC composition. The original source of vascular plant-derived DOC to Willow Slough appears to be the same throughout the year as evidenced by similar syringyl to vanillyl and cinnamyl to vanillyl ratios. However, differing diagenetic pathways during winter baseflow as compared to the rest of the year are evident in acid to aldehyde ratios of both vanillyl and syringyl phenols. The chromophoric dissolved organic matter (CDOM) absorption coefficient at 350 nm showed a strong correlation with lignin concentration ( r2 = 0.83). Other CDOM measurements related to aromaticity and molecular weight also showed correlations with carbon-normalized yields (e.g. specific UV absorbance at 254 nm ( r2 = 0.57) and spectral slope ( r2 = 0.54)). Our overall findings suggest that irrigated agricultural watersheds like Willow Slough can potentially have a significant impact on mainstem DOC concentration and composition when scaled to the entire watershed of the main tributary.

  11. Spatially-explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States.

    Science.gov (United States)

    Ajaz Ahmed, Mukhtar Ahmed; Abd-Elrahman, Amr; Escobedo, Francisco J; Cropper, Wendell P; Martin, Timothy A; Timilsina, Nilesh

    2017-09-01

    Understanding ecosystem processes and the influence of regional scale drivers can provide useful information for managing forest ecosystems. Examining more local scale drivers of forest biomass and water yield can also provide insights for identifying and better understanding the effects of climate change and management on forests. We used diverse multi-scale datasets, functional models and Geographically Weighted Regression (GWR) to model ecosystem processes at the watershed scale and to interpret the influence of ecological drivers across the Southeastern United States (SE US). Aboveground forest biomass (AGB) was determined from available geospatial datasets and water yield was estimated using the Water Supply and Stress Index (WaSSI) model at the watershed level. Our geostatistical model examined the spatial variation in these relationships between ecosystem processes, climate, biophysical, and forest management variables at the watershed level across the SE US. Ecological and management drivers at the watershed level were analyzed locally to identify whether drivers contribute positively or negatively to aboveground forest biomass and water yield ecosystem processes and thus identifying potential synergies and tradeoffs across the SE US region. Although AGB and water yield drivers varied geographically across the study area, they were generally significantly influenced by climate (rainfall and temperature), land-cover factor1 (Water and barren), land-cover factor2 (wetland and forest), organic matter content high, rock depth, available water content, stand age, elevation, and LAI drivers. These drivers were positively or negatively associated with biomass or water yield which significantly contributes to ecosystem interactions or tradeoff/synergies. Our study introduced a spatially-explicit modelling framework to analyze the effect of ecosystem drivers on forest ecosystem structure, function and provision of services. This integrated model approach facilitates

  12. Watershed Adaptation Measures to Climate Change Impacts: A case of Kiha Watershed in Albertine Graben

    Science.gov (United States)

    Zizinga, A.

    2017-12-01

    Watershed Adaptation Measures to Climate Change Impacts: A case of Kiha Watershed in Albertine GrabenAlex Zizinga1, Moses Tenywa2, Majaliwa Jackson Gilbert1, 1Makerere University, Department of Environmental Sciences, O Box 7062, Kampala, Uganda 1Makerere University, Department of Agricultural Production, P.O Box 7062, Kampala, Uganda Corresponding author: azizinga@caes.mak.ac.ug AbstractThe most pressing issues local communities in Uganda are facing result from land-use and land cover changes exacerbated by climate change impacts. A key issue is the documentation of land-cover changes visible with the ongoing clearance of remaining forests, bush-lands and wetlands for expanding farmland for sugarcane production, producing charcoal and collecting firewood for local distilleries using imported molasses. Decision-makers, resource managers, farmers and practitioners must build their capacity for adaptive measures. Here we present the potential impacts of climate change on watershed hydrological processes in the River Kiha Watershed, located in Western Uganda, Lake Albert Water Management Zone, by using social learning techniques incorporating water users, local stakeholders and researchers. The research team examined different farming and economic activities within the watershed to assess their impacts on catchment water resources, namely on water quality and discharge of river Kiha. We present the impacts of locally induced climate change, which are already manifested in increasing seasonal variability of rainfall. The study aims at answering questions posed by local communities and stakeholders about climate change and its effects on livelihood and key resources, specifically water and soils within the Kiha watershed. Key words: Climate change impacts, Social Learning and Watershed Management

  13. Social Exclusion in Watershed Development: Evidence From the Indo-German Watershed Development Project in Maharashtra

    Directory of Open Access Journals (Sweden)

    Eshwer Kale

    2011-09-01

    Full Text Available The concept of social exclusion is context-specific and there is no uniform paradigm of exclusion across the world. This paper attempts to analyse exclusion of resource-poor groups in watershed development programmes in the Indian context. It aims to explore excluded community groups from the perspective of people’s equal opportunity and equal access to newly generated economic benefits in watershed development programmes. The paper also traces the determinant factors responsible for denial and exclusion of resource-poor groups and describes the detailed processes involved in their exclusion from institutional and livelihood opportunities in watershed programmes. At the same time, the paper also explores suggestions and views of resource-poor groups about their meaningful social inclusion in watershed programme. The Gadiwat Indo-German Watershed Development Project in Aurangabad district in the State of Maharashtra is studied in detail in terms of its social, economic and political realities through mix-method and multi-stakeholder approaches. The key findings of the paper are that landownership, caste, gender, membership in village institutions and/or watershed institutions or close relationship with members, as well as the limitations of the programme guidelines, are the major determinants of institutional inclusion and the extent of resulting economic benefits. The exclusion of resource-poor groups mainly takes the form of their exclusion from institutional representation. In order to promote meaningful social inclusion of resource-poor groups, there is need for a more livelihood-oriented focus and their equal representation and participation in watershed institutions.

  14. Watershed Management: Lessons from Common Property Theory

    Directory of Open Access Journals (Sweden)

    John Kerr

    2007-10-01

    Full Text Available Watershed development is an important component of rural development and natural resource management strategies in many countries. A watershed is a special kind of common pool resource: an area defined by hydrological linkages where optimal management requires coordinated use of natural resources by all users. Management is difficult because natural resources comprising the watershed system have multiple, conflicting uses, so any given management approach will spread benefits and costs unevenly among users. To address these challenges, watershed approaches have evolved from more technocratic to a greater focus on social organization and participation. However, the latter cannot necessarily be widely replicated. In addition, participatory approaches have worked better at a small scale, but hydrological relationships cover a larger scale and some projects have faced tradeoffs in choosing between the two. Optimal approaches for future efforts are not clear, and theories from common property research do not support the idea that complex watershed management can succeed everywhere. Solutions may include simplifying watershed projects, pursuing watershed projects where conditions are favorable, and making other investments elsewhere, including building the organizational capacity that can facilitate watershed management.

  15. Y Chromosome analysis of prehistoric human populations in the West Liao River Valley, Northeast China.

    Science.gov (United States)

    Cui, Yinqiu; Li, Hongjie; Ning, Chao; Zhang, Ye; Chen, Lu; Zhao, Xin; Hagelberg, Erika; Zhou, Hui

    2013-09-30

    The West Liao River valley in Northeast China is an ecologically diverse region, populated in prehistory by human populations with a wide range of cultures and modes of subsistence. To help understand the human evolutionary history of this region, we performed Y chromosome analyses on ancient human remains from archaeological sites ranging in age from 6500 to 2700 BP. 47 of the 70 individuals provided reproducible results. They were assigned into five different Y sub-haplogroups using diagnostic single nucleotide polymorphisms, namely N1 (xN1a, N1c), N1c, C/C3e, O3a (O3a3) and O3a3c. We also used 17 Y short tandem repeat loci in the non-recombining portion of the Y chromosome. There appears to be significant genetic differences between populations of the West Liao River valley and adjacent cultural complexes in the prehistoric period, and these prehistoric populations were shown to carry similar haplotypes as present-day Northeast Asians, but at markedly different frequencies. Our results suggest that the prehistoric cultural transitions were associated with immigration from the Yellow River valley and the northern steppe into the West Liao River valley. They reveal the temporal continuity of Y chromosome lineages in populations of the West Liao River valley over 5000 years, with a concurrent increase in lineage diversity caused by an influx of immigrants from other populations.

  16. Water and Poverty in Two Colombian Watersheds

    Directory of Open Access Journals (Sweden)

    Nancy Johnson

    2009-02-01

    Full Text Available Watersheds, especially in the developing world, are increasingly being managed for both environmental conservation and poverty alleviation. How complementary are these objectives? In the context of a watershed, the actual and potential linkages between land and water management and poverty are complex and likely to be very site specific and scale dependent. This study analyses the importance of watershed resources in the livelihoods of the poor in two watersheds in the Colombian Andes. Results of the participatory poverty assessment reveal significant decreases in poverty in both watersheds over the past 25 years, which was largely achieved by the diversification of livelihoods outside of agriculture. Water is an important resource for household welfare. However, opportunities for reducing poverty by increasing the quantity or quality of water available to the poor may be limited. While improved watershed management may have limited direct benefits in terms of poverty alleviation, there are important indirect linkages between watershed management and poverty, mainly through labour and service markets. The results suggest that at the level of the watershed the interests of the rich and the poor are not always in conflict over water. Sectoral as well as socio-economic differences define stakeholder groups in watershed management. The findings have implications for policymakers, planners and practitioners in various sectors involved in the implementation of integrated water resources management (IWRM.

  17. Changes in the land use in the valley of Escaba (Province of Tucuman, Argentina) and their environmental implications

    International Nuclear Information System (INIS)

    Guido, E.; Sesma, P.

    2010-01-01

    The objective of this work was to evaluate changes in the land use due to the construction of a dam and reservoir in the valley of Escaba, located southwest of the province of Tucuman ( north of Argentina ) and its implications for the atmosphere. Aerial photographs and satellite images were used for the study. The results show changes in the drainage network of rivers flowing into the center of the valley, changes in base levels and the formation of wetlands of high ecological, social and economic values. The existence of archaeological sites, some of which remain under water and crop areas that have expanded into both riverbanks stands . The enclosure of the valley caused large areas of land disappear under water, altering not only the landscape but also land use and lifestyle of the population, much of which had to be relocated to higher areas

  18. Jordan Lake Watershed Protection District

    Data.gov (United States)

    Town of Chapel Hill, North Carolina — Polygon representing the area of the Jordan Lake Watershed Protection District. The Watershed Protection District (PDF) is a sensitive area of land that drains to...

  19. A conceptual model for site-level ecology of the giant gartersnake (Thamnophis gigas) in the Sacramento Valley, California

    Science.gov (United States)

    Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.; Hansen, Eric C.; Scherer, Rick D.; Patterson, Laura C.

    2015-08-14

    Giant gartersnakes (Thamnophis gigas) comprise a species of semi-aquatic snakes precinctive to marshes in the Central Valley of California (Hansen and Brode, 1980; Rossman and others, 1996). Because more than 90 percent of their historical wetland habitat has been converted to other uses (Frayer and others, 1989; Garone, 2007), giant gartersnakes have been listed as threatened by the State of California (California Department of Fish and Game Commission , 1971) and the United States (U.S. Fish and Wildlife Service, 1993). Giant gartersnakes currently occur in a highly modified landscape, with most extant populations occurring in the rice - growing regions of the Sacramento Valley, especially near areas that historically were tule marsh habitat (Halstead and others, 2010, 2014).

  20. Conceptual PHES-system models of the Aysén watershed and fjord (Southern Chile): testing a brainstorming strategy.

    Science.gov (United States)

    Marín, Víctor H; Delgado, Luisa E; Bachmann, Pamela

    2008-09-01

    The use of brainstorming techniques for the generation of conceptual models, as the basis for the integrated management of physical-ecological-social systems (PHES-systems) is tested and discussed. The methodology is applied in the analysis of the Aysén fjord and watershed (Southern Chilean Coast). Results show that the proposed methods can be adequately used in management scenarios characterized by highly hierarchical, experts/non-experts membership.

  1. Valley-filtered edge states and quantum valley Hall effect in gated bilayer graphene.

    Science.gov (United States)

    Zhang, Xu-Long; Xu, Lei; Zhang, Jun

    2017-05-10

    Electron edge states in gated bilayer graphene in the quantum valley Hall (QVH) effect regime can carry both charge and valley currents. We show that an interlayer potential splits the zero-energy level and opens a bulk gap, yielding counter-propagating edge modes with different valleys. A rich variety of valley current states can be obtained by tuning the applied boundary potential and lead to the QVH effect, as well as to the unbalanced QVH effect. A method to individually manipulate the edge states by the boundary potentials is proposed.

  2. Quito's Urban Watersheds: Applications of Low Impact Development and Sustainable Watershed Management

    Science.gov (United States)

    Marzion, R.; Serra-Llobet, A.; Ward Simons, C.; Kondolf, G. M.

    2013-12-01

    Quito, Ecuador sits high in an Interandean valley (elevation ~2,830 meters) at the foot of Pichincha volcano. Above the city, mountain streams descend from high-altitude Andean páramo grasslands down steep slopes through quebradas (ravines) to the Machángara River. Quito's rapid urban growth, while indicative of the city's economic vitality, has led to the city's expansion along the valley floor, settlements along precarious hillslopes and ravines, disappearance of wetlands, and loss of páramo. The upper reaches of the watersheds are being rapidly settled by migrants whose land-use practices result in contamination of waters. In the densely-settled downstream reaches, urban encroachment has resulted in filling and narrowing of quebradas with garbage and other poor-quality fill. These practices have dramatically altered natural drainage patterns, reduced the flood conveyance capacity of the channels (increasing the flood risk to surrounding communities), and further deteriorated water quality. The city's stormwater, wastewater, and surface waters suffer from untreated pollutant loads, aging pipes, and sewer overflows. In response to environmental degradation of the quebradas, awareness is increasing, at both local community and municipal levels, of the importance of stream corridors for water quality, wildlife, and recreation for nearby residents. Citizen groups have organized volunteer river cleanups, and municipal agencies have committed to implementing ';green infrastructure' solutions to make Quito a healthier habitat for humans and other species. City leaders are evaluating innovative low impact development (LID) methods to help decontaminate surface waters, mitigate urban flooding, and promote sustainable water systems. Quito's municipal water agency, EPMAPS, invited faculty and students from Quito and Berkeley to collaborate with agency staff and citizen groups to analyze opportunities and to develop plans and designs for sustainable infrastructure. To

  3. Nitrogen fate and Transport in Diverse Agricultural Watersheds

    Science.gov (United States)

    Essaid, H.; McCarthy, K. A.; Baker, N. T.

    2010-12-01

    Nitrogen mass budgets have been estimated for ten agricultural watersheds located in a range of hydrologic settings in order to understand the factors controlling the fate of nitrogen applied at the surface. The watersheds, study areas of the Agricultural Chemical Sources, Transport and Fate study of the U.S. Geological Survey National Water Quality Assessment Program, are located in Indiana (IN), Iowa (IA), Maryland (MD), Nebraska (NE), Mississippi (MS) and Washington (WA). They range in size from 7 to 1254 km2, with four of the watersheds nested within larger watersheds. Surface water outflow (normalized to watershed area) ranged from 4 to 83 cm/yr. Crops planted include corn, soybean, small grains, rice, cotton, orchards and vegetables. “Surplus nitrogen” was determined for each watershed by subtracting estimates of crop uptake and volatilization from estimates of nitrogen input from atmospheric deposition, plant fixation, and fertilizer and manure applications for the period from 1987 to 2004. This surplus nitrogen is transported though the watershed via surface and subsurface flow paths, while simultaneously undergoing transformations (such as denitrification and in-stream processing) that result in less export of nitrogen from the watershed. Surface-water discharge and concentration data were used to estimate the export of nitrogen from the watersheds (groundwater outflow from the watersheds was minimal). Subtracting nitrogen export from surplus nitrogen provides an estimate of the net amount of nitrogen removal occurring during internal watershed transport. Watershed average nitrogen surplus ranged from 6 to 49 kg-N/ha. The more permeable and/or greater water flux watersheds (MD, NE, and WA) tended to have larger surplus nitrogen, possibly due to less crop uptake caused by greater leaching and runoff of nitrogen. Almost all of the surplus nitrogen in the low permeability (MS) and tile drained watersheds (IA, IN) was exported from the watershed with

  4. Soil erosion risk assessment using interviews, empirical soil erosion modeling (RUSLE) and fallout radionuclides in a volcanic crater lake watershed subjected to land use change, western Uganda

    Science.gov (United States)

    De Crop, Wannes; Ryken, Nick; Tomma Okuonzia, Judith; Van Ranst, Eric; Baert, Geert; Boeckx, Pascal; Verschuren, Dirk; Verdoodt, Ann

    2017-04-01

    Population pressure results in conversion of natural vegetation to cropland within the western Ugandan crater lake watersheds. These watersheds however are particularly prone to soil degradation and erosion because of the high rainfall intensity and steep topography. Increased soil erosion losses expose the aquatic ecosystems to excessive nutrient loading. In this study, the Katinda crater lake watershed, which is already heavily impacted by agricultural land use, was selected for an explorative study on its (top)soil characteristics - given the general lack of data on soils within these watersheds - as well as an assessment of soil erosion risks. Using group discussions and structured interviews, the local land users' perceptions on land use, soil quality, soil erosion and lake ecology were compiled. Datasets on rainfall, topsoil characteristics, slope gradient and length, and land use were collected. Subsequently a RUSLE erosion model was run. Results from this empirical erosion modeling approach were validated against soil erosion estimates based on 137Cs measurements.

  5. Sustainable smallholder poultry interventions to promote food security and social, agricultural, and ecological resilience in the Luangwa Valley, Zambia.

    Science.gov (United States)

    Dumas, Sarah E; Lungu, Luke; Mulambya, Nathan; Daka, Whiteson; McDonald, Erin; Steubing, Emily; Lewis, Tamika; Backel, Katherine; Jange, Jarra; Lucio-Martinez, Benjamin; Lewis, Dale; Travis, Alexander J

    2016-06-01

    In Zambia's Luangwa Valley, highly variable rainfall and lack of education, agricultural inputs, and market access constrain agricultural productivity, trapping smallholder farmers in chronic poverty and food insecurity. Human and animal disease (e.g. HIV and Newcastle Disease, respectively), further threaten the resilience of poor families. To cope with various shocks and stressors, many farmers employ short-term coping strategies that threaten ecosystem resilience. Community Markets for Conservation (COMACO) utilizes an agribusiness model to alleviate poverty and food insecurity through conservation farming, market development and value-added food production. COMACO promotes household, agricultural and ecological resilience along two strategic lines: improving recovery from shocks (mitigation) and reducing the risk of shock occurrence. Here we focus on two of COMACO's poultry interventions and present data showing that addressing health and management constraints within the existing village poultry system resulted in significantly improved productivity and profitability. However, once reliable productivity was achieved, farmers preferred to sell chickens rather than eat either the birds or their eggs. Sales of live birds were largely outside the community to avoid price suppression; in contrast, the sale of eggs from community-operated, semi-intensive egg production facilities was invariably within the communities. These facilities resulted in significant increases in both producer income and community consumption of eggs. This intervention therefore has the potential to improve not only producers' economic resilience, but also resilience tied to the food security and physical health of the entire community.

  6. Accounting for small scale heterogeneity in ecohydrologic watershed models

    Science.gov (United States)

    Burke, W.; Tague, C.

    2017-12-01

    Spatially distributed ecohydrologic models are inherently constrained by the spatial resolution of their smallest units, below which land and processes are assumed to be homogenous. At coarse scales, heterogeneity is often accounted for by computing store and fluxes of interest over a distribution of land cover types (or other sources of heterogeneity) within spatially explicit modeling units. However this approach ignores spatial organization and the lateral transfer of water and materials downslope. The challenge is to account both for the role of flow network topology and fine-scale heterogeneity. We present a new approach that defines two levels of spatial aggregation and that integrates spatially explicit network approach with a flexible representation of finer-scale aspatial heterogeneity. Critically, this solution does not simply increase the resolution of the smallest spatial unit, and so by comparison, results in improved computational efficiency. The approach is demonstrated by adapting Regional Hydro-Ecologic Simulation System (RHESSys), an ecohydrologic model widely used to simulate climate, land use, and land management impacts. We illustrate the utility of our approach by showing how the model can be used to better characterize forest thinning impacts on ecohydrology. Forest thinning is typically done at the scale of individual trees, and yet management responses of interest include impacts on watershed scale hydrology and on downslope riparian vegetation. Our approach allow us to characterize the variability in tree size/carbon reduction and water transfers between neighboring trees while still capturing hillslope to watershed scale effects, Our illustrative example demonstrates that accounting for these fine scale effects can substantially alter model estimates, in some cases shifting the impacts of thinning on downslope water availability from increases to decreases. We conclude by describing other use cases that may benefit from this approach

  7. A phytosociological analysis and description of wetland vegetation and ecological factors associated with locations of high mortality for the 2010-11 Rift Valley fever outbreak in South Africa.

    Science.gov (United States)

    Brand, Robert F; Rostal, Melinda K; Kemp, Alan; Anyamba, Assaf; Zwiegers, Herman; Van Huyssteen, Cornelius W; Karesh, William B; Paweska, Janusz T

    2018-01-01

    Rift Valley fever (RVF) is endemic in Africa and parts of the Middle East. It is an emerging zoonotic disease threat to veterinary and public health. Outbreaks of the disease have severe socio-economic impacts. RVF virus emergence is closely associated with specific endorheic wetlands that are utilized by the virus' mosquito vectors. Limited botanical vegetation surveys had been published with regard to RVF virus (RVFV) ecology. We report on a phytosociological classification, analysis and description of wetland vegetation and related abiotic parameters to elucidate factors possibly associated with the 2010-2011 RVFV disease outbreak in South Africa. The study sites were located in the western Free State and adjacent Northern Cape covering an area of ~40,000 km2 with wetlands associated with high RVF mortality rates in livestock. Other study sites included areas where no RVF activity was reported during the 2010-11 RVF outbreak. A total of 129 plots (30 m2) were selected where a visible difference could be seen in the wetland and upland vegetation. The Braun-Blanquet method was used for plant sampling. Classification was done using modified Two-Way Indicator Species Analysis. The vegetation analysis resulted in the identification of eight plant communities, seven sub-communities and two variants. Indirect ordination was carried out using CANOCO to investigate the relationship between species and wetland ecology. The study also identified 5 categories of wetlands including anthropogenic wetlands. Locations of reported RVF cases overlapped sites characterized by high clay-content soils and specific wetland vegetation. These findings indicate ecological and environmental parameters that represent preferred breeding habitat for RVFV competent mosquito vectors.

  8. Impacts of Land Use Change on the Natural Flow Regime: A Case Study in the Meramec River Watershed in Eastern Missouri, USA

    Science.gov (United States)

    Wu, C. L.; Knouft, J.; Chu, M.

    2017-12-01

    The natural flow regime within a watershed can be considered as the expected temporal patterns of streamflow variation in the absence of human impacts. While ecosystems have evolved to function under these conditions, the natural flow regime of most rivers has been significantly altered by human activities. Land use change, including the development of agriculture and urbanization, is a primary cause of the loss of natural flow regimes. These changes have altered discharge volume, timing, and variability, and consequently affected the structure and functioning of river ecosystems. The Meramec River watershed is located in east central Missouri and changes in land use have been the primary factor impacting flow regimes across the watershed. In this study, a watershed model, the Soil and Water Assessment Tool (SWAT), was developed to simulate a long-term time series of streamflow (1978-2014) within the watershed. Model performance was evaluated using statistical metrics and graphical technique including R-squared, Nash-Sutcliffe efficiency, cumulative error, and 1:1-ratio comparison between observed and simulated variables. The calibrated and validated SWAT model was then used to quantify the responses of the watershed when it was a forested natural landscape. An Indicator of Hydrologic Alteration (IHA) approach was applied to characterize the flow regime under the current landcover conditions as well as the simulated natural flow regime under the no land use change scenario. Differences in intra- and inter-annual ecologically relevant flow metrics were then compared using SWAT model outputs in conjunction with the IHA approach based on model outputs from current and no land use change conditions. This study provides a watershed-scale understanding of effects of land use change on a river's flow variability and provides a framework for the development of restoration plans for heavily altered watersheds.

  9. Model My Watershed - A Robust Online App to Enable Citizen Scientists to Model Watershed Hydrology and Water Quality at Regulatory-Level Standards

    Science.gov (United States)

    Daniels, M.; Kerlin, S.; Arscott, D.

