WorldWideScience

Sample records for valley radio observatory

  1. The Hartebeeshoek Radio Astronomy Observatory

    International Nuclear Information System (INIS)

    Nicolson, G.D.

    1986-01-01

    This article briefly discusses the questions, problems and study fields of the modern astronomer. Radioastronomy has made important contributions to the study of the evolution of stars and has given much information on the birth of stars while at the other extreme, studies of neutron stars and the radio emission from the remnants of supernova explosions have given further insight into the death of individual stars. Radio astronomical studies have learned astronomers much about the structure of the Milky way and some twenty years ago, in a search for new radio galaxies, quasars were discovered. Radioastronomy research in South Africa is carried out at the Hartebeesthoek Radio Astronomy Observatory

  2. Goldstone-Apple Valley Radio Telescope System Theory of Operation

    Science.gov (United States)

    Stephan, George R.

    1997-01-01

    The purpose of this learning module is to enable learners to describe how the Goldstone-Apple Valley Radio Telescope (GAVRT) system functions in support of Apple Valley Science and Technology Center's (AVSTC) client schools' radio astronomy activities.

  3. Observatories and Telescopes of Modern Times

    Science.gov (United States)

    Leverington, David

    2016-11-01

    Preface; Part I. Optical Observatories: 1. Palomar Mountain Observatory; 2. The United States Optical Observatory; 3. From the Next Generation Telescope to Gemini and SOAR; 4. Competing primary mirror designs; 5. Active optics, adaptive optics and other technical innovations; 6. European Northern Observatory and Calar Alto; 7. European Southern Observatory; 8. Mauna Kea Observatory; 9. Australian optical observatories; 10. Mount Hopkins' Whipple Observatory and the MMT; 11. Apache Point Observatory; 12. Carnegie Southern Observatory (Las Campanas); 13. Mount Graham International Optical Observatory; 14. Modern optical interferometers; 15. Solar observatories; Part II. Radio Observatories: 16. Australian radio observatories; 17. Cambridge Mullard Radio Observatory; 18. Jodrell Bank; 19. Early radio observatories away from the Australian-British axis; 20. The American National Radio Astronomy Observatory; 21. Owens Valley and Mauna Kea; 22. Further North and Central American observatories; 23. Further European and Asian radio observatories; 24. ALMA and the South Pole; Name index; Optical observatory and telescope index; Radio observatory and telescope index; General index.

  4. Hartebeesthoek Radio Astronomy Observatory (HartRAO)

    Science.gov (United States)

    Nickola, Marisa; Gaylard, Mike; Quick, Jonathan; Combrinck, Ludwig

    2013-01-01

    HartRAO provides the only fiducial geodetic site in Africa, and it participates in global networks for VLBI, GNSS, SLR, and DORIS. This report provides an overview of geodetic VLBI activities at HartRAO during 2012, including the conversion of a 15-m alt-az radio telescope to an operational geodetic VLBI antenna.

  5. Low-frequency Radio Observatory on the Lunar Surface (LROLS)

    Science.gov (United States)

    MacDowall, Robert; Network for Exploration and Space Science (NESS)

    2018-06-01

    A radio observatory on the lunar surface will provide the capability to image solar radio bursts and other sources. Radio burst imaging will improve understanding of radio burst mechanisms, particle acceleration, and space weather. Low-frequency observations (less than ~20 MHz) must be made from space, because lower frequencies are blocked by Earth’s ionosphere. Solar radio observations do not mandate an observatory on the farside of the Moon, although such a location would permit study of less intense solar bursts because the Moon occults the terrestrial radio frequency interference. The components of the lunar radio observatory array are: the antenna system consisting of 10 – 100 antennas distributed over a square kilometer or more; the system to transfer the radio signals from the antennas to the central processing unit; electronics to digitize the signals and possibly to calculate correlations; storage for the data until it is down-linked to Earth. Such transmission requires amplification and a high-gain antenna system or possibly laser comm. For observatories on the lunar farside a satellite or other intermediate transfer system is required to direct the signal to Earth. On the ground, the aperture synthesis analysis is completed to display the radio image as a function of time. Other requirements for lunar surface systems include the power supply, utilizing solar arrays with batteries to maintain the system at adequate thermal levels during the lunar night. An alternative would be a radioisotope thermoelectric generator requiring less mass. The individual antennas might be designed with their own solar arrays and electronics to transmit data to the central processing unit, but surviving lunar night would be a challenge. Harnesses for power and data transfer from the central processing unit to the antennas are an alternative, but a harness-based system complicates deployment. The concept of placing the antennas and harnesses on rolls of polyimide and

  6. Building a pipeline of talent for operating radio observatories

    Science.gov (United States)

    Wingate, Lory M.

    2016-07-01

    The National Radio Astronomy Observatory's (NRAO) National and International Non-Traditional Exchange (NINE) Program teaches concepts of project management and systems engineering in a focused, nine-week, continuous effort that includes a hands-on build project with the objective of constructing and verifying the performance of a student-level basic radio instrument. The combination of using a project management (PM)/systems engineering (SE) methodical approach based on internationally recognized standards in completing this build is to demonstrate clearly to the learner the positive net effects of following methodical approaches to achieving optimal results. It also exposes the learner to basic radio science theory. An additional simple research project is used to impress upon the learner both the methodical approach, and to provide a basic understanding of the functional area of interest to the learner. This program is designed to teach sustainable skills throughout the full spectrum of activities associated with constructing, operating and maintaining radio astronomy observatories. NINE Program learners thereby return to their host sites and implement the program in their own location as a NINE Hub. This requires forming a committed relationship (through a formal Letter of Agreement), establishing a site location, and developing a program that takes into consideration the needs of the community they represent. The anticipated outcome of this program is worldwide partnerships with fast growing radio astronomy communities designed to facilitate the exchange of staff and the mentoring of under-represented1 groups of learners, thereby developing a strong pipeline of global talent to construct, operate and maintain radio astronomy observatories.

  7. Calibration of Solar Radio Spectrometer of the Purple Mountain Observatory

    Science.gov (United States)

    Lei, LU; Si-ming, LIU; Qi-wu, SONG; Zong-jun, NING

    2015-10-01

    Calibration is a basic and important job in solar radio spectral observations. It not only deduces the solar radio flux as an important physical quantity for solar observations, but also deducts the flat field of the radio spectrometer to display the radio spectrogram clearly. In this paper, we first introduce the basic method of calibration based on the data of the solar radio spectrometer of Purple Mountain Observatory. We then analyze the variation of the calibration coefficients, and give the calibrated results for a few flares. These results are compared with those of the Nobeyama solar radio polarimeter and the hard X-ray observations of the RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) satellite, it is shown that these results are consistent with the characteristics of typical solar flare light curves. In particular, the analysis on the correlation between the variation of radio flux and the variation of hard X-ray flux in the pulsing phase of a flare indicates that these observations can be used to study the relevant radiation mechanism, as well as the related energy release and particle acceleration processes.

  8. The statistics of low frequency radio interference at the Murchison Radio-astronomy Observatory

    OpenAIRE

    Sokolowski, Marcin; Wayth, Randall B.; Lewis, Morgan

    2016-01-01

    We characterize the low frequency radio-frequency interference (RFI) environment at the Murchison Radio-astronomy Observatory (MRO), the location selected for the low-frequency component of the Square Kilometre Array. Data were collected from the BIGHORNS instrument, located at the MRO, which records a contiguous bandwidth between 70 and 300 MHz, between November 2014 to March 2015 inclusive. The data were processed to identify RFI, and we describe a series of statistics in both the time and ...

  9. Virtual observatory tools and amateur radio observations supporting scientific analysis of Jupiter radio emissions

    Science.gov (United States)

    Cecconi, Baptiste; Hess, Sebastien; Le Sidaner, Pierre; Savalle, Renaud; Stéphane, Erard; Coffre, Andrée; Thétas, Emmanuel; André, Nicolas; Génot, Vincent; Thieman, Jim; Typinski, Dave; Sky, Jim; Higgins, Chuck; Imai, Masafumi

    2016-04-01

    In the frame of the preparation of the NASA/JUNO and ESA/JUICE (Jupiter Icy Moon Explorer) missions, and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet-VESPA (Virtual European Solar and Planetary Access). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nancay Decameter Array are already shared on the planetary science VO using this protocol, as well as data from the Iitate Low Frquency Radio Antenna, in Japan. Amateur radio data from the RadioJOVE project is also available. The attached figure shows data from those three providers. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.

  10. 47 CFR 5.91 - Notification of the National Radio Astronomy Observatory.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Notification of the National Radio Astronomy... Astronomy Observatory. In order to minimize possible harmful interference at the National Radio Astronomy... Astronomy Observatory, P.O. Box NZ2, Green Bank, West Virginia, 24944, in writing, of the technical...

  11. Jovian decametric radiation seen from Juno, Cassini, STEREO A, WIND, and Earth-based radio observatories

    Science.gov (United States)

    Imai, M.; Kurth, W. S.; Hospodarsky, G. B.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.; Lecacheux, A.; Lamy, L.; Zarka, P.; Clarke, T. E.; Higgins, C. A.

    2017-09-01

    Jupiter's decametric (DAM) radiation is generated very close to the local gyrofrequency by the electron cyclotron maser instability (CMI). The first two-point common detections of Jovian DAM radiation were made using the Voyager spacecraft and ground-based radio observatories in early 1979, but, due to geometrical constraints and limited flyby duration, a full understanding of the latitudinal beaming of Jovian DAM radiation remains elusive. The stereoscopic DAM radiation viewed from Juno, Cassini, STEREO A, WIND, and Earth-based radio observatories provides a unique opportunity to analyze the CMI emission mechanism and beaming properties.

  12. The search for extended air showers at the Jicamarca Radio Observatory

    International Nuclear Information System (INIS)

    Wahl, D.; Chau, J.; Galindo, F.; Huaman, A.; Solano, C. J.

    2009-01-01

    This paper presents the status of the project to detect extended air showers at the Jicamarca Radio Observatory. We report on detected anomalous signals and present a toy model to estimate at what altitudes we might expect to see air shower signals. According to this model, a significant number of high altitude horizontal air showers could be observed by radar techniques.

  13. Searching for Fast Radio Bursts with the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)

    Science.gov (United States)

    Fisher, Ryan Patrick; Hughey, Brennan; Howell, Eric; LIGO Collaboration

    2018-01-01

    Although Fast Radio Bursts (FRB) are being detected with increasing frequency, their progenitor systems are still mostly a mystery. We present the plan to conduct targeted searches for gravitational-wave counterparts to these FRB events in the data from the first and second observing runs of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO).

  14. Radio detection of extensive air showers at the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Berat, C.

    2013-01-01

    The Pierre Auger Observatory explores the potential of radio-detection techniques to measure extensive air showers (EAS) induced by ultra-high energy cosmic rays. To study in detail the mechanisms responsible for radio emission in the MHz range, the Auger Engineering Radio Array has been installed at the Observatory. Presently consisting of 24 radio-detection stations, this number will grow to 150 units covering an area of almost 20 km 2 . Novel detection techniques based on the GHz emission from the EAS are currently being studied. AMBER (Air-shower Microwave Bremsstrahlung Experimental Radiometer) and MIDAS (Microwave Detection of Air Showers) are prototypes for a large imaging dish antenna. In EASIER (Extensive Air Shower Identification using Electron Radiometer), the microwave emission is detected by antenna horns located on each surface detector. MIDAS is a self-triggering system while AMBER and EASIER use the trigger from the Auger detectors to record the emission. The status of these radio-detection R and D efforts at the Pierre Auger Observatory will be reported

  15. Radio detection of extensive air showers at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Berat, C., E-mail: berat@lpsc.in2p3.fr [LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des Martyrs, 38000 Grenoble (France)

    2013-08-01

    The Pierre Auger Observatory explores the potential of radio-detection techniques to measure extensive air showers (EAS) induced by ultra-high energy cosmic rays. To study in detail the mechanisms responsible for radio emission in the MHz range, the Auger Engineering Radio Array has been installed at the Observatory. Presently consisting of 24 radio-detection stations, this number will grow to 150 units covering an area of almost 20 km{sup 2}. Novel detection techniques based on the GHz emission from the EAS are currently being studied. AMBER (Air-shower Microwave Bremsstrahlung Experimental Radiometer) and MIDAS (Microwave Detection of Air Showers) are prototypes for a large imaging dish antenna. In EASIER (Extensive Air Shower Identification using Electron Radiometer), the microwave emission is detected by antenna horns located on each surface detector. MIDAS is a self-triggering system while AMBER and EASIER use the trigger from the Auger detectors to record the emission. The status of these radio-detection R and D efforts at the Pierre Auger Observatory will be reported.

  16. Radio detection of cosmic ray induced air showers at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Fliescher, Stefan, E-mail: fliescher@physik.rwth-aachen.de [3. Physikalisches Institut A, RWTH Aachen, University (Germany)

    2012-01-11

    AERA - the Auger Engineering Radio Array - is currently being set up at the southern site of the Pierre Auger Observatory. AERA will explore the potential of the radio-detection technique to cosmic ray induced air showers with respect to the next generation of large-scale surface detectors. As AERA is co-located with the low-energy enhancements of the Pierre Auger Observatory, the observation of air showers in coincidence with the Auger surface and fluorescence detector will allow to study the radio emission processes in detail and to calibrate the radio signal. Finally, the combined reconstruction of shower parameters with three independent techniques promises new insights into the nature of cosmic rays in the transition region from 10{sup 17} to 10{sup 19} eV. Besides the detection of coherent radiation in the MHz frequency range, the setups AMBER - Air-shower Microwave Bremsstrahlung Experimental Radiometer - and MIDAS - MIcrowave Detection of Air Showers - prepare to check the possibility to detect air showers due the emission of molecular bremsstrahlung in the GHz range at the Auger site. This article presents the status of the radio-detection setups and discusses their physics potential as well as experimental challenges. Special focus is laid on the first stage of AERA which is the startup to the construction of a 20 km{sup 2} radio array.

  17. The History of Radio Astronomy and the National Radio Astronomy Observatory: Evolution Toward Big Science

    Science.gov (United States)

    Malphrus, Benjamin Kevin

    1990-01-01

    The purpose of this study is to examine the sequence of events that led to the establishment of the NRAO, the construction and development of instrumentation and the contributions and discovery events and to relate the significance of these events to the evolution of the sciences of radio astronomy and cosmology. After an overview of the resources, a brief discussion of the early days of the science is given to set the stage for an examination of events that led to the establishment of the NRAO. The developmental and construction phases of the major instruments including the 85-foot Tatel telescope, the 300-foot telescope, the 140-foot telescope, and the Green Bank lnterferometer are examined. The technical evolution of these instruments is traced and their relevance to scientific programs and discovery events is discussed. The history is told in narrative format that is interspersed with technical and scientific explanations. Through the use of original data technical and scientific information of historical concern is provided to elucidate major developments and events. An interpretive discussion of selected programs, events and technological developments that epitomize the contributions of the NRAO to the science of radio astronomy is provided. Scientific programs conducted with the NRAO instruments that were significant to galactic and extragalactic astronomy are presented. NRAO research programs presented include continuum and source surveys, mapping, a high precision verification of general relativity, and SETI programs. Cosmic phenomena investigated in these programs include galactic and extragalactic HI and HII, emission nebula, supernova remnants, cosmic masers, giant molecular clouds, radio stars, normal and radio galaxies, and quasars. Modern NRAO instruments including the VLA and VLBA and their scientific programs are presented in the final chapter as well as plans for future NRAO instruments such as the GBT.

  18. Archiving of interferometric radio and mm/submm data at the National Radio Astronomy Observatory

    Science.gov (United States)

    Lacy, Mark

    2018-06-01

    Modern radio interferometers such as ALMA and the VLA are capable of producing ~1TB/day of data for processing into image products of comparable size. Besides the shear volume of data, the products themselves can be complicated and are sometimes hard to map into standard astronomical archive metadata. We also face similar issues to those faced by archives at other wavelengths, namely the role of archives as the basis of reprocessing platforms and facilities, and the validation and ingestion of user-derived products. In this talk I shall discuss the plans of NRAO in these areas over the next decade.

  19. RadioAstron and millimetron space observatories: Multiverse models and the search for life

    Science.gov (United States)

    Kardashev, N. S.

    2017-04-01

    The transition from the radio to the millimeter and submillimeter ranges is very promising for studies of galactic nuclei, as well as detailed studies of processes related to supermassive black holes, wormholes, and possible manifestations of multi-element Universe (Multiverse) models. This is shown by observations with the largest interferometer available—RadioAstron observatory—that will be used for the scientific program forMillimetron observatory. Observations have also shown the promise of this range for studies of the formation and evolution of planetary systems and searches for manifestations of intelligent life. This is caused by the requirements to use a large amount of condensedmatter and energy in large-scale technological activities. This range can also be used efficiently in the organisation of optimal channels for the transmission of information.

  20. Calibrating the Auger Engineering Radio Array at the Pierre Auger Observatory using an Octocopter

    Energy Technology Data Exchange (ETDEWEB)

    Briechle, Florian; Erdmann, Martin; Krause, Raphael [III. Physikalisches Institut A, RWTH Aachen University (Germany)

    2016-07-01

    With the Auger Engineering Radio Array (AERA) at the Pierre Auger Observatory radio emission of extensive air showers induced by ultra high energy cosmic rays is observed. Characteristics of the primary cosmic ray, e.g., arrival direction, mass or energy, can be measured this way. To produce high quality data, the detector needs to be well understood and calibrated. A useful tool for calibration campaigns is an octocopter. With it, a calibration source can be placed above the array, which makes this a very flexible method useful for different types of calibrations. Special focus is put on the position reconstruction and the position accuracy of the octocopter during the calibration flights. A new optical method using two cameras for these position reconstructions is presented. Results of a measurement campaign in spring 2015 are presented. In this campaign, the sensitivity of the AERA stations as well as timing characteristics were measured. The results of the sensitivity measurement are compared to simulations.

  1. Multiband Study of Radio Sources of the RCR Catalogue with Virtual Observatory Tools

    Directory of Open Access Journals (Sweden)

    Zhelenkova O. P.

    2012-09-01

    Full Text Available We present early results of our multiband study of the RATAN Cold Revised (RCR catalogue obtained from seven cycles of the “Cold” survey carried with the RATAN-600 radio telescope at 7.6 cm in 1980-1999, at the declination of the SS 433 source. We used the 2MASS and LAS UKIDSS infrared surveys, the DSS-II and SDSS DR7 optical surveys, as well as the USNO-B1 and GSC-II catalogues, the VLSS, TXS, NVSS, FIRST and GB6 radio surveys to accumulate information about the sources. For radio sources that have no detectable optical candidate in optical or infrared catalogues, we additionally looked through images in several bands from the SDSS, LAS UKIDSS, DPOSS, 2MASS surveys and also used co-added frames in different bands. We reliably identified 76% of radio sources of the RCR catalogue. We used the ALADIN and SAOImage DS9 scripting capabilities, interoperability services of ALADIN and TOPCAT, and also other Virtual Observatory (VO tools and resources, such as CASJobs, NED, Vizier, and WSA, for effective data access, visualization and analysis. Without VO tools it would have been problematic to perform our study.

  2. New Az/El mount for Haystack Observatory's Small Radio Telescope kit

    Science.gov (United States)

    Cobb, M. L.

    2005-12-01

    The Small Radio Telescope (SRT) kit was designed by Haystack Observatory as part of their educational outreach effort. The SRT uses a custom designed FFT based radio spectrometer receiver with a controller to position a 2.3m dish to make various radio astronomy observations including the 21 cm spin flip line of atomic hydrogen. Because there is no sizable commercial market for a two dimensional mount for dishes of this size, finding an appropriate provider as been a recurring problem for the project. Originally, the kit used a modified motor mount from Kaultronics called the H180. Two of these motors were combined by a specially designed adaptor to allow motion in azimuth and elevation. When Kaultronics was bought out by California Amplifier they discontinued production of the H180. The next iteration used a compact unit called the alfa-spid which was made in Germany and imported through Canada. The alfa-spid was designed to point various ham radio antennas and proved problematic with 2.3m dishes. Most recently the CASSI (Custom Astronomical Support Services, Inc.) corporation has designed and certified a robust Az/El mount capable of supporting dishes up to 12 feet (3.6m) with 100 MPH wind loads. This paper presents the design and operating characteristics of the new CASSI mount. The CASSI mount is now shipped with the SRT kit and should serve the project well for the foreseeable future.

  3. Development of the Plate Boundary Observatory GPS Low Latency Salton Trough Radio Network

    Science.gov (United States)

    Walls, C.; Miller, S.; Wilson, B.; Lawrence, S.; Arnitz, E.

    2008-05-01

    UNAVCO is developing a 20 GPS station low latency radio network that spans the San Andreas and San Jacinto faults in the region of highest strain in southern California and the narrowest part of the North America-Pacific plate boundary. The Salton Trough Radio Network (STRN) is instrumented with Ethernet bridge Intuicom EB6+ (900 MHz) radios to transmit a high rate low latency data stream from each permanent GPS site for the purpose of the following: 1) telemeter 15 second data (1 MB/day/station) to the Plate Boundary Observatory archive, 2) accommodate the timely download of 1 and 5 sample per second data following large earthquakes (4 MB/hour/station), and 3) test the UStream of 1Hz BINEX and RTCM data. Three of four phases have been completed. Office radio testing yielded transfer rates of 30-50 KB/s with subsecond latency while streaming 1 Hz data. Latency climbed to ~1.8 seconds while simultaneously streaming 1 Hz and downloading hourly 1 and 5 sample per second data files. Field testing demonstrated rates on the order of 30 KB/s. At present the radios are installed and have transfer rates of 10-40 KB/s between sites that span 10-32 km. The final phase will be the installation of the main telemetry relay where master radios will be connected to a high speed ISP near the town of Brawley. The high-rate low latency UStream data will be available to researchers who are developing prototype earthquake early warning systems in Southern California. A goal of the STRN is to make the data available rapidly enough for GPS-derived coseismic and dynamic displacements to be integrated into early warning system earthquake models. The improved earthquake models will better assist emergency response. UStream data will also aid surveyors who wish to use PBO GPS stations as permanent, high-quality base stations in real-time kinematic surveys.

  4. The Pushchino Radio Astronomy Observatory of the P N Lebedev Physical Institute Astro Space Center: yesterday, today, and tomorrow

    International Nuclear Information System (INIS)

    Dagkesamanskii, Rustam D

    2009-01-01

    The development of Russian (formerly Soviet) radio astronomy is indissolubly linked with the P N Lebedev Physical Institute (LPI), Russian Academy of Sciences. From the late 1940s, the institute conducted most of its radio astronomy research in the Crimea, at stations or on field trips; in the late 1950s, the center of gravity of research moved to the southern Moscow region, where one of the largest radio astronomy observatories in the country and in the world was developed within less than twenty years. The observatory unique instrumentation system is briefly reviewed in a historical perspective. Key research areas and some major achievements are outlined, and the prospects of the observatory as (currently) part of the LPI Astro Space Center are examined. (conferences and symposia)

  5. The Pushchino Radio Astronomy Observatory of the P N Lebedev Physical Institute Astro Space Center: yesterday, today, and tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Dagkesamanskii, Rustam D [Pushchino Radio Astronomy Observatory, Astro Space Center, Lebedev Physical Institute, Russian Academy of Sciences, Pushchino, Moscow region (Russian Federation)

    2009-11-30

    The development of Russian (formerly Soviet) radio astronomy is indissolubly linked with the P N Lebedev Physical Institute (LPI), Russian Academy of Sciences. From the late 1940s, the institute conducted most of its radio astronomy research in the Crimea, at stations or on field trips; in the late 1950s, the center of gravity of research moved to the southern Moscow region, where one of the largest radio astronomy observatories in the country and in the world was developed within less than twenty years. The observatory unique instrumentation system is briefly reviewed in a historical perspective. Key research areas and some major achievements are outlined, and the prospects of the observatory as (currently) part of the LPI Astro Space Center are examined. (conferences and symposia)

  6. The Sardinia Radio Telescope . From a technological project to a radio observatory

    Science.gov (United States)

    Prandoni, I.; Murgia, M.; Tarchi, A.; Burgay, M.; Castangia, P.; Egron, E.; Govoni, F.; Pellizzoni, A.; Ricci, R.; Righini, S.; Bartolini, M.; Casu, S.; Corongiu, A.; Iacolina, M. N.; Melis, A.; Nasir, F. T.; Orlati, A.; Perrodin, D.; Poppi, S.; Trois, A.; Vacca, V.; Zanichelli, A.; Bachetti, M.; Buttu, M.; Comoretto, G.; Concu, R.; Fara, A.; Gaudiomonte, F.; Loi, F.; Migoni, C.; Orfei, A.; Pilia, M.; Bolli, P.; Carretti, E.; D'Amico, N.; Guidetti, D.; Loru, S.; Massi, F.; Pisanu, T.; Porceddu, I.; Ridolfi, A.; Serra, G.; Stanghellini, C.; Tiburzi, C.; Tingay, S.; Valente, G.

    2017-12-01

    Context. The Sardinia Radio Telescope (SRT) is the new 64 m dish operated by the Italian National Institute for Astrophysics (INAF). Its active surface, comprised of 1008 separate aluminium panels supported by electromechanical actuators, will allow us to observe at frequencies of up to 116 GHz. At the moment, three receivers, one per focal position, have been installed and tested: a 7-beam K-band receiver, a mono-feed C-band receiver, and a coaxial dual-feed L/P band receiver. The SRT was officially opened in September 2013, upon completion of its technical commissioning phase. In this paper, we provide an overview of the main science drivers for the SRT, describe the main outcomes from the scientific commissioning of the telescope, and discuss a set of observations demonstrating the scientific capabilities of the SRT. Aims: The scientific commissioning phase, carried out in the 2012-2015 period, proceeded in stages following the implementation and/or fine-tuning of advanced subsystems such as the active surface, the derotator, new releases of the acquisition software, etc. One of the main objectives of scientific commissioning was the identification of deficiencies in the instrumentation and/or in the telescope subsystems for further optimization. As a result, the overall telescope performance has been significantly improved. Methods: As part of the scientific commissioning activities, different observing modes were tested and validated, and the first astronomical observations were carried out to demonstrate the science capabilities of the SRT. In addition, we developed astronomer-oriented software tools to support future observers on site. In the following, we refer to the overall scientific commissioning and software development activities as astronomical validation. Results: The astronomical validation activities were prioritized based on technical readiness and scientific impact. The highest priority was to make the SRT available for joint observations as

  7. Infrared-faint radio sources remain undetected at far-infrared wavelengths. Deep photometric observations using the Herschel Space Observatory

    Science.gov (United States)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Spitler, L. R.; Leipski, C.; Parker, Q. A.

    2015-08-01

    Context. Showing 1.4 GHz flux densities in the range of a few to a few tens of mJy, infrared-faint radio sources (IFRS) are a type of galaxy characterised by faint or absent near-infrared counterparts and consequently extreme radio-to-infrared flux density ratios up to several thousand. Recent studies showed that IFRS are radio-loud active galactic nuclei (AGNs) at redshifts ≳2, potentially linked to high-redshift radio galaxies (HzRGs). Aims: This work explores the far-infrared emission of IFRS, providing crucial information on the star forming and AGN activity of IFRS. Furthermore, the data enable examining the putative relationship between IFRS and HzRGs and testing whether IFRS are more distant or fainter siblings of these massive galaxies. Methods: A sample of six IFRS was observed with the Herschel Space Observatory between 100 μm and 500 μm. Using these results, we constrained the nature of IFRS by modelling their broad-band spectral energy distribution (SED). Furthermore, we set an upper limit on their infrared SED and decomposed their emission into contributions from an AGN and from star forming activity. Results: All six observed IFRS were undetected in all five Herschel far-infrared channels (stacking limits: σ = 0.74 mJy at 100 μm, σ = 3.45 mJy at 500 μm). Based on our SED modelling, we ruled out the following objects to explain the photometric characteristics of IFRS: (a) known radio-loud quasars and compact steep-spectrum sources at any redshift; (b) starburst galaxies with and without an AGN and Seyfert galaxies at any redshift, even if the templates were modified; and (c) known HzRGs at z ≲ 10.5. We find that the IFRS analysed in this work can only be explained by objects that fulfil the selection criteria of HzRGs. More precisely, IFRS could be (a) known HzRGs at very high redshifts (z ≳ 10.5); (b) low-luminosity siblings of HzRGs with additional dust obscuration at lower redshifts; (c) scaled or unscaled versions of Cygnus A at any

  8. Calibration of the logarithmic-periodic dipole antenna (LPDA) radio stations at the Pierre Auger Observatory using an octocopter

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barbato, F.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Cobos, A.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Consolati, G.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorosti, Q.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fenu, F.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gorham, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Katkov, I.; Keilhauer, B.; Kemmerich, N.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lo Presti, D.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Merenda, K.-D.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlín, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, R. A.; Veberič, D.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wirtz, M.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.

    2017-10-01

    An in-situ calibration of a logarithmic periodic dipole antenna with a frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of a radio station system used for detection of cosmic ray induced air showers at the Engineering Radio Array of the Pierre Auger Observatory, the so-called Auger Engineering Radio Array (AERA) . The directional and frequency characteristics of the broadband antenna are investigated using a remotely piloted aircraft carrying a small transmitting antenna. The antenna sensitivity is described by the vector effective length relating the measured voltage with the electric-field components perpendicular to the incoming signal direction. The horizontal and meridional components are determined with an overall uncertainty of 7.4+0.9-0.3% and 10.3+2.8-1.7% respectively. The measurement is used to correct a simulated response of the frequency and directional response of the antenna. In addition, the influence of the ground conductivity and permittivity on the antenna response is simulated. Both have a negligible influence given the ground conditions measured at the detector site. The overall uncertainties of the vector effective length components result in an uncertainty of 8.8+2.1-1.3% in the square root of the energy fluence for incoming signal directions with zenith angles smaller than 60°.

  9. Radio quite site qualification for the Brasilian Southern Space Observatory by monitoring the low frequency 10-240 MHz Eletromagnetic Spectrum

    Science.gov (United States)

    da Rosa, Guilherme Simon; Schuch, Nelson Jorge; Espindola Antunes, Cassio; Gomes, Natanael

    The monitoring of the level of the radio interference in the Site of the Brazilian Southern Space Observatory - SSO/CRS/CIE/INPE - MCT, (29S, 53W), São Martinho da Serra, RS, in south a of Brazil, aims to gather spectral data for the Observatory's Site qualification as a radio quite site for installation of Radio Astronomy instrumentation, free of radio noise. The determination of the radio interference level is being conducted by using a spectrum analyzer and Omni directional antennas remotely controlled through a GPIB interface, via IEEE 488 bus, and programs written in C language. That procedure allows the scanning of the Electromagnetic Spectrum power over the examined frequency range from 10 - 240MHz. The methodology for these tests was to amplify the radio signal from the antenna by a block amplifier. Subsequently, the received signals are evaluated by the spectrum analyzer. A dedicated PC computer is used for the control and data acquisition, with the developed software. The data are instantly stored in digital format and remotely transferred via VNC software from the SSO-Observatory Site to the Radio Frequency and Telecommunication Laboratory at the Southern Regional Space Research Center - CRS/CIE/INPE - MCT, in Santa Maria, RS, for analysis and storage on the radio interference data base for long period. It is compared the SSO's Electromagnetic Spectrum data obtained since the beginning of the 1990's decade, before the Site constructions, with the current observed data. Some radio transmissions were found in the observed frequency range due to some local FMs, mostly between 93.5 MHz to 105.7 MHz, which were observed in previous monitoring. A good evidence of the site quality is the fact that the power of the Electromagnetic Spectrum is much lower than that measured at the Radio Frequency and Telecommunication Laboratory, in Santa Maria, RS, where the signals do not exceed -60 dB. On the Site of the SSO, due to the low power observed, weak radio signals

  10. Energy estimation of cosmic rays with the Engineering Radio Array of the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Blažek, Jiří; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2016-01-01

    Roč. 93, č. 12 (2016), 1-15, č. článku 122005. ISSN 2470-0010 R&D Projects: GA MŠk(CZ) LG13007; GA MŠk(CZ) 7AMB14AR005; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : Pierre Auger Observatory * detector * cosmic rays * energy estimation Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.568, year: 2016

  11. Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Abreu, P.; Aglietta, M.; Ahn, E.J.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Kárová, Tatiana; Mandát, Dušan; Nečesal, Petr; Nožka, Libor; Nyklíček, Michal; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovancová, Jaroslava; Schovánek, Petr; Šmída, Radomír; Trávníček, Petr

    2011-01-01

    Roč. 635, č. 1 (2011), s. 92-102 ISSN 0168-9002 R&D Projects: GA MŠk LC527; GA MŠk(CZ) 1M06002; GA MŠk(CZ) LA08016; GA AV ČR KJB100100904; GA AV ČR KJB300100801 Institutional research plan: CEZ:AV0Z10100502; CEZ:AV0Z10100522 Keywords : cosmic rays * radio detection * analysis software * detector simulation Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.207, year: 2011

  12. End-to-end operations at the National Radio Astronomy Observatory

    Science.gov (United States)

    Radziwill, Nicole M.

    2008-07-01

    In 2006 NRAO launched a formal organization, the Office of End to End Operations (OEO), to broaden access to its instruments (VLA/EVLA, VLBA, GBT and ALMA) in the most cost-effective ways possible. The VLA, VLBA and GBT are mature instruments, and the EVLA and ALMA are currently under construction, which presents unique challenges for integrating software across the Observatory. This article 1) provides a survey of the new developments over the past year, and those planned for the next year, 2) describes the business model used to deliver many of these services, and 3) discusses the management models being applied to ensure continuous innovation in operations, while preserving the flexibility and autonomy of telescope software development groups.

  13. Submillimeter molecular spectroscopy with the Texas millimeter wave observatory radio telescope

    International Nuclear Information System (INIS)

    Loren, R.B.; Wootten, A.; National Radio Astronomy Observatory, Charlottesville, VA)

    1986-01-01

    A large number of previously unreported molecular transitions have been detected in the submillimeter wavelength band toward OMC-1 and M17 SW using the Texas 4.9 m radio antenna. The emission components in OMC-1 that come from the unresolved plateau and hot core regions are stronger in these higher energy transitions than in the lower-energy, lower-frequency lines. Intense, probably thermalized high J SiO lines require a very hot core if they arise in a region the same size as that mapped in J = 2-1 SiO by interferometer measurements. Despite the high energy levels of the submillimeter lines of CN and CCH, there is no broad emission component evident, consistent with their greatly reduced abundance due to removal by chemical reactions. 33 references

  14. Radio astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Nagnibeda, V.G.

    1981-01-01

    The history of radio astronomical observations at the Astronomical Observatory of Leningrad State University is reviewed. Various facilities are described, and methods and instruments used are discussed. Some results are summarized for radio observations of the sun, including observations of local sources of solar radio emission, the absolute solar radio flux, and radio emission from filaments and prominences.

  15. The Arizona Radio Observatory 1 mm Spectral Survey of IRC (plus)10216 and VY Canis Majoris (215-285 GHz)

    Science.gov (United States)

    Tenenbaum, E. D.; Dodd, J. L.; Milam, S. N.; Woolf, N. J.; Ziurys, L. M.

    2010-01-01

    A low noise (1(sigma) rms approx. 3 mK) 1. nun spectral survey (214.5-285.5 GHz) of the oxygen-rich supergiant VY Canis Majoris and the carbon-rich asymptotic giant branch star IRC +10216 has been conducted using the Arizona Radio Observatory's 10 m Submillimeter Telescope. Here the complete data set is presented. This study, carried out with a new ALMA-type receiver, marks the first continuous band scan of an O-rich circumstellar envelope, and the most sensitive survey to date of IRC +10216. In VY CMa, 130 distinct molecular lines were detected, 14 of which cannot be identified; in IRC +10216, 717 lines were observed, with 126 features remaining unidentified. In the 1 mm bands of VY CMa and IRC +10216, emission is present from 18 and 32 different chemical compounds, respectively, with 10 species common to both sources. Many narrow emission lines were observed in both circumstellar shells, arising from vibrationally excited molecules and from refractory-containing species. Line profiles in VY CMa also exhibit a variety of different shapes, caused by the complex, asymmetric outflow of this object. The survey highlights the fact that C-rich and O-rich circumstellar envelopes are chemically interesting, and both are sources of new interstellar molecules. The high number of unidentified lines and the unreliable, rest frequencies for known species such as NaCN indicate the need for additional laboratory spectroscopy studies.

  16. The Arizona Radio Observatory 1 mm Spectral Survey of IRC +10216 and VY Canis Majoris (215-285 GHz)

    Science.gov (United States)

    Tenenbaum, E. D.; Dodd, J. L.; Milam, S. N.; Woolf, N. J.; Ziurys, L. M.

    2010-10-01

    A low noise (1σ rms ~ 3 mK) 1 mm spectral survey (214.5-285.5 GHz) of the oxygen-rich supergiant VY Canis Majoris and the carbon-rich asymptotic giant branch star IRC +10216 has been conducted using the Arizona Radio Observatory's 10 m Submillimeter Telescope. Here the complete data set is presented. This study, carried out with a new ALMA-type receiver, marks the first continuous band scan of an O-rich circumstellar envelope, and the most sensitive survey to date of IRC +10216. In VY CMa, 130 distinct molecular lines were detected, 14 of which cannot be identified; in IRC +10216, 717 lines were observed, with 126 features remaining unidentified. In the 1 mm bands of VY CMa and IRC +10216, emission is present from 18 and 32 different chemical compounds, respectively, with 10 species common to both sources. Many narrow emission lines were observed in both circumstellar shells, arising from vibrationally excited molecules and from refractory-containing species. Line profiles in VY CMa also exhibit a variety of different shapes, caused by the complex, asymmetric outflow of this object. The survey highlights the fact that C-rich and O-rich circumstellar envelopes are chemically interesting, and both are sources of new interstellar molecules. The high number of unidentified lines and the unreliable rest frequencies for known species such as NaCN indicate the need for additional laboratory spectroscopy studies.

  17. THE ARIZONA RADIO OBSERVATORY 1 mm SPECTRAL SURVEY OF IRC +10216 AND VY CANIS MAJORIS (215-285 GHz)

    International Nuclear Information System (INIS)

    Tenenbaum, E. D.; Dodd, J. L.; Woolf, N. J.; Ziurys, L. M.; Milam, S. N.

    2010-01-01

    A low noise (1σ rms ∼ 3 mK) 1 mm spectral survey (214.5-285.5 GHz) of the oxygen-rich supergiant VY Canis Majoris and the carbon-rich asymptotic giant branch star IRC +10216 has been conducted using the Arizona Radio Observatory's 10 m Submillimeter Telescope. Here the complete data set is presented. This study, carried out with a new ALMA-type receiver, marks the first continuous band scan of an O-rich circumstellar envelope, and the most sensitive survey to date of IRC +10216. In VY CMa, 130 distinct molecular lines were detected, 14 of which cannot be identified; in IRC +10216, 717 lines were observed, with 126 features remaining unidentified. In the 1 mm bands of VY CMa and IRC +10216, emission is present from 18 and 32 different chemical compounds, respectively, with 10 species common to both sources. Many narrow emission lines were observed in both circumstellar shells, arising from vibrationally excited molecules and from refractory-containing species. Line profiles in VY CMa also exhibit a variety of different shapes, caused by the complex, asymmetric outflow of this object. The survey highlights the fact that C-rich and O-rich circumstellar envelopes are chemically interesting, and both are sources of new interstellar molecules. The high number of unidentified lines and the unreliable rest frequencies for known species such as NaCN indicate the need for additional laboratory spectroscopy studies.

