WorldWideScience

Sample records for valley regional flow

  1. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    Science.gov (United States)

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    The Santa Clara Valley is a long, narrow trough extending about 35 miles southeast from the southern end of San Francisco Bay where the regional alluvial-aquifer system has been a major source of water. Intensive agricultural and urban development throughout the 20th century and related ground-water development resulted in ground-water-level declines of more than 200 feet and land subsidence of as much as 12.7 feet between the early 1900s and the mid-1960s. Since the 1960s, Santa Clara Valley Water District has imported surface water to meet growing demands and reduce dependence on ground-water supplies. This importation of water has resulted in a sustained recovery of the ground-water flow system. To help support effective management of the ground-water resources, a regional ground-water/surface-water flow model was developed. This model simulates the flow of ground water and surface water, changes in ground-water storage, and related effects such as land subsidence. A numerical ground-water/surface-water flow model of the Santa Clara Valley subbasin of the Santa Clara Valley was developed as part of a cooperative investigation with the Santa Clara Valley Water District. The model better defines the geohydrologic framework of the regional flow system and better delineates the supply and demand components that affect the inflows to and outflows from the regional ground-water flow system. Development of the model includes revisions to the previous ground-water flow model that upgraded the temporal and spatial discretization, added source-specific inflows and outflows, simulated additional flow features such as land subsidence and multi-aquifer wellbore flow, and extended the period of simulation through September 1999. The transient-state model was calibrated to historical surface-water and ground-water data for the period 197099 and to historical subsidence for the period 198399. The regional ground-water flow system consists of multiple aquifers that are grouped

  2. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were

  3. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    Science.gov (United States)

    Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided

  4. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  5. Hydrogeologic evaluation and numerical simulation of the Death Valley regional ground-water flow system, Nevada and California

    International Nuclear Information System (INIS)

    D'Agnese, F.A.; Faunt, C.C.; Turner, A.K.; Hill, M.C.

    1997-01-01

    Yucca Mountain is being studied as a potential site for a high-level radioactive waste repository. In cooperation with the U.S. Department of Energy, the U.S. Geological Survey is evaluating the geologic and hydrologic characteristics of the ground-water system. The study area covers approximately 100,000 square kilometers between lat 35 degrees N., long 115 degrees W and lat 38 degrees N., long 118 degrees W and encompasses the Death Valley regional ground-water flow system. Hydrology in the region is a result of both the and climatic conditions and the complex described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the regional flow system, ground-water flow is probably controlled by extensive and prevalent structural features that result from regional faulting and fracturing. Hydrogeologic investigations over a large and hydrogeologically complex area impose severe demands on data management. This study utilized geographic information systems and geoscientific information systems to develop, store, manipulate, and analyze regional hydrogeologic data sets describing various components of the ground-water flow system

  6. Simulated effects of climate change on the Death Valley regional ground-water flow system, Nevada and California

    International Nuclear Information System (INIS)

    D'Agnese, F.A.; O'Brien, G.M.; Faunt, C.C.; San Juan, C.A.

    1999-01-01

    The US Geological Survey, in cooperation with the US Department of Energy, is evaluating the geologic and hydrologic characteristics of the Death Valley regional flow system as part of the Yucca Mountain Project. As part of the hydrologic investigation, regional, three-dimensional conceptual and numerical ground-water-flow models have been developed to assess the potential effects of past and future climates on the regional flow system. A simulation that is based on climatic conditions 21,000 years ago was evaluated by comparing the simulated results to observation of paleodischarge sites. Following acceptable simulation of a past climate, a possible future ground-water-flow system, with climatic conditions that represent a doubling of atmospheric carbon dioxide, was simulated. The steady-state simulations were based on the present-day, steady-state, regional ground-water-flow model. The finite-difference model consisted of 163 rows, 153 columns, and 3 layers and was simulated using MODFLOWP. Climate changes were implemented in the regional ground-water-flow model by changing the distribution of ground-water recharge. Global-scale, average-annual, simulated precipitation for both past- and future-climate conditions developed elsewhere were resampled to the model-grid resolution. A polynomial function that represents the Maxey-Eakin method for estimating recharge from precipitation was used to develop recharge distributions for simulation

  7. The effect of a small creek valley on drainage flows in the Rocky Flats region

    International Nuclear Information System (INIS)

    Porch, W.

    1996-01-01

    Regional scale circulation and mountain-plain interactions and effects on boundary layer development are important for understanding the fate of an atmospheric release from Rocky Flats, Colorado. Numerical modeling of Front Range topographic effects near Rocky Flats have shown that though the Front Range dominates large scale flow features, small-scale terrain features near Rocky Flats are important to local transport during nighttime drainage flow conditions. Rocky Flats has been the focus of interest for the Department of Energy's Atmospheric Studies in Complex Terrain (ASCOT) program

  8. A multiple-tracer approach to understanding regional groundwater flow in the Snake Valley area of the eastern Great Basin, USA

    International Nuclear Information System (INIS)

    Gardner, Philip M.; Heilweil, Victor M.

    2014-01-01

    Highlights: • Age tracers and noble gases constrain intra- and inter-basin groundwater flow. • Tritium indicates modern (<60 yr) recharge occurring in all mountain areas. • Noble-gas data identify an important interbasin hydraulic discontinuity. • Further groundwater development may significantly impact Snake Valley springs. - Abstract: Groundwater in Snake Valley and surrounding basins in the eastern Great Basin province of the western United States is being targeted for large-scale groundwater extraction and export. Concern about declining groundwater levels and spring flows in western Utah as a result of the proposed groundwater withdrawals has led to efforts that have improved the understanding of this regional groundwater flow system. In this study, environmental tracers (δ 2 H, δ 18 O, 3 H, 14 C, 3 He, 4 He, 20 Ne, 40 Ar, 84 Kr, and 129 Xe) and major ions from 142 sites were evaluated to investigate groundwater recharge and flow-path characteristics. With few exceptions, δ 2 H and δ 18 O show that most valley groundwater has similar ratios to mountain springs, indicating recharge is dominated by relatively high-altitude precipitation. The spatial distribution of 3 H, terrigenic helium ( 4 He terr ), and 3 H/ 3 He ages shows that modern groundwater (<60 yr) in valley aquifers is found only in the western third of the study area. Pleistocene and late-Holocene groundwater is found in the eastern parts of the study area. The age of Pleistocene groundwater is supported by minimum adjusted radiocarbon ages of up to 32 ka. Noble gas recharge temperatures (NGTs) are generally 1–11 °C in Snake and southern Spring Valleys and >11 °C to the east of Snake Valley and indicate a hydraulic discontinuity between Snake and Tule Valleys across the northern Confusion Range. The combination of NGTs and 4 He terr shows that the majority of Snake Valley groundwater discharges as springs, evapotranspiration, and well withdrawals within Snake Valley rather than

  9. Knowledge, transparency, and refutability in groundwater models, an example from the Death Valley regional groundwater flow system

    Science.gov (United States)

    Hill, Mary C.; Faunt, Claudia C.; Belcher, Wayne; Sweetkind, Donald; Tiedeman, Claire; Kavetski, Dmitri

    2013-01-01

    This work demonstrates how available knowledge can be used to build more transparent and refutable computer models of groundwater systems. The Death Valley regional groundwater flow system, which surrounds a proposed site for a high level nuclear waste repository of the United States of America, and the Nevada National Security Site (NNSS), where nuclear weapons were tested, is used to explore model adequacy, identify parameters important to (and informed by) observations, and identify existing old and potential new observations important to predictions. Model development is pursued using a set of fundamental questions addressed with carefully designed metrics. Critical methods include using a hydrogeologic model, managing model nonlinearity by designing models that are robust while maintaining realism, using error-based weighting to combine disparate types of data, and identifying important and unimportant parameters and observations and optimizing parameter values with computationally frugal schemes. The frugal schemes employed in this study require relatively few (10–1000 s), parallelizable model runs. This is beneficial because models able to approximate the complex site geology defensibly tend to have high computational cost. The issue of model defensibility is particularly important given the contentious political issues involved.

  10. Human effects on the hydrologic system of the Verde Valley, central Arizona, 1910–2005 and 2005–2110, using a regional groundwater flow model

    Science.gov (United States)

    Garner, Bradley D.; Pool, D.R.; Tillman, Fred D.; Forbes, Brandon T.

    2013-01-01

    Water budgets were developed for the Verde Valley of central Arizona in order to evaluate the degree to which human stresses have affected the hydrologic system and might affect it in the future. The Verde Valley is a portion of central Arizona wherein concerns have been raised about water availability, particularly perennial base flow of the Verde River. The Northern Arizona Regional Groundwater Flow Model (NARGFM) was used to generate the water budgets and was run in several configurations for the 1910–2005 and 2005–2110 time periods. The resultant water budgets were subtracted from one another in order to quantify the relative changes that were attributable solely to human stresses; human stresses included groundwater withdrawals and incidental and artificial recharge but did not include, for example, human effects on the global climate. Three hypothetical and varied conditions of human stresses were developed and applied to the model for the 2005–2110 period. On the basis of this analysis, human stresses during 1910–2005 were found to have already affected the hydrologic system of the Verde Valley, and human stresses will continue to affect the hydrologic system during 2005–2110. Riparian evapotranspiration decreased and underflow into the Verde Valley increased because of human stresses, and net groundwater discharge to the Verde River in the Verde Valley decreased for the 1910–2005 model runs. The model also showed that base flow at the upstream end of the study area, as of 2005, was about 4,900 acre-feet per year less than it would have been in the absence of human stresses. At the downstream end of the Verde Valley, base flow had been reduced by about 10,000 acre-feet per year by the year 2005 because of human stresses. For the 2005–2110 period, the model showed that base flow at the downstream end of the Verde Valley may decrease by an additional 5,400 to 8,600 acre-feet per year because of past, ongoing, and hypothetical future human

  11. Floodplain inundation response to climate, valley form, and flow regulation on a gravel-bed river in a Mediterranean-climate region

    Science.gov (United States)

    Cienciala, P.; Pasternack, G. B.

    2017-04-01

    Floodplain inundation regime defines hydrological connectivity between river channel and floodplain and thus strongly controls structure and function of these highly diverse and productive ecosystems. We combined an extensive LiDAR data set on topography and vegetation, long-term hydrological records, as well as the outputs of hydrological and two-dimensional hydraulic models to examine how floodplain inundation regimes in a dynamic, regulated, gravel-cobble river in a Mediterranean-climate region are controlled by reach-scale valley morphology, hydroclimatic conditions, and flow regulation. Estimated relative differences in the extent, duration, and cumulative duration of inundation events were often as large as an order of magnitude and generally greatest for large and long duration events. The relative impact of flow regulation was greatest under dry hydroclimatic conditions. Although the effects of hydroclimate and flow impairment are larger than that of valley floor topography, the latter controls sensitivity of floodplain hydroperiod to flow regime changes and should not be ignored. These quantitative estimates of the relative importance of factors that control floodplain processes in Mediterranean, semiarid rivers contributes to better understanding of hydrology and geomorphology of this important class of channels. We also discuss implications of our findings for processes that shape floodplain habitat for riparian vegetation and salmonid fish, especially in the context of ecological restoration.

  12. Using a Three-Dimensional Hydrogeologic Framework to Investigate Potential Sources of Water Springs in the Death Valley Regional Groundwater Flow System

    Science.gov (United States)

    Hill, M. C.; Belcher, W. R.; Sweetkind, D. S.; Faunt, C.

    2014-12-01

    The Death Valley regional groundwater flow system encompasses a proposed site for a high-level nuclear waste repository of the United States of America, the Nevada National Security Site (NNSS), where nuclear weapons were tested, and National Park and BLM properties, and provides water for local communities. The model was constructed using a three-dimensional hydrogeologic framework and has been used as a resource planning mechanism by the many stakeholders involved, including four United States (U.S) federal agencies (U.S. Department of Energy, National Park Service, Bureau of Land Management, and U.S. Fish and Wildlife Service) and local counties, towns, and residents. One of the issues in recent model development is simulation of insufficient water to regional discharge areas which form springs in valleys near the center of the system. Given what seems to be likely rock characteristics and geometries at depth, insufficient water is simulated to reach the discharge areas. This "surprise" thus challenges preconceived notions about the system. Here we use the hydrogeologic model to hypothesize alternatives able to produce the observed flow and use the groundwater simulation to test the hypotheses with other available data. Results suggest that the transmissivity measurements need to be used carefully because wells in this system are never fully penetrating, that multiple alternatives are able to produce the springflow, and that one most likely alternative cannot be identified given available data. Consequences of the alternatives are discussed.

  13. EPA Region 1 - Valley Depth in Meters

    Science.gov (United States)

    Raster of the Depth in meters of EPA-delimited Valleys in Region 1.Valleys (areas that are lower than their neighbors) were extracted from a Digital Elevation Model (USGS, 30m) by finding the local average elevation, subtracting the actual elevation from the average, and selecting areas where the actual elevation was below the average. The landscape was sampled at seven scales (circles of 1, 2, 4, 7, 11, 16, and 22 km radius) to take into account the diversity of valley shapes and sizes. Areas selected in at least four scales were designated as valleys.

  14. Three-dimensional hydrogeologic framework model for use with a steady-state numerical ground-water flow model of the Death Valley regional flow system, Nevada and California

    International Nuclear Information System (INIS)

    Belcher, W.R.; Faunt, C.C.; D'Agnese, F.A.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Department of Energy and other Federal, State, and local agencies, is evaluating the hydrogeologic characteristics of the Death Valley regional ground-water flow system. The ground-water flow system covers and area of about 100,000 square kilometers from latitude 35 degrees to 38 degrees 15 minutes North to longitude 115 degrees to 118 degrees West, with the flow system proper comprising about 45,000 square kilometers. The Death Valley regional ground-water flow system is one of the larger flow systems within the Southwestern United States and includes in its boundaries the Nevada Test Site, Yucca Mountain, and much of Death Valley. Part of this study includes the construction of a three-dimensional hydrogeologic framework model to serve as the foundation for the development of a steady-state regional ground-water flow model. The digital framework model provides a computer-based description of the geometry and composition of the hydro geologic units that control regional flow. The framework model of the region was constructed by merging two previous framework models constructed for the Yucca Mountain Project and the Environmental Restoration Program Underground Test Area studies at the Nevada Test Site. The hydrologic characteristics of the region result from a currently arid climate and complex geology. Interbasinal regional ground-water flow occurs through a thick carbonate-rock sequence of Paleozoic age, a locally thick volcanic-rock sequence of Tertiary age, and basin-fill alluvium of Tertiary and Quaternary age. Throughout the system, deep and shallow ground-water flow may be controlled by extensive and pervasive regional and local faults and fractures. The framework model was constructed using data from several sources to define the geometry of the regional hydrogeologic units. These data sources include (1) a 1:250,000-scale hydrogeologic-map compilation of the region; (2) regional-scale geologic cross

  15. Preliminary evaluation of the importance of existing hydraulic-head observation locations to advective-transport predictions, Death Valley regional flow system, California and Nevada

    International Nuclear Information System (INIS)

    Hill, M.C.; Ely, D.M.; Tiedeman, C.R.; O'Brien, G.M.; D'Agnese, F.A.; Faunt, C.C.

    2001-01-01

    When a model is calibrated by nonlinear regression, calculated diagnostic statistics and measures of uncertainty provide a wealth of information about many aspects of the system. This report presents a method of ranking the likely importance of existing observation locations using measures of prediction uncertainty. It is suggested that continued monitoring is warranted at more important locations, and unwarranted or less warranted at less important locations. The report develops the methodology and then demonstrates it using the hydraulic-head observation locations of a three-layer model of the Death Valley regional flow system (DVRFS). The predictions of interest are subsurface transport from beneath Yucca Mountain and 14 underground Test Area (UGTA) sites. The advective component of transport is considered because it is the component most affected by the system dynamics represented by the regional-scale model being used. The problem is addressed using the capabilities of the U.S. Geological Survey computer program MODFLOW-2000, with its ADVective-Travel Observation (ADV) Package, and an additional computer program developed for this work

  16. Natural recharge estimation and uncertainty analysis of an adjudicated groundwater basin using a regional-scale flow and subsidence model (Antelope Valley, California, USA)

    Science.gov (United States)

    Siade, Adam J.; Nishikawa, Tracy; Martin, Peter

    2015-01-01

    Groundwater has provided 50–90 % of the total water supply in Antelope Valley, California (USA). The associated groundwater-level declines have led the Los Angeles County Superior Court of California to recently rule that the Antelope Valley groundwater basin is in overdraft, i.e., annual pumpage exceeds annual recharge. Natural recharge consists primarily of mountain-front recharge and is an important component of the total groundwater budget in Antelope Valley. Therefore, natural recharge plays a major role in the Court’s decision. The exact quantity and distribution of natural recharge is uncertain, with total estimates from previous studies ranging from 37 to 200 gigaliters per year (GL/year). In order to better understand the uncertainty associated with natural recharge and to provide a tool for groundwater management, a numerical model of groundwater flow and land subsidence was developed. The transient model was calibrated using PEST with water-level and subsidence data; prior information was incorporated through the use of Tikhonov regularization. The calibrated estimate of natural recharge was 36 GL/year, which is appreciably less than the value used by the court (74 GL/year). The effect of parameter uncertainty on the estimation of natural recharge was addressed using the Null-Space Monte Carlo method. A Pareto trade-off method was also used to portray the reasonableness of larger natural recharge rates. The reasonableness of the 74 GL/year value and the effect of uncertain pumpage rates were also evaluated. The uncertainty analyses indicate that the total natural recharge likely ranges between 34.5 and 54.3 GL/year.

  17. Tennessee Valley Region: a year 2000 profile

    International Nuclear Information System (INIS)

    1978-06-01

    A study was undertaken to determine the potential radiological implications of nuclear facilities in the combined watersheds of the Tennessee and Cumberland rivers, an area covering portions of 7 states of varied topography. The regional population in 1970 was about 4.6 million and is expected to increase to about 7 million by the year 2000. A 1973 projection estimated the installed electric generating capacity of the region to increase from a 1970 value of 45,000 megawatts to a total of 222,000 megawatts by the year 2000. In that year, about 144,000 megawatts were projected to be nuclear plants. The profile of the Tennessee Valley Region in the year 2000, as drawn from this report, contains the essential data for calculation of the radiological dose from operation of nuclear facilities in that year. Those calculations are reported in the companion document, DOE/ET-0064/2. Specifically, Volume I establishes the parameters describing where the people live, what they eat, the activities in which they engage, and the environmental surroundings that enable an evaluation of the potential radiation dose to the population. Airborne radionuclides from nuclear facilities in this zone may enter the study area and be deposited on the ground, on growing food, and on water surfaces. Consideration was not given to waterborne radionuclides external to the study region. 17 references

  18. Tennessee Valley Region: a year 2000 profile

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    A study was undertaken to determine the potential radiological implications of nuclear facilities in the combined watersheds of the Tennessee and Cumberland rivers, an area covering portions of 7 states of varied topography. The regional population in 1970 was about 4.6 million and is expected to increase to about 7 million by the year 2000. A 1973 projection estimated the installed electric generating capacity of the region to increase from a 1970 value of 45,000 megawatts to a total of 222,000 megawatts by the year 2000. In that year, about 144,000 megawatts were projected to be nuclear plants. The profile of the Tennessee Valley Region in the year 2000, as drawn from this report, contains the essential data for calculation of the radiological dose from operation of nuclear facilities in that year. Those calculations are reported in the companion document, DOE/ET-0064/2. Specifically, Volume I establishes the parameters describing where the people live, what they eat, the activities in which they engage, and the environmental surroundings that enable an evaluation of the potential radiation dose to the population. Airborne radionuclides from nuclear facilities in this zone may enter the study area and be deposited on the ground, on growing food, and on water surfaces. Consideration was not given to waterborne radionuclides external to the study region. 17 references. (MCW)

  19. Geostatistical estimates of future recharge for the Death Valley region

    International Nuclear Information System (INIS)

    Hevesi, J.A.; Flint, A.L.

    1998-01-01

    Spatially distributed estimates of regional ground water recharge rates under both current and potential future climates are needed to evaluate a potential geologic repository for high-level nuclear waste at Yucca Mountain, Nevada, which is located within the Death Valley ground-water region (DVGWR). Determining the spatial distribution of recharge is important for regional saturated-zone ground-water flow models. In the southern Nevada region, the Maxey-Eakin method has been used for estimating recharge based on average annual precipitation. Although this method does not directly account for a variety of location-specific factors which control recharge (such as bedrock permeability, soil cover, and net radiation), precipitation is the primary factor that controls in the region. Estimates of recharge obtained by using the Maxey-Eakin method are comparable to estimates of recharge obtained by using chloride balance studies. The authors consider the Maxey-Eakin approach as a relatively simple method of obtaining preliminary estimates of recharge on a regional scale

  20. The enormous Chillos Valley Lahar: An ash-flow-generated debris flow from Cotopaxi Volcano, Ecuador

    Science.gov (United States)

    Mothes, P.A.; Hall, M.L.; Janda, R.J.

    1998-01-01

    The Chillos Valley Lahar (CVL), the largest Holocene debris flow in area and volume as yet recognized in the northern Andes, formed on Cotopaxi volcano's north and northeast slopes and descended river systems that took it 326 km north-northwest to the Pacific Ocean and 130+ km east into the Amazon basin. In the Chillos Valley, 40 km downstream from the volcano, depths of 80-160 m and valley cross sections up to 337000m2 are observed, implying peak flow discharges of 2.6-6.0 million m3/s. The overall volume of the CVL is estimated to be ???3.8 km3. The CVL was generated approximately 4500 years BP by a rhyolitic ash flow that followed a small sector collapse on the north and northeast sides of Cotopaxi, which melted part of the volcano's icecap and transformed rapidly into the debris flow. The ash flow and resulting CVL have identical components, except for foreign fragments picked up along the flow path. Juvenile materials, including vitric ash, crystals, and pumice, comprise 80-90% of the lahar's deposit, whereas rhyolitic, dacitic, and andesitic lithics make up the remainder. The sand-size fraction and the 2- to 10-mm fraction together dominate the deposit, constituting ???63 and ???15 wt.% of the matrix, respectively, whereas the silt-size fraction averages less than ???10 wt.% and the clay-size fraction less than 0.5 wt.%. Along the 326-km runout, these particle-size fractions vary little, as does the sorting coefficient (average = 2.6). There is no tendency toward grading or improved sorting. Limited bulking is recognized. The CVL was an enormous non-cohesive debris flow, notable for its ash-flow origin and immense volume and peak discharge which gave it characteristics and a behavior akin to large cohesive mudflows. Significantly, then, ash-flow-generated debris flows can also achieve large volumes and cover great areas; thus, they can conceivably affect large populated regions far from their source. Especially dangerous, therefore, are snowclad volcanoes

  1. Numerical simulation of flow in Brush Creek Valley, Colorado

    International Nuclear Information System (INIS)

    Leone, J.M. Jr.; Lee, R.L.

    1987-06-01

    In this paper, we present some results from our three-dimensional, non-hydrostatic, finite element model applied to simulations of flow in Brush Creek Valley. These simulations are not intended to reproduce any particular experiment, but rather are to evaluate the qualitative performance of the model, to explore the major difficulties involved, and to begin sensitivity studies of the flows of interest. 2 refs., 11 figs

  2. Views on the Anisotropic Nature of Ilva Valley Region

    Directory of Open Access Journals (Sweden)

    GABRIELA-ALINA MUREŞAN

    2012-01-01

    Full Text Available There are two concepts important for the authors of this article: anisotropic region and anisotropic space. Anisotropic region is defined by A. Dauphiné, the geographer (-mathematician, as a territorial unit whose structure results from the organisation of space along one or more axes. From the point of view of a territorial system, this type of region has some characteristics which differentiate it both from the homogeneous region and from the polarised one. These specificities have been analysed for Ilva Valley. The region of Ilva Valley is formed along the morphological axis represented by the Ilva River. The aim is to identify these specificities or their absence within this region. In this way we can determine whether this region is an anisotropic one or just an anisotropic space, namely whether it can be considered as evolving towards an anisotropic region, not yet complying with all characteristics of anisotropic regions.

  3. A hydrogeologic map of the Death Valley region, Nevada, and California, developed using GIS techniques

    International Nuclear Information System (INIS)

    Faunt, C.C.; D'Agnese, F.A.; Turner, A.K.

    1997-01-01

    In support of Yucca Mountain site characterization studies, a hydrogeologic framework was developed, and a hydrogeologic map was constructed for the Death Valley region. The region, covering approximately 100,000 km 2 along the Nevada-California border near Las Vegas, is characterized by isolated mountain ranges juxtaposed against broad, alluvium-filled valleys. Geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. The regional ground-water flow system can best be described as a series of connected intermontane basins in which ground-water flow occurs in basin-fill deposits, carbonate rocks, clastic rocks, and volcanic rocks. Previous investigations have developed more site-specific hydrogeologic relationships; however, few have described all the lithologies within the Death Valley regional ground-water flow system. Information required to characterize the hydrogeologic units in the region was obtained from regional geologic maps and reports. Map data were digitized from regional geologic maps and combined into a composite map using a geographic information system. This map was simplified to show 10 laterally extensive hydrogeologic units with distinct hydrologic properties. The hydraulic conductivity values for the hydrogeologic units range over 15 orders of magnitude due to the variability in burial depth and degree of fracturing

  4. Imperial Contradictions: Is the Valley a Watershed, Region, or Cyborg?

    Science.gov (United States)

    Rudy, Alan P.

    2005-01-01

    Is California's Imperial Valley a watershed? If so, at what level and by what topographic logic? Is it a region? If so, at what level and by what geographic logic? Are its boundaries natural, political, or multivalent on different scales? In short, this essay looks at the special (re)production of environmental conditions within a cyborg world.…

  5. Geochemical and Isotopic Interpretations of Groundwater Flow in the Oasis Valley Flow System, Southern Nevada

    International Nuclear Information System (INIS)

    Thomas, J.M.; Benedict, F.C. Jr.; Rose, T.P.; Hershey, R.L.; Paces, J.B.; Peterman, Z.E.; Farnham, I.M.; Johannesson, K.H.; Singh, A.K.; Stetzenbach, K.J.; Hudson, G.B.; Kenneally, J.M.; Eaton, G.F.; Smith, D.K.

    2003-01-01

    This report summarizes the findings of a geochemical investigation of the Pahute Mesa-Oasis Valley groundwater flow system in southwestern Nevada. It is intended to provide geochemical data and interpretations in support of flow and contaminant transport modeling for the Western and Central Pahute Mesa Corrective Action Units

  6. Effect of faulting on ground-water movement in the Death Valley region, Nevada and California

    International Nuclear Information System (INIS)

    Faunt, C.C.

    1997-01-01

    This study characterizes the hydrogeologic system of the Death Valley region, an area covering approximately 100,000 square kilometers. The study also characterizes the effects of faults on ground-water movement in the Death Valley region by synthesizing crustal stress, fracture mechanics,a nd structural geologic data. The geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. Faulting and associated fracturing is pervasive and greatly affects ground-water flow patterns. Faults may become preferred conduits or barriers to flow depending on whether they are in relative tension, compression, or shear and other factors such as the degree of dislocations of geologic units caused by faulting, the rock types involved, the fault zone materials, and the depth below the surface. The current crustal stress field was combined with fault orientations to predict potential effects of faults on the regional ground-water flow regime. Numerous examples of fault-controlled ground-water flow exist within the study area. Hydrologic data provided an independent method for checking some of the assumptions concerning preferential flow paths. 97 refs., 20 figs., 5 tabs

  7. Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO.

    Science.gov (United States)

    Grimsley, K J; Rathburn, S L; Friedman, J M; Mangano, J F

    2016-07-01

    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.

  8. EPA Region 1 - Map Layers for Valley ID Tool (Hosted Feature Service)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Valley Service Feature Layer hosts spatial data for EPA Region 1's Valley Identification Tool. These layers contain attribute information added by EPA R1 GIS...

  9. Interbasin flow revisited: The contribution of local recharge to high-discharge springs, Death Valley, CA

    Science.gov (United States)

    Anderson, Katherine; Nelson, Stephen; Mayo, Alan; Tingey, David

    2006-05-01

    Furnace Creek drainage seem to provide adequate storage, confinement, and upward leakage to accommodate current discharge. Thus, although Death Valley is the ultimate discharge location for regional groundwaters in terms of potential, careful study of these springs suggests that most of their flux is supported by local pluvial recharge, suggesting that a careful re-evaluation of the interbasin transfers be conducted on a case-by-case basis. Furthermore, regional flow models that are built on the concept of interbasin flow provide boundary flux conditions for site-scale models for the proposed nuclear waste repository at Yucca Mountain, Nevada. Thus, site-scale models may over-predict the potential transport of waste from the Yucca Mountain facility.

  10. EPA Region 1 - Map Layers for Valley ID Tool (Hosted Feature Service)

    Science.gov (United States)

    The Valley Service Feature Layer hosts spatial data for EPA Region 1's Valley Identification Tool. These layers contain attribute information added by EPA R1 GIS Center to help identify populated valleys:- Fac_2011NEI: Pollution sources selected from the National Emissions Inventory (EPA, 2011).- NE_Towns_PopValleys: New England Town polygons (courtesy USGS), with Population in Valleys and Population Density in Valleys calculated by EPA R1 GIS, from 2010 US Census blocks. - VT_E911: Vermont residences (courtesy VT Center for Geographic Information E-911).

  11. 40 CFR 81.90 - Androscoggin Valley Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.90 Section 81.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.90 Androscoggin Valley Interstate Air Quality Control Region. The Androscoggin Valley Interstate Air Quality Control Region (Maine-New Hampshire) consists of the territorial...

  12. 40 CFR 81.48 - Champlain Valley Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.48 Section 81.48 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.48 Champlain Valley Interstate Air Quality Control Region. The Champlain Valley Interstate Air Quality Control Region (Vermont-New York) has been revised to consist of the...

  13. A preliminary research of characteristic of selected frequency luminescence for debris flow in Jiangjiagou valley

    International Nuclear Information System (INIS)

    Liu Zhaowen; Wei Mingjian; Li Dongxu; Pan Baolin; Ge Yonggang

    2009-01-01

    Four debris flow samples were separated from Nidepin, Duozhao and Dawazigou valleys in Jiangjiagou valley area, Yunnan province. They were measured with BG2003 luminescence spectrograph. The characteristic spectra of the selected frequency luminescence of samples from the different locations were obtained. The wave length of emission photons from samples of Dawazigou valley and Jiangjia valley are 300, 310, 320, 400 and 460 nm when it was using blue light (488)nm excited. When the green light (532 nm) has been used to excited, the wave length of emission photons from samples of Dawazigou valley and Duozhao valley are similar high at 310 and 320 nm. Furthermore, using the green light excited the samples from desert sand at the same lab condition; the number of absorbed photons of samples from desert sand is much higher than from debris flow. (authors)

  14. Conceptual model of volcanism and volcanic hazards of the region of Ararat valley, Armenia

    Science.gov (United States)

    Meliksetian, Khachatur; Connor, Charles; Savov, Ivan; Connor, Laura; Navasardyan, Gevorg; Manucharyan, Davit; Ghukasyan, Yura; Gevorgyan, Hripsime

    2015-04-01

    Armenia and the adjacent volcanically active regions in Iran, Turkey and Georgia are located in the collision zone between the Arabian and Eurasian lithospheric plates. The majority of studies of regional collision related volcanism use the model proposed by Keskin, (2003) where volcanism is driven by Neo-Tethyan slab break-off. In Armenia, >500 Quaternary-Holocene volcanoes from the Gegham, Vardenis and Syunik volcanic fields are hosted within pull-apart structures formed by active faults and their segments (Karakhanyan et al., 2002), while tectonic position of the large in volume basalt-dacite Aragats volcano and periphery volcanic plateaus is different and its position away from major fault lines necessitates more complex volcano-tectonic setup. Our detailed volcanological, petrological and geochemical studies provide insight into the nature of such volcanic activity in the region of Ararat Valley. Most magmas, such as those erupted in Armenia are volatile-poor and erupt fairly hot. Here we report newly discovered tephra sequences in Ararat valley, that were erupted from historically active Ararat stratovolcano and provide evidence for explosive eruption of young, mid K2O calc-alkaline and volatile-rich (>4.6 wt% H2O; amph-bearing) magmas. Such young eruptions, in addition to the ignimbrite and lava flow hazards from Gegham and Aragats, present a threat to the >1.4 million people (~ ½ of the population of Armenia). We will report numerical simulations of potential volcanic hazards for the region of Ararat valley near Yerevan that will include including tephra fallout, lava flows and opening of new vents. Connor et al. (2012) J. Applied Volcanology 1:3, 1-19; Karakhanian et al. (2002), JVGR, 113, 319-344; Keskin, M. (2003) Geophys. Res. Lett. 30, 24, 8046.

  15. Geochemistry of waters in the Valley of Ten Thousand Smokes region, Alaska

    Science.gov (United States)

    Keith, T.E.C.; Thompson, J.M.; Hutchinson, R.A.; White, L.D.

    1992-01-01

    Meteoric waters from cold springs and streams outside of the 1912 eruptive deposits filling the Valley of Ten Thousand Smokes (VTTS) and in the upper parts of the two major rivers draining the 1912 deposits have similar chemical trends. Thermal springs issue in the mid-valley area along a 300-m lateral section of ash-flow tuff, and range in temperature from 21 to 29.8??C in early summer and from 15 to 17??C in mid-summer. Concentrations of major and minor chemical constituents in the thermal waters are nearly identical regardless of temperature. Waters in the downvalley parts of the rivers draining the 1912 deposits are mainly mixtures of cold meteoric waters and thermal waters of which the mid-valley thermal spring waters are representative. The weathering reactions of cold waters with the 1912 deposits appear to have stabilized and add only subordinate amounts of chemical constituents to the rivers relative to those contributed by the thermal waters. Isotopic data indicate that the mid-valley thermal spring waters are meteoric, but data is inconclusive regarding the heat source. The thermal waters could be either from a shallow part of a hydrothermal system beneath the 1912 vent region or from an incompletely cooled, welded tuff lens deep in the 1912 ash-flow sheet of the upper River Lethe area. Bicarbonate-sulfate waters resulting from interaction of near-surface waters and the cooling 1953-1968 southwest Trident plug issue from thermal springs south of Katmai Pass and near Mageik Creek, although the Mageik Creek spring waters are from a well-established, more deeply circulating hydrothermal system. Katmai caldera lake waters are a result of acid gases from vigorous drowned fumaroles dissolving in lake waters composed of snowmelt and precipitation. ?? 1992.

  16. Year 2000 estimated population dose for the Tennessee Valley region

    International Nuclear Information System (INIS)

    Fletcher, J.F.; Strauch, S.; Siegel, G.R.; Witherspoon, J.P.

    1976-01-01

    A comprehensive study has recently been completed of the potential regional radiological dose in the Tennessee and Cumberland river basins in the year 2000, resulting from the operation of nuclear facilities. This study, sponsored jointly by the U.S. Energy Research and Development Administration and the Tennessee Valley Authority, was performed by the Hanford Engineering Development Laboratory (HEDL), the Oak Ridge National Laboratory (ORNL), and the Atmospheric Turbulence and Diffusion Laboratory (ATDL). This study considered the operation in the year 2000 of 33,000 MWe of nuclear capacity within the study area, and of 110,000 MWe in adjacent areas, together with supporting nuclear fuel fabrication and reprocessing facilities. Air and water transport models used and methods for calculating nuclide concentrations on the ground are discussed

  17. Influence of the orographic roughness of glacier valleys across the Transantarctic Mountains in an atmospheric regional model

    Energy Technology Data Exchange (ETDEWEB)

    Jourdain, Nicolas C.; Gallee, Hubert [Laboratoire de Glaciologie et Geophysique de l' Environnement, Saint Martin d' Heres (France)

    2011-03-15

    Glacier valleys across the Transantarctic Mountains are not properly taken into account in climate models, because of their coarse resolution. Nonetheless, glacier valleys control katabatic winds in this region, and the latter are thought to affect the climate of the Ross Sea sector, frsater formation to snow mass balance. The purpose of this paper is to investigate the role of the production of turbulent kinetic energy by the subgrid-scale orography in the Transantarctic Mountains using a 20-km atmospheric regional model. A classical orographic roughness length parametrization is modified to produce either smooth or rough valleys. A one-year simulation shows that katabatic winds in the Transantarctic Mountains are strongly improved using smooth valleys rather than rough valleys. Pressure and temperature fields are affected by the representation of the orographic roughness, specifically in the Transantarctic Mountains and over the Ross Ice Shelf. A smooth representation of escarpment regions shows better agreement with automatic weather station observations than a rough representation. This work stresses the need to improve the representation of subgrid-scale orography to simulate realistic katabatic flows. This paper also provides a way of improving surface winds in an atmospheric model without increasing its resolution. (orig.)

  18. 40 CFR 81.55 - Northeast Pennsylvania-Upper Delaware Valley Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Northeast Pennsylvania-Upper Delaware... Designation of Air Quality Control Regions § 81.55 Northeast Pennsylvania-Upper Delaware Valley Interstate Air Quality Control Region. The Northeast Pennsylvania-Upper Delaware Valley Interstate Air Quality Control...

  19. Application of heat-flow techniques to geothermal energy exploration, Leach Hot Springs area, Grass Valley, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Sass, J.H.; Ziagos, J.P.; Wollenberg, H.A.; Munroe, R.J.; di Somma, D.E.; Lachenbruch, A.H.

    1977-01-01

    A total of 82 holes ranging in depth from 18 to 400 meters were drilled for thermal and hydrologic studies in a 200 km/sup 2/ area of Grass Valley, Nevada, near Leach Hot Springs. Outside the immediate area of Leach Hot Springs, heat flow ranges from 1 to 6.5 hfu with a mean of 2.4 hfu (1 hfu = 10/sup -6/ cal cm/sup 2/ s/sup -1/ = 41.8 mWm/sup -2/). Within 2 km of the springs, conductive heat flow ranges between 1.6 and more than 70 hfu averaging 13.6 hfu. Besides the conspicuous thermal anomaly associated with the hot springs, two additional anomalies were identified. One is associated with faults bounding the western margin of the Tobin Range near Panther Canyon, and the other is near the middle of Grass Valley about 5 km SSW of Leach Hot Springs. The mid-valley anomaly appears to be caused by hydrothermal circulation in a bedrock horst beneath about 375 meters of impermeable valley sediments. If the convective and conductive heat discharge within 2 km of the Leach Hot Springs is averaged over the entire hydrologic system (including areas of recharge), the combined heat flux from this part of Grass Valley is about 3 hfu, consistent with the average regional conductive heat flow in the Battle Mountain High. The hydrothermal system can be interpreted as being in a stationary stable phase sustained by high regional heat flow, and no localized crustal heat sources (other than hydrothermal convection to depths of a few kilometers) need be invoked to explain the existence of Leach Hot Springs.

  20. Geothermal systems of the Mono Basin-Long Valley region, eastern California and western Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, C.T.; Flynn, T.; Chapman, R.H.; Trexler, D.T.; Chase, G.R.; Bacon, C.F.; Ghusn, G. Jr.

    1985-01-01

    The region that includes Mono Basin, Long Valley, the Bridgeport-Bodie Hills area, and Aurora, in eastern California and western Nevada was studied to determine the possible causes and interactions of the geothermal anomalies in the Mono Basin-Long Valley region as a whole. A special goal of the study was to locate possible shallow bodies of magma and to determine their influence on the hydrothermal systems in the region. (ACR)

  1. Testing MODFLOW-LGR for simulating flow around Buried Quaternary valleys - synthetic test cases

    DEFF Research Database (Denmark)

    Vilhelmsen, Troels Norvin; Christensen, Steen

    In Denmark the water supply is entirely based on ground water. In some parts of the country these resources are found in buried quaternary tunnel valleys. Intensive mapping has shown that the valleys typically have a complex internal hydrogeology with multiple cut and ­fill structures....... The administration of groundwater resources has been based on simulations using regional scale groundwater models. However, regional scale models have difficulties with accurately resolving the complex geology of the buried valleys, which bears the risk of poor model predictions of local scale effects of groundwater...

  2. Updated comparison of groundwater flow model results and isotopic data in the Leon Valley, Mexico

    Science.gov (United States)

    Hernandez-Garcia, G. D.

    2015-12-01

    Northwest of Mexico City, the study area is located in the State of Guanajuato. Leon Valley has covered with groundwater its demand of water, estimated in 20.6 cubic meters per second. The constant increase of population and economic activities in the region, mainly in cities and automobile factories, has also a constant growth in water needs. Related extraction rate has produced an average decrease of approximately 1.0 m per year over the past two decades. This suggests that the present management of the groundwater should be checked. Management of groundwater in the study area involves the possibility of producing environmental impacts by extraction. This vital resource under stress becomes necessary studying its hydrogeological functioning to achieve scientific management of groundwater in the Valley. This research was based on the analysis and integration of existing information and the field generated by the authors. On the base of updated concepts like the geological structure of the area, the hydraulic parameters and the composition of deuterium-delta and delta-oxygen -18, this research has new results. This information has been fully analyzed by applying a groundwater flow model with particle tracking: the result has also a similar result in terms of travel time and paths derived from isotopic data.

  3. Hydrochemistry of the Mahomet Bedrock Valley Aquifer, East-Central Illinois: indicators of recharge and ground-water flow

    Science.gov (United States)

    Panno, S.V.; Hackley, Keith C.; Cartwright, K.; Liu, Chao-Li

    1994-01-01

    A conceptual model of the ground-water flow and recharge to the Mahomet Bedrock Valley Aquifer (MVA), east-central Illinois, was developed using major ion chemistry and isotope geochemistry. The MVA is a 'basal' fill in the east-west trending buried bedrock valley composed of clean, permeable sand and gravel to thicknesses of up to 61 m. It is covered by a thick sequence of glacial till containing thinner bodies of interbedded sand and gravel. Ground water from the MVA was found to be characterized by clearly defined geochemical regions with three distinct ground-water types. A fourth ground-water type was found at the confluence of the MVA and the Mackinaw Bedrock Valley Aquifer (MAK) to the west. Ground water in the Onarga Valley, a northeastern tributary of the MVA, is of two types, a mixed cation-SO42- type and a mixed cation-HCO3- type. The ground water is enriched in Na+, Ca2+, Mg2+, and SO42- which appears to be the result of an upward hydraulic gradient and interaction of deeper ground water with oxidized pyritic coals and shale. We suggest that recharge to the Onarga Valley and overlying aquifers is 100% from bedrock (leakage) and lateral flow from the MVA to the south. The central MVA (south of the Onarga Valley) is composed of relatively dilute ground water of a mixed cation-HCO3- type, with low total dissolved solids, and very low concentrations of Cl- and SO42-. Stratigraphic relationships of overlying aquifers and ground-water chemistry of these and the MVA suggest recharge to this region of the MVA (predominantly in Champaign County) is relatively rapid and primarily from the surface. Midway along the westerly flow path of the MVA (western MVA), ground water is a mixed cation-HCO3- type with relatively high Cl-, where Cl- increases abruptly by one to ??? two orders of magnitude. Data suggest that the increase in Cl- is the result of leakage of saline ground water from bedrock into the MVA. Mass-balance calculations indicate that approximately 9.5% of

  4. Characteristic of selected frequency luminescence for paleo-debris flow deposits in Jiangjia valley

    International Nuclear Information System (INIS)

    Liu Zhaowen; Wei Mingjian; Pan Baolin; Liu Chao; Li Dongxu

    2008-01-01

    Eight paleo-debris flow samples from Nideping, Duozhao, Dawazi valley, and Jiangjia valley in Yunnan Province were tested with BG2003 luminescence spectrograph. The characteristic spectra of the selected frequency luminescence of paleo-debris flow deposits from the different locations were obtained. Excited at 488 nm, the wavelengths of emission photons from all samples are 300, 310, 320, 400 and 460 nm. With green excitation (532 nm), the wavelengths of emission photons from all samples are 300, 310, 320 and 460 nm. Then it is determined that the luminescence spectrographs of Nideping are almost same in different time, however, they are different in Dawazi valley and Duozhao. Taking Nideping for example, excited at green, the debris flow substances from the upper, middle, or lower zone of this platform. Response to increasing irradiation dose at 310, 320, and 460 nm, we can define the wavelengths used for dating. (authors)

  5. Hydrogeologic Framework and Ground Water in Basin-Fill Deposits of the Diamond Valley Flow System, Central Nevada

    Science.gov (United States)

    Tumbusch, Mary L.; Plume, Russell W.

    2006-01-01

    The Diamond Valley flow system, an area of about 3,120 square miles in central Nevada, consists of five hydrographic areas: Monitor, Antelope, Kobeh, and Diamond Valleys and Stevens Basin. Although these five areas are in a remote part of Nevada, local government officials and citizens are concerned that the water resources of the flow system eventually could be further developed for irrigation or mining purposes or potentially for municipal use outside the study area. In order to better understand the flow system, the U.S. Geological Survey in cooperation with Eureka, Lander, and Nye Counties and the Nevada Division of Water Resources, is conducting a multi-phase study of the flow system. The principal aquifers of the Diamond Valley flow system are in basin-fill deposits that occupy structural basins comprised of carbonate rocks, siliciclastic sedimentary rocks, igneous intrusive rocks, and volcanic rocks. Carbonate rocks also function as aquifers, but their extent and interconnections with basin-fill aquifers are poorly understood. Ground-water flow in southern Monitor Valley is from the valley margins toward the valley axis and then northward to a large area of discharge by evapotranspiration (ET) that is formed south of a group of unnamed hills near the center of the valley. Ground-water flow from northern Monitor Valley, Antelope Valley, and northern and western parts of Kobeh Valley converges to an area of ground-water discharge by ET in central and eastern Kobeh Valley. Prior to irrigation development in the 1960s, ground-water flow in Diamond Valley was from valley margins toward the valley axis and then northward to a large discharge area at the north end of the valley. Stevens Basin is a small upland basin with internal drainage and is not connected with other parts of the flow system. After 40 years of irrigation pumping, a large area of ground-water decline has developed in southern Diamond Valley around the irrigated area. In this part of Diamond

  6. Occurrence of rift valley fever (RVF) in Dodoma region, Tanzania ...

    African Journals Online (AJOL)

    Rift Valley Fever (RVF) is a peracute or acute febrile zoonotic ... results the patients were treated for malaria and/or meningitis based on visual/ clinical signs. ... RVF occurrence to humans by using case study definitions for RVF suspect's, and ...

  7. Early-Morning Flow Transition in a Valley in Low-Mountain Terrain Under Clear-Sky Conditions

    Science.gov (United States)

    Brötz, Björn; Eigenmann, Rafael; Dörnbrack, Andreas; Foken, Thomas; Wirth, Volkmar

    2014-07-01

    We investigate the evolution of the early-morning boundary layer in a low-mountain valley in south-western Germany during COPS (convective and orographically induced precipitation study) in summer 2007. The term low-mountain refers to a mountainous region with a relief of gentle slopes and with an absolute altitude that remains under a specified height (usually 1,500 m a.s.l.). A subset of 23 fair weather days from the campaign was selected to study the transition of the boundary-layer flow in the early morning. The typical valley atmosphere in the morning hours was characterized by a stable temperature stratification and a pronounced valley wind system. During the reversal period—called the low wind period—of the valley wind system (duration of 1-2 h), the horizontal flow was very weak and the conditions for free convection were fulfilled close to the ground. Ground-based sodar observations of the vertical wind show enhanced values of upward motion, and the corresponding statistical properties differ from those observed under windless convective conditions over flat terrain. Large-eddy simulations of the boundary-layer transition in the valley were conducted, and statistical properties of the simulated flow agree with the observed quantities. Spatially coherent turbulence structures are present in the temporal as well as in the ensemble mean analysis. Thus, the complex orography induces coherent convective structures at predictable, specific locations during the early-morning low wind situations. These coherent updrafts, found in both the sodar observations and the simulation, lead to a flux counter to the gradient of the stably stratified valley atmosphere and reach up to the heights of the surrounding ridges. Furthermore, the energy balance in the surface layer during the low wind periods is closed. However, it becomes unclosed after the onset of the valley wind. The partition into the sensible and the latent heat fluxes indicates that missing flux

  8. Morphometric differences in debris flow and mixed flow fans in eastern Death Valley, CA

    Science.gov (United States)

    Wasklewicz, T. A.; Whitworth, J.

    2004-12-01

    Geomorphological features are best examined through direct measurement and parameterization of accurate topographic data. Fine-scale data are therefore required to produce a complete set of elevation data. Airborne Laser Swath Mapping (ALSM) data provide high-resolution data over large spatially continuous areas. The National Center for Advanced Laser Mapping (NCALM) collected ALSM data for an area along the eastern side of Death Valley extending from slightly north of Badwater to Mormon Point. The raw ALSM data were post-processed and delivered by NCALM in one-meter grid nodes that we converted to one-meter raster data sets. ALSM data are used to assess variations in the dimensions of surficial features found in 32 alluvial fans (21 debris flow and 11 mixed flow fans). Planimetric curvature of the fan surfaces is used to develop a topographic signature to distinguish debris flow from mixed flow fans. These two groups of fans are identified from field analysis of near vertical exposures along channels as well as surficial exposures at proximal, medial, and distal fan locations. One group of fans exhibited debris flow characteristics (DF), while the second group contained a mixture of fluid and debris flows (MF). Local planimetric curvature of the alluvial fan surfaces was derived from the one-meter DEM. The local curvature data were reclassified into concave and convex features. This sequence corresponds to two broad classes of fan features: channels and interfluves. Thirty random points were generated inside each fan polygon. The length of the nearest concave-convex (channel-interfluve) couplet was measured at each point and the percentage of convex and concave pixels in a 10m box centered on the random point was also recorded. Plots and statistical analyses of the data show clear indication that local planimetric curvature can be used as a topographic signature to distinguish between the varying formative processes in alluvial fans. Significant differences in the

  9. Transport of regional pollutants through a remote trans-Himalayan valley in Nepal

    Science.gov (United States)

    Dhungel, Shradda; Kathayat, Bhogendra; Mahata, Khadak; Panday, Arnico

    2018-01-01

    Anthropogenic emissions from the combustion of fossil fuels and biomass in Asia have increased in recent years. High concentrations of reactive trace gases and light-absorbing and light-scattering particles from these sources form persistent haze layers, also known as atmospheric brown clouds, over the Indo-Gangetic plains (IGP) from December through early June. Models and satellite imagery suggest that strong wind systems within deep Himalayan valleys are major pathways by which pollutants from the IGP are transported to the higher Himalaya. However, observational evidence of the transport of polluted air masses through Himalayan valleys has been lacking to date. To evaluate this pathway, we measured black carbon (BC), ozone (O3), and associated meteorological conditions within the Kali Gandaki Valley (KGV), Nepal, from January 2013 to July 2015. BC and O3 varied over both diurnal and seasonal cycles. Relative to nighttime, mean BC and O3 concentrations within the valley were higher during daytime when the up-valley flow (average velocity of 17 m s-1) dominated. BC and O3 concentrations also varied seasonally with minima during the monsoon season (July to September). Concentrations of both species subsequently increased post-monsoon and peaked during March to May. Average concentrations for O3 during the seasonally representative months of April, August, and November were 41.7, 24.5, and 29.4 ppbv, respectively, while the corresponding BC concentrations were 1.17, 0.24, and 1.01 µg m-3, respectively. Up-valley fluxes of BC were significantly greater than down-valley fluxes during all seasons. In addition, frequent episodes of BC concentrations 2-3 times higher than average persisted from several days to a week during non-monsoon months. Our observations of increases in BC concentration and fluxes in the valley, particularly during pre-monsoon, provide evidence that trans-Himalayan valleys are important conduits for transport of pollutants from the IGP to the

  10. Geologic characterization report for the Paradox Basin Study Region, Utah Study Areas. Volume 6. Salt Valley

    International Nuclear Information System (INIS)

    1984-12-01

    Surface landforms in the Salt Valley Area are generally a function of the Salt Valley anticline and are characterized by parallel and subparallel cuestaform ridges and hogbacks and flat valley floors. The most prominent structure in the Area is the Salt Valley anticline. Erosion resulting from the Tertiary uplift of the Colorado Plateau led to salt dissolution and subsequent collapse along the crest of the anticline. Continued erosion removed the collapse material, forming an axial valley along the crest of the anticline. Paleozoic rocks beneath the salt bearing Paradox Formation consist of limestone, dolomite, sandstone, siltstone and shale. The salt beds of the Paradox Formation occur in distinct cycles separated by an interbed sequence of anhydrite, carbonate, and clastic rocks. The Paradox Formation is overlain by Pennsylvanian limestone; Permian sandstone; and Mesozoic sandstone, mudstone, conglomerate and shale. No earthquakes have been reported in the Area during the period of the historic record and contemporary seismicity appears to be diffusely distributed, of low level and small magnitude. The upper unit includes the Permian strata and upper Honaker Trail Formation. The current data base is insufficient to estimate ground-water flow rates and directions in this unit. The middle unit includes the evaporites in the Paradox Formation and no laterally extensive flow systems are apparent. The lower unit consists of the rocks below the Paradox Formation where permeabilities vary widely, and the apparent flow direction is toward the west. 108 refs., 39 figs., 9 tabs

  11. Budgets and chemical characterization of groundwater for the Diamond Valley flow system, central Nevada, 2011–12

    Science.gov (United States)

    Berger, David L.; Mayers, C. Justin; Garcia, C. Amanda; Buto, Susan G.; Huntington, Jena M.

    2016-07-29

    The Diamond Valley flow system consists of six hydraulically connected hydrographic areas in central Nevada. The general down-gradient order of the areas are southern and northern Monitor Valleys, Antelope Valley, Kobeh Valley, Stevens Basin, and Diamond Valley. Groundwater flow in the Diamond Valley flow system terminates at a large playa in the northern part of Diamond Valley. Concerns relating to continued water-resources development of the flow system resulted in a phased hydrologic investigation that began in 2005 by the U.S. Geological Survey in cooperation with Eureka County. This report presents the culmination of the phased investigation to increase understanding of the groundwater resources of the basin-fill aquifers in the Diamond Valley flow system through evaluations of groundwater chemistry and budgets. Groundwater chemistry was characterized using major ions and stable isotopes from groundwater and precipitation samples. Groundwater budgets accounted for all inflows, outflows, and changes in storage, and were developed for pre-development (pre-1950) and recent (average annual 2011–12) conditions. Major budget components include groundwater discharge by evapotranspiration and groundwater withdrawals; groundwater recharge by precipitation, and interbasin flow; and storage change.

  12. Shallow groundwater in the Matanuska-Susitna Valley, Alaska—Conceptualization and simulation of flow

    Science.gov (United States)

    Kikuchi, Colin P.

    2013-01-01

    The Matanuska-Susitna Valley is in the Upper Cook Inlet Basin and is currently undergoing rapid population growth outside of municipal water and sewer service areas. In response to concerns about the effects of increasing water use on future groundwater availability, a study was initiated between the Alaska Department of Natural Resources and the U.S. Geological Survey. The goals of the study were (1) to compile existing data and collect new data to support hydrogeologic conceptualization of the study area, and (2) to develop a groundwater flow model to simulate flow dynamics important at the regional scale. The purpose of the groundwater flow model is to provide a scientific framework for analysis of regional-scale groundwater availability. To address the first study goal, subsurface lithologic data were compiled into a database and were used to construct a regional hydrogeologic framework model describing the extent and thickness of hydrogeologic units in the Matanuska-Susitna Valley. The hydrogeologic framework model synthesizes existing maps of surficial geology and conceptual geochronologies developed in the study area with the distribution of lithologies encountered in hundreds of boreholes. The geologic modeling package Geological Surveying and Investigation in Three Dimensions (GSI3D) was used to construct the hydrogeologic framework model. In addition to characterizing the hydrogeologic framework, major groundwater-budget components were quantified using several different techniques. A land-surface model known as the Deep Percolation Model was used to estimate in-place groundwater recharge across the study area. This model incorporates data on topography, soils, vegetation, and climate. Model-simulated surface runoff was consistent with observed streamflow at U.S. Geological Survey streamgages. Groundwater withdrawals were estimated on the basis of records from major water suppliers during 2004-2010. Fluxes between groundwater and surface water were

  13. Extracting Vegetation Coverage in Dry-hot Valley Regions Based on Alternating Angle Minimum Algorithm

    Science.gov (United States)

    Y Yang, M.; Wang, J.; Zhang, Q.

    2017-07-01

    Vegetation coverage is one of the most important indicators for ecological environment change, and is also an effective index for the assessment of land degradation and desertification. The dry-hot valley regions have sparse surface vegetation, and the spectral information about the vegetation in such regions usually has a weak representation in remote sensing, so there are considerable limitations for applying the commonly-used vegetation index method to calculate the vegetation coverage in the dry-hot valley regions. Therefore, in this paper, Alternating Angle Minimum (AAM) algorithm of deterministic model is adopted for selective endmember for pixel unmixing of MODIS image in order to extract the vegetation coverage, and accuracy test is carried out by the use of the Landsat TM image over the same period. As shown by the results, in the dry-hot valley regions with sparse vegetation, AAM model has a high unmixing accuracy, and the extracted vegetation coverage is close to the actual situation, so it is promising to apply the AAM model to the extraction of vegetation coverage in the dry-hot valley regions.

  14. Heat flow and radioactivity studies in the Ross Island-dry valley area, Antarctica and their tectonic implications

    International Nuclear Information System (INIS)

    Bucher, G.J.

    1980-01-01

    In conjunction with the Dry Valley Drilling Project, the University of Wyoming conducted heat flow and basement radioactivity studies in the Ross Island-dry valley area of southern Victoria Land, Antarctica. This part of Antarctica is characterized by late Cenozoic alkaline basaltic volcanism and uplift. Six heat flow (q) values for the area range from 1.4 to 2.0 HFU, with a mean value of 1.7 HFU. Radioactive heat production (A) values for basement rocks from the dry valleys range from 2.2 to 4.1 HGU, with a mean value of 3.0 HGU. The combined q-A data imply that this area is a zone of high reduced heat flow, similar to the Basin and Range province in the western United States and other zones of late Cenozoic tectonof Antarctica is probably in the range of 1.2 to 1.6 HFU, which is about 50 to 100% higher than the reduced flux which characterizes stable continental areas. The results of the transient conductive models presented herein imply that the high flux in this part of Antarctica cannot be explained by the residual thermal effects of a major episode of lithospheric thinning associated with the generation of the Ferrar Dolerites. The correlation between steady conductive thermal models and the late Cenozoic, silica-undersaturated, alkaline basalts of the region is similarly obscure. For example, purely conductive steady-state temperature-depth models predict partial melting at depths of only 45 to 50 km in the mantle, whereas geochemical data for the volcanic units are consistent with the basalts being generated at depths of at least 60 to 80 km

  15. Narrating Regional Identity in Tourism--Sketches from the Austrian Danube Valley

    Science.gov (United States)

    Ploner, Josef

    2009-01-01

    This article sketches the processes of regionalisation in the realm of present day tourism. By exploring issues of "regional culture" and "diversity" in Austria, and more particular, in the highly symbolic Danube valley "Wachau", the article shows how the imaginaries of contested cultural spaces--be they…

  16. Population structure of Phytophthora infestans in the Toluca Valley region of Central Mexico

    NARCIS (Netherlands)

    Grünwald, N.J.; Flier, W.G.; Sturbaum, A.K.; Garay-Serrano, E.; Bosch, van den G.B.M.; Smart, C.D.; Matuszak, J.M.; Turkensteen, L.J.; Fry, W.E.

    2001-01-01

    We tested the hypothesis that the population of Phytophthora infestans in the Toluca valley region is genetically differentiated according to habitat. Isolates were sampled in three habitats from (i) wild Solanum spp. (WILD), (ii) land-race varieties in low-input production systems (RURAL), and

  17. Ground-water flow and simulated effects of development in Paradise Valley, a basin tributary to the Humboldt River in Humboldt County, Nevada

    Science.gov (United States)

    Prudic, David E.; Herman, M.E.

    1996-01-01

    A computer model was used to characterize ground-water flow in Paradise Valley, Nevada, and to evaluate probable long-term effects of five hypothetical development scenarios. One finding of the study is that concentrating pumping at the south end of Paradise Valley may increase underflow from the adjacent Humboldt River valley, and might affect flow in the river.

  18. Transport of regional pollutants through a remote trans-Himalayan valley in Nepal

    Directory of Open Access Journals (Sweden)

    S. Dhungel

    2018-01-01

    Full Text Available Anthropogenic emissions from the combustion of fossil fuels and biomass in Asia have increased in recent years. High concentrations of reactive trace gases and light-absorbing and light-scattering particles from these sources form persistent haze layers, also known as atmospheric brown clouds, over the Indo–Gangetic plains (IGP from December through early June. Models and satellite imagery suggest that strong wind systems within deep Himalayan valleys are major pathways by which pollutants from the IGP are transported to the higher Himalaya. However, observational evidence of the transport of polluted air masses through Himalayan valleys has been lacking to date. To evaluate this pathway, we measured black carbon (BC, ozone (O3, and associated meteorological conditions within the Kali Gandaki Valley (KGV, Nepal, from January 2013 to July 2015. BC and O3 varied over both diurnal and seasonal cycles. Relative to nighttime, mean BC and O3 concentrations within the valley were higher during daytime when the up-valley flow (average velocity of 17 m s−1 dominated. BC and O3 concentrations also varied seasonally with minima during the monsoon season (July to September. Concentrations of both species subsequently increased post-monsoon and peaked during March to May. Average concentrations for O3 during the seasonally representative months of April, August, and November were 41.7, 24.5, and 29.4 ppbv, respectively, while the corresponding BC concentrations were 1.17, 0.24, and 1.01 µg m−3, respectively. Up-valley fluxes of BC were significantly greater than down-valley fluxes during all seasons. In addition, frequent episodes of BC concentrations 2–3 times higher than average persisted from several days to a week during non-monsoon months. Our observations of increases in BC concentration and fluxes in the valley, particularly during pre-monsoon, provide evidence that trans-Himalayan valleys are important conduits for transport of

  19. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    Science.gov (United States)

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    ground-water development have eliminated the natural sources of discharge, and pumping for agricultural and urban uses have become the primary source of discharge from the ground-water system. Infiltration of return flows from agricultural irrigation has become an important source of recharge to the aquifer system. The ground-water flow model of the basin was discretized horizontally into a grid of 43 rows and 60 columns of square cells 1 mile on a side, and vertically into three layers representing the upper, middle, and lower aquifers. Faults that were thought to act as horizontal-flow barriers were simulated in the model. The model was calibrated to simulate steady-state conditions, represented by 1915 water levels and transient-state conditions during 1915-95 using water-level and subsidence data. Initial estimates of the aquifer-system properties and stresses were obtained from a previously published numerical model of the Antelope Valley ground-water basin; estimates also were obtained from recently collected hydrologic data and from results of simulations of ground-water flow and land subsidence models of the Edwards Air Force Base area. Some of these initial estimates were modified during model calibration. Ground-water pumpage for agriculture was estimated on the basis of irrigated crop acreage and crop consumptive-use data. Pumpage for public supply, which is metered, was compiled and entered into a database used for this study. Estimated annual pumpage peaked at 395,000 acre-feet (acre-ft) in 1952 and then declined because of declining agricultural production. Recharge from irrigation-return flows was estimated to be 30 percent of agricultural pumpage; the irrigation-return flows were simulated as recharge to the regional water table 10 years following application at land surface. The annual quantity of natural recharge initially was based on estimates from previous studies. During model calibration, natural recharge was reduced from the initial

  20. Susceptibility assessment of debris flows using the analytic hierarchy process method − A case study in Subao river valley, China

    Directory of Open Access Journals (Sweden)

    Xingzhang Chen

    2015-08-01

    Full Text Available Many debris flows have occurred in the areas surrounding the epicenter of the Wenchuan earthquake. Susceptibility assessment of debris flows in this area is especially important for disaster prevention and mitigation. This paper studies one of the worst hit areas, the Subao river valley, and the susceptibility assessment of debris flows is performed based on field surveys and remote sensing interpretation. By investigating the formation conditions of debris flows in the valley, the following assessment factors are selected: mixture density of landslides and rock avalanches, distance to the seismogenic fault, stratum lithology, ground roughness, and hillside angle. The weights of the assessment factors are determined by the analytic hierarchy process (AHP method. Each of the assessment factors is further divided into five grades. Then, the assessment model is built using the multifactor superposition method to assess the debris flow susceptibility. Based on the assessment results, the Subao river valley is divided into three areas: high susceptibility areas, medium susceptibility areas, and low susceptibility areas. The high susceptibility areas are concentrated in the middle of the valley, accounting for 17.6% of the valley area. The medium susceptibility areas are in the middle and lower reaches, most of which are located on both sides of the high susceptibility areas and account for 45.3% of the valley area. The remainders are classified as low susceptibility areas. The results of the model are in accordance with the actual debris flow events that occurred after the earthquake in the valley, confirming that the proposed model is capable of assessing the debris flow susceptibility. The results can also provide guidance for reconstruction planning and debris flow prevention in the Subao river valley.

  1. Regional cerebral blood flow in schizophrenia

    International Nuclear Information System (INIS)

    Mathew, R.J.; Duncan, G.C.; Weinman, M.L.; Barr, D.L.

    1982-01-01

    Regional cerebral blood flow (rCBF) was measured via xenon133 inhalation technique in 23 patients with schizophrenia and 18 age- and sex-matched controls. The mean blood flow to both hemispheres was found to be lower for the patients. The patients and their controls did not differ on interhemispheric differences in blood flow. There were no differences in rCBF between medicated and unmedicated, subchronic and chronic, and paranoid and nonparanoid patients. Hallucinations were associated with reduced blood flow to several postcentral regions

  2. Regional cerebral blood flow in schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, R.J.; Duncan, G.C.; Weinman, M.L.; Barr, D.L.

    1982-10-01

    Regional cerebral blood flow (rCBF) was measured via xenon133 inhalation technique in 23 patients with schizophrenia and 18 age- and sex-matched controls. The mean blood flow to both hemispheres was found to be lower for the patients. The patients and their controls did not differ on interhemispheric differences in blood flow. There were no differences in rCBF between medicated and unmedicated, subchronic and chronic, and paranoid and nonparanoid patients. Hallucinations were associated with reduced blood flow to several postcentral regions.

  3. Preliminary estimates of spatially distributed net infiltration and recharge for the Death Valley region, Nevada-California

    International Nuclear Information System (INIS)

    Hevesi, J.A.; Flint, A.L.; Flint, L.E.

    2002-01-01

    A three-dimensional ground-water flow model has been developed to evaluate the Death Valley regional flow system, which includes ground water beneath the Nevada Test Site. Estimates of spatially distributed net infiltration and recharge are needed to define upper boundary conditions. This study presents a preliminary application of a conceptual and numerical model of net infiltration. The model was developed in studies at Yucca Mountain, Nevada, which is located in the approximate center of the Death Valley ground-water flow system. The conceptual model describes the effects of precipitation, runoff, evapotranspiration, and redistribution of water in the shallow unsaturated zone on predicted rates of net infiltration; precipitation and soil depth are the two most significant variables. The conceptual model was tested using a preliminary numerical model based on energy- and water-balance calculations. Daily precipitation for 1980 through 1995, averaging 202 millimeters per year over the 39,556 square kilometers area of the ground-water flow model, was input to the numerical model to simulate net infiltration ranging from zero for a soil thickness greater than 6 meters to over 350 millimeters per year for thin soils at high elevations in the Spring Mountains overlying permeable bedrock. Estimated average net infiltration over the entire ground-water flow model domain is 7.8 millimeters per year. To evaluate the application of the net-infiltration model developed on a local scale at Yucca Mountain, to net-infiltration estimates representing the magnitude and distribution of recharge on a regional scale, the net-infiltration results were compared with recharge estimates obtained using empirical methods. Comparison of model results with previous estimates of basinwide recharge suggests that the net-infiltration estimates obtained using this model may overestimate recharge because of uncertainty in modeled precipitation, bedrock permeability, and soil properties for

  4. Studies of geology and hydrology in the Basin and Range province, southwestern United States, for isolation of high-level radioactive waste-characterization of the Death Valley region, Nevada and California

    International Nuclear Information System (INIS)

    Bedinger, M.S.; Sargent, K.A.; Langer, W.H.