    2017-12-01

    Citizen-based watershed monitoring has historically lacked scientific rigor and geographic scope due to limitation in access to watershed-level data and the high level skills and resources required to adequately model watershed dynamics. Public access to watershed information is currently routed through a variety of governmental data portals and often requires advanced geospatial skills to collect and present in useable forms. At the same time, tremendous financial resources are being invested in watershed restoration and management efforts, and often these resources pass through local stakeholder groups such as conservation NGO, watershed interest groups, and local municipalities without extensive hydrologic knowledge or access to sophisticated modeling resources. Even governmental agencies struggle to understand how to best steer or prioritize restoration investments. A new app, Model My Watershed, was built to improve access to watershed data and modeling capabilities in a fast, accessible, free web-app format. Working across the contiguous United States, the Model My Watershed app provides land cover, soils, aerial imagery and relief, watershed delineation, and stream network delineation. Users can model watersheds or areas of interest and create management scenarios to evaluate implementation of land cover changes and best management practice implementation with both hydrologic and water quality outputs that meet TMDL regulatory standards.

  10. Optimization of Land Use Pattern Reduces Surface Runoff and Sediment Loss in a Hilly-Gully Watershed at the Loess Plateau, China

    Directory of Open Access Journals (Sweden)

    Han Yini

    2016-04-01

    Full Text Available Aim of study: The aim is to find a way increasing gain yield and lessen area of farmland, and then increasing vegetation cover, improving environment and alleviating soil erosion.Area of study: The Hilly-Gully region at the loess plateau of China.Material and methods: In this study, an adjusted and optimized land use pattern was developed in Luoyugou watershed in the Yellow River valley based on the gradient distribution of land use types, and its effect on water and sediment transport was simulated using the SWAT model and GIS, with remote sensing images, land use maps and hydrologic data.Main results: The results indicate: average simulated runoff and sediment for the period 1986-2000 under conditions of the three land use pattern (2011, 2008 and optimized land use reduced by 0.002-0.013 m3/s (2.7-17.6% and 0.66 million tons, respectively. The runoff and sediment data obtained were compared with observed data from 2008, which showed that runoff and sediment production would be reduced by 467625 m3 and 22754 tons, respectively.Research highlights: The adjustment of the land use pattern in comprehensive consideration of vegetation and geography have a positive effect on water and sediment transport which will be important for decision making and water resources management, and provides a reference for future environmental management and ecological construction in the loess plateau Hilly-Gully region. 

  11. Optimization of Land Use Pattern Reduces Surface Runoff and Sediment Loss in a Hilly-Gully Watershed at the Loess Plateau, China

    Energy Technology Data Exchange (ETDEWEB)

    Yini, H.; Jianzhi, N.; Zhongbao, X.; Wei, Z.; Tielin, Z.; Xilin, W.; Yousong, Z.

    2016-07-01

    Aim of study: The aim is to find a way increasing gain yield and lessen area of farmland, and then increasing vegetation cover, improving environment and alleviating soil erosion. Area of study: The Hilly-Gully region at the loess plateau of China. Material and methods: In this study, an adjusted and optimized land use pattern was developed in Luoyugou watershed in the Yellow River valley based on the gradient distribution of land use types, and its effect on water and sediment transport was simulated using the SWAT model and GIS, with remote sensing images, land use maps and hydrologic data. Main results: The results indicate: average simulated runoff and sediment for the period 1986-2000 under conditions of the three land use pattern (2011, 2008 and optimized land use) reduced by 0.002-0.013 m3/s (2.7-17.6%) and 0.66 million tons, respectively. The runoff and sediment data obtained were compared with observed data from 2008, which showed that runoff and sediment production would be reduced by 467625 m3 and 22754 tons, respectively. Research highlights: The adjustment of the land use pattern in comprehensive consideration of vegetation and geography have a positive effect on water and sediment transport which will be important for decision making and water resources management, and provides a reference for future environmental management and ecological construction in the loess plateau Hilly-Gully region. (Author)

  12. Integrating local research watersheds into hydrologic education: Lessons from the Dry Creek Experimental Watershed

    Science.gov (United States)

    McNamara, J. P.; Aishlin, P. S.; Flores, A. N.; Benner, S. G.; Marshall, H. P.; Pierce, J. L.

    2014-12-01

    While a proliferation of instrumented research watersheds and new data sharing technologies has transformed hydrologic research in recent decades, similar advances have not been realized in hydrologic education. Long-standing problems in hydrologic education include discontinuity of hydrologic topics from introductory to advanced courses, inconsistency of content across academic departments, and difficulties in development of laboratory and homework assignments utilizing large time series and spatial data sets. Hydrologic problems are typically not amenable to "back-of-the-chapter" examples. Local, long-term research watersheds offer solutions to these problems. Here, we describe our integration of research and monitoring programs in the Dry Creek Experimental Watershed into undergraduate and graduate hydrology programs at Boise State University. We developed a suite of watershed-based exercises into courses and curriculums using real, tangible datasets from the watershed to teach concepts not amenable to traditional textbook and lecture methods. The aggregation of exercises throughout a course or degree allows for scaffolding of concepts with progressive exposure of advanced concepts throughout a course or degree. The need for exercises of this type is growing as traditional lecture-based classes (passive learning from a local authoritative source) are being replaced with active learning courses that integrate many sources of information through situational factors.

  13. Assessing potential effects of changes in water use with a numerical groundwater-flow model of Carson Valley, Douglas County, Nevada, and Alpine County, California

    Science.gov (United States)

    Yager, Richard M.; Maurer, Douglas K.; Mayers, C.J.

    2012-01-01

    Rapid growth and development within Carson Valley in Douglas County, Nevada, and Alpine County, California, has caused concern over the continued availability of groundwater, and whether the increased municipal demand could either impact the availability of water or result in decreased flow in the Carson River. Annual pumpage of groundwater has increased from less than 10,000 acre feet per year (acre-ft/yr) in the 1970s to about 31,000 acre-ft/yr in 2004, with most of the water used in agriculture. Municipal use of groundwater totaled about 10,000 acre-feet in 2000. In comparison, average streamflow entering the valley from 1940 to 2006 was 344,100 acre-ft/yr, while average flow exiting the valley was 297,400 acre-ft/yr. Carson Valley is underlain by semi-consolidated Tertiary sediments that are exposed on the eastern side and dip westward. Quaternary fluvial and alluvial deposits overlie the Tertiary sediments in the center and western side of the valley. The hydrology of Carson Valley is dominated by the Carson River, which supplies irrigation water for about 39,000 acres of farmland and maintains the water table less than 5 feet (ft) beneath much of the valley floor. Perennial and ephemeral watersheds drain the Carson Range and the Pine Nut Mountains, and mountain-front recharge to the groundwater system from these watersheds is estimated to average 36,000 acre-ft/yr. Groundwater in Carson Valley flows toward the Carson River and north toward the outlet of the Carson Valley. An upward hydraulic gradient exists over much of the valley, and artesian wells flow at land surface in some areas. Water levels declined as much as 15 ft since 1980 in some areas on the eastern side of the valley. Median estimated transmissivities of Quaternary alluvial-fan and fluvial sediments, and Tertiary sediments are 316; 3,120; and 110 feet squared per day (ft2/d), respectively, with larger transmissivity values in the central part of the valley and smaller values near the valley

  14. Asotin Creek Model Watershed Plan

    Energy Technology Data Exchange (ETDEWEB)

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  15. Simulation of the water balance of boreal watersheds of northeastern British Columbia, Canada using MIKE SHE, an integrated hydrological model

    Science.gov (United States)

    Abadzadesahraei, S.; Déry, S.; Rex, J. F.

    2016-12-01

    Northeastern British Columbia (BC) is undergoing rapid development for oil and gas extraction, largely depending on subsurface hydraulic fracturing (fracking), which relies on available freshwater. Even though this industrial activity has made substantial contributions to regional and provincial economies, it is important to ensure that sufficient and sustainable water supplies are available for all those dependent on the resource, including ecological systems. Further, BC statistics predict that the northeastern region's population will increase by 30% over the next 25 years, thereby amplifying the demands of domestic and industrial water usage. Hence, given the increasing demands for surface water in the complex wetlands of northeastern BC, obtaining accurate long-term water balance information is of vital importance. Thus, this study aims to simulate the 1979-2014 water balance at two boreal watersheds using the MIKE SHE model. More specifically, this research intends to quantify the historical, and regional, water budgets and their associated hydrological processes at two boreal watersheds—the Coles Lake and Tsea Lake watersheds—in northeastern BC. The development of coupled groundwater and surface water model of these watersheds are discussed. The model setup, calibration process, and results are presented, focusing on the water balance of boreal watersheds. Hydrological components within these watersheds are quantified through a combination of intensive fieldwork, observational data, analysis and numerical modeling. The output from the model provides important information for decision makers to manage water resources in northeastern BC. Keywords: Northeastern BC; boreal watershed; water balance; MIKE SHE hydrological model.

  16. Valley development on Hawaiian volcanoes

    International Nuclear Information System (INIS)

    Baker, V.R.; Gulick, V.C.

    1987-01-01

    Work in progress on Hawaiian drainage evolution indicates an important potential for understanding drainage development on Mars. Similar to Mars, the Hawaiian valleys were initiated by surface runoff, subsequently enlarged by groundwater sapping, and eventually stabilized as aquifers were depleted. Quantitative geomorphic measurements were used to evaluate the following factors in Hawaiian drainage evolution: climate, stream processes, and time. In comparing regions of similar climate, drainage density shows a general increase with the age of the volcani island. With age and climate held constant, sapping dominated valleys, in contrast to runoff-dominated valleys, display the following: lower drainage densities, higher ratios of valley floor width to valley height, and more positive profile concavities. Studies of stream junction angles indicate increasing junction angles with time on the drier leeward sides of the major islands. The quantitative geomorphic studies and earlier field work yielded important insights for Martian geomorphology. The importance of ash mantling in controlling infiltration on Hawaii also seems to apply to Mars. The Hawaiian valley also have implications for the valley networks of Martian heavily cratered terrains

  17. Prioritizing Road Treatments using the Geomorphic Roads Analysis and Inventory Package (GRAIP) to Improve Watershed Conditions in the Wall Creek Watershed, Oregon

    Science.gov (United States)

    Day, K. T.; Black, T.; Clifton, C.; Luce, C.; McCune, S.; Nelson, N.

    2010-12-01

    Wall Creek, tributary to the North Fork John Day River in eastern Oregon, was identified as a priority watershed by the Umatilla National Forest for restoration in 2002. Most streams in this 518 km2 multi-ownership watershed are designated critical habitat for threatened steelhead. Eight streams are listed on the Oregon 303(d) list for elevated temperatures and excess sedimentation. Over 1000 km of public and private roads in the watershed present a major source of potential water quality and habitat impairment. We conducted a watershed-wide inventory of roads using the Geomorphic Roads Analysis and Inventory Package (GRAIP) in 2009 to quantify sediment contributions from roads to streams. GRAIP is a field and GIS-based model developed by the Forest Service Rocky Mountain Research Station and Utah State University that georeferences and quantifies road hydrologic connectivity, sediment production and delivery, mass wasting, and risk of diversion and plugging at stream crossings. Field survey and modeling produced data for 6,473 drainage locations on 726 km of road (most of the publically owned roads) quantifying the location and mass of sediment produced and delivered to streams. Findings indicate a relatively small subset of roads deliver the majority of road-produced fine sediment; 12 percent of the road length delivers 90 percent of the total fine sediment to streams. Overall fine sediment production in the watershed is relatively low (with an estimated background erosion rate of 518,000 kg/yr for the watershed) and sediment produced and delivered from the road system appears to be a modest addition. Road surfaces produce approximately 81,455 kg of fine sediment per year, with 20,976 kg/year delivered to the stream network. Fifty-nine gullies were observed, 41 of which received road runoff. Sixteen road-related landslides were also observed. The excavated volume of these features totals 3,922,000 kg which is equivalent to 175 years of fine sediment delivery at

  18. Watershed condition [Chapter 4

    Science.gov (United States)

    Daniel G. Neary; Jonathan W. Long; Malchus B. Baker

    2012-01-01

    Managers of the Prescott National Forest are obliged to evaluate the conditions of watersheds under their jurisdiction in order to guide informed decisions concerning grazing allotments, forest and woodland management, restoration treatments, and other management initiatives. Watershed condition has been delineated by contrasts between “good” and “poor” conditions (...

  19. Water stress projections for the northeastern and Midwestern United States in 2060: anthropogenic and ecological consequences

    Science.gov (United States)

    Brian G. Tavernia; Mark D. Nelson; Peter Caldwell; Ge Sun

    2013-01-01

    Future climate and land-use changes and growing human populations may reduce the abundance of water resources relative to anthropogenic and ecological needs in the Northeast and Midwest (U.S.). We used output from WaSSI, a water accounting model, to assess potential changes between 2010 and 2060 in (1) anthropogenic water stress for watersheds throughout the Northeast...

  20. Watershed Education for Broadcast Meteorologists

    Science.gov (United States)

    Lamos, J. P.; Sliter, D.; Espinoza, S.; Spangler, T. C.

    2006-12-01

    The National Environmental Education and Training Organization (NEETF) published a report in 2005 that summarized the findings of ten years of NEETF and Roper Research. The report stated, "Our years of data from Roper surveys show a persistent pattern of environmental ignorance even among the most educated and influential members of society." Market research has also shown that 80% of television viewers list the weather as the primary reason for watching the local news. Broadcast meteorologists, with a broader understanding of environmental and related sciences have an opportunity to use their weathercasts to inform the public about the environment and the factors that influence environmental health. As "station scientists," broadcast meteorologists can use the weather, and people's connection to it, to broaden their understanding of the environment they live in. Weather and watershed conditions associated with flooding and drought have major human and environmental impacts. Increasing the awareness of the general public about basic aspects of the hydrologic landscape can be an important part of mitigating the adverse effects of too much or too little precipitation, and of protecting the environment as well. The concept of a watershed as a person's natural neighborhood is a very important one for understanding hydrologic and environmental issues. Everyone lives in a watershed, and the health of a watershed is the result of the interplay between weather and human activity. This paper describes an online course to give broadcast meteorologists a basic understanding of watersheds and how watersheds are impacted by weather. It discusses how to convey watershed science to a media- savvy audience as well as how to model the communication of watershed and hydrologic concepts to the public. The course uses a narrative, story-like style to present its content. It is organized into six short units of instruction, each approximately 20 minutes in duration. Each unit is

  1. Evapotranspiration sensitivity to air temperature across a snow-influenced watershed: Space-for-time substitution versus integrated watershed modeling

    Science.gov (United States)

    Jepsen, S. M.; Harmon, T. C.; Ficklin, D. L.; Molotch, N. P.; Guan, B.

    2018-01-01

    Changes in long-term, montane actual evapotranspiration (ET) in response to climate change could impact future water supplies and forest species composition. For scenarios of atmospheric warming, predicted changes in long-term ET tend to differ between studies using space-for-time substitution (STS) models and integrated watershed models, and the influence of spatially varying factors on these differences is unclear. To examine this, we compared warming-induced (+2 to +6 °C) changes in ET simulated by an STS model and an integrated watershed model across zones of elevation, substrate available water capacity, and slope in the snow-influenced upper San Joaquin River watershed, Sierra Nevada, USA. We used the Soil Water and Assessment Tool (SWAT) for the watershed modeling and a Budyko-type relationship for the STS modeling. Spatially averaged increases in ET from the STS model increasingly surpassed those from the SWAT model in the higher elevation zones of the watershed, resulting in 2.3-2.6 times greater values from the STS model at the watershed scale. In sparse, deep colluvium or glacial soils on gentle slopes, the SWAT model produced ET increases exceeding those from the STS model. However, watershed areas associated with these conditions were too localized for SWAT to produce spatially averaged ET-gains comparable to the STS model. The SWAT model results nevertheless demonstrate that such soils on high-elevation, gentle slopes will form ET "hot spots" exhibiting disproportionately large increases in ET, and concomitant reductions in runoff yield, in response to warming. Predicted ET responses to warming from STS models and integrated watershed models may, in general, substantially differ (e.g., factor of 2-3) for snow-influenced watersheds exhibiting an elevational gradient in substrate water holding capacity and slope. Long-term water supplies in these settings may therefore be more resilient to warming than STS model predictions would suggest.

  2. Effects of surface coal mining and reclamation on the geohydrology of six small watersheds in west-central Indiana. Chapter B

    International Nuclear Information System (INIS)

    Martin, J.D.; Duwelius, R.F.; Crawford, C.G.

    1990-01-01

    Coal has been and will continue to be a major source of energy in the United States for the foreseeable future. Surface mining is presently the most efficient method of extracting coal. The mining practice, however, usually has a detrimental effect on the environment by altering topography and ecologic systems. Surface coal mining also can degrade surface- and ground-water quality and quantity. The U.S. Geological Survey began a study in 1979 to identify changes in the quantity of surface- and ground-water resources caused by surface coal mining in Indiana. As part of the study, six small watersheds in west-central Indiana were instrumented for the collection of hydrologic and meteorologic data. The Water-Supply Paper comprises two reports resulting from the investigation. The physical environment and coal mining history of west-central Indiana and the six small watersheds selected for intensive study are described in chapter A. The surface- and ground-water systems of each of the small watersheds and the hydrologic effects of coal mining and reclamation are described in chapter B

  3. Effect of Nutrient Management Planning on Crop Yield, Nitrate Leaching and Sediment Loading in Thomas Brook Watershed

    Science.gov (United States)

    Amon-Armah, Frederick; Yiridoe, Emmanuel K.; Ahmad, Nafees H. M.; Hebb, Dale; Jamieson, Rob; Burton, David; Madani, Ali

    2013-11-01

    Government priorities on provincial Nutrient Management Planning (NMP) programs include improving the program effectiveness for environmental quality protection, and promoting more widespread adoption. Understanding the effect of NMP on both crop yield and key water-quality parameters in agricultural watersheds requires a comprehensive evaluation that takes into consideration important NMP attributes and location-specific farming conditions. This study applied the Soil and Water Assessment Tool (SWAT) to investigate the effects of crop and rotation sequence, tillage type, and nutrient N application rate on crop yield and the associated groundwater leaching and sediment loss. The SWAT model was applied to the Thomas Brook Watershed, located in the most intensively managed agricultural region of Nova Scotia, Canada. Cropping systems evaluated included seven fertilizer application rates and two tillage systems (i.e., conventional tillage and no-till). The analysis reflected cropping systems commonly managed by farmers in the Annapolis Valley region, including grain corn-based and potato-based cropping systems, and a vegetable-horticulture system. ANOVA models were developed and used to assess the effects of crop management choices on crop yield and two water-quality parameters (i.e., leaching and sediment loading). Results suggest that existing recommended N-fertilizer rate can be reduced by 10-25 %, for grain crop production, to significantly lower leaching ( P > 0.05) while optimizing the crop yield. The analysis identified the nutrient N rates in combination with specific crops and rotation systems that can be used to manage leaching while balancing impacts on crop yields within the watershed.

  4. Evaluating the Effectiveness of Agricultural Management Practices under Climate Change for Water Quality Improvement in a Rural Agricultural Watershed of Oklahoma, USA

    Science.gov (United States)

    Rasoulzadeh Gharibdousti, S.; Kharel, G.; Stoecker, A.; Storm, D.

    2016-12-01

    FCR watershed. The model results provide precise information for stakeholders to prioritize ecologically sound and economically feasible BMPs that are capable of mitigating future climate change impacts at the watershed scale.

  5. Over-winter ecology of Oncorhynchus nerka in the Sawtooth Valley Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Steinhart, G.B.; Wurtsbaugh, W.A.

    1996-05-01

    Included in this section of the report on limnology of Lakes in the Snake River Plain are descriptions of winter limnological conditions and kokanee growth characteristics from 1993 to 1995. The winter is usually a very harsh period for animals, and little is know about the over-winter ecology os sockeye salmon. They are active a temperatures below 4 F. The chapter discusses methods and results. 14 figs, 4 tabs.

  6. Over-winter ecology of Oncorhynchus nerka in the Sawtooth Valley Lakes

    International Nuclear Information System (INIS)

    Steinhart, G.B.; Wurtsbaugh, W.A.

    1996-01-01

    Included in this section of the report on limnology of Lakes in the Snake River Plain are descriptions of winter limnological conditions and kokanee growth characteristics from 1993 to 1995. The winter is usually a very harsh period for animals, and little is know about the over-winter ecology os sockeye salmon. They are active a temperatures below 4 F. The chapter discusses methods and results. 14 figs, 4 tabs

  7. Watersheds in disordered media

    Directory of Open Access Journals (Sweden)

    José S. Andrade Jr.

    2015-02-01

    Full Text Available What is the best way to divide a rugged landscape? Since ancient times, watershedsseparating adjacent water systems that flow, for example, toward different seas, have beenused to delimit boundaries. Interestingly, serious and even tense border disputes betweencountries have relied on the subtle geometrical properties of these tortuous lines. For instance,slight and even anthropogenic modifications of landscapes can produce large changes in awatershed, and the effects can be highly nonlocal. Although the watershed concept arisesnaturally in geomorphology, where it plays a fundamental role in water management, landslide,and flood prevention, it also has important applications in seemingly unrelated fields suchas image processing and medicine. Despite the far-reaching consequences of the scalingproperties on watershed-related hydrological and political issues, it was only recently that a moreprofound and revealing connection has been disclosed between the concept of watershed andstatistical physics of disordered systems. This review initially surveys the origin and definition of awatershed line in a geomorphological framework to subsequently introduce its basic geometricaland physical properties. Results on statistical properties of watersheds obtained from artificialmodel landscapes generated with long-range correlations are presented and shown to be ingood qualitative and quantitative agreement with real landscapes.

  8. Vegetation dynamic characteristics and its responses to climate change in Jinghe River watershed of Loess Plateau, China

    Science.gov (United States)

    Chang, F.; Liu, W.; Zhou, H.; Ning, T.; Wang, Y.

    2017-12-01

    The Jinghe River is a second-order tributary of the Yellow River, and located in the middle-south part of the Loess Plateau. The watershed area is 45421km², with the mean annual precipitation (P) being about 508mm and aridity index 2.09. For a long time, soil and water loss in this watershed is severe, resulting in very fragile ecological environment. The GIMMS-normalized vegetation index NDVI is used to reflect condition of vegetation cover, and P and Penman potential evapotranspiration (ET) to represent climate water and heat conditions. The annual actual ET is estimated as the difference between P and runoff (ignoring the change of watershed water storage during each hydrological year, May to April of the following year). These concepts were introduced to discuss the dynamic characteristics of vegetation cover and its response to climate change. Results showed that the mean annual NDVI value was 0.51, showing a stable increasing trend from 2000 with an annual increasing rate of 8.7×10¯³. This result is consistent with the implementation of the project that converts farmland to forests and grassland and has achieved remarkable success in the Loess Plateau since 1999. It also indicates that the positive impact of human activity has been strengthened under the background of climate change. From 1982 to 2012, the annual actual ET was 464mm, accounting for 93.6% of annual P over the same period. The NDVI value of main growing season (5-9 months) is significantly correlated with annual P and annual humid index (ratio of annual P to annual potential ET). Vegetation water consumption is the main part of land surface ET, and the relationship between annual actual ET and NDVI value over the same period is also significant. The NDVI value, P and potential ET variation varied substantially within the Jinghe River watershed, and their relationships in different regions at an inter-annual scale are different. Currently, we are investigating the influence of the changes in

  9. Payments for watershed services: opportunities and realities

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Ivan

    2007-08-15

    Many nations have found that regulatory approaches to land and water management have limited impact. An alternative is to create incentives for sound management - under mechanisms known as payments for ecosystem services. It is a simple idea: people who look after ecosystems that benefit others should be recognised and rewarded. In the case of watersheds, downstream beneficiaries of wise upstream land and water use should compensate the stewards. To be effective these 'payments for watershed services' must cover the cost of watershed management. In developing countries, they might also aid local development and reduce poverty. But new research shows that the problems in watersheds are complex and not easily solved. Payments for watershed services do not guarantee poverty reduction and cannot replace the best aspects of regulation.

  10. Spatial Heterogeneity of Habitat Suitability for Rift Valley Fever Occurrence in Tanzania: An Ecological Niche Modelling Approach

    Science.gov (United States)

    Sindato, Calvin; Stevens, Kim B.; Karimuribo, Esron D.; Mboera, Leonard E. G.; Paweska, Janusz T.; Pfeiffer, Dirk U.