  18. U.S. and European ALMA Partners Sign Agreement Green Light for World's Most Powerful Radio Observatory

    Science.gov (United States)

    2003-02-01

    Dr. Rita Colwell, director of the U.S. National Science Foundation (NSF), and Dr. Catherine Cesarsky, director general of the European Southern Observatory (ESO), today signed a historic agreement jointly to construct and operate ALMA, the Atacama Large Millimeter Array, the world's largest and most powerful radio telescope operating at millimeter and sub-millimeter wavelengths. "With this agreement, we usher in a new age of research in astronomy," said Dr. Colwell. "By working together in this truly global partnership, the international astronomy community will be able to ensure the research capabilities needed to meet the long-term demands of our scientific enterprise, and we will be able to study and understand our Universe in ways that have previously been beyond our vision." ALMA Array Artist's Conception of ALMA Array in Compact Configuration (Click on Image for Larger Version) Other Images Available: Artist's conception of the antennas for the Atacama Large Millimeter Array Moonrise over ALMA test equipment near Cerro Chajnantor, Chile VertexRSI antenna at the VLA test site Dr. Cesarsky also commented, "This agreement signifies the start of a great project of contemporary astronomy and astrophysics. Representing Europe, and in collaboration with many laboratories and institutes on this continent, we together look forward toward wonderful research projects. With ALMA, we may learn how the earliest galaxies in the Universe really looked like, to mention but one of the many eagerly awaited opportunities with this marvelous facility." When complete in 2011, ALMA will be an array of 64, 12-meter radio antennas that will work together as one telescope to study millimeter and sub-millimeter wavelength light from space. These wavelengths of the electromagnetic spectrum, which cross the critical boundary between infrared and microwave radiation, hold the key to understanding such processes as planet and star formation, the formation of early galaxies and galaxy

  19. The NSF Undergraduate ALFALFA Team: Partnering with Arecibo Observatory to Offer Undergraduate and Faculty Extragalactic Radio Astronomy Research Opportunities

    Science.gov (United States)

    Ribaudo, Joseph; Koopmann, Rebecca A.; Haynes, Martha P.; Balonek, Thomas J.; Cannon, John M.; Coble, Kimberly A.; Craig, David W.; Denn, Grant R.; Durbala, Adriana; Finn, Rose; Hallenbeck, Gregory L.; Hoffman, G. Lyle; Lebron, Mayra E.; Miller, Brendan P.; Crone-Odekon, Mary; O'Donoghue, Aileen A.; Olowin, Ronald Paul; Pantoja, Carmen; Pisano, Daniel J.; Rosenberg, Jessica L.; Troischt, Parker; Venkatesan, Aparna; Wilcots, Eric M.; ALFALFA Team

    2017-01-01

    The NSF-sponsored Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team (UAT) is a consortium of 20 institutions across the US and Puerto Rico, founded to promote undergraduate research and faculty development within the extragalactic ALFALFA HI blind survey project and follow-up programs. The objective of the UAT is to provide opportunities for its members to develop expertise in the technical aspects of observational radio spectroscopy, its associated data analysis, and the motivating science. Partnering with Arecibo Observatory, the UAT has worked with more than 280 undergraduates and 26 faculty to date, offering 8 workshops onsite at Arecibo (148 undergraduates), observing runs at Arecibo (69 undergraduates), remote observing runs on campus, undergraduate research projects based on Arecibo science (120 academic year and 185 summer projects), and presentation of results at national meetings such as the AAS (at AAS229: Ball et al., Collova et al., Davis et al., Miazzo et al., Ruvolo et al, Singer et al., Cannon et al., Craig et al., Koopmann et al., O'Donoghue et al.). 40% of the students and 45% of the faculty participants have been women and members of underrepresented groups. More than 90% of student alumni are attending graduate school and/or pursuing a career in STEM. 42% of those pursuing graduate degrees in Physics or Astronomy are women.In this presentation, we summarize the UAT program and the current research efforts of UAT members based on Arecibo science, including multiwavelength followup observations of ALFALFA sources, the UAT Collaborative Groups Project, the Survey of HI in Extremely Low-mass Dwarfs (SHIELD), and the Arecibo Pisces-Perseus Supercluster Survey (APPSS). This work has been supported by NSF grants AST-0724918/0902211, AST-075267/0903394, AST-0725380, AST-121105, and AST-1637339.

  20. An example of operation for a partly manned Antarctic geomagnetic observatory and the development of a radio link for data transmission

    International Nuclear Information System (INIS)

    Torta, M.J.; Marsal, S.; Riddick, J.C.

    2009-01-01

    The experience acquired from more than ten years of operation of an Antarctic geomagnetic observatory is described along with the development of data transmission facilities. The observatory was deployed at the Spanish Antarctic Station in 1996. The main instrument was an Overhauser magnetometer deployed in dual axis Helmholtz coils, a δD/δI configuration. The site is only manned during the summer, with the magnetometer left recording throughout the rest of the year. During the 2007-2008 survey the observatory instrumentation has been upgraded with a DMI suspended triaxial fluxgate magnetometer, new sampling hardware and data logging software. Both sampling and timing are carried out under the control of a Pic based micro controller and GPS receiver. Data presentation, transmission and archiving are performed under the control of a low power embedded P C. For real time access to the data two options have been provided and rigorously tested during the last 10 years: METEOSAT and GOES Data Collection Systems, and recently, a high frequency (HF) digital radio link, using ionospheric propagation between Antarctica and Spain, has been developed. This latest transmission system is being continuously upgraded, and it would be possible to extend its application to other remote stations. Measurements have been made during the last four years in order to determine the channel characteristics and its variability, mainly the multi path and Doppler spread and the link availability for a given Snr in the receiver. These measurements are being used to design the physical layer of a radio modem intended to maximize the link capacity keeping the emitted power low.

  1. Long Baseline Observatory (LBO)

    Data.gov (United States)

    Federal Laboratory Consortium — The Long Baseline Observatory (LBO) comprises ten radio telescopes spanning 5,351 miles. It's the world's largest, sharpest, dedicated telescope array. With an eye...

  2. An example of operation for a partly manned Antarctic geomagnetic observatory and the development of a radio link for data transmission

    Directory of Open Access Journals (Sweden)

    Joan L. Pijoan

    2009-06-01

    Full Text Available The experience acquired from more than ten years of operation of an Antarctic geomagnetic observatory is described
    along with the development of data transmission facilities. The observatory was deployed at the Spanish Antarctic
    Station in 1996. The main instrument was an Overhauser magnetometer deployed in dual axis Helmholtz coils, a
    δD/δI configuration. The site is only manned during the summer, with the magnetometer left recording throughout
    the rest of the year. During the 2007-2008 survey the observatory instrumentation has been upgraded with a DMI
    suspended triaxial fluxgate magnetometer, new sampling hardware and data logging software. Both sampling and
    timing are carried out under the control of a PIC based microcontroller and GPS receiver. Data presentation, transmission
    and archiving are performed under the control of a low power embedded PC. For real time access to the data
    two options have been provided and rigorously tested during the last 10 years: METEOSAT and GOES Data Collection
    Systems, and recently, a high frequency (HF digital radio-link, using ionospheric propagation between
    Antarctica and Spain, has been developed. This latest transmission system is being continuously upgraded, and it
    would be possible to extend its application to other remote stations. Measurements have been made during the last
    four years in order to determine the channel characteristics and its variability, mainly the multipath and Doppler
    spread and the link availability for a given SNR in the receiver. These measurements are being used to design the
    physical layer of a radiomodem intended to maximize the link capacity keeping the emitted power low.

  3. Statistical survey of type III radio bursts at long wavelengths observed by the Solar TErrestrial RElations Observatory (STEREO)/Waves instruments: radio flux density variations with frequency

    Czech Academy of Sciences Publication Activity Database

    Krupař, Vratislav; Maksimovic, M.; Santolík, Ondřej; Kontar, E. P.; Cecconi, B.; Hoang, S.; Krupařová, Oksana; Souček, Jan; Reid, H.; Zaslavsky, A.

    2014-01-01

    Roč. 289, č. 8 (2014), s. 3121-3135 ISSN 0038-0938 R&D Projects: GA ČR(CZ) GAP209/12/2394; GA ČR GP13-37174P; GA ČR GAP205/10/2279 Institutional support: RVO:68378289 Keywords : solar radio emissions * plasma radiation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.039, year: 2014 http://link.springer.com/article/10.1007%2Fs11207-014-0522-x

  4. Statistical survey of type III radio bursts at long wavelengths observed by the Solar TErrestrial RElations Observatory (STEREO)/Waves instruments: goniopolarimetric properties and radio source locations

    Czech Academy of Sciences Publication Activity Database

    Krupař, Vratislav; Maksimovic, M.; Santolík, Ondřej; Cecconi, B.; Krupařová, Oksana

    2014-01-01

    Roč. 289, č. 12 (2014), s. 4633-4652 ISSN 0038-0938 R&D Projects: GA ČR GP13-37174P; GA ČR GAP205/10/2279; GA ČR(CZ) GAP209/12/2394 Institutional support: RVO:68378289 Keywords : plasma radiation * solar radio emissions Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.039, year: 2014 http://link.springer.com/article/10.1007%2Fs11207-014-0601-z

  5. Education and public engagement in observatory operations

    Science.gov (United States)

    Gabor, Pavel; Mayo, Louis; Zaritsky, Dennis

    2016-07-01

    Education and public engagement (EPE) is an essential part of astronomy's mission. New technologies, remote observing and robotic facilities are opening new possibilities for EPE. A number of projects (e.g., Telescopes In Education, MicroObservatory, Goldstone Apple Valley Radio Telescope and UNC's Skynet) have developed new infrastructure, a number of observatories (e.g., University of Arizona's "full-engagement initiative" towards its astronomy majors, Vatican Observatory's collaboration with high-schools) have dedicated their resources to practical instruction and EPE. Some of the facilities are purpose built, others are legacy telescopes upgraded for remote or automated observing. Networking among institutions is most beneficial for EPE, and its implementation ranges from informal agreements between colleagues to advanced software packages with web interfaces. The deliverables range from reduced data to time and hands-on instruction while operating a telescope. EPE represents a set of tasks and challenges which is distinct from research applications of the new astronomical facilities and operation modes. In this paper we examine the experience with several EPE projects, and some lessons and challenges for observatory operation.

  6. The invisible universe the story of radio astronomy

    CERN Document Server

    Verschuur, Gerrit

    2015-01-01

    Hidden from human view, accessible only to sensitive receivers attached to huge radio telescopes, the invisible universe beyond our senses continues to fascinate and intrigue our imaginations. Closer to home, in the Milky Way galaxy, radio astronomers listen patiently to the ticking of pulsars that tell of star death and states of matter of awesome densities. All of this happens out there in the universe hidden from our eyes, even when aided by the Hubble Space Telescope. This is the story of radio astronomy, of how radio waves are generated by stars, supernova, quasars, colliding galaxies and by the very beginnings of the universe itself. The author discusses what radio astronomers are doing in the New Mexico desert, in a remote valley in Puerto Rico, and in the green Pocahontas Valley in West Virginia, as well as dozens of other remote sites around the world. With each of these observatories, the scientists collect and analyze their data, "listening" to the radio signals from space in order to learn what, ...

  7. Radio-iodine in thyroid glands of swans, farm animals and humans, also in algae and river water from the Thames Valley, England

    Energy Technology Data Exchange (ETDEWEB)

    Howe, J.R.; Lloyd, M.K.

    1986-01-01

    A highly sensitive counting system has been used to measure radio-iodine in environmental samples from the Thames Valley. Iodine-125 and occasionally iodine-131 have been found in the thyroid glands of most of the swans that have died on the River Thames, the River Wey and the Grand Union Canal, and in algae and water samples from the Thames and many of its tributaries. The presence of this activity is ascribed to the waste discarded into the drainage system by hospitals and research laboratories, reaching the rivers via the effluent from sewage treatment works. The Thames is used as a source of drinking water, particularly in London and its western approaches. Weed and water samples collected from river water abstraction points, reservoirs, tap water supplies, and animal water troughs fed from this supply all contained low levels of iodine-125. The drinking water route can account for the iodine-125 found in the thyroids of farm animals from west Surrey and in a few people living in London. The amounts found constitute a trivial radiation dose to man and animals as they are far below the acceptable limit of exposure for man.

  8. The multi-messenger approach to particle acceleration by massive stars: a science case for optical, radio and X-ray observatories

    Science.gov (United States)

    De Becker, Michaël

    2018-04-01

    Massive stars are extreme stellar objects whose properties allow for the study of some interesting physical processes, including particle acceleration up to relativistic velocities. In particular, the collisions of massive star winds in binary systems lead notably to acceleration of electrons involved in synchrotron emission, hence their identification as non-thermal radio emitters. This has been demonstrated for about 40 objects so far. The relativistic electrons are also expected to produce non-thermal high-energy radiation through inverse Compton scattering. This class of objects permits thus to investigate non-thermal physics through observations in the radio and high energy spectral domains. However, the binary nature of these sources introduces some stringent requirements to adequately interpret their behavior and model non-thermal processes. In particular, these objects are well-established variable stellar sources on the orbital time-scale. The stellar and orbital parameters need to be determined, and this is notably achieved through studies in the optical domain. The combination of observations in the visible domain (including e.g. 3.6-m DOT) with radio measurements using notably GMRT and X-ray observations constitutes thus a promising strategy to investigate particle-accelerating colliding-wind binaries in the forthcoming decade.

  9. Observatory Sponsoring Astronomical Image Contest

    Science.gov (United States)

    2005-05-01

    Forget the headphones you saw in the Warner Brothers thriller Contact, as well as the guttural throbs emanating from loudspeakers at the Very Large Array in that 1997 movie. In real life, radio telescopes aren't used for "listening" to anything - just like visible-light telescopes, they are used primarily to make images of astronomical objects. Now, the National Radio Astronomy Observatory (NRAO) wants to encourage astronomers to use radio-telescope data to make truly compelling images, and is offering cash prizes to winners of a new image contest. Radio Galaxy Fornax A Radio Galaxy Fornax A Radio-optical composite image of giant elliptical galaxy NGC 1316, showing the galaxy (center), a smaller companion galaxy being cannibalized by NGC 1316, and the resulting "lobes" (orange) of radio emission caused by jets of particles spewed from the core of the giant galaxy Click on image for more detail and images CREDIT: Fomalont et al., NRAO/AUI/NSF "Astronomy is a very visual science, and our radio telescopes are capable of producing excellent images. We're sponsoring this contest to encourage astronomers to make the extra effort to turn good images into truly spectacular ones," said NRAO Director Fred K.Y. Lo. The contest, offering a grand prize of $1,000, was announced at the American Astronomical Society's meeting in Minneapolis, Minnesota. The image contest is part of a broader NRAO effort to make radio astronomical data and images easily accessible and widely available to scientists, students, teachers, the general public, news media and science-education professionals. That effort includes an expanded image gallery on the observatory's Web site. "We're not only adding new radio-astronomy images to our online gallery, but we're also improving the organization and accessibility of the images," said Mark Adams, head of education and public outreach (EPO) at NRAO. "Our long-term goal is to make the NRAO Image Gallery an international resource for radio astronomy imagery

  10. The importance of Radio Quiet Zone (RQZ) for radio astronomy

    Science.gov (United States)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin

    2013-05-01

    Most of radio observatories are located in isolated areas. Since radio sources from the universe is very weak, astronomer need to avoid radio frequency interference (RFI) from active spectrum users and radio noise produced by human made (telecommunication, mobile phone, microwave user and many more. There are many observatories around the world are surrounded by a Radio Quiet Zone (RQZ), which is it was set up using public or state laws. A Radio Quiet Zone normally consists of two areas: an exclusive area in which totally radio emissions are forbidden, with restrictions for residents and business developments, and a larger (radius up to 100 km above) coordination area where the power of radio transmission limits to threshold levels. Geographical Information System (GIS) can be used as a powerful tool in mapping large areas with varying RQZ profiles. In this paper, we report the initial testing of the usage of this system in order to identify the areas were suitable for Radio Quiet Zone. Among the important parameters used to develop the database for our GIS are population density, information on TV and telecommunication (mobile phones) transmitters, road networks (highway), and contour shielding. We will also use other information gathered from on-site RFI level measurements on selected 'best' areas generated by the GIS. The intention is to find the best site for the purpose of establishing first radio quiet zones for radio telescope in Malaysia.

  11. Operations of and Future Plans for the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Performance and operation of the Surface Detectors of the Pierre Auger Observatory; (2) Extension of the Pierre Auger Observatory using high-elevation fluorescence telescopes (HEAT); (3) AMIGA - Auger Muons and Infill for the Ground Array of the Pierre Auger Observatory; (4) Radio detection of Cosmic Rays at the southern Auger Observatory; (5) Hardware Developments for the AMIGA enhancement at the Pierre Auger Observatory; (6) A simulation of the fluorescence detectors of the Pierre Auger Observatory using GEANT 4; (7) Education and Public Outreach at the Pierre Auger Observatory; (8) BATATA: A device to characterize the punch-through observed in underground muon detectors and to operate as a prototype for AMIGA; and (9) Progress with the Northern Part of the Pierre Auger Observatory.

  12. Private Observatories in South Africa

    Science.gov (United States)

    Rijsdijk, C.

    2016-12-01

    Descriptions of private observatories in South Africa, written by their owners. Positions, equipment descriptions and observing programmes are given. Included are: Klein Karoo Observatory (B. Monard), Cederberg Observatory (various), Centurion Planetary and Lunar Observatory (C. Foster), Le Marischel Observatory (L. Ferreira), Sterkastaaing Observatory (M. Streicher), Henley on Klip (B. Fraser), Archer Observatory (B. Dumas), Overbeek Observatory (A. Overbeek), Overberg Observatory (A. van Staden), St Cyprian's School Observatory, Fisherhaven Small Telescope Observatory (J. Retief), COSPAR 0433 (G. Roberts), COSPAR 0434 (I. Roberts), Weltevreden Karoo Observatory (D. Bullis), Winobs (M. Shafer)

  13. European Southern Observatory

    CERN Multimedia

    CERN PhotoLab

    1970-01-01

    Professor A. Blaauw, Director general of the European Southern Observatory, with George Hampton on his right, signs the Agreement covering collaboration with CERN in the construction of the large telescope to be installed at the ESO Observatory in Chile.

  14. Public relations for a national observatory

    Science.gov (United States)

    Finley, David G.

    The National Radio Astronomy Observatory (NRAO) is a government-funded organization providing state-of-the art observational facilities to the astronomical community on a peer-reviewed basis. In this role, the NRAO must address three principal constituencies with its public-relations efforts. These are: the astronomical community; the funding and legislative bodies of the Federal Government; and the general public. To serve each of these constituencies, the Observatory has developed a set of public-relations initiatives supported by public-relations and outreach professionals as well as by management and scientific staff members. The techniques applied and the results achieved in each of these areas are described.

  15. The Effect of Solar Radiation on Radio Signal for Radio Astronomy Purposes

    International Nuclear Information System (INIS)

    Nor Hazmin Sabri; Atiq Wahidah Azlan; Roslan Umar; Roslan Umar; Shahirah Syafa Sulan; Zainol Abidin Ibrahim; Wan Zul Adli Wan Mokhtar

    2015-01-01

    Radio astronomy is a subfields of astronomy which is discovers the celestial objects at radio frequencies. Observation in radio astronomy is conducted using single antenna or array of antennas, known as radio telescope. Other than that, radio astronomy also holds an advantage over other alternatives to optical astronomy due to its capability of observing from the ground level. In this study, the effect of solar radiation that contributes the Radio Frequency Interferences (RFI) is reviewed. The low RFI level is required to set up the radio telescope for radio astronomy observation. The effect of solar radiation on radio signal was investigated by determining the RFI pattern using spectrum analyzer. The solar radiation data was obtained from weather station located at KUSZA Observatory, East Coast Environmental Research Institute (ESERI), UniSZA. We can conclude that the solar radiation factor give the minimum significant effect to radio signal. (author)

  16. The MASIV Survey - IV. Relationship between intra-day scintillation and intrinsic variability of radio AGNs

    Science.gov (United States)

    Koay, J. Y.; Macquart, J.-P.; Jauncey, D. L.; Pursimo, T.; Giroletti, M.; Bignall, H. E.; Lovell, J. E. J.; Rickett, B. J.; Kedziora-Chudczer, L.; Ojha, R.; Reynolds, C.

    2018-03-01

    We investigate the relationship between 5 GHz interstellar scintillation (ISS) and 15 GHz intrinsic variability of compact, radio-selected active galactic nuclei (AGNs) drawn from the Microarcsecond Scintillation-Induced Variability (MASIV) Survey and the Owens Valley Radio Observatory blazar monitoring program. We discover that the strongest scintillators at 5 GHz (modulation index, m5 ≥ 0.02) all exhibit strong 15 GHz intrinsic variability (m15 ≥ 0.1). This relationship can be attributed mainly to the mutual dependence of intrinsic variability and ISS amplitudes on radio core compactness at ˜ 100 μas scales, and to a lesser extent, on their mutual dependences on source flux density, arcsec-scale core dominance and redshift. However, not all sources displaying strong intrinsic variations show high amplitude scintillation, since ISS is also strongly dependent on Galactic line-of-sight scattering properties. This observed relationship between intrinsic variability and ISS highlights the importance of optimizing the observing frequency, cadence, timespan and sky coverage of future radio variability surveys, such that these two effects can be better distinguished to study the underlying physics. For the full MASIV sample, we find that Fermi-detected gamma-ray loud sources exhibit significantly higher 5 GHz ISS amplitudes than gamma-ray quiet sources. This relationship is weaker than the known correlation between gamma-ray loudness and the 15 GHz variability amplitudes, most likely due to jet opacity effects.

  17. New Book Recounts Exciting, Colorful History Of Radio Astronomy in Green Bank, West Virginia

    Science.gov (United States)

    2007-07-01

    A new book published by the National Radio Astronomy Observatory (NRAO) tells the story of the founding and early years of the Observatory at Green Bank, West Virginia. But it was Fun: the first forty years of radio astronomy at Green Bank, is not a formal history, but rather a scrapbook of early memos, recollections, anecdotes and reports. But it was Fun... is liberally illustrated with archival photographs. It includes historical and scientific papers from symposia held in 1987 and 1995 to celebrate the birthdays of two of the radio telescopes at the Observatory. Book cover The National Radio Astronomy Observatory was formed in 1956 after the National Science Foundation decided to establish an observatory in the eastern United States for the study of faint radio signals from distant objects in the Universe. But it was Fun... reprints early memos from the group of scientists who searched the mountains for a suitable site -- an area free from radio transmitters and other sources of radio interference -- "in a valley surrounded by as many ranges of high mountains in as many directions as possible," which was "at least 50 miles distant from any city or other concentration of people." The committee settled on Green Bank, a small village in West Virginia, and the book documents the struggles that followed to create a world-class scientific facility in an isolated area more accustomed to cows than computers. Groundbreaking at the Observatory, then a patchwork of farms and fields, took place in October 1957, only a few days after the launch of Sputnik by the Soviet Union. A year later, Green Bank's first telescope was dedicated, and the book contains a transcription of speeches given at that ceremony, when the Cold War, the space race and America's scientific stature were issues of the hour. The centerpiece of the new Observatory was to be a highly-precise radio telescope 140 feet in diameter, but it was expected that it would soon be surpassed by dishes of much greater

  18. Valley Fever

    Science.gov (United States)

    ... valley fever. These fungi are commonly found in soil in specific regions. The fungi's spores can be stirred into the air by ... species have a complex life cycle. In the soil, they grow as a mold with long filaments that break off into airborne ...

  19. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.

    1976-01-01

    Any discussion of the radio emission from stars should begin by emphasizing certain unique problems. First of all, one must clarify a semantic confusion introduced into radio astronomy in the late 1950's when most new radio sources were described as radio stars. All of these early 'radio stars' were eventually identified with other galactic and extra-galactic objects. The study of true radio stars, where the radio emission is produced in the atmosphere of a star, began only in the 1960's. Most of the work on the subject has, in fact, been carried out in only the last few years. Because the real information about radio stars is quite new, it is not surprising that major aspects of the subject are not at all understood. For this reason this paper is organized mainly around three questions: what is the available observational information; what physical processes seem to be involved; and what working hypotheses look potentially fruitful. (Auth.)

  20. The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory

    Science.gov (United States)

    Gurman, Joseph B.

    2007-01-01

    The Virtual Solar Observatory (VSO) is now able to search for solar data ranging from the radio to gamma rays, obtained from space and groundbased observatories, from 26 sources at 12 data providers, and from 1915 to the present. The solar physics community can use a Web interface or an Application Programming Interface (API) that allows integrating VSO searches into other software, including other Web services. Over the next few years, this integration will be especially obvious as the NASA Heliophysics division sponsors the development of a heliophysics-wide virtual observatory (VO), based on existing VO's in heliospheric, magnetospheric, and ionospheric physics as well as the VSO. We examine some of the challenges and potential of such a "meta-VO."

  1. Compact radio sources

    International Nuclear Information System (INIS)

    Altschuler, D.R.

    1975-01-01

    Eighty-seven compact radio sources were monitored between 1971 and 1974 with the National Radio Astronomy Observatory interferometer. Both flux density and polarization were measured at intervals of about one month at wavelengths of 3.7 and 11.1 cms. Forty-four sources showed definite variability in their total and/or polarized flux density. The variations in polarization were of a shorter time scale than the corresponding flux density variations. Some of the qualitative features of an expanding source model were observed. The data suggest that some form of injection of relativistic electrons is taking place. The absence of significant depolarization in the variable sources indicates that only a small fraction of the mass of the radio outburst is in the form of non-relativistic plasma. Some of the objects observed belong to the BL-Lacertal class. It is shown that this class is very inhomogeneous in its radio properties. For the violently variable BL-Lacertal type objects the spectrum, flux variations and polarization data strongly suggest that these are very young objects

  2. TENCompetence Competence Observatory

    NARCIS (Netherlands)

    Vervenne, Luk

    2010-01-01

    Vervenne, L. (2007) TENCompetence Competence Observatory. Sources available http://tencompetence.cvs.sourceforge.net/viewvc/tencompetence/wp8/org.tencompetence.co/. Available under the three clause BSD license, copyright TENCompetence Foundation.

  3. The Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Hojvat, C.

    1997-03-01

    The Pierre Auger Observatory is an international collaboration for the detailed study of the highest energy cosmic rays. It will operate at two similar sites, one in the northern hemisphere and one in the southern hemisphere. The Observatory is designed to collect a statistically significant data set of events with energies greater than 10 19 eV and with equal exposures for the northern and southern skies

  4. A Radio Astronomy Science Education Partnership - GAVRT and Radio JOVE

    Science.gov (United States)

    Higgins, C. A.; Thieman, J. R.; Bunnell, K.; Soholt, G.

    2009-12-01

    The planet Jupiter provides an excellent subject to educate, engage, and inspire students and teachers to learn science. The Goldstone Apple-Valley Radio Telescope (GAVRT) program (http://www.lewiscenter.org/gavrt) and The Radio JOVE project (http://radiojove.gsfc.nasa.gov) each have a long history of allowing students and teachers to interact with scientists and real radio telescopes. The upcoming Juno mission to Jupiter (2011 launch) allows both GAVRT and Radio JOVE to combine efforts and engage with the NASA Juno mission, thus increasing the excitement and learning potential for teachers, students, and the general public. Teachers can attend workshops for training to operate a 34-meter radio telescope and/or build their own simple radio telescope, both of which can be used directly in the classroom. We will overview some classroom activities and highlight some teacher-student experiences. In addition, we will update our efforts on greater Web-based control of the radio telescopes, as well as highlight our upcoming workshops to allow better access for teachers in different parts of the Country.

  5. THE VOLATILE COMPOSITION OF COMET C/2003 K4 (LINEAR) AT NEAR-IR WAVELENGTHS—COMPARISONS WITH RESULTS FROM THE NANÇAY RADIO TELESCOPE AND FROM THE ODIN, SPITZER, AND SOHO SPACE OBSERVATORIES

    Energy Technology Data Exchange (ETDEWEB)

    Paganini, L.; Mumma, M. J.; Villanueva, G. L.; DiSanti, M. A.; Bonev, B. P., E-mail: lucas.paganini@nasa.gov [Goddard Center for Astrobiology, NASA GSFC, MS 690, Greenbelt, MD 20771 (United States)

    2015-07-20

    We observed comet C/2003 K4 (LINEAR) using NIRSPEC at the Keck Observatory on UT 2004 November 28, when the comet was at 1.28 AU from the Sun (post-perihelion) and 1.38 AU from Earth. We detected six gaseous species (H{sub 2}O, OH*, C{sub 2}H{sub 6}, CH{sub 3}OH, CH{sub 4}, and HCN) and obtained upper limits for three others (H{sub 2}CO, C{sub 2}H{sub 2}, and NH{sub 3}). Our results indicate a water production rate of (1.72 ± 0.18) × 10{sup 29} molecules s{sup −1}, in reasonable agreement with production rates from SOHO (on the same day), Odin (one day earlier), and Nançay (about two weeks earlier). We also report abundances (relative to water) for seven trace species: CH{sub 3}OH (∼1.8%), CH{sub 4} (∼0.9%), and C{sub 2}H{sub 6} (∼0.4%) that were consistent with mean values among Oort cloud (OC) comets, while NH{sub 3} (<0.55%), HCN (∼0.07%), H{sub 2}CO (<0.07%), and C{sub 2}H{sub 2} (<0.04%) were “lower” than the mean values in other OC comets. We extracted inner-coma rotational temperatures for four species (H{sub 2}O, C{sub 2}H{sub 6}, CH{sub 3}OH, and CH{sub 4}), all of which are consistent with 70 K (within 1σ). The extracted ortho-para ratio for water was 3.0 ± 0.15, corresponding to spin temperatures larger than 39 K (at the 1σ level) and agreeing with those obtained with the Spitzer Space Telescope at the 2σ level.

  6. Information Content in Radio Waves: Student Investigations in Radio Science

    Science.gov (United States)

    Jacobs, K.; Scaduto, T.

    2013-12-01

    We describe an inquiry-based instructional unit on information content in radio waves, created in the summer of 2013 as part of a MIT Haystack Observatory (Westford, MA) NSF Research Experiences for Teachers (RET) program. This topic is current and highly relevant, addressing science and technical aspects from radio astronomy, geodesy, and atmospheric research areas as well as Next Generation Science Standards (NGSS). Projects and activities range from simple classroom demonstrations and group investigations, to long term research projects incorporating data acquisition from both student-built instrumentation as well as online databases. Each of the core lessons is applied to one of the primary research centers at Haystack through an inquiry project that builds on previously developed units through the MIT Haystack RET program. In radio astronomy, students investigate the application of a simple and inexpensive software defined radio chip (RTL-SDR) for use in systems implementing a small and very small radio telescope (SRT and VSRT). Both of these systems allow students to explore fundamental principles of radio waves and interferometry as applied to radio astronomy. In ionospheric research, students track solar storms from the initial coronal mass ejection (using Solar Dynamics Observatory images) to the resulting variability in total electron density concentrations using data from the community standard Madrigal distributed database system maintained by MIT Haystack. Finally, students get to explore very long-baseline interferometry as it is used in geodetic studies by measuring crustal plate displacements over time. Alignment to NextGen standards is provided for each lesson and activity with emphasis on HS-PS4 'Waves and Their Applications in Technologies for Information Transfer'.

  7. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.; Gibson, D.M.

    1985-01-01

    Studies of stellar radio emission became an important field of research in the 1970's and have now expanded to become a major area of radio astronomy with the advent of new instruments such as the Very Large Array in New Mexico and transcontinental telescope arrays. This volume contains papers from the workshop on stellar continuum radio astronomy held in Boulder, Colorado, and is the first book on the rapidly expanding field of radio emission from stars and stellar systems. Subjects covered include the observational and theoretical aspects of stellar winds from both hot and cool stars, radio flares from active double star systems and red dwarf stars, bipolar flows from star-forming regions, and the radio emission from X-ray binaries. (orig.)

  8. A radio and optical study of Molonglo radio sources

    Science.gov (United States)

    Ishwara-Chandra, C. H.; Saikia, D. J.; McCarthy, P. J.; van Breugel, W. J. M.

    2001-05-01

    We present multi-wavelength radio observations with the Very Large Array, and narrow- and broad-band optical observations with the 2.5-m telescope at the Las Campanas Observatory, of a well-defined sample of high-luminosity Fanaroff-Riley class II radio galaxies and quasars, selected from the Molonglo Reference Catalogue 1-Jy sample. These observations were carried out as part of a programme to investigate the effects of orientation and environment on some of the observed properties of these sources. We examine the dependence of the Liu-Pooley relationship, which shows that radio lobes with flatter radio spectra are less depolarized, on size, identification and redshift, and show that it is significantly stronger for smaller sources, with the strength of the relationship being similar for both radio galaxies and quasars. In addition to Doppler effects, there appear to be intrinsic differences between the lobes on opposite sides. We discuss the asymmetry in brightness and location of the hotspots, and present estimates of the ages and velocities from matched-resolution observations in the L and C bands. Narrow- and broad-band optical images of some of these sources were made to study their environments and correlate with the symmetry parameters. An extended emission-line region is seen in a quasar, and in four of the objects possible companion galaxies are seen close to the radio axis.

  9. Development of Armenian-Georgian Virtual Observatory

    Science.gov (United States)

    Mickaelian, Areg; Kochiashvili, Nino; Astsatryan, Hrach; Harutyunian, Haik; Magakyan, Tigran; Chargeishvili, Ketevan; Natsvlishvili, Rezo; Kukhianidze, Vasil; Ramishvili, Giorgi; Sargsyan, Lusine; Sinamyan, Parandzem; Kochiashvili, Ia; Mikayelyan, Gor

    2009-10-01

    The Armenian-Georgian Virtual Observatory (ArGVO) project is the first initiative in the world to create a regional VO infrastructure based on national VO projects and regional Grid. The Byurakan and Abastumani Astrophysical Observatories are scientific partners since 1946, after establishment of the Byurakan observatory . The Armenian VO project (ArVO) is being developed since 2005 and is a part of the International Virtual Observatory Alliance (IVOA). It is based on the Digitized First Byurakan Survey (DFBS, the digitized version of famous Markarian survey) and other Armenian archival data. Similarly, the Georgian VO will be created to serve as a research environment to utilize the digitized Georgian plate archives. Therefore, one of the main goals for creation of the regional VO is the digitization of large amounts of plates preserved at the plate stacks of these two observatories. The total amount of plates is more than 100,000 units. Observational programs of high importance have been selected and some 3000 plates will be digitized during the next two years; the priority is being defined by the usefulness of the material for future science projects, like search for new objects, optical identifications of radio, IR, and X-ray sources, study of variability and proper motions, etc. Having the digitized material in VO standards, a VO database through the regional Grid infrastructure will be active. This partnership is being carried out in the framework of the ISTC project A-1606 "Development of Armenian-Georgian Grid Infrastructure and Applications in the Fields of High Energy Physics, Astrophysics and Quantum Physics".

  10. Saint Petersburg magnetic observatory: from Voeikovo subdivision to INTERMAGNET certification

    Science.gov (United States)

    Sidorov, Roman; Soloviev, Anatoly; Krasnoperov, Roman; Kudin, Dmitry; Grudnev, Andrei; Kopytenko, Yury; Kotikov, Andrei; Sergushin, Pavel

    2017-11-01

    Since June 2012 the Saint Petersburg magnetic observatory is being developed and maintained by two institutions of the Russian Academy of Sciences (RAS) - the Geophysical Center of RAS (GC RAS) and the Saint Petersburg branch of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of RAS (IZMIRAN SPb). On 29 April 2016 the application of the Saint Petersburg observatory (IAGA code SPG) for introduction into the INTERMAGNET network was accepted after approval by the experts of the first definitive dataset over 2015, produced by the GC RAS, and on 9 June 2016 the SPG observatory was officially certified. One of the oldest series of magnetic observations, originating in 1834, was resumed in the 21st century, meeting the highest quality standards and all modern technical requirements. In this paper a brief historical and scientific background of the SPG observatory foundation and development is given, the stages of its renovation and upgrade in the 21st century are described, and information on its current state is provided. The first results of the observatory functioning are discussed and geomagnetic variations registered at the SPG observatory are assessed and compared with geomagnetic data from the INTERMAGNET observatories located in the same region.

  11. Saint Petersburg magnetic observatory: from Voeikovo subdivision to INTERMAGNET certification

    Directory of Open Access Journals (Sweden)

    R. Sidorov

    2017-11-01

    Full Text Available Since June 2012 the Saint Petersburg magnetic observatory is being developed and maintained by two institutions of the Russian Academy of Sciences (RAS – the Geophysical Center of RAS (GC RAS and the Saint Petersburg branch of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of RAS (IZMIRAN SPb. On 29 April 2016 the application of the Saint Petersburg observatory (IAGA code SPG for introduction into the INTERMAGNET network was accepted after approval by the experts of the first definitive dataset over 2015, produced by the GC RAS, and on 9 June 2016 the SPG observatory was officially certified. One of the oldest series of magnetic observations, originating in 1834, was resumed in the 21st century, meeting the highest quality standards and all modern technical requirements. In this paper a brief historical and scientific background of the SPG observatory foundation and development is given, the stages of its renovation and upgrade in the 21st century are described, and information on its current state is provided. The first results of the observatory functioning are discussed and geomagnetic variations registered at the SPG observatory are assessed and compared with geomagnetic data from the INTERMAGNET observatories located in the same region.

  12. US Naval Observatory Hourly Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly observations journal from the National Observatory in Washington DC. The observatory is the first station in the United States to produce hourly observations...

  13. Grote Reber, Radio Astronomy Pioneer, Dies

    Science.gov (United States)

    2002-12-01

    Grote Reber, one of the earliest pioneers of radio astronomy, died in Tasmania on December 20, just two days shy of his 91st birthday. Reber was the first person to build a radio telescope dedicated to astronomy, opening up a whole new "window" on the Universe that eventually produced such landmark discoveries as quasars, pulsars and the remnant "afterglow" of the Big Bang. His self- financed experiments laid the foundation for today's advanced radio-astronomy facilities. Grote Reber Grote Reber NRAO/AUI photo "Radio astronomy has changed profoundly our understanding of the Universe and has earned the Nobel Prize for several major contributions. All radio astronomers who have followed him owe Grote Reber a deep debt for his pioneering work," said Dr. Fred Lo, director of the National Radio Astronomy Observatory (NRAO). "Reber was the first to systematically study the sky by observing something other than visible light. This gave astronomy a whole new view of the Universe. The continuing importance of new ways of looking at the Universe is emphasized by this year's Nobel Prizes in physics, which recognized scientists who pioneered X-ray and neutrino observations," Lo added. Reber was a radio engineer and avid amateur "ham" radio operator in Wheaton, Illinois, in the 1930s when he read about Karl Jansky's 1932 discovery of natural radio emissions coming from outer space. As an amateur operator, Reber had won awards and communicated with other amateurs around the world, and later wrote that he had concluded "there were no more worlds to conquer" in radio. Learning of Jansky's discovery gave Reber a whole new challenge that he attacked with vigor. Analyzing the problem as an engineer, Reber concluded that what he needed was a parabolic-dish antenna, something quite uncommon in the 1930s. In 1937, using his own funds, he constructed a 31.4-foot-diameter dish antenna in his back yard. The strange contraption attracted curious attention from his neighbors and became

  14. Radio Frequency Interference Mitigation

    Science.gov (United States)

    An, T.; Chen, X.; Mohan, P.; Lao, B. Q.