    1989-01-01

    The Death Valley region, Nevada and California, in the Basin and Range province, is an area of about 80,200 sq km located in southern Nevada and southeastern California. Precambrian metamorphic and intrusive basement rocks are overlain by a thick section of Paleozoic clastic and evaporitic sedimentary rocks. Mesozoic and Cenozoic rocks include extrusive and intrusive rocks and clastic sedimentary rocks. Structural features within the Death Valley indicate a long and complex tectonic evolution from late Precambrian to the present. Potential repository host media in the region include granite and other coarse-grained plutonic rocks, ashflow tuff, basaltic and andesitic lava flows, and basin fill. The Death Valley region is composed largely of closed topographic basins that are apparently coincident with closed groundwater flow systems. In these systems, recharge occurs sparingly at higher altitudes by infiltration of precipitation or by infiltration of ephemeral runoff. Discharge occurs largely by spring flow and by evaporation and transpiration in the playas. Death Valley proper, for which the region was named, is the ultimate discharge area for a large, complex system of groundwater aquifers that occupy the northeastern part of the region. The deepest part of the system consists of carbonate aquifers that connect closed topographic basins at depth. The discharge from the system occurs in several intermediate areas that are geomorphically, stratigraphically, and structurally controlled. Ultimately, most groundwater flow terminates by discharge to Death Valley; groundwater is discharged to the Colorado River from a small part of the region

  5. Calibration of numerical models for small debris flows in Yosemite Valley, California, USA

    Directory of Open Access Journals (Sweden)

    P. Bertolo

    2005-01-01

    Full Text Available This study compares documented debris flow runout distances with numerical simulations in the Yosemite Valley of California, USA, where about 15% of historical events of slope instability can be classified as debris flows and debris slides (Wieczorek and Snyder, 2004. To model debris flows in the Yosemite Valley, we selected six streams with evidence of historical debris flows; three of the debris flow deposits have single channels, and the other three split their pattern in the fan area into two or more channels. From field observations all of the debris flows involved coarse material, with only very small clay content. We applied the one dimensional DAN (Dynamic ANalysis model (Hungr, 1995 and the two-dimensional FLO-2D model (O'Brien et al., 1993 to predict and compare the runout distance and the velocity of the debris flows observed in the study area. As a first step, we calibrated the parameters for the two softwares through the back analysis of three debris- flows channels using a trial-and-error procedure starting with values suggested in the literature. In the second step we applied the selected values to the other channels, in order to evaluate their predictive capabilities. After parameter calibration using three debris flows we obtained results similar to field observations We also obtained a good agreement between the two models for velocities. Both models are strongly influenced by topography: we used the 30 m cell size DTM available for the study area, that is probably not accurate enough for a highly detailed analysis, but it can be sufficient for a first screening.

  6. Geology, selected geophysics, and hydrogeology of the White River and parts of the Great Salt Lake Desert regional groundwater flow systems, Utah and Nevada

    Science.gov (United States)

    Rowley, Peter D.; Dixon, Gary L.; Watrus , James M.; Burns, Andrews G.; Mankinen, Edward A.; McKee, Edwin H.; Pari, Keith T.; Ekren, E. Bartlett; Patrick , William G.; Comer, John B.; Inkenbrandt, Paul C.; Krahulec, K.A.; Pinnell, Michael L.

    2016-01-01

    The east-central Great Basin near the Utah-Nevada border contains two great groundwater flow systems. The first, the White River regional groundwater flow system, consists of a string of hydraulically connected hydrographic basins in Nevada spanning about 270 miles from north to south. The northernmost basin is Long Valley and the southernmost basin is the Black Mountain area, a valley bordering the Colorado River. The general regional groundwater flow direction is north to south. The second flow system, the Great Salt Lake Desert regional groundwater flow system, consists of hydrographic basins that straddle

  7. Plant diversity and conservation status of Himalayan Region Poonch Valley Azad Kashmir (Pakistan).

    Science.gov (United States)

    Khan, Muhammad Azam; Khan, Mir Ajab; Hussain, Mazhar; Mujtaba, Ghulam

    2014-09-01

    The plant diversity of Himalayan region has been reduced to greater extent due to environmental degradation and human exploitation. Anthropogenic disturbance was the major factor responsible for fragmentation of forest vegetation into small patches. Little research has been conducted in the Himalayan region of Poonch Valley of North eastern Pakistan with reference to plants biodiversity and its conservation. The present research was carried out to provide a checklist of vegetation for biodiversity conservation. A total of 430 vascular and 5 nonvascular plant species with 5 species of Bryophytes (5 families), 13 species of Pteridophytes (6 families), 4 species of Gymnosperms (1 family) and 413 species of angiosperms (95 families) were enumerated from the Poonch valley Azad Kashmir. The genera were classified into three categories according to the number of species. 25 plant communities with phytosociological parameters and diversity indices were reported. Present study revealed that there were 145 threatened, 30 endangered, 68 vulnerable and 47 rare species. It is recorded that extensive grazing, uprooting of plants and soil slope erosion intensify the environmental problems. Since there is maximum exploitation of vegetation, the valley showed a decline in plant diversity. The study was also indicated that the main threats to the biodiversity are expansion of settlement and army installations in the forest area of the valley. For sustainable use In-situ and Ex-situ conservation, controlled harvesting and afforestation may be the solution. Moreover, forest area should be declared prohibited for settlements and army installations.

  8. THE ROLE OF SOCIAL NETWORKS IN THE REGIONAL DEVELOPMENT: THE CASE OF SILICON VALLEY

    Directory of Open Access Journals (Sweden)

    MURAT ÇETİN

    2013-06-01

    Full Text Available Social capital has commonly been discussed in recent years from the perspective of sociology, economics and political science. Social capital defines the structure of social relations among economic actors in a region. Regional development depends directly on the level of actors’ social capital. This study focuses on the importance of social networks, an important factor of social capital, in the economy of Silicon Valley. These networks improve many-sided and intensive social relations and collaborative activities within and among universities, research centers, venture capitalists, law firms, industrial firms and investment banks in the region. In Silicon Valley, social networks have special importance in the movement of labor, the gaining of influence and power, and the actual production of innovation. Thus, social networks can be evaluated as a driver of economic development.

  9. Mesoscale energetics and flows induced by sea-land and mountain-valley contrasts

    Directory of Open Access Journals (Sweden)

    S. Federico

    2000-02-01

    Full Text Available We study the relative importance of sea-land and mountain-valley thermal contrasts in determining the development of thermally forced mesoscale circulations (TFMCs over a mountainous peninsula. We first analyse the energetics of the problem, and using this theory, we interprete the numerical simulations over Calabria, a mountainous peninsula in southern Italy. The CSU 3-D nonlinear numerical model is utilised to simulate the dynamics and the thermodynamics of the atmospheric fields over Calabria. Results show the importance of orography in determining the pattern of the flow and the local climate in a region as complex as Calabria. Analysis of the results shows that the energetics due to the sea-land interactions are more efficient when the peninsula is flat. The importance of the energy due to the sea-land decreases as the mountain height of the peninsula increases. The energy stored over the mountain gains in importance, untill it is released by the readjustment of the warm mountain air as it prevails over the energy released by the inland penetration of the sea breeze front. For instance, our results show that over a peninsula 100 km wide the energy over the mountain and the energy in the sea-land contrast are of the same order when the height of the mountain is about 700 m, for a 1500 m convective boundary layer (CBL depth. Over the Calabrian peninsula, the energy released by the hot air in the CBL of the mountain prevails over the energy released by the inland penetration of the sea air. Calabria is about 1500 m high and about 50 km wide, and the CBL is of the order of 1500 m. The energy over the mountain is about four time larger than the energy contained in the sea-land contrast. Furthermore, the energetics increase with the patch width of the peninsula, and when its half width is much less than the Rossby radius, the MAPE of the sea breeze is negligible. When its half width is much larger than the Rossby radius, the breezes from the two

  10. A case study of the development of nocturnal slope flows in a wide open valley and associated air quality implications

    Energy Technology Data Exchange (ETDEWEB)

    Pardyjak, Eric R. [Utah Univ., Salt Lake City, UT (United States). Dept. of Mechanical Engineering; Fernando, Harindra Joseph S.; Anderson, James [Arizona State Univ., Tempe, AZ (United States). Center for Environmental Fluid Dynamics; Hunt, Julian C.R. [University Coll., London (United Kingdom). Dept. of Space and Climate Physics, and Earth Sciences; Grachev, Andrey A. [Colorado Univ./NOAA, Boulder, CO (US). Cooperative Inst. for Research in Environmental Sciences (CIRES)

    2009-07-01

    This paper documents the development of nocturnal flows in the wide open Phoenix, Arizona (U.S.A) valley (30 km x 100 km) that is bordered by a large nearly flat plain to the west and high mountains to the north and east. Local thermally driven winds concomitant with the absence of significant synoptic pressure gradients dominate typical winter conditions in the Phoenix valley. The purpose of the Phoenix Air Flow Experiment (PAFEX-1) was to study the development of thermally driven flows during the evening transition in a sloping valley and describe the general pattern of transport and dispersion of contaminants during transition periods and at night. Measurements were made using a tethered balloon, sonic anemometer, balloon-based aerosol sampler, radiation sensors, cup anemometers, thermistors and humidity sensors in conjunction with data collected from 44 standard meteorological stations located throughout the valley. Over the period of 15 days in January and February 1998 the general diurnal flow patterns were repeatable, but varied substantially around the valley. This paper focuses on a case study of the evening transition, nocturnal circulation and morning breakdown of the nocturnal circulation on the night of 31 January and morning of 1 February. Central valley measurements were consistent with the notion that the evening transition is associated with a moving front, followed by intense mixing and the movement of the front to establish down-valley winds. Flows originating from different slopes led to the arrival of fronts at the various measurement locations at different times. These flows intrude into the valley and interact with each other, often causing multi-layered vertical structure. The intrusions respond to the evolving stratification and cause striking variability of these layers, for example, periodic wind and temperature disturbances corresponding to the arrival of new intrusive fronts. The evolution of the boundary layer was found to have a

  11. Stable isotope and groundwater flow dynamics of agricultural irrigation recharge into groundwater resources of the Central Valley, California

    International Nuclear Information System (INIS)

    Davisson, M.L.; Criss, R.E.

    1995-01-01

    Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the δ 18 O values of groundwater were relatively homogeneous (mostly -7.0 ± 0.5 per-thousand), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high 18 O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low 18 O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in δ 18 O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are ∼10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for ∼40 years, creating cones of depression ∼25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low 18 O water (-11.0 per-thousand) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp 18 O gradients in our groundwater isotope map

  12. Multi-region relaxed magnetohydrodynamics with flow

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, G. R., E-mail: graham.dennis@anu.edu.au; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, ACT 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)

    2014-04-15

    We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes plasma flow. This new model is a generalization of Woltjer's model of relaxed magnetohydrodynamics equilibria with flow. We prove that as the number of plasma regions becomes infinite, our extension of MRxMHD reduces to ideal MHD with flow. We also prove that some solutions to MRxMHD with flow are not time-independent in the laboratory frame, and instead have 3D structure which rotates in the toroidal direction with fixed angular velocity. This capability gives MRxMHD potential application to describing rotating 3D MHD structures such as 'snakes' and long-lived modes.

  13. Risk and size estimation of debris flow caused by storm rainfall in mountain regions

    Institute of Scientific and Technical Information of China (English)

    CHENG; Genwei

    2003-01-01

    Debris flow is a common disaster in mountain regions. The valley slope, storm rainfall and amassed sand-rock materials in a watershed may influence the types of debris flow. The bursting of debris flow is not a pure random event. Field investigations show the periodicity of its burst, but no directive evidence has been found yet. A risk definition of debris flow is proposed here based upon the accumulation and the starting conditions of loose material in channel. According to this definition, the risk of debris flow is of quasi-periodicity. A formula of risk estimation is derived. Analysis of relative factors reveals the relationship between frequency and size of debris flow. For a debris flow creek, the longer the time interval between two occurrences of debris flows is, the bigger the bursting event will be.

  14. Postradiation regional cerebral blood flow in primates

    International Nuclear Information System (INIS)

    Cockerham, L.G.; Cerveny, T.J.; Hampton, J.D.

    1986-01-01

    Early transient incapacitation (ETI) is the complete cessation of performance during the first 30 min after radiation exposure and performance decrement (PD) is a reduction in performance at the same time. Supralethal doses of radiation have been shown to produce a marked decrease in regional cerebral blood flow in primates concurrent with hypotension and a dramatic release of mast cell histamine. In an attempt to elucidate mechanisms underlying the radiation-induced ETI/PD phenomenon and the postradiation decrease in cerebral blood flow, primates were exposed to 100 Gy (1 Gy = 100 rads), whole-body, gamma radiation. Pontine and cortical blood flows were measured by hydrogen clearance, before and after radiation exposure. Systemic blood pressures were determined simultaneously. Systemic arterial histamine levels were determined preradiation and postradiation. Data obtained indicated that radiated animals showed a decrease in blood flow of 63% in the motor cortex and 51% in the pons by 10 min postradiation. Regional cerebral blood flow of radiated animals showed a slight recovery 20 min postradiation, followed by a fall to the 10 min nadir by 60 min postradiation. Immediately, postradiation systemic blood pressure fell 67% and remained at that level for the remainder of the experiment. Histamine levels in the radiated animals increased a hundredfold 2 min postradiation. This study indicates that regional cerebral blood flow decreases postradiation with the development of hypotension and may be associated temporally with the postradiation release of histamine

  15. Topoclimatic modeling for minimum temperature prediction at a regional scale in the Central Valley of Chile

    International Nuclear Information System (INIS)

    Santibáñez, F.; Morales, L.; Fuente, J. de la; Cellier, P.; Huete, A.

    1997-01-01

    Spring frost may strongly affect fruit production in the Central Valley of Chile. Minimum temperatures are spatially variable owing to topography and soil conditions. A methodology for forecasting minimum temperature at a regional scale in the Central Valley of Chile, integrating spatial variability of temperature under radiative frost conditions, has been developed. It uses simultaneously a model for forecasting minimum temperatures at a reference station using air temperature and humidity measured at 6 pm, and topoclimatic models, based on satellite infra-red imagery (NOAA/AVHRR) and a digital elevation model, to extend the prediction at a regional scale. The methodological developments were integrated in a geographic information system for geo referencing of a meteorological station with satellite imagery and modeled output. This approach proved to be a useful tool for short range (12 h) minimum temperature prediction by generating thermal images over the Central Valley of Chile. It may also be used as a tool for frost risk assessment, in order to adapt production to local climatological conditions. (author)

  16. New information on regional subsidence and soil fracturing in Mexico City Valley

    Directory of Open Access Journals (Sweden)

    G. Auvinet

    2015-11-01

    Full Text Available In this paper, updated information about regional subsidence in Mexico City downtown area is presented. Data obtained by R. Gayol in 1891, are compared with information obtained recently from surveys using the reference points of Sistema de Aguas de la Ciudad de México (2008 and on the elevation of a cloud of points on the ground surface determined using Light Detection and Ranging (LiDAR technology. In addition, this paper provides an overview of recent data obtained from systematic studies focused on understanding soil fracturing associated with regional land subsidence and mapping of areas susceptible to cracking in Mexico City Valley.

  17. Large mammals from the Upper Neopleistocene reference sections in the Tunka rift valley, southwestern Baikal Region

    Science.gov (United States)

    Shchetnikov, A. A.; Klementiev, A. M.; Filinov, I. A.; Semeney, E. Yu.

    2015-03-01

    This work presents the data on new finds of fossil macrotheriofauna in the reference sections of the Upper Neopleistocene sediments in the Tunka rift valley (southwestern Baikal Region). The osteological material of a number of Late Neopleistocene mammals including extinct species rare for the Baikal region such as Crocuta spelaea, Panthera spelaea, and Spirocerus kiakhtensis (?) was directly dated with a radiocarbon (AMS) method. The obtained 14C data (18000-35000 years) allow one to rejuvenate significantly the upper limit of the common age interval of habitat of these animals in southern part of Eastern Siberia. Cave hyena and spiral-horned antelope lived in the Tunka rift valley in the Baikal region in Late Kargino time (37-24 ka), and cave lion survived the maximum in the Sartan cryochron in the region (21-20 ka). The study of collected paleontological collections provides a basis for selection of independent Kargino (MIS 3) faunal assemblages to use them for regional biostratigraphic analysis of Pleistocene deposits. Radiocarbon age dating of samples allows one to attribute confidently all paleofaunal remains available to the second half of the Late Pleistocene.

  18. River-damming, late-Quaternary rockslides in the Ötz Valley region (Tyrol, Austria)

    Science.gov (United States)

    Dufresne, A.; Ostermann, M.; Preusser, F.

    2018-06-01

    The Ötz Valley and adjacent regions in Tyrol (Austria) have been repeatedly affected by large rockslope failures following deglaciation. Six rockslides, each over 107 m3 in volume, were emplaced into the Ötz and Inn valleys, five of which formed persistent rockslide dams. Even though catastrophic rockslope failures are short-lived events (commonly minutes) they can have long-lasting impacts on the landscape. For example, large fans have built in the Ötz Valley and knickpoints persist at the former dam sites even though the Ötz River has eroded through the deposits during the past thousands of years; exact age-constraints of rockslide dam failure, however, are still scarce. Empirical, geomorphic stability indices from the literature successfully identified the least and the most stable dams of this group, whereas the rest remain inconclusive with some indices variably placing the dams in the stable, unstable, and uncertain categories. This shows (a) that further index calibrations and (b) better age constraints on dam formation and failure are needed, and (c) that the exact processes of dam failure are not always trivial to pinpoint for ancient (partially) breached dams. This study is a contribution towards better constraining the nature and landscape impact of dam formation following large rockslope failures.

  19. The persistence of rift valley fever in the Jazan region of Saudi Arabia.

    Science.gov (United States)

    Elfadil, A A; Hasab-Allah, K A; Dafa-Allah, O M; Elmanea, A A

    2006-12-01

    A survey was conducted in the Jazan region of Saudi Arabia to investigate the presence of Rift Valley fever (RVF) in sheep and goats, by clinical identification of suspected herds and detection of immunoglobulin M (IgM) antibodies to RVF virus. The level of herd immunity was identified by detecting immunoglobulin G (IgG) antibodies. Rift Valley fever was diagnosed in six out of eight districts included in the survey. Twenty-two animals from 17 herds tested positive for the presence of IgM antibodies against RVF in these districts. The infection rate ranged from 0.12% in the Sabya district to 1.04% in the Jizan district. The level of herd immunity ranged from 22.2% in Jizan to 39.3% in the Alarda district. It can be concluded that the presence of IgM antibodies in clinically suspected herds suggests persistent RVF infection in the Jazan region. Thus, RVF control programmes should be continued to prevent the recurrence of outbreaks in the region and the possible further spread of infection to other regions of Saudi Arabia.

  20. Regional groundwater flow in hard rocks

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Fernando A.L., E-mail: fpacheco@utad.pt

    2015-02-15

    The territory of continental Portugal has a geologic history marked by the Hercynian orogeny, and to the north of this country the Hercynian large-scale tectonic structures are typically represented by long and deep NW–SE trending ductile shear zones and NNE–SSW trending fragile faults. These structures are elements of mineral and thermal water circuits that discharge as springs in more than one hundred locations. The purpose of this study is to investigate if these structures are also used by shallower non-mineral groundwater, integrated in a large-scale regional flow system. Using an original combination of water balance and recession flow models, it was possible to calculate catchment turnover times based solely on groundwater discharge rates and recession flow parameters. These times were then used to classify a group of 46 watersheds as closed or open basins, and among the later class to identify source and sink basins, based on innovative interpretations of relationships between turnover time and catchment area. By definition, source basins transfer groundwater to sink basins and altogether form a regional flow system. Using a Geographic Information System, it could be demonstrated the spatial association of open basins to the Hercynian ductile and fragile tectonic structures and hence to classify the basins as discharge cells of a regional flow system. Most of the studied watersheds are sub-basins of the Douro River basin, one of the largest regional catchments in the Iberian Peninsula, being located in its mouth area. Because the largest part of open basins is sink, which by definition tends to dominate in the mouth area of regional catchments, it is proposed as an extension of the studied area conceptual boundaries towards the Douro River basin headwaters, where the corresponding sources could be searched for. - Highlights: • Introduce a method to distinguish open from closed groundwater basins • Identify structural elements of a regional flow

  1. Regional groundwater flow in hard rocks

    International Nuclear Information System (INIS)

    Pacheco, Fernando A.L.

    2015-01-01

    The territory of continental Portugal has a geologic history marked by the Hercynian orogeny, and to the north of this country the Hercynian large-scale tectonic structures are typically represented by long and deep NW–SE trending ductile shear zones and NNE–SSW trending fragile faults. These structures are elements of mineral and thermal water circuits that discharge as springs in more than one hundred locations. The purpose of this study is to investigate if these structures are also used by shallower non-mineral groundwater, integrated in a large-scale regional flow system. Using an original combination of water balance and recession flow models, it was possible to calculate catchment turnover times based solely on groundwater discharge rates and recession flow parameters. These times were then used to classify a group of 46 watersheds as closed or open basins, and among the later class to identify source and sink basins, based on innovative interpretations of relationships between turnover time and catchment area. By definition, source basins transfer groundwater to sink basins and altogether form a regional flow system. Using a Geographic Information System, it could be demonstrated the spatial association of open basins to the Hercynian ductile and fragile tectonic structures and hence to classify the basins as discharge cells of a regional flow system. Most of the studied watersheds are sub-basins of the Douro River basin, one of the largest regional catchments in the Iberian Peninsula, being located in its mouth area. Because the largest part of open basins is sink, which by definition tends to dominate in the mouth area of regional catchments, it is proposed as an extension of the studied area conceptual boundaries towards the Douro River basin headwaters, where the corresponding sources could be searched for. - Highlights: • Introduce a method to distinguish open from closed groundwater basins • Identify structural elements of a regional flow

  2. Regional cerebral blood flow in schizophrenic patients

    International Nuclear Information System (INIS)

    Sagawa, Katsuo; Sibuya, Isoo; Oiji, Arata; Kawakatsu, Sinobu; Morinobu, Shigeru; Totsuka, Shiro; Kinoshita, Osami; Yazaki, Mitsuyasu.

    1990-01-01

    Seventy-six schizophrenic patients were examined by a Xe-133 inhalation method to determine regional cerebral blood flow. A decreased blood flow was observed in the frontal lobe, especially in the right inferior part. In a study on the relationship between disease subtypes and regional cerebral blood flow, negative symptoms were found more predominantly associated with dissolution type than delusion type. In the group of dissolution type, a decreased blood flow was observed in both the right inferior frontal lobe and the right upper hemisphere, in comparison to the group of delution type. Patients presenting with auditory hallucination had a significantly higher incidence of both negative and positive symptoms, as compared with those not presenting with it. In such patients, a significantly decreased blood flow was also seen in the left upper frontal lobe and the bilateral parietal lobe. Xe-133 inhalation method should assist in evaluating brain function in schizophrenic patients, thus leading to the likelihood of developing a new treatment modality. (N.K.)

  3. Virtual water flows related to land use in an intensive agriculture in the Fergana Valley, Uzbekistan

    Science.gov (United States)

    Klipstein, A.; Schneider, K.; Breuer, L.; Frede, H. G.

    2009-04-01

    Due to low annual precipitation, agricultural production in Uzbekistan is depending on irrigation from the Syrdarya and Amudarya rivers to a great deal. One of the most important cash crops of the country is cotton. Current irrigation management leads to elevated groundwater levels, salinization of soils and to a degradation of soil and water resources. Through export of cotton and other crops, the problems related to water consumption and water management are transported beyond the producing country. The amount of water transported through production and export is referred to as virtual water. To distinguish between productive and unproductive partitioning of water flows, the terms green and blue water have been introduced. Information on virtual water flows due to crop production usually only exist on country level. To reduce uncertainties related to generalization, the effect of land management and environmental factors on the partitioning of water flows needs to be studied on smaller scales. The presented study analyzes water fluxes in an intensively used agricultural area in the Fergana Valley, Uzbekistan. The study aims to a) quantify crop specific water consumption in agricultural production under current management and b) analyze water use efficiency as subject to land use and irrigation management. Based on crop production, irrigation management and environmental conditions in the study area, virtual water flows will be calculated on the level of agricultural collectives (Water Users Associations). In a further step, the partitioning of green and blue water fluxes will be quantified. Alternative scenarios for improved water management will be analyzed in a model study.

  4. Regional cerebral blood flow in schizophrenics

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, J.; Ohta, Y.; Nakane, Y.; Mori, H.; Hirota, N.; Yonekura, M.

    1987-01-01

    The present study on schizophrenics dealt with the relationship of regional cerebral blood flow (rCBF) to age, disease duration, and treatment length with chlorpromazine hydrochloride (CPZ). Regional cerebral blood flow in 28 cerebral regions of interest was measured by iv injection of /sup 133/X in 54 schizophrenic patients and 39 healthy volunteers. Neither age nor dosage of CPZ significantly influenced rCBF. All patients, including 11 treated for a short period of time (6 months or less), were characterized by having a decreased rCBF over the whole cerebrum. Thirty-four patients treated for a long period of time (2 years or more) had a varied rCBF distribution in the left hemisphere, with the most predominant feature being the decrease in rCBF in the frontal lobe (i.e., hypofrontality); however, there was no linear correlation between rCBF and disease duration. A decreased rCBE in the right occipital region was seen in patients with paranoid schizophrenia, suggesting that manifestations of symptoms may depend on disturbed regions. These results suggest that cerebral dysfunction in schizophrenic patients may not be restricted to the frontal lobe, but cover the whole cerebrum, and that nonuniform dysfunction in various regions of the cerebrum, including the frontal lobe, may be involved in manifestations of symptoms.

  5. Regional cerebral blood flow in schizophrenics

    International Nuclear Information System (INIS)

    Uchino, Jun; Ohta, Yasuyuki; Nakane, Yoshibumi; Mori, Hiroyuki; Hirota, Noriyoshi; Yonekura, Masahiro.

    1987-01-01

    The present study on schizophrenics dealt with the relationship of regional cerebral blood flow (rCBF) to age, disease duration, and treatment length with chlorpromazine hydrochloride (CPZ). Regional cerebral blood flow in 28 cerebral regions of interest was measured by iv injection of X-133 in 54 schizophrenic patients and 39 healthy volunteers. Neither age nor dosage of CPZ significantly influenced rCBF. All patients, including 11 treated for a short period of time (6 months or less), were characterized by having a decreased rCBF over the whole cerebrum. Thirty-four patients treated for a long period of time (2 years or more) had a varied rCBF distribution in the left hemisphere, with the most predominant feature being the decrease in rCBF in the frontal lobe (i.e., ''hypofrontality''); however, there was no linear correlation between rCBF and disease duration. A decreased rCBE in the right occipital region was seen in patients with paranoid schizophrenia, suggesting that manifestations of symptoms may depend on disturbed regions. These results suggest that cerebral dysfunction in schizophrenic patients may not be restricted to the frontal lobe, but cover the whole cerebrum, and that nonuniform dysfunction in various regions of the cerebrum, including the frontal lobe, may be involved in manifestations of symptoms. (Namekawa, K.)

  6. Regional cerebral blood flow in schizophrenia

    International Nuclear Information System (INIS)

    Kanoh, Masayuki

    1989-01-01

    Regional cerebral blood flow (rCBF) was measured at rest using the 133 Xe inhalation technique in 40 DSM-III-diagnosed schizophrenics (22 males, 18 females: mean age 35.0 years, range 20-49 years) and 31 age-and sex-matched normal controls (16 males, 15 females: mean age 34.3 years, range 21-49 years). The absolute value (AV) and the percent value (PV) of the rCBF in schizophrenics were compared with those in controls. Correlations between rCBF and the Brief Psychiatric Rating Scale (BPRS) scores or the performance of Wisconsin Card Sorting Test (WCST) were examined in schizophrenics. Schizophrenics showed significantly lower AVs in all brain regions examined and a significantly lower PV in the left superior frontal region than controls. The hyperfrontal rCBF distribution which was found in both hemispheres in controls, was absent in the left hemisphere in schizophrenics. In schizophrenics, superior frontal blood flows were significantly negatively correlated with the negative symptom scores of the BPRS but not with the total scores and the positive symptom scores of the BPRS. In schizophrenics, inferior frontal blood flows were significantly correlated with the number of sorting categories achieved. These results indicate that rCBF in schizophrenia is reduced in the whole brain and especially in the left superior frontal region. These findings suggest a frontal lobe dysfunction in schizophrenia. (author)

  7. Prospective regional studies: The Rhine Meuse study and the Tennessee Valley study

    International Nuclear Information System (INIS)

    Bayer, A.

    1980-01-01

    Within the scope of this report two regional studies are presented: - the 'Rhein-Maas-Study' within which the expected radiological impact of the population in the Rhein and Maas basin - which is situated within Central Europe - is assessed on the basis of the planned and forecasted development of nuclear energy in the coming decades. - The 'Tennessee Valley Study' within which the expected radiological impact of the population in the Tennessee-Cumberland basis - which is situated within North America - is assessed likewise on the basis of the planned and forecasted development of nuclear energy in the coming decades. (orig./RW)

  8. Gender differences in regional cerebral blood flow

    International Nuclear Information System (INIS)

    Gur, R.E.; Gur, R.C.

    1990-01-01

    Gender differences have been noted in neurobehavioral studies. The 133xenon inhalation method for measuring regional cerebral blood flow (rCBF) can contribute to the understanding of the neural basis of gender differences in brain function. Few studies have examined gender differences in rCBF. In studies of normal subjects, women have higher rates of CBF than men, and this is related to age. Usually by the sixth decade men and women have similar flow rates. Fewer studies on rCBF in schizophrenia have examined sex differences. The pattern of higher flows for females maintains, but its correlates with gender differences in clinical as well as other parameters of brain function remain to be examined

  9. Regional cerebral flows in hypertensive patients

    International Nuclear Information System (INIS)

    Britton, K.E.; Granowska, M.; Lee, T.Y.; Nimmon, C.C.; Rutland, M.

    1978-01-01

    The aim of this study is to develop a method for assessing the natural history of cerebrovascular disease in patients with hypertension in order that the effects of controlling hypertension may be judged. By developing a quantitative noninvasive method for measuring regional cerebral flow and internal carotid appearance times it is hoped that drugs intended to inhibit the continued formation of atheroma and drugs intended to aid the dissolution of atheroma, may be objectively evaluated. (Auth.)

  10. High-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region, California

    Science.gov (United States)

    Ponce, D. A.; Mangan, M.; McPhee, D.

    2013-12-01

    A new high-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region greatly enhances previous magnetic interpretations that were based on older, low-resolution, and regional aeromagnetic data sets and provides new insights into volcano-tectonic processes. The surveyed area covers a 8,750 km2 NNW-trending swath situated between the Sierra Nevada to the west and the Basin and Range Province to the east. The surveyed area includes the volcanic centers of Mono Lake, Mono-Inyo Craters, Mammoth Mountain, Devils Postpile, and Long Valley Caldera. The NW-trending eastern Sierra frontal fault zone crosses through the study area, including the active Mono Lake, Silver Lake, Hartley Springs, Laurel Creek, and Hilton Creek faults. Over 6,000 line-kilometers of aeromagnetic data were collected at a constant terrain clearance of 150 m, a flight-line spacing of 400 m, and a tie-line spacing of 4 km. Data were collected via helicopter with an attached stinger housing a magnetic sensor using a Scintrex CS-3 cesium magnetometer. In the northern part of the survey area, data improve the magnetic resolution of the individual domes and coulees along Mono Craters and a circular shaped magnetic anomaly that coincides with a poorly defined ring fracture mapped by Kistler (1966). Here, aeromagnetic data combined with other geophysical data suggests that Mono Craters may have preferentially followed a pre-existing plutonic basement feature that may have controlled the sickle shape of the volcanic chain. In the northeastern part of the survey, aeromagnetic data reveal a linear magnetic anomaly that correlates with and extends a mapped fault. In the southern part of the survey, in the Sierra Nevada block just south of Long Valley Caldera, aeromagnetic anomalies correlate with NNW-trending Sierran frontal faults rather than to linear NNE-trends observed in recent seismicity over the last 30 years. These data provide an important framework for the further analysis of the

  11. The geochemistry of Don Juan Pond: Evidence for a deep groundwater flow system in Wright Valley, Antarctica

    Science.gov (United States)

    Toner, J. D.; Catling, D. C.; Sletten, R. S.

    2017-09-01

    Don Juan Pond (DJP), Antarctica, is one of the most unusual surface waters on Earth because of its CaCl2-rich composition. To investigate the evolution of pond waters during closed-basin evaporation and to understand the source of brines responsible for the chemistry of DJP, we apply a newly developed low-temperature aqueous model in the Na-K-Ca-Mg-Cl system to DJP. By modeling the closed-basin evaporation of DJP and comparing ionic ratios between DJP surface water, deep groundwater, shallow groundwater, and other surface chemistries in Wright Valley, we find that DJP is best explained by upwelling deep groundwater, as opposed to recent hypotheses proposing shallow groundwater sources. The early closed-basin evolution of brines in our model accurately predicts observed chemistries in DJP; however, late-stage closed-basin evaporation produces Mg-K-rich brines and salts that do not match the CaCl2-rich brine in DJP. Based on groundwater inflow rates to DJP, we estimate that even the most concentrated brines in DJP have undergone closed-basin evaporation for less than a year. To explain the observed lack of Mg2+ and K+ accumulation in DJP over time, and the surprisingly young age for the brines, we deduce that DJP is a localized upwelling from a regional groundwater flow-through system in which evaporated DJP brines are recycled back into the subsurface over yearly timescales. The existence of a regional groundwater flow system beneath DJP has implications for water and solute budgets in cold desert ecosystems, and may provide clues for the formation of groundwater and aqueous flows on Mars.

  12. Regional scale selenium loading associated with surface coal mining, Elk Valley, British Columbia, Canada.

    Science.gov (United States)

    Wellen, Christopher C; Shatilla, Nadine J; Carey, Sean K

    2015-11-01

    Selenium (Se) concentrations in surface water downstream of surface mining operations have been reported at levels in excess of water quality guidelines for the protection of wildlife. Previous research in surface mining environments has focused on downstream water quality impacts, yet little is known about the fundamental controls on Se loading. This study investigated the relationship between mining practices, stream flows and Se concentrations using a SPAtially Referenced Regression On Watershed attributes (SPARROW) model. This work is part of a R&D program examining the influence of surface coal mining on hydrological and water quality responses in the Elk Valley, British Columbia, Canada, aimed at informing effective management responses. Results indicate that waste rock volume, a product of mining activity, accounted for roughly 80% of the Se load from the Elk Valley, while background sources accounted for roughly 13%. Wet years were characterized by more than twice the Se load of dry years. A number of variables regarding placement of waste rock within the catchments, length of buried streams, and the construction of rock drains did not significantly influence the Se load. The age of the waste rock, the proportion of waste rock surface reclaimed, and the ratio of waste rock pile side area to top area all varied inversely with the Se load from watersheds containing waste rock. These results suggest operational practices that are likely to reduce the release of Se to surface waters. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Full-Wave Ambient Noise Tomography of the Long Valley Volcanic Region (California)

    Science.gov (United States)

    Flinders, A. F.; Shelly, D. R.; Dawson, P. B.; Hill, D. P.; Shen, Y.

    2017-12-01

    In the late 1970s, and throughout the 1990s, Long Valley Caldera (California) experienced intense periods of unrest characterized by uplift of the resurgent dome, earthquake swarms, and CO2 emissions around Mammoth Mountain. While modeling of the uplift and gravity changes support the possibility of new magmatic intrusions beneath the caldera, geologic interpretations conclude that the magmatic system underlying the caldera is moribund. Geophysical studies yield diverse versions of a sizable but poorly resolved low-velocity zone at depth (> 6km), yet whether this zone is indicative of a significant volume of crystal mush, smaller isolated pockets of partial melt, or magmatic fluids, is inconclusive. The nature of this low-velocity zone, and the state of volcano's magmatic system, carry important implications for the significance of resurgent-dome inflation and the nature of associated hazards. To better characterize this low-velocity zone we present preliminary results from a 3D full-waveform ambient-noise seismic tomography model derived from the past 25 years of vertical component broadband and short-period seismic data. This new study uses fully numerical solutions of the wave equation to account for the complex wave propagation in a heterogeneous, 3D earth model, including wave interaction with topography. The method ensures that wave propagation is modeled accurately in 3D, enabling the full use of seismic records. By using empirical Green's functions, derived from ambient noise and modeled as Rayleigh surface waves, we are able to extend model resolution to depths beyond the limits of previous local earthquake studies. The model encompasses not only the Long Valley Caldera, but the entire Long Valley Volcanic Region, including Mammoth Mountain and the Mono Crater/Inyo Domes volcanic chain.

  14. Ongoing hydrothermal heat loss from the 1912 ash-flow sheet, Valley of Ten Thousand Smokes, Alaska

    Science.gov (United States)

    Hogeweg, N.; Keith, T.E.C.; Colvard, E.M.; Ingebritsen, S.E.

    2005-01-01

    The June 1912 eruption of Novarupta filled nearby glacial valleys on the Alaska Peninsula with ash-flow tuff (ignimbrite), and post-eruption observations of thousands of steaming fumaroles led to the name 'Valley of Ten Thousand Smokes' (VTTS). By the late 1980s most fumarolic activity had ceased, but the discovery of thermal springs in mid-valley in 1987 suggested continued cooling of the ash-flow sheet. Data collected at the mid-valley springs between 1987 and 2001 show a statistically significant correlation between maximum observed chloride (Cl) concentration and temperature. These data also show a statistically significant decline in the maximum Cl concentration. The observed variation in stream chemistry across the sheet strongly implies that most solutes, including Cl, originate within the area of the VTTS occupied by the 1912 deposits. Numerous measurements of Cl flux in the Ukak River just below the ash-flow sheet suggest an ongoing heat loss of ???250 MW. This represents one of the largest hydrothermal heat discharges in North America. Other hydrothermal discharges of comparable magnitude are related to heat obtained from silicic magma bodies at depth, and are quasi-steady on a multidecadal time scale. However, the VTTS hydrothermal flux is not obviously related to a magma body and is clearly declining. Available data provide reasonable boundary and initial conditions for simple transient modeling. Both an analytical, conduction-only model and a numerical model predict large rates of heat loss from the sheet 90 years after deposition.

  15. Regional blood flow in experimental myositis ossificans

    International Nuclear Information System (INIS)

    Hierton, C.

    1983-01-01

    In a recent model for heterotopic bone formation, muscular oedema, swelling and necrosis is seen in the quadriceps muscle of rabbit hind limbs immobilized for at least 2 weeks when, from the second week, the immobilized limb is subjected to dayly forcible mobilization lasting about 5 min. According to this model, heterotopic calcification develops gradually from the second week of forcible mobilization and is located in the vastus intermedius region. Between the fourth and fifth week of immobilization and forcible mobilization, heterotopic bone formation is seen in virtually all cases. The histological findings are similar to those in human ectopic bone formation. In the present investigation the labelled microsphere technique was used to study the regional blood flow effects in the early development of myositis ossificans with this model. The results are quite different from those reported by other investigators on immobilization alone and point to a causal relation between regional blood flow and forcible mobilization of the immobilized rabbit hind limp. Prostaglandins as mediators between the traumatic inflammation, a part of the circulatory effects observed and the induction of a new bone is suggested. (author)

  16. Regional cerebral blood flow in childhood headache

    International Nuclear Information System (INIS)

    Roach, E.S.; Stump, D.A.

    1989-01-01

    Regional cerebral blood flow (rCBF) was measured in 16 cranial regions in 23 children and adolescents with frequent headaches using the non-invasive Xenon-133 inhalation technique. Blood flow response to 5% carbon dioxide (CO2) was also determined in 21 patients, while response to 50% oxygen was measured in the two patients with hemoglobinopathy. Included were 10 patients with a clinical diagnosis of migraine, 4 with musculoskeletal headaches, and 3 with features of both types. Also studied were 2 patients with primary thrombocythemia, 2 patients with hemoglobinopathy and headaches, 1 patient with polycythemia, and 1 with headaches following trauma. With two exceptions, rCBF determinations were done during an asymptomatic period. Baseline rCBF values tended to be higher in these young patients than in young adults done in our laboratory. Localized reduction in the expected blood flow surge after CO2 inhalation, most often noted posteriorly, was seen in 8 of the 13 vascular headaches, but in none of the musculoskeletal headache group. Both patients with primary thrombocythemia had normal baseline flow values and altered responsiveness to CO2 similar to that seen in migraineurs; thus, the frequently reported headache and transient neurologic signs with primary thrombocythemia are probably not due to microvascular obstruction as previously suggested. These data support the concept of pediatric migraine as a disorder of vasomotor function and also add to our knowledge of normal rCBF values in younger patients. Demonstration of altered vasomotor reactivity to CO2 could prove helpful in children whose headache is atypical

  17. Simulation of net infiltration and potential recharge using a distributed-parameter watershed model of the Death Valley region, Nevada and California

    Science.gov (United States)

    Hevesi, Joseph A.; Flint, Alan L.; Flint, Lorraine E.

    2003-01-01

    This report presents the development and application of the distributed-parameter watershed model, INFILv3, for estimating the temporal and spatial distribution of net infiltration and potential recharge in the Death Valley region, Nevada and California. The estimates of net infiltration quantify the downward drainage of water across the lower boundary of the root zone and are used to indicate potential recharge under variable climate conditions and drainage basin characteristics. Spatial variability in recharge in the Death Valley region likely is high owing to large differences in precipitation, potential evapotranspiration, bedrock permeability, soil thickness, vegetation characteristics, and contributions to recharge along active stream channels. The quantity and spatial distribution of recharge representing the effects of variable climatic conditions and drainage basin characteristics on recharge are needed to reduce uncertainty in modeling ground-water flow. The U.S. Geological Survey, in cooperation with the Department of Energy, developed a regional saturated-zone ground-water flow model of the Death Valley regional ground-water flow system to help evaluate the current hydrogeologic system and the potential effects of natural or human-induced changes. Although previous estimates of recharge have been made for most areas of the Death Valley region, including the area defined by the boundary of the Death Valley regional ground-water flow system, the uncertainty of these estimates is high, and the spatial and temporal variability of the recharge in these basins has not been quantified. To estimate the magnitude and distribution of potential recharge in response to variable climate and spatially varying drainage basin characteristics, the INFILv3 model uses a daily water-balance model of the root zone with a primarily deterministic representation of the processes controlling net infiltration and potential recharge. The daily water balance includes precipitation

  18. Regional cerebral blood flow in diabetic patients

    International Nuclear Information System (INIS)

    Nagamachi, Shigeki; Ono, Shinnichi; Nishikawa, Takushi

    1993-01-01

    N-isopropyl-p- 123 I-iodoamphetamine (IMP) was used to quantify the regional cerebral blood flow (r-CBF) in 11 diabetic patients (average age; 67.9 years) and 12 non-diabetic subjects (average age; 67.4 years), none of whom had (cerebrovascular disease (CVD) on CT studies. A reference sampling method by continuous arterial blood sampling was used to quantify r-CBF. There were no significant differences in physiological or laboratory data between diabetic and non-diabetic groups except for fasting plasma glucose and HbA 1c levels. The average of r-CBF in each region of cerebrum and cerebellum was significantly lower in diabetic group than that in the control group (p<0.01). These observations show that r-CBF of diabetic patients is reduced, even in the absence of findings of CVD on a CT study. (author)

  19. Geomorphology and Geology of the Southwestern Margaritifer Sinus and Argyre Regions of Mars. Part 3: Valley Types and Distribution

    Science.gov (United States)

    Parker, T. J.; Pieri, D. C.

    1985-01-01

    Three major valley tapes were identified in the SW Margaritefer Sinus and Argyre regions. Two are restricted to specific geologic units while the third is independent of the geology. The first type (the small valley networks) are found within the channeled and subdued plains unit in the eastern half of the map, in the grooved and channeled plains unit north of Nirgal Vallis, and in scattered instances in the cratered plateau unit north of Argyre. The even smaller valleys just inside Argyre's rim and on the inner slopes of many large craters are not directly related to the processes which formed the small valleys but are a result, instead, of post-impact modification of the crater walls. The second type of valley network is represented by Nirgal Vallis and the similar, shorter continuation of it to the west. This type is found only in the smooth plains material west of Uzboi Vallis in the map area. The third type of valley network is that of the Uzbol-Holden-Ladon valles system. This system is related to catastrophic outflow from Argyre Basin and is topographically rather than geologically controlled.

  20. Groundwater-flow and land-subsidence model of Antelope Valley, California

    Science.gov (United States)

    Siade, Adam J.; Nishikawa, Tracy; Rewis, Diane L.; Martin, Peter; Phillips, Steven P.

    2014-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley groundwater basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, groundwater provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most groundwater pumping in the valley occurs in the Antelope Valley groundwater basin, which includes the rapidly growing cities of Lancaster and Palmdale. Groundwater-level declines of more than 270 feet in some parts of the groundwater basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may increase reliance on groundwater.

  1. Heat flow in Railroad Valley, Nevada and implications for geothermal resources in the south-central Great Basin

    Science.gov (United States)

    Williams, C.F.; Sass, J.H.

    2006-01-01

    The Great Basin is a province of high average heat flow (approximately 90 mW m-2), with higher values characteristic of some areas and relatively low heat flow (characteristic of an area in south-central Nevada known as the Eureka Low. There is hydrologie and thermal evidence that the Eureka Low results from a relatively shallow, hydrologically controlled heat sink associated with interbasin water flow in the Paleozoic carbonate aquifers. Evaluating this hypothesis and investigating the thermal state of the Eureka Low at depth is a high priority for the US Geological Survey as it prepares a new national geothermal resource assessment. Part of this investigation is focused on Railroad Valley, the site of the largest petroleum reservoirs in Nevada and one of the few locations within the Eureka Low with a known geothermal system. Temperature and thermal conductivity data have been acquired from wells in Railroad Valley in order to determine heat flow in the basin. The results reveal a complex interaction of cooling due to shallow ground-water flow, relatively low (49 to 76 mW m-2) conductive heat flow at depth in most of the basin, and high (up to 234 mW m-2) heat flow associated with the 125??C geothermal system that encompasses the Bacon Flat and Grant Canyon oil fields. The presence of the Railroad Valley geothermal resource within the Eureka Low may be reflect the absence of deep ground-water flow sweeping heat out of the basin. If true, this suggests that other areas in the carbonate aquifer province may contain deep geothermal resources that are masked by ground-water flow.

  2. Infill of tunnel valleys associated with landward‐flowing ice sheets

    DEFF Research Database (Denmark)

    Moreau, Julien; Huuse, Mads

    2014-01-01

    The southern termination of the Middle and Late Pleistocene Scandinavian ice sheets was repeatedly located in the southern North Sea (sNS) and adjacent, north-sloping land areas. Giant meltwater-excavated valleys (tunnel valleys) formed at the southern termination of the ice sheets and contain...

  3. A geological reconnaissance study of the Dyfi Valley region, Gwynedd/Powys, Wales

    International Nuclear Information System (INIS)

    Martin, B.A.; Howells, M.F.; Reedman, A.J.

    1981-01-01

    A collation of existing maps and data backed up by localised checking, reinterpretation and modification, employing sampling, structural measurements and aerial photograph interpretation, have updated the geological information available on the Dyfi Valley region. The region comprises an argillaceous-dominated Ordovician and Silurian sedimentary pile of approximately 4 km thickness. Thick formations of mudstones and silty mudstones with thin intercalations of silty sandstone and fine-grained sandstone predominate and exhibit fewer variations in thickness and extent than the subordinate formations with a higher proportion of sand-grade material. Three periods of deformation (D 1 -D 3 ) are distinguished, with the D 1 phase dominating the structure of the region by forming upright, asymmetrical, large (km) scale folds (F 1 ) of a NNE-SSW to NE-SW trend and producing an almost ubiquitous slaty cleavage (S 1 ). The succeeding deformations produced localised crenulation cleavages, kink bands and box folds. Data on the faulting and jointing associated with this deformation history are also presented. (author)

  4. Tennessee Valley region study: potential year 2000 radiological dose to population resulting from nuclear facility operations

    International Nuclear Information System (INIS)

    1978-06-01

    A companion report, DOE/ET-0064/1, presents a geographic, cultural, and demographic profile of the Tennessee Valley Region study area. This report describes the calculations of radionuclide release and transport and of the resultant dose to the regional population, assuming a projected installed capacity of 220,000 MW in the year 2000, of which 144,000 MW would be nuclear. All elements of the fuel cycle were assumed to be in operation. The radiological dose was calculated as a one-year dose based on ingestion of 35 different food types as well as for nine non-food pathways, and was reported as dose to the total body and for six specific organs for each of four age groups (infant, child, teen, and adult). Results indicate that the average individual would receive an incremental dose of 7 x 10 -4 millirems in the year 2000 from the operation of nuclear facilities within and adjacent to the region, five orders of magnitude smaller than the dose from naturally occurring radiation in the area. The major contributor to dose was found to be tritium, and the most significant pathways were immersion in air, inhalation of air, transpiration of tritium (absorption through the skin), and exposure radionuclide-containing soil. 60 references

  5. The effect of agricultural policy reforms on income inequality in Swiss agriculture - An analysis for valley, hill and mountain regions

    NARCIS (Netherlands)

    Benni, El N.; Finger, R.

    2013-01-01

    Using FADN data, we analyse the development of income inequality in Swiss agriculture for the valley, hill and mountain regions over the period 1990–2009. While household income inequality remained stable, farm income inequality increased during this period. Estimated Gini elasticities show that

  6. Geologic map of the upper Arkansas River valley region, north-central Colorado

    Science.gov (United States)

    Kellogg, Karl S.; Shroba, Ralph R.; Ruleman, Chester A.; Bohannon, Robert G.; McIntosh, William C.; Premo, Wayne R.; Cosca, Michael A.; Moscati, Richard J.; Brandt, Theodore R.

    2017-11-17

    This 1:50,000-scale U.S. Geological Survey geologic map represents a compilation of the most recent geologic studies of the upper Arkansas River valley between Leadville and Salida, Colorado. The valley is structurally controlled by an extensional fault system that forms part of the prominent northern Rio Grande rift, an intra-continental region of crustal extension. This report also incorporates new detailed geologic mapping of previously poorly understood areas within the map area and reinterprets previously studied areas. The mapped region extends into the Proterozoic metamorphic and intrusive rocks in the Sawatch Range west of the valley and the Mosquito Range to the east. Paleozoic rocks are preserved along the crest of the Mosquito Range, but most of them have been eroded from the Sawatch Range. Numerous new isotopic ages better constrain the timing of both Proterozoic intrusive events, Late Cretaceous to early Tertiary intrusive events, and Eocene and Miocene volcanic episodes, including widespread ignimbrite eruptions. The uranium-lead ages document extensive about 1,440-million years (Ma) granitic plutonism mostly north of Buena Vista that produced batholiths that intruded an older suite of about 1,760-Ma metamorphic rocks and about 1,700-Ma plutonic rocks. As a result of extension during the Neogene and possibly latest Paleogene, the graben underlying the valley is filled with thick basin-fill deposits (Dry Union Formation and older sediments), which occupy two sub-basins separated by a bedrock high near the town of Granite. The Dry Union Formation has undergone deep erosion since the late Miocene or early Pliocene. During the Pleistocene, ongoing steam incision by the Arkansas River and its major tributaries has been interrupted by periodic aggradation. From Leadville south to Salida as many as seven mapped alluvial depositional units, which range in age from early to late Pleistocene, record periodic aggradational events along these streams that are

  7. Ambiguous hydraulic heads and 14C activities in transient regional flow.

    Science.gov (United States)

    Schwartz, Franklin W; Sudicky, Edward A; McLaren, Robert G; Park, Young-Jin; Huber, Matthew; Apted, Mick

    2010-01-01

    A regional flow and transport model is used to explore the implications of significant variability in Pleistocene and Holocene climates on hydraulic heads and (14)C activity. Simulations involve a 39 km slice of the Death Valley Flow System through Yucca Mountain toward the Amargosa Desert. The long-time scale over which infiltration has changed (tens-of-thousands of years) is matched by the large physical extent of the flow system (many tens-of-kilometers). Estimated paleo-infiltration rates were estimated using a juniper pollen percentage that extends from the last interglacial (LIG) period (approximately 120 kyrbp) to present. Flow and (14)C transport simulations show that groundwater flow changes markedly as a function of paleoclimate. At the last glacial maximum (LGM, 21 kyrbp), the recharge to the flow system was about an order-of-magnitude higher than present, and water table was more than 100 m higher. With large basin time constants, flow is complicated because hydraulic heads at a given location reflect conditions of the past, but at another location the flow may reflect present conditions. This complexity is also manifested by processes that depend on flow, for example (14)C transport. Without a model that accounts for the historical transients in recharge for at least the last 20,000 years, there is no simple way to deconvolve the (14)C dates to explain patterns of flow.

  8. Hydrogeology and simulation of groundwater flow at the Green Valley reclaimed coal refuse site near Terre Haute, Indiana

    Science.gov (United States)

    Bayless, E. Randall; Arihood, Leslie D.; Fowler, Kathleen K.

    2011-01-01

    The Green Valley reclaimed coal refuse site, near Terre Haute, Ind., was mined for coal from 1948 to 1963. Subsurface coal was cleaned and sorted at land surface, and waste material was deposited over the native glacial till. Approximately 2.7 million cubic yards of waste was deposited over 159 acres (92.3 hectares) in tailings ponds and gob piles. During 1993, the Indiana Department of Natural Resources, Division of Reclamation, improved the site by grading gob piles, filling tailings ponds, and covering the refuse with a layer of glacial drift. During 2008, the Division of Reclamation and U.S. Geological Survey initiated a cooperative investigation to characterize the hydrogeology of the site and construct a calibrated groundwater flow model that could be used to simulate the results of future remedial actions. In support of the modeling, a data-collection network was installed at the Green Valley site to measure weather components, geophysical properties, groundwater levels, and stream and seep flow. Results of the investigation indicate that (1) there is negligible overland flow from the site, (2) the prevailing groundwater-flow direction is from northeast to southwest, with a much smaller drainage to the northeast, (3) there is not a direct hydraulic connection between the refuse and West Little Sugar Creek, (4) about 24 percent of the groundwater recharge emerges through seeps, and water from the seeps evaporates or eventually flows to West Little Sugar Creek and the Green Valley Mine Pond, and (5) about 72 percent of groundwater recharge moves vertically downward from the coal refuse into the till and follows long, slow flow paths to eventual dischage points.

  9. Identify temporal trend of air temperature and its impact on forest stream flow in Lower Mississippi River Alluvial Valley using wavelet analysis.

    Science.gov (United States)

    Ouyang, Ying; Parajuli, Prem B; Li, Yide; Leininger, Theodor D; Feng, Gary

    2017-08-01

    Characterization of stream flow is essential to water resource management, water supply planning, environmental protection, and ecological restoration; while air temperature variation due to climate change can exacerbate stream flow and add instability to the flow. In this study, the wavelet analysis technique was employed to identify temporal trend of air temperature and its impact upon forest stream flows in Lower Mississippi River Alluvial Valley (LMRAV). Four surface water monitoring stations, which locate near the headwater areas with very few land use disturbances and the long-term data records (60-90 years) in the LMRAV, were selected to obtain stream discharge and air temperature data. The wavelet analysis showed that air temperature had an increasing temporal trend around its mean value during the past several decades in the LMRAV, whereas stream flow had a decreasing temporal trend around its average value at the same time period in the same region. Results of this study demonstrated that the climate in the LMRAV did get warmer as time elapsed and the streams were drier as a result of warmer air temperature. This study further revealed that the best way to estimate the temporal trends of air temperature and stream flow was to perform the wavelet transformation around their mean values. Published by Elsevier Ltd.

  10. Neutron activation analysis - NAA: studies of environmental pollution in Steel Valley region, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Veado, Maria Adelaide R.V.; Queiroz, Marluce A.T.; Costa, Alex A., E-mail: mariavasc@unilestemg.b, E-mail: marluce.queiroz@yahoo.com.b, E-mail: alexaderson@ig.com.b [Centro Universitario do Leste de Minas Gerais (UNILESTE-MG), Coronel Fabriciano, MG (Brazil). Curso de Mestrado em Engenharia Industrial; Menezes, Maria Angela de B.C., E-mail: menezes@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Oliveira, Arno H. de, E-mail: heeren@nuclear.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    2009-07-01

    The Steel Valley region in Minas Gerais State, Brazil, receives intense waste from anthropogenic activities: industries (steel, cellulose, ore mining); untreated domestic; sewage and agricultural discharges. This work presents results obtained from analysis of air quality (Ipatinga, Santana do Paraiso, Coronel Fabriciano Timoteo and Marlieria cities) and by the Piracicaba River (surface water, border sediment, and fish muscle - Acara (Geophagus Brasiliensis). Concentrations of Al, Mn, V, As, Br, K, La, Na, Ce, Co, Cr, Cs, Fe, Hg, Rb, Sc, Sm, Th and Zn were determined for Neutron Activation Analysis, NAA. High concentrations were found in sediment and water (Cr, Fe, Co, Zn, As, Al, Mn, V) and in fish muscle (As, Cr, Hg). Results were compared to the maximum limits for metal set by 357/2005 of the National Environmental Council (CONAMA). Terrestrial epiphytic community samples have been used as biomonitor of air pollution. The samples were collected in trees Oiti (Licania tomentosa) and Angico (Piptadenia rigida), very common in studied region. The samples were collected in 17 points and two weather stations: January (rainy) and June (dried) of 2007. The results indicate high concentrations of the elements Al, Au, Co, Cr, Cu, Fe, Hg, Mn, Mg, Zn, V and Th when compared with the values cited in the literature. The biomonitor used in this work, terrestrial epiphytic community, showed an excellent capacity for metals retention by atmospheric contamination. (author)

  11. Natural Radioactivity in Abu-Tartor Phosphate Deposits and the Surrounding Region, New Valley, Egypt

    International Nuclear Information System (INIS)

    Khater, A.E.; Higgy, R.H.; Pimpl, M.

    1999-01-01

    Abu-Tartor phosphate mine. New Valley district, is one of the biggest phosphate mines in Egypt which will start full production soon. The planned ore rocks (24.8%P 2 O 5 ) annual production is 4 million tons. The aim of this study is to estimate the natural radioactivity levels in Abu-Tartor phosphate deposits and the surrounding region. The environmental radioactivity levels in the surrounding region will be considered as pre-operational levels which are essential to determine the radiological impacts of phosphate mining later on. Phosphate samples (ore rocks, wet rocks and beneficiation wastes) and environmental samples (soil, water and plant)were collected. The specific activities of Ra-226 (U-238) series, Th-232 series and K-40 were measured using gamma-ray spectrometry based on Hyper pure Germanium detectors. The specific activities of uranium isotopes (U-238, U-235 and U-234) were measured using alpha spectrometry based on surface barrier detectors after radiochemical separation. The specific activity of Pb-210 was measured using low background proportional gas counting system after radiochemical separation . The results were discussed and compared with national and international values

  12. Inland valley research in sub-Saharan Africa; priorities for a regional consortium

    NARCIS (Netherlands)

    Jamin, J.Y.; Andriesse, W.; Thiombiano, L.; Windmeijer, P.N.

    1996-01-01

    These proceedings are an account of an international workshop in support of research strategy development for the Inland Valley Consortium in sub-Saharan Africa. This consortium aims at concerted research planning for rice-based cropping systems in the lower parts of inland valleys. The Consortium

  13. Effects of land use changes on water and nitrogen flows at the scale of West African inland valleys: an explorative model.

    NARCIS (Netherlands)

    Ridder, de N.; Stomph, T.J.; Fresco, L.O.

    1997-01-01

    Land use and cover, as influenced by agricultural practices, and the changes in these with increasing pressure on land, are among the factors determining water flows in inland valleys. Changing water flows affect nitrogen flows both at the plot level and at levels higher than plots. We present a

  14. Regional cerebral blood flow in neuropediatrics

    International Nuclear Information System (INIS)

    Junik, R.

    2001-01-01

    Single photon emission computed tomography can effectively and non-invasively measure regional blood flow. Mostly used 99mTc-HMPAO is a safe brain imaging agent for pediatric applications. The radiation dose is acceptable. Knowledge of the normal rCBF pattern, including normal asymmetries and variations due to age, is necessary prerequisite for the evaluation and reporting of the results of 99mTc-HMPAO brain SPECT studies in clinical practice. The interpretation of he rCBF study in a child requires knowledge of normal brain maturation. The aim of the present review is to focus on the contribution to clinical developmental neurology of SPECT The clinical use of SPECT in developmental neurology are epilepsy, brain death, acute neurological loss including stroke, language disorders, cerebral palsy, high-risk neonates, hypertension due to renovascular disease, traumatic brain injury, migraine, anorexia nervosa, autism, Gilles de la Tourette syndrome, attention deficit disorder-hyperactivity, and monitoring therapy. Sedation is not routinely used, rather each child is evaluated. However, drug sedation is mandatory in some uncooperative children. (author)

  15. Regional inventory of karst activity in the Valley and Ridge Province, eastern Tennessee: Phase 1

    International Nuclear Information System (INIS)

    Newton, J.G.; Tanner, J.M.

    1987-09-01

    A data collection form was developed for use in compiling information in the inventory. Information sources included files on subsidence, state and county highway departments, county agents and executives, soil conservation service representative, etc. Data obtained included location, date of occurrence, number of subsidence features at the reported site, size, topographic setting, geologic setting, and probable causative factors. The regional inventory obtained information on over 300 historic subsidence events at more than 200 sites in East Tennessee. Areas having the greatest areal density of active subsidence include Hamblen, Jefferson, and Loudon Counties. Reported subsidence events occurred between 1945 and 1986. The Knox Group dolomites account for about two-thirds of all reported sinkholes in the inventory. Most of the karst activity occurs in valleys or flat areas. In cases where causative factors could be established, the combination of surface water drainage alteration or impoundment combined with soil disturbance associated with construction activity were most often precursors to subsidence. 54 refs., 10 figs., 4 tabs

  16. An Evaluation of Mesoscale Model Predictions of Down-Valley and Canyon Flows and Their Consequences Using Doppler Lidar Measurements During VTMX 2000

    International Nuclear Information System (INIS)

    Fast, Jerome D.; Darby, Lisa S.

    2004-01-01

    A mesoscale model, a Lagrangian particle dispersion model, and extensive Doppler lidar wind measurements during the VTMX 2000 field campaign were used to examine converging flows over the Salt Lake Valley and their effect on vertical mixing of tracers at night and during the morning transition period. The simulated wind components were transformed into radial velocities to make a direct comparison with about 1.3 million Doppler lidar data points and critically evaluate, using correlation coefficients, the spatial variations in the simulated wind fields aloft. The mesoscale model captured reasonably well the general features of the observed circulations including the daytime up-valley flow, the nighttime slope, canyon, and down-valley flows, and the convergence of the flows over the valley. When there were errors in the simulated wind fields, they were usually associated with the timing, structure, or strength of specific flows. Simulated outflows from canyons along the Wasatch Mountains propagated over the valley and converged with the down-valley flow, but the advance and retreat of these simulated flows was often out of phase with the lidar measurements. While the flow reversal during the evening transition period produced rising motions over much of the valley atmosphere in the absence of significant ambient winds, average vertical velocities became close to zero as the down-valley flow developed. Still, vertical velocities between 5 and 15 cm s-1 occurred where down-slope, canyon and down-valley flows converged and vertical velocities greater than 50 cm s-1 were produced by hydraulic jumps at the base of the canyons. The presence of strong ambient winds resulted in smaller average rising motions during the evening transition period and larger average vertical velocities after that. A fraction of the tracer released at the surface was transported up to the height of the surrounding mountains; however, higher concentrations were produced aloft for evening s

  17. The Muralla Pircada: an ancient Andean debris flow retention dam, Santa Rita B archaeological site, Chao Valley, Northern Peru

    Science.gov (United States)

    Brooks, William E.; Willett, Jason C.; Kent, Jonathan D.; Vasquez, Victor; Rosales, Teresa

    2005-01-01

    Debris flows caused by El Niño events, earthquakes, and glacial releases have affected northern Perú for centuries. The Muralla Pircada, a northeast-trending, 2.5 km long stone wall east of the Santa Rita B archaeological site (Moche-Chimú) in the Chao Valley, is field evidence that ancient Andeans recognized and, more importantly, attempted to mitigate the effects of debris flows. The Muralla is upstream from the site and is perpendicular to local drainages. It is 1–2 m high, up to 5 m wide, and is comprised of intentionally-placed, well-sorted, well-rounded, 20–30 cm cobbles and boulders from nearby streams. Long axes of the stones are gently inclined and parallel local drainage. Case-and-fill construction was used with smaller cobbles and pebbles used as fill. Pre-Muralla debris flows are indicated by meter-sized, angular boulders that were incorporated in-place into construction of the dam and are now exposed in breeches in the dam. Post-Muralla debris flows in the Chao Valley are indicated by meter-sized, angular boulders that now abut the retention dam.

  18. Orifice design for the control of coupled region flow

    International Nuclear Information System (INIS)

    Atherton, R.; Spadaro, P.R.; Brummerhop, F.G.

    1975-01-01

    A fluid system arrangement for nuclear reactors is described comprising a triplate orifice apparatus which simultaneously controls core flow distribution, flow rate ratio between hydraulically coupled regions of the blanket and radial static pressure gradients entering and leaving the blanket fuel region. The design of the apparatus is based on the parameters of the diameter of the orifice holes, the friction factor, and expansion, contraction and turning pressure loss coefficients of the geometry of each orifice region. These above parameters are properly matched to provide the desired pressure drop, flow split and negligible cross flow at the interface of standard and power-flattened open lattice blanket regions. (U.S.)

  19. Regional economic analysis of current and proposed management alternatives for Rappahannock River Valley National Wildlife Refuge

    Science.gov (United States)

    Koontz, Lynne; Sexton, Natalie; Donovan, Ryan

    2009-01-01

    The National Wildlife Refuge System Improvement Act of 1997 requires all units of the National Wildlife Refuge System to be managed under a Comprehensive Conservation Plan. The Comprehensive Conservation Plan must describe the desired future conditions of a refuge and provide long-range guidance and management direction to achieve refuge purposes. The Rappahannock River Valley National Wildlife Refuge (refuge) is in the process of developing a range of management goals, objectives, and strategies for the Comprehensive Conservation Plan. The Comprehensive Conservation Plan for the refuge must contain an analysis of expected effects associated with current and proposed refuge management strategies. The purpose of this study was to assess the regional economic implications associated with draft Comprehensive Conservation Plan management strategies. Special interest groups and local residents often criticize a change in refuge management, especially if there is a perceived negative impact to the local economy. Having objective data on economic impacts may show that these fears are overstated. Quite often, the extent of economic benefits a refuge provides to a local community is not fully recognized, yet at the same time the effects of negative changes is overstated. Spending associated with refuge recreational activities, such as wildlife viewing and hunting, can generate considerable tourist activity for surrounding communities. Additionally, refuge personnel typically spend considerable amounts of money purchasing supplies in local stores, repairing equipment and purchasing fuel at the local service stations, and reside and spend their salaries in the local community. For refuge Comprehensive Conservation Plan planning, a regional economic assessment provides a means of estimating how current management (no action alternative) and proposed management activities (alternatives) could affect the local economy. This type of analysis provides two critical pieces of

  20. Investigation of variations and trends in solar radiation in Klang Valley Region, Malaysia

    International Nuclear Information System (INIS)

    Mohamed Elnour Yassen, Jamaluddin Mohd Jahi

    2006-01-01

    The objective of this study is to investigate variations and trends in the global solar radiation in Klang Valley region. The least square method was used for the trend analysis. Since the available time series covers 27 years, linear regression was preferred for the trend analysis. The linear trend is used mainly to test the change in solar radiation and to set limits on the rate of change. Trend line and values and significance levels of the slopes have been found. The seasonal and the annual average values were computed from the monthly average radiation data. The seasonal and annual average solar radiation values were designated as dependent variables, and thus, were fitted linearly for season and annual means for each station. The results showed that the mean of maximum incoming global radiation in Sepember with a value of 21.1 MJ m-2 at Petaling Jaya, while the mean minimum in November and December with values of 10.7 and 10.9 MJ m-2 at Petaling Jaya. The low amounts of solar radiation received in November and December are due to greater cloudiness during the period coinciding with the northeast monsoon season. On rainy days, very little global solar radiation received in November and December are due to greater cloudiness during the period coinciding with the northeast monsoon season. On rainy days, very little global solar radiation is received. The distribution of the seasonal mean values of solar radiation exhibits a high symmetry. Inter-monsoon seasons (April-May) and (October-November) show a similar behavior, just like the northeast monsoon season. The overall average rate of change in global solar radiation during 1975-2002 and 1977-2000 is represented by the slope of the linear regression was small (-0.126 and -0.314 MJ m-2 per year for Subang Airport and Petaling Jaya respectively)

  1. Geologic characterization report for the Paradox Basin Study Region, Utah Study Areas. Volume 6: Salt Valley

    Science.gov (United States)

    1984-12-01

    Surface landforms in the Salt Valley Area are generally a function of the Salt Valley anticline and are characterized by parallel and subparallel cuestaform ridges and hogbacks and flat valley floors. The most prominent structure in the Area is the Salt Valley anticline. Erosion resulting from the Tertiary uplift of the Colorado Plateau led to salt dissolution and subsequent collapse along the crest of the anticline. Continued erosion removed the collapse material, forming an axial valley along the crest of the anticline. Paleozoic rocks beneath the salt bearing Paradox Formation consist of limestone, dolomite, sandstone, siltstone and shale. The salt beds of the Paradox formation occur in distinct cycles separated by an interbed sequence of anhydrite, carbonate, and clastic rocks. The Paradox Formation is overlain by Pennsylvanian limestone; Permian sandstone; and Mesozoic sandstone, mudstone, conglomerate and shale. No earthquakes have been reported in the area during the period of the historic record and contemporary seismicity appears to be diffusely distributed, of low level and small magnitude. The upper unit includes the Permian strata and upper Honaker trail formation.