    2016-01-01

    Background Despite the long history of Rift Valley fever (RVF) in Tanzania, extent of its suitable habitat in the country remains unclear. In this study we investigated potential effects of temperature, precipitation, elevation, soil type, livestock density, rainfall pattern, proximity to wild animals, protected areas and forest on the habitat suitability for RVF occurrence in Tanzania. Materials and Methods Presence-only records of 193 RVF outbreak locations from 1930 to 2007 together with potential predictor variables were used to model and map the suitable habitats for RVF occurrence using ecological niche modelling. Ground-truthing of the model outputs was conducted by comparing the levels of RVF virus specific antibodies in cattle, sheep and goats sampled from locations in Tanzania that presented different predicted habitat suitability values. Principal Findings Habitat suitability values for RVF occurrence were higher in the northern and central-eastern regions of Tanzania than the rest of the regions in the country. Soil type and precipitation of the wettest quarter contributed equally to habitat suitability (32.4% each), followed by livestock density (25.9%) and rainfall pattern (9.3%). Ground-truthing of model outputs revealed that the odds of an animal being seropositive for RVFV when sampled from areas predicted to be most suitable for RVF occurrence were twice the odds of an animal sampled from areas least suitable for RVF occurrence (95% CI: 1.43, 2.76, p < 0.001). Conclusion/Significance The regions in the northern and central-eastern Tanzania were more suitable for RVF occurrence than the rest of the regions in the country. The modelled suitable habitat is characterised by impermeable soils, moderate precipitation in the wettest quarter, high livestock density and a bimodal rainfall pattern. The findings of this study should provide guidance for the design of appropriate RVF surveillance, prevention and control strategies which target areas with

  11. Watershed Scale Impacts of Stormwater Green Infrastructure ...

    Science.gov (United States)

    Despite the increasing use of urban stormwater green infrastructure (SGI), including detention ponds and rain gardens, few studies have quantified the cumulative effects of multiple SGI projects on hydrology and water quality at the watershed scale. To assess the effects of SGI, Baltimore County, MD, Montgomery County, MD, and Washington, DC, were selected based on the availability of data on SGI, water quality, and stream flow. The watershed scale impact of SGI was evaluated by assessing how increased spatial density of SGI correlates with stream hydrology and nitrogen exports over space and time. The most common SGI types were detention ponds (58%), followed by marshes (12%), sand filters (9%), wet ponds (7%), infiltration trenches (4%), and rain gardens (2%). When controlling for watersheds size and percent impervious surface cover, watersheds with greater amounts of SGI (>10% SGI) have 44% lower peak runoff, 26% less frequent runoff events, and 26% less variable runoff than watersheds with lower SGI. Watersheds with more SGI also show 44% less NO3− and 48% less total nitrogen exports compared to watersheds with minimal SGI. There was no significant reduction in combined sewer overflows in watersheds with greater SGI. Based on specific SGI types, infiltration trenches (R2 = 0.35) showed the strongest correlation with hydrologic metrics, likely due to their ability to attenuate flow, while bioretention (R2 = 0.19) and wet ponds (R2 = 0.12) showed stronger

  12. Estimates of water and solute release from a coal waste rock dump in the Elk Valley, British Columbia, Canada.

    Science.gov (United States)

    Villeneuve, S A; Barbour, S L; Hendry, M J; Carey, S K

    2017-12-01

    Long term (1999 to 2014) flow and water quality data from a rock drain located at the base of a coal waste rock dump constructed in the Elk Valley, British Columbia was used to characterize the release of three solutes (NO 3 - , Cl - and SO 4 2- ) from the dump and obtain whole dump estimates of net percolation (NP). The concentrations of dump derived solutes in the rock drain water were diluted by snowmelt waters from the adjacent natural watershed during the spring freshet and reached a maximum concentration during the winter baseflow period. Historical peak baseflow concentrations of conservative ions (NO 3 - and Cl - ) increased until 2006/07 after which they decreased. This decrease was attributed to completion of the flushing of the first pore volume of water stored within the dump. The baseflow SO 4 2- concentrations increased proportionally with NO 3 - and Cl - to 2007, but then continued to slowly increase as NO 3 - and Cl - concentrations decreased. This was attributed to ongoing production of SO 4 2- due to oxidation of sulfide minerals within the dump. Based on partitioning of the annual volume of water discharged from the rock drain to waste rock effluent (NP) and water entering the rock drain laterally from the natural watershed, the mean NP values were estimated to be 446±50mm/a (area normalized net percolation/year) for the dump and 172±71mm/a for the natural watershed. The difference was attributed to greater rates of recharge in the dump from summer precipitation compared to the natural watershed where rainfall interception and enhanced evapotranspiration will increase water losses. These estimates included water moving through subsurface pathways. However, given the limitations in quantifying these flows the estimated NP rates for both the natural watershed and the waste rock dump are considered to be low, and could be much higher (e.g. ~450mm/a and ~800mm/a). Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Application of the ReNuMa model in the Sha He river watershed: tools for watershed environmental management.

    Science.gov (United States)

    Sha, Jian; Liu, Min; Wang, Dong; Swaney, Dennis P; Wang, Yuqiu

    2013-07-30

    Models and related analytical methods are critical tools for use in modern watershed management. A modeling approach for quantifying the source apportionment of dissolved nitrogen (DN) and associated tools for examining the sensitivity and uncertainty of the model estimates were assessed for the Sha He River (SHR) watershed in China. The Regional Nutrient Management model (ReNuMa) was used to infer the primary sources of DN in the SHR watershed. This model is based on the Generalized Watershed Loading Functions (GWLF) and the Net Anthropogenic Nutrient Input (NANI) framework, modified to improve the characterization of subsurface hydrology and septic system loads. Hydrochemical processes of the SHR watershed, including streamflow, DN load fluxes, and corresponding DN concentration responses, were simulated following calibrations against observations of streamflow and DN fluxes. Uncertainty analyses were conducted with a Monte Carlo analysis to vary model parameters for assessing the associated variations in model outputs. The model performed accurately at the watershed scale and provided estimates of monthly streamflows and nutrient loads as well as DN source apportionments. The simulations identified the dominant contribution of agricultural land use and significant monthly variations. These results provide valuable support for science-based watershed management decisions and indicate the utility of ReNuMa for such applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. A NEW MULTI-SPECTRAL THRESHOLD NORMALIZED DIFFERENCE WATER INDEX (MST-NDWI WATER EXTRACTION METHOD – A CASE STUDY IN YANHE WATERSHED

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2018-05-01

    Full Text Available Accurate remote sensing water extraction is one of the primary tasks of watershed ecological environment study. Since the Yanhe water system has typical characteristics of a small water volume and narrow river channel, which leads to the difficulty for conventional water extraction methods such as Normalized Difference Water Index (NDWI. A new Multi-Spectral Threshold segmentation of the NDWI (MST-NDWI water extraction method is proposed to achieve the accurate water extraction in Yanhe watershed. In the MST-NDWI method, the spectral characteristics of water bodies and typical backgrounds on the Landsat/TM images have been evaluated in Yanhe watershed. The multi-spectral thresholds (TM1, TM4, TM5 based on maximum-likelihood have been utilized before NDWI water extraction to realize segmentation for a division of built-up lands and small linear rivers. With the proposed method, a water map is extracted from the Landsat/TM images in 2010 in China. An accuracy assessment is conducted to compare the proposed method with the conventional water indexes such as NDWI, Modified NDWI (MNDWI, Enhanced Water Index (EWI, and Automated Water Extraction Index (AWEI. The result shows that the MST-NDWI method generates better water extraction accuracy in Yanhe watershed and can effectively diminish the confusing background objects compared to the conventional water indexes. The MST-NDWI method integrates NDWI and Multi-Spectral Threshold segmentation algorithms, with richer valuable information and remarkable results in accurate water extraction in Yanhe watershed.

  15. Analysis of Mining-induced Valley Closure Movements

    Science.gov (United States)

    Zhang, C.; Mitra, R.; Oh, J.; Hebblewhite, B.

    2016-05-01

    Valley closure movements have been observed for decades in Australia and overseas when underground mining occurred beneath or in close proximity to valleys and other forms of irregular topographies. Valley closure is defined as the inward movements of the valley sides towards the valley centreline. Due to the complexity of the local geology and the interplay between several geological, topographical and mining factors, the underlying mechanisms that actually cause this behaviour are not completely understood. A comprehensive programme of numerical modelling investigations has been carried out to further evaluate and quantify the influence of a number of these mining and geological factors and their inter-relationships. The factors investigated in this paper include longwall positional factors, horizontal stress, panel width, depth of cover and geological structures around the valley. It is found that mining in a series passing beneath the valley dramatically increases valley closure, and mining parallel to valley induces much more closure than other mining orientations. The redistribution of horizontal stress and influence of mining activity have also been recognised as important factors promoting valley closure, and the effect of geological structure around the valley is found to be relatively small. This paper provides further insight into both the valley closure mechanisms and how these mechanisms should be considered in valley closure prediction models.

  16. Simulation of groundwater conditions and streamflow depletion to evaluate water availability in a Freeport, Maine, watershed

    Science.gov (United States)

    Nielsen, Martha G.; Locke, Daniel B.

    2012-01-01

    In order to evaluate water availability in the State of Maine, the U.S. Geological Survey (USGS) and the Maine Geological Survey began a cooperative investigation to provide the first rigorous evaluation of watersheds deemed "at risk" because of the combination of instream flow requirements and proportionally large water withdrawals. The study area for this investigation includes the Harvey and Merrill Brook watersheds and the Freeport aquifer in the towns of Freeport, Pownal, and Yarmouth, Maine. A numerical groundwater- flow model was used to evaluate groundwater withdrawals, groundwater-surface-water interactions, and the effect of water-management practices on streamflow. The water budget illustrates the effect that groundwater withdrawals have on streamflow and the movement of water within the system. Streamflow measurements were made following standard USGS techniques, from May through September 2009 at one site in the Merrill Brook watershed and four sites in the Harvey Brook watershed. A record-extension technique was applied to estimate long-term monthly streamflows at each of the five sites. The conceptual model of the groundwater system consists of a deep, confined aquifer (the Freeport aquifer) in a buried valley that trends through the middle of the study area, covered by a discontinuous confining unit, and topped by a thin upper saturated zone that is a mixture of sandy units, till, and weathered clay. Harvey and Merrill Brooks flow southward through the study area, and receive groundwater discharge from the upper saturated zone and from the deep aquifer through previously unknown discontinuities in the confining unit. The Freeport aquifer gets most of its recharge from local seepage around the edges of the confining unit, the remainder is received as inflow from the north within the buried valley. Groundwater withdrawals from the Freeport aquifer in the study area were obtained from the local water utility and estimated for other categories. Overall

  17. Nitrogen Saturation in Highly Retentive Watersheds?

    Science.gov (United States)

    Daley, M. L.; McDowell, W. H.

    2009-12-01

    Watershed managers are often concerned with minimizing the amount of N delivered to N-limited estuaries and coastal zones. A major concern is that watersheds might reach N saturation, in which N delivered to coastal zones increases due to declines in the efficiency of N retention despite constant or even reduced N inputs. We have quantified long-term changes in N inputs (atmospheric deposition, imported food and agricultural fertilizers), outputs (N concentration and export) and retention in the urbanizing Lamprey River watershed in coastal NH. Overall, the Lamprey watershed is 70% forested, receives about 13.5 kg N/ha/yr and has a high rate of annual N retention (85%). Atmospheric deposition (8.7 kg/ha/yr) is the largest N input to the watershed. Of the 2.2 kg N/ha/yr exported in the Lamprey River, dissolved organic N (DON) is the dominant form (50% of total) and it varies spatially throughout the watershed with wetland cover. Nitrate accounts for 30% of the N exported, shows a statistically significant increase from 1999 to 2009, and its spatial variability in both concentration and export is related to human population density. In sub-basins throughout the Lamprey, inorganic N retention is high (85-99%), but the efficiency of N retention declines sharply with increased human population density and associated anthropogenic N inputs. N assimilation in the vegetation, denitrification to the atmosphere and storage in the groundwater pool could all be important contributors to the current high rates of N retention. The temporal and spatial patterns that we have observed in nitrate concentration and export are driven by increases in N inputs and impervious surfaces over time, but the declining efficiency of N retention suggests that the watershed may also be reaching N saturation. The downstream receiving estuary, Great Bay, already suffers from low dissolved oxygen levels and eelgrass loss in part due to N loading from the Lamprey watershed. Targeting and reducing

  18. Retrospective Analysis of Low Flows at Headwater Watersheds in Wyoming

    Science.gov (United States)

    Voutchkova, D. D.; Miller, S. N.

    2016-12-01

    Understanding summer low-flow variability and change in the mountainous West has important implications for water allocations downstream and for maintaining water availability for drinking water supply, reservoir storage, industrial, agricultural, and ecological needs. Wildfires and insect infestations are classical disturbance hydrology topics. It is unclear, however, what are their effects on streamflow and in particular low-flows, when vegetation disturbances are overlapping in time and combined with highly variable and potentially changing local climate. The purpose of this study, therefore, is to quantify changes in low-flows resulting from disturbance in headwater streams. Here we present a retrospective analysis based on: (1) 49-75 complete water years (wy) of daily streamflow data (USGS) for 14 high-elevation headwater watersheds with varying areas (60-1730 km2, 86-100% of watershed area >2000masl) and evergreen forest cover (15-82%), (2) 25-36 complete wy of daily snow-water equivalent accumulation (SWE) and precipitation data from Wyoming SNOTEL stations, (3) burned area boundaries for 20wy (MTBS project), (4) aerial surveys by R1, R2, R4 Forest Service Regions for 18wy (data on tree mortality). We quantify the change in various low-flow characteristics (e.g. post-snowmelt baseflow, Q90 and Q95, 3-,7-, 30- and 90-day annual minima etc.) while accounting for local inter- and multi-annual climate variability by using SWE accumulation data, as it integrates both temperature and precipitation changes. Our approach differs from typical before-after field-based investigation for paired watersheds, as it provides a synthesis over large temporal and spatial scales, resulting in spectrum of possible hydrologic responses due to varying disturbance severity. Quantifying the changes in low-flows and low-flow variability will improve our understanding and will facilitate water management and planning at local state-wide level.

  19. Biophysical and sociocultural factors underlying spatial trade-offs of ecosystem services in semiarid watersheds

    Directory of Open Access Journals (Sweden)

    Marina García-Llorente

    2015-09-01

    Full Text Available Biophysical and social systems are linked to form social-ecological systems whose sustainability depends on their capacity to absorb uncertainty and cope with disturbances. In this study, we explored the key biophysical and socio-cultural factors underlying ecosystem service supply in two semiarid watersheds of southern Spain. These included variables associated with the role that freshwater flows and biodiversity play in securing the system's capacity to sustain essential ecosystem services and their relationship with social demand for services, local water governance, and land-use intensification. Our results reveal the importance of considering the invisible dimensions of water and biodiversity, i.e. green freshwater flows and trait-based indicators, because of their relevance to the supply of ecosystem services. Furthermore, they uncover the importance of traditional irrigation canals, a local water governance system, in maintaining the ecosystems' capacity to supply services. The study also highlights the complex trade-offs that occur because of the spatial mismatch between ecosystem service supply (upstream and ecosystem service demand (downstream in watersheds. Finally, we found that land-use intensification generally resulted in losses of the biophysical factors that underpin the supply of some ecosystem services, increases in social demand for less diversified services, and the abandonment of local governance practices. Attempts to manage social-ecological systems toward sustainability at the local scale should identify the key biophysical and socio-cultural factors that are essential for maintaining ecosystem services and should recognize existing interrelationships between them. Land-use management should also take into account ecosystem service trade-offs and the consequences resulting from land-use intensification.

  20. Elevation - LiDAR Survey Minnehaha Creek, MN Watershed

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LiDAR Bare-Earth Grid - Minnehaha Creek Watershed District. The Minnehaha Creek watershed is located primarily in Hennepin County, Minnesota. The watershed covers...

  1. Using Four Capitals to Assess Watershed Sustainability

    Science.gov (United States)

    Pérez-Maqueo, Octavio; Martinez, M. Luisa; Vázquez, Gabriela; Equihua, Miguel

    2013-03-01

    The La Antigua watershed drains into the Gulf of Mexico and can be considered as one of the most important areas in Mexico because of its high productivity, history, and biodiversity, although poverty remains high in the area in spite of these positive attributes. In this study, we performed an integrated assessment of the watershed to recommend a better direction toward a sustainable management in which the four capitals (natural, human, social, and built) are balanced. We contrasted these four capitals in the municipalities of the upper, middle and lower watershed and found that natural capital (natural ecosystems and ecosystem services) was higher in the upper and middle watershed, while human and social capitals (literacy, health, education and income) were generally higher downstream. Overall, Human Development Index was negatively correlated with the percentage of natural ecosystems in the watershed, especially in the upper and lower watershed regions. Our results indicate that natural capital must be fully considered in projections for increasing human development, so that natural resources can be preserved and managed adequately while sustaining intergenerational well-being.

  2. Modelling of the estimated contributions of different sub-watersheds and sources to phosphorous export and loading from the Dongting Lake watershed, China.

    Science.gov (United States)

    Hou, Ying; Chen, Weiping; Liao, Yuehua; Luo, Yueping

    2017-11-03

    Considerable growth in the economy and population of the Dongting Lake watershed in Southern China has increased phosphorus loading to the lake and resulted in a growing risk of lake eutrophication. This study aimed to reveal the spatial pattern and sources of phosphorus export and loading from the watershed. We applied an export coefficient model and the Dillon-Rigler model to quantify contributions of different sub-watersheds and sources to the total phosphorus (TP) export and loading in 2010. Together, the upper and lower reaches of the Xiang River watershed and the Dongting Lake Area contributed 60.9% of the TP exported from the entire watershed. Livestock husbandry appeared to be the largest anthropogenic source of TP, contributing more than 50% of the TP exported from each secondary sub-watersheds. The actual TP loading to the lake in 2010 was 62.9% more than the permissible annual TP loading for compliance with the Class III water quality standard for lakes. Three primary sub-watersheds-the Dongting Lake Area, the Xiang River, and the Yuan River watersheds-contributed 91.2% of the total TP loading. As the largest contributor among all sources, livestock husbandry contributed nearly 50% of the TP loading from the Dongting Lake Area and more than 60% from each of the other primary sub-watersheds. This study provides a methodology to identify the key sources and locations of TP export and loading in large lake watersheds. The study can provide a reference for the decision-making for controlling P pollution in the Dongting Lake watershed.

  3. Nitrogen balance in a hilly semi-agricultural watershed in Northern Italy

    Directory of Open Access Journals (Sweden)

    Linda Pieri

    2011-03-01

    Full Text Available The research was carried out for 7 years, 1998-2005, in a semi-agricultural watershed, called Centonara, set within a natural regional park and situated in the hills surrounding Bologna, northern Italy. This area is characterized by one of the most interesting badlands complexes in Europe and represents one of the main points of naturalistic interest. The watershed is partially cultivated (about 30% of the total area with arable crops, mostly cereals and alfalfa. To evaluate the impact of agricultural activity on the eco-sustainability of this area, the nitrogen (N balance was computed. Although it is only an estimation of the potential environmental damage, the nitrogen balance is a useful indicator of the risk posed to the environment from excessive nitrogen and can be useful to understand the possible effects of a certain type of agricultural and environmental management and policy. The balance was calculated by computing the difference between all inputs and all outputs. The nitrogen balance of the watershed was found to be sustainable, with an annual nitrogen balance ranging between –2.3 and +4.4 kg ha–1. Despite the limited presence of arable lands, the agricultural management played the main role in determining the sustainability of the watershed, strongly influencing both the principal N sources and sinks. In fact, major N inputs derived from inorganic fertilization (8.1-15.5 kg ha–1yr–1 and biological fixation (8.3-14.3 kg ha–1yr–1. On the other hand, plant removal constituted the most important output (17.7-25.6 kg ha–1yr–1. N losses in the drainage water were limited (3.0-9.5 kg ha–1yr–1 and the Centonara stream water was found to be unpolluted, with a nitrate concentration always below the EU limit for drinking water. The similar magnitude of total N inputs and outputs indicated that the crop management, especially the crop rotation and the N fertilization, in the Centonara watershed has reached a good level of

  4. Estimation of the peak factor based on watershed characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, Jean; Nolin, Simon; Ruest, Benoit [BPR Inc., Quebec, (Canada)

    2010-07-01

    Hydraulic modeling and dam structure design require the river flood flow as a primary input. For a given flood event, the ratio of peak flow over mean daily flow defines the peak factor. The peak factor value is dependent on the watershed and location along the river. The main goal of this study consisted in finding a relationship between watershed characteristics and this peak factor. Regression analyses were carried out on 53 natural watersheds located in the southern part of the province of Quebec using data from the Centre d'expertise hydrique du Quebec (CEHQ). The watershed characteristics included in the analyses were the watershed area, the maximum flow length, the mean slope, the lake proportion and the mean elevation. The results showed that watershed area and length are the major parameters influencing the peak factor. Nine natural watersheds were also used to test the use of a multivariable model in order to determine the peak factor for ungauged watersheds.

  5. Environmental modeling and exposure assessment of sediment-associated pyrethroids in an agricultural watershed.

    Directory of Open Access Journals (Sweden)

    Yuzhou Luo

    Full Text Available Synthetic pyrethroid insecticides have generated public concerns due to their increasing use and potential effects on aquatic ecosystems. A modeling system was developed in this study for simulating the transport processes and associated sediment toxicity of pyrethroids at coupled field/watershed scales. The model was tested in the Orestimba Creek watershed, an agriculturally intensive area in California' Central Valley. Model predictions were satisfactory when compared with measured suspended solid concentration (R(2 = 0.536, pyrethroid toxic unit (0.576, and cumulative mortality of Hyalella azteca (0.570. The results indicated that sediment toxicity in the study area was strongly related to the concentration of pyrethroids in bed sediment. Bifenthrin was identified as the dominant contributor to the sediment toxicity in recent years, accounting for 50-85% of predicted toxicity units. In addition, more than 90% of the variation on the annual maximum toxic unit of pyrethroids was attributed to precipitation and prior application of bifenthrin in the late irrigation season. As one of the first studies simulating the dynamics and spatial variability of pyrethroids in fields and instreams, the modeling results provided useful information on new policies to be considered with respect to pyrethroid regulation. This study suggested two potential measures to efficiently reduce sediment toxicity by pyrethroids in the study area: [1] limiting bifenthrin use immediately before rainfall season; and [2] implementing conservation practices to retain soil on cropland.

  6. Palaeodemography of the Nasca valley: reconstruction of the human ecology in the southern Peruvian coast.

    Science.gov (United States)

    Drusini, A G; Carrara, N; Orefici, G; Rippa Bonati, M

    2001-01-01

    This study is based on skeletons and mummies belonging to 582 individuals excavated at sites of Pueblo Viejo, Cahuachi, Estaqueria and Atarco in the Nasca valley, South Coast of Peru. Archaeological evidence distinguishes three cultural phases: Nasca (400 BC-550 AD), Wari (600-1100 AD) and Chincha (1100-1412 AD). Since the Chincha human remains were too exiguous (27 individuals), only Nasca and Wari were considered. For the Nasca population, sex ratio was 113 men to 100 women (53% of males); for the Wari population, sex ratio was 117 men to 100 women (54% of males). The palaeodemographic data show that the infant mortality rate was 33@1000 for Nasca and 105@1000 for Wari. Life expectancy was 38-43 years for Nasca and 31-36 years for Wari. Death percentages in all the age groups increased from Nasca to Wari phase. ANOVA and t-test for paired comparison were applied in order to examine if dental and bone ages were statistically different. Long bones and teeth showed an allometric development, and the age estimated from the tooth formation and eruption was generally higher than the age estimated from the maximum lengths of long bones. The anthropological study of the Nasca valley skeletal populations confirmed the archaeological hypothesis of worse conditions of the Wari population in comparison with the previous Nasca people.

  7. Investigating the Sources and Dynamics of Dissolved Organic Matter in an Agricultural Watershed in California (U.S.A.)

    Science.gov (United States)

    Dyda, R. Y.; Hernes, P. J.; Spencer, R. G.; Ingrum, T. D.; Pellerin, B. A.; Bergamaschi, B. A.