    2017-09-01

    The observational facilities of radio astronomy keep constant upgrades and developments to achieve better capabilities including increasing the time of the data recording and frequency resolutions, and increasing the receiving and recording bandwidth. However in contrast, only a limited spectrum resource has been allocated to radio astronomy by the International Telecommunication Union, resulting in that the radio observational instrumentations are inevitably exposed to undesirable radio frequency interference (RFI) signals which originate mainly from the terrestrial human activity and are becoming stronger with time. RFIs degrade the quality of data and even lead to invalid data. The impact of RFIs on scientific outcome becomes more and more serious. In this article, the requirement for RFI mitigation is motivated, and the RFI characteristics, mitigation techniques, and strategies are reviewed. The mitigation strategies adopted at some representative observatories, telescopes, and arrays are also introduced. The advantages and shortcomings of the four classes of RFI mitigation strategies are discussed and presented, applicable at the connected causal stages: preventive, pre-detection, pre-correlation, and post-correlation. The proper identification and flagging of RFI is the key to the reduction of data loss and improvement in data quality, and is also the ultimate goal of developing RFI mitigation technique. This can be achieved through a strategy involving a combination of the discussed techniques in stages. The recent advances in the high speed digital signal processing and high performance computing allow for performing RFI excision of the large data volumes generated from large telescopes or arrays in both real time and offline modes, aiding the proposed strategy.

  15. Solar Radio

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists monitor the structure of the solar corona, the outer most regions of the Sun's atmosphere, using radio waves (100?s of MHz to 10?s of GHz). Variations in...

  16. Results of the first simultaneous X-ray, optical, and radio campaign on the blazar PKS 1622-297

    NARCIS (Netherlands)

    Meyer, Angela Osterman; Miller, H. Richard; Marshall, Kevin; Ryle, Wesley T.; Aller, Hugh; Aller, Margo; McFarland, John P.; Pollock, Joseph T.; Reichart, Daniel E.; Crain, J. Adam; Ivarsen, Kevin M.; LaCluyze, Aaron P.; Nysewander, Melissa C.

    Coordinated X-ray, optical, and radio observations of the blazar PKS 1622-297 were obtained during a three-week campaign in 2006 using the Rossi X-Ray Timing Explorer (RXTE), the University of Michigan Radio Astronomy Observatory, and optical telescopes at Cerro Tololo Inter-American Observatory.

  17. Radio astronomy

    International Nuclear Information System (INIS)

    Parijskij, Y.N.; Gossachinskij, I.V.; Zuckerman, B.; Khersonsky, V.K.; Pustilnik, S.; Robinson, B.J.

    1976-01-01

    A critical review of major developments and discoveries in the field of radioastronomy during the period 1973-1975 is presented. The report is presented under the following headings:(1) Continuum radiation from the Galaxy; (2) Neutral hydrogen, 21 cm (galactic and extragalactic) and recombination lines; (3) Radioastronomy investigations of interstellar molecules; (4) Extragalactic radio astronomy and (6) Development in radio astronomy instruments. (B.R.H.)

  18. Optical spectra and radio properties of quasars

    International Nuclear Information System (INIS)

    Wills, B.J.

    1982-01-01

    Using high quality spectrophotometric scans obtained at the McDonald Observatory, and data from the literature the author shows that, for quasars, the relative strength of optical Fe II emission (the broad blended feature lambda4570) may be roughly inversely proportional to line widths (full width at half maximum, FWHM). A similar relation between the relative intensity of the UV Fe II blend between 2300 and 2600 A (the lambda2500 feature) and the widths of Mg II and Hβ is shown. She distinguishes between compact and extended radio sources and includes radio quiet quasars, Seyfert 1 galaxies and BLRG's. The quasars associated with extended radio sources have the broadest emission lines and the weakest Fe II, falling close to the region occupied by BLRG's which also have extended radio structure. Those quasars with strong Fe II and compact radio structure are most similar to the Seyfert 1 galaxies. (Auth.)

  19. ESO's Two Observatories Merge

    Science.gov (United States)

    2005-02-01

    On February 1, 2005, the European Southern Observatory (ESO) has merged its two observatories, La Silla and Paranal, into one. This move will help Europe's prime organisation for astronomy to better manage its many and diverse projects by deploying available resources more efficiently where and when they are needed. The merged observatory will be known as the La Silla Paranal Observatory. Catherine Cesarsky, ESO's Director General, comments the new development: "The merging, which was planned during the past year with the deep involvement of all the staff, has created unified maintenance and engineering (including software, mechanics, electronics and optics) departments across the two sites, further increasing the already very high efficiency of our telescopes. It is my great pleasure to commend the excellent work of Jorge Melnick, former director of the La Silla Observatory, and of Roberto Gilmozzi, the director of Paranal." ESO's headquarters are located in Garching, in the vicinity of Munich (Bavaria, Germany), and this intergovernmental organisation has established itself as a world-leader in astronomy. Created in 1962, ESO is now supported by eleven member states (Belgium, Denmark, Finland, France, Germany, Italy, The Netherlands, Portugal, Sweden, Switzerland, and the United Kingdom). It operates major telescopes on two remote sites, all located in Chile: La Silla, about 600 km north of Santiago and at an altitude of 2400m; Paranal, a 2600m high mountain in the Atacama Desert 120 km south of the coastal city of Antofagasta. Most recently, ESO has started the construction of an observatory at Chajnantor, a 5000m high site, also in the Atacama Desert. La Silla, north of the town of La Serena, has been the bastion of the organization's facilities since 1964. It is the site of two of the most productive 4-m class telescopes in the world, the New Technology Telescope (NTT) - the first major telescope equipped with active optics - and the 3.6-m, which hosts HARPS

  20. Expanding the HAWC Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Johanna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-17

    The High Altitude Water Cherenkov Gamma-Ray Observatory is expanding its current array of 300 water tanks to include 350 outrigger tanks to increase sensitivity to gamma rays above 10 TeV. This involves creating and testing hardware with which to build the new tanks, including photomultiplier tubes, high voltage supply units, and flash analog to digital converters. My responsibilities this summer included preparing, testing and calibrating that equipment.

  1. South African Astronomical Observatory

    International Nuclear Information System (INIS)

    1987-01-01

    Work at the South African Astronomical Observatory (SAAO) in recent years, by both staff and visitors, has made major contributions to the fields of astrophysics and astronomy. During 1986 the SAAO has been involved in studies of the following: galaxies; celestial x-ray sources; magellanic clouds; pulsating variables; galactic structure; binary star phenomena; nebulae and interstellar matter; stellar astrophysics; open clusters; globular clusters, and solar systems

  2. A Radio-Frequency-over-Fiber link for large-array radio astronomy applications

    International Nuclear Information System (INIS)

    Mena, J; Bandura, K; Cliche, J-F; Dobbs, M; Gilbert, A; Tang, Q Y

    2013-01-01

    A prototype 425-850 MHz Radio-Frequency-over-Fiber (RFoF) link for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) is presented. The design is based on a directly modulated Fabry-Perot (FP) laser, operating at ambient temperature, and a single-mode fiber. The dynamic performance, gain stability, and phase stability of the RFoF link are characterized. Tests on a two-element interferometer built at the Dominion Radio Astrophysical Observatory for CHIME prototyping demonstrate that RFoF can be successfully used as a cost-effective solution for analog signal transport on the CHIME telescope and other large-array radio astronomy applications

  3. Radio astronomy

    CERN Document Server

    Alder, Berni

    1975-01-01

    Methods in Computational Physics, Volume 14: Radio Astronomy is devoted to the role of the digital computer both as a control device and as a calculator in addressing problems related to galactic radio noise. This volume contains four chapters and begins with a technical description of the hardware and the special data-handling problems of using radioheliography, with an emphasis on a selection of observational results obtained with the Culgoora radioheliograph and their significance to solar physics and to astrophysics in general. The subsequent chapter examines interstellar dispersion, i

  4. Astronomical publications of Melbourne Observatory

    Science.gov (United States)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  5. Sudbury neutrino observatory

    International Nuclear Information System (INIS)

    Ewan, G.T.; Mak, H.B.; Robertson, B.C.

    1985-07-01

    This report discusses the proposal to construct a unique neutrino observatory. The observatory would contain a Cerenkov detector which would be located 2070 m below the earth's surface in an INCO mine at Creighton near Sudbury and would contain 1000 tons of D20 which is an excellent target material. Neutrinos carry detailed information in their spectra on the reactions taking place deep in the interstellar interior and also provide information on supernova explosions. In addition to their role as astrophysical probes a knowledge of the properties of neutrinos is crucial to theories of grand unification. There are three main objectives of the laboratory. The prime objective will be to study B electron neutrinos from the sun by a direct counting method that will measure their energy and direction. The second major objective will be to establish if electron neutrinos change into other neutrino species in transit from the sun to the earth. Finally it is hoped to be able to observe a supernova with the proposed detector. The features of the Sudbury Neutrino Observatory which make it unique are its high sensitivity to electron neutrinos and its ability to detect all other types of neutrinos of energy greater than 2.2 MeV. In section II of this proposal the major physics objectives are discussed in greater detail. A conceptual design for the detector, and measurements and calculations which establish the feasibility of the neutrino experiments are presented in section III. Section IV is comprised of a discussion on the possible location of the laboratory and Section V contains a brief indication of the main areas to be studied in Phase II of the design study

  6. Sudbury neutrino observatory

    International Nuclear Information System (INIS)

    Ewan, G.T.; Evans, H.C.; Lee, H.W.

    1986-10-01

    This report is a supplement to a report (SNO-85-3 (Sudbury Neutrino Observatory)) which contained the results of a feasibility study on the construction of a deep underground neutrino observatory based on a 1000 ton heavy water Cerenkov detector. Neutrinos carry detailed information in their spectra on the reactions taking place deep in the interstellar interior and also provide information on supernova explosions. In addition to their role as astrophysical probes, a knowledge of the properties of neutrinos is crucial to theories of grand unification. The Sudbury Neutrino Observatory is unique in its high sensitivity to electron neutrinos and its ability to detect all other types of neutrinos of energy greater than 2.2 MeV. The results of the July 1985 study indicated that the project is technically feasible in that the proposed detector can measure the direction and energy of electron neutrinos above 7 MeV and the scientific programs will make significant contributions to physics and astrophysics. This present report contains new information obtained since the 1985 feasibility study. The enhanced conversion of neutrinos in the sun and the new physics that could be learned using the heavy water detector are discussed in the physics section. The other sections will discuss progress in the areas of practical importance in achieving the physics objectives such as new techniques to measure, monitor and remove low levels of radioactivity in detector components, ideas on calibration of the detector and so forth. The section entitled Administration contains a membership list of the working groups within the SNO collaboration

  7. The Observatory Health Report

    Directory of Open Access Journals (Sweden)

    Laura Murianni

    2008-06-01

    Full Text Available

    Background: The number of indicators aiming to provide a clear picture of healthcare needs and the quality and efficiency of healthcare systems and services has proliferated in recent years. The activity of the National Observatory on Health Status in the Italian Regions is multidisciplinary, involving around 280 public health care experts, clinicians, demographers, epidemiologists, mathematicians, statisticians and economists who with their different competencies, and scientific interests aim to improve the collective health of individuals and their conditions through the use of “core indicators”. The main outcome of the National Observatory on Health Status in the Italian Regions is the “Osservasalute Report – a report on health status and the quality of healthcare assistance in the Italian Regions”.

    Methods: The Report adopts a comparative analysis, methodology and internationally validated indicators.

    Results: The results of Observatory Report show it is necessary:

    • to improve the monitoring of primary health care services (where the chronic disease could be cared through implementation of clinical path;

     • to improve in certain areas of hospital care such as caesarean deliveries, as well as the average length of stay in the pre-intervention phase, etc.;

    • to try to be more focused on the patients/citizens in our health care services; • to practice more geographical interventions to reduce the North-South divide as well as reduce gender inequity.

    Conclusions: The health status of Italian people is good with positive results and outcomes, but in the meantime some further efforts should be done especially in the South that still has to improve the quality and the organization of health care services. There are huge differences in accuracy and therefore usefulness of the reported data, both between diseases and between

  8. Sudbury neutrino observatory proposal

    International Nuclear Information System (INIS)

    Ewan, G.T.; Evans, H.C.; Lee, H.W.

    1987-10-01

    This report is a proposal by the Sudbury Neutrino Observatory (SNO) collaboration to develop a world class laboratory for neutrino astrophysics. This observatory would contain a large volume heavy water detector which would have the potential to measure both the electron-neutrino flux from the sun and the total solar neutrino flux independent of neutrino type. It will therefore be possible to test models of solar energy generation and, independently, to search for neutrino oscillations with a sensitivity many orders of magnitude greater than that of terrestrial experiments. It will also be possible to search for spectral distortion produced by neutrino oscillations in the dense matter of the sun. Finally the proposed detector would be sensitive to neutrinos from a stellar collapse and would detect neutrinos of all types thus providing detailed information on the masses of muon- and tau-neutrinos. The neutrino detector would contain 1000 tons of D20 and would be located more than 2000 m below ground in the Creighton mine near Sudbury. The operation and performance of the proposed detector are described and the laboratory design is presented. Construction schedules and responsibilities and the planned program of technical studies by the SNO collaboration are outlined. Finally, the total capital cost is estimated to be $35M Canadian and the annual operating cost, after construction, would be $1.8 M Canadian, including the insurance costs of the heavy water

  9. Brightness distribution data on 2918 radio sources at 365 MHz

    International Nuclear Information System (INIS)

    Cotton, W.D.; Owen, F.N.; Ghigo, F.D.

    1975-01-01

    This paper is the second in a series describing the results of a program attempting to fit models of the brightness distribution to radio sources observed at 365 MHz with the Bandwidth Synthesis Interferometer (BSI) operated by the University of Texas Radio Astronomy Observatory. Results for a further 2918 radio sources are given. An unresolved model and three symmetric extended models with angular sizes in the range 10--70 arcsec were attempted for each radio source. In addition, for 348 sources for which other observations of brightness distribution are published, the reference to the observations and a brief description are included

  10. Ionospheric Caustics in Solar Radio Observations

    Science.gov (United States)

    Koval, A.; Chen, Y.; Stanislavsky, A.

    2016-12-01

    The Earth ionosphere possesses by natural focusing and defocusing effects on radio waves due to presence of variable ionospheric irregularities which could act like convergent and divergent lenses on incident radiation. In particular, the focusing of emission from the Sun was firstly detected on the Nançay Decameter Array dynamic spectra in the 1980s. On time-frequency spectrograms the intensity variations form specific structures different from well-known solar radio bursts and clearly distinguishing on a background of solar radiation. Such structures have been identified as ionospheric caustics (ICs) and considered to be the result of radio waves refraction on medium scale travelling ionospheric disturbances (MSTIDs). Although nowadays the ICs are registered by different radio observatories due to augmentation of low-frequency radio telescopes, the most recent papers devoted to ICs in solar radio records date back to the 1980s. In this study, we revisit the ICs issue with some new results by conducting a statistical analysis of occurrence rate of ICs in solar dynamic spectra in meter-decameter wavelength range for long continuous period (15 years). The seasonal variations in ICs appearance have been found for the first time. Besides, we report the possible solar cycle dependence of ICs emergence. The radio waves propagation in the ionosphere comprising MSTIDs will be considered. The present research renews the subject of ICs in the low-frequency solar radio astronomy after about 35-year letup.

  11. Meteorological observatory for Antarctic data collection

    International Nuclear Information System (INIS)

    Grigioni, P.; De Silvestri, L.

    1996-01-01

    In the last years, a great number of automatic weather stations was installed in Antarctica, with the aim to examine closely the weather and climate of this region and to improve the coverage of measuring points on the Antarctic surface. In 1987 the Italian Antarctic Project started to set up a meteorological network, in an area not completely covered by other countries. Some of the activities performed by the meteorological observatory, concerning technical functions such as maintenance of the AWS's and the execution of radio soundings, or relating to scientific purposes such as validation and elaboration of collected data, are exposed. Finally, some climatological considerations on the thermal behaviour of the Antarctic troposphere such as 'coreless winter', and on the wind field, including katabatic flows in North Victoria Land are described

  12. Solar energetic particles and radio burst emission

    Directory of Open Access Journals (Sweden)

    Miteva Rositsa

    2017-01-01

    Full Text Available We present a statistical study on the observed solar radio burst emission associated with the origin of in situ detected solar energetic particles. Several proton event catalogs in the period 1996–2016 are used. At the time of appearance of the particle origin (flare and coronal mass ejection we identified radio burst signatures of types II, III and IV by inspecting dynamic radio spectral plots. The information from observatory reports is also accounted for during the analysis. The occurrence of solar radio burst signatures is evaluated within selected wavelength ranges during the solar cycle 23 and the ongoing 24. Finally, we present the burst occurrence trends with respect to the intensity of the proton events and the location of their solar origin.

  13. Perennial Environment Observatory

    International Nuclear Information System (INIS)

    Plas, Frederic

    2014-07-01

    The Perennial Environment Observatory [Observatoire Perenne de l'Environnement - OPE] is a unique approach and infrastructure developed and implemented by ANDRA, the French National Radioactive Waste Management Agency, as part of its overall project of deep geological disposal for radioactive waste. Its current mission is to assess the initial state of the rural (forest, pasture, open-field and aquatic) environment, prior to repository construction. This will be followed in 2017 (pending construction authorizations) and for a period exceeding a century, by monitoring of any impact the repository may have on the environment. In addition to serving its own industrial purpose of environmental monitoring, ANDRA also opens the OPE approach, infrastructure and acquired knowledge (database...) to the scientific community to support further research on long term evolution of the environment subjected to natural and anthropogenic stresses, and to contribute to a better understanding of the interaction between the various compartments of the environment

  14. Amateur Planetary Radio Data Archived for Science and Education: Radio Jove

    Science.gov (United States)

    Thieman, J.; Cecconi, B.; Sky, J.; Garcia, L. N.; King, T. A.; Higgins, C. A.; Fung, S. F.

    2015-12-01

    The Radio Jove Project is a hands-on educational activity in which students, teachers, and the general public build simple radio telescopes, usually from a kit, to observe single frequency decameter wavelength radio emissions from Jupiter, the Sun, the galaxy, and the Earth usually with simple dipole antennas. Some of the amateur observers have upgraded their receivers to spectrographs and their antennas have become more sophisticated as well. The data records compare favorably to more sophisticated professional radio telescopes such as the Long Wavelength Array (LWA) and the Nancay Decametric Array. Since these data are often carefully calibrated and recorded around the clock in widely scattered locations they represent a valuable database useful not only to amateur radio astronomers but to the professional science community as well. Some interesting phenomena have been noted in the data that are of interest to the professionals familiar with such records. The continuous monitoring of radio emissions from Jupiter could serve as useful "ground truth" data during the coming Juno mission's radio observations of Jupiter. Radio Jove has long maintained an archive for thousands of Radio Jove observations, but the database was intended for use by the Radio Jove participants only. Now, increased scientific interest in the use of these data has resulted in several proposals to translate the data into a science community data format standard and store the data in professional archives. Progress is being made in translating Radio Jove data to the Common Data Format (CDF) and also in generating new observations in that format as well. Metadata describing the Radio Jove data would follow the Space Physics Archive Search and Extract (SPASE) standard. The proposed archive to be used for long term preservation would be the Planetary Data System (PDS). Data sharing would be achieved through the PDS and the Paris Astronomical Data Centre (PADC) and the Virtual Wave Observatory (VWO

  15. Sudbury Neutrino Observatory

    International Nuclear Information System (INIS)

    Beier, E.W.

    1992-03-01

    This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project. The motivation for the experiment is the measurement of neutrinos emitted by the sun. The Sudbury Neutrino Observatory (SNO) is a second generation dedicated solar neutrino experiment which will extend the results of our work with the Kamiokande II detector by measuring three reactions of neutrinos rather than the single reaction measured by the Kamiokande experiment. The collaborative project includes physicists from Canada, the United Kingdom, and the United States. Full funding for the construction of this facility was obtained in January 1990, and its construction is estimated to take five years. The motivation for the SNO experiment is to study the fundamental properties of neutrinos, in particular the mass and mixing parameters, which remain undetermined after decades of experiments in neutrino physics utilizing accelerators and reactors as sources of neutrinos. To continue the study of neutrino properties it is necessary to use the sun as a neutrino source. The long distance to the sun makes the search for neutrino mass sensitive to much smaller mass than can be studied with terrestrial sources. Furthermore, the matter density in the sun is sufficiently large to enhance the effects of small mixing between electron neutrinos and mu or tau neutrinos. This experiment, when combined with the results of the radiochemical 37 Cl and 71 Ga experiments and the Kamiokande II experiment, should extend our knowledge of these fundamental particles, and as a byproduct, improve our understanding of energy generation in the sun

  16. Surveys of radio sources at 5 GHz

    International Nuclear Information System (INIS)

    Pauliny-Toth, I.I.K.

    1977-01-01

    A number of surveys have been carried out at a frequency of 5 GHz at the National Radio Astronomy Observatory (NRAO) and at the Max-Planck-Institut fuer Radioastronomy (MPIFR) with the aim of determining the number-flux density relation for the sources detected and also of obtaining their radio spectra and optical identifications. The surveys fall into two categories: first, the strong source (S) surveys which are intended in due course to cover the whole northern sky and to be complete above a flux density of about 0.6 Jy; second, surveys of limited areas of sky down to lower levels of the flux density. (Auth.)

  17. The Radio JOVE Project - Shoestring Radio Astronomy

    Science.gov (United States)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  18. HF Radio Astronomy from a Small Satellite

    Science.gov (United States)

    2016-06-15

    SSC16-XI-03 HF Radio Astronomy from a Small Satellite Frank C. Robey1, Mary Knapp2, Alan J. Fenn1, Mark Silver1, Kerry Johnson1 Frank J. Lind3...frequency end of the electromagnetic spectrum (below 15 MHz) is one of the least explored windows in observational astronomy . Observations at these...pdf. [Accessed: 17-Oct-2015]. 3. G. Hallinan, “The Owens Valley LWA,” in Exascale Radio Astronomy , 2014, vol. 2. 4. C. J. Lonsdale, R. J. Cappallo

  19. Radio Frequency Fragment Separator at NSCL

    International Nuclear Information System (INIS)

    Bazin, D.; Andreev, V.; Becerril, A.; Doleans, M.; Mantica, P.F.; Ottarson, J.; Schatz, H.; Stoker, J.B.; Vincent, J.

    2009-01-01

    A new device has been designed and built at NSCL which provides additional filtering of radioactive beams produced via projectile fragmentation. The Radio Frequency Fragment Separator (RFFS) uses the time micro structure of the beams accelerated by the cyclotrons to deflect particles according to their time-of-flight, in effect producing a phase filtering. The transverse RF (Radio Frequency) electric field of the RFFS has superior filtering performance compared to other electrostatic devices, such as Wien filters. Such filtering is critical for radioactive beams produced on the neutron-deficient side of the valley of stability, where strong contamination occurs at intermediate energies from 50 to 200 MeV/u.

  20. Space Telecommunications Radio System STRS Cognitive Radio

    Science.gov (United States)

    Briones, Janette C.; Handler, Louis M.

    2013-01-01

    Radios today are evolving from awareness toward cognition. A software defined radio (SDR) provides the most capability for integrating autonomic decision making ability and allows the incremental evolution toward a cognitive radio. This cognitive radio technology will impact NASA space communications in areas such as spectrum utilization, interoperability, network operations, and radio resource management over a wide range of operating conditions. NASAs cognitive radio will build upon the infrastructure being developed by Space Telecommunication Radio System (STRS) SDR technology. This paper explores the feasibility of inserting cognitive capabilities in the NASA STRS architecture and the interfaces between the cognitive engine and the STRS radio. The STRS architecture defines methods that can inform the cognitive engine about the radio environment so that the cognitive engine can learn autonomously from experience, and take appropriate actions to adapt the radio operating characteristics and optimize performance.

  1. THE RADIO/GAMMA-RAY CONNECTION IN ACTIVE GALACTIC NUCLEI IN THE ERA OF THE FERMI LARGE AREA TELESCOPE

    International Nuclear Information System (INIS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Angelakis, E.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bonamente, E.; Bouvier, A.; Brigida, M.; Bruel, P.

    2011-01-01

    We present a detailed statistical analysis of the correlation between radio and gamma-ray emission of the active galactic nuclei (AGNs) detected by Fermi during its first year of operation, with the largest data sets ever used for this purpose. We use both archival interferometric 8.4 GHz data (from the Very Large Array and ATCA, for the full sample of 599 sources) and concurrent single-dish 15 GHz measurements from the Owens Valley Radio Observatory (OVRO, for a sub sample of 199 objects). Our unprecedentedly large sample permits us to assess with high accuracy the statistical significance of the correlation, using a surrogate data method designed to simultaneously account for common-distance bias and the effect of a limited dynamical range in the observed quantities. We find that the statistical significance of a positive correlation between the centimeter radio and the broadband (E > 100 MeV) gamma-ray energy flux is very high for the whole AGN sample, with a probability of -7 for the correlation appearing by chance. Using the OVRO data, we find that concurrent data improve the significance of the correlation from 1.6 x 10 -6 to 9.0 x 10 -8 . Our large sample size allows us to study the dependence of correlation strength and significance on specific source types and gamma-ray energy band. We find that the correlation is very significant (chance probability -7 ) for both flat spectrum radio quasars and BL Lac objects separately; a dependence of the correlation strength on the considered gamma-ray energy band is also present, but additional data will be necessary to constrain its significance.

  2. Valley polarization in bismuth

    Science.gov (United States)

    Fauque, Benoit

    2013-03-01

    The electronic structure of certain crystal lattices can contain multiple degenerate valleys for their charge carriers to occupy. The principal challenge in the development of valleytronics is to lift the valley degeneracy of charge carriers in a controlled way. In bulk semi-metallic bismuth, the Fermi surface includes three cigar-shaped electron valleys lying almost perpendicular to the high symmetry axis known as the trigonal axis. The in-plane mass anisotropy of each valley exceeds 200 as a consequence of Dirac dispersion, which drastically reduces the effective mass along two out of the three orientations. According to our recent study of angle-dependent magnetoresistance in bismuth, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. As a consequence of a unique combination of high mobility and extreme mass anisotropy in bismuth, the effect is visible even at room temperature in a magnetic field of 1 T. Thus, a modest magnetic field can be used as a valley valve in bismuth. The results of our recent investigation of angle-dependent magnetoresistance in other semi-metals and doped semiconductors suggest that a rotating magnetic field can behave as a valley valve in a multi-valley system with sizeable mass anisotropy.

  3. Health observatories in iran.

    Science.gov (United States)

    Rashidian, A; Damari, B; Larijani, B; Vosoogh Moghadda, A; Alikhani, S; Shadpour, K; Khosravi, A

    2013-01-01

    The Islamic Republic of Iran, in her 20 year vision by the year 2025, is a developed country with the first economic, scientific and technological status in the region, with revolutionary and Islamic identity, inspiring Islamic world, as well as effective and constructive interaction in international relations. Enjoying health, welfare, food security, social security, equal opportunities, fair income distribution, strong family structure; to be away from poverty, corruption, and discrimination; and benefiting desirable living environment are also considered out of characteristics of Iranian society in that year. Strategic leadership towards perceived vision in each setting requires restrictive, complete and timely information. According to constitution of National Institute for Health Researches, law of the Fifth Development Plan of the country and characteristics of health policy making, necessity of designing a Health Observatory System (HOS) was felt. Some Principles for designing such system were formulated by taking following steps: reviewing experience in other countries, having local history of the HOS in mind, superior documents, analysis of current production and management of health information, taking the possibilities to run a HOS into account. Based on these principles, the protocol of HOS was outlined in 3 different stages of opinion poll of informed experts responsible for production on management of information, by using questionnaires and Focus Group Discussions. The protocol includes executive regulations, the list of health indicators, vocabulary and a calendar for periodic studies of the community health situation.

  4. The Sudbury Neutrino Observatory

    International Nuclear Information System (INIS)

    Norman, E.B.; Chan, Y.D.; Garcia, A.; Lesko, K.T.; Smith, A.R.; Stokstad, R.G.; Zlimen, I.; Evans, H.C.; Ewan, G.T.; Hallin, A.; Lee, H.W.; Leslie, J.R.; MacArthur, J.D.; Mak, H.B.; McDonald, A.B.; McLatchie, W.; Robertson, B.C.; Skensved, P.; Sur, B.; Jagam, P.; Law, J.; Ollerhead, R.W.; Simpson, J.J.; Wang, J.X.; Tanner, N.W.; Jelley, N.A.; Barton, J.C.; Doucas, G.; Hooper, E.W.; Knox, A.B.; Moorhead, M.E.; Omori, M.; Trent, P.T.; Wark, D.L.

    1992-11-01

    Two experiments now in progress have reported measurements of the flux of high energy neutrinos from the Sun. Since about 1970, Davis and his co-workers have been using a 37 Cl-based detector to measure the 7 Be and 8 B solar neutrino flux and have found it to be at least a factor of three lower than that predicted by the Standard Solar Model (SSM). The Kamiokande collaborations has been taking data since 1986 using a large light-water Cerenkov detector and have confirmed that the flux is about two times lower than predicted. Recent results from the SAGE and GALLEX gallium-based detectors show that there is also a deficit of the low energy pp solar neutrinos. These discrepancies between experiment and theory could arise because of inadequacies in the theoretical models of solar energy generation or because of previously unobserved properties of neutrinos. The Sudbury Neutrino Observatory (SNO) will provide the information necessary to decide which of these solutions to the ''solar neutrino problem'' is correct

  5. Nasu 1.4 GHz Interferometer Transient Radio Source Survey and Improvement in Detection of Radio Sources

    International Nuclear Information System (INIS)

    Matsumura, Nobuo; Kuniyoshi, Masaya; Takefuji, Kazuhiro; Niinuma, Kotaro; Kida, Sumiko; Takeuchi, Akihiko; Asuma, Kuniyuki; Daishido, Tsuneaki

    2006-01-01

    We have surveyed 1.4GHz transient radio sources in Nasu Pulsar Observatory. To investigate such sources, both immediacy and accuracy are severely maintained. We have developed Data Transfer System and improved antenna control system. Now we have received the fringe data from transient radio source candidates. To get reliable information, we carefully analyze with Fringe Band Pass Filter software and Fringe Fitting method

  6. Comparison of VLBI radio core and X-ray flux densities of extragalactic radio sources

    International Nuclear Information System (INIS)

    Bloom, S.D.; Marscher, A.P.

    1990-01-01

    The Einstein Observatory revealed that most quasars, selected in a variety of ways, are strong x-ray emitters. Radio bright quasars are statistically more luminous in the x-ray than their radio-quiet counterparts. It was also found that the 90 GHz to soft x-ray spectral index has a very small dispersion for sources selected by their strong millimeter emission. This implies a close relationship between compact radio flux density and x-ray emission. Strong correlations have been found between the arcsecond scale flux densities and soft x-ray fluxes. It is suggested that the correlation can be explained if the soft x-rays were produced by the synchrotron self-Compton (SSC) process within the compact radio emitting region. (author)

  7. The Sudbury neutrino observatory

    International Nuclear Information System (INIS)

    McLatchie, W.; Earle, E.D.

    1987-08-01

    This report initially discusses the Homestake Mine Experiment, South Dakota, U.S.A. which has been detecting neutrinos in 38 x 10 litre vats of cleaning fluid containing chlorine since the 1960's. The interation between neutrinos and chlorine produces argon so the number of neutrinos over time can be calculated. However, the number of neutrinos which have been detected represent only one third to one quarter of the expected number i.e. 11 per month rather than 48. It is postulated that the electron-neutrinos originating in the solar core could change into muon- or tau-neutrinos during passage through the high electron densities of the sun. The 'low' results at Homestake could thus be explained by the fact that the experiment is only sensitive to electron-neutrinos. The construction of a heavy water detector is therefore proposed as it would be able to determine the energy of the neutrinos, their time of arrival at the detector and their direction. It is proposed to build the detector at Creighton mine near Sudbury at a depth of 6800 feet below ground level thus shielding the detector from cosmic rays which would completely obscure the neutrino signals from the detector. The report then discusses the facility itself, the budget estimate and the social and economic impact on the surrounding area. At the time of publication the proposal for the Sudbury Neutrino Observatory was due to be submitted for peer review by Oct. 1, 1987 and then to various granting bodies charged with the funding of scientific research in Canada, the U.S.A. and Britain

  8. An astronomical observatory for Peru

    Science.gov (United States)

    del Mar, Juan Quintanilla; Sicardy, Bruno; Giraldo, Víctor Ayma; Callo, Víctor Raúl Aguilar

    2011-06-01

    Peru and France are to conclude an agreement to provide Peru with an astronomical observatory equipped with a 60-cm diameter telescope. The principal aims of this project are to establish and develop research and teaching in astronomy. Since 2004, a team of researchers from Paris Observatory has been working with the University of Cusco (UNSAAC) on the educational, technical and financial aspects of implementing this venture. During an international astronomy conference in Cusco in July 2009, the foundation stone of the future Peruvian Observatory was laid at the top of Pachatusan Mountain. UNSAAC, represented by its Rector, together with the town of Oropesa and the Cusco regional authority, undertook to make the sum of 300,000€ available to the project. An agreement between Paris Observatory and UNSAAC now enables Peruvian students to study astronomy through online teaching.

  9. Astronomical databases of Nikolaev Observatory

    Science.gov (United States)

    Protsyuk, Y.; Mazhaev, A.

    2008-07-01

    Several astronomical databases were created at Nikolaev Observatory during the last years. The databases are built by using MySQL search engine and PHP scripts. They are available on NAO web-site http://www.mao.nikolaev.ua.

  10. Geomagnetic Observatory Database February 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA National Centers for Environmental Information (formerly National Geophysical Data Center) maintains an active database of worldwide geomagnetic observatory...

  11. The South African astronomical observatory

    International Nuclear Information System (INIS)

    Feast, M.

    1985-01-01

    A few examples of the activities of the South African Astronomical Observatory are discussed. This includes the studying of stellar evolution, dust around stars, the determination of distances to galaxies and collaboration with space experiments

  12. The South African Astronomical Observatory

    International Nuclear Information System (INIS)

    1988-01-01

    The geographical position, climate and equipment at the South African Astronomical Observatory (SAAO), together with the enthusiasm and efforts of SAAO scientific and technical staff and of visiting scientists, have enabled the Observatory to make a major contribution to the fields of astrophysics and cosmology. During 1987 the SAAO has been involved in studies of the following: supernovae; galaxies, including Seyfert galaxies; celestial x-ray sources; magellanic clouds; pulsating variables; galatic structure; binary star phenomena; nebulae; interstellar matter and stellar astrophysics

  13. The radio universe

    International Nuclear Information System (INIS)

    Worvill, R.

    1977-01-01

    Elementary description of the development of radioastronomy, radio waves from the sun and planets, the use of radio telescopes and the detection of nebulae, supernova, radio galaxies and quasars is presented. A brief glossary of terms is included. (UK)

  14. DARIS, a fleet of passive formation flying small satellites for low frequency radio astronomy

    NARCIS (Netherlands)

    Saks, Noah; Boonstra, Albert Jan; Rajan, Raj Thilak; Rajan, Raj; Bentum, Marinus Jan; Beliën, Frederik; van 't Klooster, Kees

    2010-01-01

    DARIS (Distributed Aperture Array for Radio Astronomy In Space) is a mission to conduct radio astronomy in the low frequency region from 1-10MHz. This region has not yet been explored, as the Earth's ionosphere is opaque to those frequencies, and so a space based observatory is the only solution.

  15. Radio outbursts in extragalactic sources

    International Nuclear Information System (INIS)

    Kinzel, W.M.

    1989-01-01

    Three aspects of the flux density variability of extragalactic radio sources were examined: millimeter wavelength short timescale variability, the spectral evolution of outbursts, and whether the outbursts are periodically spaced. Observations of extragalactic radio sources were conducted using the Five College Radio Astronomy Observatory between January and June 1985 at 88.2 GHz and during June and July 1985 at 40.0 GHz. Many of the sources exhibited significant flux density variations during the observing span. In addition, the most rapid variations observed were comparable with those reported in previous works. Two sources, 0355+50 and OJ287, both exhibited outbursts whose rise and fall timescales were less than a month. An anomalous flux density dropout was observed in 3C446 and was interpreted as an occultation event. Data at five frequencies between 2.7 and 89.6 GHz from the Dent-Balonek monitoring program were used to investigate the spectral evolution of eight outbursts. Outburst profile fitting was used to deconvolve the individual outbursts from one another at each frequency. The fit profiles were used to generate multiple epoch spectra to investigate the evolution of the outbursts. A phase residual minimization method was used to examine four sources for periodic behavior

  16. Greening Turner Valley

    International Nuclear Information System (INIS)

    Byfield, M.

    2010-01-01

    This article discussed remedial activities undertaken in the Turner Valley. Remedial action in the valley must satisfy the financial concerns of engineers and investors as well as the environmental concerns of residents and regulators. Natural gas production in the Turner Valley began in 1914. The production practices were harmful and wasteful. Soil and water pollution was not considered a problem until recently. The impacts of cumulative effects and other pollution hazards are now being considered as part of many oil and gas environmental management programs. Companies know it is cheaper and safer to prevent pollutants from being released, and more efficient to clean them up quickly. Oil and gas companies are also committed to remediating historical problems. Several factors have simplified remediation plans in the Turner Valley. Area real estate values are now among the highest in Alberta. While the valley residents are generally friendly to the petroleum industry, strong communication with all stakeholders in the region is needed. 1 fig.

  17. Undergraduate Research and Education at MIT Haystack Observatory

    Science.gov (United States)

    Pratap, P.; Salah, J.

    2000-05-01

    The MIT Haystack Observatory Undergraduate Research Initiative is an NSF- funded program aimed at involving undergraduate students in active radio astronomical research. The project has two major thrusts - students get hands-on experience using a small radio telescope that has been developed at Haystack and which will be provided as a low cost kit early next year. Beta versions of this telescope are being built for a select group of institutions. The second component is a research experience with the Haystack 37-m telescope. Use of the 37-m telescope has ranged from classroom demonstrations to original research projects. The Small Radio Telescope (SRT) project consists of a 2m dish with a 1420 MHz receiver. The antenna has a two axis mount that provides full sky coverage. The telescope is intended to provide students and faculty with an introduction to radio astronomy and instrument calibration. Observations of the sun and the galactic HI line are possible with the current version of this telescope. The 37-m telescope program is aimed at providing students with a research experience that can result in publishable results. The telescope has also been used in providing students with an introduction to the scope of radio astronomical data including continuum and spectral line observations. Classroom demonstrations have also been tested with non-science majors. Extensive supporting materials for the project have been developed on the world wide web. These include a radio astronomy tutorial, hardware and software information about both telescopes and project descriptions. We also provide curriculum suggestions to aid faculty incorporate radio astronomy into their courses.

  18. Ionospheric wave and irregularity measurements using passive radio astronomy techniques

    International Nuclear Information System (INIS)

    Erickson, W.C.; Mahoney, M.J.; Jacobson, A.R.; Knowles, S.H.

    1988-01-01

    The observation of midlatitude structures using passive radio astronomy techniques is discussed, with particular attention being given to the low-frequency radio telescope at the Clark Lake Radio Observatory. The present telescope operates in the 10-125-MHz frequency range. Observations of the ionosphere at separations of a few kilometers to a few hundreds of kilometers by the lines of sight to sources are possible, allowing the determination of the amplitude, wavelength, direction of propagation, and propagation speed of ionospheric waves. Data are considered on large-scale ionospheric gradients and the two-dimensional shapes and sizes of ionospheric irregularities. 10 references

  19. The Carl Sagan solar and stellar observatories as remote observatories

    Science.gov (United States)

    Saucedo-Morales, J.; Loera-Gonzalez, P.

    In this work we summarize recent efforts made by the University of Sonora, with the goal of expanding the capability for remote operation of the Carl Sagan Solar and Stellar Observatories, as well as the first steps that have been taken in order to achieve autonomous robotic operation in the near future. The solar observatory was established in 2007 on the university campus by our late colleague A. Sánchez-Ibarra. It consists of four solar telescopes mounted on a single equatorial mount. On the other hand, the stellar observatory, which saw the first light on 16 February 2010, is located 21 km away from Hermosillo, Sonora at the site of the School of Agriculture of the University of Sonora. Both observatories can now be remotely controlled, and to some extent are able to operate autonomously. In this paper we discuss how this has been accomplished in terms of the use of software as well as the instruments under control. We also briefly discuss the main scientific and educational objectives, the future plans to improve the control software and to construct an autonomous observatory on a mountain site, as well as the opportunities for collaborations.