  2. Solving the Upper Valley's housing needs: how a coalition of public and private organizations joined forces to develop housing in a region with inadequate stock and prohibitive prices

    OpenAIRE

    Dan French

    2004-01-01

    Like many communities, New Hampshire and Vermont's Upper Valley region is facing a serious housing shortage. Dan French reveals how an innovative housing coalition is working to find solutions that provide housing and protect the area's quality of life.

  3. Contribution to the knowledge of the Lepidoptera Fauna of the lower Sangro valley in the Abruzzo region of Central Italy

    Directory of Open Access Journals (Sweden)

    Norbert Zahm

    2012-12-01

    Full Text Available We report the results of recording Lepidoptera in the lower Sangro valley during a period of 22 years. The investigations were devoted to Macroheterocera and were carried out in the two regional nature reserves Oasi di Serranella and Lecceta di Torino di Sangro. The listing also includes some Microlepidoptera as non-target species, as well as occasionally observed butterflies. The 401 recorded species are presented in a table indicating both the locality of the records and the observed flight times and periods of activity. Fifteen species are published for the Abruzzo region for the first time; 2 species are new for the Italian peninsula.

  4. Regional flow duration curves for ungauged sites in Sicily

    Directory of Open Access Journals (Sweden)

    F. Viola

    2011-01-01

    Full Text Available Flow duration curves are simple and powerful tools to deal with many hydrological and environmental problems related to water quality assessment, water-use assessment and water allocation. Unfortunately the scarcity of streamflow data enables the use of these instruments only for gauged basins. A regional model is developed here for estimating flow duration curves at ungauged basins in Sicily, Italy. Due to the complex ephemeral behavior of the examined region, this study distinguishes dry periods, when flows are zero, from wet periods using a three parameters power law to describe the frequency distribution of flows. A large dataset of streamflows has been analyzed and the parameters of flow duration curves have been derived for about fifty basins. Regional regression equations have been developed to derive flow duration curves starting from morphological basin characteristics.

  5. Regional blood flow studies with radioisotopes

    International Nuclear Information System (INIS)

    Holman, B.L.; McNiel, B.J.; Adelstein, S.J.

    1975-01-01

    The methodological approaches to blood flow analysis include (1) diffusible indicator methods, (2) clearance techniques and (3) nondiffusible indicator methods. In each case, accurate measurements of blood flow can be obtained by developing mathematical models which relate the time-dependent observation derived from following the fate of a radiotracer as a function of time to the physiological process itself. Application of these models to biological systems involves constraints and necessitates compromises which may affect the validity of the measurements. Nevertheless, when these techniques are carefully applied and adequately validated, they have provided critical physiological information about such organ systems as the brain and kidney and promise to provide diagnostic information in patients with suspected coronary and peripheral vascular disease

  6. Valley Fever

    Science.gov (United States)

    ... valley fever. These fungi are commonly found in soil in specific regions. The fungi's spores can be stirred into the air by ... species have a complex life cycle. In the soil, they grow as a mold with long filaments that break off into airborne ...

  7. Ground-water flow and transport modeling of the NRC-licensed waste disposal facility, West Valley, New York

    International Nuclear Information System (INIS)

    Kool, J.B.; Wu, Y.S.

    1991-10-01

    This report describes a simulation study of groundwater flow and radionuclide transport from disposal at the NRC licensed waste disposal facility in West Valley, New York. A transient, precipitation driven, flow model of the near-surface fractured till layer and underlying unweathered till was developed and calibrated against observed inflow data into a recently constructed interceptor trench for the period March--May 1990. The results suggest that lateral flow through the upper, fractured till layer may be more significant than indicated by previous, steady state flow modeling studies. A conclusive assessment of the actual magnitude of lateral flow through the fractured till could however not be made. A primary factor contributing to this uncertainty is the unknown contribution of vertical infiltration through the interceptor trench cap to the total trench inflow. The second part of the investigation involved simulation of the migration of Sr-90, Cs-137 and Pu-239 from the one of the fuel hull disposal pits. A first-order radionuclide leach rate with rate coefficient of 10 -6 /day was assumed to describe radionuclide release into the disposal pit. The simulations indicated that for wastes buried below the fractured till zone, no significant migration would occur. However, under the assumed conditions, significant lateral migration could occur for radionuclides present in the upper, fractured till zone. 23 refs., 68 figs., 12 tabs

  8. The Photospheric Flow near the Flare Locations of Active Regions

    Indian Academy of Sciences (India)

    tribpo

    in the active regions along with few locations of upflows. The localised upflows are observed in the light bridges and emerging flux regions with different speeds (Beckers & Schroter 1969). The flow patterns of flare locations in the active regions are observed by using the tower vector magnetograph (TVM) of Marshall.

  9. Assessment of regional change in nitrate concentrations in groundwater in the Central Valley, California, USA, 1950s-2000s

    Science.gov (United States)

    Burow, Karen R.; Jurgens, Bryant C.; Belitz, Kenneth; Dubrovsky, Neil M.

    2013-01-01

    A regional assessment of multi-decadal changes in nitrate concentrations was done using historical data and a spatially stratified non-biased approach. Data were stratified into physiographic subregions on the basis of geomorphology and soils data to represent zones of historical recharge and discharge patterns in the basin. Data were also stratified by depth to represent a shallow zone generally representing domestic drinking-water supplies and a deep zone generally representing public drinking-water supplies. These stratifications were designed to characterize the regional extent of groundwater with common redox and age characteristics, two factors expected to influence changes in nitrate concentrations over time. Overall, increasing trends in nitrate concentrations and the proportion of nitrate concentrations above 5 mg/L were observed in the east fans subregion of the Central Valley. Whereas the west fans subregion has elevated nitrate concentrations, temporal trends were not detected, likely due to the heterogeneous nature of the water quality in this area and geologic sources of nitrate, combined with sparse and uneven data coverage. Generally low nitrate concentrations in the basin subregion are consistent with reduced geochemical conditions resulting from low permeability soils and higher organic content, reflecting the distal portions of alluvial fans and historical groundwater discharge areas. Very small increases in the shallow aquifer in the basin subregion may reflect downgradient movement of high nitrate groundwater from adjacent areas or overlying intensive agricultural inputs. Because of the general lack of regionally extensive long-term monitoring networks, the results from this study highlight the importance of placing studies of trends in water quality into regional context. Earlier work concluded that nitrate concentrations were steadily increasing over time in the eastern San Joaquin Valley, but clearly those trends do not apply to other

  10. Regional cerebral blood flow measurement using a scintillation camera

    International Nuclear Information System (INIS)

    Heiss, W.D.

    1979-01-01

    A scintillation camera connected to auxillary equipment with off-line data processing or connected to an on-line dedicated computer system permits measurement of hemispheric and regional cerebral blood flow. Reliable flow values are obtained from regions limited in size by spatial resolution and the count rates achieved. Flow measurements obtained with the camera are able to resolve inhomogeneities of cerebral circulation in normal subjects. In a variety of clinical conditions, the localization, severity and extent of flow alterations are shown. Results of flow measurements in individual cases elucidate the pathogenesis of neurologic deficits, quantify the damage to the brain, indicate therapeutic measures of potential value and permit an estimation of the further clinical course. With restricted spatial resolution, flow measurements after intravenous 133 Xe injection are also feasible

  11. Dynamic emission tomography of regional cerebral blood flow

    International Nuclear Information System (INIS)

    Lassen, N.A.

    1984-01-01

    The author reviews three tomographic methods for measuring the regional cerebral blood flow: single photon transmission tomography; dual photon emission tomography; and single photon emission tomography. The latter technique is discussed in detail. (Auth.)

  12. Regional cerebral blood flow in Angelman syndrome

    International Nuclear Information System (INIS)

    Guecueyener, K.; Goekcora, N.; Ilgin, N.; Buyan, N.; Sayli, A.

    1993-01-01

    A patient with typical features of Angelman syndrome - a genetically inherited disorder involving developmental delay, ataxia, episodes of paroxysmal laughter and brachiocephaly - was studied with single-photon emission tomography. Hyperfusion found in the left frontal and left temporoparietal regions can provide insights into the functional cerebral pathology, which may be due to a disturbance of the developmental process related to a chromosomal abnormality. (orig.)

  13. Regional cerebral blood flow in Angelman syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Guecueyener, K [Dept. of Pediatric Neurology, Faculty of Medicine, Gazi Univ., Ankara (Turkey); Goekcora, N [Dept. of Nuclear Medicine, Faculty of Medicine, Gazi Univ., Ankara (Turkey); Ilgin, N [Dept. of Nuclear Medicine, Faculty of Medicine, Gazi Univ., Ankara (Turkey); Buyan, N [Dept. of Pediatric Neurology, Faculty of Medicine, Gazi Univ., Ankara (Turkey); Sayli, A [Dept. of Molecular Biology and Genetics, Faculty of Medicine, Gazi Univ., Ankara (Turkey)

    1993-07-01

    A patient with typical features of Angelman syndrome - a genetically inherited disorder involving developmental delay, ataxia, episodes of paroxysmal laughter and brachiocephaly - was studied with single-photon emission tomography. Hyperfusion found in the left frontal and left temporoparietal regions can provide insights into the functional cerebral pathology, which may be due to a disturbance of the developmental process related to a chromosomal abnormality. (orig.)

  14. Dynamic exercise enhances regional cerebral artery mean flow velocity

    DEFF Research Database (Denmark)

    Linkis, P; Jørgensen, L G; Olesen, H L

    1995-01-01

    Dynamic exercise enhances regional cerebral artery mean flow velocity. J. Appl. Physiol. 78(1): 12-16, 1995.--Anterior (ACA) and middle (MCA) cerebral artery mean flow velocities (Vmean) and pulsatility indexes were determined using transcranial Doppler in 14 subjects during dynamic exercise afte...

  15. Highlighting High Performance: Blackstone Valley Regional Vocational Technical High School; Upton, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    2006-10-01

    This brochure describes the key high-performance building features of the Blackstone Valley High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar energy, building envelope, heating and cooling systems, and water conservation. Energy cost savings are also discussed.

  16. Tokamak residual zonal flow level in near-separatrix region

    International Nuclear Information System (INIS)

    Bing-Ren, Shi

    2010-01-01

    Residual zonal flow level is calculated for tokamak plasmas in the near-separatrix region of a diverted tokamak. A recently developed method is used to construct an analytic divertor tokamak configuration. It is shown that the residual zonal flow level becomes smaller but still keeps finite near the separatrix because the neoclassical polarisation mostly due to the trapped particles goes larger in this region. (fluids, plasmas and electric discharges)

  17. Regional cerebral blood flow measurement in brain tumors

    International Nuclear Information System (INIS)

    Izunaga, Hiroshi; Hirota, Yoshihisa; Takahashi, Mutsumasa; Fuwa, Isao; Kodama, Takafumi; Matsukado, Yasuhiko

    1986-01-01

    The regional cerebral blood flow (CBF) was determined on seventeen patients with brain tumors. Ring type single photon emission CT (SPECT) was used following intravenous injection of 133 Xe. Case materials included eleven meningiomas and six malignant gliomas. Evaluation was performed with emphasis on the following points; 1. Correlation of the flow data within tumors to the angiographic tumor stains, 2. Influence of tumors on the cerebral blood flow of the normal brain tissue, 3. Correlation between degree of peripheral edema and the flow data of the affected hemispheres. There was significant correlation between flow data within tumors and angiographic tumor stains in meningiomas. Influence of tumors on cerebral blood flow of the normal tissue was greater in meningiomas than in gliomas. There was negative correlation between the degree of peripheral edema and the flow data of the affected hemisphere. It has been concluded that the measurement of CBF in brain tumors is a valuable method in evaluation of brain tumors. (author)

  18. Regional cerebral blood flow measurement in brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Izunaga, Hiroshi; Hirota, Yoshihisa; Takahashi, Mutsumasa; Fuwa, Isao; Kodama, Takafumi; Matsukado, Yasuhiko

    1986-10-01

    The regional cerebral blood flow (CBF) was determined on seventeen patients with brain tumors. Ring type single photon emission CT (SPECT) was used following intravenous injection of /sup 133/Xe. Case materials included eleven meningiomas and six malignant gliomas. Evaluation was performed with emphasis on the following points; 1. Correlation of the flow data within tumors to the angiographic tumor stains, 2. Influence of tumors on the cerebral blood flow of the normal brain tissue, 3. Correlation between degree of peripheral edema and the flow data of the affected hemispheres. There was significant correlation between flow data within tumors and angiographic tumor stains in meningiomas. Influence of tumors on cerebral blood flow of the normal tissue was greater in meningiomas than in gliomas. There was negative correlation between the degree of peripheral edema and the flow data of the affected hemisphere. It has been concluded that the measurement of CBF in brain tumors is a valuable method in evaluation of brain tumors.

  19. Regional cerebral blood flow in aphasia

    DEFF Research Database (Denmark)

    Soh, K; Larsen, B; Skinhøj, E

    1978-01-01

    . In motor (nonfluent) aphasia, the rCBF method showed areas of cortical dysfunction that always included the lower part of the rolandic area while Broca's area was not consistently affected. In sensory (fluent) aphasia, the superior-posterior temporal cortex was involved in all cases. In global aphasia......, the abnormalities included both regions consistently involved in the other types of aphasia. The 133Xe injection method for mapping abnormalities relevant for localizing the cortical speech areas was superior to the classical neuroradiological methods in that several cases failed to show any relevant lesion...

  20. Regional cerebral blood flow in endogenous depression

    International Nuclear Information System (INIS)

    Sagawa, Katsuo; Morinobu, Shigeru; Kawakatsu, Shinobu

    1990-01-01

    The subjects were twenty-nine depressed patients who met the DSM-III rd criteria for bipolar disorder or major depression. The rCBF was determined by the Xe-133 inhalation method (HEADTOME: ring type SPECT). There were no significant differences in the rCBF values between the patients with bipolar depression and normal controls. The rCBF values of patients with unipolar depression were significantly lower than those of controls, especially in the left temporo-parietal region (p L) were more noticeable (p<0.01) in unipolar depression patients than in bipolar depression patients. (author)

  1. Multi-region relaxed magnetohydrodynamics with anisotropy and flow

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, G. R., E-mail: graham.dennis@anu.edu.au; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)

    2014-07-15

    We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes pressure anisotropy and general plasma flows. This anisotropic extension to our previous isotropic model is motivated by Sun and Finn's model of relaxed anisotropic magnetohydrodynamic equilibria. We prove that as the number of plasma regions becomes infinite, our anisotropic extension of MRxMHD reduces to anisotropic ideal MHD with flow. The continuously nested flux surface limit of our MRxMHD model is the first variational principle for anisotropic plasma equilibria with general flow fields.

  2. Interrelations among pyroclastic surge, pyroclastic flow, and lahars in Smith Creek valley during first minutes of 18 May 1980 eruption of Mount St. Helens, USA

    Science.gov (United States)

    Brantley, S.R.; Waitt, R.B.

    1988-01-01

    A devastating pyroclastic surge and resultant lahars at Mount St. Helens on 18 May 1980 produced several catastrophic flowages into tributaries on the northeast volcano flank. The tributaries channeled the flows to Smith Creek valley, which lies within the area devastated by the surge but was unaffected by the great debris avalanche on the north flank. Stratigraphy shows that the pyroclastic surge preceded the lahars; there is no notable "wet" character to the surge deposits. Therefore the lahars must have originated as snowmelt, not as ejected water-saturated debris that segregated from the pyroclastic surge as has been inferred for other flanks of the volcano. In stratigraphic order the Smith Creek valley-floor materials comprise (1) a complex valley-bottom facies of the pyroclastic surge and a related pyroclastic flow, (2) an unusual hummocky diamict caused by complex mixing of lahars with the dry pyroclastic debris, and (3) deposits of secondary pyroclastic flows. These units are capped by silt containing accretionary lapilli, which began falling from a rapidly expanding mushroom-shaped cloud 20 minutes after the eruption's onset. The Smith Creek valley-bottom pyroclastic facies consists of (a) a weakly graded basal bed of fines-poor granular sand, the deposit of a low-concentration lithic pyroclastic surge, and (b) a bed of very poorly sorted pebble to cobble gravel inversely graded near its base, the deposit of a high-concentration lithic pyroclastic flow. The surge apparently segregated while crossing the steep headwater tributaries of Smith Creek; large fragments that settled from the turbulent surge formed a dense pyroclastic flow along the valley floor that lagged behind the front of the overland surge. The unusual hummocky diamict as thick as 15 m contains large lithic clasts supported by a tough, brown muddy sand matrix like that of lahar deposits upvalley. This unit contains irregular friable lenses and pods meters in diameter, blocks incorporated from

  3. Assessing Drought Impacts on Water Storage using GRACE Satellites and Regional Groundwater Modeling in the Central Valley of California

    Science.gov (United States)

    Scanlon, B. R.; Zhang, Z.; Save, H.; Faunt, C. C.; Dettinger, M. D.

    2015-12-01

    Increasing concerns about drought impacts on water resources in California underscores the need to better understand effects of drought on water storage and coping strategies. Here we use a new GRACE mascons solution with high spatial resolution (1 degree) developed at the Univ. of Texas Center for Space Research (CSR) and output from the most recent regional groundwater model developed by the U.S. Geological Survey to evaluate changes in water storage in response to recent droughts. We also extend the analysis of drought impacts on water storage back to the 1980s using modeling and monitoring data. The drought has been intensifying since 2012 with almost 50% of the state and 100% of the Central Valley under exceptional drought in 2015. Total water storage from GRACE data declined sharply during the current drought, similar to the rate of depletion during the previous drought in 2007 - 2009. However, only 45% average recovery between the two droughts results in a much greater cumulative impact of both droughts. The CSR GRACE Mascons data offer unprecedented spatial resolution with no leakage to the oceans and no requirement for signal restoration. Snow and reservoir storage declines contribute to the total water storage depletion estimated by GRACE with the residuals attributed to groundwater storage. Rates of groundwater storage depletion are consistent with the results of regional groundwater modeling in the Central Valley. Traditional approaches to coping with these climate extremes has focused on surface water reservoir storage; however, increasing conjunctive use of surface water and groundwater and storing excess water from wet periods in depleted aquifers is increasing in the Central Valley.

  4. Compilation of geologic, hydrologic, and ground-water flow modeling information for the Spokane Valley-Rathdrum Prairie aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    Science.gov (United States)

    Kahle, Sue C.; Caldwell, Rodney R.; Bartolino, James R.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources and Washington Department of Ecology compiled and described geologic, hydrologic, and ground-water flow modeling information about the Spokane Valley-Rathdrum Prairie (SVRP) aquifer in northern Idaho and northeastern Washington. Descriptions of the hydrogeologic framework, water-budget components, ground- and surface-water interactions, computer flow models, and further data needs are provided. The SVRP aquifer, which covers about 370 square miles including the Rathdrum Prairie, Idaho and the Spokane valley and Hillyard Trough, Washington, was designated a Sole Source Aquifer by the U.S. Environmental Protection Agency in 1978. Continued growth, water management issues, and potential effects on water availability and water quality in the aquifer and in the Spokane and Little Spokane Rivers have illustrated the need to better understand and manage the region's water resources. The SVRP aquifer is composed of sand, gravel, cobbles, and boulders primarily deposited by a series of catastrophic glacial outburst floods from ancient Glacial Lake Missoula. The material deposited in this high-energy environment is coarser-grained than is typical for most basin-fill deposits, resulting in an unusually productive aquifer with well yields as high as 40,000 gallons per minute. In most places, the aquifer is bounded laterally by bedrock composed of granite, metasedimentary rocks, or basalt. The lower boundary of the aquifer is largely unknown except along the margins or in shallower parts of the aquifer where wells have penetrated its entire thickness and reached bedrock or silt and clay deposits. Based on surface geophysics, the thickness of the aquifer is about 500 ft near the Washington-Idaho state line, but more than 600 feet within the Rathdrum Prairie and more than 700 feet in the Hillyard trough based on drilling records. Depth to water in the aquifer is greatest in the northern

  5. Regionalization for uncertainty reduction in flows in ungauged basins

    NARCIS (Netherlands)

    Booij, Martijn J.; Deckers, Dave L.E.H.; Rientjes, Tom H.M.; Krol, Martinus S.; Boegh, Eva; Kunstmann, Harald; Wagener, Thorsten; Hall, Alan; Bastidas, Luis; Franks, Stewart; Gupta, Hoshin; Rosbjerg, Dan; Schaake, John

    2007-01-01

    The objective of this study is to contribute to the reduction of predictive uncertainty in flows in ungauged basins through application of a regionalization method to 56 well-gauged basins in the United Kingdom. The classical approach of regionalization is adopted, where regression relationships

  6. Regional cerebral blood flow in fibromyalgia

    International Nuclear Information System (INIS)

    Kwiatek, R.; Barnden, L.; Rowe, C.; McKinnon, J.; Pile, K.

    1998-01-01

    Full text: Little is known of the aetiology of fibromyalgia (FM), a condition diagnosed on the basis of widespread chronic pain and multiple tender points. We have used Tc-99m HMPAO SPECT to compare regional cerebral bloodflow (rCBF) in 17 women who fulfill American College of Rheumatology criteria for FM to 22 age, sex and education matched controls. Both Statistical Parametric Mapping (SPM95) and coregistered MRI guided ROI were used for analysis. SPM95 revealed statistically significant hypoperfusion in the pontine tegmentum (p=0.048) and a trend to hypoperfusion in the left putamen (p=0.07). MRI guided ROI placement by an operator blinded to clinical information and the coregistered SPECT images, confirmed significant hypoperfusion of the left thalamus (p<0.0001) and the pontine tegmentum (p=0.001) and revealed trends towards hypoperfusion in the caudate nuclei and right thalamus. These results are consistent with the hypothesis that FM is due to dysfunction of central pain pathways. Spinothalamic neurones are known to be involved in pain perception and there are synapse connections to the thalamus in the gigantocellular part of the medulla and pons

  7. Regional cerebral blood flow in fibromyalgia

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatek, R.; Barnden, L.; Rowe, C.; McKinnon, J.; Pile, K. [The Queen Elizabeth Hospital , Adelaide, SA (Australia)

    1998-06-01

    Full text: Little is known of the aetiology of fibromyalgia (FM), a condition diagnosed on the basis of widespread chronic pain and multiple tender points. We have used Tc-99m HMPAO SPECT to compare regional cerebral bloodflow (rCBF) in 17 women who fulfill American College of Rheumatology criteria for FM to 22 age, sex and education matched controls. Both Statistical Parametric Mapping (SPM95) and coregistered MRI guided ROI were used for analysis. SPM95 revealed statistically significant hypoperfusion in the pontine tegmentum (p=0.048) and a trend to hypoperfusion in the left putamen (p=0.07). MRI guided ROI placement by an operator blinded to clinical information and the coregistered SPECT images, confirmed significant hypoperfusion of the left thalamus (p<0.0001) and the pontine tegmentum (p=0.001) and revealed trends towards hypoperfusion in the caudate nuclei and right thalamus. These results are consistent with the hypothesis that FM is due to dysfunction of central pain pathways. Spinothalamic neurones are known to be involved in pain perception and there are synapse connections to the thalamus in the gigantocellular part of the medulla and pons

  8. Impacts of using reformulated and oxygenated fuel blends on the regional air quality of the upper Rhine valley

    Directory of Open Access Journals (Sweden)

    J.-F. Vinuesa

    2006-01-01

    Full Text Available The effects of using three alternative gasoline fuel blends on regional air quality of the upper Rhine valley have been investigated. The first of the tested fuels is oxygenated by addition of ethyl-tertio-butyl ether (ETBE, the second is based on a reformulation of its composition and the third on is both oxygenated and reformulated. The upper Rhine valley is a very sensitive region for pollution episodes and several meteorological and air quality studies have already been performed. High temporal and spatial emission inventories are available allowing relevant and realistic modifications of the emission inventories. The calculation period, i.e., 11 May 1998, corresponds to a regional photochemical ozone pollution episode during which ozone concentrations exceeded several times the information threshold of the ozone directive of the European Union (180 μg m-3 as 1 hourly average. New emission inventories are set up using specific emission factors related to the alternative fuels by varying the fraction of gasoline passenger cars (from 50% to 100% using the three fuel blends. Then air quality modeling simulations are performed using these emission inventories over the upper Rhine valley. The impact of alternative fuels on regional air quality is evaluated by comparing these simulations with the one using a reference emission inventory, e.g., where no modifications of the fuel composition are included. The results are analyzed by focusing on peak levels and daily averaged concentrations. The use of the alternative fuels leads to general reductions of ozone and volatile organic compounds (VOC and increases of NOx levels. We found different behaviors related to the type of the area of concern i.e. rural or urban. The impacts on ozone are enhanced in urban areas where 15% reduction of the ozone peak and daily averaged concentrations can be reached. This behavior is similar for the NOx for which, in addition, an increase of the levels can be noted

  9. Influence of Plastic Covering on the Microclimate in Vineyards in the São Francisco River Valley Region

    Directory of Open Access Journals (Sweden)

    Mário de Miranda Vilas Boas Ramos Leitão

    Full Text Available Abstract Data from field experiments conducted in table grape vineyards variety of Festival in Petrolina-PE in the period from September 19 to October 12, 2010 were used to evaluate the influence of plastic cover on microclimate conditions of vineyards in São Francisco River Valley region. Three treatments were studied: canopies without plastic cover (WC; with plastic cover positioned at 50 cm (PC50, and at 100 cm (PC100 above canopy. The results indicate that the plastic cover prevented the passage of about 40% of the global and net radiation, retained the relative humidity inside the canopy, generated an increase of air temperature and marked reduction in wind speed over the canopy of treatment PC50. However, treatment PC100 had a higher incidence of short wavelength and net radiation under canopy (on the berries than WC and PC50 treatments, resulting in more favorable weather conditions, providing about 40% greater productivity in this treatment. Therefore, the vineyard with plastic cover placed at 100 cm above canopy represents a more suitable alternative to the climatic conditions of the region of the São Francisco River Valley.

  10. Regional cerebral blood flow in the patient with brain tumor

    International Nuclear Information System (INIS)

    Tsuchida, Shohei

    1993-01-01

    Regional cerebral blood flow (rCBF) was measured with xenon-enhanced CT (Xe-CT) in 21 cases of intracranial tumors (13 meningiomas, 5 gliomas, 3 metastatic brain tumors). Peritumoral edema was graded as mild, moderate or severe based on the extent of edema on CT and MRI. According to intratumoral blood flow distribution patterns, three patterns were classified as central type with relatively high blood flow at the center of the tumor, homogeneous type with an almost homogeneous blood flow distribution, and marginal type with relatively high blood flow at the periphery of the tumor. High grade astrocytoma and metastatic brain tumor showed marginal type blood flow and moderate or severe edema except in one case. Five meningiomas with severe peritumoral edema revealed marginal type blood flow and four with mild peritumoral edema showed central type blood flow, except for one case. No correlation was found between the extent of peritumoral edema and histological subtype, tumor size, location, duration of clinical history, vascularization on angiogram, and mean blood flow in the tumor. These results suggest that blood flow distribution patterns within the tumor may affect the extension of peritumoral edema. Pre- and postoperative rCBFs were evaluated with Xe-CT and IMP-SPECT in 7 cases, mean rCBF of peritumoral edema was 6.2 ml/100 g/min preoperatively, and discrepancy between rCBF on Xe-CT and that on IMP-SPECT was shown in the remote cortical region ipsilateral to the tumor. Postoperative rCBF revealed an improved blood flow in both adjacent and remote areas, suggesting that the decreased blood flow associated with brain tumors might be relieved after surgery. (author) 53 refs

  11. A Means for the Scintigraphic Imaging of Regional Brain Dynamics. Regional Cerebral Blood Flow and Regional Cerebral Blood Volume

    Energy Technology Data Exchange (ETDEWEB)

    Potchen, E. J.; Bentley, R.; Gerth, W.; Hill, R. L.; Davis, D. O. [Washington University School Of Medicine, St. Louis, MO (United States)

    1969-05-15

    The use of freely diffusable inert radioactive gas as a washout indicator to measure regional cerebral blood flow has become a standardized kinetic procedure in many laboratories. Recent investigations with this technique have led us to conclude that we can reliably distinguish regional flow with perfusion against regional flow without perfusion from the early portion of the curve. Based on a detailed study of the early curve kinetics in patients with and without cerebral vascular disease we have defined the sampling duration necessary for application of the Anger gamma camera imaging process to regional changes in cerebral radioactivity. Using a standard camera and a small computer, a procedure has been developed and based upon entire field to determine the time of maximum height followed by analysis of the data in a matrix. This will permit a contour plot presentation of calculated regional cerebral blood flow in millilitres per 100 grams perfused brain per minute. In addition, we propose to augment this data by the display of regional non-perfusion blood flow versus regional cerebral flow with perfusion. Preliminary investigation on sampling duration, and Compton scattering were prerequisite to clinical scintigraphy of regional cerebral blood flow. In addition, the method of interface for the conventional Anger gamma camera to digital computers used in this procedure are discussed. Applications to further assess regional cerebral dynamics by scintigraphy are presented. (author)

  12. ANALYSIS OF SPATIAL CHANGES IN GROUNDWATER RETENTION FOR THE ODER VALLEY IN THE MALCZYCE REGION

    Directory of Open Access Journals (Sweden)

    Edyta Nowicka

    2015-10-01

    Full Text Available The paper presents the analysis of spatial changes of groundwater retention for a part of the Oder valley situated below the barrage in Brzeg Dolny. For the analysis of selected monthly average elevations of the groundwater table of the selected measuring points (32 piezometers located in the area described, and 7 gauges on the Oder river, Średzka Woda, Jeziorka and Nowy Rów. The change of groundwater retention is presented in spatial terms for vegetation periods of years: 2010, 2011 and 2012. The database was made interpolating the groundwater table elevation for the area in question. On this basis, differences between ordinates the groundwater table were calculated. The next step was to obtain the spatial distribution of groundwater retention states and its analysis. The results show significant changes in the states of groundwater retention on the selected portion of the valley in the individual growing seasons. According to formation of changes in status of groundwater retention relative to the distance from the Odra river was analysed.

  13. Socioeconomic effects of power marketing alternatives for the Central Valley and Washoe Projects: 2005 regional econmic impact analysis using IMPLAN

    International Nuclear Information System (INIS)

    Anderson, D.M.; Godoy-Kain, P.; Gu, A.Y.; Ulibarri, C.A.

    1996-11-01

    The Western Area Power Administration (Western) was founded by the Department of Energy Organization Act of 1977 to market and transmit federal hydroelectric power in 15 western states outside the Pacific Northwest, which is served by the Bonneville Power Administration. Western is divided into four independent Customer Service Regions including the Sierra Nevada Region (Sierra Nevada), the focus of this report. The Central Valley Project (CVP) and the Washoe Project provide the primary power resources marketed by Sierra Nevada. Sierra Nevada also purchases and markets power generated by the Bonneville Power Administration, Pacific Gas and Electric (PG ampersand E), and various power pools. Sierra Nevada currently markets approximately 1,480 megawatts of power to 77 customers in northern and central California. These customers include investor-owned utilities, public utilities, government agencies, military bases, and irrigation districts. Methods and conclusions from an economic analysis are summarized concerning distributional effects of alternative actions that Sierra Nevada could take with it's new marketing plan

  14. Palms and Palm Communities in the Upper Ucayali River Valley - a Little-Known Region in the Amazon Basin

    DEFF Research Database (Denmark)

    Balslev, Henrik; Eiserhardt, Wolf L.; Kristiansen, Thea

    2010-01-01

    The Amazon region and its palms are inseparable. Palms make up such an important part of the rain forest ecosystem that it is impossible to imagine the Amazon basin without them. Palms are visible in the canopy and often fill up the forest understory. Palms – because of their edible fruits...... – are cornerstone species for the survival of many animals, and palms contribute substantially to forest inventories in which they are often among the ten most important families. Still, the palms and palm communities of some parts of the Amazon basin remain poorly studied and little known. We travelled to a little......-explored corner of the western Amazon basin, the upper Ucayali river valley. There, we encountered 56 different palms, 18 of which had not been registered for the region previously, and 21 of them were found 150–400 km beyond their previously known limits....

  15. Phosphorus in Denmark: national and regional anthropogenic flows

    DEFF Research Database (Denmark)

    Klinglmair, Manfred; Lemming, Camilla; Jensen, Lars Stoumann

    2015-01-01

    by country-wide average values. To quantify and evaluate these imbalances we integrated a country-scale and regional-scale model of the Danish anthropogenic P flows and stocks. We examine three spatial regions with regard to agriculture, as the main driver for P use, and waste management, the crucial sector......Substance flow analyses (SFA) of phosphorus (P) have been examined on a national or supra-national level in various recent studies. SFA studies of P on the country scale or larger can have limited informative value; large differences between P budgets exist within countries and are easily obscured...... for P recovery. The regions are characterised by their differences in agricultural practice, population and industrial density. We show considerable variation in P flows within the country. First, these are driven by agriculture, with mineral fertiliser inputs varying between 3 and 5 kg ha−1 yr−1...

  16. Assessing potential effects of changes in water use with a numerical groundwater-flow model of Carson Valley, Douglas County, Nevada, and Alpine County, California

    Science.gov (United States)

    Yager, Richard M.; Maurer, Douglas K.; Mayers, C.J.

    2012-01-01

    Rapid growth and development within Carson Valley in Douglas County, Nevada, and Alpine County, California, has caused concern over the continued availability of groundwater, and whether the increased municipal demand could either impact the availability of water or result in decreased flow in the Carson River. Annual pumpage of groundwater has increased from less than 10,000 acre feet per year (acre-ft/yr) in the 1970s to about 31,000 acre-ft/yr in 2004, with most of the water used in agriculture. Municipal use of groundwater totaled about 10,000 acre-feet in 2000. In comparison, average streamflow entering the valley from 1940 to 2006 was 344,100 acre-ft/yr, while average flow exiting the valley was 297,400 acre-ft/yr. Carson Valley is underlain by semi-consolidated Tertiary sediments that are exposed on the eastern side and dip westward. Quaternary fluvial and alluvial deposits overlie the Tertiary sediments in the center and western side of the valley. The hydrology of Carson Valley is dominated by the Carson River, which supplies irrigation water for about 39,000 acres of farmland and maintains the water table less than 5 feet (ft) beneath much of the valley floor. Perennial and ephemeral watersheds drain the Carson Range and the Pine Nut Mountains, and mountain-front recharge to the groundwater system from these watersheds is estimated to average 36,000 acre-ft/yr. Groundwater in Carson Valley flows toward the Carson River and north toward the outlet of the Carson Valley. An upward hydraulic gradient exists over much of the valley, and artesian wells flow at land surface in some areas. Water levels declined as much as 15 ft since 1980 in some areas on the eastern side of the valley. Median estimated transmissivities of Quaternary alluvial-fan and fluvial sediments, and Tertiary sediments are 316; 3,120; and 110 feet squared per day (ft2/d), respectively, with larger transmissivity values in the central part of the valley and smaller values near the valley

  17. Assessment of impact of mass movements on the upper Tayyah valley's bridge along Shear escarpment highway, Asir region (Saudi Arabia) using remote sensing data and field investigation

    Science.gov (United States)

    Youssef, A. M.; Al-Kathery, M.; Pradhan, B.

    2015-01-01

    Escarpment highways, roads and mountainous areas in Saudi Arabia are facing landslide hazards that are frequently occurring from time to time causing considerable damage to these areas. Shear escarpment highway is located in the north of the Abha city. It is the most important escarpment highway in the area, where all the light and heavy trucks and vehicle used it as the only corridor that connects the coastal areas in the western part of the Saudi Arabia with the Asir and Najran Regions. More than 10 000 heavy trucks and vehicles use this highway every day. In the upper portion of Tayyah valley of Shear escarpment highway, there are several landslide and erosion potential zones that affect the bridges between tunnel 7 and 8 along the Shear escarpment Highway. In this study, different types of landslides and erosion problems were considered to access their impacts on the upper Tayyah valley's bridge along Shear escarpment highway using remote sensing data and field investigation. These landslides and erosion problems have a negative impact on this section of the highway. Results indicate that the areas above the highway and bridge level between bridge 7 and 8 have different landslides including planar, circular, rockfall failures and debris flows. In addition, running water through the gullies cause different erosional (scour) features between and surrounding the bridge piles and culverts. A detailed landslides and erosion features map was created based on intensive field investigation (geological, geomorphological, and structural analysis), and interpretation of Landsat image 15 m and high resolution satellite image (QuickBird 0.61 m), shuttle radar topography mission (SRTM 90 m), geological and topographic maps. The landslides and erosion problems could exhibit serious problems that affect the stability of the bridge. Different mitigation and remediation strategies have been suggested to these critical sites to minimize and/or avoid these problems in the future.

  18. Characterization of flow regimes in the post-dryout region

    International Nuclear Information System (INIS)

    Obot, N.T.; Ishii, M.

    1988-01-01

    A visual study of film boiling using photographic and high speed motion-picture methods was carried out to determine the flow regime transition criteria in the post-CHF region. An idealized inverted annular flow was obtained by introducing a liquid jet of Freon 113 through a nozzle, precisely centered with respect to the internal diameter of the test section, with an annual gas flow. The respective ranges for liquid and gas exit velocities were 0.05-0.5 and 0.03-8.2 m/s. Nitrogen and helium were used in the study

  19. Regional cerebral blood flow in focal cortical epilepsy

    DEFF Research Database (Denmark)

    Hougaard, Kristina Dupont; Oikawa, T; Sveinsdottir, E

    1976-01-01

    Regional cerebral blood flow (rCBF) was studied in ten patients with focal cortical epilepsy. The blood flow was measured by the intra-arterial injection of xenon 133 (133Xe), and the isotope clearance was recorded by a multidetector scintillation camera with 254 detectors. Three patients were....... This finding accords with earlier studies. All nine patients studied in the interictal phase showed, either spontaneously or during activation by intermittent light, focal flow increases in areas presumed to comprise the epileptic focus. These interictal hyperemic foci probably reflect subictal neuronal...

  20. Biostratigraphy of the Cretaceous/Tertiary boundary in the Sirwan Valley (Sulaimani Region, Kurdistan, NE Iraq)

    Science.gov (United States)

    Sharbazheri, Khalid Mahmood; Ghafor, Imad Mahmood; Muhammed, Qahtan Ahmad

    2009-10-01

    The Cretaceous/Tertiary (K/T) boundary sequence, which crops out in the studied area is located within the High Folded Zone, in the Sirwan Valley, northeastern Iraq. These units mainly consist of flysch and flysch-type successions of thick clastic beds of Tanjero/Kolosh Formations. A detailed lithostratigraphic study is achieved on the outcropping uppermost part of the Upper Cretaceous successions (upper part of Tanjero Formation) and the lowermost part of the Kolosh Formation. On the basis of the identified planktonic foraminiferal assemblages, five biozones are recorded from the uppermost part of Tanjero Formation and four biozones from the lower part of the Kolosh Formation (Lower Paleocene) in the Sirwan section. The biostratigraphic correlations based on planktonic foraminiferal zonations showed a comparison between the biostratigraphic zones established in this study and other equivalents of the commonly used planktonic zonal scheme around the Cretaceous/Tertiary boundary in and outside Iraq.

  1. Geothermal environmental studies, Heber Region, Imperial Valley, California. Environmental baseline data acquisition. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1977-02-01

    The Electric Power Research Institute (EPRI) has been studying the feasibility of a Low Salinity Hydrothermal Demonstration Plant as part of its Geothermal Energy Program. The Heber area of the Imperial Valley was selected as one of the candidate geothermal reservoirs. Documentation of the environmental conditions presently existing in the Heber area is required for assessment of environmental impacts of future development. An environmental baseline data acquisition program to compile available data on the environment of the Heber area is reported. The program included a review of pertinent existing literature, interviews with academic, governmental and private entities, combined with field investigations and meteorological monitoring to collect primary data. Results of the data acquisition program are compiled in terms of three elements: the physical, the biological and socioeconomic settings.

  2. Disparity in regional cerebral blood flow during electrically induced seizure

    DEFF Research Database (Denmark)

    Sestoft, D; Meden, P; Hemmingsen, R

    1993-01-01

    This is a presentation of 2 cases in which the intraictal regional cerebral blood flow distribution was measured with the 99mTc-HMPAO single photon emission computerized tomography technique during an electrically induced seizure. Although the seizure was verified as generalized on electroencepha......This is a presentation of 2 cases in which the intraictal regional cerebral blood flow distribution was measured with the 99mTc-HMPAO single photon emission computerized tomography technique during an electrically induced seizure. Although the seizure was verified as generalized...... electroencephalography-verified generalized seizures....

  3. Chimpanzee insectivory in the northern half of Uganda's Rift Valley: do Bulindi chimpanzees conform to a regional pattern?

    Science.gov (United States)

    McLennan, Matthew R

    2014-04-01

    Insects are a nutritious food source for many primates. In chimpanzees, insectivory is most prevalent among communities that manufacture tools to harvest social insects, particularly ants and termites. In contrast to other long-term study sites, chimpanzees (Pan troglodytes schweinfurthii) in Budongo Forest and Kibale National Park, Uganda, rarely eat insects and have small foraging tool kits, supporting speculation that infrequent insectivory--technically aided or otherwise--characterises chimpanzees in this part of Uganda's Rift Valley. To expand the dataset for this region, insect foraging was investigated at Bulindi (25 km from Budongo) over 19 months during two studies in 2007-2008 and 2012-2013. Systematic faecal analysis demonstrated that insectivory is a habitual foraging activity at this site. Overall levels of insect consumption varied considerably across months but were not predicted by monthly changes in rainfall or fruit intake. Unlike their Budongo and Kibale counterparts, Bulindi chimpanzees often consume ants (principally weaver ants, Oecophylla longinoda) and use sticks to dig out stingless bee (Meliponini) ground nests. In other respects, however, insectivory at Bulindi conforms to the pattern observed elsewhere in this region: they do not manufacture 'fishing' or 'dipping' tools to harvest termites and aggressive or hard-to-access ants (e.g., army ants, Dorylus spp.), despite availability of suitable prey. The Bulindi data lend support to the supposition that chimpanzees in this part of the Rift Valley rarely exploit termites and Dorylus ants, apparently lacking the 'cultural knowledge' that would enable them to do so most efficiently (i.e., tool use). The study's findings contribute to current debates about the relative influence of genetics, environment and culture in shaping regional and local variability in Pan foraging ecology.

  4. Industrial subdivisions in Aguascalientes State [Mexico]: Valley Region, potential spaces for development in the 21st Century

    Directory of Open Access Journals (Sweden)

    Héctor Daniel García Díaz

    2014-04-01

    Full Text Available The planning policies of the Mexican urban development oriented to the industrial activities implemented regionally and locally, have responded in different ways. The commitment to the sector led to the need to regulate urban growth and development as a substantial factor in achieving government strategies in the search for equitable sharing of national wealth and potential. The publication in 1976 of the General Law of Human Settlements born with this fundamental purpose. Excessive administrative burden of the Mexican social property and the need to insert in an increasingly globalizing economic activities led, in 1992 and 1994, respectively, the amendments to the Land Act and the signing of the Free Trade Agreement between North America, Canada, United States and Mexico. In the West Central Region, consisting of the metropolitan areas of Guadalajara, Zacatecas, San Luis Potosi, Queretaro, Guanajuato and Aguascalientes, spatial area in which a third of the country's inhabitants is based, and hosts the 100% extension territorial state of Aguascalientes, have been exploited discontinuously the natural and man-made resources available in the area. In the Valley of Aguascalientes, north-south strip of the state territory, have been authorized industrial subdivisions under plans and urban development programs that have accelerated or inhibited impulses, according to the vision and expectations of government power in turn; the different rhythms and changes of strategy applied to organize the disorder potential of the rural and urban environment express divergences in the reaches of consolidation and longed purposes. Research indicates and identifies the dynamics with which the last eight administrations of the Mexican State have acted in shaping the industrial potential of the Valley, which the south side hosts industrial city, Nissan I, Nissan II and Automotive Logistics Industrial Park, industrial settlements seeking to consolidate the region

  5. An estimated potentiometric surface of the Death Valley region, Nevada and California, developed using geographic information system and automated interpolation techniques

    International Nuclear Information System (INIS)

    D'Agnese, F.A.; Faunt, C.C.; Turner, A.K.

    1998-01-01

    An estimated potentiometric surface was constructed for the Death Valley region, Nevada and California, from numerous, disparate data sets. The potentiometric surface was required for conceptualization of the ground-water flow system and for construction of a numerical model to aid in the regional characterization for the Yucca Mountain repository. Because accurate, manual extrapolation of potentiometric levels over large distances is difficult, a geographic-information-system method was developed to incorporate available data and apply hydrogeologic rules during contour construction. Altitudes of lakes, springs, and wetlands, interpreted as areas where the potentiometric surface intercepts the land surface, were combined with water levels from well data. Because interpreted ground-water recharge and discharge areas commonly coincide with groundwater basin boundaries, these areas also were used to constrain a gridding algorithm and to appropriately place local maxima and minima in the potentiometric-surface map. The resulting initial potentiometric surface was examined to define areas where the algorithm incorrectly extrapolated the potentiometric surface above the land surface. A map of low-permeability rocks overlaid on the potentiometric surface also indicated areas that required editing based on hydrogeologic reasoning. An interactive editor was used to adjust generated contours to better represent the natural water table conditions, such as large hydraulic gradients and troughs, or ''vees''. The resulting estimated potentiometric-surface map agreed well with previously constructed maps. Potentiometric-surface characteristics including potentiometric-surface mounds and depressions, surface troughs, and large hydraulic gradients were described

  6. Regional Distribution of Metals and C and N Stable Isotopes in the Epiphytic Ball Moss (Tillandsia Recurvata) at the Mezquital Valley, Hidalgo State

    Science.gov (United States)

    Zambrano-Garcia, A.; López-Veneroni, D.; Rojas, A.; Torres, A.; Sosa, G.

    2007-05-01

    As a part of the MILAGRO Field Campaign 2006, the influence of anthropogenic sources to metal air pollution in the Mezquital Valley, Hidalgo State, was explored by biomonitoring techniques. This valley is a major industrial- agriculture area located in central Mexico. An oil refinery, an electrical power plant, several cement plants with open-pit mines, as well as intensive wastewater-based agricultural areas, all within a 50 km radius, are some of the most important local sources of particulate air pollution. The concentrations of 25 metals and elements were determined by ICP-AES (EPA 610C method) for triplicate composite samples of the "ball moss" (T. recurvata ) collected at 50 sites. In addition, the ratios of two stable isotopes ((13C/12C and 15N/14N) were determined by continuous-flow isotope-ratio mass spectrometry in order to assess their potential as tracers for industrial emissions. Preliminary results showed high to very high average contents of several metals in the biomonitor compared to values from similar studies in other world regions, indicating a high degree of local air pollution. In contrast, most samples had Ag, As, Be, Se and Tl contents below detection levels (DL = 0.05 mg/kg of sample dry weight) indicating low levels of pollution by these metals. Metals such as Al, Ba, Ca, Fe, Li, Mo, Ni, Sr, Ti, V and Zn concentrated the most at the South portion of the valley, where the Tepeji-Tula-Apaxco industrial corridor is located. A transect parallel to the along-wind direction (N-S) showed a higher concentration of metals farther away from the sources relative to a cross-wind transect, which is consistent with the eolian transport of metal-enriched particles. Regional distribution maps of metals in the biomonitor showed that Al, Ba, Fe, Mo, Ni, Sr, Ti and V had higher levels at the industrial sampling sites; whereas K, Na and P were more abundant near to agriculture areas. Vanadium, a common element of crude oil, reflected better the influence from

  7. Modeling The Evolution Of A Regional Aquifer System With The California Central Valley Groundwater-Surface Water Simulation Model (C2VSIM)

    Science.gov (United States)

    Brush, C. F.; Dogrul, E. C.; Kadir, T. N.; Moncrief, M. R.; Shultz, S.; Tonkin, M.; Wendell, D.

    2006-12-01

    The finite element application IWFM has been used to develop an integrated groundwater-surface water model for California's Central Valley, an area of ~50,000 km2, to simulate the evolution of the groundwater flow system and historical groundwater-surface water interactions on a monthly time step from October 1921 to September 2003. The Central Valley's hydrologic system changed significantly during this period. Prior to 1920, most surface water flowed unimpeded from source areas in the mountains surrounding the Central Valley through the Sacramento-San Joaquin Delta to the Pacific Ocean, and groundwater largely flowed from recharge areas on the valley rim to discharge as evapotransipration in extensive marshes along the valley's axis. Rapid agricultural development led to increases in groundwater pumping from ~0.5 km3/yr in the early 1920's to 13-18 km3/yr in the 1940's to 1970's, resulting in strong vertical head gradients, significant head declines throughout the valley, and subsidence of >0.3 m over an area of 13,000 km2. Construction of numerous dams and development of an extensive surface water delivery network after 1950 altered the surface water flow regime and reduced groundwater pumping to the current ~10 km3/yr, increasing net recharge and leading to local head gradient reversals and water level recoveries. A model calibrated to the range of historical flow regimes in the Central Valley will provide robust estimations of stream-groundwater interactions for a range of projected future scenarios. C2VSIM uses the IWFM application to simulate a 3-D finite element groundwater flow process dynamically coupled with 1-D land surface, stream flow, lake and unsaturated zone processes. The groundwater flow system is represented with three layers each having 1393 elements. Land surface processes are simulated using 21 subregions corresponding to California DWR water-supply planning areas. The surface-water network is simulated using 431 stream nodes representing 72

  8. REGIONAL FIRST ORDER PERIODIC AUTOREGRESSIVE MODELS FOR MONTHLY FLOWS

    Directory of Open Access Journals (Sweden)

    Ceyhun ÖZÇELİK

    2008-01-01

    Full Text Available First order periodic autoregressive models is of mostly used models in modeling of time dependency of hydrological flow processes. In these models, periodicity of the correlogram is preserved as well as time dependency of processes. However, the parameters of these models, namely, inter-monthly lag-1 autocorrelation coefficients may be often estimated erroneously from short samples, since they are statistics of high order moments. Therefore, to constitute a regional model may be a solution that can produce more reliable and decisive estimates, and derive models and model parameters in any required point of the basin considered. In this study, definitions of homogeneous region for lag-1 autocorrelation coefficients are made; five parametric and non parametric models are proposed to set regional models of lag-1 autocorrelation coefficients. Regional models are applied on 30 stream flow gauging stations in Seyhan and Ceyhan basins, and tested by criteria of relative absolute bias, simple and relative root of mean square errors.

  9. Effect of pregnancy on regional cerebral blood flow

    International Nuclear Information System (INIS)

    Nagamachi, Shigeki; Hoshi, Hiroaki; Jinnouchi, Seishi; Ohnishi, Takashi; Futami, Shigemi; Watanabe, Katsushi; Ikeda, Tomoaki; Mori, Norimasa

    1993-01-01

    Regional cerebral blood flow (r-CBF) of 10 pregnant women were quantified by 133 Xe SPECT study with inhalation method before and after artificial abortion. During pregnancy, value of r-CBF in each region except occipital lobe was significantly higher than that of the post abortion. Arterial blood gas was analyzed after SPECT procedure. P co2 concentration increased significantly after artificial abortion. Although its mechanism is unknown, our preliminary work demonstrates that r-CBF increased by pregnancy. (author)

  10. Type of aphasia and regional cerebral blood flow

    International Nuclear Information System (INIS)

    Tagawa, Koichi; Sugimoto, Keiko; Minematsu, Kazuo; Yamaguchi, Takenori; Naritomi, Hiroaki; Sawada, Tohru

    1982-01-01

    In 40 patients with aphasia due to cerebral infarction, regional cerebral blood flow (rCBF) was measured after 2 months of ictus with 133 Xe inhalation method. There were 18 cases with motor aphasia and 22 with sensory aphasia. On the measurements of rCBF, 3 detectors were placed over frontal region (group F), 3 over temporal region (group T), and remaining 3 over parietal region (group P), of the dominant hemisphere. The flow values were compared with the rCBF values obtained from 21 control subjects who had no abnormality in CT scan and on neurological examinations. The control subjects revealed the hyperfrontal pattern of flow distribution; rCBF values in groups F, T and P, which were expressed as an initial slope index, were 50.0 +- 4.8, 48.0 +- 5.1 and 47.4 +- 4.5, respectively. The hyperfrontal pattern was absent in cases with motor aphasia. In this group, rCBF in groups F, T and P were 42.0 +- 8.3, 44.7 +- 8.4 and 41.0 +- 8.5, respectively, and rCBF in frontal region was significantly reduced compared with that in the control group. In sensory aphasia, rCBF values in groups F, T and P were all significantly reduced compared to the controls showing 44.0 +- 5.7, 42.8 +- 5.1 and 40.6 +- 5.4, respectively. In this group, the hyperfrontal pattern was maintained at a low flow level. When absolute rCBF values were compared between motor and sensory aphasia, there was no significant difference between these 2 groups. However, regional flow distribution in motor aphasia was significantly different from that of sensory aphasia, and the cases having the lowest value in group F were more frequently found in the former than in the latter. (J.P.N.)

  11. DIVERGENT HORIZONTAL SUB-SURFACE FLOWS WITHIN ACTIVE REGION 11158

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Kiran; Tripathy, S. C.; Hill, F., E-mail: kjain@nso.edu, E-mail: stripathy@nso.edu, E-mail: fhill@nso.edu [National Solar Observatory, 950 N Cherry Avenue, Tucson, AZ 85719 (United States)

    2015-07-20

    We measure the horizontal subsurface flow in a fast emerging active region (AR; NOAA 11158) using the ring-diagram technique and the Helioseismic and Magnetic Imager high spatial resolution Dopplergrams. This AR had a complex magnetic structure and displayed significant changes in morphology during its disk passage. Over a period of six days from 2011 February 11 to 16, the temporal variation in the magnitude of the total velocity is found to follow the trend of magnetic field strength. We further analyze regions of individual magnetic polarity within AR 11158 and find that the horizontal velocity components in these sub-regions have significant variation with time and depth. The leading and trailing polarity regions move faster than the mixed-polarity region. Furthermore, both zonal and meridional components have opposite signs for trailing and leading polarity regions at all depths showing divergent flows within the AR. We also find a sharp decrease in the magnitude of total horizontal velocity in deeper layers around major flares. It is suggested that the re-organization of magnetic fields during flares, combined with the sunspot rotation, decreases the magnitude of horizontal flows or that the flow kinetic energy has been converted into the energy released by flares. After the decline in flare activity and sunspot rotation, the flows tend to follow the pattern of magnetic activity. We also observe less variation in the velocity components near the surface but these tend to increase with depth, further demonstrating that the deeper layers are more affected by the topology of ARs.

  12. Hazard assessment due to falling stones on a reach of the regional road in the Trenta valley, Slovenia

    Directory of Open Access Journals (Sweden)

    Urška Petje

    2005-12-01

    Full Text Available In the framework of the new Slovenian methodology for determining hazard areas and the classification of land parcels into hazard classes due to land slides and rock falls, a pilot project was carried out on the regional road between Bovec and Vr{i~ pass in theTrenta valley. For this around 20 km long road in a typical alpine environment, a hazard assessment of falling rocks was carried out, even tough the road also passes through snow avalanches hazard areas. The performed hazard assessment of falling rocks is based onan expert knowledge taking into account the field mapping, and classifies the road into three hazard classes: 9811 m is classified into the low hazard class, 7233 m is classifiedinto the medium hazard class, and 1301 m is classified into high hazard class of falling rocks.

  13. Cardiac output and regional blood flow following trauma

    International Nuclear Information System (INIS)

    Malik, A.B.; Loegering, D.J.; Saba, T.M.; Kaplan, J.E.

    1978-01-01

    The changes in cardiac output (2), regional blood blow (2r) and regional vascular resistance, and arterial pressure were studied in rats subjected to moderate (LD0) or severe (LD50) traumatic shock. 2 and 2r were determined using microspheres at 15, 60 and 180 min posttrauma. Arterial pressure decreased in both groups at 15 min and recovered by 3 h after sublethal (LD0) trauma, while arterial pressure did not return to control levels after LD50 trauma. 2 decreased in both groups at 15 min and returned to control only in the LD0 trauma group by 3 h. Cerebral, coronary, and hepatic arterial flows and resistances were maintained in both groups. Renal, intestinal, and splenic flows decreased and resistances were maintained in both groups. Renal, intestinal, and splenic flows decreased and resistances increased in both groups by 15 min and returned to control levels by 3 h only in the LD0 trauma group. Total hepatic and hepatic portal flows decreased at 60 min and returned to control levels at 3 h after LD0 trauma, while there was significant depression in these parameters 3 h after LD50 trauma. Therefore, sublethal and severe trauma resulted in early redistribution of flow favoring the coronary, cerebral, and hepatic arterial beds. However, renal, intestinal, splenic, and portal flows remained depressed only in severely traumatized rats, suggesting that continued hypofusion is a factor in the multiple organ failure and death following severe traumatic injury

  14. Measurement of regional hepatic blood flow by scintiphotosplenoportography

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, T; Kimura, K; Kamada, T; Abe, H [Osaka Univ. (Japan). Dept. of Radiology and Nuclear Medicine

    1978-08-01

    A new technique for estimating regional hepatic blood flow using the inert gas washout technique and scintillation camera following injection of /sup 133/Xe into the spleen is presented. This technique is easily, rapidly and repeatedly performed and permits the measurement of nutrient hepatic tissue blood flow. Measurement of regional hepatic blood flow in right and/or left lobes was performed in 28 patients. In all but one patient the right lobar flow value was equal to or greater than the left one. The right lobar flow was 86.20 +- 12.83 ml/100 gm/min in 3 patients without liver disease, 75.12 +- 14.54 ml/100 gm/min in 12 with chronic hepatitis and 51.24 +- 17.13 ml/100 gm/min in 11 with liver cirrhosis. This result suggests that hepatic tissue blood flow is significantly decreased in patients with liver cirrhosis. Scintillation camera images of initial xenon distribution in combination with monitor of washout curves over the liver also provide more information on the presence of extra- and intrahepatic shunts. Therefore, this technique appears to be clinically useful in evaluation of hemodynamic phenomena associated with liver diseases.

  15. The Maltrata valley in the inter regional trade nets of the obsidian in Meso america: origin by neutron activation

    International Nuclear Information System (INIS)

    Molina V, R. O.

    2011-01-01

    The study of the obsidian in Mexico has included different research lines, as they are: the study of the elaboration techniques of several things, forms, dating: deposits localization and extraction of the raw material; study about the physical and mineralogical characteristics, and those focused to the trade routes of several things; which is developed in this thesis. The topic developed in this research is to propose the possible communication routes in which the obsidian of the Maltrata valley has participated among the Gulf coast and of the Altiplano 12 central. With the characterization study of the obsidian is possible to know the origin of this and also the relationship with other societies, because the exploitation of raw materials of mineral origin was an activity of great economic and politics importance in the pre hispanic societies. When the origin is determined is possible to relate the supplier, with the distributor and consumer and this way to trace on a map the movement routes that people settled down and for those that the obsidian circulated. To define the origin of the Maltrata obsidian was used the analysis technique by neutron activation, which allowed knowing the origin place of the raw material. This work is organized in five chapters. In the first chapter the theoretical and methodological bases are developed to define the research. A revision is made to the antecedents on trade and origin in the center and south of Veracruz. In the second chapter a general panorama of the geographical and geologic environment of the region is described, with the purpose of to delineate the own characteristics of the valley and to distinguish it of the diverse areas and regions of the coast of the Gulf. In the chapter third, the data of the material context and the places of where they took the representative samples are provided; equally the methodology carried out for its selection, classification and registration is presented. For the fourth chapter is

  16. Regional cerebral blood flow in primary degenerative dementia

    International Nuclear Information System (INIS)

    Kawakatsu, Shinobu; Totsuka, Shiro; Shinohara, Masao; Koyama, Hideki; Sagawa, Katsuo; Morinobu, Shigeru; Oiji, Arata; Komatani, Akio

    1991-01-01

    Regional cerebral blood flow (rCBF) was examined, using SPECT by Xe-133 inhalation, in patients with primary degenerative dementia who were subgrouped according to predominant symptoms with respect to amnesia, apraxia, agnosia, aphasia, and personality changes. Also the effect of sex and age at dementia onset on the rCBF patterns was assessed. (author). 26 refs.; 1 fig.; 7 tabs

  17. Patterns of regional cerebral blood flow in acute stroke

    DEFF Research Database (Denmark)

    Olsen, T S; Skriver, E B

    1981-01-01

    In a consecutive group of 56 stroke patients the regional cerebral blood flow was measured within 84 hours after stroke. A 254 multidetector scintillation camera and the intracarotid Xenon-133 injection method was used to study rCBF. Typical rCBF-patterns are described and compared to the findings...

  18. Aging, regional cerebral blood flow, and neuropsychological functioning

    International Nuclear Information System (INIS)

    MacInnes, W.D.; Golden, C.J.; Gillen, R.W.; Sawicki, R.F.; Quaife, M.; Uhl, H.S.; Greenhouse, A.J.

    1984-01-01

    Previous studies found changes in regional cerebral blood flow (rCBF) patterns related to both age and various cognitive tasks. However, no study has yet demonstrated a relationship between rCBF and performance on the Luria-Nebraska Neuropsychological Battery (LNNB) in an elderly group. Seventy-nine elderly volunteers (56-88 years old), both healthy and demented, underwent the 133 xenon inhalation rCBF procedure and were given the LNNB. The decrements in the gray-matter blood flow paralleled decrements in performance on the LNNB. Using partial correlations, a significant proportion of shared variance was observed between gray-matter blood flow and the LNNB scales. However, there was much less of a relationship between white-matter blood flow and performance on the LNNB. This study suggests that even within a restricted age sample rCBF is related in a global way to neuropsychological functioning

  19. Regional cerebral blood flow in patients with hypertensive intracerebral hemorrhage

    International Nuclear Information System (INIS)

    Kuroda, Kiyoshi

    1982-01-01

    Regional cerebral blood flow (rCBF) was measured in 36 patients with hypertensive intracerebral hemorrhage (putaminal hemorrhage) treated surgically, using the Xenon-133 intracarotid injection method. The correlations between CBF in four regions, (the hemisphere, the frontal region, the sensori-motor area and the focal area) and the duration from the operation, the conscious level, the hematoma volume and motor function were investigated. Mean cerebral blood flow (MCBF), rCBF in sensori-motor area and in the focal area showed a value below 30 ml/100g/min. for any duration after the operation within one year. However, in the frontal region rCBF tends to increase from 4 months after the operation. There was a close correlation between the conscious level and CBF, especially in the frontal region. The higher CBF was noted in the better consciousness group. In hematoma cases the larger the hematoma volume (especially those over 31 ml)the lower the CBF in all three regions. In the focal area rCBF showed the lowest value among these three regions and was dependent on the hematoma volume, while frontal region revealed the highest flow value of them all, even in cases with a hematoma volume over 81 ml. There was a significant difference in rCBF between cases with severe motor disturbance and cases with moderate motor disturbance, except in the focal area. In the frontal region rCBF coincides rather well to the degree of motor disturbance. While, rCBF in the focal area was less than 30 ml/100g/min., and showed no correlation to motor function. (J.P.N.)

  20. Using water chemistry, isotopes and microbiology to evaluate groundwater sources, flow paths and geochemical reactions in the Death Valley flow system, USA

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, James M.; Hershey, Ronald L. [Desert Research Institute, 2215 Raggio Pwky, Reno, NV, USA 89512 (United States); Moser, Duane P.; Fisher, Jenny C.; Reihle, Jessica; Wheatley, Alexandra [Desert Research Institute, 755 E. Flamingo Rd, Las Vegas, NV, USA 89130 (United States); Baldino, Cristi; Weissenfluh, Darrick [US Fish and Wildlife Service, Ash Meadows NWR, Amargosa Valley, NV, USA 89020 (United States)

    2013-07-01

    Springs of Ash Meadows and Furnace Creek (near or in Death Valley, CA) have nearly constant flow, temperature, chemistry, and similar δ{sup 2}H and δ{sup 18}O signatures. These factors indicate shared water sources and/or analogous geochemical reactions along similar flow paths. DNA-based (16S rRNA gene) microbial diversity assessments further illuminate these relationships. Whereas, all Ash Meadows springs share related archaea populations, variations in carbon-14 (Crystal Spring) and strontium isotopes, Na{sup +}, SO{sub 4}{sup 2-}, and methane concentrations (Big Spring), correspond with microbial differences within and between the two discharge areas. Similar geochemical signatures linking Ash Meadows and Furnace Creek springs appear to support a distinct end member at Big Spring in Ash Meadows, which is also supported by coincident enrichment in microbial methanogens and methanotrophs. Conversely, DNA libraries from a deep carbonate well (878 m) located between Ash Meadows and Furnace Creek (BLM-1), indicate no shared microbial diversity between Ash Meadows or Furnace Creek springs. (authors)

  1. Flow prediction models using macroclimatic variables and multivariate statistical techniques in the Cauca River Valley

    International Nuclear Information System (INIS)

    Carvajal Escobar Yesid; Munoz, Flor Matilde

    2007-01-01

    The project this centred in the revision of the state of the art of the ocean-atmospheric phenomena that you affect the Colombian hydrology especially The Phenomenon Enos that causes a socioeconomic impact of first order in our country, it has not been sufficiently studied; therefore it is important to approach the thematic one, including the variable macroclimates associated to the Enos in the analyses of water planning. The analyses include revision of statistical techniques of analysis of consistency of hydrological data with the objective of conforming a database of monthly flow of the river reliable and homogeneous Cauca. Statistical methods are used (Analysis of data multivariante) specifically The analysis of principal components to involve them in the development of models of prediction of flows monthly means in the river Cauca involving the Lineal focus as they are the model autoregressive AR, ARX and Armax and the focus non lineal Net Artificial Network.

  2. The Corregidores of the Colca Valley, Peru: Imperial Administration in an Andean Region

    Directory of Open Access Journals (Sweden)

    Cook, Noble David

    2003-12-01

    Full Text Available The corregidor de los indios was introduced into the Viceroyalty of Peru by Governor García de Castro in 1565. The institution was designed to limit the power of the encomendero elite and to improve administration and justice in the Andean countryside. Here we examine the impact of the reforms at the local level, the corregimiento of Los Collaguas in the Colca Valley, located between Cuzco and Arequipa. Althought the Crown was largely successful in weakening the encomienda, possibility of graft corrupted all but a handful of corregidores. The residencia did check some of those abuses.

    El gobernador García de Castro fue quien introdujo (1565 el corregidor de los indios en el virreinato del Perú. El corregimiento fue establecido para limitar el poder de los encomenderos y mejorar la administración y la justicia en los sitios rurales, y al mismo tiempo incrementar la colección del tributo. En este trabajo examinamos el impacto de las reformas en el corregimiento de los Collaguas situado en el hermoso valle del río Colca entre Arequipa y Cuzco. Aunque la corona fue más exitosa en debilitar la encomienda, la posibilidad de soborno corrompió a la mayoría de los corregidores.