    2007-12-01

    Dissolved organic matter (DOM) is ubiquitous and plays critical roles in nutrient cycling, aquatic food webs and numerous other biogeochemical processes. Furthermore, various factors control the quality and quantity of DOM, including land use, soil composition, in situ production, microbial uptake and assimilation and hydrology. As a component of DOM, dissolved organic carbon (DOC) has been recently identified as a drinking water constituent of concern due to its propensity to form EPA-regulated carcinogenic compounds when disinfected for drinking water purposes. Therefore, understanding the sources, cycling and modification of DOC across various landscapes is of direct relevance to a wide range of studies. The Willow Slough watershed is located in the Central Valley of California (U.S.A.) and is characterized by both diverse geomorphology as well as land use. The watershed drains approximately 425 km2 and is bordered by Cache and Putah Creeks to the north and south. The study area in the watershed includes the eastern portion of the foothills of the inner Coast Range and the alluvial plain and encompasses diverse land uses, including orchards, viticulture, dairy, pasture and natural grasslands. The Willow Slough watershed represents a unique opportunity to examine DOC dynamics through multiple land uses and hydrologic flow paths that are common throughout California. Preliminary data show that DOC concentrations at the watershed mouth peak during winter storms and also increase gradually throughout the summer months during the agricultural irrigation season. The increasing DOC concentrations during the summer months may result from agricultural runoff and/or primary production in channel. In addition, initial results using the chromophoric DOM (CDOM) absorption coefficient and spectral slope parameters indicate seasonal differences in the composition of the DOM. Spectral slopes decreased during both the summer irrigation season and winter storms relative to winter

  8. Economic Tools for Managing Nitrogen in Coastal Watersheds ...

    Science.gov (United States)

    Watershed managers are interested in using economics to communicate the value of estuarine resources to the wider community, determine the most cost-effective means to reduce nitrogen pollution, and evaluate the benefits of taking action to improve coastal ecosystems. We spoke to coastal watershed managers who had commissioned economic studies and found that they were largely satisfied with the information and their ability to communicate the importance of coastal ecosystems. However, while managers were able to use these studies as communication tools, methods used in some studies were inconsistent with what some economists consider best practices. In addition, many watershed managers are grappling with how to implement nitrogen management activities in a way that is both cost-effective and achieves environmental goals, while maintaining public support. These and other issues led to this project. Our intent is to provide information to watershed managers and others interested in watershed management – such as National Estuary Programs, local governments, or nongovernmental organizations – on economic tools for managing nitrogen in coastal watersheds, and to economists and other analysts who are interested in assisting them in meeting their needs. Watershed management requires balancing scientific, political, and social issues to solve environmental problems. This document summarizes questions that watershed managers have about using economic analysis, and g

  9. Impact of valley fills on streamside salamanders in southern West Virginia

    Science.gov (United States)

    Wood, Petra Bohall; Williams, Jennifer M.

    2013-01-01

    Valley fills associated with mountaintop-removal mining bury stream headwaters and affect water quality and ecological function of reaches below fills. We quantified relative abundance of streamside salamanders in southern West Virginia during 2002 in three streams below valley fills (VFS) and in three reference streams (RS). We surveyed 36 10- × 2-m stream transects, once in summer and fall, paired by order and structure. Of 2,343 salamanders captured, 66.7% were from RS. Total salamanders (adults plus larvae) were more abundant in RS than VFS for first-order and second-order reaches. Adult salamanders had greater abundance in first-order reaches of RS than VFS. Larval salamanders were more abundant in second-order reaches of RS than VFS. No stream width or mesohabitat variables differed between VFS and RS. Only two cover variables differed. Silt cover, greater in VFS than RS first-order reaches, is a likely contributor to reduced abundance of salamanders in VFS. Second-order RS had more boulder cover than second-order VFS, which may have contributed to the higher total and larval salamander abundance in RS. Water chemistry assessments of our VFS and RS reported elevated levels of metal and ion concentrations in VFS, which can depress macroinvertebrate populations and likely affect salamander abundance. Valley fills appear to have significant negative effects on stream salamander abundance due to alterations in habitat structure, water quality and chemistry, and macroinvertebrate communities in streams below fills.

  10. Modeling soil erosion in a watershed

    OpenAIRE

    Lanuza, R.

    1999-01-01

    Most erosion models have been developed based on a plot scale and have limited application to a watershed due to the differences in aerial scale. In order to address this limitation, a GIS-assisted methodology for modeling soil erosion was developed using PCRaster to predict the rate of soil erosion at watershed level; identify the location of erosion prone areas; and analyze the impact of landuse changes on soil erosion. The general methodology of desktop modeling or soil erosion at watershe...

  11. MODELING ECONOMIC AND ECOLOGICAL BENEFITS OF POST-FIRE REVEGETATION IN THE GREAT BASIN

    OpenAIRE

    Niell, Rebecca; Englin, Jeffrey E.; Nalle, Darek

    2004-01-01

    This study employs a Markov chain model of vegetation dynamics to examine the economic and ecological benefits of post-fire revegetation in the Great Basin sagebrush steppe. The analysis is important because synergies between wildland fire and invasive weeds in this ecosystem are likely to result in the loss of native biodiversity, less predictable forage availability for livestock and wildlife, reduced watershed stability and water quality, and increased costs and risk associated with firefi...

  12. NYC Reservoirs Watershed Areas (HUC 12)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This NYC Reservoirs Watershed Areas (HUC 12) GIS layer was derived from the 12-Digit National Watershed Boundary Database (WBD) at 1:24,000 for EPA Region 2 and...

  13. Hyperspectral remote sensing and long term monitoring reveal watershed-estuary ecosystem interactions

    Science.gov (United States)

    Hestir, E. L.; Schoellhamer, D. H.; Santos, M. J.; Greenberg, J. A.; Morgan-King, T.; Khanna, S.; Ustin, S.

    2016-02-01

    Estuarine ecosystems and their biogeochemical processes are extremely vulnerable to climate and environmental changes, and are threatened by sea level rise and upstream activities such as land use/land cover and hydrological changes. Despite the recognized threat to estuaries, most aspects of how change will affect estuaries are not well understood due to the poorly resolved understanding of the complex physical, chemical and biological processes and their interactions in estuarine systems. Remote sensing technologies such as high spectral resolution optical systems enable measurements of key environmental parameters needed to establish baseline conditions and improve modeling efforts. The San Francisco Bay-Delta is a highly modified estuary system in a state of ecological crisis due to the numerous threats to its sustainability. In this study, we used a combination of hyperspectral remote sensing and long-term in situ monitoring records to investigate how water clarity has been responding to extreme climatic events, anthropogenic watershed disturbances, and submerged aquatic vegetation (SAV) invasions. From the long-term turbidity monitoring record, we found that water clarity underwent significant increasing step changes associated with sediment depletion and El Nino-extreme run-off events. Hyperspectral remote sensing data revealed that invasive submerged aquatic pant species have facultative C3 and C4-like photosynthetic pathways that give them a competitive advantage under the changing water clarity conditions of the Bay-Delta system. We postulate that this adaptation facilitated the rapid expansion of SAV following the significant step changes in increasing water clarity caused by watershed disturbances and the 1982-1983 El Nino events. Using SAV maps from hyperspectral remote sensing, we estimate that SAV-water clarity feedbacks were responsible for 20-70% of the increasing water clarity trend in the Bay-Delta. Ongoing and future developments in airborne and

  14. Prediction of suspended-sediment concentrations at selected sites in the Fountain Creek watershed, Colorado, 2008-09

    Science.gov (United States)

    Stogner, Sr., Robert W.; Nelson, Jonathan M.; McDonald, Richard R.; Kinzel, Paul J.; Mau, David P.

    2013-01-01

    In 2008, the U.S. Geological Survey (USGS), in cooperation with Pikes Peak Area Council of Governments, Colorado Water Conservation Board, Colorado Springs City Engineering, and the Lower Arkansas Valley Water Conservancy District, began a small-scale pilot study to evaluate the effectiveness of the use of a computational model of streamflow and suspended-sediment transport for predicting suspended-sediment concentrations and loads in the Fountain Creek watershed in Colorado. Increased erosion and sedimentation damage have been identified by the Fountain Creek Watershed Plan as key problems within the watershed. A recommendation in the Fountain Creek Watershed plan for management of the basin is to establish measurable criteria to determine if progress in reducing erosion and sedimentation damage is being made. The major objective of this study was to test a computational method to predict local suspended-sediment loads at two sites with different geomorphic characteristics in order to evaluate the feasibility of using such an approach to predict local suspended-sediment loads throughout the entire watershed. Detailed topographic surveys, particle-size data, and suspended-sediment samples were collected at two gaged sites: Monument Creek above Woodmen Road at Colorado Springs, Colorado (USGS gage 07103970), and Sand Creek above mouth at Colorado Springs, Colorado (USGS gage 07105600). These data were used to construct three-dimensional computational models of relatively short channel reaches at each site. The streamflow component of these models predicted a spatially distributed field of water-surface elevation, water velocity, and bed shear stress for a range of stream discharges. Using the model predictions, along with measured particle sizes, the sediment-transport component of the model predicted the suspended-sediment concentration throughout the reach of interest. These computed concentrations were used with predicted flow patterns and channel morphology to

  15. Effects of land use and management on aggregate stability and hydraulic conductivity of soils within River Njoro Watershed in Kenya

    Directory of Open Access Journals (Sweden)

    Zachary G. Mainuri

    2013-09-01

    Full Text Available There has been tremendous changes in land use and management in the River Njoro Watershed during the last three decades. Formerly large scale farms have been converted into smallholder farms and plantation forests have gradually been lost. These changes in land use and management have brought in different approaches that have triggered soil erosion and other forms of land degradation. The objective of this study was to trace the changes in land use and determine their effects on aggregate stability and hydraulic conductivity. A semi detailed soil survey of the watershed was undertaken following a three-tier approach comprising image interpretation, field surveys and laboratory analysis. The measured variables in the soil were analysed using ANOVA and correlation analysis. The major land uses were found to be forestland, agricultural land, grassland, and wetland. A strong soil type _ landscape relationship was observed within the watershed. Soils of slopes were moderately to severely eroded, shallow and less developed whereas those on summits, pen plains, uplands, plateaus and valleys were deep and well developed. Aggregate stability was the highest in forestland and decreased in the order of grassland, agricultural land and wetland respectively. The mean weight diameter under the various land use conditions was 0.68, 0.64, 0.58, and 0 41 respectively. Hydraulic conductivity was the highest in forest-land and decreased in the order of agricultural land, grassland and wetland respectively. There was significant negative correlation between hydraulic conductivity and the bulk density and clay content of the soils. Reduced aggregate stability and lowered hydraulic conductivity is likely to be responsible for some of the severe soil erosion and other forms of land degradation observed in the River Njoro Watershed.

  16. WATERSHED BASED WEB GIS: CASE STUDY OF PALOPO WATERSHED AREA SOUTH SULAWESI, INDONESIA

    Directory of Open Access Journals (Sweden)

    Jalaluddin Rumi PRASAD

    2017-09-01

    Full Text Available Data and land resource information complete, accurate, and current is an input in management planning, evaluation, and monitoring Watershed. Implementation of this research is conducted with optimum utilization of secondary data that is supported by direct field measurement data, digitalizing the maps associated, Geographic Information Systems modeling, and model calibration. This research has resulted in a Geographic Information System Management of potential Watershed GIS Web-based or abbreviated WEB GIS MPPDAS using Palopo watershed area, South Sulawesi as a case study sites for the development of a prototype that consists of three applications the main website ie Web Portal, Web GIS, and Web Tutorial. The system is built to show online (and offline maps watershed in the administrative area of Palopo along with the location of its potential accumulated in the four (4 groups of layers, including groups of main layer (2 layer, a group of base layer (14 layers, groups of thematic layers (12 layers, a group of policy layer (8 layer. In addition to display a map, use the WEB application of GIS MPPDAS can also use tools or controls in the application to perform analyzes in its monitoring and evaluation, including: Geocoding, Add layer, Digitizing, Selection, Measurements, Graph, Filtering, Geolocation, Overlay cartographic, and etc.

  17. Watershed modeling applications in south Texas

    Science.gov (United States)

    Pedraza, Diana E.; Ockerman, Darwin J.

    2012-01-01

    Watershed models can be used to simulate natural and human-altered processes including the flow of water and associated transport of sediment, chemicals, nutrients, and microbial organisms within a watershed. Simulation of these processes is useful for addressing a wide range of water-resource challenges, such as quantifying changes in water availability over time, understanding the effects of development and land-use changes on water resources, quantifying changes in constituent loads and yields over time, and quantifying aquifer recharge temporally and spatially throughout a watershed.

  18. Watershed District

    Data.gov (United States)

    Kansas Data Access and Support Center — Boundaries show on this map are derived from legal descriptions contained in petitions to the Kansas Secretary of State for the creation or extension of watershed...

  19. Evaluating the Least Cost Selection of Agricultural Management Practices in the Five Mile Creek area of Fort Cobb Watershed, Oklahoma, USA

    Science.gov (United States)

    Rasoulzadeh Gharibdousti, S.; Stoecker, A.; Storm, D.

    2017-12-01

    cost minimizing choice of BMPs for each HRU that meets sediment and nutrient loads targets for the watershed. The model is capable of providing precise information for stakeholders to prioritize ecologically sound and economically feasible BMPs that are capable of mitigating human induced impacts at the watershed scale.

  20. Global perspective of watershed management

    Science.gov (United States)

    Kenneth N. Brooks; Karlyn Eckman

    2000-01-01

    This paper discusses the role of watershed management in moving towards sustainable natural resource and agricultural development. Examples from 30 field projects and six training projects involving over 25 countries are presented to illustrate watershed management initiatives that have been implemented over the last half of the 20th century. The level of success has...

  1. Assessment of landscape change and occurrence at watershed ...

    African Journals Online (AJOL)

    ... the southern watershed zones. Monitoring land cover change at the watershed scale is more indicative of impact level and where efforts for managing and conserving the urban landscape should be prioritized. Key words: Urban expansion, land cover type, remote sensing, watershed units, urban landscape conservation.

  2. Sensitivity of agricultural runoff loads to rising levels of CO2 and climate change in the San Joaquin Valley watershed of California

    International Nuclear Information System (INIS)

    Ficklin, Darren L.; Luo Yuzhou; Luedeling, Eike; Gatzke, Sarah E.; Zhang Minghua

    2010-01-01

    The Soil and Water Assessment Tool (SWAT) was used to assess the impact of climate change on sediment, nitrate, phosphorus and pesticide (diazinon and chlorpyrifos) runoff in the San Joaquin watershed in California. This study used modeling techniques that include variations of CO 2 , temperature, and precipitation to quantify these responses. Precipitation had a greater impact on agricultural runoff compared to changes in either CO 2 concentration or temperature. Increase of precipitation by ±10% and ±20% generally changed agricultural runoff proportionally. Solely increasing CO 2 concentration resulted in an increase in nitrate, phosphorus, and chlorpyrifos yield by 4.2, 7.8, and 6.4%, respectively, and a decrease in sediment and diazinon yield by 6.3 and 5.3%, respectively, in comparison to the present-day reference scenario. Only increasing temperature reduced yields of all agricultural runoff components. The results suggest that agricultural runoff in the San Joaquin watershed is sensitive to precipitation, temperature, and CO 2 concentration changes. - Agricultural runoff is significantly affected by changes in precipitation, temperature, and atmospheric CO 2 concentration.

  3. Understanding toxicity at the watershed scale : design of the Syncrude Sandhill Fen watershed research project

    International Nuclear Information System (INIS)

    Wytrykush, C.

    2010-01-01

    Fens are peat-accumulating wetlands with a water table consisting of mineral-rich ground or surface water. This study discussed the construction of a fen-type reclaimed wetland constructed in a post-mining oil sands landscape. Syncrude Canada's Sandhill fen watershed project represents the first attempt at constructing a fen wetland in the oil sands region. The wetland and its watershed will be constructed on a soft tailings deposit. The design basis for the fen and watershed was developed by a team of researchers and scientists. The aim of the fen design was to control the salinity caused by tailings consolidation and seepage over time. Methods of mitigating potentially toxic effects from salinity were discussed.

  4. Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds

    Directory of Open Access Journals (Sweden)

    Indrajeet Chaubey

    2010-11-01

    Full Text Available There has been a steady shift towards modeling and model-based approaches as primary methods of assessing watershed response to hydrologic inputs and land management, and of quantifying watershed-wide best management practice (BMP effectiveness. Watershed models often require some degree of calibration and validation to achieve adequate watershed and therefore BMP representation. This is, however, only possible for gauged watersheds. There are many watersheds for which there are very little or no monitoring data available, thus the question as to whether it would be possible to extend and/or generalize model parameters obtained through calibration of gauged watersheds to ungauged watersheds within the same region. This study explored the possibility of developing regionalized model parameter sets for use in ungauged watersheds. The study evaluated two regionalization methods: global averaging, and regression-based parameters, on the SWAT model using data from priority watersheds in Arkansas. Resulting parameters were tested and model performance determined on three gauged watersheds. Nash-Sutcliffe efficiencies (NS for stream flow obtained using regression-based parameters (0.53–0.83 compared well with corresponding values obtained through model calibration (0.45–0.90. Model performance obtained using global averaged parameter values was also generally acceptable (0.4 ≤ NS ≤ 0.75. Results from this study indicate that regionalized parameter sets for the SWAT model can be obtained and used for making satisfactory hydrologic response predictions in ungauged watersheds.

  5. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT ...

    Science.gov (United States)

    The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University of Wyoming to automate the parameterization and execution of the Soil Water Assessment Tool (SWAT) and KINEmatic Runoff and EROSion (KINEROS2) hydrologic models. The application of these two models allows AGWA to conduct hydrologic modeling and watershed assessments at multiple temporal and spatial scales. AGWA’s current outputs are runoff (volumes and peaks) and sediment yield, plus nitrogen and phosphorus with the SWAT model. AGWA uses commonly available GIS data layers to fully parameterize, execute, and visualize results from both models. Through an intuitive interface the user selects an outlet from which AGWA delineates and discretizes the watershed using a Digital Elevation Model (DEM) based on the individual model requirements. The watershed model elements are then intersected with soils and land cover data layers to derive the requisite model input parameters. The chosen model is then executed, and the results are imported back into AGWA for visualization. This allows managers to identify potential problem areas where additional monitoring can be undertaken or mitigation activities can be focused. AGWA also has tools to apply an array of best management practices. There are currently two versions of AGWA available; AGWA 1.5 for

  6. Big Canyon Creek Ecological Restoration Strategy.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe

  7. GIS-based evaluation and spatial distribution characteristics of land degradation in Bijiang watershed.

    Science.gov (United States)

    Zhao, Xiaoqing; Dai, Jinhua; Wang, Jianping

    2013-01-01

    Land degradation is one of the significant issues the human beings are confronted with, which has become a bottleneck of restricting the sustainable development of the regional society and economy. In order to ascertain the root causes contributed to the land degradation and characteristics of land degradation, Bijiang watershed, the most important Lead-Zinc mine area of Lanping county of Yunnan Province, was selected as the study area. One evaluation index system for land degradation that consists of 5 single factors(water-soil erosion intensity, geological disaster risk, cultivation intensity of arable land, pollution of heavy metals in soil and biodiversity deterioration) was established and 13 indicators were chosen, and the entropy method was adopted to assign weights to each single factor. By using the tools of Geographic Information System (GIS), the land degradation degree was evaluated and one spatial distribution map for land degradation was accomplished. In this study, the land of the whole watershed was divided into 4 types, including extremely-severe degradation area, severely-degraded area, moderately-degraded area and slightly-degraded area, and some solutions for ecological restoration and rehabilitation were also put forward in this study. The study results indicated that: (1) Water-soil erosion intension and pollution of heavy metals in soil have made greater contribution to the comprehensive land degradation in Bijiang watershed; (2) There is an apparent difference regarding land degradation degree in Bijiang watershed. The moderately-degraded area accounts for the most part in the region, which covers 79.66% of the whole watershed. The severely-degraded area accounts for 15.98% and the slightly-degraded regions and extremely severe degradation area accounts for 1.08% and 3.28% respectively; (3) There is an evident regularity of spatial distribution in land degradation in Bijiang watershed. The moderately-degraded areas mainly distribute in the

  8. Watershed Profiles and Stream-net Structure of Vesuvio Volcano, Italy

    Science.gov (United States)

    Lin, Z.; Oguchi, T.; Komatsu, G.

    2006-12-01

    Watershed topography including stream-net structure in 32 watersheds of Vesuvio Volcano was analyzed using a DEM with a 20-m resolution, with special attention to geomorphological differences between the northern ?0-8 area and the other areas. The longitudinal and transverse profiles and stream-nets of the watersheds were extracted from the DEM. Drainage density and statistical morphometric parameters representing the shape of the profiles were investigated, and their relations with other basic morphometric parameters such as slope angle were examined. The relationships between drainage density and slope angle for each watershed can be divided into two types: Type 1 - negative correlation and Type 2 - convex-form correlation. The Type 2 watersheds have smaller bifurcation ratios and larger low-order stream lengths than the Type 1 watersheds, indicating that low-order streams in the Type 2 watersheds are more integrated. The results of longitudinal and transverse profile analyses also show that the topography of the Type 2 watersheds is simpler and more organized than that of the Type 1 watersheds, suggesting that the Type 2 watersheds are closer to equilibrium conditions. The Type 2 watersheds are located in the steepest and highest part of the somma area, where only limited eruption products have been deposited during the Holocene, due to the existence of the high and steep outer rim of the caldera at the top of the volcano. The results including the existence of the two types are similar to those from non-volcanic watersheds in Japan, indicating that stream-net studies combined with profile analysis using DEMs are effective in discussing the erosional stages of watersheds.

  9. Coastal watershed management across an international border in the Tijuana River watershed

    Science.gov (United States)

    Fernandez, Linda

    2005-05-01

    The paper develops and applies a game theoretic model of upstream and downstream countries to examine cooperative and noncooperative strategies of a common watershed. The application to the Tijuana River watershed shared by the United States and Mexico provides quantification of the strategies for internalizing water quality externalities to upstream and downstream originating from sedimentation. Results show that different transfer payments, such as the Chander/Tulkens cost sharing rule and the Shapley value, imply the size of the existing transfer from downstream to upstream could increase the amount currently allocated.

  10. Soil and Water Assessment Tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds.

    Science.gov (United States)

    Winchell, Michael F; Peranginangin, Natalia; Srinivasan, Raghavan; Chen, Wenlin

    2018-05-01

    Recent national regulatory assessments of potential pesticide exposure of threatened and endangered species in aquatic habitats have led to increased need for watershed-scale predictions of pesticide concentrations in flowing water bodies. This study was conducted to assess the ability of the uncalibrated Soil and Water Assessment Tool (SWAT) to predict annual maximum pesticide concentrations in the flowing water bodies of highly vulnerable small- to medium-sized watersheds. The SWAT was applied to 27 watersheds, largely within the midwest corn belt of the United States, ranging from 20 to 386 km 2 , and evaluated using consistent input data sets and an uncalibrated parameterization approach. The watersheds were selected from the Atrazine Ecological Exposure Monitoring Program and the Heidelberg Tributary Loading Program, both of which contain high temporal resolution atrazine sampling data from watersheds with exceptionally high vulnerability to atrazine exposure. The model performance was assessed based upon predictions of annual maximum atrazine concentrations in 1-d and 60-d durations, predictions critical in pesticide-threatened and endangered species risk assessments when evaluating potential acute and chronic exposure to aquatic organisms. The simulation results showed that for nearly half of the watersheds simulated, the uncalibrated SWAT model was able to predict annual maximum pesticide concentrations within a narrow range of uncertainty resulting from atrazine application timing patterns. An uncalibrated model's predictive performance is essential for the assessment of pesticide exposure in flowing water bodies, the majority of which have insufficient monitoring data for direct calibration, even in data-rich countries. In situations in which SWAT over- or underpredicted the annual maximum concentrations, the magnitude of the over- or underprediction was commonly less than a factor of 2, indicating that the model and uncalibrated parameterization

  11. Life-history diversity and its importance to population stability and persistence of a migratory fish: steelhead in two large North American watersheds.

    Science.gov (United States)

    Moore, Jonathan W; Yeakel, Justin D; Peard, Dean; Lough, Jeff; Beere, Mark

    2014-09-01

    population abundances and biomass via portfolio effects. Conserving genetic integrity and habitat diversity in these and other large watersheds can enable a diversity of life histories that increases population and biomass stability in the face of environmental variability. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  12. A landscape scale valley confinement algorithm: Delineating unconfined valley bottoms for geomorphic, aquatic, and riparian applications

    Science.gov (United States)

    David E. Nagel; John M. Buffington; Sharon L. Parkes; Seth Wenger; Jaime R. Goode

    2014-01-01

    Valley confinement is an important landscape characteristic linked to aquatic habitat, riparian diversity, and geomorphic processes. This report describes a GIS program called the Valley Confinement Algorithm (VCA), which identifies unconfined valleys in montane landscapes. The algorithm uses nationally available digital elevation models (DEMs) at 10-30 m resolution to...