  20. The Observatory as Laboratory: Spectral Analysis at Mount Wilson Observatory

    Science.gov (United States)

    Brashear, Ronald

    2018-01-01

    This paper will discuss the seminal changes in astronomical research practices made at the Mount Wilson Observatory in the early twentieth century by George Ellery Hale and his staff. Hale’s desire to set the agenda for solar and stellar astronomical research is often described in terms of his new telescopes, primarily the solar tower observatories and the 60- and 100-inch telescopes on Mount Wilson. This paper will focus more on the ancillary but no less critical parts of Hale’s research mission: the establishment of associated “physical” laboratories as part of the observatory complex where observational spectral data could be quickly compared with spectra obtained using specialized laboratory equipment. Hale built a spectroscopic laboratory on the mountain and a more elaborate physical laboratory in Pasadena and staffed it with highly trained physicists, not classically trained astronomers. The success of Hale’s vision for an astronomical observatory quickly made the Carnegie Institution’s Mount Wilson Observatory one of the most important astrophysical research centers in the world.

  1. Multi-criteria decision analysis integrated with GIS for radio ...

    African Journals Online (AJOL)

    Multi-criteria decision analysis integrated with GIS for radio astronomical observatory site selection in peninsular of Malaysia. R Umar, Z.Z. Abidin, Z.A. Ibrahim, M.K.A. Kamarudin, S.N. Hazmin, A Endut, H Juahir ...

  2. LoFASM: A Low Frequency All Sky Monitor for Radio Transients and Student Training

    Science.gov (United States)

    2015-09-02

    SECURITY CLASSIFICATION OF: The Low-Frequency All- Sky Monitor (LoFASM) is an innovative new radio astronomy observatory. Designed and built by...Feb-2015 Approved for Public Release; Distribution Unlimited Final Report: LoFASM: A Low Frequency All Sky Monitor for Radio Transients and Student...reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: LoFASM: A Low Frequency All Sky Monitor for Radio Transients and

  3. Taurus Hill Observatory Scientific Observations for Pulkova Observatory during the 2016-2017 Season

    Science.gov (United States)

    Hentunen, V.-P.; Haukka, H.; Heikkinen, E.; Salmi, T.; Juutilainen, J.

    2017-09-01

    Taurus Hill Observatory (THO), observatory code A95, is an amateur observatory located in Varkaus, Finland. The observatory is maintained by the local astronomical association Warkauden Kassiopeia. THO research team has observed and measured various stellar objects and phenomena. Observatory has mainly focused on exoplanet light curve measurements, observing the gamma rays burst, supernova discoveries and monitoring. We also do long term monitoring projects.

  4. GEOSCOPE Observatory Recent Developments

    Science.gov (United States)

    Leroy, N.; Pardo, C.; Bonaime, S.; Stutzmann, E.; Maggi, A.

    2010-12-01

    The GEOSCOPE observatory consists of a global seismic network and a data center. The 31 GEOSCOPE stations are installed in 19 countries, across all continents and on islands throughout the oceans. They are equipped with three component very broadband seismometers (STS1 or STS2) and 24 or 26 bit digitizers, as required by the Federation of Seismic Digital Network (FDSN). In most stations, a pressure gauge and a thermometer are also installed. Currently, 23 stations send data in real or near real time to GEOSCOPE Data Center and tsunami warning centers. In 2009, two stations (SSB and PPTF) have been equipped with warpless base plates. Analysis of one year of data shows that the new installation decreases long period noise (20s to 1000s) by 10 db on horizontal components. SSB is now rated in the top ten long period stations for horizontal components according to the LDEO criteria. In 2010, Stations COYC, PEL and RER have been upgraded with Q330HR, Metrozet electronics and warpless base plates. They have been calibrated with the calibration table CT-EW1 and the software jSeisCal and Calex-EW. Aluminum jars are now installed instead of glass bells. A vacuum of 100 mbars is applied in the jars which improves thermal insulation of the seismometers and reduces moisture and long-term corrosion in the sensor. A new station RODM has just been installed in Rodrigues Island in Mauritius with standard Geoscope STS2 setup: STS2 seismometer on a granite base plate and covered by cooking pot and thermal insulation, it is connected to Q330HR digitizer, active lightning protection, Seiscomp PC and real-time internet connection. Continuous data of all stations are collected in real time or with a delay by the GEOSCOPE Data Center in Paris where they are validated, archived and made available to the international scientific community. Data are freely available to users by different interfaces according data types (see : http://geoscope.ipgp.fr) - Continuous data in real time coming

  5. Griffith Observatory: Hollywood's Celestial Theater

    Science.gov (United States)

    Margolis, Emily A.; Dr. Stuart W. Leslie

    2018-01-01

    The Griffith Observatory, perched atop the Hollywood Hills, is perhaps the most recognizable observatory in the world. Since opening in 1935, this Los Angeles icon has brought millions of visitors closer to the heavens. Through an analysis of planning documentation, internal newsletters, media coverage, programming and exhibition design, I demonstrate how the Observatory’s Southern California location shaped its form and function. The astronomical community at nearby Mt. Wilson Observatory and Caltech informed the selection of instrumentation and programming, especially for presentations with the Observatory’s Zeiss Planetarium, the second installed in the United States. Meanwhile the Observatory staff called upon some of Hollywood’s best artists, model makers, and scriptwriters to translate the latest astronomical discoveries into spectacular audiovisual experiences, which were enhanced with Space Age technological displays on loan from Southern California’s aerospace companies. The influences of these three communities- professional astronomy, entertainment, and aerospace- persist today and continue to make Griffith Observatory one of the premiere sites of public astronomy in the country.

  6. Visits to La Plata Observatory

    Science.gov (United States)

    Feinstein, A.

    1985-03-01

    La Plata Observatory will welcome visitors to ESO-La Silla that are willing to make a stop at Buenos Aires on their trip to Chile or on their way back. There is a nice guesthouse at the Observatory that can be used, for a couple of days or so, by astronomers interested in visiting the Observatory and delivering talks on their research work to the Argentine colleagues. No payments can, however, be made at present. La Plata is at 60 km from Buenos Aires. In the same area lie the Instituto de Astronomia y Fisica dei Espacio (IAFE), in Buenos Aires proper, and the Instituto Argentino de Radioastronomia (IAR). about 40 km from Buenos Aires on the way to La Plata. Those interested should contacl: Sr Decano Prof. Cesar A. Mondinalli, or Dr Alejandro Feinstein, Observatorio Astron6mico, Paseo dei Bosque, 1900 La Plata, Argentina. Telex: 31216 CESLA AR.

  7. The Legacy of the Georgetown College Observatory (D.C.)

    Science.gov (United States)

    Caron, Laura; Maglieri, Grace; Seitzer, Patrick

    2018-01-01

    Founded in 1841 as part of a nascent worldwide network of Jesuit-run astronomical observatories, the Georgetown College Observatory of Georgetown University in Washington, D.C. has been home to more than 125 years of astronomical research, from Father Curley’s calculations of the latitude and longitude of D.C. to Father McNally’s award-winning solar eclipse photography. But the impact of the Georgetown astronomy program was not limited to the observatory itself: it reached much further, into the local community and schools, and into the lives of everyone involved. This was never more apparent than under the directorship of Father Francis J Heyden, S.J., who arrived at Georgetown after World War II and stayed for almost three decades. He started a graduate program with over 90 graduates, hosting student researchers from local high schools and colleges, teaching graduate and undergraduate astronomy courses, and speaking at schools in the area, all while simultaneously managing Georgetown’s student radio station and hosting astronomical conferences on campus. Father Heyden’s research focused mainly on solar eclipses for geodetic purposes and planetary spectroscopy. But perhaps even more than research, Father Heyden dedicated his time and energy to the astronomy students, the notable of which include Vera Rubin, John P. Hagen of Project Vanguard, and a generation of Jesuit astronomers including Martin McCarthy, George Coyne, and Richard Boyle. Following the closure of the astronomy department in 1972, Father Heyden returned to Manila, where he had begun his astronomical career, to become Chief of the Solar Division at the Manila Observatory. His dedication to his work and to students serves as an inspiration for academic researchers across fields, and for the Georgetown University Astronomical Society, which, even in the absence of a formal astronomy program at Georgetown, continues his work in education and outreach today. In 1987, almost 150 years after its

  8. Astronomical Research Using Virtual Observatories

    Directory of Open Access Journals (Sweden)

    M Tanaka

    2010-01-01

    Full Text Available The Virtual Observatory (VO for Astronomy is a framework that empowers astronomical research by providing standard methods to find, access, and utilize astronomical data archives distributed around the world. VO projects in the world have been strenuously developing VO software tools and/or portal systems. Interoperability among VO projects has been achieved with the VO standard protocols defined by the International Virtual Observatory Alliance (IVOA. As a result, VO technologies are now used in obtaining astronomical research results from a huge amount of data. We describe typical examples of astronomical research enabled by the astronomical VO, and describe how the VO technologies are used in the research.

  9. The South African Astronomical Observatory

    International Nuclear Information System (INIS)

    1989-01-01

    The research work discussed in this report covers a wide range, from work on the nearest stars to studies of the distant quasars, and the astronomers who have carried out this work come from universities and observatories spread around the world as well as from South African universities and from the South African Astronomical Observatory (SAAO) staff itself. A characteristic of much of this work has been its collaborative character. SAAO studies in 1989 included: supernovae 1987A; galaxies; ground-based observations of celestial x-ray sources; the Magellanic Clouds; pulsating variables; galactic structure; binary star phenomena; the provision of photometric standards; nebulous matter; stellar astrophysics, and astrometry

  10. Radio Astronomers Get Their First Glimpse of Powerful Solar Storm

    Science.gov (United States)

    2001-08-01

    Astronomers have made the first radio-telescope images of a powerful coronal mass ejection on the Sun, giving them a long-sought glimpse of hitherto unseen aspects of these potentially dangerous events. "These observations are going to provide us with a new and unique tool for deciphering the mechanisms of coronal mass ejections and how they are related to other solar events," said Tim Bastian, an astronomer at the National Science Foundation's National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia. Radio image of coronal mass ejection; circle indicates the size and location of the Sun. White dots are where radio spectral measurements were made. Bastian, along with Monique Pick, Alain Kerdraon and Dalmiro Maia of the Paris Observatory, and Angelos Vourlidas of the Naval Research Laboratory in Washington, D.C., used a solar radio telescope in Nancay, France, to study a coronal mass ejection that occurred on April 20, 1998. Their results will be published in the September 1 edition of the Astrophysical Journal Letters. Coronal mass ejections are powerful magnetic explosions in the Sun's corona, or outer atmosphere, that can blast billions of tons of charged particles into interplanetary space at tremendous speeds. If the ejection is aimed in the direction of Earth, the speeding particles interact with our planet's magnetic field to cause auroral displays, radio-communication blackouts, and potentially damage satellites and electric-power systems. "Coronal mass ejections have been observed for many years, but only with visible-light telescopes, usually in space. While previous radio observations have provided us with powerful diagnostics of mass ejections and associated phenomena in the corona, this is the first time that one has been directly imaged in wavelengths other than visible light," Bastian said. "These new data from the radio observations give us important clues about how these very energetic events work," he added. The radio images show an

  11. Time Delay Mechanical-noise Cancellation (TDMC) to Provide Order of Magnitude Improvements in Radio Science Observations

    Science.gov (United States)

    Atkinson, D. H.; Babuscia, A.; Lazio, J.; Asmar, S.

    2017-12-01

    Many Radio Science investigations, including the determinations of planetary masses, measurements of planetary atmospheres, studies of the solar wind, and solar system tests of relativistic gravity, rely heavily on precision Doppler tracking. Recent and currently proposed missions such as VERITAS, Bepi Colombo, Juno have shown that the largest error source in the precision Doppler tracking data is noise in the Doppler system. This noise is attributed to un-modeled motions of the ground antenna's phase center and is commonly referred to as "antenna mechanical noise." Attempting to reduce this mechanical noise has proven difficult since the deep space communications antennas utilize large steel structures that are already optimized for mechanical stability. Armstrong et al. (2008) have demonstrated the Time Delay Mechanical-noise Cancellation (TDMC) concept using Goldstone DSN antennas (70 m & 34 m) and the Cassinispacecraft to show that the mechanical noise of the 70 m antenna could be suppressed when two-way Doppler tracking from the 70 m antenna and the receive-only Doppler data from the smaller, stiffer 34 m antenna were combined with suitable delays. The proof-of-concept confirmed that the mechanical noise in the final Doppler observable was reduced to that of the stiffer, more stable antenna. Caltech's Owens Valley Radio Observatory (OVRO) near Bishop, CA now has six 10.4 m diameter antennas, a consequence of the closure of Combined Array for Research in Millimeter Astronomy (CARMA). In principle, a 10 m antenna can lead to an order-of-magnitude improvement for the mechanical noise correction, as the smaller dish offers better mechanical stability compared to a DSN 34-m antenna. These antennas also have existing Ka-band receiving systems, and preliminary discussions with the OVRO staff suggest that much of the existing signal path could be used for Radio Science observations.

  12. Improvements in geomagnetic observatory data quality

    DEFF Research Database (Denmark)

    Reda, Jan; Fouassier, Danielle; Isac, Anca

    2011-01-01

    between observatories and the establishment of observatory networks has harmonized standards and practices across the world; improving the quality of the data product available to the user. Nonetheless, operating a highquality geomagnetic observatory is non-trivial. This article gives a record...... of the current state of observatory instrumentation and methods, citing some of the general problems in the complex operation of geomagnetic observatories. It further gives an overview of recent improvements of observatory data quality based on presentation during 11th IAGA Assembly at Sopron and INTERMAGNET...

  13. Radio Astronomy on and Around the Moon

    Science.gov (United States)

    Falcke, Heino; Klein Wolt, Mark; Ping, Jinsong; Chen, Linjie

    2018-06-01

    The exploration of remote places on other planets has now become a major goal in current space flight scenarios. On the other hand, astronomers have always sought the most remote and isolated sites to place their observatories and to make their most precise and most breath taking discoveries. Especially for radio astronomy, lunar exploration offers a complete new window to the universe. The polar region and the far-side of the moon are acknowledged as unique locations for a low-frequency radio telescope providing scientific data at wavelengths that cannot be obtained from the Earth nor from single satellites. Scientific areas to be covered range from radio surveys, to solar-system studies, exo-planet detection, and astroparticle physics. The key science area, however, is the detection and measurement of cosmological 21 cm hydrogen emission from the still unexplored dark ages of the universe. Developing a lunar radio facility can happen in steps and may involve small satellites, rover-based radio antennas, of free- flying constellations around the moon. A first such step could be the Netherlands-Chinese Long Wavelength Explorer (NCLE), which is supposed to be launched in 2018 as part of the ChangE’4 mission to the moon-earth L2 point.

  14. Deep Space Climate Observatory (DSCOVR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Deep Space Climate ObserVatoRy (DSCOVR) satellite is a NOAA operated asset at the first Lagrange (L1) point. The primary space weather instrument is the PlasMag...

  15. Seafloor Observatory Science: a Review

    Directory of Open Access Journals (Sweden)

    L. Beranzoli

    2006-06-01

    Full Text Available The ocean exerts a pervasive influence on Earth’s environment. It is therefore important that we learn how this system operates (NRC, 1998b; 1999. For example, the ocean is an important regulator of climate change (e.g., IPCC, 1995. Understanding the link between natural and anthropogenic climate change and ocean circulation is essential for predicting the magnitude and impact of future changes in Earth’s climate. Understanding the ocean, and the complex physical, biological, chemical, and geological systems operating within it, should be an important goal for the opening decades of the 21st century. Another fundamental reason for increasing our understanding of ocean systems is that the global economy is highly dependent on the ocean (e.g., for tourism, fisheries, hydrocarbons, and mineral resources (Summerhayes, 1996. The establishment of a global network of seafloor observatories will help to provide the means to accomplish this goal. These observatories will have power and communication capabilities and will provide support for spatially distributed sensing systems and mobile platforms. Sensors and instruments will potentially collect data from above the air-sea interface to below the seafloor. Seafloor observatories will also be a powerful complement to satellite measurement systems by providing the ability to collect vertically distributed measurements within the water column for use with the spatial measurements acquired by satellites while also providing the capability to calibrate remotely sensed satellite measurements (NRC, 2000. Ocean observatory science has already had major successes. For example the TAO array has enabled the detection, understanding and prediction of El Niño events (e.g., Fujimoto et al., 2003. This paper is a world-wide review of the new emerging “Seafloor Observatory Science”, and describes both the scientific motivations for seafloor observatories and the technical solutions applied to their architecture. A

  16. Norwegian Ocean Observatory Network (NOON)

    Science.gov (United States)

    Ferré, Bénédicte; Mienert, Jürgen; Winther, Svein; Hageberg, Anne; Rune Godoe, Olav; Partners, Noon

    2010-05-01

    The Norwegian Ocean Observatory Network (NOON) is led by the University of Tromsø and collaborates with the Universities of Oslo and Bergen, UniResearch, Institute of Marine Research, Christian Michelsen Research and SINTEF. It is supported by the Research Council of Norway and oil and gas (O&G) industries like Statoil to develop science, technology and new educational programs. Main topics relate to ocean climate and environment as well as marine resources offshore Norway from the northern North Atlantic to the Arctic Ocean. NOON's vision is to bring Norway to the international forefront in using cable based ocean observatory technology for marine science and management, by establishing an infrastructure that enables real-time and long term monitoring of processes and interactions between hydrosphere, geosphere and biosphere. This activity is in concert with the EU funded European Strategy Forum on Research Infrastructures (ESFRI) roadmap and European Multidisciplinary Seafloor Observation (EMSO) project to attract international leading research developments. NOON envisions developing towards a European Research Infrastructure Consortium (ERIC). Beside, the research community in Norway already possesses a considerable marine infrastructure that can expand towards an international focus for real-time multidisciplinary observations in times of rapid climate change. PIC The presently established cable-based fjord observatory, followed by the establishment of a cable-based ocean observatory network towards the Arctic from an O&G installation, will provide invaluable knowledge and experience necessary to make a successful larger cable-based observatory network at the Norwegian and Arctic margin (figure 1). Access to large quantities of real-time observation from the deep sea, including high definition video, could be used to provide the public and future recruits to science a fascinating insight into an almost unexplored part of the Earth beyond the Arctic Circle

  17. Space astrophysical observatory 'Orion-2'

    International Nuclear Information System (INIS)

    Gurzadyan, G.A.; Jarakyan, A.L.; Krmoyan, M.N.; Kashin, A.L.; Loretsyan, G.M.; Ohanesyan, J.B.

    1976-01-01

    Ultraviolet spectrograms of a large number of faint stars up to 13sup(m) were obtained in the wavelengths 2000-5000 A by means of the space observatory 'Orion-2' installed in the spaceship 'Soyuz-13' with two spacemen on board. The paper deals with a description of the operation modes of this observatory, the designs and basic schemes of the scientific and auxiliary device and the method of combining the work of the flight engineer and the automation system of the observatory itself. It also treats of the combination of the particular parts of 'Orion-2' observatory on board the spaceship and the measures taken to provide for its normal functioning in terms of the space flight. A detailed description is given of the optical, electrical and mechanical schemes of the devices - meniscus telescope with an objective prism, stellar diffraction spectrographs, single-coordinate and two-coordinate stellar and solar transducers, control panel, control systems, etc. The paper also provides the functional scheme of astronavigation, six-wheel stabilization, the design of mounting (assembling) the stabilized platform carrying the telescopes and the drives used in it. Problems relating to the observation program in orbit, the ballistic provision of initial data, and control of the operation of the observatory are also dealt with. In addition, the paper carries information of the photomaterials used, the methods of their energy calibration, standardization and the like. Matters of pre-start tests of apparatus, the preparation of the spacemen for conducting astronomical observations with the given devices, etc. are likewise dwelt on. The paper ends with a brief survey of the results obtained and the elaboration of the observed material. (Auth.)

  18. Thermal Design and Thermal Behaviour of Radio Telescopes and their Enclosures

    CERN Document Server

    Greve, Albert

    2010-01-01

    Radio telescopes as well as communication antennas operate under the influence of gravity, temperature and wind. Among those, temperature influences may degrade the performance of a radio telescope through transient changes of the focus, pointing, path length and sensitivity, often in an unpredictable way. Thermal Design and Thermal Behaviour of Radio Telescopes and their Enclosures reviews the design and construction principles of radio telescopes in view of thermal aspects and heat transfer with the variable thermal environment; it explains supporting thermal model calculations and the application and efficiency of thermal protection and temperature control; it presents many measurements illustrating the thermal behaviour of telescopes in the environment of their observatory sites. The book benefits scientists and radio/communication engineers, telescope designers and construction firms as well as telescope operators, observatory staff, but also the observing astronomer who is directly confronted with the t...

  19. A Brief History of Radio Astronomy in the USSR A Collection of Scientific Essays

    CERN Document Server

    Salomonovich, A; Samanian, V; Shklovskii, I; Sorochenko, R; Troitskii, V; Kellermann, K; Dubinskii, B; Kaidanovskii, N; Kardashev, N; Kobrin, M; Kuzmin, A; Molchanov, A; Pariiskii, Yu; Rzhiga, O

    2012-01-01

    This translation from Russian makes the history of radio astronomy in the USSR available in the English language for the first time. The book includes descriptions of the antennas and instrumentation used in the USSR, the astronomical discoveries, as well as interesting personal backgrounds of many of the early key players in Soviet radio astronomy. A Brief History of Radio Astronomy in the USSR is a collection of memoirs recounting an interesting but largely still dark era of Soviet astronomy. The arrangement of the essays is determined primarily by the time when radio astronomy studies began at the institutions involved. These include the Lebedev Physical Institute (FIAN), Gorkii State University and the affiliated Physical-Technical Institute (GIFTI), Moscow State University Sternberg Astronomical institute (GAISH) and Space Research Institute (IKI), the Department of Radio Astronomy of the Main Astronomical Observatory in Pulkovo (GAO), Special Astrophysical Observatory (SAO), Byurakan Astrophysical Obse...

  20. FAST RADIO BURSTS AND RADIO TRANSIENTS FROM BLACK HOLE BATTERIES

    Energy Technology Data Exchange (ETDEWEB)

    Mingarelli, Chiara M. F. [TAPIR, MC 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Levin, Janna [Institute for Strings, Cosmology and Astroparticle Physics (ISCAP), Columbia University, New York, NY 10027 (United States); Lazio, T. Joseph W. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2015-12-01

    Most black holes (BHs) will absorb a neutron star (NS) companion fully intact without tidal disruption, suggesting the pair will remain dark to telescopes. Even without tidal disruption, electromagnetic (EM) luminosity is generated from the battery phase of the binary when the BH interacts with the NS magnetic field. Originally, the luminosity was expected to be in high-energy X-rays or gamma-rays, however, we conjecture that some of the battery power is emitted in the radio bandwidth. While the luminosity and timescale are suggestive of fast radio bursts (FRBs; millisecond-scale radio transients) NS–BH coalescence rates are too low to make these a primary FRB source. Instead, we propose that the transients form a FRB sub-population, distinguishable by a double peak with a precursor. The rapid ramp-up in luminosity manifests as a precursor to the burst which is 20%–80% as luminous given 0.5 ms timing resolution. The main burst arises from the peak luminosity before the merger. The post-merger burst follows from the NS magnetic field migration to the BH, causing a shock. NS–BH pairs are especially desirable for ground-based gravitational wave (GW) observatories since the pair might not otherwise be detected, with EM counterparts greatly augmenting the scientific leverage beyond the GW signal. The EM signal’s ability to break degeneracies in the parameters encoded in the GW and probe the NS magnetic field strength is quite valuable, yielding insights into open problems in NS magnetic field decay.

  1. FAST RADIO BURSTS AND RADIO TRANSIENTS FROM BLACK HOLE BATTERIES

    International Nuclear Information System (INIS)

    Mingarelli, Chiara M. F.; Levin, Janna; Lazio, T. Joseph W.

    2015-01-01

    Most black holes (BHs) will absorb a neutron star (NS) companion fully intact without tidal disruption, suggesting the pair will remain dark to telescopes. Even without tidal disruption, electromagnetic (EM) luminosity is generated from the battery phase of the binary when the BH interacts with the NS magnetic field. Originally, the luminosity was expected to be in high-energy X-rays or gamma-rays, however, we conjecture that some of the battery power is emitted in the radio bandwidth. While the luminosity and timescale are suggestive of fast radio bursts (FRBs; millisecond-scale radio transients) NS–BH coalescence rates are too low to make these a primary FRB source. Instead, we propose that the transients form a FRB sub-population, distinguishable by a double peak with a precursor. The rapid ramp-up in luminosity manifests as a precursor to the burst which is 20%–80% as luminous given 0.5 ms timing resolution. The main burst arises from the peak luminosity before the merger. The post-merger burst follows from the NS magnetic field migration to the BH, causing a shock. NS–BH pairs are especially desirable for ground-based gravitational wave (GW) observatories since the pair might not otherwise be detected, with EM counterparts greatly augmenting the scientific leverage beyond the GW signal. The EM signal’s ability to break degeneracies in the parameters encoded in the GW and probe the NS magnetic field strength is quite valuable, yielding insights into open problems in NS magnetic field decay

  2. Fracture Patterns within the Shale Hills Critical Zone Observatory

    Science.gov (United States)

    Singha, K.; White, T.; Perron, J.; Chattopadhyay, P. B.; Duffy, C.

    2012-12-01

    Rock fractures are known to exist within the deep Critical Zone and are expected to influence groundwater flow, but there are limited data on their orientation and spatial arrangement and no general framework for systematically predicting their effects. Here, we explore fracture patterns within the Susquehanna-Shale Hills Critical Zone Observatory, and consider how they may be influenced by weathering, rock structure, and stress via field observations of variable fracture orientation within the site, with implications for the spatial variability of structural control on hydrologic processes. Based on field observations from 16-m deep boreholes and surface outcrop, we suggest that the appropriate structural model for the watershed is steeply dipping strata with meter- to decimeter-scale folds superimposed, including a superimposed fold at the mouth of the watershed that creates a short fold limb with gently dipping strata. These settings would produce an anisotropy in the hydraulic conductivity and perhaps also flow, especially within the context of the imposed stress field. Recently conducted 2-D numerical stress modeling indicates that the proxy for shear fracture declines more rapidly with depth beneath valleys than beneath ridgelines, which may produce or enhance the spatial variability in permeability. Even if topographic stresses do not cause new fractures, they could activate and cause displacement on old fractures, making the rocks easier to erode and increasing the permeability, and potentially driving a positive feedback that enhances the growth of valley relief. Calculated stress fields are consistent with field observations, which show a rapid decline in fracture abundance with increasing depth below the valley floor, and predict a more gradual trend beneath ridgetops, leading to a more consistent (and lower) hydraulic conductivity with depth on the ridgetops when compared to the valley, where values are higher but more variable with depth. Hydraulic

  3. AMIGA at the Auger observatory: the telecommunications system

    International Nuclear Information System (INIS)

    Platino, M; Hampel, M R; Almela, A; Sedoski, A; Lucero, A; Suarez, F; Wainberg, O; Etchegoyen, A; Fiszelew, P; Vega, G De La; Videla, M; Yelos, D; Cancio, A; Garcia, B

    2013-01-01

    AMIGA is an extension of the Pierre Auger Observatory that will consist of 85 detector pairs, each one composed of a surface water-Cherenkov detector and a buried muon counter. Each muon counter has an area of 30 square meters and is made of scintillator strips, with doped optical fibers glued to them, which guide the light to 64 pixel photomultiplier tubes. The detector pairs are arranged at 433 m and 750 m array spacings. In this paper we present the telecommunications system designed to connect the muon counters with the central data processing system at the observatory campus in Malarg and quot;ue. The telecommunications system consists of a point-to-multipoint radio link designed to connect the 85 muon counters or subscribers to two coordinators located at the Coihueco fluorescence detector building. The link provides TCP/IP remote access to the scintillator modules through router boards installed on each of the surface detectors of AMIGA. This setup provides a flexible LAN configuration for each muon counter connected to a WAN that links all the data generated by the muon counters and the surface detectors to the Central Data Acquisition System, or CDAS, at the observatory campus. We present the design parameters, the proposed telecommunications solution and the laboratory and field tests proposed to guarantee its functioning for the whole data traffic generated between each surface detector and muon counter in the AMIGA array and the CDAS

  4. The Magnetic Observatory Buildings at the Royal Observatory, Cape

    Science.gov (United States)

    Glass, I. S.

    2015-10-01

    During the 1830s there arose a strong international movement, promoted by Carl Friedrich Gauss and Alexander von Humboldt, to characterise the earth's magnetic field. By 1839 the Royal Society in London, driven by Edward Sabine, had organised a "Magnetic Crusade" - the establishment of a series of magnetic and meteorological observatories around the British Empire, including New Zealand, Australia, St Helena and the Cape. This article outlines the history of the latter installation, its buildings and what became of them.

  5. Coping with Radio Frequency Interference

    Science.gov (United States)

    Lewis, B. M.

    2009-01-01

    The radio spectrum is a finite resource, on which humanity makes many demands. And pressure on it is ever increasing with the development of new technology and ideas for radio services. After all, we all benefit from wifi and cell phones. Radio astronomers have a small percentage of the spectrum allocated to them at octave intervals in the metre-centimetre bands, and at important frequencies, such as that of the 21cm line of HI. Signals from other services, as well as from our own poorly-engineered equipment, sometimes contaminate our bands: these signals constitute RFI. These may totally obliterate the astronomical signal, or, in the case of CLOUDSAT, may be capable of completely destroying a receiver, which introduces us to the new possibility of 'destructive interference'. A geo-stationary satellite can block access to a piece of sky from one site. Good equipment design eliminates self-inflicted interference, while physical separation often provides adequate practical mitigation at many frequencies. However, new observatories end up being located in the West Australian desert or Antarctica. In future they may be on the back side of the Moon. But there is no Earth-bound protection via physical separation against satellite signals. Some mitigation can be achieved by frequent data dumps and the excision of RFI, or by real-time detection and blanking of the receiver, or by more sophisticated algoriths. Astronomers of necessity aim to achieve mitigation via coordination, at the local level, and by participating in spectrum management at the national and international levels. This involves them spending a lot of time in Geneva at the International Telegraphic Union protecting their access to spectrum, and access to clean spectrum from the L3 point and the far side of the Moon.

  6. The MicroObservatory Net

    Science.gov (United States)

    Brecher, K.; Sadler, P.

    1994-12-01

    A group of scientists, engineers and educators based at the Harvard-Smithsonian Center for Astrophysics (CfA) has developed a prototype of a small, inexpensive and fully integrated automated astronomical telescope and image processing system. The project team is now building five second generation instruments. The MicroObservatory has been designed to be used for classroom instruction by teachers as well as for original scientific research projects by students. Probably in no other area of frontier science is it possible for a broad spectrum of students (not just the gifted) to have access to state-of-the-art technologies that would allow for original research. The MicroObservatory combines the imaging power of a cooled CCD, with a self contained and weatherized reflecting optical telescope and mount. A microcomputer points the telescope and processes the captured images. The MicroObservatory has also been designed to be used as a valuable new capture and display device for real time astronomical imaging in planetariums and science museums. When the new instruments are completed in the next few months, they will be tried with high school students and teachers, as well as with museum groups. We are now planning to make the MicroObservatories available to students, teachers and other individual users over the Internet. We plan to allow the telescope to be controlled in real time or in batch mode, from a Macintosh or PC compatible computer. In the real-time mode, we hope to give individual access to all of the telescope control functions without the need for an "on-site" operator. Users would sign up for a specific period of time. In the batch mode, users would submit jobs for the telescope. After the MicroObservatory completed a specific job, the images would be e-mailed back to the user. At present, we are interested in gaining answers to the following questions: (1) What are the best approaches to scheduling real-time observations? (2) What criteria should be used

  7. Impact of cognitive radio on radio astronomy

    NARCIS (Netherlands)

    Bentum, Marinus Jan; Boonstra, A.J.; Baan, W.A.

    2010-01-01

    The introduction of new communication techniques requires an increase in the efficiency of spectrum usage. Cognitive radio is one of the new techniques that fosters spectrum efficiency by using unoccupied frequency spectrum for communications. However, cognitive radio will increase the transmission

  8. Fast Radio Bursts

    Indian Academy of Sciences (India)

    Akshaya Rane

    2017-09-12

    ) which were first discovered a decade ago. Following an introduction to radio transients in general, including pulsars and rotating radio transients, we discuss the discovery of FRBs. We then discuss FRB follow-up ...

  9. The first radio astronomy from space - RAE

    Science.gov (United States)

    Kaiser, M. L.

    1987-01-01

    The spacecraft design, instrumentation, and performance of the Radio Astronomy Explorer (RAE) satellites (RAE-1 launched to earth orbit in 1968 and RAE-2 launched to lunar orbit in 1972) are reviewed and illustrated with drawings, diagrams, and graphs of typical data. Consideration is given to the three pairs of antennas, the Ryle-Vonberg and burst radiometers, and problems encountered with antenna deployment and observing patterns. Results summarized include observations of type III solar bursts, the spectral distribution of cosmic noise in broad sky regions, Jupiter at low frequencies, and auroral kilometric radiation (AKR) from the earth. The importance of avoiding the AKR bands in designing future space observatories is stressed.

  10. La radio digital

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Cortés S.

    2015-01-01

    Full Text Available La radio digital es un producto de la llamada convergencia digital. Las nuevas tecnologías interconectadas permiten la aparición de nuevos modos de audiencia y la implementación de herramientas versátiles. Habla del problema de los estándares, de la radio satelital, la radio digital terrestre, las radios internacionales, la interactividad.

  11. Boscovich and the Brera Observatory .

    Science.gov (United States)

    Antonello, E.

    In the mid 18th century both theoretical and practical astronomy were cultivated in Milan by Barnabites and Jesuits. In 1763 Boscovich was appointed to the chair of mathematics of the University of Pavia in the Duchy of Milan, and the following year he designed an observatory for the Jesuit Collegium of Brera in Milan. The Specola was built in 1765 and it became quickly one of the main european observatories. We discuss the relation between Boscovich and Brera in the framework of a short biography. An account is given of the initial research activity in the Specola, of the departure of Boscovich from Milan in 1773 and his coming back just before his death.

  12. Compton Gamma-Ray Observatory

    Science.gov (United States)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  13. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III

    Energy Technology Data Exchange (ETDEWEB)

    Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Mount Stromlo Observatory, Cotter Road, Weston, ACT 2611 (Australia); Zenere, Katrina A., E-mail: oleg.titov@ga.gov.au [School of Physics, University of Sydney, NSW 2006 (Australia)

    2017-04-01

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ∼160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radio sources.

  14. The double quasar 0957+561: a radio study at 6-centimeters wavelength.

    Science.gov (United States)

    Roberts, D H; Greenfield, P E; Burke, B F

    1979-08-31

    The optical double quasar 0957+561 has been interpreted as the gravitational double image of a single object. A radio map made with the Very Large Array of the National Radio Astronomy Observatory shows unresolved sources coincident With the optical images as well as a complex of related extended emission. Although the results cannot rule out the gravitational lens hypothesis, the complex radio structure is more easily interpreted as two separate quasars. The optical and radio properties of the two quasars are so similar that the two must have been formed at the same time with similar initial conditions.

  15. Ram pressure statistics for bent tail radio galaxies

    CSIR Research Space (South Africa)

    Mguda, Z

    2015-01-01

    Full Text Available ), Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa 2South African Astronomical Observatory (SAAO), PO Box 9, 7935 Observatory, Cape Town, South Africa 3Department of Physics, University of Witwatersrand... Published by Oxford University Press on behalf of the Royal Astronomical Society at South A frican A stronom ical O bservatory on D ecem ber 18, 2014 http://m nras.oxfordjournals.org/ D ow nloaded from Statistics for bent radio sources 3311 are left for a...

  16. Solar observations with a low frequency radio telescope

    Science.gov (United States)

    Myserlis, I.; Seiradakis, J.; Dogramatzidis, M.

    2012-01-01

    We have set up a low frequency radio monitoring station for solar bursts at the Observatory of the Aristotle University in Thessaloniki. The station consists of a dual dipole phased array, a radio receiver and a dedicated computer with the necessary software installed. The constructed radio receiver is based on NASA's Radio Jove project. It operates continuously, since July 2010, at 20.1 MHz (close to the long-wavelength ionospheric cut-off of the radio window) with a narrow bandwidth (~5 kHz). The system is properly calibrated, so that the recorded data are expressed in antenna temperature. Despite the high interference level of an urban region like Thessaloniki (strong broadcasting shortwave radio stations, periodic experimental signals, CBs, etc), we have detected several low frequency solar radio bursts and correlated them with solar flares, X-ray events and other low frequency solar observations. The received signal is monitored in ordinary ASCII format and as audio signal, in order to investigate and exclude man-made radio interference. In order to exclude narrow band interference and calculate the spectral indices of the observed events, a second monitoring station, working at 36 MHz, is under construction at the village of Nikiforos near the town of Drama, about 130 km away of Thessaloniki. Finally, we plan to construct a third monitoring station at 58 MHz, in Thessaloniki. This frequency was revealed to be relatively free of interference, after a thorough investigation of the region.

  17. Commercial Radio as Communication.

    Science.gov (United States)

    Rothenbuhler, Eric W.

    1996-01-01

    Compares the day-to-day work routines of commercial radio with the principles of a theoretical communication model. Illuminates peculiarities of the conduct of communication by commercial radio. Discusses the application of theoretical models to the evaluation of practicing institutions. Offers assessments of commercial radio deriving from…

  18. Radio frequency interference mitigation using deep convolutional neural networks

    Science.gov (United States)

    Akeret, J.; Chang, C.; Lucchi, A.; Refregier, A.

    2017-01-01

    We propose a novel approach for mitigating radio frequency interference (RFI) signals in radio data using the latest advances in deep learning. We employ a special type of Convolutional Neural Network, the U-Net, that enables the classification of clean signal and RFI signatures in 2D time-ordered data acquired from a radio telescope. We train and assess the performance of this network using the HIDE &SEEK radio data simulation and processing packages, as well as early Science Verification data acquired with the 7m single-dish telescope at the Bleien Observatory. We find that our U-Net implementation is showing competitive accuracy to classical RFI mitigation algorithms such as SEEK's SUMTHRESHOLD implementation. We publish our U-Net software package on GitHub under GPLv3 license.

  19. Breathing Valley Fever

    Centers for Disease Control (CDC) Podcasts

    2014-02-04

    Dr. Duc Vugia, chief of the Infectious Diseases Branch in the California Department of Public Health, discusses Valley Fever.  Created: 2/4/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/5/2014.

  20. Ham radio for dummies

    CERN Document Server

    Silver, H Ward

    2013-01-01

    An ideal first step for learning about ham radio Beyond operating wirelessly, today's ham radio operators can transmit data and pictures; use the Internet, laser, and microwave transmitters; and travel to places high and low to make contact. This hands-on beginner guide reflects the operational and technical changes to amateur radio over the past decade and provides you with updated licensing requirements and information, changes in digital communication (such as the Internet, social media, and GPS), and how to use e-mail via radio. Addresses the critical use of ham radio for replacing downe

  1. Radiography of Spanish Radio

    Directory of Open Access Journals (Sweden)

    Dra. Emma Rodero Antón

    2007-01-01

    Full Text Available In its eighty years of existence, radio has been always characterized to adapt to the social, cultural and technological transformations. Thus it has been until this moment. Nevertheless, some years ago, the authors and professionals of this medium have been detecting a stagnation that affects to its structure. At a time in continuous technological evolution, radio demands a deep transformation. For that reason, from the conviction of which the future radio, public and commercial, will necessarily have to renew itself, in this paper we establish ten problems and their possible solutions to the radio crisis in order to draw an x-ray of radio in Spain. Radio has future, but it is necessary to work actively by it. That the radio continues being part of sound of our life, it will depend on the work of all: companies, advertisers, professionals, students, investigators and listeners.