  3. Flow modelling of a newtonian fluid by two regions- the region of pure fluid and porous region

    International Nuclear Information System (INIS)

    Sampaio, R.; Gama, R.M.S. da

    1983-01-01

    A model of flow with two regions is presented using mixture theory. One region contains only pure fluid and the other a mixture of fluid and porous rigid solid. Compatibility conditons on the pure fluid-mixture interface are carefully discussed. The theory is used to solve a problem of a flow induced by pressure gradient and helicoidal motion of an impermeable cylinder on two rings one of pure fluid and another of mixture. (Author) [pt

  4. Tennessee Valley region study: potential year 2000 radiological dose to population resulting from nuclear facility operations. [Includes glossary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    A companion report, DOE/ET-0064/1, presents a geographic, cultural, and demographic profile of the Tennessee Valley Region study area. This report describes the calculations of radionuclide release and transport and of the resultant dose to the regional population, assuming a projected installed capacity of 220,000 MW in the year 2000, of which 144,000 MW would be nuclear. All elements of the fuel cycle were assumed to be in operation. The radiological dose was calculated as a one-year dose based on ingestion of 35 different food types as well as for nine non-food pathways, and was reported as dose to the total body and for six specific organs for each of four age groups (infant, child, teen, and adult). Results indicate that the average individual would receive an incremental dose of 7 x 10/sup -4/ millirems in the year 2000 from the operation of nuclear facilities within and adjacent to the region, five orders of magnitude smaller than the dose from naturally occurring radiation in the area. The major contributor to dose was found to be tritium, and the most significant pathways were immersion in air, inhalation of air, transpiration of tritium (absorption through the skin), and exposure radionuclide-containing soil. 60 references.

  5. Assessing the full costs of water, liquid waste, energy and solid waste infrastructure in the Fraser Valley Regional District (FVRD)

    International Nuclear Information System (INIS)

    Pollard, D.

    2001-01-01

    This document presents a newly drafted growth strategy developed by the Fraser Valley Regional District (FVRD) in British Columbia. It guides the sustainable growth, change and development of the region for the next 25 years and deals with air pollution, water quality, traffic congestion, affordable housing, employment, energy use, parks and green space. In particular, this case study develops a method to apply full cost accounting (FCA) to a growth strategy. FCA is the most appropriate way to approach a sustainable strategy because it considers economic, social and environmental issues. The study also includes the development of a software tool consisting of an ACCESS database and an ARCVIEW GIS file for compiling and analyzing detailed infrastructure profiles which can be used to assess the full costs of different growth scenarios. The following four issue categories of environmental and economic indicators of FVRD performance were addressed: solid waste, water and wastewater, energy, and infrastructure costs. Each issue category was then used to establish a set of 5 performance indicators that can be measured and assessed over time. These included solid waste, water consumption, wastewater, energy consumption and air emissions. The database and methodology developed for this project is suitable for other regions. The software can be viewed by contacting the Sheltair Group Resource Consultants Inc. in Vancouver

  6. Steady flows in the solar transition region observed with SMM

    International Nuclear Information System (INIS)

    Gebbie, K.B.; Hill, F.; Toomre, J.; November, L.J.; Simon, G.W.; Gurman, J.B.; Shine, R.A.; Woodgate, B.E.; Athay, R.G.; Bruner, E.C. Jr.; Rehse, R.A.; Tandberg-Hanssen, E.A.

    1981-01-01

    Steady flows in the quiet solar transition region have been observed with the Ultraviolet Spectrometer and Polarimeter (UVSP) experiment on the Solar Maximum Mission (SMM) satellite. The persistent vertical motions seen at disk center have spatial rms amplitudes of 1.4 km s -1 in the C II line, 3.9 km s -1 in Si IV, and 4.2 km s -1 in C IV. The amplitudes of the more horizontal flows seen toward the limb tend to be somewhat higher. Plots of steady vertical velocity versus intensity seen at disk center in Si IV and C IV show two distinct branches

  7. Ethnobotanical survey of wild food plants traditionally collected and consumed in the Middle Agri Valley (Basilicata region, southern Italy).

    Science.gov (United States)

    Sansanelli, Sabrina; Ferri, Maura; Salinitro, Mirko; Tassoni, Annalisa

    2017-09-06

    This research was carried out in a scarcely populated area of the Middle Agri Valley (Basilicata region, southern Italy). The aim of the study was to record local knowledge on the traditional uses of wild food plants, as well as to collect information regarding the practices (gathering, processing and cooking) and the medicinal uses related to these plants. Fifty-eight people still possessing traditional local knowledge (TLK), 74% women and 26% men, were interviewed between May-August 2012 and January 2013, using open and semi-structured ethnobotanical interviews. For each described plant species, the botanical family, the Italian common and folk names, the plant parts used, the culinary preparation and, when present, the medicinal use, were recorded and the relative frequency of citation index (RFC) was determined. The 52 plant species mentioned by the respondents belong to 23 botanical families, with Asteraceae (12 plants) and Rosaceae (7 plants) being most frequently cited. The species with the highest RFC index is Cichorium intybus L. (0.95), followed by Sonchus spp. (S. oleraceus L., S. asper L. and S. arvensis L.) (0.76). The plant parts preferably used are leaves (22 plants), fruits (12) and stems (7). Only six wild plants were indicated as having both food use and therapeutic effect. The survey conducted on the traditional use of wild food plants in the Middle Agri Valley revealed that this cultural heritage is only partially retained by the population. Over the last few decades, this knowledge has been in fact quickly disappearing along with the people and, even in the rural context of the study area, is less and less handed down to younger generations. Nevertheless, data also revealed that the use of wild plants is recently being revaluated in a way closely related to local habits and traditions.

  8. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    Science.gov (United States)

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  9. Valley polarization in bismuth

    Science.gov (United States)

    Fauque, Benoit

    2013-03-01

    The electronic structure of certain crystal lattices can contain multiple degenerate valleys for their charge carriers to occupy. The principal challenge in the development of valleytronics is to lift the valley degeneracy of charge carriers in a controlled way. In bulk semi-metallic bismuth, the Fermi surface includes three cigar-shaped electron valleys lying almost perpendicular to the high symmetry axis known as the trigonal axis. The in-plane mass anisotropy of each valley exceeds 200 as a consequence of Dirac dispersion, which drastically reduces the effective mass along two out of the three orientations. According to our recent study of angle-dependent magnetoresistance in bismuth, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. As a consequence of a unique combination of high mobility and extreme mass anisotropy in bismuth, the effect is visible even at room temperature in a magnetic field of 1 T. Thus, a modest magnetic field can be used as a valley valve in bismuth. The results of our recent investigation of angle-dependent magnetoresistance in other semi-metals and doped semiconductors suggest that a rotating magnetic field can behave as a valley valve in a multi-valley system with sizeable mass anisotropy.

  10. Convergence and divergence between the local and regional state around solid waste management. An unresolved problem in the Sacred Valley

    Directory of Open Access Journals (Sweden)

    Teresa Tupayachi Mar

    2012-12-01

    Full Text Available This article and the following «The Material Politics of Waste Disposal - decentralization and integrated systems» from Penelope Harvey are published as complementary accounts on the management of solid waste in the Vilcanota Valley in Cusco. Penelope Harvey and Teresa Tupayachi worked together on this theme. In this paper, Tupayachi introduces the legal framing for the politics of waste disposal in the region. She also presents two studies that were commissioned in order to find solutions to the problem of waste disposal. The first was carried out in 2003, with finance from Finnish development cooperation funds, in co-ordination with technical experts from various universities, NGOs and state agencies, including the municipality of Urubamba. The second, a component of the Vilcanota project, was completed in 2011. The studies have things in common. Both involve regional and local government as central agents in the process, both focus their efforts to resolve the problem of solid waste management on possible technical solutions, and both are well resourced in both financial and human terms. However neither succeed in finding a way to accommodate the diverse interests and perceptions of the municipalities and of the general public. Faced with this situation local government officials, and people in general act on their own initiative, finding decentralized, and at times informal solutions to the problem, taking advantage of market opportunities.

  11. Geology and Geochemistry of the Poco de Fora region-Curaca river valley-Bahia-Brazil

    International Nuclear Information System (INIS)

    Figueiredo, M.C.H. de.

    1976-01-01

    In the Poco de Fora region level rocks of light metamorphism, from Caraiba group, corresponding to: - a meta-sedimentar sequence from Lower Pre-cambrian (Archean) - maphic-ultramaphic bodies with Fe and Cu sulphides of volcanogenic origin, and - sienitic ortho-gneiss. Geological, petrographic, geochemistry and geochronological studies were done. The sienitic-intrusion, from the upper crust, occur during the Archean-beginning of the Proterozoic. All the region was re-mobilized, and the sienitic was metamorphosed during Transamazonic Orogeny (2.200 to 1.800 m.y.). (C.D.G.) [pt

  12. Fine-scale heat flow, shallow heat sources, and decoupled circulation systems at two sea-floor hydrothermal sites, Middle Valley, northern Juan de Fuca Ridge

    Science.gov (United States)

    Stein, J. S.; Fisher, A. T.; Langseth, M.; Jin, W.; Iturrino, G.; Davis, E.

    1998-12-01

    Fine-scale heat-flow patterns at two areas of active venting in Middle Valley, a sedimented rift on the northern Juan de Fuca Ridge, provide thermal evidence of shallow hydrothermal reservoirs beneath the vent fields. The extreme variability of heat flow is explained by conductive heating immediately adjacent to vents and shallow circulation within sediments above the reservoir. This secondary circulation is hydrologically separated from the deeper system feeding the vents by a shallow conductive lid within the sediments. A similar separation of shallow and deep circulation may also occur at sediment-free ridge-crest hydrothermal environments.

  13. Ammonia and Methane Dairy Emission Plumes in the San Joaquin Valley of California from Individual Feedlot to Regional Scales

    Science.gov (United States)

    Miller, David J.; Sun, Kang; Pan, Da; Zondlo, Mark A.; Nowak, John B.; Liu, Zhen; Diskin, Glenn; Sachse, Glen; Beyersdorf, Andreas; Ferrare, Richard; hide

    2015-01-01

    Agricultural ammonia (NH3) emissions are highly uncertain, with high spatiotemporal variability and a lack of widespread in situ measurements. Regional NH3 emission estimates using mass balance or emission ratio approaches are uncertain due to variable NH3 sources and sinks as well as unknown plume correlations with other dairy source tracers. We characterize the spatial distributions of NH3 and methane (CH4) dairy plumes using in situ surface and airborne measurements in the Tulare dairy feedlot region of the San Joaquin Valley, California, during the NASA Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality 2013 field campaign. Surface NH3 and CH4 mixing ratios exhibit large variability with maxima localized downwind of individual dairy feedlots. The geometric mean NH3:CH4 enhancement ratio derived from surface measurements is 0.15 +/- 0.03 ppmv ppmv-1. Individual dairy feedlots with spatially distinct NH3 and CH4 source pathways led to statistically significant correlations between NH3 and CH4 in 68% of the 69 downwind plumes sampled. At longer sampling distances, the NH3:CH4 enhancement ratio decreases 20-30%, suggesting the potential for NH3 deposition as a loss term for plumes within a few kilometers downwind of feedlots. Aircraft boundary layer transect measurements directly above surface mobile measurements in the dairy region show comparable gradients and geometric mean enhancement ratios within measurement uncertainties, even when including NH3 partitioning to submicron particles. Individual NH3 and CH4 plumes sampled at close proximity where losses are minimal are not necessarily correlated due to lack of mixing and distinct source pathways. Our analyses have important implications for constraining NH3 sink and plume variability influences on regional NH3 emission estimates and for improving NH3 emission inventory spatial allocations.

  14. Sustaining the grassland sea: Regional perspectives on identifying, protecting and restoring the Sky Island region's most intact grassland valley landscapes

    Science.gov (United States)

    Gitanjali S. Bodner; Peter Warren; David Gori; Karla Sartor; Steven Bassett

    2013-01-01

    Grasslands of the Sky Islands region once covered over 13 million acres in southeastern Arizona and adjacent portions of New Mexico, Sonora, and Chihuahua. Attempts to evaluate current ecological conditions suggest that approximately two thirds of these remain as intact or restorable grassland habitat. These grasslands provide watershed services such as flood control...

  15. Volcanic unrest and hazard communication in Long Valley Volcanic Region, California

    Science.gov (United States)

    Hill, David P.; Mangan, Margaret T.; McNutt, Stephen R.

    2017-01-01

    The onset of volcanic unrest in Long Valley Caldera, California, in 1980 and the subsequent fluctuations in unrest levels through May 2016 illustrate: (1) the evolving relations between scientists monitoring the unrest and studying the underlying tectonic/magmatic processes and their implications for geologic hazards, and (2) the challenges in communicating the significance of the hazards to the public and civil authorities in a mountain resort setting. Circumstances special to this case include (1) the sensitivity of an isolated resort area to media hype of potential high-impact volcanic and earthquake hazards and its impact on potential recreational visitors and the local economy, (2) a small permanent population (~8000), which facilitates face-to-face communication between scientists monitoring the hazard, civil authorities, and the public, and (3) the relatively frequent turnover of people in positions of civil authority, which requires a continuing education effort on the nature of caldera unrest and related hazards. Because of delays associated with communication protocols between the State and Federal governments during the onset of unrest, local civil authorities and the public first learned that the U.S. Geological Survey was about to release a notice of potential volcanic hazards associated with earthquake activity and 25-cm uplift of the resurgent dome in the center of the caldera through an article in the Los Angeles Times published in May 1982. The immediate reaction was outrage and denial. Gradual acceptance that the hazard was real required over a decade of frequent meetings between scientists and civil authorities together with public presentations underscored by frequently felt earthquakes and the onset of magmatic CO2 emissions in 1990 following a 11-month long earthquake swarm beneath Mammoth Mountain on the southwest rim of the caldera. Four fatalities, one on 24 May 1998 and three on 6 April 2006, underscored the hazard posed by the CO2

  16. Seasonal monitoring and estimation of regional aerosol distribution over Po valley, northern Italy, using a high-resolution MAIAC product

    Science.gov (United States)

    Arvani, Barbara; Pierce, R. Bradley; Lyapustin, Alexei I.; Wang, Yujie; Ghermandi, Grazia; Teggi, Sergio

    2016-09-01

    In this work, the new 1 km-resolved Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is employed to characterize seasonal PM10 - AOD correlations over northern Italy. The accuracy of the new dataset is assessed compared to the widely used Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5.1 Aerosol Optical Depth (AOD) data, retrieved at 0.55 μm with spatial resolution of 10 km (MYD04_L2). We focused on evaluating the ability of these two products to characterize both temporal and spatial distributions of aerosols within urban and suburban areas. Ground PM10 measurements were obtained from 73 of the Italian Regional Agency for Environmental Protection (ARPA) monitoring stations, spread across northern Italy, during a three-year period from 2010 to 2012. The Po Valley area (northern Italy) was chosen as the study domain because of its severe urban air pollution, resulting from it having the highest population and industrial manufacturing density in the country, being located in a valley where two surrounding mountain chains favor the stagnation of pollutants. We found that the global correlations between the bin-averaged PM10 and AOD are R2 = 0.83 and R2 = 0.44 for MYD04_L2 and for MAIAC, respectively, suggesting a greater sensitivity of the high-resolution product to small-scale deviations. However, the introduction of Relative Humidity (RH) and Planetary Boundary Layer (PBL) depth corrections allowed for a significant improvement to the bin-averaged PM - AOD correlation, which led to a similar performance: R2 = 0.96 for MODIS and R2 = 0.95 for MAIAC. Furthermore, the introduction of the PBL information in the corrected AOD values was found to be crucial in order to capture the clear seasonal cycle shown by measured PM10 values. The study allowed us to define four seasonal linear correlations that estimate PM10 concentrations satisfactorily from the remotely sensed MAIAC AOD retrieval. Overall, the results show that the high

  17. Influential factors on debris flow events and hillslope-channel connectivity in Alpine regions: case studies from two Alpine regions in Styria, Austria

    Science.gov (United States)

    Traper, Sandra; Pöppl, Ronald; Rascher, Eric; Sass, Oliver

    2016-04-01

    In recent times different types of natural disasters like debris flow events have attracted increasing attention worldwide, since they can cause great damage and loss of infrastructure or even lives is not unusual when it comes to such an event. The engagement with debris flows is especially important in mountainous areas like Austria, since Alpine regions have proved to be particularly prone to the often harmful consequences of such events because of increasing settlement of previously uninhabited regions. Due to those frequently damaging effects of debris flows, research on this kind of natural disaster often focuses on mitigation and recovery measures after an event and on how to restore the initial situation. However, a view on the situation of an area, where severe debris flows recently occurred and are well documented, before the actual event can aid in discovering important preparatory factors that contribute to initiating debris flows and hillslope-channel connectivity in the first place. Valuable insights into the functioning and preconditions of debris flows and their potential connectivity to the main channel can be gained. The study focuses on two geologically different areas in the Austrian Alps, which are both prone to debris flows and have experienced rather severe events recently. Based on data from debris flow events in two regions in Styria (Austria), the Kleinsölk and the Johnsbach valleys, the aim of the study is to identify factors which influence the development of debris flows and the potential of such debris flows to reach the main channel potentially clogging up the river (hillslope-channel connectivity). The degree of hillslope-channel coupling was verified in extensive TLS and ALS surveys, resulting in DEMs of different resolution and spatial extension. Those factors are obtained, analyzed and evaluated with DEM-based GIS- and statistical analyses. These include factors that are attributed to catchment topography, such as slope angle

  18. Simulation of groundwater flow in the Edwards-Trinity and related aquifers in the Pecos County region, Texas

    Science.gov (United States)

    Clark, Brian R.; Bumgarner, Johnathan R.; Houston, Natalie A.; Foster, Adam L.

    2014-01-01

    The Edwards-Trinity aquifer is a vital groundwater resource for agricultural, industrial, and public supply uses in the Pecos County region of western Texas. The U.S. Geological Survey completed a comprehensive, integrated analysis of available hydrogeologic data to develop a numerical groundwater-flow model of the Edwards-Trinity and related aquifers in the study area in parts of Brewster, Jeff Davis, Pecos, and Reeves Counties. The active model area covers about 3,400 square miles of the Pecos County region of Texas west of the Pecos River, and its boundaries were defined to include the saturated areas of the Edwards-Trinity aquifer. The model is a five-layer representation of the Pecos Valley, Edwards-Trinity, Dockum, and Rustler aquifers. The Pecos Valley aquifer is referred to as the alluvial layer, and the Edwards-Trinity aquifer is divided into layers representing the Edwards part of the Edwards-Trinity aquifer and the Trinity part of the Edwards-Trinity aquifer, respectively. The calibration period of the simulation extends from 1940 to 2010. Simulated hydraulic heads generally were in good agreement with observed values; 1,684 out of 2,860 (59 percent) of the simulated values were within 25 feet of the observed value. The average root mean square error value of hydraulic head for the Edwards-Trinity aquifer was 34.2 feet, which was approximately 4 percent of the average total observed change in groundwater-level altitude (groundwater level). Simulated spring flow representing Comanche Springs exhibits a pattern similar to observed spring flow. Independent geochemical modeling corroborates results of simulated groundwater flow that indicates groundwater in the Edwards-Trinity aquifer in the Leon-Belding and Fort Stockton areas is a mixture of recharge from the Barilla and Davis Mountains and groundwater that has upwelled from the Rustler aquifer.

  19. Construction of the migration flows forecasting into Russian regions

    Directory of Open Access Journals (Sweden)

    Aleksandr Aleksandrovich Tarasyev

    2013-06-01

    Full Text Available This paper presents a dynamic model that can predict the dynamics of migration flows between source countries and host regions, as well as the dynamics of wage levels there. The model is constructed within the framework of neoclassical economics and human capital theory in continuous time. Thanks to liberalization of migration policy in Russia in 2007, the model could be successfully employed to Russian regions and the Commonwealth of Independent States (CIS, which have visa-free entry regulations with the Russian Federation. Employing the model on statistical data, we forecast the number and origin composition of foreign labor force from the CIS into Russian regions for 2010-2016. The purpose of our further research is to classify migrants by skills

  20. Hydrogeologic Settings and Ground-Water Flow Simulations for Regional Studies of the Transport of Anthropogenic and Natural Contaminants to Public-Supply Wells - Studies Begun in 2001

    Science.gov (United States)

    Paschke, Suzanne S.

    2007-01-01

    This study of the Transport of Anthropogenic and Natural Contaminants to public-supply wells (TANC study) is being conducted as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program and was designed to increase understanding of the most important factors to consider in ground-water vulnerability assessments. The seven TANC studies that began in 2001 used retrospective data and ground-water flow models to evaluate hydrogeologic variables that affect aquifer susceptibility and vulnerability at a regional scale. Ground-water flow characteristics, regional water budgets, pumping-well information, and water-quality data were compiled from existing data and used to develop conceptual models of ground-water conditions for each study area. Steady-state regional ground-water flow models were used to represent the conceptual models, and advective particle-tracking simulations were used to compute areas contributing recharge and traveltimes from recharge to selected public-supply wells. Retrospective data and modeling results were tabulated into a relational database for future analysis. Seven study areas were selected to evaluate a range of hydrogeologic settings and management practices across the Nation: the Salt Lake Valley, Utah; the Eagle Valley and Spanish Springs Valley, Nevada; the San Joaquin Valley, California; the Northern Tampa Bay region, Florida; the Pomperaug River Basin, Connecticut; the Great Miami River Basin, Ohio; and the Eastern High Plains, Nebraska. This Professional Paper Chapter presents the hydrogeologic settings and documents the ground-water flow models for each of the NAWQA TANC regional study areas that began work in 2001. Methods used to compile retrospective data, determine contributing areas of public-supply wells, and characterize oxidation-reduction (redox) conditions also are presented. This Professional Paper Chapter provides the foundation for future susceptibility and vulnerability analyses in the TANC

  1. Delineating the Drainage Structure and Sources of Groundwater Flux for Lake Basaka, Central Rift Valley Region of Ethiopia

    Directory of Open Access Journals (Sweden)

    Megersa Olumana Dinka

    2017-11-01

    Full Text Available As opposed to most of the other closed basin type rift valley lakes in Ethiopia, Lake Basaka is found to be expanding at an alarming rate. Different studies indicated that the expansion of the lake is challenging the socio-economics and environment of the region significantly. This study result and previous reports indicated that the lake’s expansion is mostly due to the increased groundwater (GW flux to the lake. GW flux accounts for about 56% of the total inflow in recent periods (post 2000 and is found to be the dominant factor for the hydrodynamics and existence of the lake. The analysis of the drainage network for the area indicates the existence of a huge recharge area on the western and upstream side of the catchment. This catchment has no surface outlet; hence most of the incoming surface runoff recharges the GW system. The recharge area is the main source of GW flux to the lake. In addition to this, the likely sources/causes of GW flux to the lake could be: (i an increase of GW recharge following the establishment of irrigation schemes in the region; (ii subsurface inflow from far away due to rift system influence, and (iii lake neotectonism. Overall, the lake’s expansion has damaging effect to the region, owing to its poor water quality; hence the identification of the real causes of GW flux and mitigation measures are very important for sustainable lake management. Therefore a comprehensive and detailed investigation of the parameters related to GW flux and the interaction of the lake with the GW system of the area is highly recommended.

  2. Distribution of microspheres to regions of dog lung compares well with regional flow of red blood cells

    International Nuclear Information System (INIS)

    Beck, K.C.; Rehder, K.

    1986-01-01

    Dorso-caudal areas of dog lungs are better perfused than ventral regions, independent of gravity. Could this be an artifact due to regional bias in lodging of MS. The costal surfaces of 5 isolated blood perfused left lungs of dogs [constant blood flow (F), Ppa, Ppv and Palv] were imaged (gamma camera) first after injection of 141 Ce-labeled MS (15 μ), then in 0.4 sec intervals after a bolus injection of 99 Tc-labeled red blood cells (RBC). Count rates were analyzed in 6 regions. Regional flow measured by MS (flowMS) is F times regional counts divided by total counts in the first image. Regional flow measured by RBC (flowRBC) is F times peak regional counts divided by peak total counts in the 0.4 sec images. The ratio flowMS/flow RBC was greater than 1.0 (P<0.001), suggesting a systematic difference between 1.0 (P<0.001), suggesting a systematic difference between flowMS and flow RBC. More importantly, there was no difference in flowMS/flow RBC among lung regions, allowing the authors to conclude there was no regional bias of flows

  3. Identifying landscape features associated with Rift Valley fever virus transmission, Ferlo region, Senegal, using very high spatial resolution satellite imagery.

    Science.gov (United States)

    Soti, Valérie; Chevalier, Véronique; Maura, Jonathan; Bégué, Agnès; Lelong, Camille; Lancelot, Renaud; Thiongane, Yaya; Tran, Annelise

    2013-03-01

    Dynamics of most of vector-borne diseases are strongly linked to global and local environmental changes. Landscape changes are indicators of human activities or natural processes that are likely to modify the ecology of the diseases. Here, a landscape approach developed at a local scale is proposed for extracting mosquito favourable biotopes, and for testing ecological parameters when identifying risk areas of Rift Valley fever (RVF) transmission. The study was carried out around Barkedji village, Ferlo region, Senegal. In order to test whether pond characteristics may influence the density and the dispersal behaviour of RVF vectors, and thus the spatial variation in RVFV transmission, we used a very high spatial resolution remote sensing image (2.4 m resolution) provided by the Quickbird sensor to produce a detailed land-cover map of the study area. Based on knowledge of vector and disease ecology, seven landscape attributes were defined at the pond level and computed from the land-cover map. Then, the relationships between landscape attributes and RVF serologic incidence rates in small ruminants were analyzed through a beta-binomial regression. Finally, the best statistical model according to the Akaike Information Criterion corrected for small samples (AICC), was used to map areas at risk for RVF. Among the derived landscape variables, the vegetation density index (VDI) computed within a 500 m buffer around ponds was positively correlated with serologic incidence (premote sensing data for identifying environmental risk factors and mapping RVF risk areas at a local scale.

  4. The carbon stable isotope biogeochemistry of streams, Taylor Valley, Antarctica

    International Nuclear Information System (INIS)

    Lyons, W.B.; Leslie, D.L.; Harmon, R.S.; Neumann, K.; Welch, K.A.; Bisson, K.M.; McKnight, D.M.

    2013-01-01

    Highlights: ► δ 13 C-DIC reported from McMurdo Dry Valleys, Antarctica, streams. ► Stream water δ 13 C PDB values range −9.4‰ to +5.1‰, largely inorganic in character. ► Atmospheric exchange is the dominant control on δ 13 C-DIC. - Abstract: The McMurdo Dry Valleys region of Antarctica is the largest ice-free region on the continent. This study reports the first C stable isotope measurements for dissolved inorganic C present in ephemeral streams in four dry valleys that flow for four to twelve weeks during the austral summer. One of these valleys, Taylor Valley, has been the focus of the McMurdo Dry Valleys Long-Term Ecological Research (MCM-LTER) program since 1993. Within Taylor Valley, numerous ephemeral streams deliver water to three perennially ice-covered, closed-basin lakes: Lake Fryxell, Lake Hoare, and Lake Bonney. The Onyx River in the Wright Valley, the longest river in Antarctica, flows for 40 km from the Wright Lower Glacier and Lake Brownworth at the foot of the glacier to Lake Vanda. Streamflow in the McMurdo Dry Valley streams is produced primarily from glacial melt, as there is no overland flow. However, hyporheic zone exchange can be a major hydrogeochemical process in these streams. Depending on landscape position, these streams vary in gradient, channel substrate, biomass abundance, and hyporheic zone extent. This study sampled streams from Taylor, Wright, Garwood, and Miers Valleys and conducted diurnal sampling of two streams of different character in Taylor Valley. In addition, transect sampling was undertaken of the Onyx River in Wright Valley. The δ 13 C PDB values from these streams span a range of greater than 14‰, from −9.4‰ to +5.1‰, with the majority of samples falling between −3‰ and +2‰, suggesting that the C stable isotope composition of dissolved C in McMurdo Dry Valley streams is largely inorganic in character. Because there are no vascular plants on this landscape and no groundwater input to these

  5. Landscape management and domestication of Stenocereus pruinosus (Cactaceae) in the Tehuacán Valley: human guided selection and gene flow

    Science.gov (United States)

    2012-01-01

    Background Use of plant resources and ecosystems practiced by indigenous peoples of Mesoamerica commonly involves domestication of plant populations and landscapes. Our study analyzed interactions of coexisting wild and managed populations of the pitaya Stenocereus pruinosus, a columnar cactus used for its edible fruit occurring in natural forests, silviculturally managed in milpa agroforestry systems, and agriculturally managed in homegardens of the Tehuacán Valley, Mexico. We aimed at analyzing criteria of artificial selection and their consequences on phenotypic diversity and differentiation, as well as documenting management of propagules at landscape level and their possible contribution to gene flow among populations. Methods Semi-structured interviews were conducted to 83 households of the region to document perception of variation, criteria of artificial selection, and patterns of moving propagules among wild and managed populations. Morphological variation of trees from nine wild, silviculturally and agriculturally managed populations was analyzed for 37 characters through univariate and multivariate statistical methods. In addition, indexes of morphological diversity (MD) per population and phenotypic differentiation (PD) among populations were calculated using character states and frequencies. Results People recognized 15 pitaya varieties based on their pulp color, fruit size, form, flavor, and thorniness. On average, in wild populations we recorded one variety per population, in silviculturally managed populations 1.58 ± 0.77 varieties per parcel, and in agriculturally managed populations 2.19 ± 1.12 varieties per homegarden. Farmers select in favor of sweet flavor (71% of households interviewed) and pulp color (46%) mainly red, orange and yellow. Artificial selection is practiced in homegardens and 65% of people interviewed also do it in agroforestry systems. People obtain fruit and branches from different population types and move

  6. Landscape management and domestication of Stenocereus pruinosus (Cactaceae) in the Tehuacán Valley: human guided selection and gene flow.

    Science.gov (United States)

    Parra, Fabiola; Blancas, José Juan; Casas, Alejandro

    2012-08-14

    Use of plant resources and ecosystems practiced by indigenous peoples of Mesoamerica commonly involves domestication of plant populations and landscapes. Our study analyzed interactions of coexisting wild and managed populations of the pitaya Stenocereus pruinosus, a columnar cactus used for its edible fruit occurring in natural forests, silviculturally managed in milpa agroforestry systems, and agriculturally managed in homegardens of the Tehuacán Valley, Mexico. We aimed at analyzing criteria of artificial selection and their consequences on phenotypic diversity and differentiation, as well as documenting management of propagules at landscape level and their possible contribution to gene flow among populations. Semi-structured interviews were conducted to 83 households of the region to document perception of variation, criteria of artificial selection, and patterns of moving propagules among wild and managed populations. Morphological variation of trees from nine wild, silviculturally and agriculturally managed populations was analyzed for 37 characters through univariate and multivariate statistical methods. In addition, indexes of morphological diversity (MD) per population and phenotypic differentiation (PD) among populations were calculated using character states and frequencies. People recognized 15 pitaya varieties based on their pulp color, fruit size, form, flavor, and thorniness. On average, in wild populations we recorded one variety per population, in silviculturally managed populations 1.58 ± 0.77 varieties per parcel, and in agriculturally managed populations 2.19 ± 1.12 varieties per homegarden. Farmers select in favor of sweet flavor (71% of households interviewed) and pulp color (46%) mainly red, orange and yellow. Artificial selection is practiced in homegardens and 65% of people interviewed also do it in agroforestry systems. People obtain fruit and branches from different population types and move propagules from one another. Multivariate

  7. Multi-region relaxed Hall magnetohydrodynamics with flow

    Energy Technology Data Exchange (ETDEWEB)

    Lingam, Manasvi, E-mail: mlingam@princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States); Abdelhamid, Hamdi M., E-mail: hamdi@ppl.k.u-tokyo.ac.jp [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Physics Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt); Hudson, Stuart R., E-mail: shudson@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)

    2016-08-15

    The recent formulations of multi-region relaxed magnetohydrodynamics (MRxMHD) have generalized the famous Woltjer-Taylor states by incorporating a collection of “ideal barriers” that prevent global relaxation and flow. In this paper, we generalize MRxMHD with flow to include Hall effects, and thereby obtain the partially relaxed counterparts of the famous double Beltrami states as a special subset. The physical and mathematical consequences arising from the introduction of the Hall term are also presented. We demonstrate that our results (in the ideal MHD limit) constitute an important subset of ideal MHD equilibria, and we compare our approach against other variational principles proposed for deriving the partially relaxed states.

  8. Passive scalar transport in peripheral regions of random flows

    International Nuclear Information System (INIS)

    Chernykh, A.; Lebedev, V.

    2011-01-01

    We investigate statistical properties of the passive scalar mixing in random (turbulent) flows assuming its diffusion to be weak. Then at advanced stages of the passive scalar decay, its unmixed residue is primarily concentrated in a narrow diffusive layer near the wall and its transport to the bulk goes through the peripheral region (laminar sublayer of the flow). We conducted Lagrangian numerical simulations of the process for different space dimensions d and revealed structures responsible for the transport, which are passive scalar tongues pulled from the diffusive boundary layer to the bulk. We investigated statistical properties of the passive scalar and of the passive scalar integrated along the wall. Moments of both objects demonstrate scaling behavior outside the diffusive boundary layer. We propose an analytic scheme for the passive scalar statistics, explaining the features observed numerically.

  9. Regional cerebral blood flow in SPECT pattern in Parkinson's disease

    International Nuclear Information System (INIS)

    Lenart-Jankowska, D.; Junik, R.; Sowinski, J.; Gembicki, M.; Wender, M.

    1997-01-01

    The purpose of our work was to compare the regional cerebral blood flow (rCBF) in SPECT examination in Parkinson's disease with (17 cases) and without (7 cases) dementia and in various clinical stages of the disease. The patients underwent SPECT examination 5-40 min after intravenous application of HMPAO (Ceretec, Amersham) with 740 Mbq (20 mCi) pertechnate 99m Tc. SPECT was performed with a Siemens Diacam single-head rotating gamma camera coupled to a high resolution collimator and Icon computer system provided by the manufacturer. The results were defined in relative values of ROI in relation to cerebellum. Patients with Parkinson's disease showed hypoperfusion in cerebral lobes and in deep cerebral structures including the basal ganglia. Regional perfusion deficit in SPECT was seen with and without associated dementia and already in early stage of the disease. Parkinson's disease is provoked by the lesions of dopaminergic neurons of the central nervous system leading to domination of extrapyramidal symptoms. There are many indications that also the neurotransmitters associated with cognitive functions as acetylcholine demonstrate some abnormalities. However, only in some cases of Parkinson's disease dementia is the dominating symptom. Our results of regional cerebral blood flow testify that in Parkinson's disease the dysfunction of the central nervous system is more diffuse than has previously been suggested. (author)

  10. Alterations of Regional Cerebral Blood Flow in Major Depressive Disorder

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Hyoung; Chung, Yong An; Seo, Ye Young; Yoo, Ik Dong; Na, Sae Jung; Jung, Hyun Suk; Kim, Ki Jun [College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of)

    2009-04-15

    The authors analyzed how the regional cerebral blood flow (rCBF) findings of patients with major depression differ from the normal control, and our results were compared to previous reports. Twelve patients fulfilling DSM-IV criteria for major depression who were off all psychotropic medications for > 4 weeks (male: 7, female: 5, age range: 19approx52 years, average age: 29.3+-9.9 years) and 14 normal volunteers (male: 8, female: 6, age range: 19approx53 years, average age: 31.4+-9.2 years) were recruited. Images of brain perfusion SPECT were obtained using Tc-99m ECD and patterns of the rCBF were compared between patients with major depression and the healthy control subjects. The patients with major depression showed increase of the r-CBF in right lingual gyrus, right fusiform gyrus, left lingual gyrus, left precuneus, and left superior temporal gyrus, and showed decrease of r-CBF in right pons, left medial frontal gyrus, cingulate gyrus of left limbic lobe, cingulate gyrus of right frontal lobe, and cingulate gyrus of right limbic lobe compared to the normal control. The Tc-99m ECD brain perfusion SPECT findings in our study did not differ from the previously reported regional cerebral blood flow pattern of patients with major depression. Especially, decreased rCBF pattern typical to major depression patients in the right pons, left medial frontal gyrus, and cingulate regions was clearly demonstrated

  11. Alterations of Regional Cerebral Blood Flow in Major Depressive Disorder

    International Nuclear Information System (INIS)

    Lee, Won Hyoung; Chung, Yong An; Seo, Ye Young; Yoo, Ik Dong; Na, Sae Jung; Jung, Hyun Suk; Kim, Ki Jun

    2009-01-01

    The authors analyzed how the regional cerebral blood flow (rCBF) findings of patients with major depression differ from the normal control, and our results were compared to previous reports. Twelve patients fulfilling DSM-IV criteria for major depression who were off all psychotropic medications for > 4 weeks (male: 7, female: 5, age range: 19∼52 years, average age: 29.3±9.9 years) and 14 normal volunteers (male: 8, female: 6, age range: 19∼53 years, average age: 31.4±9.2 years) were recruited. Images of brain perfusion SPECT were obtained using Tc-99m ECD and patterns of the rCBF were compared between patients with major depression and the healthy control subjects. The patients with major depression showed increase of the r-CBF in right lingual gyrus, right fusiform gyrus, left lingual gyrus, left precuneus, and left superior temporal gyrus, and showed decrease of r-CBF in right pons, left medial frontal gyrus, cingulate gyrus of left limbic lobe, cingulate gyrus of right frontal lobe, and cingulate gyrus of right limbic lobe compared to the normal control. The Tc-99m ECD brain perfusion SPECT findings in our study did not differ from the previously reported regional cerebral blood flow pattern of patients with major depression. Especially, decreased rCBF pattern typical to major depression patients in the right pons, left medial frontal gyrus, and cingulate regions was clearly demonstrated

  12. Regional-to-site scale groundwater flow in Romuvaara

    Energy Technology Data Exchange (ETDEWEB)

    Kattilakoski, E.; Koskinen, L. [VTT Energy, Espoo (Finland)

    1999-04-01

    The work describing numerical groundwater flow modelling at the Romuvaara site serves as a background report for the safety assessment TILA-99. The site scale can roughly be taken as the scale of detailed borehole investigations, which have probed the bedrock of Romuvaara over about 2 km{sup 2} large and 1 km deep volume. The site model in this work covers an area of about 12 km{sup 2}. The depth of the model is 2200 m. The site scale flow modelling produced characteristics of the deep groundwater flow and evaluated the impact of a spent fuel repository on the natural groundwater flow conditions. It treated the hydraulic gradient in the intact rock between the repository and the fracture zone nearest to it (about 50 m off) for the block scale model, which describes the groundwater flow on the repository scale. The result quantities were the hydraulic head h (as the base quantity) and its gradient in selected cross sections and fracture zones, the flow rates around the repository, flow paths and discharge areas of the water from the repository. Two repository layouts were discussed. The numerical simulations were performed with the FEFTRA code based on the porous medium concept and the finite element method. The regional model with a no-flow boundary condition at the bottom and on the lateral edges was firstly used to confirm the hydraulic head boundary condition on the lateral edges of an interior site model (having a no-flow boundary condition at the bottom). The groundwater table was used as the hydraulic head boundary condition at the surface of each model. Both the conductivity of the bedrock (modeled with three-dimensional elements) and the transmissivities of the fracture zones (described with two-dimensional elements in the three-dimensional mesh) decreased as a function of the depth. All the results were derived from the site model. The range of variation of the hydraulic gradient immediately outside the repository was studied in the direction of the flow

  13. Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI.

    Science.gov (United States)

    Lobell, D B; Lesch, S M; Corwin, D L; Ulmer, M G; Anderson, K A; Potts, D J; Doolittle, J A; Matos, M R; Baltes, M J

    2010-01-01

    The ability to inventory and map soil salinity at regional scales remains a significant challenge to scientists concerned with the salinization of agricultural soils throughout the world. Previous attempts to use satellite or aerial imagery to assess soil salinity have found limited success in part because of the inability of methods to isolate the effects of soil salinity on vegetative growth from other factors. This study evaluated the use of Moderate Resolution Imaging Spectroradiometer (MODIS) imagery in conjunction with directed soil sampling to assess and map soil salinity at a regional scale (i.e., 10-10(5) km(2)) in a parsimonious manner. Correlations with three soil salinity ground truth datasets differing in scale were made in Kittson County within the Red River Valley (RRV) of North Dakota and Minnesota, an area where soil salinity assessment is a top priority for the Natural Resource Conservation Service (NRCS). Multi-year MODIS imagery was used to mitigate the influence of temporally dynamic factors such as weather, pests, disease, and management influences. The average of the MODIS enhanced vegetation index (EVI) for a 7-yr period exhibited a strong relationship with soil salinity in all three datasets, and outperformed the normalized difference vegetation index (NDVI). One-third to one-half of the spatial variability in soil salinity could be captured by measuring average MODIS EVI and whether the land qualified for the Conservation Reserve Program (a USDA program that sets aside marginally productive land based on conservation principles). The approach has the practical simplicity to allow broad application in areas where limited resources are available for salinity assessment.

  14. Greening Turner Valley

    International Nuclear Information System (INIS)

    Byfield, M.

    2010-01-01

    This article discussed remedial activities undertaken in the Turner Valley. Remedial action in the valley must satisfy the financial concerns of engineers and investors as well as the environmental concerns of residents and regulators. Natural gas production in the Turner Valley began in 1914. The production practices were harmful and wasteful. Soil and water pollution was not considered a problem until recently. The impacts of cumulative effects and other pollution hazards are now being considered as part of many oil and gas environmental management programs. Companies know it is cheaper and safer to prevent pollutants from being released, and more efficient to clean them up quickly. Oil and gas companies are also committed to remediating historical problems. Several factors have simplified remediation plans in the Turner Valley. Area real estate values are now among the highest in Alberta. While the valley residents are generally friendly to the petroleum industry, strong communication with all stakeholders in the region is needed. 1 fig.

  15. Ground-Water Flow Model for the Spokane Valley-Rathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    Science.gov (United States)

    Hsieh, Paul A.; Barber, Michael E.; Contor, Bryce A.; Hossain, Md. Akram; Johnson, Gary S.; Jones, Joseph L.; Wylie, Allan H.

    2007-01-01

    This report presents a computer model of ground-water flow in the Spokane Valley-Rathdrum Prairie (SVRP) aquifer in Spokane County, Washington, and Bonner and Kootenai Counties, Idaho. The aquifer is the sole source of drinking water for more than 500,000 residents in the area. In response to the concerns about the impacts of increased ground-water withdrawals resulting from recent and projected urban growth, a comprehensive study was initiated by the Idaho Department of Water Resources, the Washington Department of Ecology, and the U.S. Geological Survey to improve the understanding of ground-water flow in the aquifer and of the interaction between ground water and surface water. The ground-water flow model presented in this report is one component of this comprehensive study. The primary purpose of the model is to serve as a tool for analyzing aquifer inflows and outflows, simulating the effects of future changes in ground-water withdrawals from the aquifer, and evaluating aquifer management strategies. The scale of the model and the level of detail are intended for analysis of aquifer-wide water-supply issues. The SVRP aquifer model was developed by the Modeling Team formed within the comprehensive study. The Modeling Team consisted of staff and personnel working under contract with the Idaho Department of Water Resources, personnel working under contract with the Washington Department of Ecology, and staff of the U.S. Geological Survey. To arrive at a final model that has the endorsement of all team members, decisions on modeling approach, methodology, assumptions, and interpretations were reached by consensus. The ground-water flow model MODFLOW-2000 was used to simulate ground-water flow in the SVPR aquifer. The finite-difference model grid consists of 172 rows, 256 columns, and 3 layers. Ground-water flow was simulated from September 1990 through September 2005 using 181 stress periods of 1 month each. The areal extent of the model encompasses an area of

  16. Measurement of regional cerebral blood flow by positron emission tomography

    International Nuclear Information System (INIS)

    Herscovitch, P.; Powers, W.J.

    1987-01-01

    The principal advantage of positron emission tomography over other methods for measuring cerebral blood flow stems from the accurate, quantitative three-dimensional measurements of regional brain radioactivity that are possible with this technique. As a result, accurate quantitative measurements of regional cerebral blood flow can be obtained for both superficial and deep cerebral structures. The value of PET for investigating central nervous system physiology and pathology extends far beyond this, however. Through the use of different radiotracers and appropriate mathematical models, PET can be applied to the measurement of a wide variety of physiologic variables. Measurements of rCBF tell only part of the story. Experience with PET and with a variety of other techniques has taught us that rCBF is at times a poor indicator of the metabolic, functional, and biochemical status of cerebral tissue. It is only by understanding the interaction of all of these factors that our understanding of neurologic disease can advance. It is in the investigation of these complex relationships that the real value of PET resides

  17. Regional-to-site scale groundwater flow in Kivetty

    Energy Technology Data Exchange (ETDEWEB)

    Kattilakoski, E. [VTT Energy, Espoo (Finland); Meszaros, F. [The Relief Laboratory, Harskut (Hungary)

    1999-04-01

    The work describing numerical groundwater flow modelling at the Kivetty site serves as a background report for the safety assessment TILA-99. The site scale can roughly be taken as the scale of detailed borehole investigations, which have probed the bedrock of Kivetty over about 3 km{sup 2} large and 1 km deep volume. The site model in this work covers an area of about 16 km{sup 2}. The depth of the model is 2000 m. The site scale flow modelling produced characteristics of the deep groundwater flow both under the natural conditions and in the case of a spent fuel repository. The hydraulic gradient in the intact rock between the repository and the fracture zone nearest to it (about 50 m off) was assessed for the block scale model. The result quantities were the hydraulic head h (as the base quantity) and its gradient in selected cross sections and fracture zones, the flow rates around the repository, flow paths and discharge areas of the water from the repository. Two repository layouts were discussed. The numerical simulations were performed with the FEFTRA code based on the porous medium concept and the finite element method. The regional model with a no-flow boundary condition at the bottom and on the lateral edges was firstly used to confirm the hydraulic head boundary condition on the lateral edges of an interior site model (having a no-flow boundary condition at the bottom). The groundwater table was used as the hydraulic head boundary condition at the surface of each model. Both the conductivity of the bedrock (modeled with three-dimensional elements) and the transmissivities of the fracture zones (described with two-dimensional elements in the three-dimensional mesh) decreased as a function of the depth. All the results were derived from the site model. With the exception of the western part of Repository A the outlined repositories are located underneath Kumpuvuori, where the flow has a significant subvertical component. The horizontal component of the deep

  18. Regional-to-site scale groundwater flow in Kivetty

    International Nuclear Information System (INIS)

    Kattilakoski, E.; Meszaros, F.

    1999-04-01

    The work describing numerical groundwater flow modelling at the Kivetty site serves as a background report for the safety assessment TILA-99. The site scale can roughly be taken as the scale of detailed borehole investigations, which have probed the bedrock of Kivetty over about 3 km 2 large and 1 km deep volume. The site model in this work covers an area of about 16 km 2 . The depth of the model is 2000 m. The site scale flow modelling produced characteristics of the deep groundwater flow both under the natural conditions and in the case of a spent fuel repository. The hydraulic gradient in the intact rock between the repository and the fracture zone nearest to it (about 50 m off) was assessed for the block scale model. The result quantities were the hydraulic head h (as the base quantity) and its gradient in selected cross sections and fracture zones, the flow rates around the repository, flow paths and discharge areas of the water from the repository. Two repository layouts were discussed. The numerical simulations were performed with the FEFTRA code based on the porous medium concept and the finite element method. The regional model with a no-flow boundary condition at the bottom and on the lateral edges was firstly used to confirm the hydraulic head boundary condition on the lateral edges of an interior site model (having a no-flow boundary condition at the bottom). The groundwater table was used as the hydraulic head boundary condition at the surface of each model. Both the conductivity of the bedrock (modeled with three-dimensional elements) and the transmissivities of the fracture zones (described with two-dimensional elements in the three-dimensional mesh) decreased as a function of the depth. All the results were derived from the site model. With the exception of the western part of Repository A the outlined repositories are located underneath Kumpuvuori, where the flow has a significant subvertical component. The horizontal component of the deep

  19. Regional cerebral blood flow abnormalities in patients with primary hyperparathyroidism

    International Nuclear Information System (INIS)

    Cermik, Tevfik F.; Kaya, Meryem; Bedel, Deniz; Berkarda, Sakir; Yigitbasi, Oemer N.; Ugur-Altun, Betuel

    2007-01-01

    We assessed the alterations in regional cerebral blood flow (rCBF) in patients with primary hyperparathyroidism (PHP) before parathyroidectomy by semiquantitative analysis of brain single photon emission computed tomography (SPECT) images. Included in this prospective study were 14 patients (mean age 47.6 ± 10.4 years; 3 male, 11 female) and 10 control subjects (mean age 36.0 ± 8.5 years, 6 male, 4 female) were SPECT imaging was performed using a dual-headed gamma camera 60-90 min after intravenous administration of 925 MBq Tc-99m HMPAO. The corticocerebellar rCBF ratios were calculated from 52 brain areas and reference lower values (RLVs) were calculated from the rCBF ratios of control subjects. The regional ratios that were below the corresponding RLV were considered abnormal (hypoperfused). Hypoperfusion was shown in 171 out of 728 regions (23%) and there was a significant correlation between serum calcium, PTH levels and the sum of hypoperfused regions in the patient group (R = 0.75 and P = 0.001, and R = 0.75, P = 0.001, respectively). Significantly reduced rCBF were found in the following cortical regions: bilateral cingulate cortex, superior and inferior frontal cortex, anterior temporal cortex, precentral gyrus, postcentral gyrus and parietal cortex, and right posterior temporal cortex. Our results indicate that alterations in rCBF in patients with PHP can be demonstrated with brain SPECT. The correlation between serum calcium, PTH levels and the sum of hypoperfused regions indicates that there may be a strong relationship between rCBF abnormalities and increased levels of serum calcium and PTH. In addition, the degree of rCBF abnormalities could be determined by brain SPECT in PHP patients with or without psychiatric symptoms. (orig.)

  20. Regional cerebral blood flow abnormalities in patients with primary hyperparathyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Cermik, Tevfik F. [Hospital of the University of Trakya, Department of Nuclear Medicine, Edirne (Turkey); Trakya Universitesi Hastanesi, Nukleer Tip Anabilim Dali, Gullapoglu Yerleskesi, Edirne (Turkey); Kaya, Meryem; Bedel, Deniz; Berkarda, Sakir; Yigitbasi, Oemer N. [Hospital of the University of Trakya, Department of Nuclear Medicine, Edirne (Turkey); Ugur-Altun, Betuel [Hospital of the University of Trakya, Department of Internal Medicine, Division of Endocrinology, Edirne (Turkey)

    2007-04-15

    We assessed the alterations in regional cerebral blood flow (rCBF) in patients with primary hyperparathyroidism (PHP) before parathyroidectomy by semiquantitative analysis of brain single photon emission computed tomography (SPECT) images. Included in this prospective study were 14 patients (mean age 47.6 {+-} 10.4 years; 3 male, 11 female) and 10 control subjects (mean age 36.0 {+-} 8.5 years, 6 male, 4 female) were SPECT imaging was performed using a dual-headed gamma camera 60-90 min after intravenous administration of 925 MBq Tc-99m HMPAO. The corticocerebellar rCBF ratios were calculated from 52 brain areas and reference lower values (RLVs) were calculated from the rCBF ratios of control subjects. The regional ratios that were below the corresponding RLV were considered abnormal (hypoperfused). Hypoperfusion was shown in 171 out of 728 regions (23%) and there was a significant correlation between serum calcium, PTH levels and the sum of hypoperfused regions in the patient group (R = 0.75 and P = 0.001, and R = 0.75, P = 0.001, respectively). Significantly reduced rCBF were found in the following cortical regions: bilateral cingulate cortex, superior and inferior frontal cortex, anterior temporal cortex, precentral gyrus, postcentral gyrus and parietal cortex, and right posterior temporal cortex. Our results indicate that alterations in rCBF in patients with PHP can be demonstrated with brain SPECT. The correlation between serum calcium, PTH levels and the sum of hypoperfused regions indicates that there may be a strong relationship between rCBF abnormalities and increased levels of serum calcium and PTH. In addition, the degree of rCBF abnormalities could be determined by brain SPECT in PHP patients with or without psychiatric symptoms. (orig.)

  1. Evidence for Upward Flow of Saline Water from Depth into the Mississippi River Valley Alluvial Aquifer in Southeastern Arkansas

    Science.gov (United States)

    Larsen, D.; Paul, J.

    2017-12-01

    Groundwater salinization is occurring in the Mississippi River Valley Alluvial (MRVA) aquifer in southeastern Arkansas (SE AR). Water samples from the MRVA aquifer in Chicot and Desha counties have yielded elevated Cl-concentrations with some as high as 1,639 mg/L. Considering that the MRVA aquifer is the principle source of irrigation water for the agricultural economy of SE AR, salinization needs to be addressed to ensure the sustainability of crop, groundwater, and soil resources in the area. The origin of elevated salinity in MRVA aquifer was investigated using spatial and factor analysis of historical water quality data, and sampling and tracer analysis of groundwater from irrigation, municipal, and flowing industrial wells in SE AR. Spatial analysis of Cl- data in relation to soil type, geomorphic features and sand-blow density indicate that the Cl- anomalies are more closely related to the sand-blow density than soil data, suggesting an underlying tectonic control for the distribution of salinity. Factor analysis of historical geochemical data from the MRVA and underlying Sparta aquifer shows dilute and saline groups, with saline groups weighted positively with Cl- or Na+ and Cl-. Tracer data suggest a component of evaporatively evolved crustal water of pre-modern age has mixed with younger, fresher meteoric sources in SE AR to create the saline conditions in the MRVA aquifer. Stable hydrogen and oxygen values of waters sampled from the Tertiary Sparta and MRVA aquifers deviate from the global and local meteoric water lines along an evaporative trend (slope=4.4) and mixing line with Eocene Wilcox Group groundwaters. Ca2+ and Cl- contents vary with Br- along mixing trends between dilute MRVA water and Jurassic Smackover Formation pore fluids in southern AR. Increasing Cl- content with C-14 age in MRVA aquifer groundwater suggests that the older waters are more saline. Helium isotope ratios decrease with He gas content for more saline water, consistent with

  2. Lunar heat flow: Regional prospective of the Apollo landing sites

    Science.gov (United States)

    Siegler, M. A.; Smrekar, S. E.

    2014-01-01

    reexamine the Apollo Heat Flow Experiment in light of new orbital data. Using three-dimensional thermal conduction models, we examine effects of crustal thickness, density, and radiogenic abundance on measured heat flow values at the Apollo 15 and 17 sites. These models show the importance of regional context on heat flux measurements. We find that measured heat flux can be greatly altered by deep subsurface radiogenic content and crustal density. However, total crustal thickness and the presence of a near-surface radiogenic-rich ejecta provide less leverage, representing only minor (<1.5 mW m-2) perturbations on surface heat flux. Using models of the crust implied by Gravity Recovery and Interior Laboratory results, we found that a roughly 9-13 mW m-2 mantle heat flux best approximate the observed heat flux. This equates to a total mantle heat production of 2.8-4.1 × 1011 W. These heat flow values could imply that the lunar interior is slightly less radiogenic than the Earth's mantle, perhaps implying that a considerable fraction of terrestrial mantle material was incorporated at the time of formation. These results may also imply that heat flux at the crust-mantle boundary beneath the Procellarum potassium, rare earth element, and phosphorus (KREEP) Terrane (PKT) is anomalously elevated compared to the rest of the Moon. These results also suggest that a limited KREEP-rich layer exists beneath the PKT crust. If a subcrustal KREEP-rich layer extends below the Apollo 17 landing site, required mantle heat flux can drop to roughly 7 mW m-2, underlining the need for future heat flux measurements outside of the radiogenic-rich PKT region.

  3. Multiscale Currents Observed by MMS in the Flow Braking Region

    Science.gov (United States)

    Nakamura, Rumi; Varsani, Ali; Genestreti, Kevin J.; Le Contel, Olivier; Nakamura, Takuma; Baumjohann, Wolfgang; Nagai, Tsugunobu; Artemyev, Anton; Birn, Joachim; Sergeev, Victor A.; Apatenkov, Sergey; Ergun, Robert E.; Fuselier, Stephen A.; Gershman, Daniel J.; Giles, Barbara J.; Khotyaintsev, Yuri V.; Lindqvist, Per-Arne; Magnes, Werner; Mauk, Barry; Petrukovich, Anatoli; Russell, Christopher T.; Stawarz, Julia; Strangeway, Robert J.; Anderson, Brian; Burch, James L.; Bromund, Ken R.; Cohen, Ian; Fischer, David; Jaynes, Allison; Kepko, Laurence; Le, Guan; Plaschke, Ferdinand; Reeves, Geoff; Singer, Howard J.; Slavin, James A.; Torbert, Roy B.; Turner, Drew L.

    2018-02-01

    We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold E × B drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.

  4. The geochemistry of groundwater resources in the Jordan Valley: The impact of the Rift Valley brines

    Science.gov (United States)

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Polak, A.; Shavit, U.

    2007-01-01

    The chemical composition of groundwater in the Jordan Valley, along the section between the Sea of Galilee and the Dead Sea, is investigated in order to evaluate the origin of the groundwater resources and, in particular, to elucidate the role of deep brines on the chemical composition of the regional groundwater resources in the Jordan Valley. Samples were collected from shallow groundwater in research boreholes on two sites in the northern and southern parts of the Jordan Valley, adjacent to the Jordan River. Data is also compiled from previous published studies. Geochemical data (e.g., Br/Cl, Na/Cl and SO4/Cl ratios) and B, O, Sr and S isotopic compositions are used to define groundwater groups, to map their distribution in the Jordan valley, and to evaluate their origin. The combined geochemical tools enabled the delineation of three major sources of solutes that differentially affect the quality of groundwater in the Jordan Valley: (1) flow and mixing with hypersaline brines with high Br/Cl (>2 ?? 10-3) and low Na/Cl (shallow saline groundwaters influenced by brine mixing exhibit a north-south variation in their Br/Cl and Na/Cl ratios. This chemical trend was observed also in hypersaline brines in the Jordan valley, which suggests a local mixing process between the water bodies. ?? 2007 Elsevier Ltd. All rights reserved.

  5. Ground-water flow and quality, and geochemical processes, in Indian Wells Valley, Kern, Inyo, and San Bernardino counties, California, 1987-88

    Science.gov (United States)

    Berenbrock, Charles; Schroeder, R.A.

    1994-01-01

    An existing water-quality data base for the 300- square-mile Indian Wells Valley was updated by means of chemical and isotopic analysis of ground water. The wide range in measured concentrations of major ions and of minor constituents such as fluoride, borate, nitrate, manganese, and iron is attributed to geochemical reactions within lacustrine deposits of the valley floor. These reactions include sulfate reduction accompanied by generation of alkalinity, precipitation of carbonates, exchange of aqueous alkaline-earth ions for sodium on clays, and dissolution of evaporite minerals. Differences in timing and location of recharge, which originates primarily in the Sierra Nevada to the west, and evapotranspiration from a shallow water table on the valley floor result in a wide range in ratios of stable hydrogen and oxygen isotopes. As ground water moves from alluvium into lustrine deposits of the ancestral China Lake, dissolved-solids concen- trations increase from about 200 to more than 1,000 milligrams per liter; further large increases to several thousand milligrams per liter occur beneath the China Lake playa. Historical data show an increase during the past 20 years in dissolved- solids concentration in several wells in the principal pumping areas at Ridgecrest and between Ridgecrest and Inyokern. The increase apparently is caused by induced flow of saline ground water from nearby China, Mirror, and Satellite Lakes. A simplified advective-transport model calculates ground-water travel times between parts of the valley of at least several thousand years, indi- cating the presence of old ground water. A local ground-water line and an evaporation line estimated using isotopic data from the China Lake area inter- sect at a delta-deuterium value of about -125 permil. This indicates that late Pleistocene recharge was 15 to 35 permil more negative than current recharge.

  6. Use of a three-dimensional model for the analysis of the ground-water flow system in Parker Valley, Arizona and California

    Science.gov (United States)

    Tucci, Patrick

    1982-01-01

    A three-dimensional, finite-difference model was used to simulate ground-water flow conditions in Parker Valley. The study evaluated present knowledge and concepts of the ground-water system and the ability of the model to represent the system. Modeling assumptions and generalized physical parameters that were used may have transfer value in the construction and calibration of models of other basins along the lower Colorado River. The aquifer was simulated in two layers to represent the three-dimensional system. Ground-water conditions were simulated for 1940-41, the mid-1960's, and 1980. Overall model results generally compared favorably with available field information. The model results showed that for 1940-41 the Colorado River was a losing stream through out Parker Valley. Infiltration of surface water from the river was the major source of recharge. The dominant mechanism of discharge was evapotranspiration by phreatophytes. Agricultural development between 1941 and the mid-1960 's resulted in significant changes to the ground-water system. Model results for conditions in the mid-1960 's showed that the Colorado River had become a gaining stream in the northern part of the valley as a result of higher water levels. The rise in water levels was caused by infiltration of applied irrigation water. Diminished water-level gradients from the river in the rest of the valley reduced the amount of infiltration of surface water from the river. Models results for conditions in 1980 showed that ground-water level rises of several feet caused further reduction in the amount of surface-water infiltration from the river. (USGS)

  7. Appraising options to reduce shallow groundwater tables and enhance flow conditions over regional scales in an irrigated alluvial aquifer system

    Science.gov (United States)

    Morway, Eric D.; Gates, Timothy K.; Niswonger, Richard G.

    2013-01-01

    Some of the world’s key agricultural production systems face big challenges to both water quantity and quality due to shallow groundwater that results from long-term intensive irrigation, namely waterlogging and salinity, water losses, and environmental problems. This paper focuses on water quantity issues, presenting finite-difference groundwater models developed to describe shallow water table levels, non-beneficial groundwater consumptive use, and return flows to streams across two regions within an irrigated alluvial river valley in southeastern Colorado, USA. The models are calibrated and applied to simulate current baseline conditions in the alluvial aquifer system and to examine actions for potentially improving these conditions. The models provide a detailed description of regional-scale subsurface unsaturated and saturated flow processes, thereby enabling detailed spatiotemporal description of groundwater levels, recharge to infiltration ratios, partitioning of ET originating from the unsaturated and saturated zones, and groundwater flows, among other variables. Hybrid automated and manual calibration of the models is achieved using extensive observations of groundwater hydraulic head, groundwater return flow to streams, aquifer stratigraphy, canal seepage, total evapotranspiration, the portion of evapotranspiration supplied by upflux from the shallow water table, and irrigation flows. Baseline results from the two regional-scale models are compared to model predictions under variations of four alternative management schemes: (1) reduced seepage from earthen canals, (2) reduced irrigation applications, (3) rotational lease fallowing (irrigation water leased to municipalities, resulting in temporary dry-up of fields), and (4) combinations of these. The potential for increasing the average water table depth by up to 1.1 and 0.7 m in the two respective modeled regions, thereby reducing the threat of waterlogging and lowering non-beneficial consumptive use

  8. Altered Regional Cerebral Blood Flow in Chronic Whiplash Associated Disorders

    Directory of Open Access Journals (Sweden)

    David Vállez García

    2016-08-01

    Full Text Available There is increasing evidence of central hyperexcitability in chronic whiplash-associated disorders (cWAD. However, little is known about how an apparently simple cervical spine injury can induce changes in cerebral processes. The present study was designed (1 to validate previous results showing alterations of regional cerebral blood flow (rCBF in cWAD, (2 to test if central hyperexcitability reflects changes in rCBF upon non-painful stimulation of the neck, and (3 to verify our hypothesis that the missing link in understanding the underlying pathophysiology could be the close interaction between the neck and midbrain structures. For this purpose, alterations of rCBF were explored in a case-control study using H215O positron emission tomography, where each group was exposed to four different conditions, including rest and different levels of non-painful electrical stimulation of the neck. rCBF was found to be elevated in patients with cWAD in the posterior cingulate and precuneus, and decreased in the superior temporal, parahippocampal, and inferior frontal gyri, the thalamus and the insular cortex when compared with rCBF in healthy controls. No differences in rCBF were observed between different levels of electrical stimulation. The alterations in regions directly involved with pain perception and interoceptive processing indicate that cWAD symptoms might be the consequence of a mismatch during the integration of information in brain regions involved in pain processing.

  9. Regional cerebral blood flow in the persistent vegetative state

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Masaharu; Kuroda, Ryotaro; Ioku, Masahiko [Kinki Univ., Osakasayama, Osaka (Japan). Faculty of Medicine; and others

    1989-05-01

    Regional cerebral blood flow (CBF) in eight patients in a persistent vegetative state was measured and compared with that in five healthy volunteers. The patients were classified into three groups: Group 1 (locked-in syndrome) consisted of a single patient, Group 2 (typical vegetative state) of five patients, and Group 3 (prolonged coma) of two patients. CBF was measured early after onset by single photon emission computed tomography with {sup 123}I-N-isopropyl-p-iodo-amphetamine and/or {sup 99m}Tc-hexamethyl-propyleneamine oxime. The regions of interest (ROIs) were the bilateral frontal, temporal, parietal, occipital, and cerebellar areas and basal ganglia. The values obtained in these areas were averaged, and the ratio for each ROI ((the value in the ROI/the mean value) x 100) was calculated. 'Hyper-frontal distribution' of CBF was found to be rare in both the normal condition and the vegetative state. Higher CBF values were noted in the left than in the right frontal area in four of the five volunteers but in only four of the eight patients. CBF distribution in the frontal lobe was characteristic for each group: Group 1 showed high CBF bilaterally, although the elevation was statistically significant only on the right side, and Group 3 exhibited significantly low values. In Group 2, CBF was variable but, for the most part, within normal limits. Awareness was closely correlated with frontal lobe function and alteration of CBF in the frontal region. (author).

  10. Phosphorus flows in a peri-urban region with intensive food production: A case study.

    Science.gov (United States)

    Bittman, S; Sheppard, S C; Poon, D; Hunt, D E

    2017-02-01

    Excess phosphorus (P) in peri-urban regions is an emerging issue, whereas there is global depletion of quality mined supplies of P. The flow of P across the landscape leading to regional surpluses and deficits is not well understood. We computed a regional P budget with internal P flows in a fairly discreet peri-urban region (Lower Fraser Valley, BC) with closely juxtaposed agricultural and non-agricultural urban ecosystems, in order to clarify the relationship between food production, food consumption and other activities involving use of P (e.g. keeping pets and horses and using soaps). We hypothesized changes that might notably improve P efficiency in peri-urban settings and wider regions. Livestock feed for the dairy and poultry sectors was the largest influx of P: the peri-urban land is too limited to grow feed grains and they are imported from outside the region. Fertilizer and import of food were the next largest influxes of P and a similar amount of P flows as food from the agricultural to urban ecosystems. Export of horticultural crops (berries and greenhouse crops) and poultry represented agricultural effluxes that partially offset the influxes. P efficiency was lower for horticultural production (21%) than animal production (32%), the latter benefited from importing feed crops, suggesting a regional advantage for animal products. There was 2.0, 3.8, 5.7 and 5.6 tonnes imported P per $ million farm cash receipts for horticulture, dairy, poultry meat and eggs. Eliminating fertilizer for corn and grass would reduce the ratio for the dairy industry. The net influx, dominated by fertilizer, animal feed and food was 8470 tonnes P per year or 3.2 kg P per person per year, and of this the addition to agricultural soils was 3650 tonnes P. The efflux in sewage effluent to the sea was 1150 tonnes P and exported sewage solids was 450 tonnes P. Municipal solid waste disposal was most difficult to quantify and was about 1800 tonnes P, 80% of which was partly reused

  11. Portable real time analysis system for regional cerebral blood flow

    International Nuclear Information System (INIS)

    Tiernan, T.; Entine, G.; Stump, D.A.; Prough, D.S.

    1988-01-01

    A very portable, regional cerebral blood flow (rCBF) analysis instrument system suitable for use in the operating theater during surgery is under development. Cadmium telluride (CdTe) solid state radiation detectors, an 8086 based data acquisition and communications module and a DEC Microvax computer are used so that the instrument is very compact, yet has the computational power to provide real time data analysis in the clinical environment. The instrument is currently being used at Bowman Gray School of Medicine to study rCBF during cardiopulmonary bypass surgery (CPB). Preliminary studies indicate that monitoring rCBF during this surgical procedure may provide insights into the mechanism that causes a significant fraction of these patients to suffer post operative neuropsychological deficit

  12. Climate proxy data as groundwater tracers in regional flow systems

    Science.gov (United States)

    Clark, J. F.; Morrissey, S. K.; Stute, M.