  13. McKenzie River Watershed Coordination, Annual Report 2001-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Thrailkil, Jim

    2003-11-01

    BPA funding, in conjunction with contributions from numerous partners organizations and grant funds supports the McKenzie Watershed Council's (MWC) efforts to coordinate restoration and monitoring programs of federal, state, local government, and residents within the watershed. Primary goals of the MWC are to improve resource stewardship and conserve fish, wildlife, and water quality resources. Underpinning the goals is the MWC's baseline program centered on relationship building and information sharing. Objectives for FY02 included: (1) Continue to coordinate McKenzie Watershed activities among diverse groups to restore fish and wildlife habitat in the watershed, with a focus on the middle to lower McKenzie, including private lands and the McKenzie-Willamette confluence area; (2) Influence behavior of watershed residents to benefit watershed function though an outreach and education program, utilizing (BPA funded) Assessment and Conservation Strategy information to provide a context for prioritized action; (3) Continue to maintain and sustain a highly functional watershed council; (4) Maintain and improve water quality concerns through the continuation of Council-sponsored monitoring and evaluation programs; and (5) Continue to secure other funding for watershed restoration and protection projects and Council operations.

  14. Grays River Watershed Geomorphic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R

    2005-04-30

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: The effects of historical and current land use practices on erosion and sedimentation within the channel network The ways in which these effects have influenced the sediment budget of the upper watershed The resulting responses in the main stem Grays River upstream of State Highway 4 The past and future implications for salmon habitat.

  15. Small martian valleys: Pristine and degraded morphology

    International Nuclear Information System (INIS)

    Baker, V.R.; Partridge, J.B.

    1986-01-01

    The equatorial heavily cratered uplands of Mars are dissected by two classes of small valleys that are intimately associated in compound networks. Pristine valleys with steep valley walls preferentially occupy downstream portions of compound basins. Degraded valleys with eroded walls are laterally more extensive and have higher drainage densities than pristine valleys. Morphometric and crater-counting studies indicate that relatively dense drainage networks were emplaced on Mars during the heavy bombardment about 4.0 b.y. ago. Over a period of approximately 10 8 years, these networks were degraded and subsequently invaded by headwardly extending pristine valleys. The pristine valleys locally reactivated the compound networks, probably through sapping processes dependent upon high water tables. Fluvial activity in the heavily cratered uplands generally ceased approximately 3.8--3.9 b.y. ago, coincident with the rapid decline in cratering rates. The relict compound valleys on Mars are morphometrically distinct from most terrestrial drainage systems. The differences might be caused by a Martian valley formation episode characterized by hyperaridity, by inadequate time for network growth, by very permeable rock types, or by a combination of factors

  16. Sampling and analysis plan for the Bear Creek Valley Boneyard/Burnyard Accelerated Action Project, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-03-01

    In the Bear Creek Valley Watershed Remedial Investigation, the Boneyard/Burnyard was identified as the source of the largest releases of uranium into groundwater and surface water in Bear Creek Valley. The proposed action for remediation of this site is selective excavation and removal of source material and capping of the remainder of the site. The schedule for this action has been accelerated so that this is the first remedial action planned to be implemented in the Bear Creek Valley Record of Decision. Additional data needs to support design of the remedial action were identified at a data quality objectives meeting held for this project. Sampling at the Boneyard/Burnyard will be conducted through the use of a phased approach. Initial or primary samples will be used to make in-the-field decisions about where to locate follow-up or secondary samples. On the basis of the results of surface water, soil, and groundwater analysis, up to six test pits will be dug. The test pits will be used to provide detailed descriptions of source materials and bulk samples. This document sets forth the requirements and procedures to protect the personnel involved in this project. This document also contains the health and safety plan, quality assurance project plan, waste management plan, data management plan, implementation plan, and best management practices plan for this project as appendices

  17. Sampling and analysis plan for the Bear Creek Valley Boneyard/Burnyard Accelerated Action Project, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In the Bear Creek Valley Watershed Remedial Investigation, the Boneyard/Burnyard was identified as the source of the largest releases of uranium into groundwater and surface water in Bear Creek Valley. The proposed action for remediation of this site is selective excavation and removal of source material and capping of the remainder of the site. The schedule for this action has been accelerated so that this is the first remedial action planned to be implemented in the Bear Creek Valley Record of Decision. Additional data needs to support design of the remedial action were identified at a data quality objectives meeting held for this project. Sampling at the Boneyard/Burnyard will be conducted through the use of a phased approach. Initial or primary samples will be used to make in-the-field decisions about where to locate follow-up or secondary samples. On the basis of the results of surface water, soil, and groundwater analysis, up to six test pits will be dug. The test pits will be used to provide detailed descriptions of source materials and bulk samples. This document sets forth the requirements and procedures to protect the personnel involved in this project. This document also contains the health and safety plan, quality assurance project plan, waste management plan, data management plan, implementation plan, and best management practices plan for this project as appendices.

  18. Genetic signatures of ecological diversity along an urbanization gradient.

    Science.gov (United States)

    Kelly, Ryan P; O'Donnell, James L; Lowell, Natalie C; Shelton, Andrew O; Samhouri, Jameal F; Hennessey, Shannon M; Feist, Blake E; Williams, Gregory D

    2016-01-01

    Despite decades of work in environmental science and ecology, estimating human influences on ecosystems remains challenging. This is partly due to complex chains of causation among ecosystem elements, exacerbated by the difficulty of collecting biological data at sufficient spatial, temporal, and taxonomic scales. Here, we demonstrate the utility of environmental DNA (eDNA) for quantifying associations between human land use and changes in an adjacent ecosystem. We analyze metazoan eDNA sequences from water sampled in nearshore marine eelgrass communities and assess the relationship between these ecological communities and the degree of urbanization in the surrounding watershed. Counter to conventional wisdom, we find strongly increasing richness and decreasing beta diversity with greater urbanization, and similar trends in the diversity of life histories with urbanization. We also find evidence that urbanization influences nearshore communities at local (hundreds of meters) rather than regional (tens of km) scales. Given that different survey methods sample different components of an ecosystem, we then discuss the advantages of eDNA-which we use here to detect hundreds of taxa simultaneously-as a complement to traditional ecological sampling, particularly in the context of broad ecological assessments where exhaustive manual sampling is impractical. Genetic data are a powerful means of uncovering human-ecosystem interactions that might otherwise remain hidden; nevertheless, no sampling method reveals the whole of a biological community.

  19. 18 CFR 801.9 - Watershed management.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Watershed management... GENERAL POLICIES § 801.9 Watershed management. (a) The character, extent, and quality of water resources... management including soil and water conservation measures, land restoration and rehabilitation, erosion...

  20. Watershed Management Optimization Support Tool (WMOST) ...

    Science.gov (United States)

    EPA's Watershed Management Optimization Support Tool (WMOST) version 2 is a decision support tool designed to facilitate integrated water management by communities at the small watershed scale. WMOST allows users to look across management options in stormwater (including green infrastructure), wastewater, drinking water, and land conservation programs to find the least cost solutions. The pdf version of these presentations accompany the recorded webinar with closed captions to be posted on the WMOST web page. The webinar was recorded at the time a training workshop took place for EPA's Watershed Management Optimization Support Tool (WMOST, v2).

  1. Geologic summary of the Owens Valley drilling project, Owens and Rose Valleys, Inyo County, California

    International Nuclear Information System (INIS)

    Schaer, D.W.

    1981-07-01

    The Owens Valley Drilling Project consists of eight drill holes located in southwest Inyo County, California, having an aggregate depth of 19,205 feet (5853 m). Project holes penetrated the Coso Formation of upper Pliocene or early Pleistocene age and the Owens Lake sand and lakebed units of the same age. The project objective was to improve the reliability of uranium-potential-resource estimates assigned to the Coso Formation in the Owens Valley region. Uranium-potential-resource estimates for this area in $100 per pound U 3 O 8 forward-cost-category material have been estimatd to be 16,954 tons (15,384 metric tons). This estimate is based partly on project drilling results. Within the Owens Valley project area, the Coso Formation was encountered only in the Rose Valley region, and for this reason Rose Valley is considered to be the only portion of the project area favorable for economically sized uranium deposits. The sequence of sediments contained in the Owens Valley basin is considered to be largely equivalent but lithologically dissimilar to the Coso Formation of Haiwee Ridge and Rose Valley. The most important factor in the concentration of significant amounts of uranium in the rock units investigated appears to be the availability of reducing agents. Significant amounts of reductants (pyrite) were found in the Coso Formation. No organic debris was noted. Many small, disconnected uranium occurrences, 100 to 500 ppM U 3 O 8 , were encountered in several of the holes

  2. DNR Watersheds - DNR Level 02 - HUC 04

    Data.gov (United States)

    Minnesota Department of Natural Resources — These data consists of watershed delineations in one seamless dataset of drainage areas called Minnesota Department of Natural Resources (DNR) Level 02 Watersheds....

  3. Calculation of the Instream Ecological Flow of the Wei River Based on Hydrological Variation

    Directory of Open Access Journals (Sweden)

    Shengzhi Huang

    2014-01-01

    Full Text Available It is of great significance for the watershed management department to reasonably allocate water resources and ensure the sustainable development of river ecosystems. The greatly important issue is to accurately calculate instream ecological flow. In order to precisely compute instream ecological flow, flow variation is taken into account in this study. Moreover, the heuristic segmentation algorithm that is suitable to detect the mutation points of flow series is employed to identify the change points. Besides, based on the law of tolerance and ecological adaptation theory, the maximum instream ecological flow is calculated, which is the highest frequency of the monthly flow based on the GEV distribution and very suitable for healthy development of the river ecosystems. Furthermore, in order to guarantee the sustainable development of river ecosystems under some bad circumstances, minimum instream ecological flow is calculated by a modified Tennant method which is improved by replacing the average flow with the highest frequency of flow. Since the modified Tennant method is more suitable to reflect the law of flow, it has physical significance, and the calculation results are more reasonable.

  4. Understanding Human Impact: Second Graders Explore Watershed Dynamics

    Science.gov (United States)

    Magruder, Robin; Rosenauer, Julia

    2016-01-01

    This article describes a second grade science enrichment unit with a focus on human impact, both positive and negative, on the living and nonliving components of the local watershed. Investigating the local watershed gave the unit a personal and pragmatic connection to students' lives because they depend on the local watershed for what they need…

  5. Experimental Watershed Study Designs: A Tool for Advancing Process Understanding and Management of Mixed-Land-Use Watersheds

    Science.gov (United States)

    Hubbart, J. A.; Kellner, R. E.; Zeiger, S. J.

    2016-12-01

    Advancements in watershed management are both a major challenge, and urgent need of this century. The experimental watershed study (EWS) approach provides critical baseline and long-term information that can improve decision-making, and reduce misallocation of mitigation investments. Historically, the EWS approach was used in wildland watersheds to quantitatively characterize basic landscape alterations (e.g. forest harvest, road building). However, in recent years, EWS is being repurposed in contemporary multiple-land-use watersheds comprising a mosaic of land use practices such as urbanizing centers, industry, agriculture, and rural development. The EWS method provides scalable and transferrable results that address the uncertainties of development, while providing a scientific basis for total maximum daily load (TMDL) targets in increasing numbers of Clean Water Act 303(d) listed waters. Collaborative adaptive management (CAM) programs, designed to consider the needs of many stakeholders, can also benefit from EWS-generated information, which can be used for best decision making, and serve as a guidance tool throughout the CAM program duration. Of similar importance, long-term EWS monitoring programs create a model system to show stakeholders how investing in rigorous scientific research initiatives improves decision-making, thereby increasing management efficiencies through more focused investments. The evolution from classic wildland EWS designs to contemporary EWS designs in multiple-land-use watersheds will be presented while illustrating how such an approach can encourage innovation, cooperation, and trust among watershed stakeholders working to reach the common goal of improving and sustaining hydrologic regimes and water quality.

  6. Model My Watershed: A high-performance cloud application for public engagement, watershed modeling and conservation decision support

    Science.gov (United States)

    Aufdenkampe, A. K.; Tarboton, D. G.; Horsburgh, J. S.; Mayorga, E.; McFarland, M.; Robbins, A.; Haag, S.; Shokoufandeh, A.; Evans, B. M.; Arscott, D. B.

    2017-12-01

    The Model My Watershed Web app (https://app.wikiwatershed.org/) and the BiG-CZ Data Portal (http://portal.bigcz.org/) and are web applications that share a common codebase and a common goal to deliver high-performance discovery, visualization and analysis of geospatial data in an intuitive user interface in web browser. Model My Watershed (MMW) was designed as a decision support system for watershed conservation implementation. BiG CZ Data Portal was designed to provide context and background data for research sites. Users begin by creating an Area of Interest, via an automated watershed delineation tool, a free draw tool, selection of a predefined area such as a county or USGS Hydrological Unit (HUC), or uploading a custom polygon. Both Web apps visualize and provide summary statistics of land use, soil groups, streams, climate and other geospatial information. MMW then allows users to run a watershed model to simulate different scenarios of human impacts on stormwater runoff and water-quality. BiG CZ Data Portal allows users to search for scientific and monitoring data within the Area of Interest, which also serves as a prototype for the upcoming Monitor My Watershed web app. Both systems integrate with CUAHSI cyberinfrastructure, including visualizing observational data from CUAHSI Water Data Center and storing user data via CUAHSI HydroShare. Both systems also integrate with the new EnviroDIY Water Quality Data Portal (http://data.envirodiy.org/), a system for crowd-sourcing environmental monitoring data using open-source sensor stations (http://envirodiy.org/mayfly/) and based on the Observations Data Model v2.

  7. Valley dependent transport in graphene L junction

    Science.gov (United States)

    Chan, K. S.

    2018-05-01

    We studied the valley dependent transport in graphene L junctions connecting an armchair lead and a zigzag lead. The junction can be used in valleytronic devices and circuits. Electrons injected from the armchair lead into the junction is not valley polarized, but they can become valley polarized in the zigzag lead. There are Fermi energies, where the current in the zigzag lead is highly valley polarized and the junction is an efficient generator of valley polarized current. The features of the valley polarized current depend sensitively on the widths of the two leads, as well as the number of dimers in the armchair lead, because this number has a sensitive effect on the band structure of the armchair lead. When an external potential is applied to the junction, the energy range with high valley polarization is enlarged enhancing its function as a generator of highly valley polarized current. The scaling behavior found in other graphene devices is also found in L junctions, which means that the results presented here can be extended to junctions with larger dimensions after appropriate scaling of the energy.

  8. Chapter 19. Cumulative watershed effects and watershed analysis

    Science.gov (United States)

    Leslie M. Reid

    1998-01-01

    Cumulative watershed effects are environmental changes that are affected by more than.one land-use activity and that are influenced by.processes involving the generation or transport.of water. Almost all environmental changes are.cumulative effects, and almost all land-use.activities contribute to cumulative effects

  9. Iskuulpa Watershed Management Plan : A Five-Year Plan for Protecting and Enhancing Fish and Wildlife Habitats in the Iskuulpa Watershed.

    Energy Technology Data Exchange (ETDEWEB)

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    2003-01-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to protect, enhance, and mitigate wildlife and wildlife habitat and watershed resources in the Iskuulpa Watershed. The Iskuulpa Watershed Project was approved as a Columbia River Basin Wildlife Fish and Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1998. Iskuulpa will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the John Day and McNary Hydroelectric facilities on the Columbia River. By funding the enhancement and operation and maintenance of the Iskuulpa Watershed, BPA will receive credit towards their mitigation debt. The purpose of the Iskuulpa Watershed management plan update is to provide programmatic and site-specific standards and guidelines on how the Iskuulpa Watershed will be managed over the next three years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management.

  10. Last glacial-Holocene temperatures and hydrology of the Sea of Galilee and Hula Valley from clumped isotopes in Melanopsis shells

    Science.gov (United States)

    Zaarur, Shikma; Affek, Hagit P.; Stein, Mordechai

    2016-04-01

    The carbonate clumped isotope (Δ47) thermometer was applied to fresh water snails (Melanopsis spp.) grown in the waters of the Sea of Galilee and Hula Valley, in the north of Israel. Modern shells, grown at known temperatures agree with the Δ47-T calibration of Zaarur et al. (2013). Fossil Melanopsis shells from 2 locations, Gesher Bnot Ya'aqov (at the southern tip of the Hula Valley) and the Sea of Galilee provide a temperature record for the region during the time interval of the past 20 kyrs. Glacial temperatures are ∼5 °C cooler than mid-Holocene and ∼3 °C cooler than modern, similar to other records in the region. These Δ47-derived temperatures are combined with δ18O of the shell carbonate to calculate the oxygen isotopic composition of the habitat waters. Contrary to global trends and other regional records, reconstructed δ18Owater values increase from the late glacial through the Holocene. This reversed signal reflects a decrease in the relative contribution of snowmelt to the watershed post-LGM and a transition to a more rain dominated inflow. A fairly constant difference in δ18Owater values between the Hula Valley and Sea of Galilee waters, suggests that the hydrological relationship of the two water bodies had remained constant, with the temperature changes playing only a minor role in the extent of evaporation of the Sea of Galilee relative to the Hula.

  11. Can Payments for Ecosystem Services Contribute to Adaptation to Climate Change? Insights from a Watershed in Kenya

    Directory of Open Access Journals (Sweden)

    Isabel van de Sand

    2014-03-01

    Full Text Available Climate change presents new challenges for the management of social-ecological systems and the ecosystem services they provide. Although the instrument of payments for ecosystem services (PES has emerged as a promising tool to safeguard or enhance the provision of ecosystem services (ES, little attention has been paid to the potential role of PES in climate change adaptation. As an external stressor climate change has an impact on the social-ecological system in which PES takes place, including the various actors taking part in the PES scheme. Following a short description of the conceptual link between PES and adaptation to climate change, we provide practical insights into the relationship between PES and adaptation to climate change by presenting results from a case study of a rural watershed in Kenya. Drawing upon the results of a participatory vulnerability assessment among potential ecosystem service providers in Sasumua watershed north of Nairobi, we show that PES can play a role in enhancing adaptation to climate change by influencing certain elements of adaptive capacity and incentivizing adaptation measures. In addition, trade-offs and synergies between proposed measures under PES and adaptation to climate change are identified. Results show that although it may not be possible to establish PES schemes based on water utilities as the sole source of financing, embedding PES in a wider adaptation framework creates an opportunity for the development of watershed PES schemes in Africa and ensures their sustainability. We conclude that there is a need to embed PES in a wider institutional framework and that extra financial resources are needed to foster greater integration between PES and adaptation to climate change. This can be achieved through scaling up PES by bringing in other buyers and additional ecosystem services. PES can achieve important coadaptation benefits, but for more effective adaptation outcomes it needs to be combined

  12. Phytoliths as indicators of plant community change: A case study of the reconstruction of the historical extent of the oak savanna in the Willamette Valley Oregon, USA

    NARCIS (Netherlands)

    Kirchholtes, R.P.J.; van Mourik, J.M.; Johnson, B.R.

    2015-01-01

    The Oregon white oak savanna, once common in Oregon's Willamette Valley, has been reduced to less than 1% of its former extent. For ecological restoration purposes, we used phytolith analysis to establish both historical vegetation composition and structure at the Jim's Creek research site in

  13. Sleeping sickness and its relationship with development and biodiversity conservation in the Luangwa Valley, Zambia.

    Science.gov (United States)

    Anderson, Neil E; Mubanga, Joseph; Machila, Noreen; Atkinson, Peter M; Dzingirai, Vupenyu; Welburn, Susan C

    2015-04-15

    The Luangwa Valley has a long historical association with Human African Trypanosomiasis (HAT) and is a recognised geographical focus of this disease. It is also internationally acclaimed for its high biodiversity and contains many valuable habitats. Local inhabitants of the valley have developed sustainable land use systems in co-existence with wildlife over centuries, based on non-livestock keeping practices largely due to the threat from African Animal Trypanosomiasis. Historical epidemics of human sleeping sickness have influenced how and where communities have settled and have had a profound impact on development in the Valley. Historical attempts to control trypanosomiasis have also had a negative impact on conservation of biodiversity.Centralised control over wildlife utilisation has marginalised local communities from managing the wildlife resource. To some extent this has been reversed by the implementation of community based natural resource management programmes in the latter half of the 20(th) century and the Luangwa Valley provides some of the earliest examples of such programmes. More recently, there has been significant uncontrolled migration of people into the mid-Luangwa Valley driven by pressure on resources in the eastern plateau region, encouragement from local chiefs and economic development in the tourist centre of Mfuwe. This has brought changing land-use patterns, most notably agricultural development through livestock keeping and cotton production. These changes threaten to alter the endemically stable patterns of HAT transmission and could have significant impacts on ecosystem health and ecosystem services.In this paper we review the history of HAT in the context of conservation and development and consider the impacts current changes may have on this complex social-ecological system. We conclude that improved understanding is required to identify specific circumstances where win-win trade-offs can be achieved between the conservation of

  14. Organic Farming and Social-Ecological Resilience: the Alpine Valleys of Sölktäler, Austria

    Directory of Open Access Journals (Sweden)

    Rebecka Milestad

    2003-12-01

    Full Text Available Farming in the Austrian Alps is small in scale and involves a high degree of manual labor. In the face of structural changes in agriculture, alpine farms are finding it increasingly difficult to remain economically viable. Organic farming presents a promising alternative for alpine farmers because it receives considerable financial support under the Common Agricultural Policy of the European Union. Recent years have seen an increase in the number of organic farms in Austria in general, and in alpine areas in particular. Using data from an empirical study carried out in the alpine area of Sölktäler, Austria, this paper examines the issues of how closely the regulations and principles of organic farming match farmers' perspectives on sustainable agriculture and whether or not organic farming is capable of building social-ecological resilience for local farms. Qualitative interviews and a series of workshops were used to learn about farmers' "desired system state" with regard to their region, disturbances to this system, and their perspectives on organic farming. The desired system in Sölktäler as formulated by the farmers depicts a vivid farming community that manages a diverse traditional agricultural landscape and performs a number of ecological services. The desired system and the principles of organic farming have several aspects in common, and many management practices and features of the social system support social-ecological resilience. The vulnerability of farms increases, however, when farmers must deal with structural changes in agriculture, the erosion of traditional ecological knowledge, and societal transformation. In conclusion, organic farming is a tool that can be used to build social-ecological resilience for Sölktäler farms, because it secures economic funding for the area and makes it possible to sustain environmentally benign practices. What remains is the question of whether the farming community is capable of

  15. Medicinal flora and ethnoecological knowledge in the Naran Valley, Western Himalaya, Pakistan.

    Science.gov (United States)

    Khan, Shujaul M; Page, Sue; Ahmad, Habib; Shaheen, Hamayun; Ullah, Zahid; Ahmad, Mushtaq; Harper, David M

    2013-01-10

    Mountain ecosystems all over the world support a high biological diversity and provide home and services to some 12% of the global human population, who use their traditional ecological knowledge to utilise local natural resources. The Himalayas are the world's youngest, highest and largest mountain range and support a high plant biodiversity. In this remote mountainous region of the Himalaya, people depend upon local plant resources to supply a range of goods and services, including grazing for livestock and medicinal supplies for themselves. Due to their remote location, harsh climate, rough terrain and topography, many areas within this region still remain poorly known for its floristic diversity, plant species distribution and vegetation ecosystem service. The Naran valley in the north-western Pakistan is among such valleys and occupies a distinctive geographical location on the edge of the Western Himalaya range, close to the Hindu Kush range to the west and the Karakorum Mountains to the north. It is also located on climatic and geological divides, which further add to its botanical interest. In the present project 120 informants were interviewed at 12 main localities along the 60 km long valley. This paper focuses on assessment of medicinal plant species valued by local communities using their traditional knowledge. Results revealed that 101 species belonging to 52 families (51.5% of the total plants) were used for 97 prominent therapeutic purposes. The largest number of ailments cured with medicinal plants were associated with the digestive system (32.76% responses) followed by those associated with the respiratory and urinary systems (13.72% and 9.13% respectively). The ailments associated with the blood circulatory and reproductive systems and the skin were 7.37%, 7.04% and 7.03%, respectively. The results also indicate that whole plants were used in 54% of recipes followed by rhizomes (21%), fruits (9.5%) and roots (5.5%). Our findings demonstrate the

  16. Ecological restoration experiments (1992-2007) at the G.A. Pearson Natural Area, Fort Valley Experimental Forest (P-53)

    Science.gov (United States)

    Margaret M. Moore; Wallace Covington; Peter Z. Fulé; Stephen C. Hart; Thomas E. Kolb; Joy N. Mast; Stephen S. Sackett; Michael R. Wagner

    2008-01-01

    In 1992 an experiment was initiated at the G. A. Pearson Natural Area on the Fort Valley Experimental Forest to evaluate long-term ecosystem responses to two restoration treatments: thinning only and thinning with prescribed burning. Fifteen years of key findings about tree physiology, herbaceous, and ecosystem responses are presented.