  2. International lunar observatory / power station: from Hawaii to the Moon

    Science.gov (United States)

    Durst, S.

    Astronomy's great advantages from the Moon are well known - stable surface, diffuse atmosphere, long cool nights (14 days), low gravity, far side radio frequency silence. A large variety of astronomical instruments and observations are possible - radio, optical and infrared telescopes and interferometers; interferometry for ultra- violet to sub -millimeter wavelengths and for very long baselines, including Earth- Moon VLBI; X-ray, gamma-ray, cosmic ray and neutrino detection; very low frequency radio observation; and more. Unparalleled advantages of lunar observatories for SETI, as well as for local surveillance, Earth observation, and detection of Earth approaching objects add significant utility to lunar astronomy's superlatives. At least nine major conferences in the USA since 1984 and many elsewhere, as well as ILEWG, IAF, IAA, LEDA and other organizations' astronomy-from-the-Moon research indicate a lunar observatory / power station, robotic at first, will be one of the first mission elements for a permanent lunar base. An international lunar observatory will be a transcending enterprise, highly principled, indispensable, soundly and broadly based, and far- seeing. Via Astra - From Hawaii to the Moon: The astronomy and scie nce communities, national space agencies and aerospace consortia, commercial travel and tourist enterprises and those aspiring to advance humanity's best qualities, such as Aloha, will recognize Hawaii in the 21st century as a new major support area and pan- Pacific port of embarkation to space, the Moon and beyond. Astronomical conditions and facilities on Hawaii's Mauna Kea provide experience for construction and operation of observatories on the Moon. Remote and centrally isolated, with diffuse atmosphere, sub-zero temperature and limited working mobility, the Mauna Kea complex atop the 4,206 meter summit of the largest mountain on the planet hosts the greatest collection of large astronomical telescopes on Earth. Lunar, extraterrestrial

  3. Radio detection of high-energy cosmic rays with the Auger Engineering Radio Array

    Science.gov (United States)

    Schröder, Frank G.; Pierre Auger Collaboration

    2016-07-01

    The Auger Engineering Radio Array (AERA) is an enhancement of the Pierre Auger Observatory in Argentina. Covering about 17km2, AERA is the world-largest antenna array for cosmic-ray observation. It consists of more than 150 antenna stations detecting the radio signal emitted by air showers, i.e., cascades of secondary particles caused by primary cosmic rays hitting the atmosphere. At the beginning, technical goals had been in focus: first of all, the successful demonstration that a large-scale antenna array consisting of autonomous stations is feasible. Moreover, techniques for calibration of the antennas and time calibration of the array have been developed, as well as special software for the data analysis. Meanwhile physics goals come into focus. At the Pierre Auger Observatory air showers are simultaneously detected by several detector systems, in particular water-Cherenkov detectors at the surface, underground muon detectors, and fluorescence telescopes, which enables cross-calibration of different detection techniques. For the direction and energy of air showers, the precision achieved by AERA is already competitive; for the type of primary particle, several methods are tested and optimized. By combining AERA with the particle detectors we aim for a better understanding of cosmic rays in the energy range from approximately 0.3 to 10 EeV, i.e., significantly higher energies than preceding radio arrays.

  4. The high energy astronomy observatories

    Science.gov (United States)

    Neighbors, A. K.; Doolittle, R. F.; Halpers, R. E.

    1977-01-01

    The forthcoming NASA project of orbiting High Energy Astronomy Observatories (HEAO's) designed to probe the universe by tracing celestial radiations and particles is outlined. Solutions to engineering problems concerning HEAO's which are integrated, yet built to function independently are discussed, including the onboard digital processor, mirror assembly and the thermal shield. The principle of maximal efficiency with minimal cost and the potential capability of the project to provide explanations to black holes, pulsars and gamma-ray bursts are also stressed. The first satellite is scheduled for launch in April 1977.

  5. The ultimate air shower observatory

    International Nuclear Information System (INIS)

    Jones, L.W.

    1981-01-01

    The possibility of constructing an international air shower observatory in the Himalayas is explored. A site at about 6500 m elevation (450 g/cm 2 ) would provide more definitive measurements of composition and early interaction properties of primaries above 10 16 eV than can be achieved with existing arrays. By supplementing a surface array with a Fly's Eye and muon detectors, information on the highest energy cosmic rays may be gained which is not possible in any other way. Potential sites, technical aspects, and logistical problems are explored

  6. BART: The Czech Autonomous Observatory

    Czech Academy of Sciences Publication Activity Database

    Nekola, Martin; Hudec, René; Jelínek, M.; Kubánek, P.; Štrobl, Jan; Polášek, Cyril

    2010-01-01

    Roč. 2010, Spec. Is. (2010), 103986/1-103986/5 ISSN 1687-7969. [Workshop on Robotic Autonomous Observatories. Málaga, 18.05.2009-21.05.2009] R&D Projects: GA ČR GA205/08/1207 Grant - others:ESA(XE) ESA-PECS project No. 98023; Spanish Ministry of Education and Science(ES) AP2003-1407 Institutional research plan: CEZ:AV0Z10030501 Keywords : robotic telescope * BART * gamma ray bursts Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics http://www.hindawi.com/journals/aa/2010/103986.html

  7. A 31 GHz Survey of Low-Frequency Selected Radio Sources

    Science.gov (United States)

    Mason, B. S.; Weintraub, L.; Sievers, J.; Bond, J. R.; Myers, S. T.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.

    2009-10-01

    The 100 m Robert C. Byrd Green Bank Telescope and the 40 m Owens Valley Radio Observatory telescope have been used to conduct a 31 GHz survey of 3165 known extragalactic radio sources over 143 deg2 of the sky. Target sources were selected from the NRAO VLA Sky Survey in fields observed by the Cosmic Background Imager (CBI); most are extragalactic active galactic nuclei (AGNs) with 1.4 GHz flux densities of 3-10 mJy. The resulting 31 GHz catalogs are presented in full online. Using a maximum-likelihood analysis to obtain an unbiased estimate of the distribution of the 1.4-31 GHz spectral indices of these sources, we find a mean 31-1.4 GHz flux ratio of 0.110 ± 0.003 corresponding to a spectral index of α = -0.71 ± 0.01 (S ν vprop να) 9.0% ± 0.8% of sources have α > - 0.5 and 1.2% ± 0.2% have α > 0. By combining this spectral-index distribution with 1.4 GHz source counts, we predict 31 GHz source counts in the range 1 mJy S 31) = (16.7 ± 1.7) deg-2(S 31/1 mJy)-0.80±0.07. We also assess the contribution of mJy-level (S 1.4 GHz < 3.4 mJy) radio sources to the 31 GHz cosmic microwave background power spectrum, finding a mean power of ell(ell + 1)C src ell/(2π) = 44 ± 14 μK2 and a 95% upper limit of 80 μK2 at ell = 2500. Including an estimated contribution of 12 μK2 from the population of sources responsible for the turn-up in counts below S 1.4 GHz = 1 mJy, this amounts to 21% ± 7% of what is needed to explain the CBI high-ell excess signal, 275 ± 63 μK2. These results are consistent with other measurements of the 31 GHz point-source foreground.

  8. Ionospheric E–F valley observed by a sounding rocket at the low-latitude station Hainan

    Directory of Open Access Journals (Sweden)

    J. K. Shi

    2013-08-01

    Full Text Available According to the sounding rocket experiment conducted at Hainan ionospheric observatory (19.5° N, 109.1° E, a valley between the E layer and F layer in the ionospheric electron density profile is observed and presented. The sounding rocket was launched in the morning (06:15 LT on 7 May 2011, and the observed electron density profile outside the valley agrees with the simultaneous observation by the DPS-4 digisonde at the same station. The width of the observed valley was about 42 km, the depth almost 50%, and the altitude of the electron density minimum 123.5 km. This is the first observation of the E–F valley in the low-latitude region in the East Asian sector. The results are also compared with models, and the physical mechanism of the observed valley is discussed in this paper.

  9. Daily variation characteristics at polar geomagnetic observatories

    Science.gov (United States)

    Lepidi, S.; Cafarella, L.; Pietrolungo, M.; Di Mauro, D.

    2011-08-01

    This paper is based on the statistical analysis of the diurnal variation as observed at six polar geomagnetic observatories, three in the Northern and three in the Southern hemisphere. Data are for 2006, a year of low geomagnetic activity. We compared the Italian observatory Mario Zucchelli Station (TNB; corrected geomagnetic latitude: 80.0°S), the French-Italian observatory Dome C (DMC; 88.9°S), the French observatory Dumont D'Urville (DRV; 80.4°S) and the three Canadian observatories, Resolute Bay (RES; 83.0°N), Cambridge Bay (CBB; 77.0°N) and Alert (ALE, 87.2°N). The aim of this work was to highlight analogies and differences in daily variation as observed at the different observatories during low geomagnetic activity year, also considering Interplanetary Magnetic Field conditions and geomagnetic indices.

  10. EMSO: European multidisciplinary seafloor observatory

    Science.gov (United States)

    Favali, Paolo; Beranzoli, Laura

    2009-04-01

    EMSO has been identified by the ESFRI Report 2006 as one of the Research Infrastructures that European members and associated states are asked to develop in the next decades. It will be based on a European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the aim of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes, providing long time series data for the different phenomenon scales which constitute the new frontier for study of Earth interior, deep-sea biology and chemistry, and ocean processes. The development of an underwater network is based on past EU projects and is supported by several EU initiatives, such as the on-going ESONET-NoE, aimed at strengthening the ocean observatories' scientific and technological community. The EMSO development relies on the synergy between the scientific community and industry to improve European competitiveness with respect to countries such as USA, Canada and Japan. Within the FP7 Programme launched in 2006, a call for Preparatory Phase (PP) was issued in order to support the foundation of the legal and organisational entity in charge of building up and managing the infrastructure, and coordinating the financial effort among the countries. The EMSO-PP project, coordinated by the Italian INGV with participation by 11 institutions from as many European countries, started in April 2008 and will last four years.

  11. Senior radio listeners

    DEFF Research Database (Denmark)

    Blaakilde, Anne Leonora

    Radiobroadcasting and the hardware materialization of radio have during the 20th century changed significantly, which means that senior radio listeners have travelled along with this evolution from large, impressive radio furnitures to DAB and small, wireless, mobile devices, and from grave...... and solemn radio voices to lightharted, laughing and chatting speakers. Senior radio listerners have experienced the development and refinements of technique, content and genres. It is now expected of all media users that they are capable of crossing media, combining, juggling and jumping between various...... media platforms, not the least when listening to radio. The elder generation is no exception from this. Recently, for instance, the Danish public broadcast DR has carried out an exodus of programmes targeted for the senior segment. These programmes are removed from regular FM and sent to DAB receivers...

  12. Worldwide R&D of Virtual Observatory

    Science.gov (United States)

    Cui, C. Z.; Zhao, Y. H.

    2008-07-01

    Virtual Observatory (VO) is a data intensive online astronomical research and education environment, taking advantages of advanced information technologies to achieve seamless and uniform access to astronomical information. The concept of VO was introduced in the late 1990s to meet the challenges brought up with data avalanche in astronomy. In the paper, current status of International Virtual Observatory Alliance, technical highlights from world wide VO projects are reviewed, a brief introduction of Chinese Virtual Observatory is given.

  13. Byurakan Astrophysical Observatory as Cultural Centre

    Science.gov (United States)

    Mickaelian, A. M.; Farmanyan, S. V.

    2017-07-01

    NAS RA V. Ambartsumian Byurakan Astrophysical Observatory is presented as a cultural centre for Armenia and the Armenian nation in general. Besides being scientific and educational centre, the Observatory is famous for its unique architectural ensemble, rich botanical garden and world of birds, as well as it is one of the most frequently visited sightseeing of Armenia. In recent years, the Observatory has also taken the initiative of the coordination of the Cultural Astronomy in Armenia and in this field, unites the astronomers, historians, archaeologists, ethnographers, culturologists, literary critics, linguists, art historians and other experts. Keywords: Byurakan Astrophysical Observatory, architecture, botanic garden, tourism, Cultural Astronomy.

  14. First solar radio spectrometer deployed in Scotland, UK

    Science.gov (United States)

    Monstein, Christian

    2012-10-01

    A new Callisto solar radio spectrometer system has recently been installed and set into operation at Acre Road Observatory, a facility of University of Glasgow, Scotland UK. There has been an Observatory associated with Glasgow University since 1757, and they presently occupy two different sites. The main observatory ('Acre Road') is close to the Garscube Estate on the outskirts of the city of Glasgow. The outstation ('Cochno', housing the big 20 inch Grubb Parsons telescope) is located farther out at a darker site in the Kilpatrick Hills. The Acre Road Observatory comprises teaching and research labs, a workshop, the main dome housing the 16 inch Meade, the solar dome, presently housing the 12 inch Meade, a transit house containing the transit telescope, a 3m HI radio telescope and a 408 MHz pulsar telescope. They also have 10 and 8 inch Meade telescopes and several 5 inch Celestron instruments. There is a small planetarium beneath the solar dome. The new Callisto instrument is mainly foreseen for scientific solar burst observations as well as for student projects and for 'bad-weather' outreach activities.

  15. The Millimeter Wave Observatory antenna now at INAOE-Mexico

    Science.gov (United States)

    Luna, A.

    2017-07-01

    The antenna of 5 meters in diameter of the legendary "Millimeter Wave Observatory" is now installed in the INAOE-Mexico. This historic antenna was reinstalled and was equipped with a control system and basic primary focus receivers that enabled it in teaching activities. We work on the characterization of its surface and on the development of receivers and spectrometers to allow it to do research Solar and astronomical masers. The historical contributions of this antenna to science and technology in radio astronomy, serve as the guiding force and the inspiration of the students and technicians of our postgrade in Astrophysics. It is enough to remember that it was with this antenna, that the first molecular outflow was discovered, several lines of molecular emission were discovered and it was the first antenna whose surface was characterized by holography; among many other technological and scientific contributions.

  16. National Astronomical Observatory of Japan

    CERN Document Server

    Haubold, Hans J; UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science, hosted by the National Astronomical Observatory of Japan

    2010-01-01

    This book represents Volume II of the Proceedings of the UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science, hosted by the National Astronomical Observatory of Japan, Tokyo, 18 - 22 June, 2007. It covers two programme topics explored in this and past workshops of this nature: (i) non-extensive statistical mechanics as applicable to astrophysics, addressing q-distribution, fractional reaction and diffusion, and the reaction coefficient, as well as the Mittag-Leffler function and (ii) the TRIPOD concept, developed for astronomical telescope facilities. The companion publication, Volume I of the proceedings of this workshop, is a special issue in the journal Earth, Moon, and Planets, Volume 104, Numbers 1-4, April 2009.

  17. Autonomous Infrastructure for Observatory Operations

    Science.gov (United States)

    Seaman, R.

    This is an era of rapid change from ancient human-mediated modes of astronomical practice to a vision of ever larger time domain surveys, ever bigger "big data", to increasing numbers of robotic telescopes and astronomical automation on every mountaintop. Over the past decades, facets of a new autonomous astronomical toolkit have been prototyped and deployed in support of numerous space missions. Remote and queue observing modes have gained significant market share on the ground. Archives and data-mining are becoming ubiquitous; astroinformatic techniques and virtual observatory standards and protocols are areas of active development. Astronomers and engineers, planetary and solar scientists, and researchers from communities as diverse as particle physics and exobiology are collaborating on a vast range of "multi-messenger" science. What then is missing?

  18. 77 FR 33237 - Saline Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National...

    Science.gov (United States)

    2012-06-05

    ... Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National Park, Inyo... an Environmental Impact Statement for the Saline Valley Warm Springs Management Plan, Death Valley... analysis process for the Saline Valley Warm Springs Management Plan for Death Valley [[Page 33238...

  19. TUM Critical Zone Observatory, Germany

    Science.gov (United States)

    Völkel, Jörg; Eden, Marie

    2014-05-01

    Founded 2011 the TUM Critical Zone Observatory run by the Technische Universität München and partners abroad is the first CZO within Germany. TUM CZO is both, a scientific as well as an education project. It is a watershed based observatory, but moving behind this focus. In fact, two mountainous areas are integrated: (1) The Ammer Catchment area as an alpine and pre alpine research area in the northern limestone Alps and forelands south of Munich; (2) the Otter Creek Catchment in the Bavarian Forest with a crystalline setting (Granite, Gneiss) as a mid mountainous area near Regensburg; and partly the mountainous Bavarian Forest National Park. The Ammer Catchment is a high energy system as well as a sensitive climate system with past glacial elements. The lithology shows mostly carbonates from Tertiary and Mesozoic times (e.g. Flysch). Source-to-sink processes are characteristic for the Ammer Catchment down to the last glacial Ammer Lake as the regional erosion and deposition base. The consideration of distal depositional environments, the integration of upstream and downstream landscape effects are characteristic for the Ammer Catchment as well. Long term datasets exist in many regards. The Otter Creek catchment area is developed in a granitic environment, rich in saprolites. As a mid mountainous catchment the energy system is facing lower stage. Hence, it is ideal comparing both of them. Both TUM CZO Catchments: The selected catchments capture the depositional environment. Both catchment areas include historical impacts and rapid land use change. Crosscutting themes across both sites are inbuilt. Questions of ability to capture such gradients along climosequence, chronosequence, anthroposequence are essential.

  20. Ionosphere and Radio Communication

    Indian Academy of Sciences (India)

    The upperionosphere is used for radio communication and navigationas it reflects long, medium, as well as short radio waves. Sincesolar radiation is the main cause of the existence of ionosphere,any variation in the radiations can affect the entireradio communication system. This article attempts to brieflyintroduce the ...

  1. Writing for Radio.

    Science.gov (United States)

    Tupper, Marianna S.

    1995-01-01

    Describes a 24-hour commercial radio station simulation class project for eighth-grade language arts. Students wrote their own scripts, chose music and were disc jockeys on their own music and talk shows, and prepared news and traffic reports. Guest speakers from actual commercial radio came in to discuss issues such as advertising, censorship,…

  2. Valuing commercial radio licences

    NARCIS (Netherlands)

    Kerste, M.; Poort, J.; van Eijk, N.

    2015-01-01

    Within the EU regulatory framework, licensees for commercial radio broadcasting may be charged a fee to ensure optimal allocation of scarce resources but not to maximize public revenues. While radio licence renewal occurs in many EU countries, an objective, model-based approach for setting licence

  3. The Radio Jove Project

    Science.gov (United States)

    Thieman, J. R.

    2010-01-01

    The Radio love Project is a hands-on education and outreach project in which students, or any other interested individuals or groups build a radio telescope from a kit, operate the radio telescope, transmit the resulting signals through the internet if desired, analyze the results, and share the results with others through archives or general discussions among the observers. Radio love is intended to provide an introduction to radio astronomy for the observer. The equipment allows the user to observe radio signals from Jupiter, the Sun, the galaxy, and Earth-based radiation both natural and man-made. The project was started through a NASA Director's Discretionary Fund grant more than ten years ago. it has continued to be carried out through the dedicated efforts of a group of mainly volunteers. Dearly 1500 kits have been distributed throughout the world. Participation can also be done without building a kit. Pre-built kits are available. Users can also monitor remote radio telescopes through the internet using free downloadable software available through the radiosky.com website. There have been many stories of prize-winning projects, inspirational results, collaborative efforts, etc. We continue to build the community of observers and are always open to new thoughts about how to inspire the observers to still greater involvement in the science and technology associated with Radio Jove.

  4. Boom Booom Net Radio

    DEFF Research Database (Denmark)

    Grimshaw, Mark Nicholas; Yong, Louisa; Dobie, Ian

    1999-01-01

    of an existing Internet radio station; Boom Booom Net Radio. Whilst necessity dictates some use of technology-related terminology, wherever possible we have endeavoured to keep such jargon to a minimum and to either explain it in the text or to provide further explanation in the appended glossary....

  5. The California Valley grassland

    Science.gov (United States)

    Keeley, J.E.; Schoenherr, Allan A.

    1990-01-01

    Grasslands are distributed throughout California from Oregon to Baja California Norte and from the coast to the desert (Brown 1982) (Figure 1). This review will focus on the dominant formation in cismontane California, a community referred to as Valley Grassland (Munz 1959). Today, Valley Grassland is dominated by non-native annual grasses in genera such as Avena (wild oat), Bromus (brome grass), and Hordeum (barley), and is often referred to as the California annual grassland. On localized sites, native perennial bunchgrasses such as Stipa pultra (purple needle grass) may dominate and such sites are interpreted to be remnants of the pristine valley grassland. In northwestern California a floristically distinct formation of the Valley Grassland, known as Coast Prairie (Munz 1959) or Northern Coastal Grassland (Holland and Keil 1989) is recognized. The dominant grasses include many native perennial bunchgrasses in genera such as Agrostis, Calamagrostis, Danthonia, Deschampsia, Festuca, Koeleria and Poa (Heady et al. 1977). Non-native annuals do not dominate, but on some sites non-native perennials like Anthoxanthum odoratum may colonize the native grassland (Foin and Hektner 1986). Elevationally, California's grasslands extend from sea level to at leas 1500 m. The upper boundary is vague because montane grassland formations are commonly referred to as meadows; a community which Munz (1959) does not recognize. Holland and Keil (1989) describe the montane meadow as an azonal community; that is, a community restricted not so much to a particular climatic zone but rather controlled by substrate characteristics. They consider poor soil-drainage an over-riding factor in the development of montane meadows and, in contrast to grasslands, meadows often remain green through the summer drought. Floristically, meadows are composed of graminoids; Cyperaceae, Juncaceae, and rhizomatous grasses such as Agropyron (wheat grass). Some bunchgrasses, such as Muhlenbergia rigens, are

  6. Towards autonomous radio detection of ultra high energy cosmic rays

    International Nuclear Information System (INIS)

    Garcon, Th.

    2010-01-01

    The radio-detection of extensive air showers, investigated for the first time in the 1960's, obtained promising results but plagued by the technical limitations. At that time, H.R. Allan summed up the state of the art in an extensive review article whose conclusions and predictions are still used today. Set up in 2001 at the Nancay Observatory, the CODALEMA experiment was built first as a demonstrator and successfully showed the feasibility of the radio-detection of extensive air showers. Radically modified in 2005, it allowed to obtain a clear energy correlation, and put in evidence an unambiguous signature of the geomagnetic origin of the electric field emission process associated to the air shower. The switch towards large areas is the next step of the technique's development. Therefore, the autonomy of the detectors becomes essential. After test prototypes installed in 2006 at the Pierre Auger Observatory, a generation of new autonomous detectors was developed. Their first results will be presented. This work is also dedicated to the issues related to the radio-detection technique: the antenna response, the sensitivity, the surrounding effects, the monitoring of a big array. The determination of the shower characteristics independently of other detectors such as the lateral distribution, the energy correlation and the frequency spectrum of the radio transient will be discussed. (author)

  7. Observatory data and the Swarm mission

    DEFF Research Database (Denmark)

    Macmillan, S.; Olsen, Nils

    2013-01-01

    products. We describe here the preparation of the data set of ground observatory hourly mean values, including procedures to check and select observatory data spanning the modern magnetic survey satellite era. We discuss other possible combined uses of satellite and observatory data, in particular those......The ESA Swarm mission to identify and measure very accurately the different magnetic signals that arise in the Earth’s core, mantle, crust, oceans, ionosphere and magnetosphere, which together form the magnetic field around the Earth, has increased interest in magnetic data collected on the surface...... of the Earth at observatories. The scientific use of Swarm data and Swarm-derived products is greatly enhanced by combination with observatory data and indices. As part of the Swarm Level-2 data activities plans are in place to distribute such ground-based data along with the Swarm data as auxiliary data...

  8. Rift Valley Fever.

    Science.gov (United States)

    Hartman, Amy

    2017-06-01

    Rift Valley fever (RVF) is a severe veterinary disease of livestock that also causes moderate to severe illness in people. The life cycle of RVF is complex and involves mosquitoes, livestock, people, and the environment. RVF virus is transmitted from either mosquitoes or farm animals to humans, but is generally not transmitted from person to person. People can develop different diseases after infection, including febrile illness, ocular disease, hemorrhagic fever, or encephalitis. There is a significant risk for emergence of RVF into new locations, which would affect human health and livestock industries. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Spectroscopy of 125 QSO candidates and radio galaxies

    International Nuclear Information System (INIS)

    Wills, B.J.; Wills, D.

    1980-01-01

    Spectroscopic observations of 125 QSO candidates and radio galaxies are reported, many of which are optical identifications of radio sources in the deep survey in progress at the University of Texas Radio Astronomy Observatory (UTRAO). The remainder include optical identifications of sources in other radio surveys and radio-quiet objects selected by their ultraviolet continua or optical variability. Optical positions are given with O''.5 accuracy for 56 of the objects.Forty objects are confirmed as QSOs; redshifts are given for 38 of them and for 18 galaxies. There are also seven objects with apparently continuous spectra: some of them were already known or suspected to be BL Lacertae objects. Twenty-nine objects were found to be Galactic stars, and the results for the remaining 31 are inconclusive, although 12 of them are probable QSOs and six are probable stars.Our spectroscopy of a sample of 90 blue stellar objects found within 3'' of the UTRAO radio positions (including results from two earlier papers) shows that 81 (90%) are QSOs, with inconclusive results fo the other nine; none of the 90 is known to be a star. Even within 5'' of the UTRAO positions, 111 of 128 blue objects (87%) are QSOs, and only five (4%) are known or suspected to be stars. Among 21 red or neutral-color, apparently stellar objects within 3'' of the UTRAO positions, six are QSOs or compact galaxies, 13 are stars, and the results for two more are inconclusive

  10. Aburra Valley: Quo vadis?

    International Nuclear Information System (INIS)

    Hermelin, Michel

    2008-01-01

    These paper intents a brief description of the evolution that characterised natural risk prevention in the area surrounding the city of Medellin, Colombia, called the Aburra Valley. Both the lithological and structural composition of the Valle and its topographic and climatic conditions contribute to the abundance of destructive natural phenomena as earthquakes, slope movements, flash floods and, in a lower proportion, to floods. The population increase, which reaches now 3.5 millions inhabitants and the frequent occupation of sites exposed to natural hazards have resulted in numerous disasters. At present two entities called SIMPAD and DAPARD work on risk prevention, on city and department scale respectively. The amount of knowledge about physical environment is considered to be insufficient, together with regulations which should direct land use in accordance to restrictions related to natural hazards. Several seminars on this topic have already been carried out and the organisers of the present one, destined to commemorate the twentieth anniversary of the Villatina disaster, should make the decision to meet each two years. Furthermore, the creation of a permanent commission dedicated to study past events, to foster information broadcasting and to seek a better knowledge of the Aburra Valley, should be considered

  11. The Radio-X-ray Relation in Cool Stars: Are We Headed Toward a Divorce?

    Science.gov (United States)

    Forbrich, J.; Wolk, S. J.; Güdel, M.; Benz, A.; Osten, R.; Linsky, J. L.; McLean, M.; Loinard, L.; Berger, E.

    2011-12-01

    This splinter session was devoted to reviewing our current knowledge of correlated X-ray and radio emission from cool stars in order to prepare for new large radio observatories such as the EVLA. A key interest was to discuss why the X-ray and radio luminosities of some cool stars are in clear breach of a correlation that holds for other active stars, the so-called Güdel-Benz relation. This article summarizes the contributions whereas the actual presentations can be accessed on the splinter website.

  12. A prompt radio burst from supernova 1987A in the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Turtle, A.J.; Campbell-Wilson, D.; Bunton, J.D.; Jauncey, D.L.; Kesteven, M.J.; Manchester, R.N.; Norris, R.P.; Storey, M.C.; Reynolds, J.E.

    1987-01-01

    The paper concerns a prompt radio burst from supernova 1987A in the Large Magellanic Cloud. Radio emission from the supernova was detected at Australian observatories within two days of the increase in optical brightness. Observations of radio emission at four frequencies i.e. 0.843, 1.415, 2.29 and 8.41 GHz are presented for the region of the Large Magellanic Cloud supernova. At frequencies around 1 GHz the peak flux density was about 150mJy and occurred within four days of the supernova. (U.K.)

  13. Characterizing Interference in Radio Astronomy Observations through Active and Unsupervised Learning

    Science.gov (United States)

    Doran, G.

    2013-01-01

    In the process of observing signals from astronomical sources, radio astronomers must mitigate the effects of manmade radio sources such as cell phones, satellites, aircraft, and observatory equipment. Radio frequency interference (RFI) often occurs as short bursts (active learning approach in which an astronomer labels events that are most confusing to a classifier, minimizing the human effort required for classification. We also explore the use of unsupervised clustering techniques, which automatically group events into classes without user input. We apply these techniques to data from the Parkes Multibeam Pulsar Survey to characterize several million detected RFI events from over a thousand hours of observation.

  14. Solar Imagery - Photosphere - Sunspot Drawings - McMath-Hulbert Observatory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The McMath-Hulbert Observatory is a decommissioned solar observatory in Lake Angelus, Michigan, USA. It was established in 1929 as a private observatory by father...

  15. Radio Refractivity Study in Akure-Owo Digital Microwave Link in ...

    African Journals Online (AJOL)

    This work is a study of radio refractivity in Akure-Owo Digital Microwave Link in South Western Nigeria. Meteorological data of air temperature, atmospheric pressure, relative humidity, and water vapour pressure were measured between January and December 2006 at the observatory centre of the Nigerian meteorological ...

  16. 3C 220.3: A Radio Galaxy Lensing a Submillimeter Galaxy

    NARCIS (Netherlands)

    Haas, Martin; Leipski, Christian; Barthel, Peter; Wilkes, Belinda J.; Vegetti, Simona; Bussmann, R. Shane; Willner, S. P.; Westhues, Christian; Ashby, Matthew L. N.; Chini, Rolf; Clements, David L.; Fassnacht, Christopher D.; Horesh, Assaf; Klaas, Ulrich; Koopmans, Léon V. E.; Kuraszkiewicz, Joanna; Lagattuta, David J.; Meisenheimer, Klaus; Stern, Daniel; Wylezalek, Dominika

    2014-01-01

    Herschel Space Observatory photometry and extensive multiwavelength follow-up have revealed that the powerful radio galaxy (PRG) 3C 220.3 at z = 0.685 acts as a gravitational lens for a background submillimeter galaxy (SMG) at z = 2.221. At an observed wavelength of 1 mm, the SMG is lensed into

  17. EMSO: European Multidisciplinary Seafloor Observatory

    Science.gov (United States)

    Favali, P.; Partnership, Emso

    2009-04-01

    EMSO, a Research Infrastructure listed within ESFRI (European Strategy Forum on Research Infrastructures) Roadmap), is the European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the scientific objective of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes through long time series appropriate to the scale of the phenomena, constituting the new frontier of studying Earth interior, deep-sea biology and chemistry and ocean processes. EMSO will reply also to the need expressed in the frame of GMES (Global Monitoring for Environment and Security) to develop a marine segment integrated in the in situ and satellite global monitoring system. The EMSO development relays upon the synergy between the scientific community and the industry to improve the European competitiveness with respect to countries like USA/Canada, NEPTUNE, VENUS and MARS projects, Taiwan, MACHO project, and Japan, DONET project. In Europe the development of an underwater network is based on previous EU-funded projects since early '90, and presently supported by EU initiatives. The EMSO infrastructure will constitute the extension to the sea of the land-based networks. Examples of data recorded by seafloor observatories will be presented. EMSO is presently at the stage of Preparatory Phase (PP), funded in the EC FP7 Capacities Programme. The project has started in April 2008 and will last 4 years with the participation of 12 Institutions representing 12 countries. EMSO potential will be significantly increased also with the interaction with other Research Infrastructures addressed to Earth Science. 2. IFREMER-Institut Français de Recherche pour l'exploitation de la mer (France, ref. Roland Person); KDM-Konsortium Deutsche Meeresforschung e.V. (Germany, ref. Christoph Waldmann); IMI-Irish Marine Institute (Ireland, ref. Michael Gillooly); UTM-CSIC-Unidad de

  18. EMSO: European Multidisciplinary Seafloor Observatory

    Science.gov (United States)

    Favali, Paolo

    2010-05-01

    EMSO, a Research Infrastructure listed within ESFRI (European Strategy Forum on Research Infrastructures) Roadmap (Report 2006, http://cordis.europa.eu/esfri/roadmap.htm), is the European-scale network of multidisciplinary seafloor observatories from the Arctic to the Black Sea with the scientific objective of long-term real-time monitoring of processes related to geosphere/biosphere/hydrosphere interactions. EMSO will enhance our understanding of processes through long time series appropriate to the scale of the phenomena, constituting the new frontier of studying Earth interior, deep-sea biology and chemistry and ocean processes. The development of an underwater network is based on previous EU-funded projects since early '90 and is being supported by several EU initiatives, as the on-going ESONET-NoE, coordinated by IFREMER (2007-2011, http://www.esonet-emso.org/esonet-noe/), and aims at gathering together the Research Community of the Ocean Observatories. In 2006 the FP7 Capacities Programme launched a call for Preparatory Phase (PP) projects, that will provide the support to create the legal and organisational entities in charge of managing the infrastructures, and coordinating the financial effort among the countries. Under this call the EMSO-PP project was approved in 2007 with the coordination of INGV and the participation of other 11 Institutions of 11 countries. The project has started in April 2008 and will last 4 years. The EMSO is a key-infrastructure both for Ocean Sciences and for Solid Earth Sciences. In this respect it will enhance and complement profitably the capabilities of other European research infrastructures such as EPOS, ERICON-Aurora Borealis, and SIOS. The perspective of the synergy among EMSO and other ESFRI Research Infrastructures will be outlined. EMSO Partners: IFREMER-Institut Français de Recherche pour l'exploitation de la mer (France, ref. Roland Person); KDM-Konsortium Deutsche Meeresforschung e.V. (Germany, ref. Christoph

  19. Powerful Radio Burst Indicates New Astronomical Phenomenon

    Science.gov (United States)

    2007-09-01

    Astronomers studying archival data from an Australian radio telescope have discovered a powerful, short-lived burst of radio waves that they say indicates an entirely new type of astronomical phenomenon. Region of Strong Radio Burst Visible-light (negative greyscale) and radio (contours) image of Small Magellanic Cloud and area where burst originated. CREDIT: Lorimer et al., NRAO/AUI/NSF Click on image for high-resolution file ( 114 KB) "This burst appears to have originated from the distant Universe and may have been produced by an exotic event such as the collision of two neutron stars or the death throes of an evaporating black hole," said Duncan Lorimer, Assistant Professor of Physics at West Virginia University (WVU) and the National Radio Astronomy Observatory (NRAO). The research team led by Lorimer consists of Matthew Bailes of Swinburne University in Australia, Maura McLaughlin of WVU and NRAO, David Narkevic of WVU, and Fronefield Crawford of Franklin and Marshall College in Lancaster, Pennsylvania. The astronomers announced their findings in the September 27 issue of the online journal Science Express. The startling discovery came as WVU undergraduate student David Narkevic re-analyzed data from observations of the Small Magellanic Cloud made by the 210-foot Parkes radio telescope in Australia. The data came from a survey of the Magellanic Clouds that included 480 hours of observations. "This survey had sought to discover new pulsars, and the data already had been searched for the type of pulsating signals they produce," Lorimer said. "We re-examined the data, looking for bursts that, unlike the usual ones from pulsars, are not periodic," he added. The survey had covered the Magellanic Clouds, a pair of small galaxies in orbit around our own Milky Way Galaxy. Some 200,000 light-years from Earth, the Magellanic Clouds are prominent features in the Southern sky. Ironically, the new discovery is not part of these galaxies, but rather is much more distant

  20. The Malaysian Robotic Solar Observatory (P29)

    Science.gov (United States)

    Othman, M.; Asillam, M. F.; Ismail, M. K. H.

    2006-11-01

    Robotic observatory with small telescopes can make significant contributions to astronomy observation. They provide an encouraging environment for astronomers to focus on data analysis and research while at the same time reducing time and cost for observation. The observatory will house the primary 50cm robotic telescope in the main dome which will be used for photometry, spectroscopy and astrometry observation activities. The secondary telescope is a robotic multi-apochromatic refractor (maximum diameter: 15 cm) which will be housed in the smaller dome. This telescope set will be used for solar observation mainly in three different wavelengths simultaneously: the Continuum, H-Alpha and Calcium K-line. The observatory is also equipped with an automated weather station, cloud & rain sensor and all-sky camera to monitor the climatic condition, sense the clouds (before raining) as well as to view real time sky view above the observatory. In conjunction with the Langkawi All-Sky Camera, the observatory website will also display images from the Malaysia - Antarctica All-Sky Camera used to monitor the sky at Scott Base Antarctica. Both all-sky images can be displayed simultaneously to show the difference between the equatorial and Antarctica skies. This paper will describe the Malaysian Robotic Observatory including the systems available and method of access by other astronomers. We will also suggest possible collaboration with other observatories in this region.

  1. Unlocking radio broadcasts

    DEFF Research Database (Denmark)

    Skov, Mette; Lykke, Marianne

    2012-01-01

    This poster reports the preliminary results of a user study uncovering the information seeking behaviour of humanities scholars dedicated to radio research. The study is part of an interdisciplinary research project on radio culture and auditory resources. The purpose of the study is to inform...... the design of information architecture and interaction design of a research infrastructure that will enable future radio and audio based research. Results from a questionnaire survey on humanities scholars‟ research interest and information needs, preferred access points, and indexing levels are reported....... Finally, a flexible metadata schema is suggested, that includes both general metadata and highly media and research project specific metadata....

  2. Radio y elecciones

    Directory of Open Access Journals (Sweden)

    Alma Rosa Alva de la Selva

    2000-01-01

    Full Text Available En este trabajo se analiza el comportamiento de la radio en México ante la contienda electoral de julio de 2000. Se examina el papel de la radio como espacio para la discusión política, así como el tratamiento informativo que hizo del tema. Asimismo, se analiza la posible repercusión de factores de reciente surgimiento en el panorama radiofónico para un manejo más autónomo de la información política en la radio

  3. Astronomical virtual observatory and the place and role of Bulgarian one

    Science.gov (United States)

    Petrov, Georgi; Dechev, Momchil; Slavcheva-Mihova, Luba; Duchlev, Peter; Mihov, Bojko; Kochev, Valentin; Bachev, Rumen

    2009-07-01

    Virtual observatory could be defined as a collection of integrated astronomical data archives and software tools that utilize computer networks to create an environment in which research can be conducted. Several countries have initiated national virtual observatory programs that combine existing databases from ground-based and orbiting observatories, scientific facility especially equipped to detect and record naturally occurring scientific phenomena. As a result, data from all the world's major observatories will be available to all users and to the public. This is significant not only because of the immense volume of astronomical data but also because the data on stars and galaxies has been compiled from observations in a variety of wavelengths-optical, radio, infrared, gamma ray, X-ray and more. In a virtual observatory environment, all of this data is integrated so that it can be synthesized and used in a given study. During the autumn of the 2001 (26.09.2001) six organizations from Europe put the establishment of the Astronomical Virtual Observatory (AVO)-ESO, ESA, Astrogrid, CDS, CNRS, Jodrell Bank (Dolensky et al., 2003). Its aims have been outlined as follows: - To provide comparative analysis of large sets of multiwavelength data; - To reuse data collected by a single source; - To provide uniform access to data; - To make data available to less-advantaged communities; - To be an educational tool. The Virtual observatory includes: - Tools that make it easy to locate and retrieve data from catalogues, archives, and databases worldwide; - Tools for data analysis, simulation, and visualization; - Tools to compare observations with results obtained from models, simulations and theory; - Interoperability: services that can be used regardless of the clients computing platform, operating system and software capabilities; - Access to data in near real-time, archived data and historical data; - Additional information - documentation, user-guides, reports

  4. An rf communications system for the West Valley transfer cart

    International Nuclear Information System (INIS)

    Crutcher, R.I.; Moore, M.R.