    2008-05-01

    The isotopic and chemical signatures of groundwater reflect local climate conditions. By systematically analyzing groundwater and determining their hydrologic setting, records of past climates can be constructed. Because of their chemistries and relatively uncomplicated source functions, dissolved noble gases have yielded reliable records of continental temperatures for the last 30,000 to 50,000 years. Variations in the stable isotope compositions of groundwater due to long term climate changes have also been documented over these time scales. Because glacial - interglacial climate changes are relatively well known, these climate proxies can be used as "stratigraphic" markers within flow systems and used to distinguish groundwaters that have recharged during the Holocene from those recharged during the last glacial period, important time scales for distinguishing regional and local flow systems in many aquifers. In southern Georgia, the climate proxy tracers were able to identify leakage from surface aquifers into the Upper Floridan aquifer in areas previously thought to be confined. In south Florida, the transition between Holocene and glacial signatures in the Upper Floridan aquifer occurs mid-way between the recharge area and Lake Okeechobee. Down gradient of the lake, the proxies are uniform, indicating recharge during the last glacial period. Furthermore, there is no evidence for leakage from the shallow aquifers into the Upper Floridan. In the Lower Floridan, the climate proxies indicate that the saline water entered the aquifer after sea level rose to its present level.

  13. Development of a hydrogeological conceptual wetland model in the data-scarce north-eastern region of Kilombero Valley, Tanzania

    Science.gov (United States)

    Burghof, Sonja; Gabiri, Geofrey; Stumpp, Christine; Chesnaux, Romain; Reichert, Barbara

    2018-02-01

    Understanding groundwater/surface-water interactions in wetlands is crucial because wetlands provide not only a high potential for agricultural production, but also sensitive and valuable ecosystems. This is especially true for the Kilombero floodplain wetland in Tanzania, which represents a data-scarce region in terms of hydrological and hydrogeological data. A comprehensive approach combining hydrogeological with tracer-based assessments was conducted, in order to develop a conceptual hydrogeological wetland model of the area around the city of Ifakara in the north-eastern region of Kilombero catchment. Within the study site, a heterogeneous porous aquifer, with a range of hydraulic conductivities, is underlain by a fractured-rock aquifer. Groundwater chemistry is mainly influenced by silicate weathering and depends on groundwater residence times related to the hydraulic conductivities of the porous aquifer. Groundwater flows from the hillside to the river during most of the year. While floodwater close to the river is mainly derived from overbank flow of the river, floodwater at a greater distance from the river mainly originates from precipitation and groundwater discharge. Evaporation effects in floodwater increase with increasing distance from the river. In general, the contribution of flood and stream water to groundwater recharge is negligible. In terms of an intensification of agricultural activities in the wetland, several conclusions can be drawn from the conceptual model. Results of this study are valuable as a base for further research related to groundwater/surface-water interactions and the conceptual model can be used in the future to set up numerical flow and transport models.

  14. Altered Regional Cerebral Blood Flow in Chronic Whiplash Associated Disorders.

    Science.gov (United States)

    Vállez García, David; Doorduin, Janine; Willemsen, Antoon T M; Dierckx, Rudi A J O; Otte, Andreas

    2016-08-01

    There is increasing evidence of central hyperexcitability in chronic whiplash-associated disorders (cWAD). However, little is known about how an apparently simple cervical spine injury can induce changes in cerebral processes. The present study was designed (1) to validate previous results showing alterations of regional cerebral blood flow (rCBF) in cWAD, (2) to test if central hyperexcitability reflects changes in rCBF upon non-painful stimulation of the neck, and (3) to verify our hypothesis that the missing link in understanding the underlying pathophysiology could be the close interaction between the neck and midbrain structures. For this purpose, alterations of rCBF were explored in a case-control study using H2(15)O positron emission tomography, where each group was exposed to four different conditions, including rest and different levels of non-painful electrical stimulation of the neck. rCBF was found to be elevated in patients with cWAD in the posterior cingulate and precuneus, and decreased in the superior temporal, parahippocampal, and inferior frontal gyri, the thalamus and the insular cortex when compared with rCBF in healthy controls. No differences in rCBF were observed between different levels of electrical stimulation. The alterations in regions directly involved with pain perception and interoceptive processing indicate that cWAD symptoms might be the consequence of a mismatch during the integration of information in brain regions involved in pain processing. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Geodiversity and geohazards of the Susa Valley (W-Alps, Italy): combining scientific research and new technologies for enhanced knowledge and proactive management of geoheritage in mountain regions

    Science.gov (United States)

    Giardino, Marco; Bacenetti, Marco; Perotti, Luigi; Giordano, Enrico; Ghiraldi, Luca; Palomba, Mauro

    2013-04-01

    Mountain regions have a range of geological and geomorphological features that make them very attractive for tourism activities. As a consequence, increased human "pressure" causes impacts on geoheritage sites and higher geomorphological risks. These effects are magnified by active geomorphic processes characterizing mountains areas, highly sensitive to climate change. In term of "human sensitivity", several sociological surveys have shown that "perceived risk", not "real risk", influences people's behavior towards natural hazards. The same approach can be applied to geodiversity and geoheritage. Based on these assumptions, we considered the possible strategic roles played by diffusion of scientific research and application of new technologies: 1) to enhance awareness, either of geodiversity or environmental dynamics and 2) to improve knowledge, both on geoheritage management and natural risk reduction. Within the activities of the "ProGEO-Piemonte Project" (Progetti d'Ateneo 2011, cofunded by Universita? degli Studi di Torino and Compagnia di San Paolo Bank Foundation), we performed a systematic review of geodiversity and natural hazards information in the Piemonte Region (NW-Italy). Then we focused our attention on the Susa Valley, an area of the Western Alps where the geoheritage is affected by very active morphodynamics, as well as by a growing tourism, after the 2006 winter Olympics. The Susa Valley became one of the 9 strategic geothematic areas have been selected to represent the geodiversity of the Piemonte region, each characterized by high potential for enhancement of public understanding of science, and recreation activities supported by local communities. Then we contributed to the awareness-raising communication strategy of the "RiskNat project" (Interreg Alcotra 2007-2013, Action A.4.3) by synthesizing geoscience knowledge on the Susa Valley and information on slope instabilities and models/prevention measures/warning systems. Visual representations

  16. Regional cerebral blood flow changes in patients with internet addiction.

    Science.gov (United States)

    Otte, Andreas

    2016-01-01

    Dear Editor, Internet addiction (IA) has become a severe challenge of our modern world today, though little is known about its pathology. In this context, the interesting study by Liu et al. in the May-August 2016 issue of HJNM using 99m Tc-labelled ethylene biyldicysteinate dimer single photon emission tomography (SPET) at rest and after pharmaceutical (adenosine) stress is more than welcomed. As this seems to be the first perfusion SPET study in this indication, the obtained data may be discussed carefully. There are mainly the following questions: a) Regional cerebral blood flow (rCBF): There is no description on how the rCBF was calculated: Was it scaled relatively to the whole brain mean value or to the cerebellar mean value? b) P value threshold and clusters: There is no indication of whether the authors are performing any kind of correction for multiple comparisons in the statistical parametric mapping (SPM) t-test. This, combined with the use of a really "liberal" voxel P value of only 0.01 could be subject to providing many false positive results. Generally a P value threshold of 0.001 should be used. In addition, there is no information related to the clusters. For the question of the validity of parametric statistical methods used for the analysis of functional neuroimaging data, we would like to mention the important recent paper by Eklund et al. 2016. c) Data analysis: The authors state (p. 97): "As some abnormal rCBF in adenosine-stressed state might relate with normal responses to adenosine compared to resting state, we excluded those regions that showed abnormal rCBF in stressed state in healthy controls (Table 4) from those in IA group (Table 5). The rest abnormal regions were compared between the IA group and the control group". For this, with SPM a flexible factorial design with all the data rather than only t-tests would have been interesting to find out whether the difference between the groups at stress is the same difference observed between

  17. The hydrochemical identification of groundwater flowing to the Bet She’an-Harod multiaquifer system (Lower Jordan Valley) by rare earth elements, yttrium, stable isotopes (H, O) and Tritium

    International Nuclear Information System (INIS)

    Siebert, Christian; Rosenthal, Eliahu; Möller, Peter; Rödiger, Tino; Meiler, Miki

    2012-01-01

    The Bet She’an and Harod Valleys in Israel are regional recipients and mixing zones for groundwater draining from a multiple aquifer system, which includes carbonate and basalt aquifers and deep-seated pressurized brines. The aquifers drain through two types of outlets, distinct and mixed. The latter type is mainly conditioned by the occurrence of fault-blocks related to the Jordan Rift system, which act as connecting media between the aquifers and facilitate interaquifer flow. Conjoint application of rare earth element distribution and water isotopes enables detection of the local areas replenishment by rainfall infiltration and, in connection with the position of wells or springs, the identification of groundwater flow paths. Once stationary equilibria are established changes of REY composition between REY in groundwater and their surface adsorption, are negligible. In areas with little soil coverage and vegetation even recharge over young Tertiary and diagenetic Cretaceous limestones is distinguishable by their REY distribution patterns. Groundwater recharged over Tertiary limestones show higher REY abundance and more significant Ce anomalies than those derived from the Cretaceous limestones. Weathering of alkali olivine basalts leads to REY patterns in groundwater depleted in the middle REE. The improved knowledge of the hydrological systems is thought to be useful for regional hydrogeological modeling and for designing rational water management schemes.

  18. Wind Regimes in Complex Terrain of the Great Valley of Eastern Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Birdwell, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2011-05-01

    This research was designed to provide an understanding of physical wind mechanisms within the complex terrain of the Great Valley of Eastern Tennessee to assess the impacts of regional air flow with regard to synoptic and mesoscale weather changes, wind direction shifts, and air quality. Meteorological data from 2008 2009 were analyzed from 13 meteorological sites along with associated upper level data. Up to 15 ancillary sites were used for reference. Two-step complete linkage and K-means cluster analyses, synoptic weather studies, and ambient meteorological comparisons were performed to generate hourly wind classifications. These wind regimes revealed seasonal variations of underlying physical wind mechanisms (forced channeled, vertically coupled, pressure-driven, and thermally-driven winds). Synoptic and ambient meteorological analysis (mixing depth, pressure gradient, pressure gradient ratio, atmospheric and surface stability) suggested up to 93% accuracy for the clustered results. Probabilistic prediction schemes of wind flow and wind class change were developed through characterization of flow change data and wind class succession. Data analysis revealed that wind flow in the Great Valley was dominated by forced channeled winds (45 67%) and vertically coupled flow (22 38%). Down-valley pressure-driven and thermally-driven winds also played significant roles (0 17% and 2 20%, respectively), usually accompanied by convergent wind patterns (15 20%) and large wind direction shifts, especially in the Central/Upper Great Valley. The behavior of most wind regimes was associated with detectable pressure differences between the Lower and Upper Great Valley. Mixing depth and synoptic pressure gradients were significant contributors to wind pattern behavior. Up to 15 wind classes and 10 sub-classes were identified in the Central Great Valley with 67 joined classes for the Great Valley at-large. Two-thirds of Great Valley at-large flow was defined by 12 classes. Winds

  19. Facies Analysis of Tertiary Basin-Filling Rocks of the Death Valley Regional Ground-Water System and Surrounding Areas, Nevada and California; TOPICAL

    International Nuclear Information System (INIS)

    Sweetkind, D.S.; Fridrich, C.J.; Taylor, Emily

    2002-01-01

    Existing hydrologic models of the Death Valley region typically have defined the Cenozoic basins as those areas that are covered by recent surficial deposits, and have treated the basin-fill deposits that are concealed under alluvium as a single unit with uniform hydrologic properties throughout the region, and with depth. Although this latter generalization was known to be flawed, it evidently was made because available geologic syntheses did not provide the basis for a more detailed characterization. As an initial attempt to address this problem, this report presents a compilation and synthesis of existing and new surface and subsurface data on the lithologic variations between and within the Cenozoic basin fills of this region. The most permeable lithologies in the Cenozoic basin fills are freshwater limestones, unaltered densely welded tuffs, and little-consolidated coarse alluvium. The least permeable lithologies are playa claystones, altered nonwelded tuffs, and tuffaceous and cl ay-matrix sediments of several types. In all but the youngest of the basin fills, permeability probably decreases strongly with depth owing to a typically increasing abundance of volcanic ash or clay in the matrices of the clastic sediments with increasing age (and therefore with increasing depth in general), and to increasing consolidation and alteration (both hydrothermal and diagenetic) with increasing depth and age. This report concludes with a categorization of the Cenozoic basins of the Death Valley region according to the predominant lithologies in the different basin fills and presents qualitative constraints on the hydrologic properties of these major lithologic categories

  20. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Slide and Grass Valley Fires, San Bernardino County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Slide and Grass Valley Fires in San Bernardino County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 3.50 inches (88.90 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  1. Geomorphological hazards in Swat valley, Pakistan

    International Nuclear Information System (INIS)

    Usman, A.

    1999-01-01

    This study attempts to describe, interpret and analyze, in depth, the varied geomorphological hazards and their impacts prevailing in the swat valley locate in the northern hilly and mountainous regions of Pakistan. The hills and mountains re zones of high geomorphological activity with rapid rates of weathering, active tectonic activities, abundant precipitation, rapid runoff and heavy sediment transport. Due to the varied topography, lithology, steep slope, erodible soil, heavy winter snowfall and intensive rainfall in the spring and summer seasons, several kinds of geomorphological hazards, such as geomorphic gravitational hazards, Fluvial hazards, Glacial hazards, Geo tectonic hazards, are occurring frequently in swat valley. Amongst them, geomorphic gravitational hazards, such as rock fall rock slide, debris slide mud flow avalanches, are major hazards in mountains and hills while fluvial hazards and sedimentation are mainly confined to the alluvial plain and lowlands of the valley. The Getechtonic hazards, on the other hand, have wide spread distribution in the valley the magnitude and occurrence of each king of hazard is thus, varied according to intensity of process and physical geographic environment. This paper discusses the type distribution and damage due to the various geomorphological hazards and their reduction treatments. The study would to be of particular importance and interest to both natural and social scientists, as well as planner, environmentalists and decision-makers for successful developmental interventions in the region. (author)

  2. Turbulence modeling and surface heat transfer in a stagnation flow region

    Science.gov (United States)

    Wang, C. R.; Yeh, F. C.

    1987-01-01

    Analysis for the turbulent flow field and the effect of freestream turbulence on the surface heat transfer rate of a stagnation flow is presented. The emphasis is on modeling and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow.

  3. Classifying low flow hydrological regimes at a regional scale

    Science.gov (United States)

    Kirkby, M. J.; Gallart, F.; Kjeldsen, T. R.; Irvine, B. J.; Froebrich, J.; Lo Porto, A.; de Girolamo, A.; Mirage Team

    2011-12-01

    The paper uses a simple water balance model that partitions the precipitation between actual evapotranspiration, quick flow and delayed flow, and has sufficient complexity to capture the essence of climate and vegetation controls on this partitioning. Using this model, monthly flow duration curves have been constructed from climate data across Europe to address the relative frequency of ecologically critical low flow stages in semi-arid rivers, when flow commonly persists only in disconnected pools in the river bed. The hydrological model is based on a dynamic partitioning of precipitation to estimate water available for evapotranspiration and plant growth and for residual runoff. The duration curve for monthly flows has then been analysed to give an estimate of bankfull flow based on recurrence interval. Arguing from observed ratios of cross-sectional areas at flood and low flows, hydraulic geometry suggests that disconnected flow under "pool" conditions is approximately 0.1% of bankfull flow. Flow duration curves define a measure of bankfull discharge on the basis of frequency. The corresponding frequency for pools is then read from the duration curve, using this (0.1%) ratio to estimate pool discharge from bank full discharge. The flow duration curve then provides an estimate of the frequency of poorly connected pool conditions, corresponding to this discharge, that constrain survival of river-dwelling arthropods and fish. The methodology has here been applied across Europe at 15 km resolution, and the potential is demonstrated for applying the methodology under alternative climatic scenarios.

  4. Classifying low flow hydrological regimes at a regional scale

    Directory of Open Access Journals (Sweden)

    M. J. Kirkby

    2011-12-01

    Full Text Available The paper uses a simple water balance model that partitions the precipitation between actual evapotranspiration, quick flow and delayed flow, and has sufficient complexity to capture the essence of climate and vegetation controls on this partitioning. Using this model, monthly flow duration curves have been constructed from climate data across Europe to address the relative frequency of ecologically critical low flow stages in semi-arid rivers, when flow commonly persists only in disconnected pools in the river bed. The hydrological model is based on a dynamic partitioning of precipitation to estimate water available for evapotranspiration and plant growth and for residual runoff. The duration curve for monthly flows has then been analysed to give an estimate of bankfull flow based on recurrence interval. Arguing from observed ratios of cross-sectional areas at flood and low flows, hydraulic geometry suggests that disconnected flow under "pool" conditions is approximately 0.1% of bankfull flow. Flow duration curves define a measure of bankfull discharge on the basis of frequency. The corresponding frequency for pools is then read from the duration curve, using this (0.1% ratio to estimate pool discharge from bank full discharge. The flow duration curve then provides an estimate of the frequency of poorly connected pool conditions, corresponding to this discharge, that constrain survival of river-dwelling arthropods and fish. The methodology has here been applied across Europe at 15 km resolution, and the potential is demonstrated for applying the methodology under alternative climatic scenarios.

  5. Subcutaneous blood flow in the temporal region of migraine patients

    International Nuclear Information System (INIS)

    Jensen, K.

    1987-01-01

    Subcutaneous blood flow in the temporal region (TSBF) was measured by the local 133 Xenon washout technique in 43 migraine patients; 19 were reexamined in the course of spontaneous attacks. During attacks, TSBF was normal compared to headache-free state. In 13 unilateral attacks, the median ipsilateral to contralateral ratio TSBF was 1: 1.276, (NS). During 30 deg C passive head-up tilt, TSBF descreased by a median of 27% during headache-free intervals and by a median, 21% during migraine attacks. The difference between the 2 occasions was not significant. Head-up tilt resulted in a median 4.5% increase in mean arterial blood pressure (MAP) and a median 5.3% increase in heart rate (HR) during headache-free intervals and 3.4% and 3.2% respectively during migraine attacks. These results are evidence against a vasomotor disturbance of the extracranial tissues during attacks of migraine. The cardio-vascular response to the orthostatic stimulus indicates a normal function of this part of the autonomic nervous system during migraine attacks. (author)

  6. Subcutaneous blood flow in the temporal region of migraine patients

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, K.

    1987-01-01

    Subcutaneous blood flow in the temporal region (TSBF) was measured by the local 133 Xenon washout technique in 43 migraine patients; 19 were reexamined in the course of spontaneous attacks. During attacks, TSBF was normal compared to headache-free state. In 13 unilateral attacks, the median ipsilateral to contralateral ratio TSBF was 1: 1.276, (NS). During 30 deg C passive head-up tilt, TSBF descreased by a median of 27% during headache-free intervals and by a median, 21% during migraine attacks. The difference between the 2 occasions was not significant. Head-up tilt resulted in a median 4.5% increase in mean arterial blood pressure (MAP) and a median 5.3% increase in heart rate (HR) during headache-free intervals and 3.4% and 3.2% respectively during migraine attacks. These results are evidence against a vasomotor disturbance of the extracranial tissues during attacks of migraine. The cardio-vascular response to the orthostatic stimulus indicates a normal function of this part of the autonomic nervous system during migraine attacks.

  7. New simple mathematical model to help evaluating the extent of the late-Quaternary valley glacier in the Upper Soča Region (NW Slovenia

    Directory of Open Access Journals (Sweden)

    Miloš Bavec

    2002-06-01

    Full Text Available A simple mathematical model was developed that enables an evaluation of a valley glacier extent independently of any geological data. Based on glaciological criteria and on quantitative analysis of the glacier’s accumulation-, and ablation-areas the modeloffers an opportunity for an independent test of paleoenvironmental interpretations that are traditionally based on (often vague and difficult-to-interpret geomorphological and sedimentological information. The model is presented here through a case study from theUpper Soča River Region.

  8. Changes in regional cerebral blood flow during auditory cognitive tasks

    International Nuclear Information System (INIS)

    Ohyama, Masashi; Kitamura, Shin; Terashi, Akiro; Senda, Michio.

    1993-01-01

    In order to investigate the relation between auditory cognitive function and regional brain activation, we measured the changes in the regional cerebral blood flow (CBF) using positron emission tomography (PET) during the 'odd-ball' paradigm in ten normal healthy volunteers. The subjects underwent 3 tasks, twice for each, while the evoked potential was recorded. In these tasks, the auditory stimulus was a series of pure tones delivered every 1.5 sec binaurally at 75 dB from the earphones. Task A: the stimulus was a series of tones with 1000 Hz only, and the subject was instructed to only hear. Task B: the stimulus was a series of tones with 1000 Hz only, and the subject was instructed to push the button on detecting a tone. Task C: the stimulus was a series of pure tones delivered every 1.5 sec binaurally at 75 dB with a frequency of 1000 Hz (non-target) in 80% and 2000 Hz (target) in 20% at random, and the subject was instructed to push the button on detecting a target tone. The event related potential (P300) was observed in task C (Pz: 334.3±19.6 msec). At each task, the CBF was measured using PET with i.v. injection of 1.5 GBq of O-15 water. The changes in CBF associated with auditory cognition was evaluated by the difference between the CBF images in task C and B. Localized increase was observed in the anterior cingulate cortex (in all subjects), the bilateral associate auditory cortex, the prefrontal cortex and the parietal cortex. The latter three areas had a large individual variation in the location of foci. These results suggested the role of those cortical areas in auditory cognition. The anterior cingulate was most activated (15.0±2.24% of global CBF). This region was not activated in the condition of task B minus task A. The anterior cingulate is a part of Papez's circuit that is related to memory and other higher cortical function. These results suggested that this area may play an important role in cognition as well as in attention. (author)

  9. Preliminary hydrogeologic assessment near the boundary of the Antelope Valley and El Mirage Valley groundwater basins, California

    Science.gov (United States)

    Stamos, Christina L.; Christensen, Allen H.; Langenheim, Victoria

    2017-07-19

    The increasing demands on groundwater for water supply in desert areas in California and the western United States have resulted in the need to better understand groundwater sources, availability, and sustainability. This is true for a 650-square-mile area that encompasses the Antelope Valley, El Mirage Valley, and Upper Mojave River Valley groundwater basins, about 50 miles northeast of Los Angeles, California, in the western part of the Mojave Desert. These basins have been adjudicated to ensure that groundwater rights are allocated according to legal judgments. In an effort to assess if the boundary between the Antelope Valley and El Mirage Valley groundwater basins could be better defined, the U.S. Geological Survey began a cooperative study in 2014 with the Mojave Water Agency to better understand the hydrogeology in the area and investigate potential controls on groundwater flow and availability, including basement topography.Recharge is sporadic and primarily from small ephemeral washes and streams that originate in the San Gabriel Mountains to the south; estimates range from about 400 to 1,940 acre-feet per year. Lateral underflow from adjacent basins has been considered minor in previous studies; underflow from the Antelope Valley to the El Mirage Valley groundwater basin has been estimated to be between 100 and 1,900 acre-feet per year. Groundwater discharge is primarily from pumping, mostly by municipal supply wells. Between October 2013 and September 2014, the municipal pumpage in the Antelope Valley and El Mirage Valley groundwater basins was reported to be about 800 and 2,080 acre-feet, respectively.This study was motivated by the results from a previously completed regional gravity study, which suggested a northeast-trending subsurface basement ridge and saddle approximately 3.5 miles west of the boundary between the Antelope Valley and El Mirage Valley groundwater basins that might influence groundwater flow. To better define potential basement

  10. Characterization of the Atmospheric Boundary Layer Over Aburrá Valley Region (Colombia) Using Remote Sensing and Radiosonde Data

    Science.gov (United States)

    Herrera, L.; Hoyos Ortiz, C. D.

    2017-12-01

    The spatio-temporal evolution of the Atmospheric Boundary Layer (ABL) in the Aburrá Valley, a narrow highly complex mountainous terrain located in the Colombian Andes, is studied using different datasets including radiosonde and remote sensors from the meteorological network of the Aburrá Valley Early Warning System. Different techniques are developed in order to estimate Mixed Layer Height (MLH) based on variance of the ceilometer backscattering profiles. The Medellín metropolitan area, home of 4.5 million people, is located on the base and the hills of the valley. The generally large aerosol load within the valley from anthropogenic emissions allows the use of ceilometer retrievals of the MLH, especially under stable atmospheric conditions (late at night and early in the morning). Convective atmospheres, however, favor the aerosol dispersion which in turns increases the uncertainty associated with the estimation of the Convective Boundary Layer using ceilometer retrievals. A multi-sensor technique is also developed based on Richardson Number estimations using a Radar Wind Profiler combined with a Microwave Radiometer. Results of this technique seem to be more accurate thorough the diurnal cycle. ABL retrievals are available from October 2014 to April 2017. The diurnal cycle of the ABL exhibits monomodal behavior, highly influenced by the evolution of the potential temperature profile, and the turbulent fluxes near the surface. On the other hand, the backscattering diurnal cycle presents a bimodal structure, showing that the amount of aerosol particles at the lower troposphere is strongly influenced by anthropogenic emissions, dispersion conditioned by topography and by the ABL dynamics, conditioning the available vertical height for the pollutants to interact and disperse. Nevertheless, the amount, distribution or type of atmospheric aerosols does not appear to have a first order influence on the MLH variations or evolution. Results also show that intra

  11. Ground-water flow directions and estimation of aquifer hydraulic properties in the lower Great Miami River Buried Valley aquifer system, Hamilton Area, Ohio

    Science.gov (United States)

    Sheets, Rodney A.; Bossenbroek, Karen E.

    2005-01-01

    The Great Miami River Buried Valley Aquifer System is one of the most productive sources of potable water in the Midwest, yielding as much as 3,000 gallons per minute to wells. Many water-supply wells tapping this aquifer system are purposely placed near rivers to take advantage of induced infiltration from the rivers. The City of Hamilton's North Well Field consists of 10 wells near the Great Miami River, all completed in the lower Great Miami River Buried Valley Aquifer System. A well-drilling program and a multiple-well aquifer test were done to investigate ground-water flow directions and to estimate aquifer hydraulic properties in the lower part of the Great Miami River Buried Valley Aquifer System. Descriptions of lithology from 10 well borings indicate varying amounts and thickness of clay or till, and therefore, varying levels of potential aquifer confinement. Borings also indicate that the aquifer properties can change dramatically over relatively short distances. Grain-size analyses indicate an average bulk hydraulic conductivity value of aquifer materials of 240 feet per day; the geometric mean of hydraulic conductivity values of aquifer material was 89 feet per day. Median grain sizes of aquifer material and clay units were 1.3 millimeters and 0.1 millimeters, respectively. Water levels in the Hamilton North Well Field are affected by stream stage in the Great Miami River and barometric pressure. Bank storage in response to stream stage is evident. Results from a multiple-well aquifer test at the well field indicate, as do the lithologic descriptions, that the aquifer is semiconfined in some areas and unconfined in others. Transmissivity and storage coefficient of the semiconfined part of the aquifer were 50,000 feet squared per day and 5x10-4, respectively. The average hydraulic conductivity (450 feet per day) based on the aquifer test is reasonable for glacial outwash but is higher than calculated from grain-size analyses, implying a scale effect

  12. Fault structure and kinematics of the Long Valley Caldera region, California, revealed by high-accuracy earthquake hypocenters and focal mechanism stress inversions

    Science.gov (United States)

    Prejean, Stephanie; Ellsworth, William L.; Zoback, Mark; Waldhauser, Felix

    2002-01-01

    We have determined high-resolution hypocenters for 45,000+ earthquakes that occurred between 1980 and 2000 in the Long Valley caldera area using a double-difference earthquake location algorithm and routinely determined arrival times. The locations reveal numerous discrete fault planes in the southern caldera and adjacent Sierra Nevada block (SNB). Intracaldera faults include a series of east/west-striking right-lateral strike-slip faults beneath the caldera's south moat and a series of more northerly striking strike-slip/normal faults beneath the caldera's resurgent dome. Seismicity in the SNB south of the caldera is confined to a crustal block bounded on the west by an east-dipping oblique normal fault and on the east by the Hilton Creek fault. Two NE-striking left-lateral strike-slip faults are responsible for most seismicity within this block. To understand better the stresses driving seismicity, we performed stress inversions using focal mechanisms with 50 or more first motions. This analysis reveals that the least principal stress direction systematically rotates across the studied region, from NE to SW in the caldera's south moat to WNW-ESE in Round Valley, 25 km to the SE. Because WNW-ESE extension is characteristic of the western boundary of the Basin and Range province, caldera area stresses appear to be locally perturbed. This stress perturbation does not seem to result from magma chamber inflation but may be related to the significant (???20 km) left step in the locus of extension along the Sierra Nevada/Basin and Range province boundary. This implies that regional-scale tectonic processes are driving seismic deformation in the Long Valley caldera.

  13. Crustal deformation rates in Assam Valley, Shillong Plateau, Eastern Himalaya, and Indo-Burmese region from 11 years (2002-2013) of GPS measurements

    Science.gov (United States)

    Barman, Prakash; Jade, Sridevi; Shrungeshwara, T. S.; Kumar, Ashok; Bhattacharyya, Sanjeev; Ray, Jagat Dwipendra; Jagannathan, Saigeetha; Jamir, Wangshi Menla

    2017-09-01

    The present study reports the contemporary deformation of the tectonically complex northeast India using 11 years (2002-2013) of GPS observations. The central Shillong Plateau and few sites north of Plateau located in Assam Valley behave like a rigid block with 7 mm/year India-fixed southward velocity. The Euler pole of rotation of this central Shillong Plateau-Assam Valley (SH-AS) block is estimated to be at -25.1° ± 0.2°N, -97.8° ± 1.8°E with an angular velocity of 0.533° ± 0.10° Myr-1 relative to India-fixed reference frame. Kopili fault located between Shillong Plateau and Mikir massif records a dextral slip of 4.7 ± 1.3 mm/year with a locking depth of 10.2 ± 1.4 km indicating the fragmentation of Assam Valley across the fault. Presently, western edge of Mikir massif appears to be locked to Assam block indicating strain accumulation in this region. First-order elastic dislocation modelling of the GPS velocities estimates a slip rate of 16 mm/year along the Main Himalayan Thrust in Eastern Himalaya which is locked over a width of 130 km from the surface to a depth of 17 km with underthrusting Indian plate. Around 9 mm/year arc-normal convergence is accommodated in Lesser Himalaya just south of Main Central Thrust indicating high strain accumulation. Out of 36 mm/year (SSE) India-Sunda plate motion, about 16 mm/year motion is accommodated in Indo-Burmese Fold and Thrust Belt, both as normal convergence ( 6 mm/year) and active slip ( 7-11 mm/year) in this region.

  14. Semiquantifying regional cerebral blood flow by dynamic CT scanning

    International Nuclear Information System (INIS)

    Takeuchi, Totaro; Kasahara, Eishi; Takahashi, Eriko; Kojima, Seiichi; Ogawa, Haruhiko; Suzuki, Keiko; Miyamae, Tatsuya; Yamazaki, Setsuo.

    1990-01-01

    The study was undertaken to evaluate the semi-quantitative significance of the absolute value obtained by calculating the regional cerebral blood flow index (rCBFI) from dynamic CT in comparison with SPECT. rCBFI was calculated from mean transit time (MTT) and blood capacity index (BCI) obtained by rapidly infusing 50 ml of Omnipurk into the elbow vein by the use of Hitachi's W-600. [rCBFI=BCI/MTT unit/sec (U/S)] measurment of the rCBF by SPECT was made according to the semi-quantitative method by Matsuda et al. by the use of SHIMADZU's improved type HEADTOME SET-050 with rapid infusion of 123 I-IMP in 3.5 m Ci from the elbow vein. Patients in whom no abnormality was observed in the cardiopulmonary function were enrolled as subjects. The rCBFI in each intracranial site was calculated from dynamic CT in 10 normal adults (aged 35-60, averaging 46.7) as subjects and compared with the rCBF obtained from SPECT in the same cases and same site. Comparative investigation was made similarly between rCBFI and rCBF regarding 10 patients with tracranial diseases (age 29-65, averaging 51.2). The mean rCBFIs in the normal adults obtained from dynamic CT were 1.15±0.18 U/S in the frontal lobar cortex, 1.28±0.19 U/S in the temporal lobar cortex, 1.43±0.1 U/S in the occipital lobar cortex, 1.27±0.2 U/S in the basal ganglia region and 0.43±0.1 U/S in the white matter. On the other hand, the mean rCBFs by SPECT were 47.36±3.93 ml/100 g/min, 55.19±2.22 ml/100 g/min, 61.92±5.42 ml/100 g/min, 54.38±3.51 ml/100 g/min and 38.68±6.18 ml/100 g/min, respectively. Positive correlation was observed between rCBFIs and rCBFs of 10 normal adults and 10 patients with intracranial disease, totalling 20 cases (r=0.79, P<0.005). The rCBFI by dynamic CT has a correlation with the rCBF by SPECT, suggesting the possibility of its evaluation as an absolute value, though semi-quantitatively. (author)

  15. Regional cerebral blood flow and P300 in neurosurgical disorders

    International Nuclear Information System (INIS)

    Funahashi, Kazuyoshi; Hyoutani, Genhachi; Maeshima, Shinichirou; Miyamoto, Kazuki; Kuwata, Toshikazu; Terada, Tomoaki; Komai, Norihiko

    1990-01-01

    Changes in regional cerebral blood flow (rCBF), P300 and higher brain function were studied in neurosurgical patients with localized lesions on computed tomography (CT). Twenty-five patients ranging in age from 30 to 81 were studied. Nineteen of these suffered from cerebrovascular disease and six had tumors. Using the oddball paradigm, P300 components were elicited by rate tones (2 KHz) and recorded at Cz and Pz referred to linked ear-lobe electorodes. The P300 latencies of the patients were statistically compared with those of 27 normal subjects. Higher brain function was evaluated with the following psychological tests: a rating scale for psychological function (Sano and Tanemura), Mini-Mental State (MMS), Hasegawa's Dementia Scale (HDS) and the 'Kanahiroi' test. Regional CBF was measured in the bilateral cerebral cortices (the frontal, temporal and occipital lobes), thalamus and basal ganglia by means of a cold xenon CT method. The laterality indices of rCBF (Rt. rCBF/Lt. rCBF) in the bilateral symmetrical areas of the patients were compared to those of 8 normal subjects. Of the 25 patients, 12 revealed prolongation of P300 latency. Ten (86%) of the 12 with prolonged P300 latency showed reduction of rCBF in the right cerebral hemisphere (rt. frontal lobe, rt. thalamus and rt. basal ganglia). Significant correlations (P<0.025) were recognized between the P300 latencies and the laterality indices of rCBF in the frontal lobe and thalamus. There was a significant correlation (P<0.05) between the scores of MMS and HDS and the laterality indicies of rCBF in the frontal lobe only. In the 13 patients with normal P300 latency, 6 (46%) displayed no reduction in rCBF. The remaining 7 patients with normal P300 showed reduction of rCBF in the left hemisphere. Both right frontal lobe and right thalamus have an important role affecting the prolongation of P300 latency and disturbance of cognitive functions. (author)

  16. Groundwater availability of the Central Valley Aquifer, California

    Science.gov (United States)

    Faunt, Claudia C.

    2009-01-01

    California's Central Valley covers about 20,000 square miles and is one of the most productive agricultural regions in the world. More than 250 different crops are grown in the Central Valley with an estimated value of $17 billion per year. This irrigated agriculture relies heavily on surface-water diversions and groundwater pumpage. Approximately one-sixth of the Nation's irrigated land is in the Central Valley, and about one-fifth of the Nation's groundwater demand is supplied from its aquifers. The Central Valley also is rapidly becoming an important area for California's expanding urban population. Since 1980, the population of the Central Valley has nearly doubled from 2 million to 3.8 million people. The Census Bureau projects that the Central Valley's population will increase to 6 million people by 2020. This surge in population has increased the competition for water resources within the Central Valley and statewide, which likely will be exacerbated by anticipated reductions in deliveries of Colorado River water to southern California. In response to this competition for water, a number of water-related issues have gained prominence: conservation of agricultural land, conjunctive use, artificial recharge, hydrologic implications of land-use change, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS Groundwater Resources Program made a detailed assessment of groundwater availability of the Central Valley aquifer system, that includes: (1) the present status of groundwater resources; (2) how these resources have changed over time; and (3) tools to assess system responses to stresses from future human uses and climate variability and change. This effort builds on previous investigations, such as the USGS Central Valley Regional Aquifer System and Analysis (CV-RASA) project and several other groundwater studies in the Valley completed by Federal, State and local agencies at differing scales. The

  17. Food poisoning associated with ingestion of wild wasp broods in the upstream region of the Lancang river valley, Yunnan province, China.

    Science.gov (United States)

    Jiang, Li; Huang, Tian

    2018-04-01

    Food poisoning due to wild wasp broods ingestion has long been noted in the upstream region of the Lancang river valley, Yunnan province, China. This study describes the epidemiological and clinical features of the poisoning and possible causes. Surveillance data collected between 2008 and 2016 were analyzed to produce demographic data on patients, information on clinical presentations, wasp species identification, and estimations of possible risk factors for symptomatic cases. Eleven poisoning events were associated with the ingestion of wild wasp broods, including 46 exposed persons with 31 symptomatic living cases and 8 deceased cases that were reported in the Yunnan province between 2008 and 2016. Poisoning cases were only detected in the upstream region of the Lancang river valley in the autumn. The severity of the symptoms was correlated with an evident dose-effect relationship regarding the quantity ingested. The mean latent period from wild wasp broods ingestion to the onset of the symptoms was 10 h for symptomatic living cases and 7 h for deceased cases, respectively. Both gastrointestinal and neurological symptoms were commonly observed in the poisoning cases. The toxin source may be indirectly caused by the wasp broods due to the prevalence of local poisonous plants, such as Tripterygium wilfordii Hook F, Tripterygium hypoglaucum Hutch and Vaccinium bracteatum Thunb. Educational programs at the start of wasp harvest season in September in the high-risk area should be carried out to reduce the incidence of poisonings. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. GPS measurements of crustal deformation across the southern Arava Valley section of the Dead Sea Fault and implications to regional seismic hazard assessment

    Science.gov (United States)

    Hamiel, Yariv; Masson, Frederic; Piatibratova, Oksana; Mizrahi, Yaakov

    2018-01-01

    Detailed analysis of crustal deformation along the southern Arava Valley section of the Dead Sea Fault is presented. Using dense GPS measurements we obtain the velocities of new near- and far-field campaign stations across the fault. We find that this section is locked with a locking depth of 19.9 ± 7.7 km and a slip rate of 5.0 ± 0.8 mm/yr. The geodetically determined locking depth is found to be highly consistent with the thickness of the seismogenic zone in this region. Analysis of instrumental seismic record suggests that only 1% of the total seismic moment accumulated since the last large event occurred about 800 years ago, was released by small to moderate earthquakes. Historical and paleo-seismic catalogs of this region together with instrumental seismic data and calculations of Coulomb stress changes induced by the 1995 Mw 7.2 Nuweiba earthquake suggest that the southern Arava Valley section of the Dead Sea Fault is in the late stage of the current interseismic period.

  19. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2004-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine

  20. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2006-04-02

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0

  1. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport

  2. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2005-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine

  3. A maximum likelihood approach to generate hypotheses on the evolution and historical biogeography in the Lower Volga Valley regions (southwest Russia)

    Science.gov (United States)

    Mavrodiev, Evgeny V; Laktionov, Alexy P; Cellinese, Nico

    2012-01-01

    The evolution of the diverse flora in the Lower Volga Valley (LVV) (southwest Russia) is complex due to the composite geomorphology and tectonic history of the Caspian Sea and adjacent areas. In the absence of phylogenetic studies and temporal information, we implemented a maximum likelihood (ML) approach and stochastic character mapping reconstruction aiming at recovering historical signals from species occurrence data. A taxon-area matrix of 13 floristic areas and 1018 extant species was constructed and analyzed with RAxML and Mesquite. Additionally, we simulated scenarios with numbers of hypothetical extinct taxa from an unknown palaeoflora that occupied the areas before the dramatic transgression and regression events that have occurred from the Pleistocene to the present day. The flora occurring strictly along the river valley and delta appear to be younger than that of adjacent steppes and desert-like regions, regardless of the chronology of transgression and regression events that led to the geomorphological formation of the LVV. This result is also supported when hypothetical extinct taxa are included in the analyses. The history of each species was inferred by using a stochastic character mapping reconstruction method as implemented in Mesquite. Individual histories appear to be independent from one another and have been shaped by repeated dispersal and extinction events. These reconstructions provide testable hypotheses for more in-depth investigations of their population structure and dynamics. PMID:22957179

  4. Significance of Tl-201 redistribution on infarcted region assessed by coronary sinus flow and lactate metabolism

    International Nuclear Information System (INIS)

    Mori, Takao; Yamabe, Hiroshi; Suda, Kenichirou; Ohnishi, Masataka; Shiotani, Hideyuki; Kurimoto, Yasuyuki; Kobayashi, Katsuya; Maeda, Kazumi; Fukuzaki, Hisashi

    1987-01-01

    To clarify the significance of Tl-201 redistribution on infarcted regions, coronary sinus and great cardiac vein flow response and lactate metabolism assessed by Webster catheter on 14 infarcted regions after dipyridamole administration were compared with Tl-201 redistribution phenomenon. The regional coronary flow response and lactate extraction ratio in 11 regions with Tl-201 redistribution were lower than those in 3 regions without Tl-201 redistribution. Only 5 regions in 11 with Tl-201 redistribution showed lactate production. The coronary flow response in 5 regions with lactate production was not different from those in 6 without lactate production (1.16 ± 0.89 vs. 1.47 ± 0.67; n.s.). The degree of Tl-201 redistribution assessed by relative activity was not different between regions with and without lactate production. The left ventricular end-diastolic pressure elevated in 5 regions with lactate production (17.8 ± 5.4 mmHg to 29.6 ± 4.9 mmHg; p < 0.05), but didn't in 6 regions without lactate production. Five regions with lactate production contained 4 hypokinetic regions, on the other hand 6 regions without lactate production contained only 3 hypokinetic regions. In conclusion, Tl-201 redistribution on infarcted region revealed not only ischemia but also decreased coronary flow response without lactate production and/or left ventricular dysfunction. (author)

  5. Tectonic Setting of the Gravity Fault and Implications for Ground-Water Resources in the Death Valley Region, Nevada and California

    Science.gov (United States)

    Blakely, R. J.; Sweetkind, D. S.; Faunt, C. C.; Jansen, J. R.; McPhee, D. K.; Morin, R. L.

    2007-12-01

    The Amargosa trough, extending south from Crater Flat basin to the California-Nevada state line, is believed to be a transtensional basin accommodated in part by strike-slip displacement on the northwest-striking State Line fault and normal displacement on the north-striking Gravity fault. The Gravity fault, lying along the eastern margin of the Amargosa trough, was first recognized in the 1970s on the basis of correlations between gravity anomalies and a prominent spring line in Amargosa Valley. The Gravity fault causes an inflection in water-table levels, similar to other (but not all) normal faults in the area. Pools along the spring line, some of which lie within Death Valley National Park and Ash Meadows Wildlife Refuge, include endemic species potentially threatened by increasing agricultural activities in Amargosa Valley immediately to the west, where water tables are declining. Most of the springs and pools lie east of the Gravity fault, however, and it is important to understand the role that the Gravity fault plays in controlling ground-water flow. We have conducted a variety of geophysical investigations at various scales to better understand the tectonic framework of the Amargosa Desert and support new ground-water-flow models. Much of our focus has been on the tectonic interplay of the State Line, Gravity, and other faults in the area using gravity, ground-magnetic, audiomagnetotelluric (AMT), and time-domain electromagnetic (TEM) surveys. With 1250 new gravity measurements from Ash Meadows and Stewart Valley, we have developed a revised three-dimensional crustal model of the Amargosa trough constrained by well information and geologic mapping. The model predicts approximately 2 km of vertical offset on the Gravity fault but also suggests a complex structural framework. The fault is conventionally seen as a simple, down-to-the-west normal fault juxtaposing permeable pre-Tertiary carbonate rocks to the east against less permeable Tertiary sediments to

  6. Significant cooling effect on the surface due to soot particles over Brahmaputra River Valley region, India: An impact on regional climate

    International Nuclear Information System (INIS)

    Tiwari, S.; Kumar, R.; Tunved, P.; Singh, S.; Panicker, A.S.

    2016-01-01

    Black carbon (BC) is an important atmospheric aerosol constituent that affects the climate by absorbing (directly) the sunlight and modifying cloud characteristics (indirectly). Here, we present first time yearlong measurements of BC and carbon monoxide (CO) from an urban location of Guwahati located in the Brahmaputra River valley (BRV) in the northeast region of India from 1st July 2013 to 30th June 2014. Daily BC concentrations varied within the range of 2.86 to 11.56 μg m"−"3 with an annual average of 7.17 ± 1.89 μg m"−"3_, while, CO varied from 0.19 to 1.20 ppm with a mean value of 0.51 ± 0.19 ppm during the study period. The concentrations of BC (8.37 μg m"−"3) and CO (0.67 ppm) were ~ 39% and ~ 55% higher during the dry months (October to March) than the wet months (April to September) suggesting that seasonal changes in meteorology and emission sources play an important role in controlling these species. The seasonal ΔBC/ΔCO ratios were highest (lowest) in the pre-monsoon (winter) 18.1 ± 1.4 μg m"−"3 ppmv"−"1 (12.6 ± 2.2 μg m"−"3 ppmv"−"1) which indicate the combustion of biofuel/biomass as well as direct emissions from fossil fuel during the pre-monsoon season. The annual BC emission was estimated to be 2.72 Gg in and around Guwahati which is about 44% lower than the mega city ‘Delhi’ (4.86 Gg). During the study period, the annual mean radiative forcing (RF) at the top of the atmosphere (TOA) for clear skies of BC was + 9.5 Wm"−"2, however, the RF value at the surface (SFC) was − 21.1 Wm"−"2 which indicates the net warming and cooling effects, respectively. The highest RF at SFC was in the month of April (− 30 Wm"−"2) which is coincident with the highest BC mass level. The BC atmospheric radiative forcing (ARF) was + 30.16 (annual mean) Wm"−"2 varying from + 23.1 to + 43.8 Wm"−"2. The annual mean atmospheric heating rate (AHR) due to the BC aerosols was 0.86 K day"−"1 indicates the enhancement in radiation

  7. Significant cooling effect on the surface due to soot particles over Brahmaputra River Valley region, India: An impact on regional climate

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, S., E-mail: smbtiwari@tropmet.res.in [Indian Institute of Tropical Meteorology, New Delhi Branch, New Delhi 110060 (India); Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm SE-10691 (Sweden); Kumar, R. [Research Application Laboratory, National Center for Atmospheric Research, Boulder, CO (United States); Tunved, P. [Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm SE-10691 (Sweden); Singh, S. [CSIR, Central Institute of Mining & Fuel Research, Dhanbad, Jharkhand 826001 (India); Panicker, A.S. [Indian Institute of Tropical Meteorology, Pune 411008 (India)

    2016-08-15

    Black carbon (BC) is an important atmospheric aerosol constituent that affects the climate by absorbing (directly) the sunlight and modifying cloud characteristics (indirectly). Here, we present first time yearlong measurements of BC and carbon monoxide (CO) from an urban location of Guwahati located in the Brahmaputra River valley (BRV) in the northeast region of India from 1st July 2013 to 30th June 2014. Daily BC concentrations varied within the range of 2.86 to 11.56 μg m{sup −3} with an annual average of 7.17 ± 1.89 μg m{sup −3}{sub ,} while, CO varied from 0.19 to 1.20 ppm with a mean value of 0.51 ± 0.19 ppm during the study period. The concentrations of BC (8.37 μg m{sup −3}) and CO (0.67 ppm) were ~ 39% and ~ 55% higher during the dry months (October to March) than the wet months (April to September) suggesting that seasonal changes in meteorology and emission sources play an important role in controlling these species. The seasonal ΔBC/ΔCO ratios were highest (lowest) in the pre-monsoon (winter) 18.1 ± 1.4 μg m{sup −3} ppmv{sup −1} (12.6 ± 2.2 μg m{sup −3} ppmv{sup −1}) which indicate the combustion of biofuel/biomass as well as direct emissions from fossil fuel during the pre-monsoon season. The annual BC emission was estimated to be 2.72 Gg in and around Guwahati which is about 44% lower than the mega city ‘Delhi’ (4.86 Gg). During the study period, the annual mean radiative forcing (RF) at the top of the atmosphere (TOA) for clear skies of BC was + 9.5 Wm{sup −2}, however, the RF value at the surface (SFC) was − 21.1 Wm{sup −2} which indicates the net warming and cooling effects, respectively. The highest RF at SFC was in the month of April (− 30 Wm{sup −2}) which is coincident with the highest BC mass level. The BC atmospheric radiative forcing (ARF) was + 30.16 (annual mean) Wm{sup −2} varying from + 23.1 to + 43.8 Wm{sup −2}. The annual mean atmospheric heating rate (AHR) due to the BC aerosols was 0.86 K

  8. Numerical Analysis of Flow Field in Generator End-Winding Region

    Directory of Open Access Journals (Sweden)

    Wei Tong

    2008-01-01

    Full Text Available Cooling in an end-winding region of a high-powered, large-sized generator still remains a challenge today because of a number of factors: a larger number of parts/components with irregular geometries, complexity in cooling flow paths, flow splitting and mixing, and interactions between rotor-induced rotating flows and nonrotating flows from stationary sections. One of the key challenges is to model cooling flows passing through armature bars, which are made up of bundles of strands of insulated copper wires and are bent oppositely to cross each other. This work succeeded in modeling a complex generator end-winding region with great efforts to simplify the model by treating the armature bar region as a porous medium. The flow and pressure fields at the end-winding region were investigated numerically using an axial symmetric computational fluid dynamics (CFD model. Based on the analysis, the cooling flow rate at each flow branch (rotor-stator gap, rotor subslot, outside space block, and small ventilation holes to the heat exchanger was determined, and the high-pressure gradient zones were identified. The CFD results have been successfully used to optimize the flow path configuration for improving the generator operation performance, and the control of the cooling flow, as well as minimizing windage losses and flow-introduced noises.

  9. Culex pipiens, an experimental efficient vector of West Nile and Rift Valley fever viruses in the Maghreb region.

    Directory of Open Access Journals (Sweden)

    Fadila Amraoui

    Full Text Available West Nile fever (WNF and Rift Valley fever (RVF are emerging diseases causing epidemics outside their natural range of distribution. West Nile virus (WNV circulates widely and harmlessly in the old world among birds as amplifying hosts, and horses and humans as accidental dead-end hosts. Rift Valley fever virus (RVFV re-emerges periodically in Africa causing massive outbreaks. In the Maghreb, eco-climatic and entomologic conditions are favourable for WNV and RVFV emergence. Both viruses are transmitted by mosquitoes belonging to the Culex pipiens complex. We evaluated the ability of different populations of Cx. pipiens from North Africa to transmit WNV and the avirulent RVFV Clone 13 strain. Mosquitoes collected in Algeria, Morocco, and Tunisia during the summer 2010 were experimentally infected with WNV and RVFV Clone 13 strain at titers of 10(7.8 and 10(8.5 plaque forming units/mL, respectively. Disseminated infection and transmission rates were estimated 14-21 days following the exposure to the infectious blood-meal. We show that 14 days after exposure to WNV, all mosquito st developed a high disseminated infection and were able to excrete infectious saliva. However, only 69.2% of mosquito strains developed a disseminated infection with RVFV Clone 13 strain, and among them, 77.8% were able to deliver virus through saliva. Thus, Cx. pipiens from the Maghreb are efficient experimental vectors to transmit WNV and to a lesser extent, RVFV Clone 13 strain. The epidemiologic importance of our findings should be considered in the light of other parameters related to mosquito ecology and biology.

  10. Three-Dimensional P-wave Velocity Structure Beneath Long Valley Caldera, California, Using Local-Regional Double-Difference Tomography

    Science.gov (United States)

    Menendez, H. M.; Thurber, C. H.

    2011-12-01

    Eastern California's Long Valley Caldera (LVC) and the Mono-Inyo Crater volcanic systems have been active for the past ~3.6 million years. Long Valley is known to produce very large silicic eruptions, the last of which resulted in the formation of a 17 km by 32 km wide, east-west trending caldera. Relatively recent unrest began between 1978-1980 with five ML ≥ 5.7 non-double-couple (NDC) earthquakes and associated aftershock swarms. Similar shallow seismic swarms have continued south of the resurgent dome and beneath Mammoth Mountain, surrounding sites of increased CO2 gas emissions. Nearly two decades of increased volcanic activity led to the 1997 installation of a temporary three-component array of 69 seismometers. This network, deployed by the Durham University, the USGS, and Duke University, recorded over 4,000 high-frequency events from May to September. A local tomographic inversion of 283 events surrounding Mammoth Mountain yielded a velocity structure with low Vp and Vp/Vs anomalies at 2-3 km bsl beneath the resurgent dome and Casa Diablo hot springs. These anomalies were interpreted to be CO2 reservoirs (Foulger et al., 2003). Several teleseismic and regional tomography studies have also imaged low Vp anomalies beneath the caldera at ~5-15 km depth, interpreted to be the underlying magma reservoir (Dawson et al., 1990; Weiland et al., 1995; Thurber et al., 2009). This study aims to improve the resolution of the LVC regional velocity model by performing tomographic inversions using the local events from 1997 in conjunction with regional events recorded by the Northern California Seismic Network (NCSN) between 1980 and 2010 and available refraction data. Initial tomographic inversions reveal a low velocity zone at ~2 to 6 km depth beneath the caldera. This structure may simply represent the caldera fill. Further iterations and the incorporation of teleseismic data may better resolve the overall shape and size of the underlying magma reservoir.

  11. Quantitative assessment of the flow pattern in the southern Arava Valley (Israel) by environmental tracers and a mixing cell model

    Science.gov (United States)

    Adar, E. M.; Rosenthal, E.; Issar, A. S.; Batelaan, O.

    1992-08-01

    This paper demonstrates the implementation of a novel mathematical model to quantify subsurface inflows from various sources into the arid alluvial basin of the southern Arava Valley divided between Israel and Jordan. The model is based on spatial distribution of environmental tracers and is aimed for use on basins with complex hydrogeological structure and/or with scarce physical hydrologic information. However, a sufficient qualified number of wells and springs are required to allow water sampling for chemical and isotopic analyses. Environmental tracers are used in a multivariable cluster analysis to define potential sources of recharge, and also to delimit homogeneous mixing compartments within the modeled aquifer. Six mixing cells were identified based on 13 constituents. A quantitative assessment of 11 significant subsurface inflows was obtained. Results revealed that the total recharge into the southern Arava basin is around 12.52 × 10 6m3year-1. The major source of inflow into the alluvial aquifer is from the Nubian sandstone aquifer which comprises 65-75% of the total recharge. Only 19-24% of the recharge, but the most important source of fresh water, originates over the eastern Jordanian mountains and alluvial fans.

  12. Application of turbulence modeling to predict surface heat transfer in stagnation flow region of circular cylinder

    Science.gov (United States)

    Wang, Chi R.; Yeh, Frederick C.

    1987-01-01

    A theoretical analysis and numerical calculations for the turbulent flow field and for the effect of free-stream turbulence on the surface heat transfer rate of a stagnation flow are presented. The emphasis is on the modeling of turbulence and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow. The free stream is steady and incompressible with a Reynolds number of the order of 10 to the 5th power and turbulence intensity of less than 5 percent. For this analysis, the flow field is divided into three regions: (1) a uniform free-stream region where the turbulence is homogeneous and isotropic; (2) an external viscid flow region where the turbulence is distorted by the variation of the mean flow velocity; and, (3) an anisotropic turbulent boundary layer region over the cylinder surface. The turbulence modeling techniques used are the kappa-epsilon two-equation model in the external flow region and the time-averaged turbulence transport equation in the boundary layer region. The turbulence double correlations, the mean velocity, and the mean temperature within the boundary layer are solved numerically from the transport equations. The surface heat transfer rate is calculated as functions of the free-stream turbulence longitudinal microlength scale, the turbulence intensity, and the Reynolds number.

  13. Stochastic simulation of regional groundwater flow in Beishan area

    International Nuclear Information System (INIS)

    Dong Yanhui; Li Guomin

    2010-01-01

    Because of the hydrogeological complexity, traditional thinking of aquifer characteristics is not appropriate for groundwater system in Beishan area. Uncertainty analysis of groundwater models is needed to examine the hydrologic effects of spatial heterogeneity. In this study, fast Fourier transform spectral method (FFTS) was used to generate the random horizontal permeability parameters. Depth decay and vertical anisotropy of hydraulic conductivity were included to build random permeability models. Based on high-performance computers, hundreds of groundwater flow models were simulated. Through stochastic simulations, the effect of heterogeneity to groundwater flow pattern was analyzed. (authors)

  14. Mapping the Energy Flow from Supply to End Use in three Geographic Regions of China

    DEFF Research Database (Denmark)

    Mischke, Peggy; Xiong, Weiming

    China's past economic development policies resulted in different energy infrastructure patterns across China. There is a long tradition in analysing and discussing regional disparities of China's economy. For more than 20 years, regional differences in GDP, industrial outputs, household income...... and consumption were analysed across China's provincial units. Regional disparities in China's current energy flow are rarely visualised and quantified from a comprehensive, system-wide perspective that is tracing all major fuels and energy carriers in supply, transformation and final end-use in different sectors....... A few national and provincial energy flow diagrams of China were developed since 2000, althoug with limited detail on major regional disparities and inter-regional fuel flows. No regional energy flow charts are yet available for East-, Central- and West-China. This study maps and quantifies energy...

  15. Environmental tracers as indicators of groundwater flow and evolution in a fractured rock aquifer, Clare Valley, South Australia

    International Nuclear Information System (INIS)

    Love, A.J.; Cook, P.G.; Herczeg, A.L.; Simmons, C.T.

    1999-01-01

    Environmental tracers, chemistry and hydraulic data have been used to develop a conceptual model for groundwater flow in a fractured rock aquifer, at Clare, South Australia. In the upper 36 m there is relatively high horizontal flow, closely spaced fractures and large apertures. Below 36 m, horizontal flow rates are less and apertures become smaller. A sub horizontal fracture at 36 m separates the upper system from flow systems below. There is minimum vertical connection of groundwater above and below 36 m as indicated by low hydraulic conductivity and a steep 14 C concentration gradient. The observed linear trends in chemistry and isotope data are a result of mixing between old saline water and relatively younger fresh water. Greater mixing has occurred in the upper 36 m, with the amount of mixing diminishing with depth. We propose that this mixing is a recent process that has been triggered as a result of increased recharge to the system since the clearing of native vegetation approximately 100 years ago. Increased recharge of lower salinity water has resulted in the establishment of concentration gradients between the matrix and the fractures. This has resulted in diffusion of relatively immobile water in the matrix into relatively fast moving water in the fractures. Greater flushing has occurred in the upper 36 m due greater fracture density and larger apertures and higher horizontal flow rates. (author)

  16. Ozone Laminae and Their Entrainment Into a Valley Boundary Layer, as Observed From a Mountaintop Monitoring Station, Ozonesondes, and Aircraft Over California's San Joaquin Valley

    Science.gov (United States)

    Faloona, I. C.; Conley, S. A.; Caputi, D.; Trousdell, J.; Chiao, S.; Eiserloh, A. J., Jr.; Clark, J.; Iraci, L. T.; Yates, E. L.; Marrero, J. E.; Ryoo, J. M.; McNamara, M. E.

    2016-12-01

    The San Joaquin Valley of California is wide ( 75 km) and long ( 400 km), and is situated under strong atmospheric subsidence due, in part, to the proximity of the midlatitude anticyclone of the Pacific High. The capping effect of this subsidence is especially prominent during the warm season when ground level ozone is a serious air quality concern across the region. While relatively clean marine boundary layer air is primarily funneled into the valley below the strong subsidence inversion at significant gaps in the upwind Coast Range mountains, airflow aloft also spills over these barriers and mixes into the valley from above. Because this transmountain flow occurs under the influence of synoptic subsidence it tends to present discrete, laminar sheets of differing air composition above the valley boundary layer. Meanwhile, although the boundary layers tend to remain shallow due to the prevailing subsidence, orographic and anabatic venting of valley boundary layer air around the basin whips up a complex admixture of regional air masses into a "buffer layer" just above the boundary layer (zi) and below the lower free troposphere. We present scalar data of widely varying lifetimes including ozone, methane, NOx, and thermodynamic observations from upwind and within the San Joaquin Valley to better explain this layering and its subsequent erosion into the valley boundary layer via entrainment. Data collected at a mountaintop monitoring station on Chews Ridge in the Coast Range, by coastal ozonesondes, and aircraft are analyzed to document the dynamic layering processes around the complex terrain surrounding the valley. Particular emphasis will be made on observational methods whereby distal ozone can be distinguished from the regional ozone to better understand the influence of exogenous sources on air quality in the valley.

  17. Long-term regional and sub-regional scale groundwater flow within an irregularly fractured Canadian shield setting

    International Nuclear Information System (INIS)

    Sykes, J.F.; Sudicky, E.A.; Normani, S.D.; McLaren, R.G.; Jensen, M.R.

    2006-01-01

    As part of Ontario Power Generation's Deep Geologic Repository Technology Program (DGRTP), activities have been undertaken to further the understanding of groundwater flow system evolution and dynamics within a Canadian Shield setting. This paper describes a numerical case study in which the evolution and nature of groundwater flow, as relevant to the siting and safety of a hypothetical Deep Geologic Repository (DGR) for used nuclear fuel, is explored within representative regional (∼5734 km 2 ) and sub-regional (∼83 km 2 ) Shield watersheds. The modelling strategy adopted a GIS framework that included a digital elevation model and surface hydrologic features such as rivers, lakes and wetlands. Model boundary conditions were extracted through GIS automation such that the 3-dimensional characteristics of surface relief, surface water features, in addition to, pore fluid salinities and spatially variable permeability fields could be explicitly incorporated. Further flow system detail has been incorporated in sub-regional simulations with the inclusion of an irregular curve-planar Fracture Network Model traceable to site-specific geologic attributes. Interim modelling results reveal that deep-seated regional flow systems do evolve with groundwater divides within the shallow (<300 m) flow system defined by local scale topography, in particular, major rivers and their tributaries. Within the realizations considered groundwater flow at depths of ∼700 m or more was determined to be essentially stagnant and likely diffusion dominated. The role of fracture zone interconnectivity, depth dependent salinity and spatially variable permeability distributions on flow system response to past glacial events is examined. In demonstrating a case for groundwater flow system stability it is evident that predictive modelling approaches that cannot preserve the 3-dimensional complexity of the watershed-scale groundwater flow system may lead to conclusions that are implausible

  18. Efficient solutions to the Euler equations for supersonic flow with embedded subsonic regions

    Science.gov (United States)

    Walters, Robert W.; Dwoyer, Douglas L.

    1987-01-01

    A line Gauss-Seidel (LGS) relaxation algorithm in conjunction with a one-parameter family of upwind discretizations of the Euler equations in two dimensions is described. Convergence of the basic algorithm to the steady state is quadratic for fully supersonic flows and is linear for other flows. This is in contrast to the block alternating direction implicit methods (either central or upwind differenced) and the upwind biased relaxation schemes, all of which converge linearly, independent of the flow regime. Moreover, the algorithm presented herein is easily coupled with methods to detect regions of subsonic flow embedded in supersonic flow. This allows marching by lines in the supersonic regions, converging each line quadratically, and iterating in the subsonic regions, and yields a very efficient iteration strategy. Numerical results are presented for two-dimensional supersonic and transonic flows containing oblique and normal shock waves which confirm the efficiency of the iteration strategy.

  19. Studies on age-related changes, regional and bilateral differences in the skin blood flow

    International Nuclear Information System (INIS)

    Park, Myung-Wook

    1992-01-01

    Xenon-133 clearance method was used to determine skin blood flow at different sites. The correlation between skin blood flow in the deltoid region and age was examined. In addition, regional and bilateral differences in skin blood flow were examined. The subjects were 60 men. They ranged in age from 23 to 72 years with a mean of 53.3±10.95. Fifty μCi of xenon-133 dissolved in 0.1 ml of sterile distilled water was injected into the skin area. The clearance curve over the skin was recorded for 30 minutes by a scintillation counter. Skin blood flow in the deltoid region decreased significantly with aging. Dorsal skin blood flow in the hands and feet were significantly lower than the deltoid region. Regarding skin blood flow in the deltoid regions, there was significantly bilateral difference. In the hands and feet, the dorsal skin was bilaterally nearly equal. In view of regional hemodynamics in the skin, the conditions for random-pattern skin flap and wound healing were unfavorable in the elderly as compared with younger persons. Skin blood flow decreased gradually from the upper part of the body to the lower part of the body. In skin blood flow in the dorsal skin of the hands and feet, no bilateral difference was observed. (N.K.)

  20. Assessment of regional trade and virtual water flows in China

    OpenAIRE

    Dabo, G.; Hubacek, K.

    2007-01-01

    The success of Chinas economic development has left deep marks on resource availability and quality. Some regions in China are relatively poor with regards to water resources. This problem is exacerbated by economic growth. Flourishing trade activities on both domestic and international levels have resulted in significant amounts of water withdrawal and water pollution. Hence the goal of this paper is to evaluate the current inter-regional trade structure and its effects on water consumption ...

  1. Effect of region assignment on relative renal blood flow estimates using radionuclides

    International Nuclear Information System (INIS)

    Harris, C.C.; Ford, K.K.; Coleman, R.E.; Dunnick, N.R.

    1984-01-01

    To determine the value of the initial phase of the Tc-99m DTPA renogram in the direct estimation of relative renal blood flow in dogs, the ratios of the slopes of renal time-activity curves were compared with the ratios of measured blood flow. Radionuclide results were dependent on region-of-interest (ROI) and background ROI assignment, and correlated well with measured relative flow only with a maximum renal outline region. Curve slope ratios correlated well with measured flow ratios with and without background correction, while 1- to 2-minute uptake ratios correlated well only when corrected for background

  2. Estimation of local and regional components of drain - flow from an irrigated field

    International Nuclear Information System (INIS)

    Eching, S.O.; Hopmans, J.W.; Wallender, W.W.; Macyntyre, J.L.; Peters, D.

    1995-01-01

    The contribution of regional ground water and deep percolation from a furrow irrigated field to total drain flow was estimated using salt load analysis. It was found that 64% of the drain flow comes from regional ground water flow. The electrical conductivity of the drain water was highly correlated with the drain flow rate. From the field water balance with deep percolation as estimated from the salt load analysis, using yield function derived evapotranspiration, and measured changes in root zone water storage, it was shown that 14% of the crop evapotranspiration comes from ground water during the study period. 8 figs; 5 tabs; 15 refs ( Author )

  3. Equivalent noise level response to number of vehicles: a comparison between a high traffic flow and low traffic flow highway in Klang Valley, Malaysia

    OpenAIRE

    Halim, Herni; Abdullah, Ramdzani

    2014-01-01

    HIGHLIGHTS Highway traffic noise is a serious problem in Malaysia Heavy traffic flow highway recorded higher noise level compared to low traffic flow Noise level stabilized at certain number of vehicles on the road i.e above 500 vehicles. Although much research on road traffic noise has found that noise level increase are influenced by driver behavior and source-receiver distance, little attention has been paid to the relationship between noise level and total number of vehicles...

  4. Hydrogeology and water quality of the Pepacton Reservoir Watershed in southeastern New York. Part 4. Quantity and quality of ground-water and tributary contributions to stream base flow in selected main-valley reaches

    Science.gov (United States)

    Heisig, Paul M.