  17. An assessment of landscape characteristics affecting estuarine nitrogen loading in an urban watershed.

    Science.gov (United States)

    Yang, Xiaojun

    2012-02-01

    Exploring the quantitative association between landscape characteristics and the ecological conditions of receiving waters has recently become an emerging area for eco-environmental research. While the landscape-water relationship research has largely targeted on inland aquatic systems, there has been an increasing need to develop methods and techniques that can better work with coastal and estuarine ecosystems. In this paper, we present a geospatial approach to examine the quantitative relationship between landscape characteristics and estuarine nitrogen loading in an urban watershed. The case study site is in the Pensacola estuarine drainage area, home of the city of Pensacola, Florida, USA, where vigorous urban sprawling has prompted growing concerns on the estuarine ecological health. Central to this research is a remote sensor image that has been used to extract land use/cover information and derive landscape metrics. Several significant landscape metrics are selected and spatially linked with the nitrogen loading data for the Pensacola bay area. Landscape metrics and nitrogen loading are summarized by equal overland flow-length rings, and their association is examined by using multivariate statistical analysis. And a stepwise model-building protocol is used for regression designs to help identify significant variables that can explain much of the variance in the nitrogen loading dataset. It is found that using landscape composition or spatial configuration alone can explain most of the nitrogen loading variability. Of all the regression models using metrics derived from a single land use/cover class as the independent variables, the one from the low density urban gives the highest adjusted R-square score, suggesting the impact of the watershed-wide urban sprawl upon this sensitive estuarine ecosystem. Measures towards the reduction of non-point source pollution from urban development are necessary in the area to protect the Pensacola bay ecosystem and its

  18. Watershed manipulation project: Field implementation plan for 1990-1992

    International Nuclear Information System (INIS)

    Erickson, H.; Narahara, A.M.; Rustad, L.E.; Mitchell, M.; Lee, J.

    1993-02-01

    The Bear Brook Watershed in Maine (BBWM) was established in 1986 at Lead Mountain, Maine as part of the Environmental Protection Agency's (EPA) Watershed Manipulation Project (WPM). The goals of the project are to: (1) assess the chemical response of a small upland forested watershed to increased loadings of SO4, (2) determine interactions among biogeochemical mechanisms controlling watershed response to acidic deposition, and (3) test the assumptions of the Direct/Delayed Response Programs (DDRP) computer models of watershed acidification. The document summarizes the field procedures used in the establishment and initial implementation of the plot- and catchment- scale activities at the BBWM, and outlines plans for 1990-02 project activities

  19. Investigation of geology and hydrology of the upper and middle Verde River watershed of central Arizona: a project of the Arizona Rural Watershed Initiative

    Science.gov (United States)

    Woodhouse, Betsy; Flynn, Marilyn E.; Parker, John T.C.; Hoffmann, John P.

    2002-01-01

    The upper and middle Verde River watershed in west-central Arizona is an area rich in natural beauty and cultural history and is an increasingly popular destination for tourists, recreationists, and permanent residents seeking its temperate climate. The diverse terrain of the region includes broad desert valleys, upland plains, forested mountain ranges, narrow canyons, and riparian areas along perennial stream reaches. The area is predominantly in Yavapai County, which in 1999 was the fastest-growing rural county in the United States (Woods and Poole Economics, Inc., 1999); by 2050, the population is projected to more than double. Such growth will increase demands on water resources. The domestic, industrial, and recreational interests of the population will need to be balanced against protection of riparian, woodland, and other natural areas and their associated wildlife and aquatic habitats. Sound management decisions will be required that are based on an understanding of the interactions between local and regional aquifers, surface-water bodies, and recharge and discharge areas. This understanding must include the influence of climate, geology, topography, and cultural development on those components of the hydrologic system. In 1999, the U.S. Geological Survey (USGS), in cooperation with the Arizona Department of Water Resources (ADWR), initiated a regional investigation of the hydrogeology of the upper and middle Verde River watershed. The project is part of the Rural Watershed Initiative (RWI), a program established by the State of Arizona and managed by the ADWR that addresses water supply issues in rural areas while encouraging participation from stakeholder groups in affected communities. The USGS is performing similar RWI investigations on the Colorado Plateau to the north and in the Mogollon Highlands to the east of the Verde River study area (Parker and Flynn, 2000). The objectives of the RWI investigations are to develop: (1) a single database

  20. Terrestrially derived glomalin-related soil protein quality as a potential ecological indicator in a peri-urban watershed.

    Science.gov (United States)

    Sui, Xueyan; Wu, Zhipeng; Lin, Chen; Zhou, Shenglu

    2017-07-01

    Glomalin, which sequesters substantial amounts of carbon, plays a critical role in sustaining terrestrial biome functions and contributes to the fate of many pollutants from terrestrial to aquatic ecosystems. Despite having focused on the amount of glomalin produced, very few attempts have been made to understand how landscapes and environmental conditions influence glomalin composition and characteristics. This study focused on glomalin-related soil protein (GRSP) exported as storm runoff including eroded sediment and water that was collected before flowing to surface waters in a peri-urban watershed. GRSP characteristics were assessed by Bradford protein analysis, fluorescence spectroscopy combined with parallel factor analysis (PARAFAC), and the determination of aromaticity based on the specific ultraviolet absorption value (280 nm) and molecular weight. General linear models (GLMs) was established by integrating microbial activity, land cover, water temperature, precipitation, and other solution chemical properties to explain the variations in GRSP characteristics. Results showed that a higher GRSP concentration in agricultural reference sites was produced in the form of specific materials with low molecular weight and aromaticity, as well as high percentage of C1 and C5 components which indicate microbial-processed sources, relative to urbanized and forested sites. Compared with forested land, urbanized land clearly produced runoff GRSP with low molecular weight and aromaticity, as well as more degradation of humic-like materials (C3 component). The highest GLM explaining 89% of the variables, including significant variables (p watershed management and thus protecting aquatic ecosystems.

  1. Natural and EDTA-complexed lanthanides used as a geochemical probe for aquifers: a case study of Orleans valley's alluvial and karstic aquifers

    International Nuclear Information System (INIS)

    Le Borgne, F.; Treuil, M.; Joron, J.L.; Lepiller, M.

    2005-01-01

    The transit of chemical elements within the different parts of Orleans valley's aquifer is studied by two complementary methods. Those methods rely on the fractionation of lanthanides (Ln) during their migration in natural waters. The first method consists in studying natural lanthanides patterns within the watershed, at its entries and exits. second one lies on multi-tracer experiments with Ln-EDTA complexes. This work is completed through an observation network consisting of 52 piezometers set on a sand and gravel quarry, and the natural entries and exits of the aquifer. Orleans valley's aquifer, which is made of an alluvial watershed lying on a karstic aquifer, is mainly fed by Loire river via a large karstic network. At the entries of the aquifer (Loire river at Jargeau), the Ln concentrations in the dissolved fraction ( heavy Ln. On the other hand, the filtration of alluvial groundwater with high colloids content induces no significant Ln fractionation when the solution contains no strong chelating agent. Hence, the transit of natural and artificial Ln in Orleans valley aquifer can be explained by two complementary processes. (I) Decanting/filtering or, on the opposite, stirring of colloids. Those processes induce no important Ln fractionation. (2) Exchanges of Ln between solute complexes, colloids and sediments due to the presence of strong chelating agents. Those exchanges fractionate the Ln in the order of their stability constants. Considering the natural Ln fractionation that occurs in the Loire river and in the studied aquifer, the carbonates, the stability constants of which follow the order light Ln < heavy Ln, are the best candidates as natural strong chelating agents. From the hydrodynamic point of view, both tracer experiments and natural Ln concentrations show that the transfer of elements within the alluvial watershed is pulsed by the Loire river movements. During an ascent phase, the elements migrate away from and perpendicularly to the karstic

  2. The Effect of Population Variation on the Water Quality of Latian Dam Watershed

    Directory of Open Access Journals (Sweden)

    Mohammad Mirzaie

    2004-05-01

    Full Text Available The increasing expansion of resential areas and urbanization together with industrial and agricultural development in Iran have made it possible to destroy the ecological system of the natural society remarkably. The watershed of Latian Dam , as one of the sources to supply the drinking water of Tehran is of specific geographical and climatic important ,and because it is adjutant to Tehran , it has exprienced considerable change in population and residential expansion. In this research, we have tried to focus on the changes of the quality of water in the Jajrood River , by surveying the population growth of this area, in recent years. Considering the results of this research the number of tourist have also increased remarkably in the last few years and the quality of water has also been changed because of the increasing number of tourist in the region. Therefore ,without regarding the ecological ,hygienically and controlling necessities in this area , there many be dangerous conditions and consequences forced upon one of the important drinking water sources of Tehran  in the near future.

  3. The Impact of Soil Properties on Valley-Bottom Gully Form, Northwest Highlands of Ethiopia.

    Science.gov (United States)

    Amare, S. D.; Langendoen, E. J.; Keesstra, S.; van der Ploeg, M. J.; Steenhuis, T. S.; Tilahun, S. A.

    2017-12-01

    Gully erosion is an important environmental and food security challenge facing the world. Despite the immense damages resulting from gully erosion, comprehensive studies on the processes of gully formation and its management strategies are limited. This is especially true for valley-bottom gullies, which form under different conditions and are caused by different processes than hillslope gullies. A recent review on valley-bottom gully erosion causes and controlling factors identified that gully geomorphological processes, particularly related to gully bank retreat, governed gully occurrence and reclamations. However, most valley-bottom gully erosion studies do not consider gully bank stability and how it is impacted by soil hydrology and soil intrinsic properties. The aim is to analyze these impacts on gully bank retreat in the Koga river watershed, Ethiopia, for Nitisol and Vertisols, using field and numerical modeling approaches. Field observations showed gully network in Vertisols were greater than those in Nitisols. On the other hand, Nitisol gullies are wider and deeper than Vertisols. Monitoring of hydro-meteorological and soil data was started in June 2017 and will continue until the end of the 2017 rainy season (September) and for 2018 rainy periods as well. Thirty-six piezometers were installed at 4m average depth covering an area of 20 km2 near the gully reaches. Ground anchors were used to measure soil swelling and shrinkage. Soil moisture content and potential were measured using GS1 Soil Moisture sensors and MPS-6 Water Potential sensors. Gully bank soil physicochemical and engineering properties have been sampled and analyzed. Preliminary results from the early portion of the rainy season showed that most piezometers were already filled up with water. However, relatively deep (2m) water tables were recorded in piezometers located near the gully banks. The soil matric potential dropped from the onset of the rainy season (-6800 kPa ) towards the middle

  4. Water resources development in Santa Clara Valley, California: insights into the human-hydrologic relationship

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Jesse L. [Univ. of California, Berkeley, CA (United States)

    2000-06-01

    Groundwater irrigation is critical to food production and, in turn, to humankind's relationship with its environment. The development of groundwater in Santa Clara Valley, California during the early twentieth century is instructive because (1) responses to unsustainable resource use were largely successful; (2) the proposals for the physical management of the water, although not entirely novel, incorporated new approaches which reveal an evolving relationship between humans and the hydrologic cycle; and (3) the valley serves as a natural laboratory where natural (groundwater basin, surface watershed) and human (county, water district) boundaries generally coincide. Here, I investigate how water resources development and management in Santa Clara Valley was influenced by, and reflective of, a broad understanding of water as a natural resource, including scientific and technological innovations, new management approaches, and changing perceptions of the hydrologic cycle. Market demands and technological advances engendered reliance on groundwater. This, coupled with a series of dry years and laissez faire government policies, led to overdraft. Faith in centralized management and objective engineering offered a solution to concerns over resource depletion, and a group dominated by orchardists soon organized, fought for a water conservation district, and funded an investigation to halt the decline of well levels. Engineer Fred Tibbetts authored an elaborate water salvage and recharge plan that optimized the local water resources by integrating multiple components of the hydrologic cycle. Informed by government investigations, groundwater development in Southern California, and local water law cases, it recognized the limited surface storage possibilities, the spatial and temporal variability, the relatively closed local hydrology, the interconnection of surface and subsurface waters, and the value of the groundwater basin for its storage, transportation, and

  5. Multiple Scales of Control on the Structure and Spatial Distribution of Woody Vegetation in African Savanna Watersheds.

    Directory of Open Access Journals (Sweden)

    Nicholas R Vaughn

    Full Text Available Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50-450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques.

  6. Geology of the Teakettle Creek watersheds

    Science.gov (United States)

    Robert S. LaMotte

    1937-01-01

    The Teakettle Creek Experimental Watersheds lie for the most part on quartzites of probable Triassic age. However one of the triplicate drainages has a considerable acreage developed on weathered granodiorite. Topography is relatively uniform and lends itself to triplicate watershed studies. Locations for dams are suitable if certain engineering precautions...

  7. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1

    International Nuclear Information System (INIS)

    1996-01-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV

  8. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV.

  9. Valuing the effects of hydropower development on watershed ecosystem services: Case studies in the Jiulong River Watershed, Fujian Province, China

    Science.gov (United States)

    Wang, Guihua; Fang, Qinhua; Zhang, Luoping; Chen, Weiqi; Chen, Zhenming; Hong, Huasheng

    2010-02-01

    Hydropower development brings many negative impacts on watershed ecosystems which are not fully integrated into current decision-making largely because in practice few accept the cost and benefit beyond market. In this paper, a framework was proposed to valuate the effects on watershed ecosystem services caused by hydropower development. Watershed ecosystem services were classified into four categories of provisioning, regulating, cultural and supporting services; then effects on watershed ecosystem services caused by hydropower development were identified to 21 indicators. Thereafter various evaluation techniques including the market value method, opportunity cost approach, project restoration method, travel cost method, and contingent valuation method were determined and the models were developed to valuate these indicators reflecting specific watershed ecosystem services. This approach was applied to three representative hydropower projects (Daguan, Xizaikou and Tiangong) of Jiulong River Watershed in southeast China. It was concluded that for hydropower development: (1) the value ratio of negative impacts to positive benefits ranges from 64.09% to 91.18%, indicating that the negative impacts of hydropower development should be critically studied during its environmental administration process; (2) the biodiversity loss and water quality degradation (together accounting for 80-94%) are the major negative impacts on watershed ecosystem services; (3) the average environmental cost per unit of electricity is up to 0.206 Yuan/kW h, which is about three quarters of its on-grid power tariff; and (4) the current water resource fee accounts for only about 4% of its negative impacts value, therefore a new compensatory method by paying for ecosystem services is necessary for sustainable hydropower development. These findings provide a clear picture of both positive and negative effects of hydropower development for decision-makers in the monetary term, and also provide a

  10. PROJECTS PORTOFOLIO FOR ECOLOGICAL RECONSTRUCTION OF THE IER VALLEZ AND THEIR FUNDING

    Directory of Open Access Journals (Sweden)

    Doru Ioan Ardelean

    2013-12-01

    Full Text Available The Ier Valley has been taken into the survey as it is drained by a polluted river and strongly affected by sewerages and inning, with the aim to establish ecological reabilitation measures. In this view, a SWOT analysis was carried out, which highlighted a number of weaknessess regarding the ecological status of the river, and in order to remove them, a portofolio of 14 environment projects was drawn. Their implementation would require over than 40 millions lei that means in a proportion of 91% other resources, especially European Funds. The environment investment projects were evaluated at a total economical value of about 40 millions lei. Their funding was conceived in partnership terms and accessing funds from several sources, mainly on short term.

  11. Research on Eco-environment Carrying Capacity of Nanyi Valley Scenic Area%南伊沟景区生态环境承载力研究

    Institute of Scientific and Technical Information of China (English)

    包杰; 杨小林; 王忠斌

    2015-01-01

    Eco-environment carrying capacity of Nanyi Valley Scenic Area in Milin County,Linzhi area,Tibet was studied, the results showed that the recent ecological footprint of the scenic area was 674.70 hm2,effective ecological carrying capacity was 841.13 hm2,and ecological surplus was 166.43 hm2. In terms of current and short-term planning of the scenic area,tourism activities will not bring serious damages to the ecological environment,and ecological footprint of the study area can be further developed. But from the perspective of ecological carrying capacity,the scenic area needs a proper long-term planning,so the paper proposes the sustainable development strategies for the Nanyi Valley Scenic Area. It provides the theoretic basis for the reasonable planning,effective management and sustainable development of the scenic area.%对西藏林芝地区米林县南伊沟景区进行生态环境承载力研究,结果表明,近期南伊沟景区生态足迹量为674.70 hm2,有效生态承载力841.13 hm2,生态盈余166.43 hm2。就景区目前及近期规划来说,开展旅游活动不会对景区生态环境产生大的影响,景区生态足迹还可进一步发展。但从生态承载力方面考虑,景区应特别注意远期规划。提出了南伊沟景区可持续发展对策。

  12. Sensitivity of agricultural runoff loads to rising levels of CO{sub 2} and climate change in the San Joaquin Valley watershed of California

    Energy Technology Data Exchange (ETDEWEB)

    Ficklin, Darren L.; Luo Yuzhou; Luedeling, Eike; Gatzke, Sarah E. [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Zhang Minghua, E-mail: mhzhang@ucdavis.ed [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States)

    2010-01-15

    The Soil and Water Assessment Tool (SWAT) was used to assess the impact of climate change on sediment, nitrate, phosphorus and pesticide (diazinon and chlorpyrifos) runoff in the San Joaquin watershed in California. This study used modeling techniques that include variations of CO{sub 2}, temperature, and precipitation to quantify these responses. Precipitation had a greater impact on agricultural runoff compared to changes in either CO{sub 2} concentration or temperature. Increase of precipitation by +-10% and +-20% generally changed agricultural runoff proportionally. Solely increasing CO{sub 2} concentration resulted in an increase in nitrate, phosphorus, and chlorpyrifos yield by 4.2, 7.8, and 6.4%, respectively, and a decrease in sediment and diazinon yield by 6.3 and 5.3%, respectively, in comparison to the present-day reference scenario. Only increasing temperature reduced yields of all agricultural runoff components. The results suggest that agricultural runoff in the San Joaquin watershed is sensitive to precipitation, temperature, and CO{sub 2} concentration changes. - Agricultural runoff is significantly affected by changes in precipitation, temperature, and atmospheric CO{sub 2} concentration.

  13. 5. Basin assessment and watershed analysis

    Science.gov (United States)

    Leslie M. Reid; Robert R. Ziemer

    1994-01-01

    Abstract - Basin assessment is an important component of the President's Forest Plan, yet it has received little attention. Basin assessments are intended both to guide watershed analyses by specifying types of issues and interactions that need to be understood, and, eventually, to integrate the results of watershed analyses occurring within a river basin....

  14. Turbidity Threshold sampling in watershed research

    Science.gov (United States)

    Rand Eads; Jack Lewis

    2003-01-01

    Abstract - When monitoring suspended sediment for watershed research, reliable and accurate results may be a higher priority than in other settings. Timing and frequency of data collection are the most important factors influencing the accuracy of suspended sediment load estimates, and, in most watersheds, suspended sediment transport is dominated by a few, large...

  15. Watershed Planning Basins

    Data.gov (United States)

    Vermont Center for Geographic Information — The Watershed Planning Basin layer is part of a larger dataset contains administrative boundaries for Vermont's Agency of Natural Resources. The dataset includes...

  16. Increasing a Community's Knowledge about Drought, Watershed Ecosystems, and Water Quality Through Educational Activities Added to Coastal Cleanup Day Events

    Science.gov (United States)

    Brinker, R.; Allen, L.; Cole, P.; Rho, C.

    2016-12-01

    International Coastal Cleanup Day, held each September, is an effective campaign to bring volunteers together to clean trash from beaches and waterways and document results. Over 500,000 participants cleared over 9 million pounds of trash in 2015. To build on the enthusiasm for this event, the city of Livermore, California's Water Resource Department, the Livermore Valley Joint Unified School District, Livermore Area Recreation and Parks Department created a water education program to embed within the city's Coastal Cleanup Day events. Goals of the education program are to increase awareness of the local watershed and its geographic reach, impacts of climate change and drought on local water supplies, pollution sources and impacts of local pollution on the ocean, positive impacts of a recent plastic bag ban, water quality assessment, and action steps citizens can take to support a healthy watershed. Volunteers collect and test water samples (when water is in the creek) using modified GLOBE and World Water Monitoring Day protocols. Test results are uploaded to the World Water Monitoring Day site and documented on the program web site. Volunteers report that they did not know about watersheds, impacts of local pollution, and water quality components before the education program. Volunteers are encouraged to adopt a creek spot for one year, and continue to collect and document trash. High school and middle school science classes added the water quality testing into curriculum, and regularly visit creek sites to clean the spots and monitor habitats. Each year for the past five years, about 300 volunteers have worked on creek clean-up events, 20 have adopted creek sites, and collected over 4,000 gallons of trash annually. As a result of these efforts, sites have been downgraded from a trash hot spot of concern. Strategies will be shared to expand an established (or start a new) Coastal Cleanup Day event into a successful watershed and climate awareness citizen science

  17. Modeling pesticide loadings from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT

    Science.gov (United States)

    Chen, H.; Zhang, M.

    2016-12-01

    The Sacramento-San Joaquin Delta is an ecologically rich, hydrologically complex area that serves as the hub of California's water supply. However, pesticides have been routinely detected in the Delta waterways, with concentrations exceeding the benchmark for the protection of aquatic life. Pesticide loadings into the Delta are partially attributed to the San Joaquin watershed, a highly productive agricultural watershed located upstream. Therefore, this study aims to simulate pesticide loadings to the Delta by applying the Soil and Water Assessment Tool (SWAT) model to the San Joaquin watershed, under the support of the USDA-ARS Delta Area-Wide Pest Management Program. Pesticide use patterns in the San Joaquin watershed were characterized by combining the California Pesticide Use Reporting (PUR) database and GIS analysis. Sensitivity/uncertainty analyses and multi-site calibration were performed in the simulation of stream flow, sediment, and pesticide loads along the San Joaquin River. Model performance was evaluated using a combination of graphic and quantitative measures. Preliminary results indicated that stream flow was satisfactorily simulated along the San Joaquin River and the major eastern tributaries, whereas stream flow was less accurately simulated in the western tributaries, which are ephemeral small streams that peak during winter storm events and are mainly fed by irrigation return flow during the growing season. The most sensitive parameters to stream flow were CN2, SOL_AWC, HRU_SLP, SLSUBBSN, SLSOIL, GWQMN and GW_REVAP. Regionalization of parameters is important as the sensitivity of parameters vary significantly spatially. In terms of evaluation metric, NSE tended to overrate model performance when compared to PBIAS. Anticipated results will include (1) pesticide use pattern analysis, (2) calibration and validation of stream flow, sediment, and pesticide loads, and (3) characterization of spatial patterns and temporal trends of pesticide yield.

  18. Characterization of Legionella Species from Watersheds in British Columbia, Canada

    Science.gov (United States)

    Peabody, Michael A.; Caravas, Jason A.; Morrison, Shatavia S.; Mercante, Jeffrey W.; Prystajecky, Natalie A.; Raphael, Brian H.

    2017-01-01

    ABSTRACT Legionella spp. present in some human-made water systems can cause Legionnaires’ disease in susceptible individuals. Although legionellae have been isolated from the natural environment, variations in the organism’s abundance over time and its relationship to aquatic microbiota are poorly understood. Here, we investigated the presence and diversity of legionellae through 16S rRNA gene amplicon and metagenomic sequencing of DNA from isolates collected from seven sites in three watersheds with varied land uses over a period of 1 year. Legionella spp. were found in all watersheds and sampling sites, comprising up to 2.1% of the bacterial community composition. The relative abundance of Legionella tended to be higher in pristine sites than in sites affected by agricultural activity. The relative abundance levels of Amoebozoa, some of which are natural hosts of legionellae, were similarly higher in pristine sites. Compared to other bacterial genera detected, Legionella had both the highest richness and highest alpha diversity. Our findings indicate that a highly diverse population of legionellae may be found in a variety of natural aquatic sources. Further characterization of these diverse natural populations of Legionella will help inform prevention and control efforts aimed at reducing the risk of Legionella colonization of built environments, which could ultimately decrease the risk of human disease. IMPORTANCE Many species of Legionella can cause Legionnaires’ disease, a significant cause of bacterial pneumonia. Legionella in human-made water systems such as cooling towers and building plumbing systems are the primary sources of Legionnaires’ disease outbreaks. In this temporal study of natural aquatic environments, Legionella relative abundance was shown to vary in watersheds associated with different land uses. Analysis of the Legionella sequences detected at these sites revealed highly diverse populations that included potentially novel

  19. Willamette Valley Ecoregion: Chapter 3 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Wilson, Tamara S.; Sorenson, Daniel G.