    1993-01-01

    A prototype radio frequency communications system for digital data was designed and built by Oak Ridge National Laboratory for use in controlling the vitrification facility transfer cart at the West Valley Nuclear Services facility in New York. The communications system provides bidirectional wireless data transfer between the operator control station and the material transfer cart. The system was designed to operate in radiation fields of 10 4 R/h while withstanding a total integrated dose of 10 7 R of gamma radiation. Implementation of antenna spatial diversity, automatic gain control, and spectral processing improves operation in the reflective environment of the metal-lined reprocessing cells

  5. Mobile equipment maintenance at Elk Valley Coal Corporation Fording River

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Major loading and support equipment, haul trucks, and the number of staff and hourly tradesmen working in the maintenance manpower division at Elk Valley Coal are listed. Maintenance strategies are safety, high maintenance of equipment availabilities and reliability, cost reduction, and maximized productivity of assets. Maintenance assets comprise a large shop, shovel and drill crew, machine shop, light vehicle facility, line crew, radio technicians, and cranes. Most maintenance work is completed in- house. Fording River uses a Computerized Maintenance Management System (CMMS) that was developed in-house to match business needs. Several examples of the application of Reliability Centered Maintenance (RCM) are described. 12 figs., 2 tabs.

  6. Robotic Software for the Thacher Observatory

    Science.gov (United States)

    Lawrence, George; Luebbers, Julien; Eastman, Jason D.; Johnson, John A.; Swift, Jonathan

    2018-06-01

    The Thacher Observatory—a research and educational facility located in Ojai, CA—uses a 0.7 meter telescope to conduct photometric research on a variety of targets including eclipsing binaries, exoplanet transits, and supernovae. Currently, observations are automated using commercial software. In order to expand the flexibility for specialized scientific observations and to increase the educational value of the facility on campus, we are adapting and implementing the custom observatory control software and queue scheduling developed for the Miniature Exoplanet Radial Velocity Array (MINERVA) to the Thacher Observatory. We present the design and implementation of this new software as well as its demonstrated functionality on the Thacher Observatory.

  7. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    Science.gov (United States)

    2001-12-01

    Vast Databanks at the Astronomers' Fingertips Summary A new European initiative called the Astrophysical Virtual Observatory (AVO) is being launched to provide astronomers with a breathtaking potential for new discoveries. It will enable them to seamlessly combine the data from both ground- and space-based telescopes which are making observations of the Universe across the whole range of wavelengths - from high-energy gamma rays through the ultraviolet and visible to the infrared and radio. The aim of the Astrophysical Virtual Observatory (AVO) project, which started on 15 November 2001, is to allow astronomers instant access to the vast databanks now being built up by the world's observatories and which are forming what is, in effect, a "digital sky" . Using the AVO, astronomers will, for example, be able to retrieve the elusive traces of the passage of an asteroid as it passes near the Earth and so enable them to predict its future path and perhaps warn of a possible impact. When a giant star comes to the end of its life in a cataclysmic explosion called a supernova, they will be able to access the digital sky and pinpoint the star shortly before it exploded so adding invaluable data to the study of the evolution of stars. Background information on the Astrophysical Virtual Observatory is available in the Appendix. PR Photo 34a/01 : The Astrophysical Virtual Observatory - an artist's impression. The rapidly accumulating database ESO PR Photo 34a/01 ESO PR Photo 34a/01 [Preview - JPEG: 400 x 345 pix - 90k] [Normal - JPEG: 800 x 689 pix - 656k] [Hi-Res - JPEG: 3000 x 2582 pix - 4.3M] ESO PR Photo 34a/01 shows an artist's impression of the Astrophysical Virtual Observatory . Modern observatories observe the sky continuously and data accumulates remorselessly in the digital archives. The growth rate is impressive and many hundreds of terabytes of data - corresponding to many thousands of billions of pixels - are already available to scientists. The real sky is being

  8. From radio signals to cosmic rays

    International Nuclear Information System (INIS)

    Riviere, C.

    2009-12-01

    Radio detection of high energy cosmic rays is currently being reinvested, both on the experimental and theoretical sides. The question is to know whether radio-detection is a competitive technique compared or in addition to usual detection techniques; in order to increase statistics at the highest energies (around 10 20 eV - where particle astronomy should be possible) or to characterize precisely the cosmic rays at lower energies (some 10 18 eV). During this work, we tried to progress towards the answer, using radio emission models, experimental data analysis and preparing the next generation of detectors. On the theoretical side, geo-synchrotron emission of the particles of the showers has been computed analytically using a simplified shower model as well as using the Monte Carlo simulation AIRES to have a realistic shower development. Various dependencies of the electric field have been extracted, among which a proportionality of the field with the -v → * B → vector under certain conditions. Experimentally, the analysis of CODALEMA data enabled to characterise more precisely the electric field produced by air showers, in particular the topology of the field at ground level, the energy dependency and the coherence with a -v → * B → proportionality. These results are summarised in an overall parametrization of the electric field. More data are probably required in order to give a definitive statement on the interest of the radio-detection technique. The CODALEMA parametrization has finally been used to extrapolate CODALEMA's results to a future larger array, extrapolation applied in particular to the AERA detector of the Pierre Auger Observatory. (author)

  9. International Lunar Observatory Association Advancing 21st Century Astronomy from the Moon

    Science.gov (United States)

    Durst, Steve

    2015-08-01

    Long considered a prime location to conduct astronomical observations, the Moon is beginning to prove its value in 21st Century astronomy through the Lunar Ultraviolet Telescope aboard China’s Chang’e-3 Moon lander and through the developing missions of the International Lunar Observatory Association (ILOA). With 24 hours / Earth day of potential operability facilitating long-duration observations, the stable platform of the lunar surface and extremely thin exosphere guaranteeing superior observation conditions, zones of radio-quiet for radio astronomy, and the resources and thermal stability at the lunar South Pole, the Moon provides several pioneering advantages for astronomy. ILOA, through MOUs with NAOC and CNSA, has been collaborating with China to make historic Galaxy observations with the Chang’e-3 LUT, including imaging Galaxy M101 in December 2014. LUT has an aperture of 150mm, covers a wavelength range of 245 to 340 nanometers and is capable of detecting objects at a brightness down to 14 mag. The success of China’s mission has provided support and momentum for ILOA’s mission to place a 2-meter dish, multifunctional observatory at the South Pole of the Moon NET 2017. ILOA also has plans to send a precursor observatory instrument (ILO-X) on the inaugural mission of GLXP contestant Moon Express. Advancing astronomy and astrophysics from the Moon through public-private and International partnerships will provide many valuable research opportunities while also helping to secure humanity’s position as multi world species.

  10. Social cognitive radio networks

    CERN Document Server

    Chen, Xu

    2015-01-01

    This brief presents research results on social cognitive radio networks, a transformational and innovative networking paradigm that promotes the nexus between social interactions and cognitive radio networks. Along with a review of the research literature, the text examines the key motivation and challenges of social cognitive radio network design. Three socially inspired distributed spectrum sharing mechanisms are introduced: adaptive channel recommendation mechanism, imitation-based social spectrum sharing mechanism, and evolutionarily stable spectrum access mechanism. The brief concludes with a discussion of future research directions which ascertains that exploiting social interactions for distributed spectrum sharing will advance the state-of-the-art of cognitive radio network design, spur a new line of thinking for future wireless networks, and enable novel wireless service and applications.

  11. NOAA Weather Radio

    Science.gov (United States)

    del tiempo incluido. Si eres quieres ser avisado de las advertencias y relojes de día o de noche, un Weather Radio relojes son independientes o basadas en el Condado (parroquia basados en Luisiana), aunque

  12. The digital sport radio.

    Directory of Open Access Journals (Sweden)

    Hilario José ROMERO BEJARANO

    2014-07-01

    Full Text Available Radio has been immersed in recent years in a phase of technological integration and business of multimedia, as well as diversification of systems and channels for broadcasting. In addition, Internet has been consolidated as the platform of digital radio that more has evolved as a result of its continued expansion. However, the merger radio-Internet must be understood as a new form of communication, and not solely as a new complementary medium. In this context, it is of great interest to analyze that transformations in the way of reception, contents, languages, programs and schedules, has brought with it for the radio that integration. To this end is taken as main reference the sports areas, a key aspect and broadly representative of the current broadcasting landscape.

  13. Music, radio and mediatization

    DEFF Research Database (Denmark)

    Michelsen, Morten; Krogh, Mads

    2016-01-01

    of mediatization where media as such seem to be ascribed agency. Instead, we consider historical accounts of music–radio in order to address the complex nonlinearity of concrete processes of mediatization as they take place in the multiple meetings between a decentred notion of radio and musical life.......Mediatization has become a key concept for understanding the relations between media and other cultural and social fields. Contributing to the discussions related to the concept of mediatization, this article discusses how practices of radio and music(al life) influence each other. We follow Deacon......’s and Stanyer’s advice to supplement the concept of mediatization with ‘a series of additional concepts at lower levels of abstraction’ and suggest, in this respect, the notion of heterogeneous milieus of music–radio. Hereby, we turn away from the all-encompassing perspectives related to the concept...

  14. ITSY Handheld Software Radio

    National Research Council Canada - National Science Library

    Bose, Vanu

    2001-01-01

    .... A handheld software radio platform would enable the construction of devices that could inter-operate with multiple legacy systems, download new waveforms and be used to construct adhoc networks...

  15. Structure in radio galaxies

    International Nuclear Information System (INIS)

    Breugel, W. van.

    1980-01-01

    It is shown that radio jets are a rather common phenomenon in radio galaxies. Jets can be disguised as trails in head-tail sources, bridges in double sources or simply remain undetected because of lack of resolution and sensitivity. It is natural to associate these jets with the channels which had previously been suggested to supply energy to the extended radio lobes. The observations of optical emission suggest that a continuous non-thermal spectrum extending from 10 9 to 10 15 Hz is a common property of jets. Because significant amounts of interstellar matter are also observed in each of the galaxies surveyed it seems that models for jets which involve an interaction with this medium may be most appropriate. New information about the overall structure of extended radio sources has been obtained from the detailed multifrequency study with the WSRT. (Auth.)

  16. Wireless radio a history

    CERN Document Server

    Coe, Lewis

    2006-01-01

    ""Informative...recommended""--Choice; ""interesting...a good read...well worth reading""--Contact Magazine. This history first looks at Marconi's wireless communications system and then explores its many applications, including marine radio, cellular telephones, police and military uses, television and radar. Radio collecting is also discussed, and brief biographies are provided for the major figures in the development and use of the wireless.

  17. ¿Radios ciudadanas?

    OpenAIRE

    López Vigil, José Ignacio

    1998-01-01

    Educativas, sindicales, populares, comunitarias, libres, rebeldes, participativas, alternativas, alterativas, han sido las denominaciones de la radio cuando su proyecto está al servicio de la gente. Palabras apropiadas y nobles -dice elautor-pero devaluadas, a las que ahora se agrega la radio ciudadana, para relievarla como ejercicio depoder y espacio de verdadera participación de la genteenla vida de su nación.

  18. Valley development on Hawaiian volcanoes

    International Nuclear Information System (INIS)

    Baker, V.R.; Gulick, V.C.

    1987-01-01

    Work in progress on Hawaiian drainage evolution indicates an important potential for understanding drainage development on Mars. Similar to Mars, the Hawaiian valleys were initiated by surface runoff, subsequently enlarged by groundwater sapping, and eventually stabilized as aquifers were depleted. Quantitative geomorphic measurements were used to evaluate the following factors in Hawaiian drainage evolution: climate, stream processes, and time. In comparing regions of similar climate, drainage density shows a general increase with the age of the volcani island. With age and climate held constant, sapping dominated valleys, in contrast to runoff-dominated valleys, display the following: lower drainage densities, higher ratios of valley floor width to valley height, and more positive profile concavities. Studies of stream junction angles indicate increasing junction angles with time on the drier leeward sides of the major islands. The quantitative geomorphic studies and earlier field work yielded important insights for Martian geomorphology. The importance of ash mantling in controlling infiltration on Hawaii also seems to apply to Mars. The Hawaiian valley also have implications for the valley networks of Martian heavily cratered terrains

  19. Classics in radio astronomy

    CERN Document Server

    Sullivan, Woodruff Turner

    1982-01-01

    Radio techniques were the nrst to lead astronomy away from the quiescent and limited Universe revealed by traditional observations at optical wave­ lengths. In the earliest days of radio astronomy, a handful of radio physicists and engineers made one startling discovery after another as they opened up the radio sky. With this collection of classic papers and the extensive intro­ ductory material, the reader can experience these exciting discoveries, as well as understand the developing techniques and follow the motivations which prompted the various lines of inquiry. For instance he or she will follow in detail the several attempts to detect radio waves from the sun at the turn of the century; the unravelling by Jansky of a "steady hiss type static"; the incredible story of Reber who built a 9 meter dish in his backyard in 1937 and then mapped the Milky Way; the vital discoveries by Hey and colleagues of radio bursts from the Sun and of a discrete source in the constellation of Cygnus; the development of re...

  20. Interoperability of Heliophysics Virtual Observatories

    Science.gov (United States)

    Thieman, J.; Roberts, A.; King, T.; King, J.; Harvey, C.

    2008-01-01

    If you'd like to find interrelated heliophysics (also known as space and solar physics) data for a research project that spans, for example, magnetic field data and charged particle data from multiple satellites located near a given place and at approximately the same time, how easy is this to do? There are probably hundreds of data sets scattered in archives around the world that might be relevant. Is there an optimal way to search these archives and find what you want? There are a number of virtual observatories (VOs) now in existence that maintain knowledge of the data available in subdisciplines of heliophysics. The data may be widely scattered among various data centers, but the VOs have knowledge of what is available and how to get to it. The problem is that research projects might require data from a number of subdisciplines. Is there a way to search multiple VOs at once and obtain what is needed quickly? To do this requires a common way of describing the data such that a search using a common term will find all data that relate to the common term. This common language is contained within a data model developed for all of heliophysics and known as the SPASE (Space Physics Archive Search and Extract) Data Model. NASA has funded the main part of the development of SPASE but other groups have put resources into it as well. How well is this working? We will review the use of SPASE and how well the goal of locating and retrieving data within the heliophysics community is being achieved. Can the VOs truly be made interoperable despite being developed by so many diverse groups?

  1. The Arecibo Observatory Space Academy

    Science.gov (United States)

    Rodriguez-Ford, Linda A.; Fernanda Zambrano Marin, Luisa; Aponte Hernandez, Betzaida; Soto, Sujeily; Rivera-Valentin, Edgard G.

    2016-10-01

    The Arecibo Observatory Space Academy (AOSA) is an intense fifteen-week pre-college research program for qualified high school students residing in Puerto Rico, which includes ten days for hands-on, on site research activities. Our mission is to prepare students for their professional careers by allowing them to receive an independent and collaborative research experience on topics related to the multidisciplinary field of space science. Our objectives are to (1) supplement the student's STEM education via inquiry-based learning and indirect teaching methods, (2) immerse students in an ESL environment, further developing their verbal and written presentation skills, and (3) foster in every student an interest in the STEM fields by harnessing their natural curiosity and knowledge in order to further develop their critical thinking and investigation skills. Students interested in participating in the program go through an application, interview and trial period before being offered admission. They are welcomed as candidates the first weeks, and later become cadets while experiencing designing, proposing, and conducting research projects focusing in fields like Physics, Astronomy, Geology, Chemistry, and Engineering. Each individual is evaluated with program compatibility based on peer interaction, preparation, participation, and contribution to class, group dynamics, attitude, challenges, and inquiry. This helps to ensure that specialized attention can be given to students who demonstrate a dedication and desire to learn. Deciding how to proceed in the face of setbacks and unexpected problems is central to the learning experience. At the end of the semester, students present their research to the program mentors, peers, and scientific staff. This year, AOSA students also focused on science communication and were trained by NASA's FameLab. Students additionally presented their research at this year's International Space Development Conference (ISDC), which was held in

  2. The UTMOST: A Hybrid Digital Signal Processor Transforms the Molonglo Observatory Synthesis Telescope

    Science.gov (United States)

    Bailes, M.; Jameson, A.; Flynn, C.; Bateman, T.; Barr, E. D.; Bhandari, S.; Bunton, J. D.; Caleb, M.; Campbell-Wilson, D.; Farah, W.; Gaensler, B.; Green, A. J.; Hunstead, R. W.; Jankowski, F.; Keane, E. F.; Krishnan, V. Venkatraman; Murphy, Tara; O'Neill, M.; Osłowski, S.; Parthasarathy, A.; Ravi, V.; Rosado, P.; Temby, D.

    2017-10-01

    The Molonglo Observatory Synthesis Telescope (MOST) is an 18000 m2 radio telescope located 40 km from Canberra, Australia. Its operating band (820-851 MHz) is partly allocated to telecommunications, making radio astronomy challenging. We describe how the deployment of new digital receivers, Field Programmable Gate Array-based filterbanks, and server-class computers equipped with 43 Graphics Processing Units, has transformed the telescope into a versatile new instrument (UTMOST) for studying the radio sky on millisecond timescales. UTMOST has 10 times the bandwidth and double the field of view compared to the MOST, and voltage record and playback capability has facilitated rapid implementaton of many new observing modes, most of which operate commensally. UTMOST can simultaneously excise interference, make maps, coherently dedisperse pulsars, and perform real-time searches of coherent fan-beams for dispersed single pulses. UTMOST operates as a robotic facility, deciding how to efficiently target pulsars and how long to stay on source via real-time pulsar folding, while searching for single pulse events. Regular timing of over 300 pulsars has yielded seven pulsar glitches and three Fast Radio Bursts during commissioning. UTMOST demonstrates that if sufficient signal processing is applied to voltage streams, innovative science remains possible even in hostile radio frequency environments.

  3. Pro-Amateur Observatories as a Significant Resource for Professional Astronomers - Taurus Hill Observatory

    Science.gov (United States)

    Haukka, H.; Hentunen, V.-P.; Nissinen, M.; Salmi, T.; Aartolahti, H.; Juutilainen, J.; Vilokki, H.

    2013-09-01

    Taurus Hill Observatory (THO), observatory code A95, is an amateur observatory located in Varkaus, Finland. The observatory is maintained by the local astronomical association of Warkauden Kassiopeia [8]. THO research team has observed and measured various stellar objects and phenomena. Observatory has mainly focuse d on asteroid [1] and exoplanet light curve measurements, observing the gamma rays burst, supernova discoveries and monitoring [2]. We also do long term monitoring projects [3]. THO research team has presented its research work on previous EPSC meetings ([4], [5],[6], [7]) and got very supportive reactions from the European planetary science community. The results and publications that pro-amateur based observatories, like THO, have contributed, clearly demonstrates that pro-amateurs area significant resource for the professional astronomers now and even more in the future.

  4. Magdalena Ridge Observatory Interferometer: Status Update

    National Research Council Canada - National Science Library

    Creech-Eakman, M. J; Bakker, E. J; Buscher, D. F; Coleman, T. A; Haniff, C. A; Jurgenson, C. A; Klinglesmith, III, D. A; Parameswariah, C. B; Romero, V. D; Shtromberg, A. V; Young, J. S

    2006-01-01

    The Magdalena Ridge Observatory Interferometer (MROI) is a ten element optical and near-infrared imaging interferometer being built in the Magdalena mountains west of Socorro, NM at an altitude of 3230 m...

  5. Ten years of the Spanish Virtual Observatory

    Science.gov (United States)

    Solano, E.

    2015-05-01

    The main objective of the Virtual Observatory (VO) is to guarantee an easy and efficient access and analysis of the information hosted in astronomical archives. The Spanish Virtual Observatory (SVO) is a project that was born in 2004 with the goal of promoting and coordinating the VO-related activities at national level. SVO is also the national contact point for the international VO initiatives, in particular the International Virtual Observatory Alliance (IVOA) and the Euro-VO project. The project, led by Centro de Astrobiología (INTA-CSIC), is structured around four major topics: a) VO compliance of astronomical archives, b) VO-science, c) VO- and data mining-tools, and d) Education and outreach. In this paper I will describe the most important results obtained by the Spanish Virtual Observatory in its first ten years of life as well as the future lines of work.

  6. The Astrophysical Multimessenger Observatory Network (AMON)

    Science.gov (United States)

    Smith. M. W. E.; Fox, D. B.; Cowen, D. F.; Meszaros, P.; Tesic, G.; Fixelle, J.; Bartos, I.; Sommers, P.; Ashtekar, Abhay; Babu, G. Jogesh; hide

    2013-01-01

    We summarize the science opportunity, design elements, current and projected partner observatories, and anticipated science returns of the Astrophysical Multimessenger Observatory Network (AMON). AMON will link multiple current and future high-energy, multimessenger, and follow-up observatories together into a single network, enabling near real-time coincidence searches for multimessenger astrophysical transients and their electromagnetic counterparts. Candidate and high-confidence multimessenger transient events will be identified, characterized, and distributed as AMON alerts within the network and to interested external observers, leading to follow-up observations across the electromagnetic spectrum. In this way, AMON aims to evoke the discovery of multimessenger transients from within observatory subthreshold data streams and facilitate the exploitation of these transients for purposes of astronomy and fundamental physics. As a central hub of global multimessenger science, AMON will also enable cross-collaboration analyses of archival datasets in search of rare or exotic astrophysical phenomena.

  7. Astronomy projects in ruins as observatory obliterated

    CERN Multimedia

    Bradley, M

    2003-01-01

    Canberra bushfires have gutted the Mount Stromlo Observatory causing the flames destroyed five telescopes, the workshop, eight staff homes and the main dome, causing more than $20 million in damage (1 page).

  8. In Brief: Deep-sea observatory

    Science.gov (United States)

    Showstack, Randy

    2008-11-01

    The first deep-sea ocean observatory offshore of the continental United States has begun operating in the waters off central California. The remotely operated Monterey Accelerated Research System (MARS) will allow scientists to monitor the deep sea continuously. Among the first devices to be hooked up to the observatory are instruments to monitor earthquakes, videotape deep-sea animals, and study the effects of acidification on seafloor animals. ``Some day we may look back at the first packets of data streaming in from the MARS observatory as the equivalent of those first words spoken by Alexander Graham Bell: `Watson, come here, I need you!','' commented Marcia McNutt, president and CEO of the Monterey Bay Aquarium Research Institute, which coordinated construction of the observatory. For more information, see http://www.mbari.org/news/news_releases/2008/mars-live/mars-live.html.

  9. The Farid and Moussa Raphael Observatory

    International Nuclear Information System (INIS)

    Hajjar, R

    2017-01-01

    The Farid and Moussa Raphael Observatory (FMRO) at Notre Dame University Louaize (NDU) is a teaching, research, and outreach facility located at the main campus of the university. It located very close to the Lebanese coast, in an urbanized area. It features a 60-cm Planewave CDK telescope, and instruments that allow for photometric and spetroscopic studies. The observatory currently has one thinned, back-illuminated CCD camera, used as the main imager along with Johnson-Cousin and Sloan photometric filters. It also features two spectrographs, one of which is a fiber fed echelle spectrograph. These are used with a dedicated CCD. The observatory has served for student projects, and summer schools for advanced undergraduate and graduate students. It is also made available for use by the regional and international community. The control system is currently being configured for remote observations. A number of long-term research projects are also being launched at the observatory. (paper)

  10. First radio astronomy from space - RAE

    International Nuclear Information System (INIS)

    Kaiser, M.L.

    1987-01-01

    The spacecraft design, instrumentation, and performance of the Radio Astronomy Explorer (RAE) satellites (RAE-1 launched to earth orbit in 1968 and RAE-2 launched to lunar orbit in 1972) are reviewed and illustrated with drawings, diagrams, and graphs of typical data. Consideration is given to the three pairs of antennas, the Ryle-Vonberg and burst radiometers, and problems encountered with antenna deployment and observing patterns. Results summarized include observations of type III solar bursts, the spectral distribution of cosmic noise in broad sky regions, Jupiter at low frequencies, and auroral kilometric radiation (AKR) from the earth. The importance of avoiding the AKR bands in designing future space observatories is stressed. 11 references

  11. Early German Plans for a Southern Observatory

    Science.gov (United States)

    Wolfschmidt, Gudrun

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century the Heidelberg astronomer Max Wolf (1863-1932) proposed a southern observatory. In 1907 Hermann Carl Vogel (1841-1907), director of the Astrophysical Observatory Potsdam, suggested a southern station in Spain. His ideas for building an observatory in Windhuk for photographing the sky and measuring the solar constant were taken over by the Göttingen astronomers. In 1910 Karl Schwarzschild (1873-1916), after having visited the observatories in America, pointed out the usefulness of an observatory in South West Africa, where it would have better weather than in Germany and also give access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhuk to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963, as is well described by Blaauw (1991). Blaauw, Adriaan: ESO's Early History. The European Southern Observatory from Concept to Reality. Garching bei München: ESO 1991.

  12. The Pierre Auger Cosmic Ray Observatory

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Grygar, Jiří; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2015-01-01

    Roč. 798, Oct (2015), s. 172-213 ISSN 0168-9002 R&D Projects: GA MŠk(CZ) LG13007; GA MŠk(CZ) 7AMB14AR005; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : Pierre Auger Observatory * high energy cosmic rays * hybrid observatory * water Cherenkov detectors * air fluorescence detectors Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.200, year: 2015

  13. A Green Robotic Observatory for Astronomy Education

    Science.gov (United States)

    Reddy, Vishnu; Archer, K.

    2008-09-01

    With the development of robotic telescopes and stable remote observing software, it is currently possible for a small institution to have an affordable astronomical facility for astronomy education. However, a faculty member has to deal with the light pollution (observatory location on campus), its nightly operations and regular maintenance apart from his day time teaching and research responsibilities. While building an observatory at a remote location is a solution, the cost of constructing and operating such a facility, not to mention the environmental impact, are beyond the reach of most institutions. In an effort to resolve these issues we have developed a robotic remote observatory that can be operated via the internet from anywhere in the world, has a zero operating carbon footprint and minimum impact on the local environment. The prototype observatory is a clam-shell design that houses an 8-inch telescope with a SBIG ST-10 CCD detector. The brain of the observatory is a low draw 12-volt harsh duty computer that runs the dome, telescope, CCD camera, focuser, and weather monitoring. All equipment runs of a 12-volt AGM-style battery that has low lead content and hence more environmental-friendly to dispose. The total power of 12-14 amp/hrs is generated from a set of solar panels that are large enough to maintain a full battery charge for several cloudy days. This completely eliminates the need for a local power grid for operations. Internet access is accomplished via a high-speed cell phone broadband connection or satellite link eliminating the need for a phone network. An independent observatory monitoring system interfaces with the observatory computer during operation. The observatory converts to a trailer for transportation to the site and is converted to a semi-permanent building without wheels and towing equipment. This ensures minimal disturbance to local environment.

  14. Solar radio observations and interpretations

    International Nuclear Information System (INIS)

    Rosenberg, H.

    1976-01-01

    The recent solar radio observations related to flares are reviewed for the frequency range of a few kilohertz to several gigahertz. The analysis of the radio data leads to boundary conditions on the acceleration processes which are responsible for the fast particles which cause radio emission. The role and cause of plasma turbulence at the plasma-frequency and at much lower frequencies is discussed in relation to the acceleration processes and the radio emission mechanisms for the various radio bursts. (author)

  15. Early German plans for southern observatories

    Science.gov (United States)

    Wolfschmidt, G.

    2002-07-01

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century, Heidelberg and Potsdam astronomers proposed a southern observatory. Then Göttingen astronomers suggested building an observatory in Windhoek for photographing the sky and measuring the solar constant. In 1910 Karl Schwarzschild (1873-1916), after a visit to observatories in the United States, pointed out the usefulness of an observatory in South West Africa, in a climate superior to that in Germany, giving German astronomers access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhoek to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963.

  16. Observatories of Sawai Jai Singh II

    Science.gov (United States)

    Johnson-Roehr, Susan N.

    Sawai Jai Singh II, Maharaja of Amber and Jaipur, constructed five observatories in the second quarter of the eighteenth century in the north Indian cities of Shahjahanabad (Delhi), Jaipur, Ujjain, Mathura, and Varanasi. Believing the accuracy of his naked-eye observations would improve with larger, more stable instruments, Jai Singh reengineered common brass instruments using stone construction methods. His applied ingenuity led to the invention of several outsize masonry instruments, the majority of which were used to determine the coordinates of celestial objects with reference to the local horizon. During Jai Singh's lifetime, the observatories were used to make observations in order to update existing ephemerides such as the Zīj-i Ulugh Begī. Jai Singh established communications with European astronomers through a number of Jesuits living and working in India. In addition to dispatching ambassadorial parties to Portugal, he invited French and Bavarian Jesuits to visit and make use of the observatories in Shahjahanabad and Jaipur. The observatories were abandoned after Jai Singh's death in 1743 CE. The Mathura observatory was disassembled completely before 1857. The instruments at the remaining observatories were restored extensively during the nineteenth and twentieth centuries.

  17. The Russian-Ukrainian Observatories Network for the European Astronomical Observatory Route Project

    Science.gov (United States)

    Andrievsky, S. M.; Bondar, N. I.; Karetnikov, V. G.; Kazantseva, L. V.; Nefedyev, Y. A.; Pinigin, G. I.; Pozhalova, Zh. A.; Rostopchina-Shakhovskay, A. N.; Stepanov, A. V.; Tolbin, S. V.

    2011-09-01

    In 2004,the Center of UNESCO World Heritage has announced a new initiative "Astronomy & World Heritage" directed for search and preserving of objects,referred to astronomy,its history in a global value,historical and cultural properties. There were defined a strategy of thematic programme "Initiative" and general criteria for selecting of ancient astronomical objects and observatories. In particular, properties that are situated or have significance in relation to celestial objects or astronomical events; representations of sky and/or celestial bodies and astronomical events; observatories and instruments; properties closely connected with the history of astronomy. In 2005-2006,in accordance with the program "Initiative", information about outstanding properties connected with astronomy have been collected.In Ukraine such work was organized by astronomical expert group in Nikolaev Astronomical Observatory. In 2007, Nikolaev observatory was included to the Tentative List of UNESCO under # 5116. Later, in 2008, the network of four astronomical observatories of Ukraine in Kiev,Crimea, Nikolaev and Odessa,considering their high authenticities and integrities,was included to the Tentative List of UNESCO under # 5267 "Astronomical Observatories of Ukraine". In 2008-2009, a new project "Thematic Study" was opened as a successor of "Initiative". It includes all fields of astronomical heritage from earlier prehistory to the Space astronomy (14 themes in total). We present the Ukraine-Russian Observatories network for the "European astronomical observatory Route project". From Russia two observatories are presented: Kazan Observatory and Pulkovo Observatory in the theme "Astronomy from the Renaissance to the mid-twentieth century".The description of astronomical observatories of Ukraine is given in accordance with the project "Thematic study"; the theme "Astronomy from the Renaissance to the mid-twentieth century" - astronomical observatories in Kiev,Nikolaev and Odessa; the

  18. The Drentsche Aa valley system

    International Nuclear Information System (INIS)

    Gans, W. de.

    1981-01-01

    This thesis is composed of five papers concerned with Late Quaternary geology and geomorphology of the Aa valley system. The correlation and chronostratigraphic position of the layers have been established by radiocarbon dating. (Auth.)

  19. X-ray studies of quasars with the Einstein observatory. II

    International Nuclear Information System (INIS)

    Zamorani, G.; Henry, J.P.; Maccacaro, T.; Tananbaum, H.; Soltan, A.; Avni, Y.; Liebert, J.; Stocke, J.; Strittmatter, P.A.; Weymann, R.J.; Smith, M.G.; Condon, J.J.

    1981-01-01

    Using the Einstein Observatory, we have carried out X-ray observations of 107 quasars and have detected 79. From the analysis of this sample of objects we find a correlation between optical emission and X-ray emission. Our data for radio-loud quasars also show a correlation between radio emission and X-ray emission. For a given optical luminosity, the average X-ray emission of radio-loud quasars is approx.3 times higher than that of ratio-quiet quasars. In addition, our data suggest that the radio of X-ray to optical luminosity is decreasing with increasing redshift and/or optical luminosity. Taking into account the differences in X-ray luminosity between radio-loud and radio-quiet quasars, and between low-redshift and high-redshift quasars, we estimate that approx.30% of the observed X-ray background is contributed by quasars brighter than m/sub B/roughly-equal20, while much of the remainder can be contributed by still fainter quasars. Our data also imply that the optical log N--m/sub B/ relation for quasars cannot be extrapolated much beyond m/sub B/roughly-equal20 with the steep slope used to characterize optical source counts at brighter magnitudes. This situation supports the picture in which luminosity evolution, rather than pure density evolution, describes the quasar behavior as a function of redshift. We briefly discuss the observed correlation of X-ray luminosity with radio luminosity in the context of current quasar models

  20. A radio/optical reference frame. 5: Additional source positions in the mid-latitude southern hemisphere

    Science.gov (United States)

    Russell, J. L.; Reynolds, J. E.; Jauncey, D. L.; de Vegt, C.; Zacharias, N.; Ma, C.; Fey, A. L.; Johnston, K. J.; Hindsley, R.; Hughes, J. A.; Malin, D. F.; White, G. L.; Kawaguchi, N.; Takahashi, Y.

    1994-01-01

    We report new accurate radio position measurements for 30 sources, preliminary positions for two sources, improved radio postions for nine additional sources which had limited previous observations, and optical positions and optical-radio differences for six of the radio sources. The Very Long Baseline Interferometry (VLBI) observations are part of the continuing effort to establish a global radio reference frame of about 400 compact, flat spectrum sources, which are evenly distributed across the sky. The observations were made using Mark III data format in four separate sessions in 1988-89 with radio telescopes at Tidbinbilla, Australia, Kauai, USA, and Kashima, Japan. We observed a total of 54 sources, including ten calibrators and three which were undetected. The 32 new source positions bring the total number in the radio reference frame catalog to 319 (172 northern and 147 southern) and fill in the zone -25 deg greater than delta greater than -45 deg which, prior to this list, had the lowest source density. The VLBI positions have an average formal precision of less than 1 mas, although unknown radio structure effects of about 1-2 mas may be present. The six new optical postion measurements are part of the program to obtain positions of the optical counterparts of the radio reference frame source and to map accurately the optical on to the radio reference frames. The optical measurements were obtained from United States Naval Observatory (USNO) Black Birch astrograph plates and source plates from the AAT, and Kitt Peak National Observatory (KPNO) 4 m, and the European Southern Observatory (ESO) Schmidt. The optical positions have an average precision of 0.07 sec, mostly due to the zero point error when adjusted to the FK5 optical frame using the IRS catalog. To date we have measured optical positions for 46 sources.

  1. Local area networking in a radio quiet environment

    Science.gov (United States)

    Childers, Edwin L.; Hunt, Gareth; Brandt, Joseph J.

    2002-11-01

    The Green Bank facility of the National Radio Astronomy Observatory is spread out over 2,700 acres in the Allegheny Mountains of West Virginia. Good communication has always been needed between the radio telescopes and the control buildings. The National Radio Quiet Zone helps protect the Green Bank site from radio transmissions that interfere with the astronomical signals. Due to stringent Radio Frequency Interference (RFI) requirements, a fiber optic communication system was used for Ethernet transmissions on the site and coaxial cable within the buildings. With the need for higher speed communications, the entire network has been upgraded to use optical fiber with modern Ethernet switches. As with most modern equipment, the implementation of the control of the newly deployed Green Bank Telescope (GBT) depends heavily on TCP/IP. In order to protect the GBT from the commodity Internet, the GBT uses a non-routable network. Communication between the control building Local Area Network (LAN) and the GBT is implemented using a Virtual LAN (VLAN). This configuration will be extended to achieve isolation between trusted local user systems, the GBT, and other Internet users. Legitimate access to the site, for example by remote observers, is likely to be implemented using a virtual private network (VPN).

  2. The Detectability of Radio Auroral Emission from Proxima b

    Energy Technology Data Exchange (ETDEWEB)

    Burkhart, Blakesley; Loeb, Abraham [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States)

    2017-11-01

    Magnetically active stars possess stellar winds whose interactions with planetary magnetic fields produce radio auroral emission. We examine the detectability of radio auroral emission from Proxima b, the closest known exosolar planet orbiting our nearest neighboring star, Proxima Centauri. Using the radiometric Bode’s law, we estimate the radio flux produced by the interaction of Proxima Centauri’s stellar wind and Proxima b’s magnetosphere for different planetary magnetic field strengths. For plausible planetary masses, Proxima b could produce radio fluxes of 100 mJy or more in a frequency range of 0.02–3 MHz for planetary magnetic field strengths of 0.007–1 G. According to recent MHD models that vary the orbital parameters of the system, this emission is expected to be highly variable. This variability is due to large fluctuations in the size of Proxima b’s magnetosphere as it crosses the equatorial streamer regions of dense stellar wind and high dynamic pressure. Using the MHD model of Garraffo et al. for the variation of the magnetosphere radius during the orbit, we estimate that the observed radio flux can vary nearly by an order of magnitude over the 11.2-day period of Proxima b. The detailed amplitude variation depends on the stellar wind, orbital, and planetary magnetic field parameters. We discuss observing strategies for proposed future space-based observatories to reach frequencies below the ionospheric cutoff (∼10 MHz), which would be required to detect the signal we investigate.

  3. Providing Undergraduate Research Opportunities Through the World Rivers Observatory Collaborative Network

    Science.gov (United States)

    Gillies, S. L.; Marsh, S. J.; Janmaat, A.; Peucker-Ehrenbrink, B.; Voss, B.; Holmes, R. M.

    2013-12-01

    Successful research collaboration exists between the University of the Fraser Valley (UFV), a primarily undergraduate-serving university located on the Fraser River in British Columbia, and the World Rivers Observatory that is coordinated through the Woods Hole Oceanographic Institution (WHOI) and the Woods Hole Research Center (WHRC). The World Rivers Observatory coordinates time-series sampling of 15 large rivers, with particular focus on the large Arctic rivers, the Ganges-Brahmaputra, Congo, Fraser, Yangtze (Changjiang), Amazon, and Mackenzie River systems. The success of this international observatory critically depends on the participation of local collaborators, such as UFV, that are necessary in order to collect temporally resolved data from these rivers. Several faculty members and undergraduate students from the Biology and Geography Departments of UFV received on-site training from the lead-PIs of the Global Rivers Observatory. To share information and ensure good quality control of sampling methods, WHOI and WHRC hosted two international workshops at Woods Hole for collaborators. For the past four years, faculty and students from UFV have been collecting a variety of bi-monthly water samples from the Fraser River for the World Rivers Observatory. UFV undergraduate students who become involved learn proper sampling techniques and are given the opportunity to design and conduct their own research. Students have collected, analyzed and presented data from this project at regional, national, and international scientific meetings. UFV undergraduate students have also been hosted by WHOI and WHRC as guest students to work on independent research projects. While at WHOI and WHRC, students are able to conduct research using state-of-the-art specialized research facilities not available at UFV.