    2004-01-01

    Estimates of the quantity and quality of ground-water discharge from valley-fill deposits were calculated for nine valley reaches within the Pepacton watershed in southeastern New York in July and August of 2001. Streamflow and water quality at the upstream and downstream end of each reach and at intervening tributaries were measured under base-flow conditions and used in mass-balance equations to determine quantity and quality of ground-water discharge. These measurements and estimates define the relative magnitudes of upland (tributary inflow) and valley-fill (ground-water discharge) contributions to the main-valley streams and provide a basis for understanding the effects of hydrogeologic setting on these contributions. Estimates of the water-quality of ground-water discharge also provide an indication of the effects of road salt, manure, and human wastewater from villages on the water quality of streams that feed the Pepacton Reservoir. The most common contaminant in ground-water discharge was chloride from road salt; concentrations were less than 15 mg/L.Investigation of ground-water quality within a large watershed by measurement of stream base-flow quantity and quality followed by mass-balance calculations has benefits and drawbacks in comparison to direct ground-water sampling from wells. First, sampling streams is far less expensive than siting, installing, and sampling a watershed-wide network of wells. Second, base-flow samples represent composite samples of ground-water discharge from the most active part of the ground-water flow system across a drainage area, whereas a well network would only be representative of discrete points within local ground-water flow systems. Drawbacks to this method include limited reach selection because of unfavorable or unrepresentative hydrologic conditions, potential errors associated with a large number of streamflow and water-quality measurements, and limited ability to estimate concentrations of nonconservative

  5. Venusian channels and valleys - Distribution and volcanological implications

    Science.gov (United States)

    Komatsu, Goro; Baker, Victor R.; Gulick, Virginia C.; Parker, Timothy J.

    1993-01-01

    An updated map is presented which shows the distribution of more than 200 channels and valleys on Venus. A large number of channels are concentrated in equatorial regions characterized by highlands, rift and fracture zones, an associated volcanic features. Many channels associated with flow deposits are similar to typical terrestrial lava drainage channels. They are associated with a wide range of volcanic edifices. More than half of the sinuous rilles are associated with coronae, coronalike features, or arachnoids. Corona volcanism driven by mantle plume events may explain this association. Many valley network are observed in highlands and in association with coronae, coronalike features, or arachnoids. This indicates that highlands and coronae provided fractures and flow-viscosity lavas, both of which seem to be required for network formation by lava sapping processes. Canali-type channels have a unique distribution limited to some plains regions.

  6. Fire Regimes of Remnant Pitch Pine Communities in the Ridge and Valley Region of Central Pennsylvania, USA

    Directory of Open Access Journals (Sweden)

    Joseph M. Marschall

    2016-10-01

    Full Text Available Many fire-adapted ecosystems in the northeastern U.S. are converting to fire-intolerant vegetation communities due to fire suppression in the 20th century. Prescribed fire and other vegetation management activities that increase resilience and resistance to global changes are increasingly being implemented, particularly on public lands. For many fire-dependent communities, there is little quantitative data describing historical fire regime attributes such as frequency, severity, and seasonality, or how these varied through time. Where available, fire-scarred live and remnant trees, including stumps and snags, offer valuable insights into historical fire regimes through tree-ring and fire-scar analyses. In this study, we dated fire scars from 66 trees at two sites in the Ridge and Valley Province of the Appalachian Mountains in central Pennsylvania, and described fire frequency, severity, and seasonality from the mid-17th century to 2013. Fires were historically frequent, of low to moderate severity, occurred mostly during the dormant season, and were influenced by aspect and topography. The current extended fire-free interval is unprecedented in the previous 250–300 years at both sites.

  7. Regional estimates of ecological services derived from U.S. Department of Agriculture conservation programs in the Mississippi Alluvial Valley

    Science.gov (United States)

    Faulkner, Stephen P.; Baldwin, Michael J.; Barrow, Wylie C.; Waddle, Hardin; Keeland, Bobby D.; Walls, Susan C.; James, Dale; Moorman, Tom

    2010-01-01

    The Mississippi Alluvial Valley (MAV) is the Nation?s largest floodplain and this once predominantly forested ecosystem provided significant habitat for a diverse flora and fauna, sequestered carbon in trees and soil, and stored floodwater, sediments, and nutrients within the floodplain. This landscape has been substantially altered by the conversion of nearly 75% of the riparian forests, predominantly to agricultural cropland, with significant loss and degradation of important ecosystem services. Large-scale efforts have been employed to restore the forest and wetland resources and the U.S. Department of Agriculture (USDA) Wetlands Reserve Program (WRP) and Conservation Reserve Program (CRP) represent some of the most extensive restoration programs in the MAV. The objective of the WRP is to restore and protect the functions and values of wetlands in agricultural landscapes with an emphasis on habitat for migratory birds and wetland-dependent wildlife, protection and improvement of water quality, flood attenuation, ground water recharge, protection of native flora and fauna, and educational and scientific scholarship.

  8. Regional Groundwater Flow Assessment in a Prospective High-Level Radioactive Waste Repository of China

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Cao

    2017-07-01

    Full Text Available The production of nuclear energy will result in high-level radioactive waste (HLRW, which brings potential environmental dangers. Selecting a proper disposal repository is a crucial step in the development of nuclear energy. This paper introduces firstly the hydrogeological conditions of the Beishan area in China. Next, a regional groundwater model is constructed using a multiphase flow simulator to analyze the groundwater flow pattern in the Beishan area. Model calibration shows that the simulated and observed hydraulic heads match well, and the simulated regional groundwater flow pattern is similar to the surface flow pattern from the channel network, indicating that the groundwater flow is mainly dependent on the topography. In addition, the simulated groundwater storage over the period from 2003 to 2014 is similar to the trend derived from the Gravity Recovery and Climate Experiment satellite-derived results. Last, the established model is used to evaluate the influences of the extreme climate and regional faults on the groundwater flow pattern. It shows that they do not have a significant influence on the regional groundwater flow patterns. This study will provide a preliminary reference for the regional groundwater flow assessment in the site of the HLRW in China.

  9. Simulation of the regional groundwater-flow system of the Menominee Indian Reservation, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.; Dunning, Charles P.

    2015-01-01

    A regional, two-dimensional, steady-state groundwater-flow model was developed to simulate the groundwater-flow system and groundwater/surface-water interactions within the Menominee Indian Reservation. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Menominee Indian Tribe of Wisconsin, to contribute to the fundamental understanding of the region’s hydrogeology. The objectives of the regional model were to improve understanding of the groundwater-flow system, including groundwater/surface-water interactions, and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate groundwater/surface-water interactions, provide a framework for simulating regional groundwater-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate groundwater-flow patterns at multiple scales. Simulations made with the regional model reproduce groundwater levels and stream base flows representative of recent conditions (1970–2013) and illustrate groundwater-flow patterns with maps of (1) the simulated water table and groundwater-flow directions, (2) probabilistic areas contributing recharge to high-capacity pumped wells, and (3) estimation of the extent of infiltrated wastewater from treatment lagoons.

  10. Regional Relations in Bankfull Channel Characteristics determined from flow measurements at selected stream-gaging stations in West Virginia, 1911-2002

    Science.gov (United States)

    Messinger, Terence; Wiley, Jeffrey B.

    2004-01-01

    Three bankfull channel characteristics?cross-sectional area, width, and depth?were significantly correlated with drainage area in regression equations developed for two regions in West Virginia. Channel characteristics were determined from analysis of flow measurements made at 74 U.S. Geological Survey stream-gaging stations at flows between 0.5 and 5.0 times bankfull flow between 1911 and 2002. Graphical and regression analysis were used to delineate an 'Eastern Region' and a 'Western Region,' which were separated by the boundary between the Appalachian Plateaus and Valley and Ridge Physiographic Provinces. Streams that drained parts of both provinces had channel characteristics typical of the Eastern Region, and were grouped with it. Standard error for the six regression equations, three for each region, ranged between 8.7 and 16 percent. Cross-sectional area and depth were greater relative to drainage area for the Western Region than they were for the Eastern Region. Regression equations were defined for streams draining between 46.5 and 1,619 square miles for the Eastern Region, and between 2.78 and 1,354 square miles for the Western Region. Stream-gaging stations with two or more cross sections where flow had been measured at flows between 0.5 and 5.0 times the 1.5-year flow showed poor replication of channel characteristics compared to the 95-percent confidence intervals of the regression, suggesting that within-reach variability for the stream-gaging stations may be substantial. A disproportionate number of the selected stream-gaging stations were on large (drainage area greater than 100 square miles) streams in the central highlands of West Virginia, and only one stream-gaging station that met data-quality criteria was available to represent the region within about 50 miles of the Ohio River north of Parkersburg, West Virginia. Many of the cross sections were at bridges, which can change channel shape. Although the data discussed in this report may not be

  11. Regional cerebral blood flow in psychiatry: Application to clinical research

    International Nuclear Information System (INIS)

    Berman, K.F.; Weinberger, D.R.; Morihisa, J.M.; Zec, R.F.

    1984-01-01

    In the following sections, the authors describe aspects of the xenon-133 inhalation technique as it has been modified in their lab, as well as a number of considerations and prerequisites for setting up such a facility. The authors also discuss the processes by which they technically and clinically validated the methods used. Several case studies follow along with descriptions of the approaches they are taking in investigating psychiatric illnesses with rCBF. Since the concept of a relation between brain functional activity, metabolism, and blood flow has a long history, both in theory and in practice, they first briefly review some of this history and some of the principles involved

  12. Two-phase flow characteristic of inverted bubbly, slug and annular flow in post-critical heat flux region

    International Nuclear Information System (INIS)

    Ishii, M.; Denten, J.P.

    1988-01-01

    Inverted annular flow can be visualized as a liquid jet-like core surrounded by a vapor annulus. While many analytical and experimental studies of heat transfer in this regime have been performed, there is very little understanding of the basic hydrodynamics of the post-CHF flow field. However, a recent experimental study was done that was able to successfully investigate the effects of various steady-state inlet flow parameters on the post-CHF hydrodynamics of the film boiling of a single phase liquid jet. This study was carried out by means of a visual photographic analysis of an idealized single phase core inverted annular flow initial geometry (single phase liquid jet core surrounded by a coaxial annulus of gas). In order to extend this study, a subsequent flow visualization of an idealized two-phase core inverted annular flow geometry (two-phase central jet core, surrounded by a coaxial annulus of gas) was carried out. The objective of this second experimental study was to investigate the effect of steady-state inlet, pre-CHF two-phase jet core parameters on the hydrodynamics of the post-CHF flow field. In actual film boiling situations, two-phase flows with net positive qualities at the CHF point are encountered. Thus, the focus of the present experimental study was on the inverted bubbly, slug, and annular flow fields in the post dryout film boiling region. Observed post dryout hydrodynamic behavior is reported. A correlation for the axial extent of the transition flow pattern between inverted annular and dispersed droplet flow (the agitated regime) is developed. It is shown to depend strongly on inlet jet core parameters and jet void fraction at the dryout point. 45 refs., 9 figs., 4 tabs

  13. Two-phase flow characteristic of inverted bubbly, slug, and annular flow in post-critical heat flux region

    International Nuclear Information System (INIS)

    Ishii, M.; Denten, J.P.

    1989-01-01

    Inverted annular flow can be visualized as a liquid jet-like core surrounded by a vapor annulus. While many analytical and experimental studies of heat transfer in this regime have been performed, there is very little understanding of the basic hydrodynamics of the post-critical heat flux (CHF) flow field. However, a recent experimental study was done that was able to successfully investigate the effects of various steady-state inlet flow parameters on the post-CHF hydrodynamics of the film boiling of a single phase liquid jet. This study was carried out by means of a visual photographic analysis of an idealized single phase core inverted annular flow initial geometry (single phase liquid jet core surrounded by a coaxial annulus of gas). In order to extend this study, a subsequent flow visualization of an idealized two-phase core inverted annular flow geometry (two-phase central jet core, surrounded by a coaxial annulus of gas) was carried out. The objective of this second experimental study was to investigate the effect of steady-state inlet, pre-CHF two-phase jet core parameters on the hydrodynamics of the post-CHF flow field. In actual film boiling situations, two-phase flows with net positive qualities at the CHF point are encountered. Thus, the focus of the present experimental study was on the inverted bubbly, slug, and annular flow fields in the post dryout film boiling region. Observed post dryout hydrodynamic behavior is reported. A correlation for the axial extent of the transition flow pattern between inverted annular and dispersed droplet flow (the agitated regime) is developed. It is shown to depend strongly on inlet jet core parameters and jet void fraction at the dryout point

  14. Single-photon tomographic determination of regional cerebral blood flow in psychiatric disorders

    International Nuclear Information System (INIS)

    Devous, M.D. Sr.; Rush, A.J.; Schlesser, M.A.; Debus, J.; Raese, J.D.; Chehabi, H.H.; Bonte, F.J.

    1984-01-01

    Regional cerebral blood flow (rCBF) was measured by single-photon emission computed tomography (SPECT) of 133-Xe washout in 29 normal volunteers, 22 unipolar endogenous depressives (UPE), 9 unipolar nonendogenous depressives (UPNE), 13 bipolar depressed patients (BPD), and 14 schizophrenic patients (SCHZ). RCBF was measured 2 and 6 cm above and parallel to the cantho-meatal line and quantitated in 14 gray matter regions. Most subjects were drug-free for 4-14 days. Diagnoses were made by experienced clinicians employing the Research Diagnostic Criteria, the Hamilton Rating Scale, and the dexamethasone suppression test. SCHZ were rated with the Brief Psychiatric Rating Scale. UPE had reduced flow compared to normals in the right parietal and temporal lobes and a nonsignificant trend toward left temporal flow reductions. UPNE were not different from normal or other patient groups. BPD had significant flow elevations in the left hemisphere relative to normal, and in both hemispheres relative to UPE. SCHZ were not significantly different from normal or other patient groups. Anterior-posterior flow shifts were evaluated by subtracting parietal or temporal flows from frontal flows. SCHZ demonstrated a greater posterior shift (lower relative frontal lobe flow) in comparison to both UPE and UPNE. The most significant regional flow abnormalities were observed as frontal flow reductions in individual SCHZ, although these were not significant in the whole group in comparison to normal

  15. Disparity in regional cerebral blood flow during electrically induced seizure

    DEFF Research Database (Denmark)

    Sestoft, D; Meden, P; Hemmingsen, R

    1993-01-01

    on electroencephalography, the regional neuronal activity expressed as rCBF unexpectedly was markedly asymmetrical in one of the cases. These findings demonstrated that the 99mTc-HMPAO technique makes it possible to discriminate intraictal variation in cortical and subcortical activation between the hemispheres during...

  16. A regional model simulation of the 1991 severe precipitation event over the Yangtze-Huai River Valley. Part 2: Model bias

    Energy Technology Data Exchange (ETDEWEB)

    Gong, W.; Wang, W.C.

    2000-01-01

    This is the second part of a study investigating the 1991 severe precipitation event over the Uangtze-Huai River valley (YHRV) in China using both observations and regional model simulations. While Part 1 reported on the Mei-yu front and its association with large-scale circulation, this study documents the biases associated with the treatment of the lateral boundary in the regional model. Two aspects of the biases were studied: the driving field, which provides large-scale boundary forcing, and the coupling scheme, which specified how the forcing is adopted by the model. The former bias is defined as model uncertainty because it is not related to the model itself, while the latter bias (as well as those biases attributed to other sources) is referred to as model error. These two aspects were examined by analyzing the regional model simulations of the 1991 summer severe precipitation event over YHRV using different driving fields (ECMWF-TOGA objective analysis, ECMWF reanalysis, and NCEP-NCAR reanalysis) and coupling scheme (distribution function of the nudging coefficient and width of the buffer zone). Spectral analysis was also used to study the frequency distribution of the bias.

  17. Groundwater flow systems in the great Aletsch glacier region (Valais, Switzerland)

    Science.gov (United States)

    Alpiger, Andrea; Loew, Simon

    2014-05-01

    Groundwater flow systems in Alpine areas are often complex and challenging to investigate due to special topographic and climatic conditions governing groundwater recharge and bedrock flow. Studies seeking to characterize high-alpine groundwater systems remain rare, but are of high interest, e.g. for water supply, hydropower systems, traffic tunnels or rock slope deformation and landslide hazards. The goal of this study is to better understand the current and past groundwater flow systems of the UNESCO World Heritage mountain ridge separating the great Aletsch glacier and the Rhone valley, considering climatic and glacier fluctuations during the Lateglacial and Holocene periods. This ridge is crossed by a hydropower bypass drift (Riederhornstollen) and is composed of fractured crystalline rocks overlain by various types of landslides and glacial deposits. Surface hydrology observations (fracture properties, groundwater seepage, spring lines and physico-chemical parameters) and hydropower drift inflow measurements contributed to the characterization of bedrock hydraulic conductivities and preferential groundwater pathways. Basic conceptual hydrogeological models were tested with observed drift inflows and the occurrence of springs using free-surface, variably saturated, vertical 2D groundwater flow models (using the code SEEP/W from GeoStudio 2007). Already simple two-layer models, representing profile sections orthogonal to the mountain ridge, provided useful results. Simulations show that differences in the occurrence of springs on each side of the mountain ridge are likely caused by the occurrence of glacial till (generating perched groundwater), the deep-seated sagging landslide mass, faults and asymmetric ridge topography, which together force the main groundwater flow direction to be oriented towards the Rhone valley, even from beyond the mountain ridge. Surprisingly, the most important springs (those with high discharge rates) are located at high elevations

  18. Simulating the effects of a beaver dam on regional groundwater flow through a wetland

    Directory of Open Access Journals (Sweden)

    Kathleen Feiner

    2015-09-01

    New hydrological insights for the region: The construction of a beaver dam resulted in minimal changes to regional groundwater flow paths at this site, which is attributed to a clay unit underlying the peat, disconnecting this wetland from regional groundwater flow. However, groundwater discharge from the wetland pond increased by 90%. Simulating a scenario with the numerical model in which the wetland is connected to regional groundwater flow results in a much larger impact on flow paths. In the absence of the clay layer, the simulated construction of a beaver dam causes a 70% increase in groundwater discharge from the wetland pond and increases the surface area of both the capture zone and the discharge zone by 30% and 80%, respectively.

  19. Relaxed impact craters on Ganymede: Regional variation and high heat flows

    Science.gov (United States)

    Singer, Kelsi N.; Bland, Michael T.; Schenk, Paul M.; McKinnon, William B.

    2018-05-01

    Viscously relaxed craters provide a window into the thermal history of Ganymede, a satellite with copious geologic signs of past high heat flows. Here we present measurements of relaxed craters in four regions for which suitable imaging exists: near Anshar Sulcus, Tiamat Sulcus, northern Marius Regio, and Ganymede's south pole. We describe a technique to measure apparent depth, or depth of the crater with respect to the surrounding terrain elevation. Measured relaxation states are compared with results from finite element modeling to constrain heat flow scenarios [see companion paper: Bland et al. (2017)]. The presence of numerous, substantially relaxed craters indicates high heat flows-in excess of 30-40 mW m-2 over 2 Gyr, with many small (heat flows. Crater relaxation states are bimodal for some equatorial regions but not in the region studied near the south pole, which suggests regional variations in Ganymede's thermal history.

  20. Hydrochemistry of the groundwater flow systems in the Harwell region

    International Nuclear Information System (INIS)

    Alexander, J.

    1984-12-01

    A comprehensive range of geochemical and isotopic parameters were analysed in the groundwater samples taken from the high permeability formations in the Harwell region. These analyses were undertaken as part of a hydro-chemical validation of groundwater circulation patterns derived from potentiometric data. Hydro-chemical investigations were concentrated upon the Corallian and Great Oolite formations since these respectively overlie and underlie the Oxford Clay. (author)

  1. Regional potentiometric-surface map of the Great Basin carbonate and alluvial aquifer system in Snake Valley and surrounding areas, Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada

    Science.gov (United States)

    Gardner, Philip M.; Masbruch, Melissa D.; Plume, Russell W.; Buto, Susan G.

    2011-01-01

    Water-level measurements from 190 wells were used to develop a potentiometric-surface map of the east-central portion of the regional Great Basin carbonate and alluvial aquifer system in and around Snake Valley, eastern Nevada and western Utah. The map area covers approximately 9,000 square miles in Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada. Recent (2007-2010) drilling by the Utah Geological Survey and U.S. Geological Survey has provided new data for areas where water-level measurements were previously unavailable. New water-level data were used to refine mapping of the pathways of intrabasin and interbasin groundwater flow. At 20 of these locations, nested observation wells provide vertical hydraulic gradient data and information related to the degree of connection between basin-fill aquifers and consolidated-rock aquifers. Multiple-year water-level hydrographs are also presented for 32 wells to illustrate the aquifer system's response to interannual climate variations and well withdrawals.

  2. Combining hydrology and mosquito population models to identify the drivers of Rift Valley fever emergence in semi-arid regions of West Africa.

    Science.gov (United States)

    Soti, Valérie; Tran, Annelise; Degenne, Pascal; Chevalier, Véronique; Lo Seen, Danny; Thiongane, Yaya; Diallo, Mawlouth; Guégan, Jean-François; Fontenille, Didier

    2012-01-01

    Rift Valley fever (RVF) is a vector-borne viral zoonosis of increasing global importance. RVF virus (RVFV) is transmitted either through exposure to infected animals or through bites from different species of infected mosquitoes, mainly of Aedes and Culex genera. These mosquitoes are very sensitive to environmental conditions, which may determine their presence, biology, and abundance. In East Africa, RVF outbreaks are known to be closely associated with heavy rainfall events, unlike in the semi-arid regions of West Africa where the drivers of RVF emergence remain poorly understood. The assumed importance of temporary ponds and rainfall temporal distribution therefore needs to be investigated. A hydrological model is combined with a mosquito population model to predict the abundance of the two main mosquito species (Aedes vexans and Culex poicilipes) involved in RVFV transmission in Senegal. The study area is an agropastoral zone located in the Ferlo Valley, characterized by a dense network of temporary water ponds which constitute mosquito breeding sites. The hydrological model uses daily rainfall as input to simulate variations of pond surface areas. The mosquito population model is mechanistic, considers both aquatic and adult stages and is driven by pond dynamics. Once validated using hydrological and entomological field data, the model was used to simulate the abundance dynamics of the two mosquito species over a 43-year period (1961-2003). We analysed the predicted dynamics of mosquito populations with regards to the years of main outbreaks. The results showed that the main RVF outbreaks occurred during years with simultaneous high abundances of both species. Our study provides for the first time a mechanistic insight on RVFV transmission in West Africa. It highlights the complementary roles of Aedes vexans and Culex poicilipes mosquitoes in virus transmission, and recommends the identification of rainfall patterns favourable for RVFV amplification.

  3. Combining hydrology and mosquito population models to identify the drivers of Rift Valley fever emergence in semi-arid regions of West Africa.

    Directory of Open Access Journals (Sweden)

    Valérie Soti

    Full Text Available BACKGROUND: Rift Valley fever (RVF is a vector-borne viral zoonosis of increasing global importance. RVF virus (RVFV is transmitted either through exposure to infected animals or through bites from different species of infected mosquitoes, mainly of Aedes and Culex genera. These mosquitoes are very sensitive to environmental conditions, which may determine their presence, biology, and abundance. In East Africa, RVF outbreaks are known to be closely associated with heavy rainfall events, unlike in the semi-arid regions of West Africa where the drivers of RVF emergence remain poorly understood. The assumed importance of temporary ponds and rainfall temporal distribution therefore needs to be investigated. METHODOLOGY/PRINCIPAL FINDINGS: A hydrological model is combined with a mosquito population model to predict the abundance of the two main mosquito species (Aedes vexans and Culex poicilipes involved in RVFV transmission in Senegal. The study area is an agropastoral zone located in the Ferlo Valley, characterized by a dense network of temporary water ponds which constitute mosquito breeding sites. The hydrological model uses daily rainfall as input to simulate variations of pond surface areas. The mosquito population model is mechanistic, considers both aquatic and adult stages and is driven by pond dynamics. Once validated using hydrological and entomological field data, the model was used to simulate the abundance dynamics of the two mosquito species over a 43-year period (1961-2003. We analysed the predicted dynamics of mosquito populations with regards to the years of main outbreaks. The results showed that the main RVF outbreaks occurred during years with simultaneous high abundances of both species. CONCLUSION/SIGNIFICANCE: Our study provides for the first time a mechanistic insight on RVFV transmission in West Africa. It highlights the complementary roles of Aedes vexans and Culex poicilipes mosquitoes in virus transmission, and recommends

  4. A regional classification of unregulated stream flows: spatial resolution and hierarchical frameworks.

    Science.gov (United States)

    Ryan A. McManamay; Donald J. Orth; Charles A. Dolloff; Emmaneul A. Firmpong

    2012-01-01

    River regulation has resulted in substantial losses in habitat connectivity, biodiversity and ecosystem services. River managers are faced with a growing need to protect the key aspects of the natural flow regime. A practical approach to providing environmental flow standards is to create a regional framework by classifying unregulated streams into groups of similar...

  5. Numerical study for two phase flow in the near nozzle region of turbine combustors

    International Nuclear Information System (INIS)

    Pervez, K.; Mushtaq, S.

    1999-01-01

    In the present study flow conditions in the near nozzle region of the combustion chamber have been investigated. There exists two-phase flow in this region. The overall performance and pollutant formation in the combustion chamber have been investigated. There exists two-phase flow in this region. The overall performance and pollutant formation in the combustion zone largely depends on the spray field in the near nozzle region the studies are conducted to determined the effects of multi jets on the flow pattern in the near nozzle region The phase doppler particle analyzer (PDPA) has been used to measure the velocities and sizes of the droplets. The flow field of two-phase liquid drop-air jets is formed from three injectors arranged in t line. Furthermore the two-phase flow field has been analyzed numerically also. The numerical analysis consists of two computational models, namely (i) 3 non-evaporating two-phase jets, (II) 3 evaporating two phase jets. The Eulerian-Eulerian approach in incorporated in both the numerical models. Since the flow is turbulent, a two-equation model (k-Epsilon) is implemented in the numerical analysis. Numerical solution of the conservation equation is obtained using PHOENICS computer code. Boundary conditions are provided from the experimental measurements. Numerical domain for the two models of the analysis starts at some distance (about 10 diameters of the injector orifice) where the atomization process is complete and droplet size and velocity could be measured experimentally. (author)

  6. Heat Flow, Regional Geophysics and Lithosphere Structure In The Czech Republic

    Science.gov (United States)

    Safanda, J.; Cermak, V.; Kresl, M.; Dedecek, P.

    Paper summarises and critically revises heat flow data that have been collected in the Czech Republic to date. The regional heat flow density map was prepared in view of all existing heat flow data completed with the similar in the surrounding countries and taking into consideration also temperature measurements in deep boreholes. Crustal temperature profiles were calculated by using the available geological information, results of deep seismic sounding and the laboratory data on radiogenic heat produc- tion and thermal conductivity. Special attention was paid to numerous temperature logs in two sedimentary basins, namely in the Cheb and Ostrava-Karvina coal basins, for which detailed heat flow patterns were proposed. Relationships between heat flow distribution and the crustal/lithosphere evolution, between heat flow and the heat pro- duction of the crustal rocks, heat flow and crustal thickness and the steady-state vs. transient heat transport are discussed.

  7. California Environmental Vulnerability Assessment (CEVA) Score, San Joaquin Valley CA, 2013, UC Davis Center for Regional Change

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set is based on a three year study by the UC Davis Center for Regional Change, in affiliation with the Environmental Justice Project of the John Muir...

  8. Daily temperature changes and variability in ENSEMBLES regional models predictions: Evaluation and intercomparison for the Ebro Valley (NE Iberia)

    KAUST Repository

    El Kenawy, Ahmed M.; Ló pez-Moreno, Juan Ignacio; McCabe, Matthew; Brunsell, Nathaniel A.; Vicente-Serrano, Sergio M.

    2014-01-01

    We employ a suite of regional climate models (RCMs) to assess future changes in summer (JJA) maximum temperature (Tmax) over the Ebro basin, the largest hydrological division in the Iberian Peninsula. Under the A1B emission scenario, future changes

  9. Flow visualization study of inverted annular flow of post dryout heat transfer region

    International Nuclear Information System (INIS)

    Ishii, M.; De Jarlais, G.

    1985-01-01

    The inverted annular flow is important in the area of LWR accident analysis in terms of the maximum cladding temperature and effectiveness of the emergency core cooling. However, the inverted annular flow thermal-hydraulics is not well understood due to its special heat transfer condition of film boiling. In view of this, the inverted flow is studied in detail experimentally. A new experimental apparatus has been constructed in which film boiling heat transfer can be established in a transparent test section. Data on liquid core stability, core break-up mechanism, and dispersed-core liquid slug and droplet sizes are obtained using F 113 as a test fluid. Both high speed movies and flash photographs are used

  10. Freshwater Ecosystem Service Flow Model To Evaluate Regional Water Security: A Case Study In Beijing-Tianjin-Hebei Region, China

    Science.gov (United States)

    Li, D.; Li, S.

    2016-12-01

    Freshwater service, as the most important support ecosystem service, is essential to human survival and development. Many studies have evidenced the spatial differences in the supply and demand of ecosystem services and raised the concept of ecosystem service flow. However, rather few studies quantitatively characterize the freshwater service flow. This paper aims to quantify the effect of freshwater ecosystem service flow on downstream areas in Beijing-Tianjin-Hebei (BTH) region, China over 2000, 2005 and 2010. We computed the freshwater ecosystem service provision with InVEST model. We calculated freshwater ecosystem service consumption with water quota method. We simulated the freshwater ecosystem service flow using our simplified flow model and assessed the regional water security with the improved freshwater security index. The freshwater provision service mainly depends on climatic factors that cannot be influenced by management, while the freshwater consumption service is constrained by human activities. Furthermore, the decrease of water quota for agricultural, domestic and industrial water counteracts the impact of increasing freshwater demand. The analysis of freshwater ecosystem service flow reveals that the majority area of the BTH (69.2%) is affected by upstream freshwater. If freshwater ecosystem service flow is considered, the water safety areas of the whole BTH account for 66.9%, 66.1%, 71.3%, which increase 6.4%, 6.8% and 5.7% in 2000, 2005 and 2010, respectively. These results highlight the need to understand the teleconnections between distant freshwater ecosystem service provision and local freshwater ecosystem service use. This approach therefore helps managers choose specific management and investment strategies for critical upstream freshwater provisions across different regions.

  11. A Database and Meta-Analysis of Ecological Responses to Flow in the South Atlantic Region

    Energy Technology Data Exchange (ETDEWEB)

    McManamay, Ryan A [ORNL; Orth, Dr. Donald J [Virginia Polytechnic Institute and State University (Virginia Tech); Davis, Dr, Mary [Southeastern Aquatic Resources Partnership; Kauffman, John [John Kauffman LLC.

    2013-01-01

    Generalized and quantitative relationships between flow and ecology are pivotal to developing environmental flow standards based on socially acceptable ecological conditions. Informing management at regional scales requires compiling sufficient hydrologic and ecological sources of information, identifying information gaps, and creating a framework for hypothesis development and testing. We compiled studies of empirical and theoretical relationships between flow and ecology in the South Atlantic region (SAR) of the United States to evaluate their utility for the development of environmental flow standards. Using database searches, internet searches, and agency contacts, we gathered 186 sources of information that provided a qualitative or quantitative relationship between flow and ecology within states encompassing the SAR. A total of 109 of the 186 sources had sufficient information to support quantitative analyses. Ecological responses to natural changes in flow magnitude, frequency, and duration were highly variable regardless of the direction and magnitude of changes in flow. In contrast, the majority of ecological responses to anthropogenic-induced flow alterations were negative. Fish consistently showed negative responses to anthropogenic flow alterations whereas other ecological groups showed somewhat variable responses (e.g. macroinvertebrates and riparian vegetation) and even positive responses (e.g. algae). Fish and organic matter had sufficient sample sizes to stratify natural flow-ecology relationships by specific flow categories (e.g. high flow, baseflows) or by region (e.g. coastal plain, uplands). After stratifying relationships, we found that significant correlations existed between changes in natural flow and ecological responses. In addition, a regression tree explained 57% of the variation in fish responses to anthropogenic and natural changes in flow. Because of some ambiguity in interpreting the directionality in ecological responses, we

  12. Left-right cortical asymmetries of regional cerebral blood flow during listening to words

    DEFF Research Database (Denmark)

    Nishizawa, Y; Olsen, T S; Larsen, B

    1982-01-01

    1. Regional cerebral blood flow (rCBF) was measured during rest and during listening to simple words. The xenon-133 intracarotid technique was used and results were obtained from 254 regions of seven right hemispheres and seven left hemispheres. The measurements were performed just after carotid...... of the entire hemisphere. The focal rCBF increases were localized to the superior part of the temporal regions, the prefrontal regions, the frontal eye fields, and the orbitofrontal regions. Significant asymmetries were found in particular in the superior temporal region with the left side showing a more...

  13. Digital Elevation Model (DEM) file of topographic elevations for the Death Valley region of southern Nevada and southeastern California processed from US Geological Survey 1-degree Digital Elevation Model data files

    International Nuclear Information System (INIS)

    Turner, A.K.; D'Agnese, F.A.; Faunt, C.C.

    1996-01-01

    Elevation data have been compiled into a digital data base for an ∼100,000-km 2 area of the southern Great Basin, the Death Valley region of southern Nevada, and SE Calif., located between lat 35 degree N, long 115 degree W, and lat 38 degree N, long 118 degree W. This region includes the Nevada Test Site, Yucca Mountain, and adjacent parts of southern Nevada and eastern California and encompasses the Death Valley regional ground-water system. Because digital maps are often useful for applications other than that for which they were originally intended, and because the area corresponds to a region under continuing investigation by several groups, these digital files are being released by USGS

  14. Regional cerebral blood flow changes in chronic polidrug abusers

    International Nuclear Information System (INIS)

    Quintana, J.C.; Olea, E.; Seijas, D.; Haydn, V.

    2002-01-01

    Chronic exposure to cocaine and other drugs are in clear association with a variety of medical complications, involving many organ systems. The Central Nervous System (CNS) is particularly sensitive to such exposures: permanent behavioral, psychiatric and neurological complications are common in this group of patients. Regional cerebral blood perfusion (rCBF) analysis has been used to study these conditions with PET and SPECT for a long time. According to the literature, it is clear that drug exposure (particularly cocaine) does produce significant changes over rCBF, nevertheless the vast majority of SPECT and some PET studies are difficult to reproduce because they were analyzed using subjective (visual) and/or ROI's to address the changes. Aim: To study the pattern of rCBF change of chronic cocaine and other drugs (polidrug) users/abusers population using brain SPECT and SPM (Statistical Parametric Mapping). Material and Methods: From a population of 163 addicted patients, 55 chronic cocaine and other drugs users/abuser were selected. A pre-treatment brain SPECT under basal conditions was performed in all of them. 99mTc-ECD was used as rCBF tracer and SPM (Statistical Parametric Mapping) as a framework to address statistically significant rCBF variations of change. The whole group was compared with a population of normal patients (both sexes, aged between 20 and 40 y.o., no history of trauma, drug exposure, neurological or psychiatric disorders). Results: Significant areas of reduced (hypoperfusion) and increased (hyperperfusion) rCBF were identified in the patients group. The hypoperfusion areas involve mainly the left insula region and the surrounding frontal and temporal lobe and a smaller area in the anterior and inferior portion of the right frontal lobe. The increased perfusion areas were identified at the left thalamus and the right fronto-parietal cortical region. Conclusion: Our results suggest that chronic cocaine exposure produce activation/damage to

  15. Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: 2. Modeling results

    Science.gov (United States)

    Panday, Arnico K.; Prinn, Ronald G.; SchäR, Christoph

    2009-11-01

    After completing a 9-month field experiment studying air pollution and meteorology in the Kathmandu Valley, Nepal, we set up the mesoscale meteorological model MM5 to simulate the Kathmandu Valley's meteorology with a horizontal resolution of up to 1 km. After testing the model against available data, we used it to address specific questions to understand the factors that control the observed diurnal cycle of air pollution in this urban basin in the Himalayas. We studied the dynamics of the basin's nocturnal cold air pool, its dissipation in the morning, and the subsequent growth and decay of the mixed layer over the valley. During mornings, we found behavior common to large basins, with upslope flows and basin-center subsidence removing the nocturnal cold air pool. During afternoons the circulation in the Kathmandu Valley exhibited patterns common to plateaus, with cooler denser air originating over lower regions west of Kathmandu arriving through mountain passes and spreading across the basin floor, thereby reducing the mixed layer depth. We also examined the pathways of pollutant ventilation out of the valley. The bulk of the pollution ventilation takes place during the afternoon, when strong westerly winds blow in through the western passes of the valley, and the pollutants are rapidly carried out through passes on the east and south sides of the valley. In the evening, pollutants first accumulate near the surface, but then are lifted slightly when katabatic flows converge underneath. The elevated polluted layers are mixed back down in the morning, contributing to the morning pollution peak. Later in the morning a fraction of the valley's pollutants travels up the slopes of the valley rim mountains before the westerly winds begin.

  16. Principles of the tracer method in assessing regional blood flow

    International Nuclear Information System (INIS)

    Potchen, E.J.; Siegel, B.; Meidinger, R.

    1972-01-01

    The standard brain scan is abnormal when there is relative increase in blood volume or when there is an abnormal permeability to substances which normally cannot enter the brain tissue. The usual mechanism of abnormal permeability is based upon neovascularity in tissues which do not maintain the tight junctions one sees in the normal brain endothelium. These tight junctions prohibit the leakage of materials from the intra- to extravascular space, and when they are not available many materials can readily transit into the abnormal tissue substance and can therefore be discerned on a standard brain scan. In many instances, however, there is no gross breakdown in this blood-brain barrier, but more subtle derangement may be detected by determining changes in regional brain blood volume or the relative volume of distribution of various labeled materials. We have studied whether or not we can discern differences in brain spaces of two isotopes in experimental situations where the brain scan would be normal. For these models, we have used water-induced brain edema and triethyl-tin-induced brain edema in the experimental animal. In water intoxication, there is no difference in the microvascular anatomy or change in the 99 /sup m/Tc pertechnetate space, but it is apparent from our studies that the brain swells at the expense of brain blood volume and by measuring brain blood volume against brain mass, i.e., transit of 131 I antipyrine versus 51 Cr labeled red cells, one can detect brain edema in a situation where the brain scan would be normal. It is these approaches with cameras and computers using dual energies that may afford a more simplified estimation of altered regional brain function than is now available with the internal carotid injection technique. (U.S.)

  17. Flow visualization study of inverted annular flow of post dryout heat transfer region

    International Nuclear Information System (INIS)

    Ishii, M.; De Jarlais, G.

    1987-01-01

    The inverted annular flow is important in the area of LWR accident analysis in terms of the maximum cladding temperature and effectiveness of the emergency core cooling. However, the inverted annular flow thermal-hydraulics is not well understood due to its special heat transfer condition of film boiling. In view of this, the inverted flow is studied in detail experimentally. A new experimental apparatus has been constructed in which film boiling heat transfer can be established in a transparent test section. Data on liquid core stability, core break-up mechanism, and dispersed-core liquid slug and droplet sizes are obtained using F 113 as a test fluid. Both high speed movies and flash photographs are used. The inlet section consists of specially designed coaxial nozzles for gas and liquid such that the ideal inverted annular flow can be generated. The roll wave formation, droplet entrainment from wave crests, agitated sections with large interfacial areas, classical sinuous jet instability, jet break-up into multiple liquid ligaments and drop formation from liquid ligaments have been observed in detail. (orig.)

  18. Regional flow and solute transport modeling for site suitability. Part I

    International Nuclear Information System (INIS)

    Rowe, J.; Miller, I.

    1979-12-01

    The nature of regional flow systems in large sedimentary basins will largely determine the effectiveness of regional flow as a barrier to radionuclide escape from deep geologic repositories. The purpose of the work reported herein and the proposed future work is to develop a methodology for evaluating regional flow barriers by using numerical models. The Williston Basin was chosen as an archetype case for the regional modeling study. However, due to the simplified nature of the study, the results are not meant to represent the behavior of a repository actually placed within the Williston Basin. The major components of this Phase I study are: (1) assembly and reduction of available data; (2) formulation of a simplified geohydrologic model; (3) computer simulation of fluid flow; and (4) computer simulation of solute transport. As of this report, the first two items are essentially completed. Computer simulation of fluid flow will require some revision and further study, which will be done in the second phase of this study. Computer simulation of solute transport has been considered only on a very preliminary basis. Important conclusions of this Phase I study are as follows. Assembly and reduction of data require an extensive work effort. Generally, the parameters describing fluid flow are poorly known on a regional basis and those describing solute transport are unknown

  19. Regional flow and solute transport modeling for site suitability. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, J.; Miller, I.

    1979-12-01

    The nature of regional flow systems in large sedimentary basins will largely determine the effectiveness of regional flow as a barrier to radionuclide escape from deep geologic repositories. The purpose of the work reported herein and the proposed future work is to develop a methodology for evaluating regional flow barriers by using numerical models. The Williston Basin was chosen as an archetype case for the regional modeling study. However, due to the simplified nature of the study, the results are not meant to represent the behavior of a repository actually placed within the Williston Basin. The major components of this Phase I study are: (1) assembly and reduction of available data; (2) formulation of a simplified geohydrologic model; (3) computer simulation of fluid flow; and (4) computer simulation of solute transport. As of this report, the first two items are essentially completed. Computer simulation of fluid flow will require some revision and further study, which will be done in the second phase of this study. Computer simulation of solute transport has been considered only on a very preliminary basis. Important conclusions of this Phase I study are as follows. Assembly and reduction of data require an extensive work effort. Generally, the parameters describing fluid flow are poorly known on a regional basis and those describing solute transport are unknown.

  20. Characterization of the unsteady flow in the nacelle region of a modern wind turbine

    DEFF Research Database (Denmark)

    Zahle, Frederik; Sørensen, Niels N.

    2011-01-01

    A three-dimensional Navier–Stokes solver has been used to investigate the flow in the nacelle region of a wind turbine where anemometers are typically placed to measure the flow speed and the turbine yaw angle. A 500 kW turbine was modelled with rotor and nacelle geometry in order to capture...... the complex separated flow in the blade root region of the rotor. A number of steady state and unsteady simulations were carried out for wind speeds ranging from 6 m s−1 to 16 m s−1 as well as two yaw and tilt angles. The flow in the nacelle region was found to be highly unsteady, dominated by unsteady vortex...... anemometry showed significant dependence on both yaw and tilt angles with yaw errors of up to 10 degrees when operating in a tilted inflow. Copyright © 2010 John Wiley & Sons, Ltd....

  1. Valley-scale morphology drives differences in fluvial sediment budgets and incision rates during contrasting flow regimes

    Science.gov (United States)

    Weber, M. D.; Pasternack, G. B.

    2017-07-01

    High-resolution topographic surveys using LiDAR and multibeam sonar can be used to characterize and quantify fluvial change. This study used repeat surveys to explore how topographic change, fluvial processes, sediment budgets, and aggradation and incision rates vary across spatial scales and across two contrasting decadal flow regimes in a regulated gravel/cobble river. A novel method for quantifying digital elevation model uncertainty was developed and applied to a topographic change detection analysis from 2006/2008 to 2014. During this period, which had four modest 3-5 year floods, most sediment was laterally redistributed through bank erosion and channel migration. Erosion primarily occurred in the floodplain (97,000 m3), terraces (80,000 m3), and lateral bars (58,000 m3); while deposition occurred in the adjacent pools (73,000 m3), fast glides (48,000 m3), and runs (36,000 m3). In contrast, significantly higher magnitude and longer duration floods from 1999 to 2006/2008 caused sediment to be displaced longitudinally, with the upstream reaches exporting sediment and the downstream reaches aggrading. The river maintained floodplain connectivity during both periods, despite different processes dominating the type of connectivity. Larger floods promoted overbank scour and avulsion, while smaller floods promoted bank erosion and lateral migration. This study explores and illustrates how the geomorphic response to contrasting flood regimes in a nonuniform river is highly dependent on which landforms are controlling hydraulics.

  2. Thermodynamic coupling of heat and matter flows in near-field regions of nuclear waste repositories

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1983-11-01

    In near-field regions of nuclear waste repositories, thermodynamically coupled flows of heat and matter can occur in addition to the independent flows in the presence of gradients of temperature, hydraulic potential, and composition. The following coupled effects can occur: thermal osmosis, thermal diffusion, chemical osmosis, thermal filtration, diffusion thermal effect, ultrafiltration, and coupled diffusion. Flows of heat and matter associated with these effects can modify the flows predictable from the direct effects, which are expressed by Fourier's law, Darcy's law, and Fick's law. The coupled effects can be treated quantitatively together with the direct effects by the methods of the thermodynamics of irreversible processes. The extent of departure of fully coupled flows from predictions based only on consideration of direct effects depends on the strengths of the gradients driving flows, and may be significant at early times in backfills and in near-field geologic environments of repositories. Approximate calculations using data from the literature and reasonable assumptions of repository conditions indicate that thermal-osmotic and chemical-osmotic flows of water in semipermeable backfills may exceed Darcian flows by two to three orders of magnitude, while flows of solutes may be reduced greatly by ultrafiltration and chemical osmosis, relative to the flows predicted by advection and diffusion alone. In permeable materials, thermal diffusion may contribute to solute flows to a smaller, but still significant, extent

  3. Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale

    Directory of Open Access Journals (Sweden)

    P. Horton

    2013-04-01

    Full Text Available The development of susceptibility maps for debris flows is of primary importance due to population pressure in hazardous zones. However, hazard assessment by process-based modelling at a regional scale is difficult due to the complex nature of the phenomenon, the variability of local controlling factors, and the uncertainty in modelling parameters. A regional assessment must consider a simplified approach that is not highly parameter dependant and that can provide zonation with minimum data requirements. A distributed empirical model has thus been developed for regional susceptibility assessments using essentially a digital elevation model (DEM. The model is called Flow-R for Flow path assessment of gravitational hazards at a Regional scale (available free of charge under http://www.flow-r.org and has been successfully applied to different case studies in various countries with variable data quality. It provides a substantial basis for a preliminary susceptibility assessment at a regional scale. The model was also found relevant to assess other natural hazards such as rockfall, snow avalanches and floods. The model allows for automatic source area delineation, given user criteria, and for the assessment of the propagation extent based on various spreading algorithms and simple frictional laws. We developed a new spreading algorithm, an improved version of Holmgren's direction algorithm, that is less sensitive to small variations of the DEM and that is avoiding over-channelization, and so produces more realistic extents. The choices of the datasets and the algorithms are open to the user, which makes it compliant for various applications and dataset availability. Amongst the possible datasets, the DEM is the only one that is really needed for both the source area delineation and the propagation assessment; its quality is of major importance for the results accuracy. We consider a 10 m DEM resolution as a good compromise between processing time

  4. Effects of thyrotropin-releasing hormone on regional cerebral blood flow in man

    DEFF Research Database (Denmark)

    Oturai, P S; Friberg, L; Sam, I

    1992-01-01

    emission computerized tomograph and inhalation of 133Xe. Thyrotropin-releasing hormone caused a significant mean increase of 3.7% (range -8.8-22.7) in blood flow in a region consistent with the left thalamus compared to placebo (3.2% decrease). In 25 other regions no significant change was detected...

  5. Regional cerebral blood flow changes associated with clitorally induced orgasm in healthy women

    NARCIS (Netherlands)

    Georgiadis, Janniko R.; Kortekaas, Rudie; Kuipers, Rutger; Nieuwenburg, Arie; Pruim, Jan; Reinders, A. A. T. Simone; Holstege, Gert

    2006-01-01

    There is a severe lack of knowledge regarding the brain regions involved in human sexual performance in general, and female orgasm in particular. We used [(15)O]-H(2)O positron emission tomography to measure regional cerebral blood flow (rCBF) in 12 healthy women during a nonsexual resting state,

  6. Total and regional blood flows in vascularized skeletal muscle grafts in rabbits

    International Nuclear Information System (INIS)

    Burton, H.W.; Stevenson, T.R.; Dysko, R.C.; Gallagher, K.P.; Faulkner, J.A.

    1988-01-01

    The transplantation of whole skeletal muscles is a common clinical procedure. Although atypical blood flows have been reported in small free muscle grafts, the blood flow of large neurovascular-intact (NVI) and neurovascular-anastomosed (NVA) grafts have not been measured. Because the maximum specific force (N/cm 2 ) of NVI and NVA grafts is 65% that of control muscles, we hypothesized that total and regional blood flows of NVI and NVA grafts at rest and during twitch contractions are significantly lower than lower flows of control muscles. In rabbits, blood flows of control rectus femoris (RFM) muscles and NVI and NVA grafts of RFM muscles were measured by the radioactive-microsphere technique. Total blood flows in grafts were not different from the control RFM muscle values, except for a higher resting flow in NVA grafts and a lower flow at 3 Hz in NVI grafts. Minor variations in regional flows were observed. We conclude that the operative procedures of grating and repair of blood vessels affect the vascular bed of muscles minimally, and the deficits observed in grafts do not arise from inadequate perfusion

  7. Simulating flow in karst aquifers at laboratory and sub-regional scales using MODFLOW-CFP

    Science.gov (United States)

    Gallegos, Josue Jacob; Hu, Bill X.; Davis, Hal

    2013-12-01

    Groundwater flow in a well-developed karst aquifer dominantly occurs through bedding planes, fractures, conduits, and caves created by and/or enlarged by dissolution. Conventional groundwater modeling methods assume that groundwater flow is described by Darcian principles where primary porosity (i.e. matrix porosity) and laminar flow are dominant. However, in well-developed karst aquifers, the assumption of Darcian flow can be questionable. While Darcian flow generally occurs in the matrix portion of the karst aquifer, flow through conduits can be non-laminar where the relation between specific discharge and hydraulic gradient is non-linear. MODFLOW-CFP is a relatively new modeling program that accounts for non-laminar and laminar flow in pipes, like karst caves, within an aquifer. In this study, results from MODFLOW-CFP are compared to those from MODFLOW-2000/2005, a numerical code based on Darcy's law, to evaluate the accuracy that CFP can achieve when modeling flows in karst aquifers at laboratory and sub-regional (Woodville Karst Plain, Florida, USA) scales. In comparison with laboratory experiments, simulation results by MODFLOW-CFP are more accurate than MODFLOW 2005. At the sub-regional scale, MODFLOW-CFP was more accurate than MODFLOW-2000 for simulating field measurements of peak flow at one spring and total discharges at two springs for an observed storm event.

  8. Linear flow of heat in an infinite region and hermite polynomials

    International Nuclear Information System (INIS)

    Al-Hawaj, A.Y.

    1991-01-01

    The problem of linear flow of heat in an infinite region occupies a prominent place in the field of conduction of heat in solids. A number of solutions to this problem, have been given from time to time by several mathematicians. The object of this paper is to derive the solutions of the problem of linear flow of heat in an infinite region, which lead to Hermite Polynomials. The author further presents three linear combinations of his solutions and their particular cases. The region (- ∞ < x < ∞) of the problem led him to investigate the solutions of the problem in terms of Hermite Polynomials

  9. Flow conditioning for improved optical propagation of beams through regions bounded by surfaces of high solidity

    International Nuclear Information System (INIS)

    Robey, H.F.; Albrecht, G.F.; Freitas, B.L.

    1991-01-01

    A flow conditioning system has been designed to maximize the thermal homogeneity in an enclosed region through which a laser beam must propagate. In the present application, such an enclosed region exists between the Nd:glass disks of a high average power solid-state laser amplifier. Experiments have been conducted on a test facility to quantify the magnitude of the beam losses due to thermal scattering. It is shown that the intensity of the incoherent light which is thermally scattered from this region can be reduced to less than 0.1% of the incident-beam intensity under apropriate flow and cooling conditions

  10. Valley development on Hawaiian volcanoes

    International Nuclear Information System (INIS)

    Baker, V.R.; Gulick, V.C.

    1987-01-01

    Work in progress on Hawaiian drainage evolution indicates an important potential for understanding drainage development on Mars. Similar to Mars, the Hawaiian valleys were initiated by surface runoff, subsequently enlarged by groundwater sapping, and eventually stabilized as aquifers were depleted. Quantitative geomorphic measurements were used to evaluate the following factors in Hawaiian drainage evolution: climate, stream processes, and time. In comparing regions of similar climate, drainage density shows a general increase with the age of the volcani island. With age and climate held constant, sapping dominated valleys, in contrast to runoff-dominated valleys, display the following: lower drainage densities, higher ratios of valley floor width to valley height, and more positive profile concavities. Studies of stream junction angles indicate increasing junction angles with time on the drier leeward sides of the major islands. The quantitative geomorphic studies and earlier field work yielded important insights for Martian geomorphology. The importance of ash mantling in controlling infiltration on Hawaii also seems to apply to Mars. The Hawaiian valley also have implications for the valley networks of Martian heavily cratered terrains

  11. Heat transfer to air-water two-phase flow in slug/churn region

    International Nuclear Information System (INIS)

    Wadekar, V.V.; Tuzla, K.; Chen, J.C.

    1996-01-01

    Measured heat transfer data for air-water two-phase flow in the slug/churn flow region are reported. The measurements were obtained from a 1.3 m tall, 15.7 mm diameter vertical tube test-section. It is observed that the data exhibit different heat transfer characteristics to those predicted by the standard correlations for the convective component of flow boiling heat transfer. Comparison with the predictions of a slug flow model for evaporation shows a significant overprediction of the data. The reason for the overprediction is attributed to the sensible heating requirement of the gas phase. The slug flow model is therefore suitably modified for non-evaporating two-phase flow. This specially adapted model is found to give reasonably good predictions of the measured data

  12. Flow visualization study of inverted annular flow of post dryout heat transfer region

    International Nuclear Information System (INIS)

    Ishii, M.; De Jarlais, G.

    1985-01-01

    The inverted annular flow is important in the area of LWR accident analysis in terms of the maximum cladding temperature and effectiveness of the emergency core cooling. However, the inverted annular flow thermal-hydraulics is not well understood due to its special heat transfer condition of film boiling. The review of existing data indicates further research is needed in the areas of basic hydrodynamics related to liquid core disintegration mechanisms, slug and droplet formation, entrainment, and droplet size distributions. In view of this, the inverted flow is studied in detail experimentally. A new experimental apparatus has been constructed in which film boiling heat transfer can be established in a transparent test section. The test section consists of two coaxial quartz tubes. The annular gap between these two tubes is filled with a hot, clear fluid (syltherm 800) so as to maintain film boiling temperatures and heat transfer rates at the inner quartz tube wall. Data on liquid core stability, core break-up mechanism, and dispersed-core liquid slug and droplet sizes are obtained using F 113 as a test fluid. Both high speed movies and flash photographs (3 μsec) are used

  13. Relaxed impact craters on Ganymede: Regional variation and high heat flows

    Science.gov (United States)

    Singer, Kelsi N.; Bland, Michael T.; Schenk, Paul M.; McKinnon, William B.

    2018-01-01

    Viscously relaxed craters provide a window into the thermal history of Ganymede, a satellite with copious geologic signs of past high heat flows. Here we present measurements of relaxed craters in four regions for which suitable imaging exists: near Anshar Sulcus, Tiamat Sulcus, northern Marius Regio, and Ganymede's south pole. We describe a technique to measure apparent depth, or depth of the crater with respect to the surrounding terrain elevation. Measured relaxation states are compared with results from finite element modeling to constrain heat flow scenarios [see companion paper: Bland et al. (2017)]. The presence of numerous, substantially relaxed craters indicates high heat flows—in excess of 30–40 mW m−2 over 2 Gyr, with many small (heat flows. Crater relaxation states are bimodal for some equatorial regions but not in the region studied near the south pole, which suggests regional variations in Ganymede's thermal history.

  14. A Classification of Subaqueous Density Flows Based on Transformations From Proximal to Distal Regions

    Science.gov (United States)

    Hermidas, Navid; Eggenhuisen, Joris; Luthi, Stefan; Silva Jacinto, Ricardo; Toth, Ferenc; Pohl, Florian

    2017-04-01

    Transformations of a subaqueous density flow from proximal to distal regions are investigated. A classification of these transformations based on the state of the free shear and boundary layers and existence of a plug layer during transition from a debris flow to a turbidity current is presented. A connection between the emplaced deposit by the flow and the relevant flow type is drawn through the results obtained from a series of laboratory flume experiments. These were performed using 9%, 15%, and 21% sediment mixture concentrations composed of sand, silt, clay, and tap water, on varying bed slopes of 6°, 8°, and 9.5°, and with discharge rates of 10[m3/h] and 15[m3/h]. Stress-controlled rheometry experiments were performed on the mixtures to obtain apparent viscosity data. A classification was developed based on the imposed flow conditions, where a cohesive flow may fall within one of five distinct flow types: 1) a cohesive plug flow (PF) with a laminar free shear and boundary layers, 2) a top transitional plug flow (TTPF) containing a turbulent free shear layer, a plug layer, and a laminar boundary layer, 3) a complete transitional plug flow (CTPF) consisting of a turbulent free shear and boundary layers and a plug, 4) a transitional turbidity current (TTC) with a turbulent free shear layer and a laminar boundary layer, and, 5) a completely turbulent turbidity current (TC). During the experiments, flow type PF resulted in en masse deposition of a thick uniform ungraded muddy sand mixture, which was emplaced once the yield stress overcame the gravitational forces within the tail region of the flow. Flow type TTPF resulted in deposition of a thin ungraded basal clean sand layer during the run. This layer was covered by a muddy sand deposit from the tail. Flow type TTC did not deposit any sediment during the run. A uniform muddy sand mixture was emplaced by the tail of the flow. Flow type TC resulted in deposition of poorly sorted massive bottom sand layer. This

  15. A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Functions of Forested Wetlands in the Mississippi Alluvial Valley

    Science.gov (United States)

    2013-07-01

    regions of applicability if they prefer, and they will yield essentially the same results as this guidebook. However, this version is designed to...in the 16th century, natural levees of the major rivers were extensively used for maize agriculture by Native Americans (Hudson 1997). By the time...Together these indicate whether the stand has a structure typical of a mature forest with “ gap ” regeneration processes in place. The second term of

  16. The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards

    Science.gov (United States)

    Poff, N.L.; Richter, B.D.; Arthington, A.H.; Bunn, S.E.; Naiman, R.J.; Kendy, E.; Acreman, M.; Apse, C.; Bledsoe, B.P.; Freeman, Mary C.; Henriksen, J.; Jacobson, R.B.; Kennen, J.G.; Merritt, D.M.; O'Keeffe, J. H.; Olden, J.D.; Rogers, K.; Tharme, R.E.; Warner, A.

    2010-01-01

    The flow regime is a primary determinant of the structure and function of aquatic and riparian ecosystems for streams and rivers. Hydrologic alteration has impaired riverine ecosystems on a global scale, and the pace and intensity of human development greatly exceeds the ability of scientists to assess the effects on a river-by-river basis. Current scientific understanding of hydrologic controls on riverine ecosystems and experience gained from individual river studies support development of environmental flow standards at the regional scale. 2. This paper presents a consensus view from a group of international scientists on a new framework for assessing environmental flow needs for many streams and rivers simultaneously to foster development and implementation of environmental flow standards at the regional scale. This framework, the ecological limits of hydrologic alteration (ELOHA), is a synthesis of a number of existing hydrologic techniques and environmental flow methods that are currently being used to various degrees and that can support comprehensive regional flow management. The flexible approach allows scientists, water-resource managers and stakeholders to analyse and synthesise available scientific information into ecologically based and socially acceptable goals and standards for management of environmental flows. 3. The ELOHA framework includes the synthesis of existing hydrologic and ecological databases from many rivers within a user-defined region to develop scientifically defensible and empirically testable relationships between flow alteration and ecological responses. These relationships serve as the basis for the societally driven process of developing regional flow standards. This is to be achieved by first using hydrologic modelling to build a 'hydrologic foundation' of baseline and current hydrographs for stream and river segments throughout the region. Second, using a set of ecologically relevant flow variables, river segments within the

  17. High gene flow and genetic diversity in three economically important Zanthoxylum Spp. of Upper Brahmaputra Valley Zone of NE India using molecular markers.

    Science.gov (United States)

    Medhi, K; Sarmah, D K; Deka, M; Bhau, B S

    2014-12-01

    The genetic diversity in Zanthoxylum species viz.  Zanthoxylum nitidum, Zanthoxylum oxyphyllum and Zanthoxylum rhesta collected from the Upper Brahmaputra Valley Zone of Assam (NE India) was amplified using 13 random amplified polymorphic DNA (RAPD) markers and 9 inter-simple sequence repeat (ISSR) markers. RAPD markers were able to detect 81.82% polymorphism whereas ISSR detected 98.02% polymorphism. The genetic similarities were analyzed from the dendrogram constructed by RAPD and ISSR fingerprinting methods which divided the 3 species of Zanthoxylum into 3 clear different clusters. The principle component analysis (PCA) was carried out to confirm the clustering pattern of RAPD and ISSR analysis. Analysis of molecular variance (AMOVA) revealed the presence of significant variability between different Zanthoxylum species and within the species by both RAPD and ISSR markers. Z. nitidum was found to be sharing a high degree of variation with the other two Zanthoxylum species under study. The Nei's gene diversity (h), Shannon's information index (I), observed number of alleles (na) and effective number of alleles (ne) were also found to be higher in ISSR markers (0.3526, 0.5230, 1.9802 and 1.6145) than in RAPD markers (0.3144, 0.4610, 1.8182 and 1.5571). The values for total genotype diversity for among population (HT), within population diversity (Hs) and gene flow (Nm) were more in ISSR (0.3491, 0.2644 and 1.5610) than RAPD (0.3128, 0.2264 and 1.3087) but the mean coefficient of gene differentiation (GST) was more in RAPD (0.2764) than ISSR (0.2426). A comparison of this two finger printing methods was done by calculating MR, EMI and MI. The correlation coefficient between data matrices of RAPD and ISSR based on Mantel test was found to be significant (r = 0.65612).

  18. Regional myocardial blood flow distribution during intracoronary infusion of parathyroid hormone

    International Nuclear Information System (INIS)

    Crass, M.F. III; Lust, R.M.

    1986-01-01

    Although low doses of the biologically-active fragment of parathyroid hormone PTH-(1-34), have been shown to produce potent dilation of the coronary circulation specific regional and transmural (endo/epi) myocardial blood flow (MBF) responses to the hormone have not been described. Anesthetized open-chest mongrel dogs were instrumented to quantitate coronary blood flow and other cardiodynamic parameters. PTH-(1-34) was infused into the left circumflex artery (.008 nmol kg -1 min -1 ). Using the reference withdrawal method, radionuclide-labeled microspheres were injected before (basal flow), during (8 min after new steady-state flow), and after (restoration of basal flow) a 20 min infusion of PTH-(1-34). MFB increased from 76 +- 1.9 to 152 +- 3.5 ml min -1 100 g -1 (P < .001) during PTH-(1-34) infusion. No differences in endo/epi flow ratio or regional coronary blood flow within the left ventricle were detected. Thus, in anesthetized dogs, the increase in MBF observed secondary to the PTH-(1-34)-induced decrease in coronary resistance appeared to be uniform transmurally and regionally, and is probably not the result of a shunting or steal phenomenon

  19. Flow Orientation Analysis for Major Activity Regions Based on Smart Card Transit Data

    Directory of Open Access Journals (Sweden)

    Parul Singh

    2017-10-01

    Full Text Available Analyzing public movement in transportation networks in a city is significant in understanding the life of citizen and making improved city plans for the future. This study focuses on investigating the flow orientation of major activity regions based on smart card transit data. The flow orientation based on the real movements such as transit data can provide the easiest way of understanding public movement in the complicated transportation networks. First, high inflow regions (HIRs are identified from transit data for morning and evening peak hours. The morning and evening HIRs are used to represent major activity regions for major daytime activities and residential areas, respectively. Second, the directional orientation of flow is then derived through the directional inflow vectors of the HIRs to show the bias in directional orientation and compare flow orientation among major activity regions. Finally, clustering analysis for HIRs is applied to capture the main patterns of flow orientations in the city and visualize the patterns on the map. The proposed methodology was illustrated with smart card transit data of bus and subway transportation networks in Seoul, Korea. Some remarkable patterns in the distribution of movements and orientations were found inside the city. The proposed methodology is useful since it unfolds the complexity and makes it easy to understand the main movement patterns in terms of flow orientation.

  20. Hydrodynamic instabilities in the developing region of an axially rotating pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Miranda-Barea, A; Fabrellas-García, C; Parras, L; Pino, C del, E-mail: cpino@uma.es [Universidad de Málaga, Escuela Técnica Superior de Ingeniería Industrial, Ampliación Campus de Teatinos, 29071, Málaga, España (Spain)

    2015-06-15

    We conduct experiments in a rotating Hagen–Poiseuille flow (RHPF) through flow visualizations when the flow becomes convectively and absolutely unstable at low-to-moderate Reynolds numbers, Re. We characterize periodic patterns at a very high swirl parameter, L, when the flow overcomes the absolutely unstable region. These non-steady helical filaments wrapped around the axis appear in the developing region of the pipe. Experimentally, we compute the onset of these oscillations in the (L, Re)-plane finding that the rotation rate decreases as the Reynolds number increases in the process of achieving the time-dependent state. Additionally, we report information regarding frequencies and wavelengths that appear downstream of the rotating pipe for convectively and absolutely unstable flows, even for very high swirl parameters at which the flow becomes time-dependent in the developing region. We do not observe variations in the trends of these parameters, so these hydrodynamic instabilities in the developing region do not affect the unstable travelling waves downstream of the pipe. (paper)

  1. A regional-scale ecological risk framework for environmental flow evaluations

    Science.gov (United States)

    O'Brien, Gordon C.; Dickens, Chris; Hines, Eleanor; Wepener, Victor; Stassen, Retha; Quayle, Leo; Fouchy, Kelly; MacKenzie, James; Graham, P. Mark; Landis, Wayne G.

    2018-02-01

    Environmental flow (E-flow) frameworks advocate holistic, regional-scale, probabilistic E-flow assessments that consider flow and non-flow drivers of change in a socio-ecological context as best practice. Regional-scale ecological risk assessments of multiple stressors to social and ecological endpoints, which address ecosystem dynamism, have been undertaken internationally at different spatial scales using the relative-risk model since the mid-1990s. With the recent incorporation of Bayesian belief networks into the relative-risk model, a robust regional-scale ecological risk assessment approach is available that can contribute to achieving the best practice recommendations of E-flow frameworks. PROBFLO is a holistic E-flow assessment method that incorporates the relative-risk model and Bayesian belief networks (BN-RRM) into a transparent probabilistic modelling tool that addresses uncertainty explicitly. PROBFLO has been developed to evaluate the socio-ecological consequences of historical, current and future water resource use scenarios and generate E-flow requirements on regional spatial scales. The approach has been implemented in two regional-scale case studies in Africa where its flexibility and functionality has been demonstrated. In both case studies the evidence-based outcomes facilitated informed environmental management decision making, with trade-off considerations in the context of social and ecological aspirations. This paper presents the PROBFLO approach as applied to the Senqu River catchment in Lesotho and further developments and application in the Mara River catchment in Kenya and Tanzania. The 10 BN-RRM procedural steps incorporated in PROBFLO are demonstrated with examples from both case studies. PROBFLO can contribute to the adaptive management of water resources and contribute to the allocation of resources for sustainable use of resources and address protection requirements.

  2. Potential for a significant deep basin geothermal system in Tintic Valley, Utah

    Science.gov (United States)

    Hardwick, C.; Kirby, S.

    2014-12-01

    The combination of regionally high heat flow, deep basins, and permeable reservoir rocks in the eastern Great Basin may yield substantial new geothermal resources. We explore a deep sedimentary basin geothermal prospect beneath Tintic Valley in central Utah using new 2D and 3D models coupled with existing estimates of heat flow, geothermometry, and shallow hydrologic data. Tintic Valley is a sediment-filled basin bounded to the east and west by bedrock mountain ranges where heat-flow values vary from 85 to over 240 mW/m2. Based on modeling of new and existing gravity data, a prominent 30 mGal low indicates basin fill thickness may exceed 2 km. The insulating effect of relatively low thermal conductivity basin fill in Tintic Valley, combined with typical Great Basin heat flow, predict temperatures greater than 150 °C at 3 km depth. The potential reservoir beneath the basin fill is comprised of Paleozoic carbonate and clastic rocks. The hydrology of the Tintic Valley is characterized by a shallow, cool groundwater system that recharges along the upper reaches of the basin and discharges along the valley axis and to a series of wells. The east mountain block is warm and dry, with groundwater levels just above the basin floor and temperatures >50 °C at depth. The west mountain block contains a shallow, cool meteoric groundwater system. Fluid temperatures over 50 °C are sufficient for direct-use applications, such as greenhouses and aquaculture, while temperatures exceeding 140°C are suitable for binary geothermal power plants. The geologic setting and regionally high heat flow in Tintic Valley suggest a geothermal resource capable of supporting direct-use geothermal applications and binary power production could be present.