    2012-01-01

    The Willamette Valley Ecoregion (as defined by Omernik, 1987; U.S. Environmental Protection Agency, 1997) covers approximately 14,458 km² (5,582 mi2), making it one of the smallest ecoregions in the conterminous United States. The long, alluvial Willamette Valley, which stretches north to south more than 193 km and ranges from 32 to 64 km wide, is nestled between the sedimentary and metamorphic Coast Ranges (Coast Range Ecoregion) to the west and the basaltic Cascade Range (Cascades Ecoregion) to the east (fig. 1). The Lewis and Columbia Rivers converge at the ecoregion’s northern boundary in Washington state; however, the majority of the ecoregion falls within northwestern Oregon. Interstate 5 runs the length of the valley to its southern boundary with the Klamath Mountains Ecoregion. Topography here is relatively flat, with elevations ranging from sea level to 122 m. This even terrain, coupled with mild, wet winters, warm, dry summers, and nutrient-rich soil, makes the Willamette Valley the most important agricultural region in Oregon. Population centers are concentrated along the valley floor. According to estimates from the Oregon Department of Fish and Wildlife (2006), over 2.3 million people lived in Willamette Valley in 2000. Portland, Oregon, is the largest city, with 529,121 residents (U.S. Census Bureau, 2000). Other sizable cities include Eugene, Oregon; Salem (Oregon’s state capital); and Vancouver, Washington. Despite the large urban areas dotting the length of the Willamette Valley Ecoregion, agriculture and forestry products are its economic foundation (figs. 2,3). The valley is a major producer of grass seed, ornamental plants, fruits, nuts, vegetables, and grains, as well as poultry, beef, and dairy products. The forestry and logging industries also are primary employers of the valley’s rural residents (Rooney, 2008). These activities have affected the watershed significantly, with forestry and agricultural runoff contributing to river

  20. Microscopic Identification of Prokaryotes in Modern and Ancient Halite, Saline Valley and Death Valley, California

    Science.gov (United States)

    Schubert, Brian A.; Lowenstein, Tim K.; Timofeeff, Michael N.

    2009-06-01

    Primary fluid inclusions in halite crystallized in Saline Valley, California, in 1980, 2004-2005, and 2007, contain rod- and coccoid-shaped microparticles the same size and morphology as archaea and bacteria living in modern brines. Primary fluid inclusions from a well-dated (0-100,000 years), 90 m long salt core from Badwater Basin, Death Valley, California, also contain microparticles, here interpreted as halophilic and halotolerant prokaryotes. Prokaryotes are distinguished from crystals on the basis of morphology, optical properties (birefringence), and uniformity of size. Electron micrographs of microparticles from filtered modern brine (Saline Valley), dissolved modern halite crystals (Saline Valley), and dissolved ancient halite crystals (Death Valley) support in situ microscopic observations that prokaryotes are present in fluid inclusions in ancient halite. In the Death Valley salt core, prokaryotes in fluid inclusions occur almost exclusively in halite precipitated in perennial saline lakes 10,000 to 35,000 years ago. This suggests that trapping and preservation of prokaryotes in fluid inclusions is influenced by the surface environment in which the halite originally precipitated. In all cases, prokaryotes in fluid inclusions in halite from the Death Valley salt core are miniaturized (<1 μm diameter cocci, <2.5 μm long, very rare rod shapes), which supports interpretations that the prokaryotes are indigenous to the halite and starvation survival may be the normal response of some prokaryotes to entrapment in fluid inclusions for millennia. These results reinforce the view that fluid inclusions in halite and possibly other evaporites are important repositories of microbial life and should be carefully examined in the search for ancient microorganisms on Earth, Mars, and elsewhere in the Solar System.

  1. Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.

    Science.gov (United States)

    Yang, Yuting; Jiang, Hua; Hang, Zhi Hong

    2018-01-25

    Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.

  2. Tennessee Valley Region: a year 2000 profile

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    A study was undertaken to determine the potential radiological implications of nuclear facilities in the combined watersheds of the Tennessee and Cumberland rivers, an area covering portions of 7 states of varied topography. The regional population in 1970 was about 4.6 million and is expected to increase to about 7 million by the year 2000. A 1973 projection estimated the installed electric generating capacity of the region to increase from a 1970 value of 45,000 megawatts to a total of 222,000 megawatts by the year 2000. In that year, about 144,000 megawatts were projected to be nuclear plants. The profile of the Tennessee Valley Region in the year 2000, as drawn from this report, contains the essential data for calculation of the radiological dose from operation of nuclear facilities in that year. Those calculations are reported in the companion document, DOE/ET-0064/2. Specifically, Volume I establishes the parameters describing where the people live, what they eat, the activities in which they engage, and the environmental surroundings that enable an evaluation of the potential radiation dose to the population. Airborne radionuclides from nuclear facilities in this zone may enter the study area and be deposited on the ground, on growing food, and on water surfaces. Consideration was not given to waterborne radionuclides external to the study region. 17 references. (MCW)

  3. Tennessee Valley Region: a year 2000 profile

    International Nuclear Information System (INIS)

    1978-06-01

    A study was undertaken to determine the potential radiological implications of nuclear facilities in the combined watersheds of the Tennessee and Cumberland rivers, an area covering portions of 7 states of varied topography. The regional population in 1970 was about 4.6 million and is expected to increase to about 7 million by the year 2000. A 1973 projection estimated the installed electric generating capacity of the region to increase from a 1970 value of 45,000 megawatts to a total of 222,000 megawatts by the year 2000. In that year, about 144,000 megawatts were projected to be nuclear plants. The profile of the Tennessee Valley Region in the year 2000, as drawn from this report, contains the essential data for calculation of the radiological dose from operation of nuclear facilities in that year. Those calculations are reported in the companion document, DOE/ET-0064/2. Specifically, Volume I establishes the parameters describing where the people live, what they eat, the activities in which they engage, and the environmental surroundings that enable an evaluation of the potential radiation dose to the population. Airborne radionuclides from nuclear facilities in this zone may enter the study area and be deposited on the ground, on growing food, and on water surfaces. Consideration was not given to waterborne radionuclides external to the study region. 17 references

  4. [Watershed water environment pollution models and their applications: a review].

    Science.gov (United States)

    Zhu, Yao; Liang, Zhi-Wei; Li, Wei; Yang, Yi; Yang, Mu-Yi; Mao, Wei; Xu, Han-Li; Wu, Wei-Xiang

    2013-10-01

    Watershed water environment pollution model is the important tool for studying watershed environmental problems. Through the quantitative description of the complicated pollution processes of whole watershed system and its parts, the model can identify the main sources and migration pathways of pollutants, estimate the pollutant loadings, and evaluate their impacts on water environment, providing a basis for watershed planning and management. This paper reviewed the watershed water environment models widely applied at home and abroad, with the focuses on the models of pollutants loading (GWLF and PLOAD), water quality of received water bodies (QUAL2E and WASP), and the watershed models integrated pollutant loadings and water quality (HSPF, SWAT, AGNPS, AnnAGNPS, and SWMM), and introduced the structures, principles, and main characteristics as well as the limitations in practical applications of these models. The other models of water quality (CE-QUAL-W2, EFDC, and AQUATOX) and watershed models (GLEAMS and MIKE SHE) were also briefly introduced. Through the case analysis on the applications of single model and integrated models, the development trend and application prospect of the watershed water environment pollution models were discussed.

  5. Influence of declining mean annual rainfall on the behavior and yield of sediment and particulate organic carbon from tropical watersheds

    Science.gov (United States)

    Strauch, Ayron M.; MacKenzie, Richard A.; Giardina, Christian P.; Bruland, Gregory L.

    2018-04-01

    capture the high variability in tropical streamflow. Taken together, results indicate that declines in MAR can have contrasting effects on hydrological processes in tropical watersheds, with consequences for instream ecology, downstream water users, and nearshore habitat.

  6. Watershed and Economic Data InterOperability (WEDO): Facilitating Discovery, Evaluation and Integration through the Sharing of Watershed Modeling Data

    Science.gov (United States)

    Watershed and Economic Data InterOperability (WEDO) is a system of information technologies designed to publish watershed modeling studies for reuse. WEDO facilitates three aspects of interoperability: discovery, evaluation and integration of data. This increased level of interop...

  7. Optimal Reoperation of Multi-Reservoirs for Integrated Watershed Management with Multiple Benefits

    Directory of Open Access Journals (Sweden)

    Xinyi Xu

    2014-04-01

    Full Text Available Constructing reservoirs can make more efficient use of water resources for human society. However, the negative impacts of these projects on the environment are often ignored. Optimal reoperation of reservoirs, which considers not only in socio-economic values but also environmental benefits, is increasingly important. A model of optimal reoperation of multi-reservoirs for integrated watershed management with multiple benefits was proposed to alleviate the conflict between water use and environmental deterioration. The social, economic, water quality and ecological benefits were respectively taken into account as the scheduling objectives and quantified according to economic models. River minimum ecological flows and reservoir water levels based on flood control were taken as key constraint conditions. Feasible search discrete differential dynamic programming (FS-DDDP was used to run the model. The proposed model was used in the upstream of the Nanpan River, to quantitatively evaluate the difference between optimal reoperation and routine operation. The results indicated that the reoperation could significantly increase the water quality benefit and have a minor effect on the benefits of power generation and irrigation under different hydrological years. The model can be readily adapted to other multi-reservoir systems for water resources management.

  8. Mechanical control over valley magnetotransport in strained graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ning, E-mail: maning@stu.xjtu.edu.cn [Department of Physics, MOE Key Laboratory of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Shengli, E-mail: zhangsl@mail.xjtu.edu.cn [Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Daqing, E-mail: liudq@cczu.edu.cn [School of Mathematics and Physics, Changzhou University, Changzhou 213164 (China)

    2016-05-06

    Recent experiments report that the graphene exhibits Landau levels (LLs) that form in the presence of a uniform strain pseudomagnetic field with magnitudes up to hundreds of tesla. We further reveal that the strain removes the valley degeneracy in LLs, and leads to a significant valley polarization with inversion symmetry broken. This accordingly gives rise to the well separated valley Hall plateaus and Shubnikov–de Haas oscillations. These effects are absent in strainless graphene, and can be used to generate and detect valley polarization by mechanical means, forming the basis for the new paradigm “valleytronics” applications. - Highlights: • We explore the mechanical strain effects on the valley magnetotransport in graphene. • We analytically derive the dc collisional and Hall conductivities under strain. • The strain removes the valley degeneracy in Landau levels. • The strain causes a significant valley polarization with inversion symmetry broken. • The strain leads to the well separated valley Hall and Shubnikov–de Haas effects.

  9. Subdivision of Texas watersheds for hydrologic modeling.

    Science.gov (United States)

    2009-06-01

    The purpose of this report is to present a set of findings and examples for subdivision of watersheds for hydrologic modeling. Three approaches were used to examine the impact of watershed subdivision on modeled hydrologic response: (1) An equal-area...

  10. Stormwater Impaired Watersheds

    Data.gov (United States)

    Vermont Center for Geographic Information — Stormwater impaired watersheds occuring on both the Priority Waters (Part D - Completed TMDL) and 303(d) list of waters (Part A - need TMDL) The Vermont State...

  11. Watershed Modeling Applications with the Open-Access Modular Distributed Watershed Educational Toolbox (MOD-WET) and Introductory Hydrology Textbook

    Science.gov (United States)

    Huning, L. S.; Margulis, S. A.

    2014-12-01

    Traditionally, introductory hydrology courses focus on hydrologic processes as independent or semi-independent concepts that are ultimately integrated into a watershed model near the end of the term. When an "off-the-shelf" watershed model is introduced in the curriculum, this approach can result in a potential disconnect between process-based hydrology and the inherent interconnectivity of processes within the water cycle. In order to curb this and reduce the learning curve associated with applying hydrologic concepts to complex real-world problems, we developed the open-access Modular Distributed Watershed Educational Toolbox (MOD-WET). The user-friendly, MATLAB-based toolbox contains the same physical equations for hydrological processes (i.e. precipitation, snow, radiation, evaporation, unsaturated flow, infiltration, groundwater, and runoff) that are presented in the companion e-textbook (http://aqua.seas.ucla.edu/margulis_intro_to_hydro_textbook.html) and taught in the classroom. The modular toolbox functions can be used by students to study individual hydrologic processes. These functions are integrated together to form a simple spatially-distributed watershed model, which reinforces a holistic understanding of how hydrologic processes are interconnected and modeled. Therefore when watershed modeling is introduced, students are already familiar with the fundamental building blocks that have been unified in the MOD-WET model. Extensive effort has been placed on the development of a highly modular and well-documented code that can be run on a personal computer within the commonly-used MATLAB environment. MOD-WET was designed to: 1) increase the qualitative and quantitative understanding of hydrological processes at the basin-scale and demonstrate how they vary with watershed properties, 2) emphasize applications of hydrologic concepts rather than computer programming, 3) elucidate the underlying physical processes that can often be obscured with a complicated

  12. Landslides and sediment budgets in four watersheds in eastern Puerto Rico: Chapter F in Water quality and landscape processes of four watersheds in eastern Puerto Rico

    Science.gov (United States)

    Larsen, Matthew C.; Murphy, Sheila F.; Stallard, Robert F.

    2012-01-01

    The low-latitude regions of the Earth are undergoing profound, rapid landscape change as forests are converted to agriculture to support growing population. Understanding the effects of these land-use changes requires analysis of watershed-scale geomorphic processes to better inform and manage this usually disorganized process. The investigation of hillslope erosion and the development of sediment budgets provides essential information for resource managers. Four small, montane, humid-tropical watersheds in the Luquillo Experimental Forest and nearby Río Grande de Loíza watershed, Puerto Rico (18° 20' N., 65° 45' W.), were selected to compare and contrast the geomorphic effects of land use and bedrock geology. Two of the watersheds are underlain largely by resistant Cretaceous volcaniclastic rocks but differ in land use and mean annual runoff: the Mameyes watershed, with predominantly primary forest cover and runoff of 2,750 millimeters per year, and the Canóvanas watershed, with mixed secondary forest and pasture and runoff of 970 millimeters per year. The additional two watersheds are underlain by relatively erodible granitic bedrock: the forested Icacos watershed, with runoff of 3,760 millimeters per year and the agriculturally developed Cayaguás watershed, with a mean annual runoff of 1,620 millimeters per year. Annual sediment budgets were estimated for each watershed using landslide, slopewash, soil creep, treethrow, suspended sediment, and streamflow data. The budgets also included estimates of sediment storage in channel beds, bars, floodplains, and in colluvial deposits. In the two watersheds underlain by volcaniclastic rocks, the forested Mameyes and the developed Canóvanas watersheds, landslide frequency (0.21 and 0.04 landslides per square kilometer per year, respectively), slopewash (5 and 30 metric tons per square kilometer per year), and suspended sediment yield (325 and 424 metric tons per square kilometer per year), were lower than in the

  13. A Stochastic Water Balance Framework for Lowland Watersheds

    Science.gov (United States)

    Thompson, Sally; MacVean, Lissa; Sivapalan, Murugesu

    2017-11-01

    The water balance dynamics in lowland watersheds are influenced not only by local hydroclimatic controls on energy and water availability, but also by imports of water from the upstream watershed. These imports result in a stochastic extent of inundation in lowland watersheds that is determined by the local flood regime, watershed topography, and the rate of loss processes such as drainage and evaporation. Thus, lowland watershed water balances depend on two stochastic processes—rainfall and local inundation dynamics. Lowlands are high productivity environments that are disproportionately associated with urbanization, high productivity agriculture, biodiversity, and flood risk. Consequently, they are being rapidly altered by human development—generally with clear economic and social motivation—but also with significant trade-offs in ecosystem services provision, directly related to changes in the components and variability of the lowland water balance. We present a stochastic framework to assess the lowland water balance and its sensitivity to two common human interventions—replacement of native vegetation with alternative land uses, and construction of local flood protection levees. By providing analytical solutions for the mean and PDF of the water balance components, the proposed framework provides a mechanism to connect human interventions to hydrologic outcomes, and, in conjunction with ecosystem service production estimates, to evaluate trade-offs associated with lowland watershed development.

  14. [Ethnic conflicts and environmental degradation in Central Asia. The Ferghana valley and northern Kazakhstan].

    Science.gov (United States)

    De Cordier, B

    1996-01-01

    This work seeks to demonstrate that the combination of ecological degradation, demographic pressure, and ethnic heterogeneity in Central Asia constitute a serious threat to the future stability of the region. The predominantly rural Ferghana Valley and Northern Kazakhstan suffer from shortages of water and land and from unemployment that leads to extensive out-migration to cities suffering from decline in their Soviet-era industries. The problem in the Ferghana Valley began with Tsarist conquest of the valley in 1876 and the subsequent imposition of cotton cultivation, which was greatly expanded by the Soviet Union. The Ferghana Valley, despite being a natural unit, was divided between Uzbekistan, Tajikistan, and Kyrgyzstan in the 1920s and 1930s, and remains divided between the independent states. The current population of 11 million is ethnically diverse, with Uzbeks in the majority and increasing most rapidly. Immigration from the Caucasus since 1950 added to the tension. Future peace will depend on such factors as whether the neo-Communist political regime chooses to incite ethnic hostilities, the manner in which land is redistributed, and the outcome of struggles for control of the flourishing narcotics trade. The northern Kazakhstan region was designated a pioneer wheat-growing region by Soviet planners in 1954. Russian and Ukrainian migrants established between 1954 and 1956 are today the predominant population sector, but feel their privileged position threatened by nationalist policies making Kazakh the official language and giving preference in employment to Kazakhs. Resettlement of Kazakhs from Mongolia, China, and Afghanistan in the region and the high Kazakh birth rate increase tensions. Grain production initially grew rapidly, but the mediocre soil and erosion-inducing constant dry winds have caused production to stagnate or decline. Regional disputes within Kazakhstan complicate the situation. Northern Kazakhstan, with its industrial development, is

  15. Watershed analysis on federal lands of the Pacific northwest

    Science.gov (United States)

    Leslie M. Reid; Robert R. Ziemer; Michael J. Furniss

    1994-01-01

    Abstract - Watershed analysis-the evaluation of processes that affect ecosystems and resources in a watershed-is now being carried out by Federal land-management and regulatory agencies on Federal lands of the Pacific Northwest. Methods used differ from those of other implementations of watershed analysis because objectives and opportunities differ. In particular,...

  16. Ecosystem services of human-dominated watersheds and land use influences: a case study from the Dianchi Lake watershed in China.

    Science.gov (United States)

    Hou, Ying; Li, Bo; Müller, Felix; Chen, Weiping

    2016-11-01

    Watersheds provide multiple ecosystem services. Ecosystem service assessment is a promising approach to investigate human-environment interaction at the watershed scale. The spatial characteristics of ecosystem services are closely related to land use statuses in human-dominated watersheds. This study aims to investigate the effects of land use on the spatial variations of ecosystem services at the Dianchi Lake watershed in Southwest China. We investigated the spatial variations of six ecosystem services-food supply, net primary productivity (NPP), habitat quality, evapotranspiration, water yield, and nitrogen retention. These services were selected based on their significance at the Dianchi Lake watershed and the availability of their data. The quantification of these services was based on modeling, value transference, and spatial analysis in combination with biophysical and socioeconomic data. Furthermore, we calculated the values of ecosystem services provided by different land use types and quantified the correlations between ecosystem service values and land use area proportions. The results show considerable spatial variations in the six ecosystem services associated with land use influences in the Dianchi Lake watershed. The cropland and forest land use types had predominantly positive influences on food productivity and NPP, respectively. The rural residential area and forest land use types reduced and enhanced habitat quality, respectively; these influences were identical to those of evapotranspiration. Urban area and rural residential area exerted significantly positive influences on water yield. In contrast, water yield was negatively correlated with forest area proportion. Finally, cropland and forest had significantly positive and negative influences, respectively, on nitrogen retention. Our study emphasizes the importance of consideration of the influences from land use composition and distribution on ecosystem services for managing the ecosystems of

  17. Nitrate in watersheds: straight from soils to streams?

    Science.gov (United States)

    Sudduth, Elizabeth B.; Perakis, Steven S.; Bernhardt, Emily S.

    2013-01-01

    Human activities are rapidly increasing the global supply of reactive N and substantially altering the structure and hydrologic connectivity of managed ecosystems. There is long-standing recognition that N must be removed along hydrologic flowpaths from uplands to streams, yet it has proven difficult to assess the generality of this removal across ecosystem types, and whether these patterns are influenced by land-use change. To assess how well upland nitrate (NO3-) loss is reflected in stream export, we gathered information from >50 watershed biogeochemical studies that reported nitrate concentrations ([NO3-]) for stream water and for either upslope soil solution or groundwater NO3- to examine whether stream export of NO3- accurately reflects upland NO3- losses. In this dataset, soil solution and streamwater [NO3-] were correlated across 40 undisturbed forest watersheds, with streamwater [NO3-] typically half (median = 50%) soil solution [NO3-]. A similar relationship was seen in 10 disturbed forest watersheds. However, for 12 watersheds with significant agricultural or urban development, the intercept and slope were both significantly higher than the relationship seen in forest watersheds. Differences in concentration between soil solution or groundwater and stream water may be attributed to biological uptake, microbial processes including denitrification, and/or preferential flow routing. The results of this synthesis are consistent with the hypotheses that undisturbed watersheds have a significant capacity to remove nitrate after it passes below the rooting zone and that land use changes tend to alter the efficiency or the length of watershed flowpaths, leading to reductions in nitrate removal and increased stream nitrate concentrations.

  18. Daily Streamflow Predictions in an Ungauged Watershed in Northern California Using the Precipitation-Runoff Modeling System (PRMS): Calibration Challenges when nearby Gauged Watersheds are Hydrologically Dissimilar

    Science.gov (United States)

    Dhakal, A. S.; Adera, S.

    2017-12-01

    Accurate daily streamflow prediction in ungauged watersheds with sparse information is challenging. The ability of a hydrologic model calibrated using nearby gauged watersheds to predict streamflow accurately depends on hydrologic similarities between the gauged and ungauged watersheds. This study examines daily streamflow predictions using the Precipitation-Runoff Modeling System (PRMS) for the largely ungauged San Antonio Creek watershed, a 96 km2 sub-watershed of the Alameda Creek watershed in Northern California. The process-based PRMS model is being used to improve the accuracy of recent San Antonio Creek streamflow predictions generated by two empirical methods. Although San Antonio Creek watershed is largely ungauged, daily streamflow data exists for hydrologic years (HY) 1913 - 1930. PRMS was calibrated for HY 1913 - 1930 using streamflow data, modern-day land use and PRISM precipitation distribution, and gauged precipitation and temperature data from a nearby watershed. The PRMS model was then used to generate daily streamflows for HY 1996-2013, during which the watershed was ungauged, and hydrologic responses were compared to two nearby gauged sub-watersheds of Alameda Creek. Finally, the PRMS-predicted daily flows between HY 1996-2013 were compared to the two empirically-predicted streamflow time series: (1) the reservoir mass balance method and (2) correlation of historical streamflows from 80 - 100 years ago between San Antonio Creek and a nearby sub-watershed located in Alameda Creek. While the mass balance approach using reservoir storage and transfers is helpful for estimating inflows to the reservoir, large discrepancies in daily streamflow estimation can arise. Similarly, correlation-based predicted daily flows which rely on a relationship from flows collected 80-100 years ago may not represent current watershed hydrologic conditions. This study aims to develop a method of streamflow prediction in the San Antonio Creek watershed by examining PRMS

  19. DNR Watersheds - DNR Level 04 - HUC 08 - Majors

    Data.gov (United States)

    Minnesota Department of Natural Resources — These data consists of 81 watershed delineations in one seamless dataset of drainage areas called Minnesota Department of Natural Resources (DNR) Major Watersheds....

  20. Sediment sources in an urbanizing, mixed land-use watershed

    Science.gov (United States)

    Nelson, Erin J.; Booth, Derek B.

    2002-07-01

    The Issaquah Creek watershed is a rapidly urbanizing watershed of 144 km 2 in western Washington, where sediment aggradation of the main channel and delivery of fine sediment into a large downstream lake have raised increasingly frequent concerns over flooding, loss of fish habitat, and degraded water quality. A watershed-scale sediment budget was evaluated to determine the relative effects of land-use practices, including urbanization, on sediment supply and delivery, and to guide management responses towards the most effective source-reduction strategies. Human activity in the watershed, particularly urban development, has caused an increase of nearly 50% in the annual sediment yield, now estimated to be 44 tonnes km -2 yr -1. The main sources of sediment in the watershed are landslides (50%), channel-bank erosion (20%), and road-surface erosion (15%). This assessment characterizes the role of human activity in mixed-use watersheds such as this, and it demonstrates some of the key processes, particularly enhanced stream-channel erosion, by which urban development alters sediment loads.