  4. Tools of radio astronomy

    CERN Document Server

    Wilson, Thomas L; Hüttemeister, Susanne

    2013-01-01

    This 6th edition of “Tools of Radio Astronomy”, the most used introductory text in radio astronomy, has been revised to reflect the current state of this important branch of astronomy. This includes the use of satellites, low radio frequencies, the millimeter/sub-mm universe, the Cosmic Microwave Background and the increased importance of mm/sub-mm dust emission. Several derivations and presentations of technical aspects of radio astronomy and receivers, such as receiver noise, the Hertz dipole and  beam forming have been updated, expanded, re-worked or complemented by alternative derivations. These reflect advances in technology. The wider bandwidths of the Jansky-VLA and long wave arrays such as LOFAR and mm/sub-mm arrays such as ALMA required an expansion of the discussion of interferometers and aperture synthesis. Developments in data reduction algorithms have been included. As a result of the large amount of data collected in the past 20 years, the discussion of solar system radio astronomy, dust em...

  5. The Fram Strait integrated ocean observatory

    Science.gov (United States)

    Fahrbach, E.; Beszczynska-Möller, A.; Rettig, S.; Rohardt, G.; Sagen, H.; Sandven, S.; Hansen, E.

    2012-04-01

    A long-term oceanographic moored array has been operated since 1997 to measure the ocean water column properties and oceanic advective fluxes through Fram Strait. While the mooring line along 78°50'N is devoted to monitoring variability of the physical environment, the AWI Hausgarten observatory, located north of it, focuses on ecosystem properties and benthic biology. Under the EU DAMOCLES and ACOBAR projects, the oceanographic observatory has been extended towards the innovative integrated observing system, combining the deep ocean moorings, multipurpose acoustic system and a network of gliders. The main aim of this system is long-term environmental monitoring in Fram Strait, combining satellite data, acoustic tomography, oceanographic measurements at moorings and glider sections with high-resolution ice-ocean circulation models through data assimilation. In future perspective, a cable connection between the Hausgarten observatory and a land base on Svalbard is planned as the implementation of the ESONET Arctic node. To take advantage of the planned cabled node, different technologies for the underwater data transmission were reviewed and partially tested under the ESONET DM AOEM. The main focus was to design and evaluate available technical solutions for collecting data from different components of the Fram Strait ocean observing system, and an integration of available data streams for the optimal delivery to the future cabled node. The main components of the Fram Strait integrated observing system will be presented and the current status of available technologies for underwater data transfer will be reviewed. On the long term, an initiative of Helmholtz observatories foresees the interdisciplinary Earth-Observing-System FRAM which combines observatories such as the long term deep-sea ecological observatory HAUSGARTEN, the oceanographic Fram Strait integrated observing system and the Svalbard coastal stations maintained by the Norwegian ARCTOS network. A vision

  6. Green River air quality model development: meteorological and tracer data, July/August 1982 field study in Brush Valley, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Whiteman, C.D.; Lee, R.N.; Orgill, M.M.; Zak, B.D.

    1984-06-01

    Meteorological and atmospheric tracer studies were conducted during a 3-week period in July and August of 1982 in the Brush Creek Valley of northwestern Colorado. The objective of the field experiments was to obtain data to evaluate a model, called VALMET, developed at PNL to predict dispersion of air pollutants released from an elevated stack located within a deep mountain valley in the post-sunrise temperature inversion breakup period. Three tracer experiments were conducted in the valley during the 2-week period. In these experiments, sulfur hexafluoride (SF/sub 6/) was released from a height of approximately 100 m, beginning before sunrise and continuing until the nocturnal down-valley winds reversed several hours after sunrise. Dispersion of the sulfur hexafluoride after release was evaluated by measuring SF/sub 6/ concentrations in ambient air samples taken from sampling devices operated within the valley up to about 8 km down valley from the source. An instrumented research aircraft was also used to measure concentrations in and above the valley. Tracer samples were collected using a network of radio-controlled bag sampling stations, two manually operated gas chromatographs, a continuous SF/sub 6/ monitor, and a vertical SF/sub 6/ profiler. In addition, basic meteorological data were collected during the tracer experiments. Frequent profiles of vertical wind and temperature structure were obtained with tethered balloons operated at the release site and at a site 7.7 km down the valley from the release site. 10 references, 63 figures, 50 tables.

  7. 195-Year History of Mykolayiv Observatory: Events and People

    Directory of Open Access Journals (Sweden)

    Shulga, O.V.

    2017-01-01

    Full Text Available The basic stages of the history of the Mykolaiv Astronomical Observatory are shown. The main results of the Observatory activities are presented by the catalogs of star positions, major and minor planets in the Solar system, space objects in the Earth orbit. The information on the qualitative and quantitative structure of the Observatory, cooperation with the observatories of Ukraine and foreign countries as well as major projects carried out in the Observatory is provided.

  8. Galactic radio astronomy

    CERN Document Server

    Sofue, Yoshiaki

    2017-01-01

    This book is a concise primer on galactic radio astronomy for undergraduate and graduate students, and provides wide coverage of galactic astronomy and astrophysics such as the physics of interstellar matter and the dynamics and structure of the Milky Way Galaxy and galaxies. Radio astronomy and its technological development have led to significant progress in galactic astronomy and contributed to understanding interstellar matter and galactic structures. The book begins with the fundamental physics of radio-wave radiation, i.e., black body radiation, thermal emission, synchrotron radiation, and HI and molecular line emissions. The author then gives overviews of ingredients of galactic physics, including interstellar matter such as the neutral (HI), molecular hydrogen, and ionized gases, as well as magnetic fields in galaxies. In addition, more advanced topics relevant to the Galaxy and galaxies are also contained here: star formation, supernova remnants, the Galactic Center and black holes, galactic dynamics...

  9. Radio structure in quasars

    International Nuclear Information System (INIS)

    Barthel, P.D.

    1984-01-01

    In this thesis, observational attention is given to the extended extragalactic radio sources associated with quasars. The isolated compact radio sources, often identified with quasars, are only included in the discussions. Three aspects of the radio structure in quasars and their cosmic evolution are considered: a study of the parsec scale morphology in quasar cores, in relation to the extended morphologies; an investigation of possible epoch dependent hotspot properties as well as a more detailed investigation of this fine scale structure; a VLA project was carried out to obtain morphological information on scales of 0.5 arcsec on high redshift quasars and to investigate possible epoch dependent morphological properties. MERLIN observations at 0.1 arcsec resolution to supplement the VLA data were initiated. (Auth.)

  10. Radio spectra of pulsars. Pt. 1

    International Nuclear Information System (INIS)

    Izekova, V.A.; Kuzmin, A.D.; Malofeev, V.M.; Shitov, Yu.P.

    1981-01-01

    The results of flux pulsar radioemission measurements at meter wavelength, made at Pushchino Radio Astronomical Observatory of the Lebedev Physical Institute, are presented. Flux densities at 102, 85, 61 and 39 MHz have been measured for 85, 29, 37 and 23 pulsars correspondingly. Some of them were performed at all frequencies simultaneously. On the basis of these data and high frequencies data obtained by other authors, spectra of 52 pulsars were plotted. In practically all investigated pulsars we have detected a turn-over frequency at which the flux density of pulsar radioemission attained its maximum. Its mean value is vsub(m) = 130 +- 80 MHz. Averaged on many pulsars, the spectral index is negative in the 39-61 MHz frequency range (anti ALPHA 39 sub(-) 61 = -1.4 +- 0.4) and passes through zero at frequencies of about 100 MHz, becoming positive in the 100-400 MHz frequency range. It was noticed that the spectral index in the 100-400 MHz interval depends upon such pulsar periods as α 100 sub(-) 400 = 0.7 log p + 0.9. Using the spectra, more precise radio luminosities of pulsars have been computed. (orig.)

  11. Dark matter search experiment with CaF2(Eu) scintillator at Kamioka Observatory

    International Nuclear Information System (INIS)

    Shimizu, Y.; Minowa, M.; Suganuma, W.; Inoue, Y.

    2006-01-01

    We report recent results of a WIMP dark matter search experiment using 310 g of CaF 2 (Eu) scintillator at Kamioka Observatory. We chose a highly radio-pure crystal, PMTs and radiation shields, so that the background rate decreased considerably. We derived limits on the spin dependent WIMP-proton and WIMP-neutron coupling coefficients, a p and a n . The limits excluded a part of the parameter space allowed by the annual modulation observation of the DAMA NaI experiment

  12. ESA innovation rescues Ultraviolet Observatory

    Science.gov (United States)

    1995-10-01

    experience to have the opportunity to do an in-depth review of operational procedures established in 1978 and be given the chance to streamline these through the application of the tools available to engineers and scientists in 1995." The innovative arrangements were designed and developed at the ESA IUE Observatory, which is located in Spain at ESA's Villafranca Satellite Tracking Station in Villanueva de la Canada near Madrid. As a result, ESA is now performing all of WE's science observations (16 hours per day) from the Villafranca station. All the processing of the observations transmitted by the satellite and the subsequent rapid data distribution to the research scientists world-wide is now done from Villafranca. NASA does maintain its role in the programme in the area of operational spacecraft maintenance support, satellite communications and data re-processing for IUE's Final Archive. Thus the IUE Project could be extended and the final IUE observing program can now be implemented. In particular, this will involve critical studies on comets (e,g. on Comet Hale-Bopp), on stellar wind structures, on the enigmatic mini-quasars (which are thought to power the nuclei of Active Galaxies), as well as performing pre- studies which will optimize the utilization of the Hubble Space Telescope. Prof. R.M. Bonnet, Director of the ESA Science Programme comments "I am quite pleased that we have been able to secure the extension of our support for the scientists in Europe and the world to this highly effective mission. Also the scientists can be proud of the utilization of IUE, with more than 3000 learned publications and 200 Doctoral dissertations based on data from IUE. Through this they demonstrate in turn to be very appreciative of our efforts in the Science Programme".

  13. Radio Emission from Supernovae

    International Nuclear Information System (INIS)

    Weiler, Kurt W.; Panagia, Nino; Sramek, Richard A.; Van Dyk, Schuyler D.; Williams, Christopher L.; Stockdale, Christopher J.; Kelley, Matthew T.

    2009-01-01

    Study of radio supernovae over the past 27 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the presupernova stellar system, and to detect dumpiness of the circumstellar material.

  14. Radio emission from Jupiter

    International Nuclear Information System (INIS)

    Velusamy, T.

    1976-01-01

    The basic features of the different radio emissions from the planet Jupiter are reviewed. These radio emissions characterized into three types as thermal, decimetric and decametric, are discussed. The coherent emission mechanism for the origin of the decametric bursts and the acceleration mechanism for relativistic electrons in the decimetric radiation have not been properly understood. The emissions are much related to the magnetic field of Jupiter. The system III rotation period for Jupiter has been calculated as 092 55 m 29.74 S. (A.K.)

  15. ¿Radios Comunitarias?

    OpenAIRE

    José Ignacio López Vigil

    2015-01-01

    Varias han sido las denominaciones dadas a la radio cuando su proyecto está al servicio de la gente. Palabras apropiadas pero devaluadas al decir del autor, a las que ahora se suma otras radios ciudadanas. Ciudadana para relievarla como ejercicio de poder y espacio de verdadera participación de la gente en la vida de su nación. Ciudadanos son los que piensan con cabeza propia y pesan en la opinión pública. Presenta una sinopsis de la historia de éstas desde 1974. Señala que la competencia obl...

  16. An international network of magnetic observatories

    Science.gov (United States)

    Love, Jeffrey J.; Chulliat, A.

    2013-01-01

    Since its formation in the late 1980s, the International Real-Time Magnetic Observatory Network (INTERMAGNET), a voluntary consortium of geophysical institutes from around the world, has promoted the operation of magnetic observatories according to modern standards [eg. Rasson, 2007]. INTERMAGNET institutes have cooperatively developed infrastructure for data exchange and management ads well as methods for data processing and checking. INTERMAGNET institute have also helped to expand global geomagnetic monitoring capacity, most notably by assisting magnetic observatory institutes in economically developing countries by working directly with local geophysicists. Today the INTERMAGNET consortium encompasses 57 institutes from 40 countries supporting 120 observatories (see Figures 1a and 1b). INTERMAGNET data record a wide variety of time series signals related to a host of different physical processes in the Earth's interiors and in the Earth's surrounding space environment [e.g., Love, 2008]. Observatory data have always had a diverse user community, and to meet evolving demand, INTERMAGNET has recently coordinated the introduction of several new data services.

  17. The University of Montana's Blue Mountain Observatory

    Science.gov (United States)

    Friend, D. B.

    2004-12-01

    The University of Montana's Department of Physics and Astronomy runs the state of Montana's only professional astronomical observatory. The Observatory, located on nearby Blue Mountain, houses a 16 inch Boller and Chivens Cassegrain reflector (purchased in 1970), in an Ash dome. The Observatory sits just below the summit ridge, at an elevation of approximately 6300 feet. Our instrumentation includes an Op-Tec SSP-5A photoelectric photometer and an SBIG ST-9E CCD camera. We have the only undergraduate astronomy major in the state (technically a physics major with an astronomy option), so our Observatory is an important component of our students' education. Students have recently carried out observing projects on the photometry of variable stars and color photometry of open clusters and OB associations. In my poster I will show some of the data collected by students in their observing projects. The Observatory is also used for public open houses during the summer months, and these have become very popular: at times we have had 300 visitors in a single night.

  18. Spectrum management and radio resource management considering cognitive radio systems

    NARCIS (Netherlands)

    Haartsen, J.C.; Wieweg, Lasse; Huschke, Jörg

    2005-01-01

    International fora and some national administrations define a cognitive radio (CR) as a pioneering radio communication system that would be capable of altering and adapting its transmitter and receiver parameters based on communication and the exchange of information with related detectable radio

  19. Multinational History of Strasbourg Astronomical Observatory

    CERN Document Server

    Heck, André

    2005-01-01

    Strasbourg Astronomical Observatory is quite an interesting place for historians: several changes of nationality between France and Germany, high-profile scientists having been based there, big projects born or installed in its walls, and so on. Most of the documents circulating on the history of the Observatory and on related matters have however been so far poorly referenced, if at all. This made necessary the compilation of a volume such as this one, offering fully-documented historical facts and references on the first decades of the Observatory history, authored by both French and German specialists. The experts contributing to this book have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy nor in the details of European history. After an introductory chapter by the Editor, contributions by Wolfschmidt and by Duerbeck respectively deal extensively with the German periods and review people and instrumentation, while another paper by Duerbeck is more...

  20. Valuing commercial radio licences

    NARCIS (Netherlands)

    Kerste, M.; Poort, J.; van Eijk, N.

    2011-01-01

    Within the EU Regulatory Framework, licensees for commercial radio broadcasting may be charged a fee to ensure optimal allocation of scarce resources but not to maximize public revenues. In this paper, it is described how such a fee can be determined for the purpose of licence renewal or extension.

  1. Radio Frequency Identification

    Indian Academy of Sciences (India)

    Radio Frequency Identification (RFID) has been around sinceearly 2000. Its use has currently become commonplace as thecost of RFID tags has rapidly decreased. RFID tags have alsobecome more 'intelligent' with the incorporation of processorsand sensors in them. They are widely used now in manyinnovative ways.

  2. Nanolensed Fast Radio Bursts

    Science.gov (United States)

    Eichler, David

    2017-12-01

    It is suggested that fast radio bursts can probe gravitational lensing by clumpy dark matter objects that range in mass from 10-3 M ⊙-102 M ⊙. They may provide a more sensitive probe than observations of lensings of objects in the Magellanic Clouds, and could find or rule out clumpy dark matter with an extended mass spectrum.

  3. AMATEUR "HAM" RADIO

    Science.gov (United States)

    these cooler months. Did you know your body can cool 25 times faster in water than in air? That water code at 13 or 20 words-per-minute will no longer be required to obtain amateur radio operating be found by contacting the ARRL or using an Internet search engine to search on such topics as "

  4. Chicago's Dearborn Observatory: a study in survival

    Science.gov (United States)

    Bartky, Ian R.

    2000-12-01

    The Dearborn Observatory, located on the Old University of Chicago campus from 1863 until 1888, was America's most promising astronomical facility when it was founded. Established by the Chicago Astronomical Society and directed by one of the country's most gifted astronomers, it boasted the largest telescope in the world and virtually unlimited operating funds. The Great Chicago Fire of 1871 destroyed its funding and demolished its research programme. Only via the sale of time signals and the heroic efforts of two amateur astronomers did the Dearborn Observatory survive.

  5. Geoelectric monitoring at the Boulder magnetic observatory

    Directory of Open Access Journals (Sweden)

    C. C. Blum

    2017-11-01

    Full Text Available Despite its importance to a range of applied and fundamental studies, and obvious parallels to a robust network of magnetic-field observatories, long-term geoelectric field monitoring is rarely performed. The installation of a new geoelectric monitoring system at the Boulder magnetic observatory of the US Geological Survey is summarized. Data from the system are expected, among other things, to be used for testing and validating algorithms for mapping North American geoelectric fields. An example time series of recorded electric and magnetic fields during a modest magnetic storm is presented. Based on our experience, we additionally present operational aspects of a successful geoelectric field monitoring system.

  6. Operation of the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Rodriguez Martino, Julio

    2011-01-01

    While the work to make data acquisition fully automatic continues, both the Fluorescence Detectors and the Surface Detectors of the Pierre Auger Observatory need some kind of attention from the local staff. In the first case, the telescopes are operated and monitored during the moonless periods. The ground array only needs monitoring, but the larger number of stations implies more variables to consider. AugerAccess (a high speed internet connection) will give the possibility of operating and monitoring the observatory from any place in the world. This arises questions about secure access, better control software and alarms. Solutions are already being tested and improved.

  7. The origin of the Hawaiian Volcano Observatory

    International Nuclear Information System (INIS)

    Dvorak, John

    2011-01-01

    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  8. SPASE and the Heliophysics Virtual Observatories

    Directory of Open Access Journals (Sweden)

    J R Thieman

    2010-02-01

    Full Text Available The Space Physics Archive Search and Extract (SPASE project has developed an information model for interoperable access and retrieval of data within the Heliophysics (also known as space and solar physics science community. The diversity of science data archives within this community has led to the establishment of many virtual observatories to coordinate the data pathways within Heliophysics subdisciplines, such as magnetospheres, waves, radiation belts, etc. The SPASE information model provides a semantic layer and common language for data descriptions so that searches might be made across the whole of the heliophysics data environment, especially through the virtual observatories.

  9. The origin of the Hawaiian Volcano Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, John [University of Hawaii' s Institute for Astronomy (United States)

    2011-05-15

    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  10. The EarthScope Plate Boundary Observatory: Bringing Low Latency Data From Unimak Island, Alaska

    Science.gov (United States)

    Feaux, K.; Mencin, D.; Jackson, M.; Gallaher, W.; Pauk, B.; Smith, S.

    2008-05-01

    The Plate Boundary Observatory (PBO), part of the NSF-funded EarthScope project, will complete the installation of a fourteen station GPS network on Unimak Island, Alaska in August, 2008. The primary data communications goal of the project is to design and implement a robust data communications network capable of downloading 15-sec daily GPS files and streaming 1 Hz GPS data, via Ustream, from Unimak Island to three data relay points in the Aleutian chain. As part of the permitting agreement with the landowner, PBO will co-locate the GPS stations with existing USGS seismic stations. The technical challenges involved in optimizing the data communications network for both the GPS data and the seismic data will be presented. From Unimak island, there will be three separate data telemetry paths: 1) West through a radio repeater on Akutan volcano to a VSAT in Akutan village, 2) East through a radio repeater to a T1 connection in Cold Bay, AK, 3) South through a radio repeater to a VSAT at an existing PBO GPS station in King Cove, AK. The difficulties involved in the project include complex network geometries with multiple radio repeaters, long distance RF transmission over water, hardware bandwidth limitations, power limitations, space limitations, as well as working in bear country on an incredibly remote and active volcano.

  11. Radio images of the planets

    International Nuclear Information System (INIS)

    De Pater, I.

    1990-01-01

    Observations at radio wavelengths make possible detailed studies of planetary atmospheres, magnetospheres, and surface layers. The paper addresses the question of what can be learned from interferometric radio images of planets. Results from single-element radio observations are also discussed. Observations of both the terrestrial and the giant planets are considered. 106 refs

  12. Results from and prospects for the Auger Engineering Radio Array

    Directory of Open Access Journals (Sweden)

    van den Berg A.M.

    2013-06-01

    Full Text Available The Auger Engineering Radio Array (AERA is one of the low-energy enhancements of the Pierre Auger Observatory. AERA is based on experience obtained with the LOPES and CODALEMA experiments in Europe and aims to study in the MHz region the details of the emission mechanism of radio signals from extensive air showers. The data from AERA will be used to assess the sensitivity of MHz radiation to the mass composition of cosmic rays. Because of its energy threshold at 2 × 1017 eV the dip region in the cosmic-ray flux spectrum can be studied in detail. We present first results of AERA and of its prototypes and we provide an outlook towards the future.

  13. The Askaryan Radio Array: Overview and Recent Results

    Science.gov (United States)

    Pfendner, Carl; Askaryan Radio Array (ARA) Collaboration

    2017-01-01

    The Askaryan Radio Array (ARA) is radio frequency observatory under construction at the South Pole that is searching for ultrahigh energy neutrinos via the Askaryan effect. By instrumenting several gigatons of Antarctic glacial ice, the experiment aims to detect a flux of neutrinos above 10 PeV in energy. The measurement of this expected flux of neutrinos would provide information about the highest energy processes in the universe with no local horizon. The full detector consisting of 37 stations is being constructed in a phased deployment with 3 stations already in place and two more planned for deployment in the 2017-2018 season. Recent results from an analysis of data from two stations and a search for neutrinos correlated with gamma ray bursts are presented here. Funding provided by NSF CAREER Award 1255557, NSF ARA Grant 1404266, BigData Grant 1250720.

  14. On the results of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Lemoine, Martin, E-mail: lemoine@iap.f [Institut d' Astrophysique de Paris, CNRS, UPMC, 98 bis boulevard Arago, F-75014 Paris (France)

    2009-05-15

    This paper discusses the correlation recently reported by the Pierre Auger Observatory (PAO) of the arrival directions of the highest energy cosmic rays with active galactic nuclei (AGN) located within 75 Mpc. It is argued that these correlating AGN do not have the power required to be the sources of those particles. It is further argued that the current PAO data disfavors giant radio-galaxies (both Fanaroff-Riley type I and II) as sources of ultra-high energy cosmic rays. The reported correlation with AGN should thus be understood as follows: the AGN trace the distribution of the local large scale structure, in which the actual sources of ultrahigh energy cosmic rays camouflage. The most promising theoretical candidates for these sources are then gamma-ray bursts and magnetars. One important consequence of the above is that one will not detect counterparts in gamma-rays, neutrinos or gravitational waves to the sources of these observed ultrahigh energy cosmic rays, since the cosmic rays are delayed by extragalactic magnetic fields on timescales approx10{sup 4}-10{sup 5} yrs much larger than the emission timescale of these sources.

  15. On the results of the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Lemoine, Martin

    2009-01-01

    This paper discusses the correlation recently reported by the Pierre Auger Observatory (PAO) of the arrival directions of the highest energy cosmic rays with active galactic nuclei (AGN) located within 75 Mpc. It is argued that these correlating AGN do not have the power required to be the sources of those particles. It is further argued that the current PAO data disfavors giant radio-galaxies (both Fanaroff-Riley type I and II) as sources of ultra-high energy cosmic rays. The reported correlation with AGN should thus be understood as follows: the AGN trace the distribution of the local large scale structure, in which the actual sources of ultrahigh energy cosmic rays camouflage. The most promising theoretical candidates for these sources are then gamma-ray bursts and magnetars. One important consequence of the above is that one will not detect counterparts in gamma-rays, neutrinos or gravitational waves to the sources of these observed ultrahigh energy cosmic rays, since the cosmic rays are delayed by extragalactic magnetic fields on timescales ∼10 4 -10 5 yrs much larger than the emission timescale of these sources.

  16. Radio evidence for shock acceleration of electrons in the solar corona

    Science.gov (United States)

    Cane, H. V.; Stone, R. G.; Fainberg, J.; Steinberg, J. L.; Hoang, S.; Stewart, R. T.

    1981-01-01

    It is pointed out that the new class of kilometer-wavelength solar radio bursts observed with the ISEE-3 Radio Astronomy Experiment occurs at the reported times of type II events, which are indicative of a shock wave. An examination of records from the Culgoora Radio Observatory reveals that the associated type II bursts have fast drift elements emanating from them; that is, a herringbone structure is formed. It is proposed that this new class of bursts is a long-wavelength continuation of the herringbone structure, and it is thought probable that the electrons producing the radio emission are accelerated by shocks. These new events are referred to as shock-accelerated events, and their characteristics are discussed.

  17. EGRET Unidentified Source Radio Observations and Performance of Receiver Gain Calibration

    International Nuclear Information System (INIS)

    Niinuma, Kotaro; Asuma, Kuniyuki; Kuniyoshi, Masaya; Matsumura, Nobuo; Takefuji, Kazuhiro; Kida, Sumiko; Takeuchi, Akihiko; Ichikawa, Hajime; Sawano, Akihiro; Yoshimura, Naoya; Suzuki, Shigehiro; Nakamura, Ryosuke; Nakayama, Yu; Daishido, Tsuneaki

    2006-01-01

    Last year, we have developed the receiver gain calibration system by using Johnson-Nyquist noise, for accuracy flux measurement, because we have been starting radio identification program of transient radio sources, blazars and radio counterpart of The Energetic Gamma Ray Experiment Telescope (EGRET) unidentified γ-ray sources in Waseda Nasu Pulsar Observatory. It is shown that there are a few low correlation data between receiver gain and ambient temperature around receiver for anything troubles of receiver, because we can detect gain and ambient temperature through a day by developed system. Estimated fluctuations of daily data of steady sources decrease by removing low correlation data before analysing. As the result of our analysis by using above system, radio counterpart of EGRET identified source showed fading light-curve for a week

  18. Molecules in Space: A Chemistry lab using Radio Astronomy

    Science.gov (United States)

    Lekberg, M. J.; Pratap, P.

    2000-12-01

    We present the results of a laboratory exercise developed with the support of the NSF Research Experiences for Teachers program at MIT Haystack Observatory. The exercise takes the students beyond the traditional test tubes of a chemistry laboratory into the interstellar medium, where the same principles that they study about in the classroom are found to hold. It also utilizes the true multi-disciplinary nature of radio astronomy and allows the students to realize how much can be learnt by studying the universe at various wavelengths. The astronomical chemistry laboratory is presented wherein students from Chelmsford High School in Massachusetts operate the 37-m telescope at Haystack Observatory via the internet to observe radio signals from galactic chemicals. The laboratory is designed to be the means by which students witness physical evidence for molecular and orbital shapes by observing the radio emission from rotating dipoles. The laboratory described is a lynch pin activity for an integrated unit that moves from the valance shell electron configurations through molecular and orbital geometry to an understanding that many physical and chemical properties of chemicals are ultimately dependent upon the shape/geometry and consequently, dipole of the molecule. Students are expected to interpret and evaluate the nature of molecular dipoles and account for the diversity of rotational spectra using their conceptual knowledge of bonding orbital theory and their knowledge of the electronic atom. Flexibility in the lab allows students to identify individual chemicals by cross referencing radio emission from the galactic sources they have chosen against a prepared catalogue listing or by choosing to "listen" for specific chemicals at exact frequencies. A teacher resource manual containing information and data on a variety of daytime galactic source and individual chemical flux densities of molecular candidates has been prepared. Collaborative exercises and activities

  19. India-Based Neutrino Observatory (INO)

    Indian Academy of Sciences (India)

    India-Based Neutrino Observatory (INO) · Atmospheric neutrinos – India connection · INO Collaboration · INO Project components · ICAL: The physics goals · Slide 6 · Slide 7 · INO site : Bodi West Hills · Underground Laboratory Layout · Status of activities at INO Site · Slide 11 · Slide 12 · INO-ICAL Detector · ICAL factsheet.

  20. Asteroids Observed from GMARS and Santana Observatories

    Science.gov (United States)

    Stephens, Robert D.

    2009-01-01

    Lightcurve period and amplitude results from Santana and GMARS Observatories are reported for 2008 June to September: 1472 Muonio, 8.706 ± 0.002 h and 0.50 mag; 2845 Franklinken, 114 ± 1 h and 0.8 mag; and 4533 Orth (> 24 hours).

  1. Reengineering observatory operations for the time domain

    Science.gov (United States)

    Seaman, Robert L.; Vestrand, W. T.; Hessman, Frederic V.

    2014-07-01

    Observatories are complex scientific and technical institutions serving diverse users and purposes. Their telescopes, instruments, software, and human resources engage in interwoven workflows over a broad range of timescales. These workflows have been tuned to be responsive to concepts of observatory operations that were applicable when various assets were commissioned, years or decades in the past. The astronomical community is entering an era of rapid change increasingly characterized by large time domain surveys, robotic telescopes and automated infrastructures, and - most significantly - of operating modes and scientific consortia that span our individual facilities, joining them into complex network entities. Observatories must adapt and numerous initiatives are in progress that focus on redesigning individual components out of the astronomical toolkit. New instrumentation is both more capable and more complex than ever, and even simple instruments may have powerful observation scripting capabilities. Remote and queue observing modes are now widespread. Data archives are becoming ubiquitous. Virtual observatory standards and protocols and astroinformatics data-mining techniques layered on these are areas of active development. Indeed, new large-aperture ground-based telescopes may be as expensive as space missions and have similarly formal project management processes and large data management requirements. This piecewise approach is not enough. Whatever challenges of funding or politics facing the national and international astronomical communities it will be more efficient - scientifically as well as in the usual figures of merit of cost, schedule, performance, and risks - to explicitly address the systems engineering of the astronomical community as a whole.

  2. MMS Observatory TV Results Contamination Summary

    Science.gov (United States)

    Rosecrans, Glenn; Brieda, Lubos; Errigo, Therese

    2014-01-01

    The Magnetospheric Multiscale (MMS) mission is a constellation of 4 observatories designed to investigate the fundamental plasma physics of reconnection in the Earth's magnetosphere. The various instrument suites measure electric and magnetic fields, energetic particles, and plasma composition. Each spacecraft has undergone extensive environmental testing to prepare it for its minimum 2 year mission. In this paper, we report on the extensive thermal vacuum testing campaign. The testing was performed at the Naval Research Laboratory utilizing the "Big Blue" vacuum chamber. A total of ten thermal vacuum tests were performed, including two chamber certifications, three dry runs, and five tests of the individual MMS observatories. During the test, the observatories were enclosed in a thermal enclosure known as the "hamster cage". The enclosure allowed for a detailed thermal control of various observatory zone, but at the same time, imposed additional contamination and system performance requirements. The environment inside the enclosure and the vacuum chamber was actively monitored by several QCMs, RGA, and up to 18 ion gauges. Each spacecraft underwent a bakeout phase, which was followed by 4 thermal cycles. Unique aspects of the TV campaign included slow pump downs with a partial represses, thruster firings, Helium identification, and monitoring pressure spikes with ion gauges. Selected data from these TV tests is presented along with lessons learned.

  3. Reverberation Mapping Results from MDM Observatory

    DEFF Research Database (Denmark)

    Denney, Kelly D.; Peterson, B. M.; Pogge, R. W.

    2009-01-01

    We present results from a multi-month reverberation mapping campaign undertaken primarily at MDM Observatory with supporting observations from around the world. We measure broad line region (BLR) radii and black hole masses for six objects. A velocity-resolved analysis of the H_beta response show...

  4. Robotic Autonomous Observatories: A Historical Perspective

    Directory of Open Access Journals (Sweden)

    Alberto Javier Castro-Tirado

    2010-01-01

    Full Text Available This paper presents a historical introduction to the field of Robotic Astronomy, from the point of view of a scientist working in this field for more than a decade. The author discusses the basic definitions, the differing telescope control operating systems, observatory managers, as well as a few current scientific applications.

  5. Geomagnetic secular variation at the African observatories

    International Nuclear Information System (INIS)

    Haile, T.

    2002-10-01

    Geomagnetic data from ten observatories in the African continent with time series data length of more than three decades have been analysed. All-day annual mean values of the D, H and Z components were used to study secular variations in the African region. The residuals in D, H and Z components obtained after removing polynomial fits have been examined in relation to the sunspot cycle. The occurrence of the 1969-1970 worldwide geomagnetic impulse in each observatory is studied. It is found that the secular variation in the field can be represented for most of the observatories with polynomials of second or third degree. Departures from these trends are observed over the Southern African region where strong local magnetic anomalies have been observed. The residuals in the geomagnetic field components have been shown to exhibit parallelism with the periods corresponding to double solar cycle for some of the stations. A clear latitudinal distribution in the geomagnetic component that exhibits the 1969-70 jerk is shown. The jerk appears in the plots of the first differences in H for the southern most observatories of Hermanus, Hartebeesthoek, and Tsuemb, while the Z plots show the jerk for near equatorial and equatorial stations of Antananarivo, Luanda Belas, Bangui and Addis Ababa. There is some indication for this jerk in the first difference plots of D for the northern stations of M'Bour and Tamanrasset. The plots of D rather strongly suggest the presence of a jerk around 1980 at most of the stations. (author)

  6. Astronomical Virtual Observatories Through International Collaboration

    Directory of Open Access Journals (Sweden)

    Masatoshi Ohishi

    2010-03-01

    Full Text Available Astronomical Virtual Observatories (VOs are emerging research environment for astronomy, and 16 countries and a region have funded to develop their VOs based on international standard protocols for interoperability. The 16 funded VO projects have established the International Virtual Observatory Alliance (http://www.ivoa.net/ to develop the standard interoperable interfaces such as registry (meta data, data access, query languages, output format (VOTable, data model, application interface, and so on. The IVOA members have constructed each VO environment through the IVOA interfaces. National Astronomical Observatory of Japan (NAOJ started its VO project (Japanese Virtual Observatory - JVO in 2002, and developed its VO system. We have succeeded to interoperate the latest JVO system with other VOs in the USA and Europe since December 2004. Observed data by the Subaru telescope, satellite data taken by the JAXA/ISAS, etc. are connected to the JVO system. Successful interoperation of the JVO system with other VOs means that astronomers in the world will be able to utilize top-level data obtained by these telescopes from anywhere in the world at anytime. System design of the JVO system, experiences during our development including problems of current standard protocols defined in the IVOA, and proposals to resolve these problems in the near future are described.

  7. Lights go out at city observatory

    CERN Multimedia

    Armstrong, R

    2003-01-01

    Edinburgh's Royal Observatory is to close its doors to the public due to dwindling visitor numbers. The visitor centre will remain open to the general public for planned lectures and night-time observing sessions, but will cease to be open on a daily basis from next month (1/2 page).

  8. Introduction to international radio regulations

    Energy Technology Data Exchange (ETDEWEB)

    Radicella, S M [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2003-12-15

    These lecture notes contain an overview of basic problems of the International Radio Regulations. Access to the existing information infrastructure, and to that of the future Information Society, depends critically on radio, especially in poor, remote and sparsely populated regions with under-developed telecommunication infrastructure. How the spectrum of radio frequencies is regulated has profound impact on the society, its security, prosperity, and culture. The radio regulations represent a very important framework for an adequate use of radio and should be known by all of those working in the field.

  9. Introduction to international radio regulations

    International Nuclear Information System (INIS)

    Radicella, S.M.

    2003-01-01

    These lecture notes contain an overview of basic problems of the International Radio Regulations. Access to the existing information infrastructure, and to that of the future Information Society, depends critically on radio, especially in poor, remote and sparsely populated regions with under-developed telecommunication infrastructure. How the spectrum of radio frequencies is regulated has profound impact on the society, its security, prosperity, and culture. The radio regulations represent a very important framework for an adequate use of radio and should be known by all of those working in the field

  10. Radioecological Observatories - Breeding Grounds for Innovative Research

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Martin; Urso, Laura; Wichterey, Karin; Willrodt, Christine [Bundesamt fuer Strahlenschutz - BfS, Willy-Brandt-Strasse 5, 38226 Salzgitter (Germany); Beresford, Nicholas A.; Howard, Brenda [NERC Centre for Ecology and Hydrology - CEH, Lancaster Environment Centre, Library Av., Bailrigg, Lancaster, LA1 4AP (United Kingdom); Bradshaw, Clare; Stark, Karolina [Stockholms Universitet - SU, Universitetsvaegen 10, SE-10691 Stockholm (Sweden); Dowdall, Mark; Liland, Astrid [Norwegian Radiation Protection Authority - NRPA, P.O. Box 55, NO-1332 Oesteraas (Norway); Eyrolle- Boyer, Frederique; Guillevic, Jerome; Hinton, Thomas [Institut de Radioprotection et de Surete Nucleaire - IRSN, 31, Avenue de la Division Leclerc, 92260 Fontenay-aux-Roses (France); Gashchak, Sergey [Chornobyl Center for Nuclear Safety, Radioactive Waste and Radioecology - Chornobyl Center, 77th Gvardiiska Dyviiya str.7/1, 07100 Slavutych (Ukraine); Hutri, Kaisa-Leena; Ikaeheimonen, Tarja; Muikku, Maarit; Outola, Iisa [Radiation and Nuclear Safety Authority - STUK, P.O. Box 14, 00881 Helsinki (Finland); Michalik, Boguslaw [Glowny Instytut Gornictwa - GIG, Plac Gwarkow 1, 40-166 Katowice (Poland); Mora, Juan Carlos; Real, Almudena; Robles, Beatriz [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas - CIEMAT, Avenida complutense, 40, 28040 Madrid (Spain); Oughton, Deborah; Salbu, Brit [Norwegian University of Life Sciences - NMBU, P.O. Box 5003, NO-1432 Aas (Norway); Sweeck, Lieve [Studiecentrum voor Kernenergie/Centre d' Etude de l' Energie Nucleaire (SCK.CEN), Avenue Herrmann- Debroux 40, BE-1160 Brussels (Belgium); Yoschenko, Vasyl [National University of Life and Environmental Sciences of Ukraine (NUBiP of Ukraine), Herojiv Obrony st., 15, Kyiv-03041 (Ukraine)

    2014-07-01

    Within the EC-funded (FP7) Network of Excellence STAR (Strategy for Allied Radioecology, www.star-radioecology.org) the concept of Radioecological Observatories is currently being implemented on a European level for the first time. Radioecological Observatories are radioactively (and chemically) contaminated field sites that will provide a focus for joint long-term radioecological research. The benefit of this innovative approach is to create synergistic research collaborations by sharing expertise, ideas, data and resources. Research at the Radioecological Observatories will primarily focus on radioecological challenges outlined in the Strategic Research Agenda (SRA). Mechanisms to use these sites will be established under the EC-funded project COMET (Coordination and Implementation of a Pan-European Instrument for Radioecology, www.comet-radioecology.org). The European Radioecological Observatory sites were selected using a structured, progressive approach that was transparent, consistent and objective. A first screening of potential candidate sites was conducted based on the following exclusion criteria: long-term perspective for shared field work and suitability for addressing the radioecological challenges of the SRA. The proposed sites included former uranium mining and milling sites in France and Germany, the Chernobyl Exclusion Zone (CEZ) in Ukraine/Belarus and the Upper Silesian Coal Basin (USCB) in Poland. All candidate sites were prioritized based on evaluation criteria which comprised scientific issues, available infrastructure, administrative/legal constraints and financial considerations. Multi-criteria decision analysis, group discussions and recommendations provided by external experts were combined to obtain a preference order among the suggested sites. Using this approach, the Upper Silesian Coal Basin (USCB) in Poland and the Chernobyl Exclusion Zone (CEZ) were selected as Radioecological Observatories. The two sites have similar multi

  11. Radio Emission from Red-Giant Hot Jupiters

    Science.gov (United States)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such "Red-Giant Hot Jupiters" (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  12. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    International Nuclear Information System (INIS)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array

  13. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yuka [Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8550 (Japan); Spiegel, David S. [Analytics and Algorithms, Stitch Fix, San Francisco, CA 94103 (United States); Mroczkowski, Tony [Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375 (United States); Nordhaus, Jason [Department of Science and Mathematics, National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623 (United States); Zimmerman, Neil T. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Parsons, Aaron R. [Astronomy Department, University of California, Berkeley, CA (United States); Mirbabayi, Mehrdad [Astrophysics Department, Institute for Advanced Study, Princeton, NJ 08540 (United States); Madhusudhan, Nikku, E-mail: yuka.fujii@elsi.jp [Astronomy Department, University of Cambridge (United Kingdom)

    2016-04-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  14. Variability of fractal dimension of solar radio flux

    Science.gov (United States)

    Bhatt, Hitaishi; Sharma, Som Kumar; Trivedi, Rupal; Vats, Hari Om

    2018-04-01

    In the present communication, the variation of the fractal dimension of solar radio flux is reported. Solar radio flux observations on a day to day basis at 410, 1415, 2695, 4995, and 8800 MHz are used in this study. The data were recorded at Learmonth Solar Observatory, Australia from 1988 to 2009 covering an epoch of two solar activity cycles (22 yr). The fractal dimension is calculated for the listed frequencies for this period. The fractal dimension, being a measure of randomness, represents variability of solar radio flux at shorter time-scales. The contour plot of fractal dimension on a grid of years versus radio frequency suggests high correlation with solar activity. Fractal dimension increases with increasing frequency suggests randomness increases towards the inner corona. This study also shows that the low frequency is more affected by solar activity (at low frequency fractal dimension difference between solar maximum and solar minimum is 0.42) whereas, the higher frequency is less affected by solar activity (here fractal dimension difference between solar maximum and solar minimum is 0.07). A good positive correlation is found between fractal dimension averaged over all frequencies and yearly averaged sunspot number (Pearson's coefficient is 0.87).