  3. An example of Alaknanda valley, Garhwal Himalaya, India

    Indian Academy of Sciences (India)

    2014) have been best explained by the geometry .... flows through narrow valley confined by the steep valley slopes. ... valley (figure 3b) which opens up around Srina- ... Method. 4.1 Drainage basin and stream network. Digital Elevation Model (DEM) helps in extracting ... was processed to fill the pits or sinks, and to obtain.

  4. Outer region scaling using the freestream velocity for nonuniform open channel flow over gravel

    Science.gov (United States)

    Stewart, Robert L.; Fox, James F.

    2017-06-01

    The theoretical basis for outer region scaling using the freestream velocity for nonuniform open channel flows over gravel is derived and tested for the first time. Owing to the gradual expansion of the flow within the nonuniform case presented, it is hypothesized that the flow can be defined as an equilibrium turbulent boundary layer using the asymptotic invariance principle. The hypothesis is supported using similarity analysis to derive a solution, followed by further testing with experimental datasets. For the latter, 38 newly collected experimental velocity profiles across three nonuniform flows over gravel in a hydraulic flume are tested as are 43 velocity profiles previously published in seven peer-reviewed journal papers that focused on fluid mechanics of nonuniform open channel over gravel. The findings support the nonuniform flows as equilibrium defined by the asymptotic invariance principle, which is reflective of the consistency of the turbulent structure's form and function within the expanding flow. However, roughness impacts the flow structure when comparing across the published experimental datasets. As a secondary objective, we show how previously published mixed scales can be used to assist with freestream velocity scaling of the velocity deficit and thus empirically account for the roughness effects that extend into the outer region of the flow. One broader finding of this study is providing the theoretical context to relax the use of the elusive friction velocity when scaling nonuniform flows in gravel bed rivers; and instead to apply the freestream velocity. A second broader finding highlighted by our results is that scaling of nonuniform flow in gravel bed rivers is still not fully resolved theoretically since mixed scaling relies to some degree on empiricism. As researchers resolve the form and function of macroturbulence in the outer region, we hope to see the closing of this research gap.

  5. Regional cerebral blood flow in normal pressure hydrocephalus: diagnostic and prognostic aspects

    International Nuclear Information System (INIS)

    Larsson, A.; Bergh, A.C.; Bilting, M.; Aerlig, AA.; Jacobsson, L.; Stephensen, H.; Wikkelsoe, C.

    1994-01-01

    Relative regional cerebral blood flow (rrCBF) was measured by SPET using 99m Tc-HMPAO as flow tracer, in 23 patients with normal pressure hydrocephalus (NPH). 1000 MBq 99m Tc-HMPAO was given intravenously and the rrCBF calculated as regional/cerebellar count level ratios. The patients were examined before and 3-12 months after ventriculoperitoneal shunt surgery. rrCBF was also determined in ten healthy aged matched volunteers who served as controls. The NPH patients had decreased rrCBF in the hippocampal regions and in the frontal and parietal white matter as compared to the controls. The frontal/parietal rrCBF ratio correlated with both psychiatric disability and the preoperative degree of incontinence. Decreased flow in frontal white matter, frontoparietal and hippocampal grey matter and a low frontalparietal grey matter flow ratio preoperatively correlated with improvement in both Mini Mental State score and psychiatric disability after shunt surgery. After shunt surgery the rrCBF increased in the mesencephalon, frontal grey and white matter, parietal white matter and hippocampus. The flow increase in hippocampal regions and frontal white matter correlated with improvement in psychiatric symptomatology. The results of this study regarding the frontal and hippocampal rrCBF patterns, and the clinical correlation, support the hypothesis that CBF changes in these regions are of patohphysiological and prognostic importance in NPH. (orig./MG)

  6. Hazard Assessment of Debris Flows in the Reservoir Region of Wudongde Hydropower Station in China

    Directory of Open Access Journals (Sweden)

    Cencen Niu

    2015-11-01

    Full Text Available The outbreak of debris flows in a reservoir region can affect the stability of hydropower stations and threaten the lives of the people living downstream of dams. Therefore, determining the hazard degree of debris flows in a reservoir region is of great importance. SPOT5 remote sensing images and digital elevation models are introduced to determine the characteristics of debris-flow catchments. The information is acquired through comprehensive manual investigation and satellite image interpretation. Ten factors that influence debris flow are extracted for the hazard assessment. The weight of these factors is determined using the analytic hierarchy process method. As a multi-criterion decision analysis method, fuzzy synthetic evaluation is applied for hazard assessment.

  7. Structural Heterogeneities in Southeast Tibet: Implications for Regional Flow in the Lower Crust and Upper Mantle

    Directory of Open Access Journals (Sweden)

    Zhi Wang

    2012-01-01

    Full Text Available Our seismic study together with the MT analysis reveal a “R-shape” flow existing in both the lower crust and uppermost mantle, which suggests the crustal deformation along the deep, large sutures (such as the Longmen Shan fault and the Anninghe Fault under the southeastern Tibetan Plateau is maintained by dynamic pressure from the regional flow intermingled with the hot upwelling asthenosphere. The material in the lower crust and uppermost mantle flowing outward from the center of the plateau is buttressed by the old, strong lithosphere that underlies the Sichuan basin, pushing up on the crust above and maintaining steep orogenic belt through dynamic pressure. We therefore consider that the “R-shape” regional flow played a key role in the crustal deformation along the deep suture zones of the Bangong-Nujiang, the Longmen-Shan faults, and other local heavily faulted zones beneath the southeastern Tibetan Plateau.

  8. A Guide to Ordinary High Water Mark (OHWM) Delineation for Non-Perennial Streams in the Western Mountains, Valleys, and Coast Region of the United States

    Science.gov (United States)

    2014-08-01

    38 15 Remotely sensed images acquired from Google Earth and ground-based images from 2011 of a non-perennial stream in Teton County, WY...less confined. Debris flows and landslides are common in the region, accounting for much, if not most, of the sediment flux from headwater streams in...information is becoming in- creasingly available and easy to analyze via free, open-access resources such as Google Earth (www.earth.google.com). Where

  9. Daily temperature changes and variability in ENSEMBLES regional models predictions: Evaluation and intercomparison for the Ebro Valley (NE Iberia)

    KAUST Repository

    El Kenawy, Ahmed M.

    2014-12-18

    We employ a suite of regional climate models (RCMs) to assess future changes in summer (JJA) maximum temperature (Tmax) over the Ebro basin, the largest hydrological division in the Iberian Peninsula. Under the A1B emission scenario, future changes in both mean values and their corresponding time varying percentiles were examined by comparing the control period (1971-2000) with two future time slices: 2021-2050 and 2071-2100. Here, the rationale is to assess how lower/upper tails of temperature distributions will change in the future and whether these changes will be consistent with those of the mean. The model validation results demonstrate significant differences among the models in terms of their capability to representing the statistical characteristics (e.g., mean, skewness and asymmetry) of the observed climate. The results also indicate that the current substantial warming observed in the Ebro basin is expected to continue during the 21st century, with more intense warming occurring at higher altitudes and in areas with greater distance from coastlines. All models suggest that the region will experience significant positive changes in both the cold and warm tails of temperature distributions. However, the results emphasize that future changes in the lower and upper tails of the summer Tmax distribution may not follow the same warming rate as the mean condition. In particular, the projected changes in the warm tail of the summer Tmax are shown to be significantly larger than changes in both mean values and the cold tail, especially at the end of the 21st century. The finding suggests that much of the changes in the summer Tmax percentiles will be driven by a shift in the entire distribution of temperature rather than only changes in the central tendency. Better understanding of the possible implications of future climate systems provides information useful for vulnerability assessments and the development of local adaptation strategies for multi

  10. Some aspects of regional flow of variable-density groundwater in crystalline basement rock of Sweden

    International Nuclear Information System (INIS)

    Voss, C.I.; Andersson, Johan

    1991-12-01

    The distribution of saltwaters in the Baltic shield in Sweden is consistent with ongoing but incomplete Holocene flushing and depends on the geometry and connectivity of conductive structures at both regional and local scales, and on the surface topography. Numerical simulation of regional variable-density fluid flow during Holocene land-rise and coastal regression shows that the existence of any old saltwater, whether derived from submarine recharge in regions below Sweden's highest post-glacial coastline or geochemical processes, is an indication either of slow fluid movements through the bedrock over long times, or of long travel distances through fracture systems before arriving at measurement points. During the land-rise period, regional flow is not affected by the variable density of fluids in the upper few kilometers of the shield and the topography of the water table is the only driving force. The spatial distribution of meteoric flushing water and pre-Holocene waters may be complex, with the possibility of relatively fresh water in fracture zones below salty units even at depths of a few kilometers. The domination of the topographic driving force implies that deep saltwater is not necessarily stagnant, and significant saltwater flows may be expected to occur in well-connected horizons even at depth. Local topography variation and fracture zone location combine to create a complex flow field in which local topographic driving forces extend to considerable depth in some areas, whereas regional topographic forces predominate in others. Thus, a pattern may be difficult to discern in measurements of the regional saltwater distribution, although it is clear that the coastal region is the major zone of discharge for deeper pre-Holocene fluids. During the land-rise period, regional flow equilibrates with changing climatic conditions and coastal positions, while the distribution of flushing water and older waters lags and will perpetually change between successive

  11. Dynamic alteration of regional cerebral blood flow during carotid compression and proof of reversibility

    International Nuclear Information System (INIS)

    Asahi, Kouichi; Hori, M; Hamasaki, N; Sato, S; Nakanishi, H; Kuwatsuru, R; Sasai, K; Aoki, S

    2012-01-01

    It is difficult to non-invasively visualize changes in regional cerebral blood flow caused by manual compression of the carotid artery. To visualize dynamic changes in regional cerebral blood flow during and after manual compression of the carotid artery. Two healthy volunteers were recruited. Anatomic features and flow directions in the circle of Willis were evaluated with time-of-flight magnetic resonance angiography (MRA) and two-dimensional phase-contrast (2DPC) MRA, respectively. Regional cerebral blood flow was visualized with territorial arterial spin-labeling magnetic resonance imaging (TASL-MRI). TASL-MRI and 2DPC-MRA were performed in three states: at rest, during manual compression of the right carotid artery, and after decompression. In one volunteer, time-space labeling inversion pulse (Time-SLIP) MRA was performed to confirm collateral flow. During manual carotid compression, in one volunteer, the right thalamus changed to be fed only by the vertebrobasilar system, and the right basal ganglia changed to be fed by the left internal carotid artery. In the other volunteer, the right basal ganglia changed to be fed by the vertebrobasilar system. 2DPC-MRA showed that the flow direction changed in the right A1 segment of the anterior cerebral artery and the right posterior communicating artery. Perfusion patterns and flow directions recovered after decompression. Time-SLIP MRA showed pial vessels and dural collateral circulation when the right carotid artery was manually compressed. Use of TASL-MRI and 2DPC-MRA was successful for non-invasive visualization of the dynamic changes in regional cerebral blood flow during and after manual carotid compression

  12. Potentials of positron emission tomography for regional cerebral blood flow evaluation

    International Nuclear Information System (INIS)

    Depresseux, J.C.

    1982-01-01

    A general overview of the potentials of positron emission tomography and of positron-emitting radiopharmaceuticals for the evaluation of regional cerebral blood flow is proposed and discussed. Specific characteristics of this technique are described, with special stress on conceptual and methodological implications. Four different approaches to the problem of the determination of cerebral blood flow are distinguished: trapping equilibrium methods, steady state equilibrium methods, clearance methods and convoluted kinetic methods [fr

  13. Debris flow susceptibility assessment based on an empirical approach in the central region of South Korea

    Science.gov (United States)

    Kang, Sinhang; Lee, Seung-Rae

    2018-05-01

    Many debris flow spreading analyses have been conducted during recent decades to prevent damage from debris flows. An empirical approach that has been used in various studies on debris flow spreading has advantages such as simple data acquisition and good applicability for large areas. In this study, a GIS-based empirical model that was developed at the University of Lausanne (Switzerland) is used to assess the debris flow susceptibility. Study sites are classified based on the types of soil texture or geological conditions, which can indirectly consider geotechnical or rheological properties, to supplement the weaknesses of Flow-R which neglects local controlling factors. The mean travel angle for each classification is calculated from a debris flow inventory map. The debris flow susceptibility is assessed based on changes in the flow-direction algorithm, an inertial function with a 5-m DEM resolution. A simplified friction-limited model was applied to the runout distance analysis by using the appropriate travel angle for the corresponding classification with a velocity limit of 28 m/s. The most appropriate algorithm combinations that derived the highest average of efficiency and sensitivity for each classification are finally determined by applying a confusion matrix with the efficiency and the sensitivity to the results of the susceptibility assessment. The proposed schemes can be useful for debris flow susceptibility assessment in both the study area and the central region of Korea, which has similar environmental factors such as geological conditions, topography and rainfall characteristics to the study area.

  14. Regional brain glucose metabolism and blood flow in streptozocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Jakobsen, J.; Nedergaard, M.; Aarslew-Jensen, M.; Diemer, N.H.

    1990-01-01

    Brain regional glucose metabolism and regional blood flow were measured from autoradiographs by the uptake of [ 3 H]-2-deoxy-D-glucose and [ 14 C]iodoantipyrine in streptozocin-induced diabetic (STZ-D) rats. After 2 days of diabetes, glucose metabolism in the neocortex, basal ganglia, and white matter increased by 34, 37, and 8%, respectively, whereas blood flow was unchanged. After 4 mo, glucose metabolism in the same three regions was decreased by 32, 43, and 60%. This reduction was paralleled by a statistically nonsignificant reduction in blood flow in neocortex and basal ganglia. It is suggested that the decrease of brain glucose metabolism in STZ-D reflects increased ketone body oxidation and reduction of electrochemical work

  15. pO2 and regional blood flow in a rabbit model of limb ischemia.

    Science.gov (United States)

    Grinberg, Oleg Y; Hou, Huagang; Grinberg, Stalina A; Moodie, Karen L; Demidenko, Eugene; Friedman, Bruce J; Post, Mark J; Swartz, Harold M

    2004-06-01

    Oxygen tension (pO2) in muscles and regional blood flow were measured in a rabbit model of limb ischemia. pO2 was measured repetitively by EPR oximetry with EMS char in four different muscle groups in the same animals. Blood flow in the same muscles at several time points was measured using microspheres. A linear mixed effects model was developed to analyze the data on pO2 and blood flow. The results suggest that while under normal conditions pO2 in muscles does not depend significantly on blood flow, immediately after arterial occlusion pO2 correlates linearly with blood flow. Within two weeks of occlusion the pO2 is recovered to 45% of baseline. This study demonstrates, for the first time, the applicability of EPR oximetry in animals larger than rodents.

  16. Regional cerebral blood flow characteristics of the Sturge-Weber syndrome

    International Nuclear Information System (INIS)

    Riela, A.R.; Stump, D.A.; Roach, E.S.; McLean, W.T. Jr.; Garcia, J.C.

    1985-01-01

    Four patients with the Sturge-Weber syndrome were studied using the non-invasive Xenon-133 inhalation technique. All four patients had decreased regional cerebral blood flow in the area of their lesion, and in two patients who were subsequently tested with 5% carbon dioxide inhalation, impaired vasomotor reactivity was documented. Diminished regional cerebral blood flow is consistent with previously described nuclide flow studies which demonstrated a delay in the initial perfusion blush in the region of the abnormal vasculature. The focal decrease in blood flow was greatest in the most severely affected patient, but was also prominent in the two younger patients, both of whom have excellent neurologic function. These studies suggest that localized decrease in blood flow and vasomotor dysfunction in Sturge-Weber syndrome can precede the occurrence of severe neurologic impairment and extensive cerebral atrophy and possibly be a major contributing factor in progressive dysfunction. A secondary observation was that the blood flow in the unaffected hemisphere was significantly greater in two children compared to the two adults and was similar to the age-related differences reported for normal children and adults

  17. Three-dimensional fluid flow phenomena in the blade end wall corner region

    Science.gov (United States)

    Hazarika, B. K.; Raj, R.; Boldman, D. R.

    1986-01-01

    Flow visualization, static and total pressure measurements, and mean velocity profile measurements with a single-sensor inclined hot wire probe, are used in a study of three-dimensional flow at a turbine blade end wall corner region for six critical axial stations along the blade chord. Three vortices are identified: (1) a horseshoe vortex near the leading edge; (2) a corner eddy between the horseshoe vortex and the corner; and (3) a vortex at the rear portion of the corner due to the corner eddy's secondary flow. Attention is given to the relative size and rate-of-spread of the vortices in the streamwise direction.

  18. Single-photon tomographic determination of regional cerebral blood flow in epilepsy

    International Nuclear Information System (INIS)

    Bonte, F.J.; Devous, M.D. Sr.; Stokely, E.M.; Homan, R.W.

    1983-01-01

    Using a single-photon emission computed tomographic scanner (SPECT) the authors determined regional cerebral blood flow (rCBF) with inhaled xenon-133, a noninvasive procedure. Studies were performed in 40 normal individuals, and these were compared with rCBF determinations in 51 patients with seizure disorders. Although positive results were obtained in 15 of 16 patients with mass lesions, the group of principal interest comprised 25 patients suffering from ''temporal lobe'' epilepsy. Only one of these had a positive x-ray computed tomogram, but 16 had positive findings on rCBF study. These findings included increased local blood flow in the ictal state and reduced flow interictally

  19. Knowledge and perception of pulmonary tuberculosis in pastoral communities in the middle and Lower Awash Valley of Afar region, Ethiopia

    Directory of Open Access Journals (Sweden)

    Mamo Gezahegne

    2010-04-01

    Full Text Available Abstract Background Afar pastoralists live in the northeast of Ethiopia, confined to the most arid part of the country, where there is least access to educational, health and other social services. Tuberculosis (TB is one of the major public health problems in Afar region. Lack of knowledge about TB could affect the health-seeking behaviour of patients and sustain the transmission of the disease within the community. In this study, we assessed the knowledge and perception of apparently healthy individuals about pulmonary tuberculosis (PTB in pastoral communities of Afar. Methods Between March and May 2009, a community-based cross-sectional questionnaire survey involving 818 randomly selected healthy individuals was conducted in pastoral communities of Afar region. Moreover, two focus group discussions (FGDs, one with men and one with women, were conducted in each of the study area to supplement the quantitative study. Results The majority (95.6% of the interviewees reported that they have heard about PTB (known locally as "Labadore". However, the participants associated the cause of PTB with exposure to cold air (45.9%, starvation (38%, dust (21.8% or smoking/chewing Khat (Catha edulis (16.4%. The discussants also suggested these same factors as the cause of PTB. All the discussants and the majority (74.3% of the interviewees reported that persistent cough as the main symptom of PTB. About 87.7% of the interviewees and all the discussants suggested that PTB is treatable with modern drugs. All the discussants and the majority (95% of the interviewees mentioned that the disease can be transmitted from a patient to another person. Socio-cultural practices, e.g. sharing cups (87.6%, and house type (59.8% were suggested as risk factors for exposure to PTB in the study areas, while shortage of food (69.7% and chewing khat (53.8% were mentioned as factors favouring disease development. Almost all discussants and a considerable number (20.4% of the

  20. Regional cerebral blood flow in psychiatry: The resting and activated brains of schizophrenic patients

    International Nuclear Information System (INIS)

    Gur, R.E.

    1984-01-01

    The investigation of regional brain functioning in schizophrenia has been based on behavioral techniques. Although results are sometimes inconsistent, the behavioral observations suggest left hemispheric dysfunction and left hemispheric overreaction. Recent developments in neuroimaging technology make possible major refinements in assessing regional brain function. Both anatomical and physiological information now be used to study regional brain development in psychiatric disorders. This chapter describes the application of one method - the xenon-133 technique for measuring regional cerebral blood flow (rCBF) - in studying the resting and activated brains of schizoprenic patients

  1. A regionally-linked, dynamic material flow modelling tool for rolled, extruded and cast aluminium products

    DEFF Research Database (Denmark)

    Bertram, M.; Ramkumar, S.; Rechberger, H.

    2017-01-01

    A global aluminium flow modelling tool, comprising nine trade linked regions, namely China, Europe, Japan, Middle East, North America, Other Asia, Other Producing Countries, South America and Rest of World, has been developed. The purpose of the Microsoft Excel-based tool is the quantification...... of regional stocks and flows of rolled, extruded and casting alloys across space and over time, giving the industry the ability to evaluate the potential to recycle aluminium scrap most efficiently. The International Aluminium Institute will update the tool annually and publish a visualisation of results...

  2. U-Pb zircon geochronology of intrusive and basement rocks in the Jacurici Valley region, Sao Francisco Craton, BA, Brazil

    International Nuclear Information System (INIS)

    Silveira, Carlos Jose Sobrinho da; Frantz, Jose Carlos; Marques, Juliana Charao; Roos, Siegbert; Peixoto, Vinicius Medina

    2015-01-01

    The Jacurici Complex, located in the NE of the Sao Francisco Craton, is constituted by several Cr-mineralized mafic-ultramafic N-S bodies, possible fragments of a single sill disrupted during deformation. Some works suggest it is intruded on the Serrinha Block while others consider it in the Salvador-Curaca Belt. The basement on this region is informally divided into paragneisses and orthogneisses; the latter is supposed to be younger considering it is less deformed. Petrography revealed that some of the paragneisses are alkali-feldspar granite strongly milonitized. The orthogneisses occur at the north and consist, at least in part, of monzogranites with heterogeneous deformation, locally of low temperature. U-Pb zircon dating were performed for five representative samples. Just three provided good concordia ages. A mafic rock produced a 2102 ± 5 Ma age and it is petrographically similar to the metanorites described in the Jacurici Complex, being interpreted as the record of the first pulses of the mafic magmatism. A monzogranite yielded a 2995 ± 15 Ma age, older than expected, related to the Serrinha Block. The alkali-feldspar granite yielded a 2081 ± 3 Ma age. The Itiuba Syenite and the pegmatites that crosscut the Jacurici Complex have similar ages. Considering the lack of information about the supracrustal sequence that hosts the intrusive alkaline and mafic-ultramafic rocks at the Ipueira and the Medrado areas, it is possible that part of the terrain belongs to the Salvador-Curaca Belt. We suggest that the Jacurici Complex could be intruded after the tectonic amalgamation between the Serrinha Block and the older part of the Salvador-Curaca Belt and, therefore, could be hosted by both terrains. (author)

  3. Determinants of infant mortality in the Jequitinhonha Valley and in the North and Northeast regions of Brazil

    Directory of Open Access Journals (Sweden)

    Maria do Carmo Leal

    Full Text Available ABSTRACT OBJECTIVE This study aims to identify the social and demographic determinants, in addition to the determinants of reproductive health and use of health services, associated with infant mortality in small and medium-sized cities of the North, Northeast and Southeast regions of Brazil. METHODS This is a case-control study with 803 cases of death of children under one year and 1,969 live births (controls, whose mothers lived in the selected cities in 2008. The lists of the names of cases and controls were extracted from the Sistema de Informação sobre Mortalidade (SIM – Mortality Information System and the Sistema de Informação sobre Nascidos Vivos (SINASC – Live Birth Information System and supplemented by data obtained by the research of “active search of death and birth”. Data was collected in the household using a semi-structured questionnaire, and the analysis was carried out using multiple logistic regression. RESULTS The final model indicates that the following items are positively and significantly associated with infant mortality: family working in agriculture, mother having a history of fetal and infant losses, no prenatal or inadequate prenatal, and not being associated to the maternity hospital during the prenatal period. We have observed significant interactions to explain the occurrence of infant mortality between race and socioeconomic score and between high-risk pregnancy and pilgrimage for childbirth. CONCLUSIONS The excessive number of home deliveries and pilgrimage for childbirth indicates flaws in the line of maternity care and a lack of collaboration between the levels of outpatient and hospital care. The study reinforces the need for an integrated management of the health care networks, leveraging the capabilities of cities in meeting the needs of pregnancy, delivery and birth with quality.

  4. Structural organization of the quiescent core region in a turbulent channel flow

    International Nuclear Information System (INIS)

    Yang, Jongmin; Hwang, Jinyul; Sung, Hyung Jin

    2016-01-01

    Highlights: • The structural organization of the quiescent core region in a turbulent channel flow is explored. • The quiescent core region is the uniform momentum zone located at the center of the channel. • The boundary of the quiescent core region can be identified from the probability density function of the streamwise modal velocity. • The prograde and retrograde vortices form a counter-rotating vortex pair at the boundary of the core region. - Abstract: The structural organization of the quiescent core region in a turbulent channel flow was explored using direct numerical simulation data at Re_τ = 930. The quiescent core region is the uniform momentum zone located at the center of the channel, and contains the highest momentum with a low level of turbulence. The boundary of the quiescent core region can be identified from the probability density function of the streamwise modal velocity. The streamwise velocity changes abruptly near the boundary of the core region. The abrupt jump leads the increase of the velocity gradient, which is similar to the vorticity thickness of the laminar superlayer at the turbulent/non-turbulent interface. The strong shear induced from the abrupt change is originated from the vortical structure lying on the boundary of the core region. The spanwise population densities of the prograde and retrograde vortices have a local maximum near the boundary of the core region. The prograde vortex dominantly contributes to the total mean shear near the core boundary and the contribution to the total mean shear rapidly decreases within the core region. The prograde and retrograde vortices form a counter-rotating vortex pair at the boundary of the core region associated with the nibbling mechanism. The boundary of the core region contains large-scale concave and convex features. The concave (convex) core interface is organized by the negative-u (positive-u) regions which induce the ejections (sweeps) around the core boundary.

  5. Cowichan Valley energy mapping and modelling. Report 4 - Analysis of opportunity costs and issues related to regional energy resilience. Final report. [Vancouver Island, Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    The driving force behind the Integrated Energy Mapping and Analysis project was the identification and analysis of a suite of pathways that the Cowichan Valley Regional District (CVRD) can utilise to increase its energy resilience, as well as reduce energy consumption and GHG emissions, with a primary focus on the residential sector. Mapping and analysis undertaken will support provincial energy and GHG reduction targets, and the suite of pathways outlined will address a CVRD internal target that calls for 75% of the region's energy within the residential sector to come from locally sourced renewables by 2050. The target has been developed as a mechanism to meet resilience and climate action target. The maps and findings produced are to be integrated as part of a regional policy framework currently under development. Based on the outputs from the first three tasks, a suite of coherent pathways towards the overall target of 75% residential local energy consumption was created, and the costs and benefits for the region were calculated. This was undertaken via a scenario analysis which also highlighted the risks and robustness of the different options within the pathways. In addition to a direct economic comparison between the different pathways, more qualitative issues were described, including potential local employment, environmental benefits and disadvantages, etc. The main tool utilised in this analysis was a tailor made Excel energy model that includes mechanisms for analysing improvements in the CVRD energy system down to an area level, for example renewable energy in residential buildings, renewable energy generation, and the effects of energy efficiency improvements. For the industrial, commercial, and transport sectors, simple and generic forecasts and input possibilities were included in the model. The Excel 'technology cost' and 'energy' models are accompanied with a user manual so that planners within the CVRD can become well

  6. Regional cerebral blood flow and CSF pressures during Cushing response induced by a supratentorial expanding mass

    International Nuclear Information System (INIS)

    Schrader, H.; Zwetnow, N.N.; Moerkrid, L.

    1985-01-01

    In order to delineate the critical blood flow pattern during the Cushing response in intracranial hypertension, regional cerebral blood flow was measured with radioactive microspheres in 12 anesthetized dogs at respiratory arrest caused either by expansion of an epidural supratentorial balloon or by cisternal infusion. Regional cerebrospinal fluid pressures were recorded and the local cerebral perfusion pressure calculated in various cerebrospinal compartments. In the 8 dogs of the balloon expansion group, the systemic arterial pressure was unmanipulated in 4, while it was kept at a constant low level (48 and 70 mm Hg) in 2 dogs and, in another 2 dogs, at a constant high level (150 and 160 mm Hg) induced by infusion of Aramine. At respiratory arrest, regional cerebral blood flow had a stereotyped pattern and was largely independent of the blood pressure level. In contrast, concomitant pressure gradients between the various cerebrospinal compartments varied markedly in the 3 animal groups increasing with higher arterial pressure. Flow decreased by 85-100% supratentorially and by 70-100% in the upper brain stem down to the level of the upper pons, while changes in the lower brain stem were minor, on the average 25%. When intracranial pressure was raised by cisternal infusion in 4 dogs, the supratentorial blood flow pattern at respiratory arrest was appriximately similar to the flow pattern in the balloon inflation group. However, blood flow decreased markedly (74-85%) also in the lower brain stem. The results constitute another argument in favour of the Cushing response in supratentorial expansion being caused by ischemia in the brain stem. The critical ischemic region seems to be located rostrally to the oblongate medulla, probably in the pons. (author)

  7. A trust region interior point algorithm for optimal power flow problems

    Energy Technology Data Exchange (ETDEWEB)

    Wang Min [Hefei University of Technology (China). Dept. of Electrical Engineering and Automation; Liu Shengsong [Jiangsu Electric Power Dispatching and Telecommunication Company (China). Dept. of Automation

    2005-05-01

    This paper presents a new algorithm that uses the trust region interior point method to solve nonlinear optimal power flow (OPF) problems. The OPF problem is solved by a primal/dual interior point method with multiple centrality corrections as a sequence of linearized trust region sub-problems. It is the trust region that controls the linear step size and ensures the validity of the linear model. The convergence of the algorithm is improved through the modification of the trust region sub-problem. Numerical results of standard IEEE systems and two realistic networks ranging in size from 14 to 662 buses are presented. The computational results show that the proposed algorithm is very effective to optimal power flow applications, and favors the successive linear programming (SLP) method. Comparison with the predictor/corrector primal/dual interior point (PCPDIP) method is also made to demonstrate the superiority of the multiple centrality corrections technique. (author)

  8. Regional cerebral blood flow in Parkinson's disease by [sup 123]I-IMP SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Yoshihiro [Okayama Univ. (Japan). School of Medicine

    1994-06-01

    Regional cerebral blood flow (rCBF) was evaluated in 63 patients with Parkinson's disease (PD) by single-photon emission computed tomography (SPECT) using N-isopropyl-p-[sup 123]I-iodoamphetamine ([sup 123]I-IMP) as a tracer. Evaluation of the SPECT images was performed in accordance with the rCBF quantification method using a microsphere model. Patients in stage IV demonstrated significantly lower rCBF than those in stage II at the frontal, temporal, parietal, occipital regions and in the thalamus and cerebellum. Subjects with mental symptoms demonstrated decreased rCBF in every region in the brain. The present study indicates that clinical exacerbation and manifestation of dementia and other psychiatric symptoms in Parkinson's disease are associated with decreased blood flow in various brain regions. (author).

  9. The effects of activation procedures on regional cerebral blood flow in humans

    International Nuclear Information System (INIS)

    Rozenfeld, D.; Wolfson, L.I.

    1981-01-01

    Regional cerebral blood flow (r-CBF) can be measured using 133XE and collimated detectors. The radionuclide can be administered either by inhalation or intracarotid injection. Comparison of blood flow determinations at rest and during performance of an activity identifies those brain regions that become active during the performance of the activity. Relatively specific patterns of r-CBF are observed during hand movements, sensory stimulation, eye movements, speech, listening, and reading. Regional CBF changes during reasoning and memorization are less specific and less well characterized. It is clear that brain lesions affect r-CBF responses to various activities, but this effect has not been well correlated with functional deficits or recovery of function. Regional CBF measurement gives information about brain activity and the functional response to experimental manipulation. This approach may well add to our understanding of normal, as well as pathologic, brain functioning

  10. Geohydrology, water quality, and simulation of groundwater flow in the stratified-drift aquifer system in Virgil Creek and Dryden Lake Valleys, Town of Dryden, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.; Bugliosi, Edward F.

    2013-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Tompkins County Planning Department and the Town of Dryden, New York, began a study of the stratified-drift aquifer system in the Virgil Creek and Dryden Lake Valleys in the Town of Dryden, Tompkins County. The study provided geohydrologic data needed by the town and county to develop a strategy to manage and protect their water resources. In this study area, three extensive confined sand and gravel aquifers (the upper, middle, and lower confined aquifers) compose the stratified-drift aquifer system. The Dryden Lake Valley is a glaciated valley oriented parallel to the direction of ice movement. Erosion by ice extensively widened and deepened the valley, truncated bedrock hillsides, and formed a nearly straight, U-shaped bedrock trough. The maximum thickness of the valley fill in the central part of the valley is about 400 feet (ft). The Virgil Creek Valley in the east part of the study area underwent less severe erosion by ice than the Dryden Lake Valley, and hence, it has a bedrock floor that is several hundred feet higher in altitude than that in the Dryden Lake Valley. The sources and amounts of recharge were difficult to identify in most areas because the confined aquifers are overlain by confining units. However, in the vicinity of the Virgil Creek Dam, the upper confined aquifer crops out at land surface in the floodplain of a gorge eroded by Virgil Creek, and this is where the aquifer receives large amounts of recharge from precipitation that directly falls over the aquifer and from seepage losses from Virgil Creek. The results of streamflow measurements made in Virgil Creek where it flows through the gorge indicated that the stream lost 1.2 cubic feet per second (ft3/s) or 0.78 million gallons per day (Mgal/d) of water in the reach extending from 220 ft downstream from the dam to 1,200 ft upstream from the dam. In the southern part of the study area, large amounts of recharge also replenish the

  11. Hydrology of modern and late Holocene lakes, Death Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, D.N.

    1996-07-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi{sup 2}, closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area.

  12. Hydrology of modern and late Holocene lakes, Death Valley, California

    International Nuclear Information System (INIS)

    Grasso, D.N.

    1996-01-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi 2 , closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area

  13. Revised model of regional groundwater flow in the Whiteshell research area

    International Nuclear Information System (INIS)

    Ophori, D.U.; Brown, A.; Chan, T.; Davison, C.C.; Gascoyne, M.; Scheier, N.W.; Stanchell, F.W.; Stevenson, D.R.

    1996-08-01

    Steady-state regional groundwater flow of the Whiteshell Research Area (WRA) has been simulated in order to evaluate alternate locations for a hypothetical nuclear fuel waste disposal vault that maximize the retention of vault contaminants in long, slow groundwater flow paths through the geosphere. A revised conceptual model of the hydrogeologic conditions was constructed using all the information obtained from field investigations at the WRA between 1977 and 1994. All the simulations were performed using AECL's three-dimensional finite element code, MOTIF. A base-case simulation was performed using average value estimates of hydraulic parameters obtained from the field data, and freshwater was assumed to occur in the entire groundwater flow region. The simulated freshwater heads did not compare favourably with the freshwater beads that were derived from the field data. The simulated equivalent freshwater heads for the final calibrated model compared reasonably well with measured heads in the network of boreholes at the WRA. The simulated recharge rate for the final model was 4.8 mm/a Most of the groundwater flow in the model occurred in local systems between ground surface and a depth of 1000 m. A particle tracking code, TRACK3D, was used to determine the pathways, travel times and exit locations of particles released from different depths in the groundwater velocity field of the calibrated model. The exit locations of these pathways were found to be controlled by the network of regional fracture zones in the model. These results were used to select a location for a hypothetical nuclear fuel waste disposal vault in the regional groundwater flow model that maximizes the retention of vault contaminants in long, slow groundwater flow paths. A smaller region of about 75 km 2 was identified around this location for the development of a local geosphere model. (author). 32 refs., 4 tabs., 29 figs

  14. Field studies of transport and dispersion of atmospheric tracers in nocturnal drainage flows

    Science.gov (United States)

    Paul H. Gudiksen; Gilbert J. Ferber; Malcolm M. Fowler; Wynn L. Eberhard; Michael A. Fosberg; William R. Knuth

    1984-01-01

    A series of tracer experiments were carried out as part of the Atmospheric Studies in Complex Terrain (ASCOT) program to evaluate pollutant transport and dispersion characteristics of nocturnal drainage flows within a valley in northern California. The results indicate that the degree of interaction of the drainage flows with the larger scale regional flows are...

  15. Simulations of Ground-Water Flow and Particle Pathline Analysis in the Zone of Contribution of a Public-Supply Well in Modesto, Eastern San Joaquin Valley, California

    Science.gov (United States)

    Burow, Karen R.; Jurgens, Bryant C.; Kauffman, Leon J.; Phillips, Steven P.; Dalgish, Barbara A.; Shelton, Jennifer L.

    2008-01-01

    Shallow ground water in the eastern San Joaquin Valley is affected by high nitrate and uranium concentrations and frequent detections of pesticides and volatile organic compounds (VOC), as a result of ground-water development and intensive agricultural and urban land use. A single public-supply well was selected for intensive study to evaluate the dominant processes affecting the vulnerability of public-supply wells in the Modesto area. A network of 23 monitoring wells was installed, and water and sediment samples were collected within the approximate zone of contribution of the public-supply well, to support a detailed analysis of physical and chemical conditions and processes affecting the water chemistry in the well. A three-dimensional, steady-state local ground-water-flow and transport model was developed to evaluate the age of ground water reaching the well and to evaluate the vulnerability of the well to nonpoint source input of nitrate and uranium. Particle tracking was used to compute pathlines and advective travel times in the ground-water flow model. The simulated ages of particles reaching the public-supply well ranged from 9 to 30,000 years, with a median of 54 years. The age of the ground water contributed to the public-supply well increased with depth below the water table. Measured nitrate concentrations, derived primarily from agricultural fertilizer, were highest (17 milligrams per liter) in shallow ground water and decreased with depth to background concentrations of less than 2 milligrams per liter in the deepest wells. Because the movement of water is predominantly downward as a result of ground-water development, and because geochemical conditions are generally oxic, high nitrate concentrations in shallow ground water are expected to continue moving downward without significant attenuation. Simulated long-term nitrate concentrations indicate that concentrations have peaked and will decrease in the public-supply well during the next 100 years

  16. Type of aphasia and regional cerebral blood flow. A study with /sup 133/Xe inhalation method

    Energy Technology Data Exchange (ETDEWEB)

    Tagawa, Koichi; Sugimoto, Keiko; Minematsu, Kazuo; Yamaguchi, Takenori; Naritomi, Hiroaki; Sawada, Tohru (National Cardiovascular Center, Suita, Osaka (Japan))

    1982-11-01

    In 40 patients with aphasia due to cerebral infarction, regional cerebral blood flow (rCBF) was measured after 2 months of ictus with /sup 133/Xe inhalation method. There were 18 cases with motor aphasia and 22 with sensory aphasia. On the measurements of rCBF, 3 detectors were placed over frontal region (group F), 3 over temporal region (group T), and remaining 3 over parietal region (group P), of the dominant hemisphere. The flow values were compared with the rCBF values obtained from 21 control subjects who had no abnormality in CT scan and on neurological examinations. The control subjects revealed the hyperfrontal pattern of flow distribution; rCBF values in groups F, T and P, which were expressed as an initial slope index, were 50.0 +- 4.8, 48.0 +- 5.1 and 47.4 +- 4.5, respectively. The hyperfrontal pattern was absent in cases with motor aphasia. In this group, rCBF in groups F, T and P were 42.0 +- 8.3, 44.7 +- 8.4 and 41.0 +- 8.5, respectively, and rCBF in frontal region was significantly reduced compared with that in the control group. In sensory aphasia, rCBF values in groups F, T and P were all significantly reduced compared to the controls showing 44.0 +- 5.7, 42.8 +- 5.1 and 40.6 +- 5.4, respectively. In this group, the hyperfrontal pattern was maintained at a low flow level. When absolute rCBF values were compared between motor and sensory aphasia, there was no significant difference between these 2 groups. However, regional flow distribution in motor aphasia was significantly different from that of sensory aphasia, and the cases having the lowest value in group F were more frequently found in the former than in the latter.

  17. The cometary H II regions of DR 21: Bow shocks or champagne flows or both?

    Science.gov (United States)

    Immer, K.; Cyganowski, C.; Reid, M. J.; Menten, K. M.

    2014-03-01

    We present deep Very Large Array H66α radio recombination line (RRL) observations of the two cometary H II regions in DR 21. With these sensitive data, we test the "hybrid" bow shock/champagne flow model previously proposed for the DR 21 H II regions. The ionized gas down the tail of the southern H II region is redshifted by up to ~30 km s-1 with respect to the ambient molecular gas, as expected in the hybrid scenario. The RRL velocity structure, however, reveals the presence of two velocity components in both the northern and southern H II regions. This suggests that the ionized gas is flowing along cone-like shells, swept-up by stellar winds. The observed velocity structure of the well-resolved southern H II region is most consistent with a picture that combines a stellar wind with stellar motion (as in bow shock models) along a density gradient (as in champagne flow models). The direction of the implied density gradient is consistent with that suggested by maps of dust continuum and molecular line emission in the DR 21 region. The image cubes are only available as a FITS file at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/563/A39Table 2, Fig. 4, and Appendices A and B are available in electronic form at http://www.aanda.org

  18. Regional Myocardial Blood Volume and Flow: First-Pass MR Imaging with Polylysine-Gd-DTPA

    Science.gov (United States)

    Wilke, Norbert; Kroll, Keith; Merkle, Hellmut; Wang, Ying; Ishibashi, Yukata; Xu, Ya; Zhang, Jiani; Jerosch-Herold, Michael; Mühler, Andreas; Stillman, Arthur E.; Bassingthwaighte, James B.; Bache, Robert; Ugurbil, Kamil

    2010-01-01

    The authors investigated the utility of an intravascular magnetic resonance (MR) contrast agent, poly-L-lysine-gadolinium diethylenetriaminepentaacetic acid (DTPA), for differentiating acutely ischemic from normally perfused myocardium with first-pass MR imaging. Hypoperfused regions, identified with microspheres, on the first-pass images displayed significantly decreased signal intensities compared with normally perfused myocardium (P < .0007). Estimates of regional myocardial blood content, obtained by measuring the ratio of areas under the signal intensity-versus-time curves in tissue regions and the left ventricular chamber, averaged 0.12 mL/g ± 0.04 (n = 35), compared with a value of 0.11 mL/g ± 0.05 measured with radiolabeled albumin in the same tissue regions. To obtain MR estimates of regional myocardial blood flow, in situ calibration curves were used to transform first-pass intensity-time curves into content-time curves for analysis with a multiple-pathway, axially distributed model. Flow estimates, obtained by automated parameter optimization, averaged 1.2 mL/min/g ± 0.5 [n = 29), compared with 1.3 mL/min/g ± 0.3 obtained with tracer microspheres in the same tissue specimens at the same time. The results represent a combination of T1-weighted first-pass imaging, intravascular relaxation agents, and a spatially distributed perfusion model to obtain absolute regional myocardial blood flow and volume. PMID:7766986

  19. Determinants of infant mortality in the Jequitinhonha Valley and in the North and Northeast regions of Brazil.

    Science.gov (United States)

    Leal, Maria do Carmo; Bittencourt, Sonia Duarte de Azevedo; Torres, Raquel Maria Cardoso; Niquini, Roberta Pereira; Souza, Paulo Roberto Borges de

    2017-03-02

    This study aims to identify the social and demographic determinants, in addition to the determinants of reproductive health and use of health services, associated with infant mortality in small and medium-sized cities of the North, Northeast and Southeast regions of Brazil. This is a case-control study with 803 cases of death of children under one year and 1,969 live births (controls), whose mothers lived in the selected cities in 2008. The lists of the names of cases and controls were extracted from the Sistema de Informação sobre Mortalidade (SIM - Mortality Information System) and the Sistema de Informação sobre Nascidos Vivos (SINASC - Live Birth Information System) and supplemented by data obtained by the research of "active search of death and birth". Data was collected in the household using a semi-structured questionnaire, and the analysis was carried out using multiple logistic regression. The final model indicates that the following items are positively and significantly associated with infant mortality: family working in agriculture, mother having a history of fetal and infant losses, no prenatal or inadequate prenatal, and not being associated to the maternity hospital during the prenatal period. We have observed significant interactions to explain the occurrence of infant mortality between race and socioeconomic score and between high-risk pregnancy and pilgrimage for childbirth. The excessive number of home deliveries and pilgrimage for childbirth indicates flaws in the line of maternity care and a lack of collaboration between the levels of outpatient and hospital care. The study reinforces the need for an integrated management of the health care networks, leveraging the capabilities of cities in meeting the needs of pregnancy, delivery and birth with quality. Identificar os determinantes sociais, demográficos, da saúde reprodutiva e de utilização dos serviços de saúde associados ao óbito infantil em municípios de pequeno e médio porte

  20. Flow and heat transfer experiments in the turbine airfoil/endwall region

    Science.gov (United States)

    Chung, Jin Taek

    An experimental investigation of the three-dimensional flow and heat transfer near the junction between the endwall and suction wall of a gas turbine was performed. A large-scale, two-half-blade facility which simulates a turbine cascade was introduced. The simulator consists of two large half-blade sections, one wall simulating the pressure surface and the other wall simulating the suction surface. The advantage of this configuration is that the features of the secondary flow are large, because of the relatively large test section, and the flow is easily accessible with probes. Qualification of this simulator was by comparison to a multi-blade cascade flow. Various flow visualization techniques--oil and lampblack, ink and oil of wintergeeen, a single tuft probe, and a tuft grid--were employed to confirm that the important features of the cascade flow were replicated in this simulator. The triangular region on the suction surface, which was affected by the passage vortex, and the endwall secondary crossflow were observed by shear stress visualization and the liquid crystal measurement techniques. In order to investigate the effects of the turbulence level on the secondary flow in a turbine passage, a turbulence generator, designed to reproduce the characteristics of a combustor exit flow, was built. The generator was designed not only to generate a high turbulence level but to produce three main features of a combustor exit flow. The generator produced a turbulence intensity level of about 10 percent and an integral length scale of 5 centimeters. It was observed that the endwall secondary flow, including the passage vortex, is not significantly influenced by freestream turbulence levels up to 10 percent. A flow management technique using a boundary layer fence designed to reduce some harmful effects of secondary flow in the endwall region of a turbine passage was introduced. The boundary layer fence is effective in changing the passage of the vortex and reducing

  1. Optimization of Financial Flow Management Based on Estimates of Regional Multiplicative Effects

    Directory of Open Access Journals (Sweden)

    Denis Aleksandrovich Tatarkin

    2015-12-01

    Full Text Available The article deals with questions of increasing the management efficiency of the regional financial resources. As the main hypothesis, the idea of the optimization of the management of the regional financial flows based on the multiplicative economic effect is proved. This measure will allow to evaluate more efficiently the impact of the regional socio-economic policy. The article presents a multifactor model of the management of the regional financial flows on the regional level — the matrix of financial flows, based on the principles of the general economic equilibrium theory, the balance method of «input-output» and the methodology of national accounts. The paper introduces a methodology for the integration of the regional consolidated budget balance in a matrix of financial flows. Matrix multipliers of the consolidated budget balance are calculated for some regions of the Russian Federation allowing to model the economic multiplicative effects resulting from impact of different types of exogenous factors on the economic development of the regions, such as to predict the impact of fiscal redistribution on the GRP and income, to assess the impact of foreign investment on economic growth, to explore the effectiveness of the federal tax policy at the regional level. The article shows that the multiplier effect depends on several factors, including the foreign trade relations of the region, its dependence on imports, the share of value added in gross output, as well as the household savings. Various levels of government can use the author’s approach during development of strategies for socio-economic development, in assessing the extent and direction of the influence of exogenous factors on the economy of the territory, as well as in analyzing the investment initiatives from the private sector applying for state financial support for projects. In the conclusion, the ways of improving the management of financial flows on the basis of

  2. Regional Heat Flow Map and the Continental Thermal Isostasy Understanding of México

    Science.gov (United States)

    Espinoza-Ojeda, O. M.; Harris, R. N.

    2014-12-01

    The first heat flow values made in Mexico were reported by Von Herzen [Science, 1963] for the marine environment and Smith [EPSL, 1974] for the continent. Since that time the number of measurements has increased greatly but are mostly from oil and gas exploration and in and around geothermal areas. We have compiled published values of conductive heat flow for Mexico and the Gulf of California to generate a new regional heat flow map consisting of 261 values. In addition to those original values, published heat flow sources include, Lee and Henyey [JGR, 1975], Lawver and Williams [JGR, 1979] Smith et al. [JGR, 1979], Lachenbruch et al. [JGR, 1985], and Ziagos et al. [JGR, 1985]. Although the geographic distribution is uneven, heat flow data are present in each of the eight main tectonic provinces. Our new compilation indicates relatively high regional heat flow averages in the Gulf Extensional Province (n=114, 92±22 mW/m2) and Mexican Basin and Range (n=21, 82±20 mW/m2) and are consistent with geologic estimates of extension. Lower regional averages are found in the Baja California Microplate (n=91, 75±19 mW/m2), the Sierra Madre Occidental (n=9, 75±12 mW/m2), the Sierra Madre Oriental (n=4, 68±15 mW/m2) and Mesa Central (n=X 77±23 mW/m2). In contrast low and variable heat flow value characterize the forearc region of the Middle America Trench (n=6, 35±16 mW/m2). A higher mean heat flow is associated with the Trans-Mexican Volcanic Belt (n=6, 78±26 mW/m2). Continental elevation results from a combination of buoyancy (i.e. compositional and thermal) and geodynamic forces. We combine these regional heat flow values with estimates of crustal thickness and density for each tectonic province and compute the thermal and compositional buoyancy following the approach of Hasterok and Chapman [JGR, 2007a,b]. We find that within uncertainties most provinces lie near the theoretical isostatic relationship with the exception of the Mesa Central and Sierra Madre del Sur

  3. Regional cerebral blood flow distribution in newly diagnosed schizophrenia and schizophreniform disorder

    DEFF Research Database (Denmark)

    Rubin, P; Holm, S; Madsen, P L

    1994-01-01

    Regional cerebral blood flow distribution (rCBF) in 24 first admissions with schizophrenia or schizophreniform disorder and in 17 healthy volunteers was examined. Single photon emission computed tomography with a brain-retained tracer, technetium-99m-d,l-hexamethyl-propylene amine oxime, was used...... interrelationship in schizophrenia and schizophreniform disorder....

  4. Cognitive profiles and regional cerebral blood flow patterns in dementia of the Alzheimer type

    DEFF Research Database (Denmark)

    Waldemar, G; Bruhn, P; Schmidt, E

    1994-01-01

    Individual cognitive profiles and correlations between cognitive functions and regional cerebral blood flow (rCBF) were analyzed in 20 consecutive patients with a clinical diagnosis of probable Alzheimer's disease (AD). CBF was measured with high resolution single photon emission computed...

  5. Regional cerebral blood flow changes related to affective speech presentation in persistent vegetative state

    NARCIS (Netherlands)

    deJong, BM; Willemsen, ATM; Paans, AMJ

    A story told by his mother was presented on tape to a trauma patient in persistent vegetative state (PVS). During auditory presentation, measurements of regional cerebral blood flow (rCBF) were performed by means of positron emission tomography (PET). Changes in rCBF related to this stimulus

  6. Reduced regional cerebral blood flow in SPG4-linked hereditary spastic paraplegia

    DEFF Research Database (Denmark)

    Scheuer, Kristin H; Nielsen, Jørgen E; Krabbe, Katja

    2005-01-01

    flow (rCBF) as an indirect marker of regional neuronal activity. Eighteen SPG4 patients and 18 matched control subjects were studied. Resting state rCBF was measured using Positron Emission Tomography (PET) and the (15)O-labelled water bolus technique and relative group differences were explored using...

  7. Modelling of the flow of stable air over a complex region

    CSIR Research Space (South Africa)

    Scholtz, MT

    1976-01-01

    Full Text Available The flow of stable air over a general region of complex topography and non-uniform surface temperature has been investigated. In order to gain further understanding of the motion of surface air, it was necessary to study the vertical structure...

  8. The contribute of DInSAR techniques to landslide hazard evaluation in mountain and hilly regions: a case study from Agno Valley (North-Eastern Italian Alps)

    Science.gov (United States)

    De Agostini, A.; Floris, M.; Pasquali, P.; Barbieri, M.; Cantone, A.; Riccardi, P.; Stevan, G.; Genevois, R.

    2012-04-01

    In the last twenty years, Differential Synthetic Aperture Radar Interferometry (DInSAR) techniques have been widely used to investigate geological processes, such as subsidence, earthquakes and landslides, through the evaluation of earth surface displacements caused by these processes. In the study of mass movements, contribution of interferometry can be limited due to the acquisition geometry of RADAR images and the rough morphology of mountain and hilly regions which represent typical landslide-prone areas. In this study, the advanced DInSAR techniques (i.e. Small Baseline Subset and Persistent Scatterers techniques), available in SARscape software, are used. These methods involve the use of multiple acquisitions stacks (large SAR temporal series) allowing improvements and refinements in landslide identification, characterization and hazard evaluation at the basin scale. Potential and limits of above mentioned techniques are outlined and discussed. The study area is the Agno Valley, located in the North-Eastern sector of Italian Alps and included in the Vicenza Province (Veneto Region, Italy). This area and the entire Vicenza Province were hit by an exceptional rainfall event on November 2010 that triggered more than 500 slope instabilities. The main aim of the work is to verify if spatial information available before the rainfall event, including ERS and ENVISAT RADAR data from 1992 to 2010, were able to predict the landslides occurred in the study area, in order to implement an effectiveness forecasting model. In the first step of the work a susceptibility analysis is carried out using landslide dataset from the IFFI project (Inventario Fenomeni Franosi in Italia, Landslide Italian Inventory) and related predisposing factors, which consist of morphometric (elevation, slope, aspect and curvature) and non-morphometric (land use, distance of roads and distance of river) factors available from the Veneto Region spatial database. Then, to test the prediction, the

  9. Detection, isolation, and genetic characterization of Rift Valley fever virus from Anopheles (Anopheles) coustani, Anopheles (Anopheles) squamosus, and Culex (Culex) antennatus of the Haute Matsiatra region, Madagascar.

    Science.gov (United States)

    Ratovonjato, Jocelyn; Olive, Marie-Marie; Tantely, Luciano Michael; Andrianaivolambo, Lala; Tata, Etienne; Razainirina, Josette; Jeanmaire, Elisabeth; Reynes, Jean-Marc; Elissa, Nohal

    2011-06-01

    Following veterinary alerts of Rift Valley fever (RVF) in the districts of Fianarantsoa I and II in November 2008 and in the district of Ambalavao in April 2009, entomological and virological investigations were carried out to identify the mosquito species that could act as RVF virus (RVFV) vectors in the region. A total of 12,785 adult mosquitoes belonging to 5 genera and 21 species were collected. After identification, mosquitoes were pooled by species, sex, and female status (fed or unfed) and then stored at -80°C. Of 319 pools of unfed monospecific female mosquito tested by real-time RT-polymerase chain reaction, RVFV was detected in 1 pool of Anopheles coustani, 5 pools of An. squamosus, and 2 pools of Culex antennatus mosquitoes. The virus was isolated in mosquito cell lines from two of the five Real Time-RT-polymerase chain reaction (real time-RT-PCR) positive pools of An. squamosus mosquitoes. From the eight RVFV strains detected, partial S, M, and L genome segments sequences were obtained. The phylogenetic analysis of these sequences showed that the strains circulating in mosquitoes were genetically close to those that circulated in livestock and humans during RVF outbreaks in 2008 and 2009. This study, therefore, provides strong evidence that An. squamosus, An. coustani, and Cx. antennatus could play a role as vectors of the RVFV during the disease outbreaks in 2008-2009. Bioecological, genetic, and RVF transmission studies on these three mosquito species are needed to address this question and thus improve prevention and control of future RVF outbreaks in Madagascar, where these species are present.

  10. Inspecting the transformation of Roman settlements in the Upper Potenza Valley (Marche region across Late Antiquity and into the Early Medieval era

    Directory of Open Access Journals (Sweden)

    Francesca Carboni

    2015-12-01

    Full Text Available The following analysis shows the changes occurred in the settlement patterns in the upper Potenza river valley (MC, Marche region during the transition period between Late Antiquity and Early Middle Ages. This analysis is mainly based on the results of a geoarchaeological project, which has been carried out by a team from Ghent University since 2000. The review of the pottery collected during the fi eld survey has allowed for a better defined chronology of the last phase of occupation of the rural sites identifi ed in the sample zone, located within an intermediate basin between the Umbria-Marche Apennines and a lateral dorsal ridge, in areas dominated by the hilltops of Monte Primo and Monte Castel Santa Maria. For some of these sites, it is now possible to ascertain a continuity of life up to the end of the seventh century and further into the Middle Ages. La presente analisi illustra le trasformazioni delle modalità insediative avvenute nel periodo di transizione fra la tarda antichità e il medioevo nell’alta valle del fi ume Potenza (MC, Marche. Essa si basa sui risultati del progetto condotto con metodo geo-archeologico da un gruppo di ricerca dell’Università di Ghent, dal 2000. La revisione del materiale ceramico raccolto nel corso delle ricognizioni ha consentito di defi nire meglio le ultime fasi di occupazione dei siti rurali identifi cati nella zona campione in questione, posizionata all’interno del bacino intramontano posto fra l’Appennino umbro-marchigiano e una dorsale montuosa laterale, dominata dalle cime del Monte Primo e del Monte Santa Maria. Per alcuni di questi siti è stato, infatti, possibile accertare una continuità di occupazione estesa fi no al VII secolo e oltre, in età medievale.

  11. Simulation of flow in the Edwards Aquifer, San Antonio region, Texas, and refinement of storage and flow concepts

    Science.gov (United States)

    Maclay, Robert W.; Land, Larry F.

    1988-01-01

    The Edwards aquifer is a complexly faulted, carbonate aquifer lying within the Balcones fault zone of south-central Texas. The aquifer consists of thin- to massive-bedded limestone and dolomite, most of which is in the form of mudstones and wackestones. Well-developed secondary porosity has formed in association with former erosional surfaces within the carbonate rocks, within dolomitized-burrowed tidal and evaporitic deposits, and along inclined fractures to produce an aquifer with transmissivities greater than 100 ft2/s. The aquifer is recharged mainly by streamflow losses in the outcrop area of the Edwards aquifer and is discharged by major springs located at considerable distances, as much as 150 mi, from the areas of recharge and by wells. Ground-water flow within the Edwards aquifer of the San Antonio region was simulated to investigate concepts relating to the storage and flow characteristics. The concepts of major interest were the effects of barrier faults on flow direction, water levels, springflow, and storage within the aquifer. A general-purpose, finite-difference model, modified to provide the capability of representing barrier faults, was used to simulate ground-water flow and storage in the aquifer. The approach in model development was to conduct a series of simulations beginning with a simple representation of the aquifer framework and then proceeding to subsequent representations of increasing complexity. The simulations investigated the effects of complex geologic structures and of significant changes in transmissivity, anisotropy, and storage coefficient. Initial values of transmissivity, anisotropy, and storage coefficient were estimated based on concepts developed in previous studies. Results of the simulations confirmed the original estimates of transmissivity values (greater than 100 square feet/s) in the confined zone of the aquifer between San Antonio and Comal Springs. A storage coefficient of 0.05 in the unconfined zone of the aquifer

  12. Landform Evolution of the Zanskar Valley, Ladakh Himalaya.

    Science.gov (United States)

    Chahal, P.; Kumar, A.; Sharma, P.; Sundriyal, Y.; Srivastava, P.

    2017-12-01

    Zanskar River flow from south-west to north-east, perpendicularly through Higher Himalayan crystalline sequences, Tethyan sedimentary sequences, and Indus Molasses; and finally merge with the Indus River at Nimu. Geologically, the Indus valley is bounded by Ladakh Batholith in the north and highly folded and thrusted Zanskar mountain ranges in the south. Sedimentary sequences of Zanskar ranges are largely of continental origin, which were uplifted and deformed via several north verging thrusts, where Zanskar counter thrust, Choksti and Indus-Bazgo thrusts are important thrust zone, and there is atleast 36 km of crustal shortening in the Zanskar section which continued from middle Miocene to the late Pleistocene. This shortening is accommodated mainly by north or north-east directed Zanskar backthrusts. Two major tributaries of Zanskar: Tsrapchu and Doda, flow in the headwaters, along the strike of South Tibetan Detachment System (STDs), an east-west trending regional fault. The present study incorporate field sedimentology, geomorphology and chronology of landform associated with Zanskar valley. In the upper Zanskar, alluvial fan, valley fill and strath terraces configured the major landforms with paleo-lake deposits­­­ in the area between the fans. The lower catchment, at the confluence of Zanskar and Indus rivers, exhibit mainly valley fill terraces and strath terraces. Chronology suggests diachronous aggradation in the upper and lower Zanskar catchments. In the upper Zanskar large scale valley aggradation took place with simultaneously fan progradation and flooding events from 45-15 ka. Luminescence chronology of the lower Zanskar indicates aggradation from 145-55 ka and 18-12 ka. The two aggradation basins are separated by a deep V-shaped gorge which is approximately 60 km long. The longitudinal profile of the Zanskar River shows several local convexities marking knick point zone, which suggests tectonically controlled topography.

  13. Observations of photospheric magnetic fields and shear flows in flaring active regions

    International Nuclear Information System (INIS)

    Tarbell, T.; Ferguson, S.; Frank, Z.; Title, A.; Topka, K.

    1988-01-01

    Horizontal flows in the photosphere and subsurface convection zone move the footpoints of coronal magnetic field lines. Magnetic energy to power flares can be stored in the corona if the flows drive the fields far from the potential configuration. Videodisk movies were shown with 0.5 to 1 arcsecond resolution of the following simultaneous observations: green continuum, longitudinal magnetogram, Fe I 5576 A line center (mid-photosphere), H alpha wings, and H alpha line center. The movies show a 90 x 90 arcsecond field of view of an active region at S29, W11. When viewed at speeds of a few thousand times real-time, the photospheric movies clearly show the active region fields being distorted by a remarkable combination of systematic flows and small eruptions of new flux. Magnetic bipoles are emerging over a large area, and the polarities are systematically flowing apart. The horizontal flows were mapped in detail from the continuum movies, and these may be used to predict the future evolution of the region. The horizontal flows are not discernable in H alpha. The H alpha movies strongly suggest reconnection processes in the fibrils joining opposite polarities. When viewed in combination with the magnetic movies, the cause for this evolution is apparent: opposite polarity fields collide and partially cancel, and the fibrils reconnect above the surface. This type of reconnection, driven by subphotospheric flows, complicates the chromospheric and coronal fields, causing visible braiding and twisting of the fibrils. Some of the transient emission events in the fibrils and adjacent plage may also be related

  14. Boundary delineation for regional groundwater flow through geographic information system (Contract research)

    International Nuclear Information System (INIS)

    Yamakawa, Tadashi; Munakata, Masahiro; Kimura, Hideo; Hyodo, Hiroshi

    2007-03-01

    Radionuclide migration toward the human environment is to be assessed as the part of long-term safety assessments of geologic disposal of radioactive waste. Geologic processes, which include volcanic activity, hydrothermal activity, seismicity and deformation, bring about hydrogeologic changes in the regional groundwater flow system around a repository site. Groundwater flow systems in Japan have been studied in several sites such as Tono mine, Kamaishi mine and Horonobe area, but methodology of studies in these sites does not have fully developed. This study was conducted to develop methodologies of boundary delineation for regional groundwater flow systems. Geographic Information System, GIS, was applied using available topographic, hydrologic and geologic data for an area of interest. Miyakoji in the Abukuma Mountains was selected as the area, for the reason of its simple geologic setting formed by granitic rocks and topographically gentle hills of drainage basin. Data used in this study cover topographic sheets, digital elevation model, satellite imagery, geologic maps, topographic classification maps, soil distribution maps and landuse maps. Through the GIS techniques using these data, thematic maps on topographic features, surface conditions, land coverage, geology and geologic structure and weathered crust were developed, and these thematic maps were further applied to extract four factors affecting the regional groundwater flows: topographic condition, precipitation recharge, fracture characteristics and potential flows. The present study revealed that, taking the potential groundwater flows and characteristics of fractured zones in the area into consideration, the groundwater flow system in Miyakoji drainage basin should be bounded by the Otakine Mountain and the northern part of Tokoha Drainage Basin. The delineated area is larger than understood before. (author)

  15. New possibilities for quantitative measurements of regional cerebral blood flow with gold-195m

    International Nuclear Information System (INIS)

    Lindner, P.; Nickel, O.

    1985-01-01

    A previously reported theory for quantitative cerebral blood flow measurement for nondiffusible radiotracers has been applied to patients after stroke and to volunteers undergoing a mental stimulation exercise. The energy spectrum of gold-195m shows two strong photon peaks, one at an energy level of 68 keV and a second at an energy-level of 262 keV. The low energy peak is suitable for perfusion studies in lateral views of the hemispheres; no look-through effect is seen. The high energy level is good for studies in posterior-anterior positions. Parametric images for quantitative regional cerebral blood flow can be generated. The area of occluded vessels in the case of stroke can be detected. Quantitative activation patterns of cerebral blood flow during mental stimulation can be generated. The results prove that, not only with freely diffusible indicators like xenon but also with nondiffusible indicators, it is possible to measure quantitatively cerebral blood flow patterns

  16. First status report on regional ground-water flow modeling for Vacherie Dome, Louisiana

    International Nuclear Information System (INIS)

    1986-07-01

    Regional ground-water flow within the principal geohydrologic units in the vicinity of Vacherie Dome, Louisiana is evaluated by developing a conceptual model of the flow regime within these units and testing the model using a three-dimensional, finite-difference flow code (SWENT). Semiquantitative sensitivity analyses (a limited parametric study) are conducted to define the system responses to changes in the conceptual model, particularly in regard to the geohydrologic properties. All steps leading to the final results and conclusions are incorporated in this report. The available data utilized in this study are summarized. The conceptual model is defined in terms of the areal and vertical averaging of lithologic units, aquifer properties, and hydrologic boundary conditions. The simulated ground-water flow fields are described with potentiometric surfaces, areas of upward and downward flow across aquitards, tables summarizing the horizontal and vertical volumetric flows through the principal units, ground-water travel times and paths, and Darcy velocities within specified finite-difference blocks. The reported work is the first stage of an ongoing evaluation of Vacherie Dome as a potential repository for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, the report does provide a useful basis for describing the sensitivity of the conceptualization of ground-water flow to parameterization and, to a lesser extent, the uncertainties in the present conceptualization. 34 refs., 57 figs., 19 tabs

  17. Low-flow characteristics of streams in the Puget Sound region, Washington

    Science.gov (United States)

    Hidaka, F.T.