  1. Understanding Hydrological Processes in Variable Source Areas in the Glaciated Northeastern US Watersheds under Variable Climate Conditions

    Science.gov (United States)

    Steenhuis, T. S.; Azzaino, Z.; Hoang, L.; Pacenka, S.; Worqlul, A. W.; Mukundan, R.; Stoof, C.; Owens, E. M.; Richards, B. K.

    2017-12-01

    The New York City source watersheds in the Catskill Mountains' humid, temperate climate has long-term hydrological and water quality monitoring data It is one of the few catchments where implementation of source and landscape management practices has led to decreased phosphorus concentration in the receiving surface waters. One of the reasons is that landscape measures correctly targeted the saturated variable source runoff areas (VSA) in the valley bottoms as the location where most of the runoff and other nonpoint pollutants originated. Measures targeting these areas were instrumental in lowering phosphorus concentration. Further improvements in water quality can be made based on a better understanding of the flow processes and water table fluctuations in the VSA. For that reason, we instrumented a self-contained upland variable source watershed with a landscape characteristic of a soil underlain by glacial till at shallow depth similar to the Catskill watersheds. In this presentation, we will discuss our experimental findings and present a mathematical model. Variable source areas have a small slope making gravity the driving force for the flow, greatly simplifying the simulation of the flow processes. The experimental data and the model simulations agreed for both outflow and water table fluctuations. We found that while the flows to the outlet were similar throughout the year, the discharge of the VSA varies greatly. This was due to transpiration by the plants which became active when soil temperatures were above 10oC. We found that shortly after the temperature increased above 10oC the baseflow stopped and only surface runoff occurred when rainstorms exceeded the storage capacity of the soil in at least a portion of the variable source area. Since plant growth in the variable source area was a major variable determining the base flow behavior, changes in temperature in the future - affecting the duration of the growing season - will affect baseflow and

  2. Watershed restoration through remining in the Tangascootack Creek Watershed, Clinton County, Pennsylvania

    International Nuclear Information System (INIS)

    Skema, V.W.; Smith, M.W.; Bisko, D.C.; Dimatteo, M.

    1998-01-01

    The Pennsylvania Department of Environmental Protection and the Pennsylvania Geologic Survey are working together to remediate the effects of acid mine drainage. Remining of previously mined areas is a key component of a comprehensive strategy of improving water quality in polluted watersheds. In this new approach sites will be carefully selected on the basis of remaining coal reserves and overburden characteristics. One of the first watersheds targeted was the Tangascootack Creek watershed located in Clinton County near Lock Haven. The Geologic Survey agreed to provide geologic and coal resource maps for this previously unmapped area. This involved conducting field work examining rock exposures. Five cored holes were drilled, and core was examined to develop a geologic framework. Coals from these holes and from highwalls were chemically tested. Strata overlying the coal seams were analyzed using acid base accounting to determine their potential for generating acidity as well as alkalinity. Additional drill hole data and chemical analyses were collected from cooperating mining companies. This information was used to produce a geologic map showing coal crop lines and structure, coal thickness maps, mined-out area maps, overburden thickness maps, overburden geochemistry maps, strip ratio maps, and to estimate the extent of remaining coal reserves. Several significant geologic features were found in the course of mapping the watershed. One is the extreme variability in coal thickness and character of overburden rock. Another is the degree of relief found to be present on the Mississippian-Pennsylvanian unconformity. It is believed that this feature plays an important role in coal and high aluminum flint clay distribution regionally. And finally is the thick occurrence of Loyalhanna Formation calcareous sandstone which is providing a natural source of carbonate for the neutralization of acid mine drainage

  3. Protect and Restore Red River Watershed, 2007-2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bransford, Stephanie [Nez Perce Tribe Fisheries/Watershed Program

    2009-05-04

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Red River Watershed of the South Fork Clearwater River in 2001. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. From completing a watershed assessment to two NEPA efforts and a final stream restoration design, we will begin the effort of restoring the mainstem channel of Red River to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed. Another major, and extremely, important component of this project is the Red River Meadow Conservation Easement. We have begun the process of pursuing a conservation easement on approximately 270 acres of prime meadow habitat (Red River runs through this meadow and is prime spawning and rearing habitat).

  4. New efficient methods for calculating watersheds

    International Nuclear Information System (INIS)

    Fehr, E; Andrade, J S Jr; Herrmann, H J; Kadau, D; Moukarzel, C F; Da Cunha, S D; Da Silva, L R; Oliveira, E A

    2009-01-01

    We present an advanced algorithm for the determination of watershed lines on digital elevation models (DEMs) which is based on the iterative application of invasion percolation (IP). The main advantage of our method over previously proposed ones is that it has a sub-linear time-complexity. This enables us to process systems comprising up to 10 8 sites in a few CPU seconds. Using our algorithm we are able to demonstrate, convincingly and with high accuracy, the fractal character of watershed lines. We find the fractal dimension of watersheds to be D f = 1.211 ± 0.001 for artificial landscapes, D f = 1.10 ± 0.01 for the Alps and D f = 1.11 ± 0.01 for the Himalayas

  5. Summary and Synthesis of Mercury Studies in the Cache Creek Watershed, California, 2000-01

    Science.gov (United States)

    Domagalski, Joseph L.; Slotton, Darell G.; Alpers, Charles N.; Suchanek, Thomas H.; Churchill, Ronald; Bloom, Nicolas; Ayers, Shaun M.; Clinkenbeard, John

    2004-01-01

    This report summarizes the principal findings of the Cache Creek, California, components of a project funded by the CALFED Bay?Delta Program entitled 'An Assessment of Ecological and Human Health Impacts of Mercury in the Bay?Delta Watershed.' A companion report summarizes the key findings of other components of the project based in the San Francisco Bay and the Delta of the Sacramento and San Joaquin Rivers. These summary documents present the more important findings of the various studies in a format intended for a wide audience. For more in-depth, scientific presentation and discussion of the research, a series of detailed technical reports of the integrated mercury studies is available at the following website: .

  6. Developing an Ecosystem Services Online Decision Support Tool to Assess the Impacts of Climate Change and Urban Growth in the Santa Cruz Watershed; Where We Live, Work, and Play

    Directory of Open Access Journals (Sweden)

    Charles van Riper III

    2010-07-01

    Full Text Available Using respective strengths of the biological, physical, and social sciences, we are developing an online decision support tool, the Santa Cruz Watershed Ecosystem Portfolio Model (SCWEPM, to help promote the use of information relevant to water allocation and land management in a binational watershed along the U.S.-Mexico border. The SCWEPM will include an ES valuation system within a suite of linked regional driver-response models and will use a multicriteria scenario-evaluation framework that builds on GIS analysis and spatially-explicit models that characterize important ecological, economic, and societal endpoints and consequences that are sensitive to climate patterns, regional water budgets, and regional LULC change in the SCW.

  7. [Impact on nitrogen and phosphorous export of wetlands in Tianmu Lake watershed].

    Science.gov (United States)

    Li, Zhao-Fu; Liu, Hong-Yu; Li, Heng-Peng

    2012-11-01

    Focused on understanding the function of wetland in improving water quality, Pingqiao watershed and Zhongtian watershed in Tianmu Lake drinking water sources area were selected as the research region. We integrated remote sensing, GIS techniques with field investigation and chemical analysis to analyze the relationship between wetland and water quality in watershed scale. Results show: (1) There are many wetland patches in Pingqiao and Zhongtian watershed, wetlands patch densities were respectively 7.5 km(-2) and 7.1 km(-2). Wetlands widely distributed in the Pingqiao watershed with mostly located away from the river of 500 m, whereas wetlands relatively concentrated in the lower reach within 500 meters of riverside in Zhongtian watershed. (2) Nitrogen and phosphorus nutrient retention of wetland in watershed scale was significant. The annual mean TN and DTN concentration had a strong relationship with percent area of wetlands in Zhongtian watershed while the weakest relationship was found with TP and DTP concentrations, especially, the mean TN and DTN concentrations in spring and winter had the significantly negative relationship with wetland areas of watershed. The negative relationship was existed for nitrogen in autumn of Pingqiao watershed, which suggested that watersheds varying in area of wetlands have the different nutrient reducing efficiency in seasonal periods. (3) A certain number and area of wetland will improve river water quality in watershed scale, which can instruct water environment treatment. However, considering the complexity of nutrient transport processes in watershed, wetland-related factors such as area, location, density, ecosystem structure and watershed-related factors such as temporal interval, spatial scales, slope and land use will impact on the transport processes, and related theoretical and practical problems need further research.

  8. Development of a high-resolution binational vegetation map of the Santa Cruz River riparian corridor and surrounding watershed, southern Arizona and northern Sonora, Mexico

    Science.gov (United States)

    Wallace, Cynthia S.A.; Villarreal, Miguel L.; Norman, Laura M.

    2011-01-01

    This report summarizes the development of a binational vegetation map developed for the Santa Cruz Watershed, which straddles the southern border of Arizona and the northern border of Sonora, Mexico. The map was created as an environmental input to the Santa Cruz Watershed Ecosystem Portfolio Model (SCWEPM) that is being created by the U.S. Geological Survey for the watershed. The SCWEPM is a map-based multicriteria evaluation tool that allows stakeholders to explore tradeoffs between valued ecosystem services at multiple scales within a participatory decision-making process. Maps related to vegetation type and are needed for use in modeling wildlife habitat and other ecosystem services. Although detailed vegetation maps existed for the U.S. side of the border, there was a lack of consistent data for the Santa Cruz Watershed in Mexico. We produced a binational vegetation classification of the Santa Cruz River riparian habitat and watershed vegetation based on NatureServe Terrestrial Ecological Systems (TES) units using Classification And Regression Tree (CART) modeling. Environmental layers used as predictor data were derived from a seasonal set of Landsat Thematic Mapper (TM) images (spring, summer, and fall) and from a 30-meter digital-elevation-model (DEM) grid. Because both sources of environmental data are seamless across the international border, they are particularly suited to this binational modeling effort. Training data were compiled from existing field data for the riparian corridor and data collected by the NM-GAP (New Mexico Gap Analysis Project) team for the original Southwest Regional Gap Analysis Project (SWReGAP) modeling effort. Additional training data were collected from core areas of the SWReGAP classification itself, allowing the extrapolation of the SWReGAP mapping into the Mexican portion of the watershed without collecting additional training data.

  9. Combining ecosystem services assessment with structured decision making to support ecological restoration planning.

    Science.gov (United States)

    Martin, David M; Mazzotta, Marisa; Bousquin, Justin

    2018-04-10

    Accounting for ecosystem services in environmental decision making is an emerging research topic. Modern frameworks for ecosystem services assessment emphasize evaluating the social benefits of ecosystems, in terms of who benefits and by how much, to aid in comparing multiple courses of action. Structured methods that use decision analytic-approaches are emerging for the practice of ecological restoration. In this article, we combine ecosystem services assessment with structured decision making to estimate and evaluate measures of the potential benefits of ecological restoration with a case study in the Woonasquatucket River watershed, Rhode Island, USA. We partnered with a local watershed management organization to analyze dozens of candidate wetland restoration sites for their abilities to supply five ecosystem services-flood water retention, scenic landscapes, learning opportunities, recreational opportunities, and birds. We developed 22 benefit indicators related to the ecosystem services as well as indicators for social equity and reliability that benefits will sustain in the future. We applied conceptual modeling and spatial analysis to estimate indicator values for each candidate restoration site. Lastly, we developed a decision support tool to score and aggregate the values for the organization to screen the restoration sites. Results show that restoration sites in urban areas can provide greater social benefits than sites in less urban areas. Our research approach is general and can be used to investigate other restoration planning studies that perform ecosystem services assessment and fit into a decision-making process.

  10. Improving Flood Risk Management for California's Central Valley: How the State Developed a Toolbox for Large, System-wide Studies

    Science.gov (United States)

    Pingel, N.; Liang, Y.; Bindra, A.

    2016-12-01

    More than 1 million Californians live and work in the floodplains of the Sacramento-San Joaquin Valley where flood risks are among the highest in the nation. In response to this threat to people, property and the environment, the Department of Water Resources (DWR) has been called to action to improve flood risk management. This has transpired through significant advances in development of flood information and tools, analysis, and planning. Senate Bill 5 directed DWR to prepare the Central Valley Flood Protection Plan (CVFPP) and update it every 5 years. A key component of this aggressive planning approach is answering the question: What is the current flood risk, and how would proposed improvements change flood risk throughout the system? Answering this question is a substantial challenge due to the size and complexity of the watershed and flood control system. The watershed is roughly 42,000 sq mi, and flows are controlled by numerous reservoirs, bypasses, and levees. To overcome this challenge, the State invested in development of a comprehensive analysis "tool box" through various DWR programs. Development of the tool box included: collection of hydro-meteorological, topographic, geotechnical, and economic data; development of rainfall-runoff, reservoir operation, hydraulic routing, and flood risk analysis models; and development of specialized applications and computing schemes to accelerate the analysis. With this toolbox, DWR is analyzing flood hazard, flood control system performance, exposure and vulnerability of people and property to flooding, consequence of flooding for specific events, and finally flood risk for a range of CVFPP alternatives. Based on the results, DWR will put forward a State Recommended Plan in the 2017 CVFPP. Further, the value of the analysis tool box extends beyond the CVFPP. It will serve as a foundation for other flood studies for years to come and has already been successfully applied for inundation mapping to support emergency

  11. Watershed Management Optimization Support Tool (WMOST) v3: Theoretical Documentation

    Science.gov (United States)

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that facilitates integrated water management at the local or small watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed context, accounting fo...

  12. The geochemistry of groundwater resources in the Jordan Valley: The impact of the Rift Valley brines

    Science.gov (United States)

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Polak, A.; Shavit, U.

    2007-01-01

    The chemical composition of groundwater in the Jordan Valley, along the section between the Sea of Galilee and the Dead Sea, is investigated in order to evaluate the origin of the groundwater resources and, in particular, to elucidate the role of deep brines on the chemical composition of the regional groundwater resources in the Jordan Valley. Samples were collected from shallow groundwater in research boreholes on two sites in the northern and southern parts of the Jordan Valley, adjacent to the Jordan River. Data is also compiled from previous published studies. Geochemical data (e.g., Br/Cl, Na/Cl and SO4/Cl ratios) and B, O, Sr and S isotopic compositions are used to define groundwater groups, to map their distribution in the Jordan valley, and to evaluate their origin. The combined geochemical tools enabled the delineation of three major sources of solutes that differentially affect the quality of groundwater in the Jordan Valley: (1) flow and mixing with hypersaline brines with high Br/Cl (>2 ?? 10-3) and low Na/Cl (shallow saline groundwaters influenced by brine mixing exhibit a north-south variation in their Br/Cl and Na/Cl ratios. This chemical trend was observed also in hypersaline brines in the Jordan valley, which suggests a local mixing process between the water bodies. ?? 2007 Elsevier Ltd. All rights reserved.

  13. Cloud GIS Based Watershed Management

    Science.gov (United States)

    Bediroğlu, G.; Colak, H. E.

    2017-11-01

    In this study, we generated a Cloud GIS based watershed management system with using Cloud Computing architecture. Cloud GIS is used as SAAS (Software as a Service) and DAAS (Data as a Service). We applied GIS analysis on cloud in terms of testing SAAS and deployed GIS datasets on cloud in terms of DAAS. We used Hybrid cloud computing model in manner of using ready web based mapping services hosted on cloud (World Topology, Satellite Imageries). We uploaded to system after creating geodatabases including Hydrology (Rivers, Lakes), Soil Maps, Climate Maps, Rain Maps, Geology and Land Use. Watershed of study area has been determined on cloud using ready-hosted topology maps. After uploading all the datasets to systems, we have applied various GIS analysis and queries. Results shown that Cloud GIS technology brings velocity and efficiency for watershed management studies. Besides this, system can be easily implemented for similar land analysis and management studies.

  14. Segmentation by watersheds : definition and parallel implementation

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.; Meijster, Arnold

    1997-01-01

    The watershed algorithm is a method for image segmentation widely used in the area of mathematical morphology. In this paper we first address the problem of how to define watersheds. It is pointed out that various existing definitions are not equivalent. In particular we explain the differences

  15. Food Sources and Accessibility and Waste Disposal Patterns across an Urban Tropical Watershed: Implications for the Flow of Materials and Energy

    Directory of Open Access Journals (Sweden)

    Diana C. Garcia-Montiel

    2014-03-01

    Full Text Available Appraising the social-ecological processes influencing the inflow, transformation, and storage of materials and energy in urban ecosystems requires scientific attention. This appraisal can provide an important tool for assessing the sustainability of cities. Socioeconomic activities are mostly responsible for these fluxes, which are well manifested in the household unit. Human behavior associated with cultural traditions, belief systems, knowledge, and lifestyles are important drivers controlling the transfer of materials throughout the urban environment. Within this context, we explored three aspects of household consumption and waste disposal activities along the Río Piedras Watershed in the San Juan metropolitan area of Puerto Rico. These included: the source of food consumed by residents, recycling activities, and trends in connection to the municipality's sewerage system. We randomly interviewed 440 households at 6 sites along the watershed. We also conducted analysis to estimate accessibility to commercial food services for residents in the study areas. Our surveys revealed that nearly all interviewed households (~97% consumed products from supermarkets. In neighborhoods of the upper portion of the watershed, where residential density is low with large areas of vegetative cover, more than 60% of residents consumed food items cultivated in their yards. Less than 36% of residents in the in densely urbanized parts of the lower portion of the watershed consumed items from their yards. Accessibility to commercial stores for food consumption contrasted among study sites. Recycling activities were mostly carried out by residents in the lower portion of the watershed, with better access to recycling programs provided by the municipality. The surveys also revealed that only 4 to 17% of residences in the upper watershed are connected to the sewerage system whereas the large majority uses septic tanks for septic water disposal. For these residents

  16. Cost assessment and ecological effectiveness of nutrient reduction options for mitigating Phaeocystis colony blooms in the Southern North Sea: an integrated modeling approach.

    Science.gov (United States)

    Lancelot, Christiane; Thieu, Vincent; Polard, Audrey; Garnier, Josette; Billen, Gilles; Hecq, Walter; Gypens, Nathalie

    2011-05-01

    Nutrient reduction measures have been already taken by wealthier countries to decrease nutrient loads to coastal waters, in most cases however, prior to having properly assessed their ecological effectiveness and their economic costs. In this paper we describe an original integrated impact assessment methodology to estimate the direct cost and the ecological performance of realistic nutrient reduction options to be applied in the Southern North Sea watershed to decrease eutrophication, visible as Phaeocystis blooms and foam deposits on the beaches. The mathematical tool couples the idealized biogeochemical GIS-based model of the river system (SENEQUE-RIVERSTRAHLER) implemented in the Eastern Channel/Southern North Sea watershed to the biogeochemical MIRO model describing Phaeocystis blooms in the marine domain. Model simulations explore how nutrient reduction options regarding diffuse and/or point sources in the watershed would affect the Phaeocystis colony spreading in the coastal area. The reference and prospective simulations are performed for the year 2000 characterized by mean meteorological conditions, and nutrient reduction scenarios include and compare upgrading of wastewater treatment plants and changes in agricultural practices including an idealized shift towards organic farming. A direct cost assessment is performed for each realistic nutrient reduction scenario. Further the reduction obtained for Phaeocystis blooms is assessed by comparison with ecological indicators (bloom magnitude and duration) and the cost for reducing foam events on the beaches is estimated. Uncertainty brought by the added effect of meteorological conditions (rainfall) on coastal eutrophication is discussed. It is concluded that the reduction obtained by implementing realistic environmental measures on the short-term is costly and insufficient to restore well-balanced nutrient conditions in the coastal area while the replacement of conventional agriculture by organic farming

  17. Applying Spatially Distributed Rainfall to a Hydrological Model in a Tropical Watershed, Manoa Watershed, in Hawaii

    Science.gov (United States)

    Huang, Y. F.; Tsang, Y. P.

    2017-12-01

    Rainfall in Hawaii is characterized with high spatial and temporal variability. In the south side of Oahu, the Manoa watershed, with an area of 11 km2, has the annual maximum rainfall of 3900mm and the minimum rainfall of 1000 mm. Despite this high spatial heterogeneity, the rain gage network seems insufficiently capture this pattern. When simulating stream flow and predicting floods with hydrological models in Hawaii, the model performance is often unsatisfactory because of inadequate representation of rainfall data. Longman et al. (in prep.) have developed the spatially distributed daily rainfall across the Hawaiian Islands by applying ordinary kriging, yet these data have not been applied to hydrological models. In this study, we used the Soil and Water Assessment Tool (SWAT) model to assess the streamflow simulation by applying spatially-distributed rainfall in the Manoa watershed. We first used point daily-rainfall at Lyon Arboretum from National Center of Environmental Information (NCEI) as the uniform rainfall input. Secondly, we summarized sub-watershed mean rainfall from the daily spatial-statistical rainfall. Both rainfall data are available from 1999 to 2014. The SWAT was set up for five-year warm-up, nine-year calibration, and two-year validation. The model parameters were calibrated and validated with four U.S. Geological Survey stream gages. We compared the calibrated watershed parameters, characteristics, and assess the streamflow hydrographs from these two rainfall inputs. The differences and improvement of using spatially distributed rainfall input in SWAT were discussed. In addition to improving the model by the representation of rainfall, this study helped us having a better understanding of the watershed hydrological response in Hawaii.

  18. Fish Passage Assessment: Big Canyon Creek Watershed, Technical Report 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Richard

    2004-02-01

    This report presents the results of the fish passage assessment as outlined as part of the Protect and Restore the Big Canyon Creek Watershed project as detailed in the CY2003 Statement of Work (SOW). As part of the Northwest Power Planning Council's Columbia Basin Fish and Wildlife Program (FWP), this project is one of Bonneville Power Administration's (BPA) many efforts at off-site mitigation for damage to salmon and steelhead runs, their migration, and wildlife habitat caused by the construction and operation of federal hydroelectric dams on the Columbia River and its tributaries. The proposed restoration activities within the Big Canyon Creek watershed follow the watershed restoration approach mandated by the Fisheries and Watershed Program. Nez Perce Tribal Fisheries/Watershed Program vision focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects. We strive toward maximizing historic ecosystem productive health, for the restoration of anadromous and resident fish populations. The Nez Perce Tribal Fisheries/Watershed Program (NPTFWP) sponsors the Protect and Restore the Big Canyon Creek Watershed project. The NPTFWP has the authority to allocate funds under the provisions set forth in their contract with BPA. In the state of Idaho vast numbers of relatively small obstructions, such as road culverts, block thousands of miles of habitat suitable for a variety of fish species. To date, most agencies and land managers have not had sufficient, quantifiable data to adequately address these barrier sites. The ultimate objective of this comprehensive inventory and assessment was to identify all barrier crossings within the watershed. The barriers were then prioritized according to the

  19. Frogs, fish and forestry: An integrated watershed network paradigm conserves biodiversity and ecological services

    Science.gov (United States)

    Hartwell H. Welsh Jr.

    2011-01-01

    Successfully addressing the multitude of stresses influencing forest catchments, their native biota, and the vital ecological services they provide humanity will require adapting an integrated view that incorporates the full range of natural and anthropogenic disturbances acting on these landscapes and their embedded fluvial networks. The concepts of dendritic networks...

  20. Urban Stream Burial Increases Watershed-Scale Nitrate Export.

    Directory of Open Access Journals (Sweden)

    Jake J Beaulieu

    Full Text Available Nitrogen (N uptake in streams is an important ecosystem service that reduces nutrient loading to downstream ecosystems. Here we synthesize studies that investigated the effects of urban stream burial on N-uptake in two metropolitan areas and use simulation modeling to scale our measurements to the broader watershed scale. We report that nitrate travels on average 18 times farther downstream in buried than in open streams before being removed from the water column, indicating that burial substantially reduces N uptake in streams. Simulation modeling suggests that as burial expands throughout a river network, N uptake rates increase in the remaining open reaches which somewhat offsets reduced N uptake in buried reaches. This is particularly true at low levels of stream burial. At higher levels of stream burial, however, open reaches become rare and cumulative N uptake across all open reaches in the watershed rapidly declines. As a result, watershed-scale N export increases slowly at low levels of stream burial, after which increases in export become more pronounced. Stream burial in the lower, more urbanized portions of the watershed had a greater effect on N export than an equivalent amount of stream burial in the upper watershed. We suggest that stream daylighting (i.e., uncovering buried streams can increase watershed-scale N retention.