    1973-01-01

    Periods of low streamflow are usually the most critical factor in relation to most water uses. The purpose of this report is to present data on low-flow characteristics of streams in the Puget Sound region, Washington, and to briefly explain some of the factors that influence low flow in the various basins. Presented are data on low-flow frequencies of streams in the Puget Sound region, as gathered at 150 gaging stations. Four indexes were computed from the flow-flow-frequency curves and were used as a basis to compare the low-flow characteristics of the streams. The indexes are the (1) low-flow-yield index, expressed in unit runoff per square mile; (2) base-flow index, or the ratio of the median 7-day low flow to the average discharge; (3) slope index, or slope of annual 7-day low-flow-frequency curve; and (4) spacing index, or spread between the 7-day and 183-day low-flow-frequency curves. The indexes showed a wide variation between streams due to the complex interrelation between climate, topography, and geology. The largest low-flow-yield indexes determined--greater than 1.5 cfs (cubic feet per second) per square mile--were for streams that head at high altitudes in the Cascade and Olympic Mountains and have their sources at glaciers. The smallest low-flow-yield indexes--less than 0.5 cfs per square mile--were for the small streams that drain the lowlands adjacent to Puget Sound. Indexes between the two extremes were for nonglacial streams that head at fairly high altitudes in areas of abundant precipitation. The base-flow index has variations that can be attributed to a basin's hydrogeology, with very little influence from climate. The largest base-flow indexes were obtained for streams draining permeable unconsolidated glacial and alluvial sediments in parts of the lowlands adjacent to Puget Sound. Large volume of ground water in these materials sustain flows during late summer. The smallest indexes were computed for streams draining areas underlain by

  18. Supra regional ground water modelling - in-depth analysis of the groundwater flow patterns in eastern Smaaland. Comparison with different conceptual descriptions; Storregional grundvattenmodellering - foerdjupad analys av floedesfoerhaallanden i oestra Smaaland. Jaemfoerelse av olika konceptuella beskrivningar

    Energy Technology Data Exchange (ETDEWEB)

    Ericsson, Lars O. [Lars O Ericsson Consulting AB, Stockholm (Sweden); Holmen, Johan [Golder Associates, Uppsala (Sweden); Rhen, Ingvar; Blomquist, Niklas [SWECO VIAK, Stockholm (Sweden)

    2006-05-15

    One of many geoscientific questions in connection with the siting of a final repository for spent nuclear fuel in Sweden has to do with understanding the large-scale flow patterns of the naturally circulating groundwater. The recharge and discharge of the groundwater is therefore a subject for both SKB's research activities and the interest of the regulatory authorities. This report aims at providing an in-depth scientific analysis of the groundwater flow pattern based on the criteria and suitability indicators which SKB has previously presented with respect to recharge and discharge aspects in a supra regional perspective. The analysis was conducted within the framework of a project whose goals were to: evaluate conceptual simplifications and model uncertainties in supra regional groundwater modelling, and to carry out an in-depth and comprehensive analysis of regional flow conditions in eastern Smaaland. Achieving these goals has required an approach based on the use of available geoscientific data on the Smaaland region combined with an analysis of different conceptual assumptions and system descriptions. The following general conclusions can be drawn from the study and the applied methodology: The factor of greatest importance for the regional flow pattern (from repository depth) is the topography. The discharge areas are mainly found in the low-lying parts of the topography, along valleys, and the recharge areas occur on the heights. The topographic undulation is of greater importance than the properties of the conductivity field. Different lithological units, regional deformation zones, local heterogeneity, Quaternary deposits etc are of less importance than the undulation of the topography. For areas described and analyzed with the most realistic assumptions, the groundwater flow pattern can be described as a primarily local flow process. The median flow path length in the study is on the order of 2 km, and the fraction of supra regional flow paths

  19. Significant regional heterogeneity of coronary flow reserve in paediatric hypertrophic cardiomyopathy

    International Nuclear Information System (INIS)

    Tadamura, E.; Kudoh, T.; Kubo, S.; Konishi, J.; Motooka, M.; Nohara, R.; Matsumori, A.; Sasayama, S.; Matsuda, T.; Tamaki, N.

    2000-01-01

    Previous studies have indicated that cardiac events in young patients with hypertrophic cardiomyopathy (HCM) are related to ischaemia rather than to arrhythmia. We measured coronary flow reserve in paediatric HCM and compared the values with those in adult HCM. We studied 12 patients with HCM including six paediatric ( 20 years old: mean 62 years), and six healthy young adults (mean 29 years) as controls. Every patient underwent magnetic resonance imaging (MRI) for anatomical assessment. Myocardial blood flow at rest and after dipyridamole infusion was measured with dynamic nitrogen-13 ammonia positron emission tomography (PET). Partial volume effect was corrected for using the anatomical data obtained with MRI. In adult patients with HCM, coronary flow reserve in the hypertrophied septal region was not significantly different from that in the non-hypertrophied lateral wall (1.38±0.29 vs 1.77±0.39, respectively). In the paediatric patients, coronary flow reserve in the hypertrophied septal region was significantly lower than in the non-hypertrophied lateral wall (0.84±0.33 vs 2.74±0.90, respectively, P<0.01). In addition, coronary flow reserve in adult patients was lower than in control subjects both in the septal wall (1.38±0.29 vs 2.94±0.35, respectively, P<0.0001) and in the lateral wall (1.77±0.39 vs 2.85±0.69, respectively, P<0.05). In contrast, coronary flow reserve in paediatric patients was not significantly different from that in control subjects in the lateral wall (2.74±0.90 vs 2.85±0.69, respectively), while absolute reduction of myocardial blood flow was noted after pharmacological vasodilatation in the hypertrophied septal region. In conclusion, significant regional differences of coronary flow reserve were present in the paediatric patients with HCM. These results suggest that paediatric patients with HCM intrinsically have the potential to experience significant regional ischaemia even in the absence of coronary stenosis. (orig.)

  20. Age and regional cerebral blood flow at rest and during cognitive activity

    International Nuclear Information System (INIS)

    Gur, R.C.; Gur, R.E.; Obrist, W.D.; Skolnick, B.E.; Reivich, M.

    1987-01-01

    The relationship between age and regional cerebral blood flow (rCBF) activation for cognitive tasks was investigated with the xenon (Xe 133) inhalation technique. The sample consisted of 55 healthy subjects, ranging in age from 18 to 72 years, who were studied during rest and during the performance of verbal analogy and spatial orientation tasks. The dependent measures were indexes of gray-matter rCBF and average rCBF (gray and white matter) as well as the percentage of gray-matter tissue. Advanced age was associated with reduced flow, particularly pronounced in anterior regions. However, the extent and pattern of rCBF changes during cognition was unaffected by age. For the percentage of gray matter, there was a specific reduction in anterior regions of the left hemisphere. The findings suggest the utility of this research paradigm for investigating neural underpinnings of the effects of dementia on cognitive functioning, relative to the effects of normal aging

  1. Regional cerebral blood flow during mechanical hyperventilation in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Kirsten; Høgh, Peter; Larsen, Fin Stolze

    2000-01-01

    Mechanical hyperventilation is often instituted in patients with acute bacterial meningitis when increased intracranial pressure is suspected. However, the effect on regional cerebral blood flow (CBF) is unknown. In this study, we measured regional CBF (rCBF) in patients with acute bacterial...... meningitis before and during short-term hyperventilation. In 17 patients with acute bacterial meningitis, absolute rCBF (in ml/100 g min-1) was measured during baseline ventilation and hyperventilation by single-photon emission computed tomography (SPECT) using intravenous 133Xe bolus injection. Intravenous...... in the frontal and parietal cortex as well as in the basal ganglia. Focal perfusion abnormalities were present in 10 of 12 patients. Regional cerebral blood flow abnormalities are frequent in patients with acute bacterial meningitis. Short-term hyperventilation does not enhance these abnormalities....

  2. A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers in the Pecos County region, Texas

    Science.gov (United States)

    Bumgarner, Johnathan R.; Stanton, Gregory P.; Teeple, Andrew; Thomas, Jonathan V.; Houston, Natalie A.; Payne, Jason; Musgrove, MaryLynn

    2012-01-01

    A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers, which include the Pecos Valley, Igneous, Dockum, Rustler, and Capitan Reef aquifers, was developed as the second phase of a groundwater availability study in the Pecos County region in west Texas. The first phase of the study was to collect and compile groundwater, surface-water, water-quality, geophysical, and geologic data in the area. The third phase of the study involves a numerical groundwater-flow model of the Edwards-Trinity aquifer in order to simulate groundwater conditions based on various groundwater-withdrawal scenarios. Resource managers plan to use the results of the study to establish management strategies for the groundwater system. The hydrogeologic framework is composed of the hydrostratigraphy, structural features, and hydraulic properties of the groundwater system. Well and geophysical logs were interpreted to define the top and base surfaces of the Edwards-Trinity aquifer units. Elevations of the top and base of the Edwards-Trinity aquifer generally decrease from the southwestern part of the study area to the northeast. The thicknesses of the Edwards-Trinity aquifer units were calculated using the interpolated top and base surfaces of the hydrostratigraphic units. Some of the thinnest sections of the aquifer were in the eastern part of the study area and some of the thickest sections were in the Pecos, Monument Draw, and Belding-Coyanosa trough areas. Normal-fault zones, which formed as growth and collapse features as sediments were deposited along the margins of more resistant rocks and as overlying sediments collapsed into the voids created by the dissolution of Permian-age evaporite deposits, were delineated based on the interpretation of hydrostratigraphic cross sections. The lowest aquifer transmissivity values were measured in the eastern part of the study area; the highest transmissivity values were

  3. Caracterização da piscicultura na região do Vale do Ribeira - SP Characterization of fish farming in the Ribeira Valley region - SP

    Directory of Open Access Journals (Sweden)

    Daniela Castellani

    2005-02-01

    á (Rhamdia quelen Quoy and Gaimard, 1824, cascudo (Hypostomus sp Marschall, 1873 and cará (Geophagus brasiliensis Quoy and Gaimard, 1824. Fish escapes were observed in 95% of farms studied, with Nile tilapia (Oreocrhomis niloticus Linneaus, 1758 being the most frequent. The pacu (Piaractus mesopotamicus Halmberg, 1887 and Nile tilapia were the most cultivated species. According to estimation of food conversion, around 32% of food supplied was wasted yearly. The fish farming is an activity in expansion in the Ribeira Valley and account for the second regional economic activity after banana cultivation.

  4. Development of visibility forecasting modeling framework for the Lower Fraser Valley of British Columbia using Canada's Regional Air Quality Deterministic Prediction System.

    Science.gov (United States)

    So, Rita; Teakles, Andrew; Baik, Jonathan; Vingarzan, Roxanne; Jones, Keith

    2018-05-01

    Visibility degradation, one of the most noticeable indicators of poor air quality, can occur despite relatively low levels of particulate matter when the risk to human health is low. The availability of timely and reliable visibility forecasts can provide a more comprehensive understanding of the anticipated air quality conditions to better inform local jurisdictions and the public. This paper describes the development of a visibility forecasting modeling framework, which leverages the existing air quality and meteorological forecasts from Canada's operational Regional Air Quality Deterministic Prediction System (RAQDPS) for the Lower Fraser Valley of British Columbia. A baseline model (GM-IMPROVE) was constructed using the revised IMPROVE algorithm based on unprocessed forecasts from the RAQDPS. Three additional prototypes (UMOS-HYB, GM-MLR, GM-RF) were also developed and assessed for forecast performance of up to 48 hr lead time during various air quality and meteorological conditions. Forecast performance was assessed by examining their ability to provide both numerical and categorical forecasts in the form of 1-hr total extinction and Visual Air Quality Ratings (VAQR), respectively. While GM-IMPROVE generally overestimated extinction more than twofold, it had skill in forecasting the relative species contribution to visibility impairment, including ammonium sulfate and ammonium nitrate. Both statistical prototypes, GM-MLR and GM-RF, performed well in forecasting 1-hr extinction during daylight hours, with correlation coefficients (R) ranging from 0.59 to 0.77. UMOS-HYB, a prototype based on postprocessed air quality forecasts without additional statistical modeling, provided reasonable forecasts during most daylight hours. In terms of categorical forecasts, the best prototype was approximately 75 to 87% correct, when forecasting for a condensed three-category VAQR. A case study, focusing on a poor visual air quality yet low Air Quality Health Index episode

  5. Regional cerebral blood flow study with 123I-IMP in patients with degenerative dementia

    International Nuclear Information System (INIS)

    Ohnishi, T.; Hoshi, H.; Nagamachi, S.; Jinnouchi, S.; Futami, S.; Watanabe, K.; Mitsuyama, Y.

    1991-01-01

    Regional cerebral blood flow was evaluated by single-photon emission CT (SPECT) with 123I-N-isopropyl-p-iodoamphetamine (123I-IMP) in 11 patients with dementia of the Alzheimer type, three patients with progressive dementia and motor neuron disease, and eight healthy control subjects. Regional blood flow measurements in the bilateral frontal, parietal association, and temporal cortices were lower in the Alzheimer dementia patients than in controls. Flow deficits in the parietal association cortex were demonstrated in all patients with Alzheimer-type dementia; these deficits were correlated with the severity of disease. Lateral hemispheric asymmetry was seen in nine of 11 patients with Alzheimer-type dementia. In all three patients with progressive dementia and motor neuron disease, flow deficits were demonstrated in the bilateral frontal and temporal cortices, but no flow deficits were seen in the parietal association cortex. Brain SPECT with 123I-IMP may be useful in the differential diagnosis and evaluation of the severity of degenerative dementia

  6. Regional groundwater-flow model of the Redwall-Muav, Coconino, and alluvial basin aquifer systems of northern and central Arizona

    Science.gov (United States)

    Pool, D.R.; Blasch, Kyle W.; Callegary, James B.; Leake, Stanley A.; Graser, Leslie F.

    2011-01-01

    capita water use for exempt wells. Accuracy of the simulated groundwater-flow system was evaluated by using observational control from water levels in wells, estimates of base flow from streamflow records, and estimates of spring discharge. Major results from the simulations include the importance of variations in recharge rates throughout the study area and recharge along ephemeral and losing stream reaches in alluvial basins. Insights about the groundwater-flow systems in individual basins include the hydrologic influence of geologic structures in some areas and that stream-aquifer interactions along the lower part of the Little Colorado River are an effective control on water level distributions throughout the Little Colorado River Plateau basin. Better information on several aspects of the groundwater flow system are needed to reduce uncertainty of the simulated system. Many areas lack documentation of the response of the groundwater system to changes in withdrawals and recharge. Data needed to define groundwater flow between vertically adjacent water-bearing units is lacking in many areas. Distributions of recharge along losing stream reaches are poorly defined. Extents of aquifers and alluvial lithologies are poorly defined in parts of the Big Chino and Verde Valley sub-basins. Aquifer storage properties are poorly defined throughout most of the study area. Little data exist to define the hydrologic importance of geologic structures such as faults and fractures. Discharge of regional groundwater flow to the Verde River is difficult to identify in the Verde Valley sub-basin because of unknown contributions from deep percolation of excess surface water irrigation.

  7. An investigation of the flow characteristics in the blade endwall corner region

    Science.gov (United States)

    Hazarika, Birinchi K.; Raj, Rishi S.

    1987-01-01

    Studies were undertaken to determine the structure of the flow in the blade end wall corner region simulated by attaching two uncambered airfoils on either side of a flat plate with a semicircular leading edge. Detailed measurements of the corner flow were obtained with conventional pressure probes, hot wire anemometry, and flow visualization. The mean velocity profiles and six components of the Reynolds stress tensor were obtained with an inclined single sensor hot wire probe whereas power spectra were obtained with a single sensor oriented normal to the flow. Three streamwise vortices were identified based on the surface streamlines, distortion of total pressure profiles, and variation of mean velocity components in the corner. A horseshoe vortex formed near the leading edge of the airfoil. Within a short distance downstream, a corner vortex was detected between the horseshoe vortex and the surfaces forming the corner. A third vortex was formed at the rear portion of the corner between the corner vortex and the surface of the flat plate. Turbulent shear stress and production of turbulence are negligibly small. A region of negative turbulent shear stress was also observed near the region of low turbulence intensity from the vicinity of the flat plate.

  8. Independent variable complexity for regional regression of the flow duration curve in ungauged basins

    Science.gov (United States)

    Fouad, Geoffrey; Skupin, André; Hope, Allen

    2016-04-01

    The flow duration curve (FDC) is one of the most widely used tools to quantify streamflow. Its percentile flows are often required for water resource applications, but these values must be predicted for ungauged basins with insufficient or no streamflow data. Regional regression is a commonly used approach for predicting percentile flows that involves identifying hydrologic regions and calibrating regression models to each region. The independent variables used to describe the physiographic and climatic setting of the basins are a critical component of regional regression, yet few studies have investigated their effect on resulting predictions. In this study, the complexity of the independent variables needed for regional regression is investigated. Different levels of variable complexity are applied for a regional regression consisting of 918 basins in the US. Both the hydrologic regions and regression models are determined according to the different sets of variables, and the accuracy of resulting predictions is assessed. The different sets of variables include (1) a simple set of three variables strongly tied to the FDC (mean annual precipitation, potential evapotranspiration, and baseflow index), (2) a traditional set of variables describing the average physiographic and climatic conditions of the basins, and (3) a more complex set of variables extending the traditional variables to include statistics describing the distribution of physiographic data and temporal components of climatic data. The latter set of variables is not typically used in regional regression, and is evaluated for its potential to predict percentile flows. The simplest set of only three variables performed similarly to the other more complex sets of variables. Traditional variables used to describe climate, topography, and soil offered little more to the predictions, and the experimental set of variables describing the distribution of basin data in more detail did not improve predictions

  9. Studies on unsteady pressure fields in the region of separating and reattaching flows

    Science.gov (United States)

    Govinda Ram, H. S.; Arakeri, V. H.

    1990-12-01

    Experimental studies on the measurement of pressure fields in the region of separating and reattaching flows behind several two-dimensional fore-bodies and one axisymmetric body are reported. In particular, extensive measurements of mean pressure, surface pressure fluctuation, and pressure fluctuation within the flow were made for a series of two-dimensional fore-body shapes consisting of triangular nose with varying included angle. The measurements from different bodies are compared and one of the important findings is that the maximum values of rms pressure fluctuation levels in the shear layer approaching reattachment are almost equal to the maximum value of the surface fluctuation levels.

  10. Simulating the effects of a beaver dam on regional groundwater flow through a wetland

    OpenAIRE

    Kathleen Feiner; Christopher S. Lowry

    2015-01-01

    Study Focus: This research examines a wetland environment before and after the construction of a beaver dam to determine the hydrologic impacts on regional groundwater flow and quantify changes to the capture zone of a wetland pond. Increased hydraulic head behind a newly built beaver dam can cause shifts in the capture zone of a wetland pond. Changes in groundwater flux, and the extent of both the capture and discharge zones of this wetland were examined with the use of a groundwater flow mo...

  11. Numerical simulation of groundwater flow in the Columbia Plateau Regional Aquifer System, Idaho, Oregon, and Washington

    Science.gov (United States)

    Ely, D. Matthew; Burns, Erick R.; Morgan, David S.; Vaccaro, John J.

    2014-01-01

    A three-dimensional numerical model of groundwater flow was constructed for the Columbia Plateau Regional Aquifer System (CPRAS), Idaho, Oregon, and Washington, to evaluate and test the conceptual model of the system and to evaluate groundwater availability. The model described in this report can be used as a tool by water-resource managers and other stakeholders to quantitatively evaluate proposed alternative management strategies and assess the long‑term availability of groundwater. The numerical simulation of groundwater flow in the CPRAS was completed with support from the Groundwater Resources Program of the U.S. Geological Survey Office of Groundwater.

  12. Mass and energy flows between the Solar chromosphere, transition region, and corona

    Science.gov (United States)

    Hansteen, V. H.

    2017-12-01

    A number of increasingly sophisticated numerical simulations spanning the convection zone to corona have shed considerable insight into the role of the magnetic field in the structure and energetics of the Sun's outer atmosphere. This development is strengthened by the wealth of observational data now coming on-line from both ground based and space borne observatories. We discuss what numerical models can tell us about the mass and energy flows in the region of the upper chromosphere and lower corona, using a variety of tools, including the direct comparison with data and the use of passive tracer particles (so-called 'corks') inserted into the simulated flows.

  13. [Regional blood flow and bone uptake of methylene-diphosphonate-technetium-99m].

    Science.gov (United States)

    Vattimo, A; Martini, G; Pisani, M

    1983-05-30

    Sudeck's atrophy of the foot is an acute, patchy osteoporosis that, on bone scan, shows an increase in both bone blood flow and local bone uptake of bone-seeking radionuclides. The purpose of this study was to evaluate the relationship between bone uptake of 99mTc-MDP and local bone blood flow. In some patients with Sudeck's atrophy of one foot we measured local bone blood flow and bone uptake of 99mTc-MDP. External counting of radioactivity, with a count-rate of 1 second was performed for 60 minutes after i.v. injection of a known dose of 99mTc-MDP in some patients with Sudeck's atrophy of the foot. The regions of interest (ROI) were selected on the basis of a bone scan performed 24 hours earlier. We assumed that the data recorded during the first seconds (7-10) reflect local blood flow and the data at 60 minutes reflect the bone uptake. The ratio between the local blood flow in the involved and healthy foot was higher than the local bone uptake ratio. The ratio between bone uptake and local bone blood flow was higher in the normal foot than in the affected one. These results suggest that the bone avidity for bone-seeking radionuclides is lower in Sudeck's atrophy than in normal bone.

  14. Second status report on regional ground-water flow modeling for the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    1986-07-01

    Regional ground-water flow within the principal geohydrologic units of the Palo Duro Basin is evaluated by developing a conceptual model of the flow regime and testing the model using a three-dimensional, finite-difference flow code. Sensitivity analyses (a limited parametric study) are conducted to define the system responses to changes in the conceptual model. Of particular interest are the impacts of salt permeability and potential climatic changes on the system response. The conceptual model is described in terms of its areal and vertical discretization, aquifer properties, fluid properties and hydrologic boundary conditions. The simulated ground-water flow fields are described with potentiometric surfaces, tables summarizing the areal and vertical volumetric flows through the principal units, and Darcy velocities within specified finite-difference blocks. The reported work is the second stage of an ongoing evaluation of the Palo Duro Basin as a potential repository for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, the report does provide a useful basis for describing the sensitivity of the present conceptualization of ground-water flow to particular parameters and, to a lesser extent, the uncertainties in the present conceptualization. 28 refs., 44 figs., 13 tabs

  15. Receiver operating characteristic analysis of regional cerebral blood flow in Alzheimer's disease

    International Nuclear Information System (INIS)

    Zemcov, A.; Barclay, L.L.; Sansone, J.; Metz, C.E.

    1985-01-01

    Receiver operating characteristic (ROC) curves were used to quantitatively assess the ability of individual detectors in a 32-detector 133 Xe inhalation system to discriminate between two populations over the range of regional cerebral blood flow (rCBF) values. These populations were clinically evaluated as normal (age 63.1 +/- 13.1, n = 23) and presumed Alzheimer's disease (age 72.7 +/- 7.0, n = 82). Summary statistics showed that for homologous detectors the average value of blood flow in the normal group was greater than the flow value in the group of subjects with Alzheimer's disease. Conclusions drawn from single values of flow or mean hemispheric flow can lead to erroneous conclusions about hemisphere asymmetries. However, the dynamic relationship between the correct identifications (true positives) compared with incorrect identifications (false positives) of Alzheimer's disease at each detector varies over the range of blood flow values, and quantitative characterization of this relationship in terms of an ROC curve provides more insight into the structure of the data. Detectors approximating the speech, auditory and association cortex were most effective in discriminating between groups. Frontal detectors were marginally useful diagnostically

  16. VEGETATION BEHAVIOR AND ITS HABITAT REGION AGAINST FLOOD FLOW IN URBAN STREAMS

    Directory of Open Access Journals (Sweden)

    IL-KI CHOI

    2013-06-01

    Full Text Available Hydraulic effects on the vegetation behavior and on its habitat region against flood flow in the urban streams were analysed in this paper. Vegetation behavior was classified into stable, recovered, damaged and swept away stages. Criteria between recovered and damaged status were determined by the bending angle of the aquatic plants. Aquatic plants whose bending angle is lower than 30~50 degree is recovered, but they were damaged and cannot be recovered when the bending angle is higher than 30~50 degree. Phragmites japonica was inhabited in the hydraulic condition of high Froude number which shows that it was inhabited in the upstream reaches. Phragmites communis was inhabited in the relatively low Froude number compared with Phragmites japonica. This shows that it was inhabited in the downstream reaches. Persicaria blumei was found in the relatively wide range of flow velocity and flow depth, which shows that it was inhabited in the middle and downstream reaches. Criterion on the vegetation behavior of Persicaria thunbergii was not clear, which implies that it may be affected by the flow turbulence rather than flow velocity and flow depth.

  17. Preliminary studies of regional cerebral blood flow changes in patients with leukoaraiosis

    International Nuclear Information System (INIS)

    Li Yaming; Ren Yan; He Qiu

    1997-01-01

    PURPOSE: To investigate changes of regional cerebral blood flow (rCBF) in leukoaraiosis (LA) lesion and cortical regions and analyse the relation between rCBF changes and dementia. METHODS: Regional cerebral blood flow perfusion imaging with SPECT was performed in 49 patients with subcortical multiple cerebral infarction, including 24 cases company LA [LA(+)], 25 cases not company LA[LA(-)] and 10 normal subjects. The relative analysis was made between rCBF changes and cognitive scores. RESULTS: Compared the LA(+) with control, the rCBFs in frontal, parietal, temporal cortexes and LA lesion significantly decreased (P<0.05). The rCBF of frontal, parietal cortexes and LA lesions was also significantly decreased (P<0.05) compared with LA(-) groups. The cognitive scores were significantly related with rCBF changes in frontal cortex and LA lesion (r = 0.765, P<0.01 and r = 0.439, P<0.05). CONCLUSION: In patients with subcortical multiple cerebral infarction company LA lesion, there were extensive ischemic hypoperfusion changes in the cortical regions and LA lesion, which may response to decreased cerebral function and had certain relationship with dementia. The examination with SPECT cerebral blood flow perfusion imaging had unique advantage and value

  18. Evaluation of the groundwater flow model for southern Utah and Goshen Valleys, Utah, updated to conditions through 2011, with new projections and groundwater management simulations

    Science.gov (United States)

    Brooks, Lynette E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Southern Utah Valley Municipal Water Association, updated an existing USGS model of southern Utah and Goshen Valleys for hydrologic and climatic conditions from 1991 to 2011 and used the model for projection and groundwater management simulations. All model files used in the transient model were updated to be compatible with MODFLOW-2005 and with the additional stress periods. The well and recharge files had the most extensive changes. Discharge to pumping wells in southern Utah and Goshen Valleys was estimated and simulated on an annual basis from 1991 to 2011. Recharge estimates for 1991 to 2011 were included in the updated model by using precipitation, streamflow, canal diversions, and irrigation groundwater withdrawals for each year. The model was evaluated to determine how well it simulates groundwater conditions during recent increased withdrawals and drought, and to determine if the model is adequate for use in future planning. In southern Utah Valley, the magnitude and direction of annual water-level fluctuation simulated by the updated model reasonably match measured water-level changes, but they do not simulate as much decline as was measured in some locations from 2000 to 2002. Both the rapid increase in groundwater withdrawals and the total groundwater withdrawals in southern Utah Valley during this period exceed the variations and magnitudes simulated during the 1949 to 1990 calibration period. It is possible that hydraulic properties may be locally incorrect or that changes, such as land use or irrigation diversions, occurred that are not simulated. In the northern part of Goshen Valley, simulated water-level changes reasonably match measured changes. Farther south, however, simulated declines are much less than measured declines. Land-use changes indicate that groundwater withdrawals in Goshen Valley are possibly greater than estimated and simulated. It is also possible that irrigation

  19. Regional groundwater flow and tritium transport modeling and risk assessment of the underground test area, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-10-01

    The groundwater flow system of the Nevada Test Site and surrounding region was evaluated to estimate the highest potential current and near-term risk to the public and the environment from groundwater contamination downgradient of the underground nuclear testing areas. The highest, or greatest, potential risk is estimated by assuming that several unusually rapid transport pathways as well as public and environmental exposures all occur simultaneously. These conservative assumptions may cause risks to be significantly overestimated. However, such a deliberate, conservative approach ensures that public health and environmental risks are not underestimated and allows prioritization of future work to minimize potential risks. Historical underground nuclear testing activities, particularly detonations near or below the water table, have contaminated groundwater near testing locations with radioactive and nonradioactive constituents. Tritium was selected as the contaminant of primary concern for this phase of the project because it is abundant, highly mobile, and represents the most significant contributor to the potential radiation dose to humans for the short term. It was also assumed that the predicted risk to human health and the environment from tritium exposure would reasonably represent the risk from other, less mobile radionuclides within the same time frame. Other contaminants will be investigated at a later date. Existing and newly collected hydrogeologic data were compiled for a large area of southern Nevada and California, encompassing the Nevada Test Site regional groundwater flow system. These data were used to develop numerical groundwater flow and tritium transport models for use in the prediction of tritium concentrations at hypothetical human and ecological receptor locations for a 200-year time frame. A numerical, steady-state regional groundwater flow model was developed to serve as the basis for the prediction of the movement of tritium from the

  20. Geomorphic controls on Pleistocene knickpoint migration in Alpine valleys

    Science.gov (United States)

    Leith, Kerry; Fox, Matt; Moore, Jeffrey R.; Brosda, Julian; Krautblatter, Michael; Loew, Simon

    2014-05-01

    Recent insights into sub-glacial bedrock stress conditions suggest that the erosional efficiency of glaciers may reduce markedly following a major erosional cycle [Leith et al., 2013]. This implies that the formation of large glacial valleys within the Alps is likely to have occurred shortly after the onset of 100 ky glacial-interglacial cycles (at the mid-Pleistocene Revolution (MPR)). The majority of landscape change since this time may have therefore been driven by sub-aerial processes. This hypothesis is supported by observations of hillslope and channel morphology within Canton Valais (Switzerland), where major tributary valleys display a common morphology along their length, hinting at a shared geomorphic history. Glaciers currently occupy the headwaters of many catchments, while the upper reaches of rivers flow across extensive alluvial planes before abruptly transitioning to steep channels consisting of mixed bedrock and talus fan deposits. The rivers then converge to flow out over the alluvial plane of the Rhone Valley. Characteristically rough topographies within the region are suggested to mark the progressive transition from a glacial to fluvially-dominated landscape, and correlate well with steepened river channel sections determined from a 2.5 m resolution LiDAR DEM. We envisage a landscape in which ongoing tectonic uplift drives the emergence of Alpine bedrock through massive sedimentary valley infills (currently concentrated in the Rhone Valley), whose elevation is fixed by the consistent fluvial baselevel at Lake Geneva. As fluvial incision ceases at the onset of glaciation, continued uplift causes the formation of knickpoints at the former transition from bedrock to sedimentary infill. These knickpoints will then propagate upstream during subsequent interglacial periods. By investigating channel morphologies using an approach based on the steady-state form of the stream power equation, we can correlate steepened channel reaches (degraded

  1. Regional Balance Model of Financial Flows through Sectoral Approaches System of National Accounts

    Directory of Open Access Journals (Sweden)

    Ekaterina Aleksandrovna Zaharchuk

    2017-03-01

    Full Text Available The main purpose of the study, the results of which are reflected in this article, is the theoretical and methodological substantiation of possibilities to build a regional balance model of financial flows consistent with the principles of the construction of the System of National Accounts (SNA. The paper summarizes the international experience of building regional accounts in the SNA as well as reflects the advantages and disadvantages of the existing techniques for constructing Social Accounting Matrix. The authors have proposed an approach to build the regional balance model of financial flows, which is based on the disaggregated tables of the formation, distribution and use of the added value of territory in the framework of institutional sectors of SNA (corporations, public administration, households. Within the problem resolution of the transition of value added from industries to sectors, the authors have offered an approach to the accounting of development, distribution and use of value added within the institutional sectors of the territories. The methods of calculation are based on the publicly available information base of statistics agencies and federal services. The authors provide the scheme of the interrelations of the indicators of the regional balance model of financial flows. It allows to coordinate mutually the movement of regional resources by the sectors of «corporation», «public administration» and «households» among themselves, and cash flows of the region — by the sectors and directions of use. As a result, they form a single account of the formation and distribution of territorial financial resources, which is a regional balance model of financial flows. This matrix shows the distribution of financial resources by income sources and sectors, where the components of the formation (compensation, taxes and gross profit, distribution (transfers and payments and use (final consumption, accumulation of value added are

  2. Preliminary testing of flow-ecology hypotheses developed for the GCP LCC region

    Science.gov (United States)

    Brewer, Shannon K.; Davis, Mary

    2014-01-01

    The Ecological Limits of Hydrological Alteration (ELOHA) framework calls for the development of flow-ecology hypotheses to support protection of the flow regime from ecologically harmful alteration due to human activities. As part of a larger instream flow project for the Gulf Coast Prairie Landscape Conservation Cooperative (GCP LCC), regional flow-ecology hypotheses were developed for fish, mussels, birds, and riparian vegetation (Davis and Brewer 20141). The objective of this study was to assess the usefulness of existing ecological and hydrological data to test these hypotheses or others that may be developed in the future. Several databases related to biological collections and hydrologic data from Oklahoma, Texas, and Louisiana were compiled. State fish-community data from Oklahoma and Louisiana were summarized and paired with existing USGS gage data having at least a 40-year period of record that could be separated into reference and current conditions for comparison. The objective of this study was not to conduct exhaustive analyses of these data, the hypotheses, or analyses interpretation, but rather to use these data to determine if existing data were adequate to statistically test the regional flow-ecology hypotheses. The regional flow-ecology hypotheses were developed for the GCP LCC by a committee chaired by Shannon Brewer and Mary Davis (Davis and Brewer 2014). Existing data were useful for informing the hypotheses and suggest support for some hypotheses, but also highlight the need for additional testing and development as some results contradicted hypotheses. Results presented here suggest existing data are adequate to support some flow-ecology hypotheses; however, lack of sampling effort reported with the fish collections and the need for ecoregion-specific analyses suggest more data would be beneficial to analyses in some ecoregions. Additional fish sampling data from Texas and Louisiana will be available for future analyses and may ameliorate

  3. Regional myocardial blood flow, metabolism and function assessed noninvasively by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Schelbert, H.R.; Phelps, M.E.; Hoffman, E.; Huang, S.; Kuhl, D.E.

    1979-01-01

    Positron emission computed tomography is a new technique for the noninvasive measure of myocardial blood flow, mechanical function and, in particular, metabolism. The capability of this new study means is due to the technological innovations of the imaging device and the availability of radioactive tracers that are specific for blood flow and metabolism. The device permits recording of cross-sectional images of the left ventricular myocardium that reflect quantitatively regional tracer tissue concentrations. By employing tracer kinetic models this new technique permits the measurement of regional glucose and fatty acid metabolism of the heart. While already an important new tool for investigative studies into cardiac physiology and pathophysiology, the clinical utility of positron emission tomography remains to be defined.

  4. Regional heterogeneity and gene flow maintain variance in a quantitative trait within populations of lodgepole pine

    Science.gov (United States)

    Yeaman, Sam; Jarvis, Andy

    2006-01-01

    Genetic variation is of fundamental importance to biological evolution, yet we still know very little about how it is maintained in nature. Because many species inhabit heterogeneous environments and have pronounced local adaptations, gene flow between differently adapted populations may be a persistent source of genetic variation within populations. If this migration–selection balance is biologically important then there should be strong correlations between genetic variance within populations and the amount of heterogeneity in the environment surrounding them. Here, we use data from a long-term study of 142 populations of lodgepole pine (Pinus contorta) to compare levels of genetic variation in growth response with measures of climatic heterogeneity in the surrounding region. We find that regional heterogeneity explains at least 20% of the variation in genetic variance, suggesting that gene flow and heterogeneous selection may play an important role in maintaining the high levels of genetic variation found within natural populations. PMID:16769628

  5. Regional cerebral blood flow after long-term exposure to carbon disulfide

    International Nuclear Information System (INIS)

    Aaserud, O.; Russell, D.; Nyberg-Hansen, R.; Joergensen, E.B.; Gjerstad, L.; Rootwelt, K.; Nakstad, P.; Hommeren, O.J.; Tvedt, B.

    1992-01-01

    Sixteen former rayon viscose workers were investigated four years after the exposure to carbon disulfide was discontinued. Median age was 58 years (range 43-65 years), median exposure time was 17 years (range 10-35 years). Encephalopathy was diagnosed in altogether 14 workers. To further explore pathophysiological mechanisms, cerebrovascular investigations were employed. Doppler ultrasound examination of the precerebral vessels in 15 workers showed a slight stenosis of the left internal carotid artery in one. Regional cerebral blood flow investigation (rCBF) with single photon emission computerized tomography (SPECT) with Xenon-133 gas was performed in 14. There was no significant difference from a control group. Regional side-to-side asymmetries beyond reference limits were demonstrated in eight workers. The abnormalities were modest, but may indicate a tendency toward focal blood flow disturbances in workers with long-term exposure to carbon disulfide. (au)

  6. Control of the flow in the annular region of a shrouded cylinder with splitter plate

    Directory of Open Access Journals (Sweden)

    Ozkan Gokturk Memduh

    2017-01-01

    Full Text Available In the present study, the flow control with a splitter plate was studied considering the annular region of a shrouded cylinder. The effect of splitter plate angle, α which was defined according to the cylinder centreline is investigated experimentally in deep water using Particle image Velocimetry (PIV technique and flow visualization by dye injection method. The range of splitter plate angle was selected within 60°≤ α ≤180° with an increment of 30°. The porosity of the shroud which is a perforated cylinder was selected as β=0.7 in order to have larger fluid entrainment through the cylinder. The results were compared with the no-plate case and showed that the splitter plate located in the annular region of shrouded cylinders is effective on reducing the turbulence levels just behind the cylinder base, as well as the near wake of the perforated shroud.

  7. Use of Gene Expression Programming in regionalization of flow duration curve

    Science.gov (United States)

    Hashmi, Muhammad Z.; Shamseldin, Asaad Y.

    2014-06-01

    In this paper, a recently introduced artificial intelligence technique known as Gene Expression Programming (GEP) has been employed to perform symbolic regression for developing a parametric scheme of flow duration curve (FDC) regionalization, to relate selected FDC characteristics to catchment characteristics. Stream flow records of selected catchments located in the Auckland Region of New Zealand were used. FDCs of the selected catchments were normalised by dividing the ordinates by their median value. Input for the symbolic regression analysis using GEP was (a) selected characteristics of normalised FDCs; and (b) 26 catchment characteristics related to climate, morphology, soil properties and land cover properties obtained using the observed data and GIS analysis. Our study showed that application of this artificial intelligence technique expedites the selection of a set of the most relevant independent variables out of a large set, because these are automatically selected through the GEP process. Values of the FDC characteristics obtained from the developed relationships have high correlations with the observed values.

  8. Myocardial temperature variation: effect on regional function and coronary flow in dogs

    International Nuclear Information System (INIS)

    D'Ambra, M.N.; Magrassi, P.; Lowenstein, E.; Kyo, S.; Austen, W.G.; Buckley, M.J.; LaRaia, P.J.

    1987-01-01

    Incremental changes in the temperature (28-42.5 0 C) of the anterior left ventricular wall in a canine, working, beating right heart bypass preparation (constant preload, afterload, and heart rate) were produced to measure the effect of regional temperature on myocardial function and blood flow. Circumferential-axis segment lengths were measured with sonomicrometry in both the temperature-varied, left-anterior descending coronary artery (LAD)-supplied myocardium and the normothermic (38 0 C) circumflex-supplied myocardium. Fast thermistors (time constant 0 C), regional systolic shortening decreased 42.2 +/- 10% at 41 0 C and increased 23.3 +/- 6% at 31 0 C. There was no significant change in coronary blood flow or distribution at the three temperatures. Pressure-length areas varied inversely with myocardial temperature. These data demonstrate that there is a reversible inverse relationship between midwall T and ventricular function when heart rate, preload, and afterload are controlled

  9. Regional myocardial blood flow, metabolism and function assessed noninvasively by positron emission tomography

    International Nuclear Information System (INIS)

    Schelbert, H.R.; Phelps, M.E.; Hoffman, E.; Huang, S.; Kuhl, D.E.

    1979-01-01

    Positron emission computed tomography is a new technique for the noninvasive measure of myocardial blood flow, mechanical function and, in particular, metabolism. The capability of this new study means is due to the technological innovations of the imaging device and the availability of radioactive tracers that are specific for blood flow and metabolism. The device permits recording of cross-sectional images of the left ventricular myocardium that reflect quantitatively regional tracer tissue concentrations. By employing tracer kinetic models this new technique permits the measurement of regional glucose and fatty acid metabolism of the heart. While already an important new tool for investigative studies into cardiac physiology and pathophysiology, the clinical utility of positron emission tomography remains to be defined

  10. Control of the flow in the annular region of a shrouded cylinder with splitter plate

    Science.gov (United States)

    Ozkan, Gokturk Memduh; Durhasan, Tahir; Pinar, Engin; Yenicun, Arda; Akilli, Huseyin; Sahin, Besir

    In the present study, the flow control with a splitter plate was studied considering the annular region of a shrouded cylinder. The effect of splitter plate angle, α which was defined according to the cylinder centreline is investigated experimentally in deep water using Particle image Velocimetry (PIV) technique and flow visualization by dye injection method. The range of splitter plate angle was selected within 60°≤ α ≤180° with an increment of 30°. The porosity of the shroud which is a perforated cylinder was selected as β=0.7 in order to have larger fluid entrainment through the cylinder. The results were compared with the no-plate case and showed that the splitter plate located in the annular region of shrouded cylinders is effective on reducing the turbulence levels just behind the cylinder base, as well as the near wake of the perforated shroud.

  11. Regional blood flows in the established stage of reduced renal mass (RRM) hypertension in rats

    International Nuclear Information System (INIS)

    Smits, G.J.; Lombard, J.H.

    1986-01-01

    Regional blood flows were measured with 15 μm 153 Gd-labelled microspheres in 21 anesthetized (pentobarbital-50 mg/kg, i.p.) male Sprague Dawley rats 5-6 weeks after a 75% reduction in renal mass and in 6 sham operated controls (SOC). RRM rats were maintained on either a high salt (HS-RRM) diet, i.e., choice of 1% NaCl or tap water (n = 11), or on a salt-restricted (SR-RRM) diet (n = 10). Mean arterial blood pressure was significantly elevated (mean +/- SE) in the HS-RRM (168 +/- 5 mmHg) vs. either the SR-RRM (147 +/- 6 mmHg) or the SOC (138 +/- 4 mmHg). Although blood flow to the skin and femur were elevated in HS-RRM and SR-RRM relative to SOC, there were no significant differences in blood flow to skeletal muscle, spleen, liver, small intestine, stomach or testes between any of the groups. Absolute renal blood flow and renal blood flow/gm of tissue were significantly lower in HS-RRM (7.2 +/- 0.7 ml/min or 3.4 +/- 0.5 ml/min/gm) and SR-RRM (6.3 +/- 0.6 ml/min or 3.2 +/- 0.3 ml/min/gm) than in SOC (15.1 +/- 0.97 ml/min or 5.5 +/- 0.2 ml/min/gm). The present results suggest that regional blood flow is unchanged in most vascular beds during the established stage of RRM hypertension in rats

  12. First status report on regional and local ground-water flow modeling for Richton Dome, Mississippi

    International Nuclear Information System (INIS)

    Andrews, R.W.; Metcalfe, D.E.

    1984-03-01

    Regional and local ground-water flow within the principal hydrogeologic units in the vicinity of Richton Dome is evaluated by developing conceptual models of the flow regime within these units at three different scales and testing these models using a three-dimensional, finite-difference flow code. Semiquantitative sensitivity analysis is conducted to define the system response to changes in the conceptual model, particularly the hydrologic properties. The effects of salinity on the flow field are evaluated at the refined and local scales. Adjoint sensitivity analysis is applied to the conceptualized flow regime in the Wilcox aquifer. All steps leading to the final results and conclusions are incorporated in this report. The available data utilized in this study is summarized. The specific conceptual models, defining the areal and vertical averaging of lithologic units, aquifer properties, fluid properties, and hydrologic boundary conditions, are described in detail. The results are delineated by the simulated potentiometric surfaces and tables summarizing areal and vertical boundary fluxes, Darcy velocities at specific points, and ground-water travel paths. These results are presented at regional, refined, and local (near-dome) scales. The reported work is the first stage of an ongoing evaluation of the Richton Dome as a potential repository for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, this report does provide a useful basis for describing the sensitivity and, to a lesser extent, the uncertainty of the present conceptualization of ground-water flow in the vicinity of Richton Dome. 25 references, 69 figures, 15 tables

  13. Effect of axillary blockade on regional cerebral blood flow during static handgrip

    DEFF Research Database (Denmark)

    Friedman, D B; Friberg, L; Mitchell, J H

    1991-01-01

    Regional cerebral blood flow (rCBF) was determined at rest and during static handgrip before and after regional blockade with lidocaine. A fast rotating single photon emission computer tomograph system with 133Xe inhalation was used at orbitomeatal plane (OM) +2.5 and +6.5 cm in eight subjects. M...... static handgrip, there was no increase in rCBF after partial sensory and motor blockade. Thus bilateral activation occurs in the premotor and motor sensory cortex during static handgrip, and this activation requires neural feedback from the contracting muscles....

  14. Titan's fluvial valleys: Morphology, distribution, and spectral properties

    Science.gov (United States)

    Langhans, M.H.; Jaumann, R.; Stephan, K.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Baines, K.H.; Nicholson, P.D.; Lorenz, R.D.; Soderblom, L.A.; Soderblom, J.M.; Sotin, Christophe; Barnes, J.W.; Nelson, R.

    2012-01-01

    Titan's fluvial channels have been investigated based on data obtained by the Synthetic Aperture Radar (SAR) instrument and the Visible and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft. In this paper, a database of fluvial features is created based on radar-SAR data aiming to unveil the distribution and the morphologic and spectral characteristics of valleys on Titan on a global scale. It will also study the spatial relations between fluvial valleys and Titan's geologic units and spectral surface units which have become accessible thanks to Cassini-VIMS data. Several distinct morphologic types of fluvial valleys can be discerned by SAR-images. Dendritic valley networks appear to have much in common with terrestrial dendritic systems owing to a hierarchical and tree-shaped arrangement of the tributaries which is indicative of an origin from precipitation. Dry valleys constitute another class of valleys resembling terrestrial wadis, an indication of episodic and strong flow events. Other valley types, such as putative canyons, cannot be correlated with rainfall based on their morphology alone, since it cannot be ruled out that they may have originated from volcanic/tectonic action or groundwater sapping. Highly developed and complex fluvial networks with channel lengths of up to 1200 km and widths of up to 10 km are concentrated only at a few locations whereas single valleys are scattered over all latitudes. Fluvial valleys are frequently found in mountainous areas. Some terrains, such as equatorial dune fields and undifferentiated plains at mid-latitudes, are almost entirely free of valleys. Spectrally, fluvial terrains are often characterized by a high reflectance in each of Titan's atmospheric windows, as most of them are located on Titan's bright 'continents'. Nevertheless, valleys are spatially associated with a surface unit appearing blue due to its higher reflection at 1.3??m in a VIMS false color RGB composite with R: 1.59/1.27??m, G: 2

  15. Regional blood flow in the domestic fowl immediately following chronic acceleration

    International Nuclear Information System (INIS)

    Weidner, W.J.; Hoffman, L.F.; Clark, S.D.

    1982-01-01

    In order to examine the effects of chronic low G acceleration on blood flow distribution and cardiac output, chickens (N.10) were centrifuged at +2Gz for 30-61 d. Controls (N.12) were not centrifuged. The animals were anesthetized with sodium pentobarbital after removal from the centrifuge and surgically prepared in order to measure cardiac output and regional blood flows by the reference sample method with 85 Sr labeled microspheres (15 +/- 5 mum diam.). Both brachial arteries were cannulated to withdraw timed, paired blood samples at a known rate. The chest was opened and a cannula inserted into the left ventricle for administration of microspheres. Tissue samples were taken after completion of experimental procedures and their radioactivity was determined. The cardiac outputs in the two groups were not significantly different. Regional blood flows to the kidney, eyes, and skeletal muscle were significantly increased in the animals subjected to chronic +2Gz. While the mechanism by which these increases in blood flow occurred is not known, results indicate that chronic exposure to hyperdynamic gravitational fields can alter circulatory dynamics. We conclude that the cardiovascular system is directly involved in the process of adaptation to chronic positive acceleration

  16. Measurement of regional cerebral blood flow by intravenous administation of 133 xenon

    International Nuclear Information System (INIS)

    Ryding, E.

    1986-01-01

    Reviewing the background and the theory for rCFB measurements the following conditions are established for the use of flow measurement with 133-Xenon as a reliable indicator for indirect measurements of cerebral functional activity. 1. There is a strict coupling between rCBF and regional metabolism. This condition can only be considered to be fulfilled in the normal non-anoxic bran tissue. 2. There is a close correlation between the tissue and the venous concentration of 133-Xenin which can be reliably approximated by the blood-brain partition coefficient. This condition can be considered to be fullfilled in the normal flow range, but not in pathological conditions such as cerebrovascular occlusions. 3. Intercompartment diffusion of 133-Xenon has no significant effect upon the measurement of rCBF values. This condition appear to share its limitations for fulfilement with condition 2. 4. There is no significant contamination by the extracerebral flow components at IH or IV rCBF measurements. 5. There is a negligible 'look through' effect from surrounding areas to region with focal high or low blood flow. (U.W.)

  17. Continuous determination of regional myocardial blood flow with intracoronary krypton-81m in coronary artery disease

    International Nuclear Information System (INIS)

    Remme, W.J.; Krauss, X.H.; van Hoogenhuyze, D.C.; Cox, P.H.; Storm, C.J.; Kruyssen, D.A.

    1985-01-01

    Pacing-induced changes in regional coronary flow were studied continuously with krypton-81m by intracoronary infusion in 25 patients: 21 with 50% or greater diameter narrowing of 1 or more left coronary arteries (group I) and 4 with less than 50% diameter reduction of a left coronary artery (group II). No changes occurred in group II. In group I, krypton-81m perfusion decreased progressively in all areas with more than 70% diameter narrowing, with a simultaneous increase in normal regions. At the end of pacing during angina, krypton-81m perfusion was reduced to 81 +/- 4% of control in areas with 71 to 90% diameter reduction (n = 8) and to 69 +/- 6% in areas with more than 90% diameter narrowing (n = 15). In contrast, in regions with 50 to 70% diameter reduction changes were variable (decrease in 4 regions, increase in 2 and an unchanged distribution in 1 region). Krypton-81m perfusion decreased early, before general signs of ischemia in areas with more than 90% diameter reduction, whereas this decrease occurred later in regions with 71 to 90% diameter narrowing, concurrently with ST-segment changes but before anginal pain. Although all signs of ischemia had disappeared between 2 and 5 minutes after pacing, changes in krypton-81m distribution persisted in most areas for 5 to 15 minutes after pacing. It is concluded that the functional significance of coronary arterial narrowing can be assessed with a continuous intracoronary infusion of krypton-81m. Changes in regional distribution persisted after cessation of pacing-induced ischemia, indicating an ongoing decrease in regional myocardial blood flow

  18. Particle image velocimetry measurements of the flow in the converging region of two parallel jets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huhu, E-mail: huhuwang@tamu.edu; Lee, Saya, E-mail: sayalee@tamu.edu; Hassan, Yassin A., E-mail: y-hassan@tamu.edu

    2016-09-15

    Highlights: • The flow behaviors in the converging region were non-intrusively investigated using PIV. • The PIV results using two measuring scales and LDV data matched very well. • Significant momentum transfer was observed in the merging region right after the merging point. • Instantaneous vector field revealed characteristic interacting patterns of the jets. - Abstract: The interaction between parallel jets plays a critical role in determining the characteristics of the momentum and heat transfer in the flow. Specifically for next generation VHTR, the output temperature will be about 900 °C, and any thermal oscillations will create safety issues. The mixing variations of the coolants in the reactor core may influence these power oscillations. Numerous numerical tools such as computational fluid dynamics (CFD) simulations have been used to support the reactor design. The validation of CFD method is important to ensure the fidelity of the calculations. This requires high-fidelity, qualified benchmark data. Particle image velocimetry (PIV), a non-intrusive measuring technique, was used to provide benchmark data for resolving a simultaneous flow field in the converging region of two submerged parallel jets issued from rectangular channels. The jets studied in this work had an equal discharge velocity at room temperature. The turbulent characteristics including the distributions of mean velocities, turbulence intensities, Reynolds stresses and z-component vorticity were studied. The streamwise mean velocity measured by PIV and LDV were compared, and they agreed very well.

  19. Factors affecting regional pulmonary blood flow in chronic ischemic heart disease

    International Nuclear Information System (INIS)

    Pistolesi, M.; Miniati, M.; Bonsignore, M.

    1988-01-01

    To assess the effect of left heart disease on pulmonary blood flow distribution, we measured mean pulmonary arterial and wedge pressures, cardiac output, pulmonary vascular resistance, pulmonary blood volume, and arterial oxygen tension before and after treatment in 13 patients with longstanding ischemic heart failure and pulmonary edema. Pulmonary edema was evaluated by a radiographic score, and regional lung perfusion was quantified on a lung scan by the upper to lower third ratio (U:L ratio) of pulmonary blood flow per unit of lung volume. In all cases, redistribution of lung perfusion toward the apical regions was observed; this pattern was not affected by treatment. After treatment, pulmonary vascular pressures, resistance, and edema were reduced, while pulmonary blood volume did not change. At this time, pulmonary vascular resistance showed a positive correlation with the U:L ratio (r = 0.78; P less than 0.01), whereas no correlation was observed between U:L ratio and wedge pressure, pulmonary edema, or arterial oxygen tension. Hence, redistribution of pulmonary blood flow, in these patients, reflects chronic structural vascular changes prevailing in the dependent lung regions

  20. Low regional cerebral blood flow in burning mouth syndrome patients with depression.

    Science.gov (United States)

    Liu, B-L; Yao, H; Zheng, X-J; Du, G-H; Shen, X-M; Zhou, Y-M; Tang, G-Y

    2015-07-01

    The main aims of this study were to (i) investigate the emotional disorder status of patients with burning mouth syndrome (BMS) and (ii) detect regional cerebral blood flow in BMS patients with the application of combined single-photon emission computed tomography and computed tomography (SPECT/CT). The degree of pain was measured using the visual analysis scale, and emotional disorder with the self-rating anxiety scale, self-rating depression scale, and Hamilton depression rating scale in 29 patients with BMS and 10 healthy controls. SPECT/CT was performed in 29 patients with BMS and 10 healthy controls, and statistical parametric mapping method was used for between-group analyses. The incidence rate of depression in patients with BMS was 31.0%. Compared to the control group, patients with BMS displayed significantly different depression and anxiety scales (P < 0.05). Significantly lower regional cerebral blood flow in the left parietal and left temporal lobes was recorded for BMS patients with depression (P < 0.05). Patients with BMS experience more depression and anxious emotion. Moreover, depression in patients with BMS may be associated with lower regional cerebral blood flow in the left temporal and left parietal lobes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Regional cerebral blood flow (rCBF) in psychiatry: Methodological issues

    International Nuclear Information System (INIS)

    Prohovnik, I.

    1984-01-01

    Traditionally, measurements of regional cerebral blood flow (rCBF) have been confined to neurology and nuclear medicine. Only one laboratory had concentrated on using this technique in psychiatric studies. Recently, however, rCBF has been increasingly used in psychiatry, and it seems appropriate at this time to examine the value and limitations of this method. The present article reviews selected methodological issues that may complicate the performance and interpretation of rCBF studies, with the aim of providing some means to evaluate published work and to plan further psychiatric research. In this paper, the term rCBF refers only to the two-dimensional, noninvasive methods that rely on inhalation or intravenous injection of xenon-133. The growing interest of rCBF to psychiatry stems mostly from the fact that this technique can indirectly map cerebral metabolism and, by interface, neural activity or information processing. Regional metabolism and blood flow are closely coupled to the human brain in the absence of gross pathology, and since psychiatric patients rarely present acute neurological abnormalities that might disrupt this coupling, one may infer regional metabolism from flow

  2. Study on uncertainty evaluation methodology related to hydrological parameter of regional groundwater flow analysis model

    International Nuclear Information System (INIS)

    Sakai, Ryutaro; Munakata, Masahiro; Ohoka, Masao; Kameya, Hiroshi

    2009-11-01

    In the safety assessment for a geological disposal of radioactive waste, it is important to develop a methodology for long-term estimation of regional groundwater flow from data acquisition to numerical analyses. In the uncertainties associated with estimation of regional groundwater flow, there are the one that concerns parameters and the one that concerns the hydrologeological evolution. The uncertainties of parameters include measurement errors and their heterogeneity. The authors discussed the uncertainties of hydraulic conductivity as a significant parameter for regional groundwater flow analysis. This study suggests that hydraulic conductivities of rock mass are controlled by rock characteristics such as fractures, porosity and test conditions such as hydraulic gradient, water quality, water temperature and that there exists variations more than ten times in hydraulic conductivity by difference due to test conditions such as hydraulic gradient or due to rock type variations such as rock fractures, porosity. In addition this study demonstrated that confining pressure change caused by uplift and subsidence and change of hydraulic gradient under the long-term evolution of hydrogeological environment could possibly produce variations more than ten times of magnitude in hydraulic conductivity. It was also shown that the effect of water quality change on hydraulic conductivity was not negligible and that the replacement of fresh water and saline water caused by sea level change could induce 0.6 times in current hydraulic conductivities in case of Horonobe site. (author)

  3. Relationship between segmental thallium-201 uptake and regional myocardial blood flow in patients with coronary artery disease

    International Nuclear Information System (INIS)

    Nichols, A.B.; Weiss, M.B.; Sciacca, R.R.; Cannon, P.J.; Blood, D.K.

    1983-01-01

    The relationship between the spatial distribution of thallium-201 in myocardial perfusion scintigrams and the distribution of left ventricular regional myocardial blood flow was examined in 25 patients undergoing coronary arteriography. Thallium-201 myocardial scintigrams were obtained after symptom-limited exercise and after a 4 hr delay. Regional myocardial blood flow was measured by the xenon-133 clearance method in patients at rest and during rapid atrial pacing to a double product comparable with that achieved during exercise stress testing. Patterns of regional thallium-201 activity and regional myocardial blood flow, recorded in similar left anterior oblique projections, were compared for left ventricular segments supplied by the left anterior descending (LAD) and left circumflex (CIRC) arteries. In 11 patients without significant lesions of the left coronary artery (group 1), thallium-201 was homogeneously distributed in the LAD and CIRC distributions in scintigrams taken during peak exercise; these scintigrams correspond to homogeneous regional myocardial blood flow in the LAD and CIRC regions during pacing-induced stress. In 14 patients with significant lesions of the left coronary artery (group 2), ratios of regional thallium-201 activity in the LAD and CIRC distributions of exercise scintigrams correlated well (r . .84) with ratios of regional myocardial blood flow measured during rapid pacing. Background subtraction altered the relationship between relative thallium-201 uptake and regional myocardial blood flow, causing overestimation of the magnitude of flow reduction on exercise scintigrams

  4. Birds of the St. Croix River valley: Minnesota and Wisconsin

    Science.gov (United States)

    Faanes, Craig A.

    1981-01-01

    continuing expansion of the nearby Minneapolis-St. Paul metropolitan region has degraded or destroyed many woodlots, upland fields, and wetlands. In numerous instances, degradation of natural habitats has influenced the abundance and distribution of bird species. Because of these changes, both the Federal government and State Departments of Natural Resources have listed several species in various categories based on their current status. In the St. Croix River Valley, seven species are endangered, eight are threatened, and 29 are watch or priority status in either or both states. Data presented in this report are of value to land managers, land use specialists, and ornithologists, in assessing current and projected habitat alterations on the avifauna of this valley. The St. Croix River bisects a large region of western Wisconsin and east central Minnesota that exhibits a wide range of habitat types. This region supports not only birds, but many mammals, fishes, reptiles and amphibians, and several thousand species of vascular and nonvascular plants. The river itself is relatively clean through most of its course, and its natural flow is interrupted by only two small dams. Because the river lies within a 1-day drive of nearly 10 million people (Waters 1977), use of the area for recreational purposes is extremely heavy. Recreational pursuits include sunbathing, boating, and wild river kayaking in the summer, and ice fishing and cross-country skiing in the winter. The large number of unique and highly fragile habitats that exist there may never be compatible with the uses and abuses of the land that go with expanding human populations. Through the efforts of a number of citizens concerned with the quality of their environment and the foresightedness of several local, State, and Federal legislators, a portion of the upper St. Croix River Valley (hereafter termed 'the Valley') was established as a National Wild and Scenic River. Through establishment of t

  5. New possibilities for quantitative measurements of regional cerebral blood flow with Au-195 m

    International Nuclear Information System (INIS)

    Lindner, P.; Nickel, O.

    1984-01-01

    A previously reported theory for quantitative cerebral blood flow measurement for nondiffusible radiotracers has been applied on patients after stroke and an volunteers undergoing a mental stimulation exercise. Quantitative measurements of cerebral blood flow patterns not only in p-a. but also in lateral views of the brain are possible by the use of the recently developed generator for the short lived (30 sec) isotope Au-195 m. The energy spectrum of the eluate of the generator shows two strong photon peaks, one at an energy level of 68 KeV and a second at an energy-level of 262 KeV. The low energy peak is suitable for perfusion studies in lateral views of the hemispheres, no ''look through'' effect is seen. The high energy level is good for studies in p-a-positions. The studies last less than 1 minute and can be repeated after 3 minutes. Parametric images for quantitative regional cerebral blood flow can be generated. The area of occluded vessels in the case of stroke can be detected. Quantitative activation patterns of cerebral blood flow during mental stimulation can be generated. The results prove that not only with freely diffusible indicators like Xenon but also with nondiffusible indicators it is possible to measure quantitatively cerebral blood flow patterns. (orig.)

  6. Regional ground-water flow modeling for the Paradox Basin, Utah: Second status report

    International Nuclear Information System (INIS)

    1986-09-01

    Regional ground-water flow within the principal geohydrologic units of the Paradox Basin is evaluated by developing a conceptual model of the flow regime between the shallow aquifers, the Paradox salt and the deep-basin brine aquifers. This model is tested using a three-dimensional, finite-difference flow code. Sensitivity analyses (a limited parametric study) are conducted to define the system responses to changes in the conceptual model. The conceptual model is described in terms of its areal and vertical discretization, aquifer properties, fluid properties, and hydrologic boundary conditions. The simulated results are described with potentiometric surfaces, tables summarizing the areal and vertical volumetric flows through the principal units, and Darcy velocities at specified points. The reported work is the second stage of an ongoing evaluation of the Gisbon Dome area within the Paradox Basin as a potential repository for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, the report does provide a useful basis for describing the sensitivity of the present conceptualization of ground-water flow to the hydrologic parameters and, to a lesser extent, the uncertainties of the present conceptualization. 20 refs., 17 figs., 9 tabs

  7. Disodium cromoglycate, a mast-cell stabilizer, alters postradiation regional cerebral blood flow in primates

    International Nuclear Information System (INIS)

    Cockerham, L.G.; Doyle, T.F.; Pautler, E.L.; Hampton, J.D.

    1986-01-01

    Early transient incapacitation (ETI) is the complete cessation of performance during the first 30 min after radiation exposure, and performance decrement (PD) is a reduction in performance at the same time. Supralethal doses of radiation have been shown to produce a marked decrease in regional cerebral blood flow in primates concurrent with systemic hypotension and a dramatic release of mast-cell histamine. In an attempt to elucidate mechanisms underlying the radiation-induced ETI/PD phenomena and the postradiation decrease in cerebral blood flow, primates were given the mast-cell stabilizers disodium cromoglycate (DSCG) or BRL 22321 before exposure to 100 Gy whole-body gamma radiation. Hypothalamic and cortical blood flows were measured by hydrogen clearance, before and after radiation exposure. Systemic blood pressures were determined simultaneously. The data indicated that DSCG was successful in diminishing postradiation decrease in cerebral blood flow. Irradiated animals pretreated with DSCG, showed only a 10% decrease in hypothalamic blood flow 60 min postradiation, while untreated, irradiated animals showed a 57% decrease. The cortical blood flow of DSCG treated, irradiated animals showed a triphasic response, with a decrease of 38% at 10 min postradiation, then a rise to 1% below baseline at 20 min, followed by a fall to 42% below baseline by 50 min postradiation. In contrast, the untreated, irradiated animals showed a steady decrease in cortical blood flow to 79% below baseline by 50 min postradiation. There was no significant difference in blood-pressure response between the treated and untreated, irradiated animals. Systemic blood pressure showed a 60% decrease at 10 min postradiation, falling to a 71% decrease by 60 min

  8. Regional myocardial flow and capillary permeability-surface area products are nearly proportional.

    Science.gov (United States)

    Caldwell, J H; Martin, G V; Raymond, G M; Bassingthwaighte, J B

    1994-08-01

    Analyses of data on the transcapillary exchange and cellular uptake in the normal heart have generally been based on the assumption that local membrane conductances and volumes of distribution are everywhere the same. The question is whether such an assumption is justified in view of the marked (sixfold) heterogeneity of local blood flows per gram tissue. The method was to estimate both flow and capillary membrane permeability-surface area products (PS) locally in the heart. For each of five dogs running on a sloped treadmill, the deposition of tracer microspheres and of [131I]iodophenylpentadecanoic acid (IPPA), after left atrial injection, was determined in 256 pieces of left ventricular myocardium by killing the animals at approximately 100 s after radiotracer injection. A hydraulic occluder stopped the flow to a portion of the myocardium supplied by the left circumflex coronary artery 30 s before tracer injection. Regional flows ranged from 0.1 to 7.0 ml.g-1.min-1. IPPA extractions ranged from 20 to 49%. Using the known flows, we assumed the applicability of an axially distributed blood-tissue exchange model to estimate the PS for the capillary (PSc) and the parenchymal cell. It was impossible to explain the data if the PSc values for membrane transport were uniform throughout the organ. Rather, the only reasonable descriptors of the data required that local PSc values increase with local flow, almost in proportion. Current methods of analysis using data based on deposition methods need to be revised to take into account the near proportionality of PS to flow for at least some substrates.

  9. The California Valley grassland

    Science.gov (United States)

    Keeley, J.E.; Schoenherr, Allan A.

    1990-01-01

    found in both montane meadows and moister grasslands. Forbs when present, are typically perennials. East of the interior ranges, grasslands are uncommon although native perennial bunchgrasses in genera such as Stipa, Hilaria and Aristida are common in steppe and desert scrub. Today, Valley Grassland covers nearly 7 million ha or 17% or the state (Huenneke 1989), although other sources list less than half this amount (Jones and Stokes 1987). There is some evidence that extent of the grassland region has not changed since pre-European conditions, although the spatial distribution of grasslands has likely changed substantially (Huenneke 1989). That is, many current grasslands previously may have been dominated by other vegetation types and vice versa. Without question, many former grasslands have been converted to agricultural and urban use (Barry 1972). The Valley Grassland community occurs in regions characterized by a broad range of climatic conditions. Average January temperatures may range from 5°C to 15°C and July temperatures from 15°C to 30°C (NOAA 1988). Annual precipitation ranges from approximately 12 cm to over 200 cm, although all sites are characterized by a summer drought of 4-8 months (Heady 1977). Grasslands are well developed on deep, fine-textured soils although they are not restricted to such conditions (Wells 1962, Adams 1964, Heady 1977).

  10. Regional cerebral blood flow in pure dysarthria. A 3D-SSP study

    International Nuclear Information System (INIS)

    Okamoto, Kensho; Kamogawa, Kenji; Okuda, Bungo; Kawabata, Keita; Tachibana, Hisao

    2007-01-01

    Pure dysarthria from brain infarction is a rare condition, and its pathophysiology remains unclear. To clarify the underlying mechanism of pure dysarthria, we investigated the lesion sites and regional cerebral blood flow in patients with pure dysarthria. We examined 18 consecutive patients with pure dysarthria (9 men and 9 women; mean age, 71 years) who underwent MRI and cerebral blood flow studies. To visualize the regional cerebral blood flow, we generated Z score images using the three-dimensional stereotactic surface projection (3D-SSP) method with single-photon emission computed tomography (SPECT) and N-isopropyl-p [ 123 I]iodoamphetamine. Data on the brain surface perfusion extracted by the 3D-SSP analysis were compared between the pure dysarthria (PD) patients and 9 control subjects. MRI revealed multiple lacunar infarctions involving the internal capsule and/or corona radiata in 11 patients, left internal capsule-corona radiata infarction in 4 patients, and pontine infarction in 3 patients. SPECT with 3D-SSP demonstrated bilateral frontal cortical hypoperfusion in all patients, particularly in the anterior opercular region. Based on intergroup comparisons, the PD group exhibited pronounced cortical hypoperfusion in the opercular and medial frontal regions, left more than right. In conclusion, pure dysarthria is considered to originate from frontal cortical hypoperfusion, mainly in the anterior opercular and medial frontal regions, which is probably due to interruption of the corticosubcortical neural networks relevant to speech expression and articulation. In addition, it is suggested that left hemispheric lesions may make a greater contribution to the development of pure dysarthria than do right ones. (author)

  11. Regional cerebral blood flow in older patients with chronic subdural hematoma

    International Nuclear Information System (INIS)

    Hoshi, Yutaka; Fuse, Masaaki; Iio, Masahiro; Fuziwara, Keigo; Kawaguchi, Shinichiro

    1978-01-01

    Regional cerebral blood flow (rCBF) was measured in 4 regions (frontal, parietal, occipital, and temporal) over the entire hemisphere using modified 133 Xe clearance method in 5 patients with chronic subdural hematoma. In 5 patients, rCBF was measured both pre- and postoperation and those values were compared. CBF (average cerebral blood flow) measurements were compared. CBF measurements were carried out in each patients respectively, that is before the operation and 3 weeks after the operati