  15. VLBI observations with the Kunming 40-meter radio telescope

    International Nuclear Information System (INIS)

    Hao Longfei; Wang Min; Yang Jun

    2010-01-01

    The Kunming 40-meter radio telescope is situated in the yard of the Yunnan Astronomical Observatory (Longitude: 102.8 0 East, Latitude: 25.0 0 North) and saw its first light in 2006 May. The Kunming station successfully joined the VLBI tracking of China's first lunar probe 'Chang'E-1 together with the other Chinese telescopes: the Beijing Miyun 50-meter radio telescope, Urumqi Nanshan 25-meter radio telescope, and Shanghai Sheshan 25-meter radio telescope, and received the downlinked scientific data together with the Miyun station from October of 2007 to March of 2009. We give an introduction to the new Chinese VLBI facility and investigate its potential applications. Due to its location, the Kunming station can significantly improve the u - v coverage of the European VLBI Network (EVN), in particular, in long baseline observations. We also report the results of the first EVN fringe-test experiment of N09SX1 with the Kunming station. The first fringes in the European telescopes were successfully detected at 2.3 GHz with the ftp-transferred data on 2009 June 17. From scheduling the observations to performing the post correlations, the Kunming station shows its good compatibility to work with the EVN. The imaging result of the extended source 1156+295 further demonstrates that the Kunming station greatly enhances the EVN performance. (research papers)

  16. Phase Evolution of the Crab Pulsar between Radio and X-Ray

    Energy Technology Data Exchange (ETDEWEB)

    Yan, L. L.; Ge, M. Y.; Zheng, S. J.; Lu, F. J.; Tuo, Y. L.; Zhang, S. N.; Lu, Y. [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Yuan, J. P.; Tong, H. [Xinjiang Astronomical Observatory, Chinese Academy of Sciences, Urumqi, Xinjiang 830011 (China); Han, J. L. [National Astronomical Observatory, Chinese Academy of Sciences, Jia 20 Datun Road, Beijing 100012 (China); Du, Y. J., E-mail: yanlinli@ihep.ac.cn [Qian Xuesen Laboratory of Space Technology, No. 104, Youyi Road, Haidian District, Beijing 100094 (China)

    2017-08-20

    We study the X-ray phases of the Crab pulsar utilizing the 11-year observations from the Rossi X-ray Timing Explorer , 6-year radio observations from Nanshan Telescope, and the ephemeris from Jodrell Bank Observatory. It is found that the X-ray phases in different energy bands and the radio phases from the Nanshan Telescope show similar behaviors, including long-time evolution and short-time variations. Such strong correlations between the X-ray and radio phases imply that the radio and X-ray timing noises are both generated from the pulsar spin that cannot be well described by the the monthly ephemeris from the Jodrell Bank observatory. When using the Nanshan phases as references to study the X-ray timing noise, it has a significantly smaller variation amplitude and shows no long-time evolution, with a change rate of (−1.1 ± 1.1) × 10{sup −7} periods per day. These results show that the distance of the X-ray and radio emission regions on the Crab pulsar has no detectable secular change, and it is unlikely that the timing noises resulted from any unique physical processes in the radio or X-ray emitting regions. The similar behaviors of the X-ray and radio timing noises also imply that the variation of the interstellar medium is not the origin of the Crab pulsar’s timing noises, which is consistent with the results obtained from the multi-frequency radio observations of PSR B1540−06.

  17. Flathead River Basin Hydrologic Observatory, Northern Rocky Mountains

    Science.gov (United States)

    Woessner, W. W.; Running, S. W.; Potts, D. F.; Kimball, J. S.; Deluca, T. H.; Fagre, D. B.; Makepeace, S.; Hendrix, M. S.; Lorang, M. S.; Ellis, B. K.; Lafave, J.; Harper, J.

    2004-12-01

    We are proposing the 22, 515 km2 glacially-sculpted Flathead River Basin located in Montana and British Columbia as a Hydrologic Observatory. This hydrologic landscape is diverse and includes large pristine watersheds, rapidly developing intermountain valleys, and a 95 km2 regulated reservoir and 510 km2 lake. The basin has a topographic gradient of over 2,339 m, and spans high alpine to arid climatic zones and a range of biomes. Stream flows are snow-melt dominated and underpinned by groundwater baseflow. The site headwaters contain 37 glaciers and thousands of square kilometers of watersheds in which fire and disease are the only disturbances. In contrast, the HO also contains watersheds at multiple scales that were dominated by glaciers within the last 100 years but are now glacier free, impacted by timber harvests and fires of varying ages to varying degrees, modified by water management practices including irrigation diversion and dams, and altered by development for homes, cities and agriculture. This Observatory provides a sensitive monitor of historic and future climatic shifts, air shed influences and impacts, and the consequences of land and water management practices on the hydrologic system. The HO watersheds are some of the only pristine watersheds left in the contiguous U.S.. They provide critical habitat for key species including the native threaten bull trout and lynx, and the listed western cutthroat trout, bald eagle, gray wolf and the grizzly bear. For the last several thousand years this system has been dominated by snow-melt runoff and moderated by large quantities of water stored in glacial ice. However, the timing and magnitude of droughts and summer flows have changed dramatically. With the information that can be gleaned from sediment cores and landscape records at different scales, this HO provides scientists with opportunities to establish baseline watershed conditions and data on natural hydrologic variability within the system. Such a

  18. Radio-capacity of ecosystems

    International Nuclear Information System (INIS)

    Kultakhmedov, Yu.; Kultakhmedova-Vyshnyakova, V.

    1997-01-01

    This paper consider a universal approach to ecosystems of different types, based on representation of their radio-capacity. The concept of ecosystem includes reproduction of components (bio-productivity) and conditions such as maintaining of environment quality. Radio-capacity in the case of radionuclide pollution appears in accumulation and redistribution of radionuclides in the ecosystem. As a result the radionuclides are redistributed and buried in soil or lake bottom sediments. Estimation models for the radio-capacity of water and terrestrial ecosystems are represented. The calculations of the radio-capacity factor of water ecosystems are performed, and the high radio-capacity of a freshwater reservoir (F=0.6-0.8) and extremely high radio-capacity of a reservoir cascade (F c =0.99) is shown material from the Dnieper's cascade reservoirs. The methods of radio-capacity estimation of agroecosystems, wood and marine ecosystems are developed. (authors)

  19. The Concept of 'Radio Music'

    DEFF Research Database (Denmark)

    Fjeldsøe, Michael

    2016-01-01

    , educational and didactic effort which would enlighten all of society. For a while it seemed that radio music was considered a genre of its own. To fulfil its function, radio music had to consider technical limitations as well as the educational level and listening modes of the new mass audience. Public radio......, as discussed by Kurt Weill and Paul Hindemith, was at first greeted with great expectations, but soon a more realistic attitude prevailed. Weill, himself a radio critic as well, composed Der Lindberghflug (1929) as a piece of ‘radio music theatre’, but then changed some of its features in order to turn...... it into a didactical play for amateurs, a so-called Lehrstück. The article will present the concept of ‘radio music’ developed within German Neue Sachlichkeit and discuss the relevance of such a concept for current research in the field of radio and music....

  20. Tools of radio astronomy

    CERN Document Server

    Wilson, Thomas L; Hüttemeister, Susanne

    2009-01-01

    The recent years have seen breathtaking progress in technology, especially in the receiver and digital technologies relevant for radio astronomy, which has at the same time advanced to shorter wavelengths. This is the updated and completely revised 5th edition of the most used introductory text in radio astronomy. It presents a unified treatment of the entire field from centimeter to sub-millimeter wavelengths. Topics covered include instruments, sensitivity considerations, observational methods and interpretations of the data recorded with both single dishes and interferometers. This text is useful to both students and experienced practicing astronomers. Besides making major updates and additions throughout the book, the authors have re-organized a number of chapters to more clearly separate basic theory from rapidly evolving practical aspects. Further, problem sets have been added at the end of each chapter.

  1. Radio telescope control

    CERN Document Server

    Schraml, J

    1972-01-01

    An on-line computer control process developed for the 100-m radio telescope of the Max-Planck-Institut fur Radioastronomie in Bonn is described. The instrument is the largest fully steerable antenna in the world. Its operation started on May 31st 1972. It is controlled by a Ferranti Argus 500 on-line computer. The first part of the paper deals with the process itself, the radio telescope and its operation, and the demands resulting for the control program. The second part briefly describes the computer and its hardware. The final part introduces the architecture of the executive program in general, which has been tailored to meet the demands of the process and the hardware. The communication between the observer and the system, the format of data on magnetic tape and an on-line reduction of position measurements are considered. (0 refs).

  2. Die radio in Afrika

    Directory of Open Access Journals (Sweden)

    S. de Villiers

    1966-03-01

    Full Text Available Omvang van radio-uitsendings in en na Afrika. — Redes vir die versnelde tempo van uitbreiding. — Radio as die geskikste massa-kommunikasiemiddel vir Afrika. — Faktore wat die verspreiding bemoeilik. — Skouspelagtige toename in luistertalle.Toe Plinius, wat in die jaar 79 oorlede is, in sy „Historia Naturalis” verklaar het dat daar altyd iets nuuts uit Afrika afkomstig is, kon hy nouliks voorsien het dat die „iets" negentien eeue later in die lug sou setel wat hierdie reuse-vasteland oorspan — ’n Babelse spraakverwarring en ’n ongekende, verbete woorde-oorlog in die etergolwe, onder meer daarop bereken om die harte en hoofde van derduisendes te verower.

  3. NOAA Weather Radio

    Science.gov (United States)

    cosas afectan la recepción de señas de la radio. Por ejemplo, las extensiones grandes de agua de sal receptor con una antena interior de calidad buena, o conectarlo a una antena externa. Generalmente los Programación Español Listado de estación Explicacion de SAME Coverage Station Listing County Listing

  4. Radio Telescopes Reveal Unseen Galactic Cannibalism

    Science.gov (United States)

    2008-06-01

    quasars and blazars are hundreds of times more powerful. The astronomers picked a number of relatively nearby Seyfert galaxies that had previously been observed with visible-light telescopes. They then carefully studied the Seyferts with the VLA, specifically looking for radio waves emitted by hydrogen atoms. The VLA images showed the vast majority of the Seyferts were disturbed by encounters with neighbor galaxies. By comparison, similar VLA images of inactive galaxies showed that very few were disturbed. "This comparison clearly shows a connection between close galactic encounters and the black-hole-powered activity in the cores," said Ya-Wen Tang, who began this work at the Institute of Astronomy & Astrophysics, Academia Sinica (ASIAA), in Taiwan and now is a graduate student at the National Taiwan University. "This is the best evidence yet for the fueling of Seyfert galaxies. Other mechanisms have been proposed, but they have shown little if any difference between Seyferts and inactive galaxies," Tang added. "Our results show that images of the hydrogen gas are a powerful tool for revealing otherwise-invisible gravitational interactions among galaxies," said Jeremy Lim, also of ASIAA. "This is a welcome advance in our understanding of these objects, made possible by the best and most extensive survey ever made of hydrogen in Seyferts," Lim said. Kuo, Tang and Lim worked with Paul Ho, of ASIAA and the Harvard-Smithsonian Center for Astrophysics. The scientists reported their findings in the Astrophysical Journal. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  5. AIDS radio triggers.

    Science.gov (United States)

    Elias, A M

    1991-07-01

    In April 1991, the Ethnic Communities' Council of NSW was granted funding under the Community AIDS Prevention and Education Program through the Department of Community Services and Health, to produce a series of 6x50 second AIDS radio triggers with a 10-second tag line for further information. The triggers are designed to disseminate culturally-sensitive information about HIV/AIDS in English, Italian, Greek, Spanish, Khmer, Turkish, Macedonian, Serbo-Croatian, Arabic, Cantonese, and Vietnamese, with the goal of increasing awareness and decreasing the degree of misinformation about HIV/AIDS among people of non-English-speaking backgrounds through radio and sound. The 6 triggers cover the denial that AIDS exists in the community, beliefs that words and feelings do not protect one from catching HIV, encouraging friends to be compassionate, compassion within the family, AIDS information for a young audience, and the provision of accurate and honest information on HIV/AIDS. The triggers are slated to be completed by the end of July 1991 and will be broadcast on all possible community, ethnic, and commercial radio networks across Australia. They will be available upon request in composite form with an information kit for use by health care professionals and community workers.

  6. Astronomers Make First Images With Space Radio Telescope

    Science.gov (United States)

    1997-07-01

    Marking an important new milestone in radio astronomy history, scientists at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, have made the first images using a radio telescope antenna in space. The images, more than a million times more detailed than those produced by the human eye, used the new Japanese HALCA satellite, working in conjunction with the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and Very Large Array (VLA) ground-based radio telescopes. The landmark images are the result of a long-term NRAO effort supported by the National Aeronautics and Space Administration (NASA). "This success means that our ability to make detailed radio images of objects in the universe is no longer limited by the size of the Earth," said NRAO Director Paul Vanden Bout. "Astronomy's vision has just become much sharper." HALCA, launched on Feb. 11 by Japan's Institute of Space and Astronautical Science (ISAS), is the first satellite designed for radio astronomy imaging. It is part of an international collaboration led by ISAS and backed by NRAO; Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL); the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. On May 22, HALCA observed a distant active galaxy called PKS 1519-273, while the VLBA and VLA also observed it. Data from the satellite was received by a tracking station at the NRAO facility in Green Bank, West Virginia. Tape-recorded data from the satellite and from the radio telescopes on the ground were sent to NRAO's Array Operations Center (AOC) in Socorro, NM. In Socorro, astronomers and computer scientists used a special-purpose computer to digitally combine the signals from the satellite and the ground telescopes to make them all work together as a single, giant radio telescope. This dedicated machine, the VLBA Correlator, built as

  7. A search for HI in elliptical galaxies with nuclear radio sources

    International Nuclear Information System (INIS)

    Dressel, L.L.; Bania, T.M.; O'Connell, R.W.

    1982-01-01

    Two of the galaxies with large HI mass, NGC 1052 and 4278, are known to have powerful nuclear continuum radio sources (P 2380 approximately 10 22 WHz -1 ). Since both of these attributes are fairly rare among elliptical galaxies, their coexistence in these galaxies is not likely to have occurred by chance. The authors have therefore observed twelve other elliptical galaxies with nuclear radio power P 2380 > 10 22 WHz -1 at Arecibo Observatory, to determine whether a large mass of HI is a necessary auxillary to nuclear continuum emission. (Auth.)

  8. Ultra-high-energy cosmic rays from radio galaxies

    Science.gov (United States)

    Eichmann, B.; Rachen, J. P.; Merten, L.; van Vliet, A.; Becker Tjus, J.

    2018-02-01

    Radio galaxies are intensively discussed as the sources of cosmic rays observed above about 3 × 1018 eV, called ultra-high energy cosmic rays (UHECRs). We present a first, systematic approach that takes the individual characteristics of these sources into account, as well as the impact of the extragalactic magnetic-field structures up to a distance of 120 Mpc. We use a mixed simulation setup, based on 3D simulations of UHECRs ejected by observed, individual radio galaxies taken out to a distance of 120 Mpc, and on 1D simulations over a continuous source distribution contributing from beyond 120 Mpc. Additionally, we include the ultra-luminous radio galaxy Cygnus A at a distance of about 250 Mpc, as its contribution is so strong that it must be considered as an individual point source. The implementation of the UHECR ejection in our simulation setup, both that of individual radio galaxies and the continuous source function, is based on a detailed consideration of the physics of radio jets and standard first-order Fermi acceleration. This allows to derive the spectrum of ejected UHECR as a function of radio luminosity, and at the same time provides an absolute normalization of the problem involving only a small set of parameters adjustable within narrow constraints. We show that the average contribution of radio galaxies taken over a very large volume cannot explain the observed features of UHECRs measured at Earth. However, we obtain excellent agreement with the spectrum, composition, and arrival-direction distribution of UHECRs measured by the Pierre Auger Observatory, if we assume that most UHECRs observed arise from only two sources: the ultra-luminous radio galaxy Cygnus A, providing a mostly light composition of nuclear species dominating up to about 6 × 1019 eV, and the nearest radio galaxy Centaurus A, providing a heavy composition dominating above 6 × 1019 eV . Here we have to assume that extragalactic magnetic fields out to 250 Mpc, which we did not

  9. Aryabhatta Research Institute of Observational Sciences: reincarnation of a 50 year old State Observatory of Nainital

    Science.gov (United States)

    Sagar, Ram

    2006-03-01

    The fifty year old State Observatory, well known as U.P. State Observatory till the formation of Uttaranchal in November 2000, was reincarnated on March 22, 2004 as Aryabhatta Research Institute of Observational Sciences with acronym ARIES, an autonomous institute, under the Department of Science & Technology, Government of India. The growth of academic and technical activities and new mandate of the Institute are briefly described. In early 60's, the Institute was one of the 12 centres established by the Smithsonian Astrophysical Observatory, USA, all over the globe but the only centre in India for imaging artificial earth satellites. Commensurating with its observing capabilities, the Institute started a number of front-line research programmes during the last decade, e.g., optical follow up observations of GRB afterglows, radio and space borne astronomical resources, intra-night optical variability in active galactic nuclei as well as gravitational microlensing and milli-magnitude variations in the rapidly oscillating peculiar A type stars. As a part of atmospheric studies, characterisation of aerosol at an altitude of about 2 km is going on since 2002. ARIES has plans for establishing modern observing facilities equipped with latest backend instruments in the area of both astrophysics and atmospheric science. Formation of ARIES, therefore augurs well for the overall development of astrophysics and atmospheric science in India.

  10. Image of the Quasar 3C 273 Taken by the High Energy Astronomy Observatory (HEAO)-2

    Science.gov (United States)

    1979-01-01

    This image is an observation of Quasar 3C 273 by the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. It reveals the presence of a new source (upper left) with a red shift that indicates that it is about 10 billion light years away. Quasars are mysterious, bright, star-like objects apparently located at the very edge of the visible universe. Although no bigger than our solar system, they radiate as much visible light as a thousand galaxies. Quasars also emit radio signals and were previously recognized as x-ray sources. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2 was designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center.

  11. Image of the Vela Supernova Remnant Taken by the High Energy Astronomy Observatory (HEAO)-2

    Science.gov (United States)

    1980-01-01

    Like the Crab Nebula, the Vela Supernova Remnant has a radio pulsar at its center. In this image taken by the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory, the pulsar appears as a point source surrounded by weak and diffused emissions of x-rays. HEAO-2's computer processing system was able to record and display the total number of x-ray photons (a tiny bundle of radiant energy used as the fundamental unit of electromagnetic radiation) on a scale along the margin of the picture. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  12. The Paris Observatory has 350 years

    Science.gov (United States)

    Lequeux, James

    2017-01-01

    The Paris Observatory is the oldest astronomical observatory that has worked without interruption since its foundation to the present day. The building due to Claude Perrault is still in existence with few modifications, but of course other buildings have been added all along the centuries for housing new instruments and laboratories. In particular, a large dome has been built on the terrace in 1847, with a 38-cm diameter telescope completed in 1857: both are still visible. The main initial purpose of the Observatory was to determine longitudes. This was achieved by Jean-Dominique Cassini using the eclipses of the satellites of Jupiter: a much better map of France was the produced using this method, which unfortunately does not work at sea. Incidentally, the observation of these eclipses led to the discovery in 1676 of the finite velocity of light by Cassini and Rømer. Cassini also discovered the differential rotation of Jupiter and four satellites of Saturn. Then, geodesy was to be the main activity of the Observatory for more than a century, culminating in the famous Cassini map of France completed around 1790. During the first half of the 19th century, under François Arago, the Observatory was at the centre of French physics, which then developed very rapidly. Arago initiated astrophysics in 1810 by showing that the Sun and stars are made of incandescent gas. In 1854, the new director, Urbain Le Verrier, put emphasis on astrometry and celestial mechanics, discovering in particular the anomalous advance of the perihelion of Mercury, which was later to be a proof of General Relativity. In 1858, Leon Foucault built the first modern reflecting telescopes with their silvered glass mirror. Le Verrier created on his side modern meteorology, including some primitive forecasts. The following period was not so bright, due to the enormous project of the Carte du Ciel, which took much of the forces of the Observatory for half a century with little scientific return. In

  13. Brazil to Join the European Southern Observatory

    Science.gov (United States)

    2010-12-01

    The Federative Republic of Brazil has yesterday signed the formal accession agreement paving the way for it to become a Member State of the European Southern Observatory (ESO). Following government ratification Brazil will become the fifteenth Member State and the first from outside Europe. On 29 December 2010, at a ceremony in Brasilia, the Brazilian Minister of Science and Technology, Sergio Machado Rezende and the ESO Director General, Tim de Zeeuw signed the formal accession agreement aiming to make Brazil a Member State of the European Southern Observatory. Brazil will become the fifteen Member State and the first from outside Europe. Since the agreement means accession to an international convention, the agreement must now be submitted to the Brazilian Parliament for ratification [1]. The signing of the agreement followed the unanimous approval by the ESO Council during an extraordinary meeting on 21 December 2010. "Joining ESO will give new impetus to the development of science, technology and innovation in Brazil as part of the considerable efforts our government is making to keep the country advancing in these strategic areas," says Rezende. The European Southern Observatory has a long history of successful involvement with South America, ever since Chile was selected as the best site for its observatories in 1963. Until now, however, no non-European country has joined ESO as a Member State. "The membership of Brazil will give the vibrant Brazilian astronomical community full access to the most productive observatory in the world and open up opportunities for Brazilian high-tech industry to contribute to the European Extremely Large Telescope project. It will also bring new resources and skills to the organisation at the right time for them to make a major contribution to this exciting project," adds ESO Director General, Tim de Zeeuw. The European Extremely Large Telescope (E-ELT) telescope design phase was recently completed and a major review was

  14. A Search for Hydrodynamical Interaction Between the ISM and Radio Jets in IC4296

    Science.gov (United States)

    Mackie, Glen

    1998-01-01

    The ROSAT HRI Data set on IC 4296 has been reduced and analysed. A draft paper on the small-scale structure of x-ray emission and its relation to the radio emission has been written. Mackie left the Smithsonian Astrophysical Observatory in September 1997 and in January 1998 he joined the staff at Carter Observatory, New Zealand. Mackie is currently (May 1998) upgrading computer software at Carter to run IRAF-PROS and XSPEC x-ray software packages in order to reduce and analyze archival ROSAT PSPC data on IC 4296. The PSPC results are needed to investigate the hot gas temperature and abundance properties that will be used in conjunction with the radio jet properties to determine the hydrodynamical interaction status of IC 4296, and finalize the results of a research paper.

  15. The Alto Tiberina Near Fault Observatory (northern Apennines, Italy

    Directory of Open Access Journals (Sweden)

    Lauro Chiaraluce

    2014-06-01

    Full Text Available The availability of multidisciplinary and high-resolution data is a fundamental requirement to understand the physics of earthquakes and faulting. We present the Alto Tiberina Near Fault Observatory (TABOO, a research infrastructure devoted to studying preparatory processes, slow and fast deformation along a fault system located in the upper Tiber Valley (northern Apennines, dominated by a 60 km long low-angle normal fault (Alto Tiberina, ATF active since the Quaternary. TABOO consists of 50 permanent seismic stations covering an area of 120 × 120 km2. The surface seismic stations are equipped with 3-components seismometers, one third of them hosting accelerometers. We instrumented three shallow (250 m boreholes with seismometers, creating a 3-dimensional antenna for studying micro-earthquakes sources (detection threshold is ML 0.5 and detecting transient signals. 24 of these sites are equipped with continuous geodetic GPS, forming two transects across the fault system. Geochemical and electromagnetic stations have been also deployed in the study area. In 36 months TABOO recorded 19,422 events with ML ≤ 3.8 corresponding to 23.36e-04 events per day per squared kilometres; one of the highest seismicity rate value observed in Italy. Seismicity distribution images the geometry of the ATF and its antithetic/synthetic structures located in the hanging-wall. TABOO can allow us to understand the seismogenic potential of the ATF and therefore contribute to the seismic hazard assessment of the area. The collected information on the geometry and deformation style of the fault will be used to elaborate ground shaking scenarios adopting diverse slip distributions and rupture directivity models.

  16. The rockfall observatory in the Reintal, Wetterstein Massif, German Alps

    Science.gov (United States)

    Schöpa, Anne; Turowski, Jens M.; Hovius, Niels

    2017-04-01

    The Reintal is an Alpine valley in the Wetterstein Massif close to the Zugspitze, Germany's highest mountain. Due to the variety of active geomorphic processes, including rockfalls off the steep limestone cliffs, debris flows, and snow avalanches, and the river Partnach, the Reintal has been the field area of many geomorphological and hydrological research campaigns over the last few decades. In 2014, the Geomorphology Section of the GFZ Potsdam started to install a monitoring network to detect and classify rockfalls in the Reintal. The network includes six seismic stations, optical and infrared cameras, and two weather stations measuring air and rock temperature, air pressure and relative humidity, precipitation, wind speed and direction, and solar radiation. The continuous observations of the network are supplemented by repeated field campaigns including terrestrial laser scans of a prominent rockfall niche at the Hochwanner mountain. The about 1,500 m high north face of the Hochwanner experienced the detachment of a 2.8 Mio m3 rockfall about 500 years ago that created the so-called Steingerümpel (German for rock debris deposit) and dammed the river Partnach. The cliff still shows high rockfall activity, and an 80,000 m3 block can be expected to fall in the near future. In this contribution, the layout of the observatory and details of the seismic network centered around the Hochwanner north face are described. Furthermore, the network data of a severe thunderstorm event in June 2016, that triggered many rockfalls and debris flows in the Reintal, is presented.

  17. Relativistic jets and the most powerful radio sources in the universe

    International Nuclear Information System (INIS)

    Bridle, A.

    1987-01-01

    Relativistic jets, which are beams of particles and magnetic fields emitting synchrotron radiation that emanate from black holes at the centers of galaxies and quasars, have been one of the most exciting discoveries made at the Very Large Array (VLA) operated by the National Radio Astronomy Observatory (NRAO). The VLA is an array of 27 antennas, each 25 meters in diameter, distributed in a Y-formation with two branches 21 kilometers long and one branch 19 kilometers long. Astronomers can use it to study relativistic jets that generate intense natural radio sources (or transmitters). These sources, associated with regions hundreds of thousands of light years across, are the most powerful in the universe in energy output. In his lecture, Bridle describes how consecutive advances in imaging techniques for radio astronomy have uncovered the properties of the powerful radio sources, culminating in the discovery at the VLA that many of these sources contain radio emitting jets. He then describes some of the NRAO's research on these jets, and discusses the jets' physical properties. He concludes with an outlook for the future: the NRAO's Very Long Baseline Array (VLBA) is to be completed in the early 1990's. The VLBA is an array of ten radio telescopes distributed from Hawaii to St. Croix, from the Canadian border to Texas. With the VLBA, astronomers plan to look more deeply into these radio sources. 15 figs

  18. Launch Will Create a Radio Telescope Larger than Earth

    Science.gov (United States)

    NASA and the National Radio Astronomy Observatory are joining with an international consortium of space agencies to support the launch of a Japanese satellite next week that will create the largest astronomical "instrument" ever built -- a radio telescope more than two-and-a-half times the diameter of the Earth that will give astronomers their sharpest view yet of the universe. The launch of the Very Long Baseline Interferometry (VLBI) Space Observatory Program (VSOP) satellite by Japan's Institute of Space and Astronautical Science (ISAS) is scheduled for Feb. 10 at 11:50 p.m. EST (1:50 p.m. Feb. 11, Japan time.) The satellite is part of an international collaboration led by ISAS and backed by Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL), Pasadena, CA; the National Science Foundation's National Radio Astronomy Observatory (NRAO), Socorro, NM; the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. Very long baseline interferometry is a technique used by radio astronomers to electronically link widely separated radio telescopes together so they work as if they were a single instrument with extraordinarily sharp "vision," or resolving power. The wider the distance between telescopes, the greater the resolving power. By taking this technique into space for the first time, astronomers will approximately triple the resolving power previously available with only ground-based telescopes. The satellite system will have resolving power almost 1,000 times greater than the Hubble Space Telescope at optical wavelengths. The satellite's resolving power is equivalent to being able to see a grain of rice in Tokyo from Los Angeles. "Using space VLBI, we can probe the cores of quasars and active galaxies, believed to be powered by super massive black holes," said Dr. Robert Preston, project scientist for the U.S. Space Very Long

  19. Data standards for the international virtual observatory

    Directory of Open Access Journals (Sweden)

    R J Hanisch

    2006-11-01

    Full Text Available A primary goal of the International Virtual Observatory Alliance, which brings together Virtual Observatory Projects from 16 national and international development projects, is to develop, evaluate, test, and agree upon standards for astronomical data formatting, data discovery, and data delivery. In the three years that the IVOA has been in existence, substantial progress has been made on standards for tabular data, imaging data, spectroscopic data, and large-scale databases and on managing the metadata that describe data collections and data access services. In this paper, I describe how the IVOA operates and give my views as to why such a broadly based international collaboration has been able to make such rapid progress.

  20. Beyond the Observatory: Reflections on the Centennial

    Science.gov (United States)

    Devorkin, D. H.

    1999-05-01

    One of the many unexpected side-benefits of acting as editor of the AAS centennial volume was the chance to take a fresh look at some of the personalities who helped to shape the American Astronomical Society. A common characteristic of these people was their energy, compassion and drive to go "Beyond the Observatory," to borrow a phrase from Harlow Shapley. But what did going `beyond the observatory' mean to Shapley, or to the others who shaped and maintained the Society in its first one hundred years of life? Just as the discipline of astronomy has changed in profound ways in the past century, so has the American Astronomical Society changed, along with the people who have been its leaders and its sustainers and the culture that has fostered it. The Centennial meeting of the Society offers a chance to reflect on the people who have given American astronomy its sense of community identity.

  1. The STELLA Robotic Observatory on Tenerife

    Directory of Open Access Journals (Sweden)

    Klaus G. Strassmeier

    2010-01-01

    Full Text Available The Astrophysical Institute Potsdam (AIP and the Instituto de Astrofísica de Canarias (IAC inaugurated the robotic telescopes STELLA-I and STELLA-II (STELLar Activity on Tenerife on May 18, 2006. The observatory is located on the Izaña ridge at an elevation of 2400 m near the German Vacuum Tower Telescope. STELLA consists of two 1.2 m alt-az telescopes. One telescope fiber feeds a bench-mounted high-resolution echelle spectrograph while the other telescope feeds a wide-field imaging photometer. Both scopes work autonomously by means of artificial intelligence. Not only that the telescopes are automated, but the entire observatory operates like a robot, and does not require any human presence on site.

  2. High Energy Astronomy Observatory (HEAO)-2

    Science.gov (United States)

    1982-01-01

    This artist's concept depicts the High Energy Astronomy Observatory (HEAO)-2 in orbit. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978. The HEAO-2 was originally identified as HEAO-B but the designation was changed once the spacecraft achieved orbit.

  3. Star Formation Rates in Lyman Break Galaxies: Radio Stacking of LBGs in the COSMOS Field and the Sub-μJy Radio Source Population

    Science.gov (United States)

    Carilli, C. L.; Lee, Nicholas; Capak, P.; Schinnerer, E.; Lee, K.-S.; McCraken, H.; Yun, M. S.; Scoville, N.; Smolčić, V.; Giavalisco, M.; Datta, A.; Taniguchi, Y.; Urry, C. Megan

    2008-12-01

    We present an analysis of the radio properties of large samples of Lyman break galaxies (LBGs) at z ~ 3, 4, and 5 from the COSMOS field. The median stacking analysis yields a statistical detection of the z ~ 3 LBGs (U-band dropouts), with a 1.4 GHz flux density of 0.90 +/- 0.21 μJy. The stacked emission is unresolved, with a size = 3 is smaller than at lower redshifts. Conversely, the radio luminosity for a given star formation rate may be systematically lower at very high redshift. Two possible causes for a suppressed radio luminosity are (1) increased inverse Compton cooling of the relativistic electron population due to scattering off the increasing CMB at high redshift or (2) cosmic-ray diffusion from systematically smaller galaxies. The radio detections of individual sources are consistent with a radio-loud AGN fraction of 0.3%. One source is identified as a very dusty, extreme starburst galaxy (a "submillimeter galaxy"). Based on observations in the COSMOS Legacy Survey including those taken on the HST, Keck, NRAO-VLA, Subaru, KPNO 4 m, CTIO 4 m, and CFHT 3.6 m. The Very Large Array of the National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  4. Compact radio and infrared sources near the centre of the bipolar outflow NGC 2264D

    International Nuclear Information System (INIS)

    Mendoza, E.E.; Rodriguez, L.F.; Chavarria-K, C.; Neri, L.

    1990-01-01

    A multi-frequency study of the central region of the bipolar outflow NGC 2264D in the Monoceros OB1 molecular cloud has been made in an attempt to localize and understand its driving source. We have detected a weak (≅ 0.6 mJy) radio continuum source at 6 cm, using the VLA; a bright (≅ 270 Jy) H 2 O maser, using the Haystack Observatory telescope; and near-infrared counterparts to these sources at San Pedro Martir Observatory. Stromgren and JHKL'M photometry of stellar objects in the region was also carried out at this observatory. The star-like object W166, a probable Herbig Be/Ae star, which has strong Hα emission and a near-infrared excess, is located closest to the centroid of the bipolar outflow and is probably its driving source. (author)

  5. XMM-Newton X-ray Observatory Guest Observer program (AO-1) at CASA

    Science.gov (United States)

    Skinner, Stephen L.

    2003-01-01

    In this research program, we obtained and analyzed X-ray observations of the Wolf-Rayet (WR) star WR 110 (HD 165688) using the XMM-Newton space-based observatory. Radio observations were also obtained using the Very Large Array (VLA) radio telescope located in New Mexico and operated by the Natl. Radio Astronomy Observatory (NRAO). This star was targeted for observations primarily because it is believed to be a single WR star without a companion. Single WR stars are thought to emit X-rays from cool plasma in shocks distributed throughout their powerful stellar winds. However, there has been little observational work done to test this idea since single WR stars are relatively weak X-ray sources and have been difficult to detect with previous generation telescopes. The launch of XMM-Newton provides a new telescope that is much more sensitive than its predecessors, allowing single WR stars to be studied in detail for the first time. X-ray emission was clearly detected from WR 110. Analysis of its spectrum yields a surprising result. Its X-ray emitting plasma is distributed over a range of temperatures and is dominated by relatively cool plasma with a characteristic temperature T is approximately 6 million K. Such plasma can be explained by existing theoretical wind shock models. However, the spectrum also shows hotter plasma whose temperature is uncertain but is thought to be in excess of T approximately 30 million K. The origin of this hotter plasma is yet unknown, but possible mechanisms are identified

  6. Flexible Adaptation in Cognitive Radios

    CERN Document Server

    Li, Shujun

    2013-01-01

    This book provides an introduction to software-defined radio and cognitive radio, along with methodologies for applying knowledge representation, semantic web, logic reasoning and artificial intelligence to cognitive radio, enabling autonomous adaptation and flexible signaling. Readers from the wireless communications and software-defined radio communities will use this book as a reference to extend software-defined radio to cognitive radio, using the semantic technology described. Readers with a background in semantic web and artificial intelligence will find in this book the application of semantic web and artificial intelligence technologies to wireless communications. For readers in networks and network management, this book presents a new approach to enable interoperability, collaborative optimization and flexible adaptation of network components. Provides a comprehensive ontology covering the core concepts of wireless communications using a formal language; Presents the technical realization of using a ...

  7. Observatory Magnetometer In-Situ Calibration

    Directory of Open Access Journals (Sweden)

    A Marusenkov

    2011-07-01

    Full Text Available An experimental validation of the in-situ calibration procedure, which allows estimating parameters of observatory magnetometers (scale factors, sensor misalignment without its operation interruption, is presented. In order to control the validity of the procedure, the records provided by two magnetometers calibrated independently in a coil system have been processed. The in-situ estimations of the parameters are in very good agreement with the values provided by the coil system calibration.

  8. From AISR to the Virtual Observatory

    Science.gov (United States)

    Szalay, Alexander S.

    2014-01-01

    The talk will provide a retrospective on important results enabled by the NASA AISR program. The program had a unique approach to funding research at the intersection of astrophysics, applied computer science and statistics. It had an interdisciplinary angle, encouraged high risk, high return projects. Without this program the Virtual Observatory would have never been started. During its existence the program has funded some of the most innovative applied computer science projects in astrophysics.

  9. Utilizing Internet Technologies in Observatory Control Systems

    Science.gov (United States)

    Cording, Dean

    2002-12-01

    The 'Internet boom' of the past few years has spurred the development of a number of technologies to provide services such as secure communications, reliable messaging, information publishing and application distribution for commercial applications. Over the same period, a new generation of computer languages have also developed to provide object oriented design and development, improved reliability, and cross platform compatibility. Whilst the business models of the 'dot.com' era proved to be largely unviable, the technologies that they were based upon have survived and have matured to the point were they can now be utilized to build secure, robust and complete observatory control control systems. This paper will describe how Electro Optic Systems has utilized these technologies in the development of its third generation Robotic Observatory Control System (ROCS). ROCS provides an extremely flexible configuration capability within a control system structure to provide truly autonomous robotic observatory operation including observation scheduling. ROCS was built using Internet technologies such as Java, Java Messaging Service (JMS), Lightweight Directory Access Protocol (LDAP), Secure Sockets Layer (SSL), eXtendible Markup Language (XML), Hypertext Transport Protocol (HTTP) and Java WebStart. ROCS was designed to be capable of controlling all aspects of an observatory and be able to be reconfigured to handle changing equipment configurations or user requirements without the need for an expert computer programmer. ROCS consists of many small components, each designed to perform a specific task, with the configuration of the system specified using a simple meta language. The use of small components facilitates testing and makes it possible to prove that the system is correct.

  10. The architecture of LAMOST observatory control system

    International Nuclear Information System (INIS)

    Wang Jian; Jin Ge; Yu Xiaoqi; Wan Changsheng; Hao Likai; Li Xihua

    2005-01-01

    The design of architecture is the one of the most important part in development of Observatory Control System (OCS) for LAMOST. Based on the complexity of LAMOST, long time of development for LAMOST and long life-cycle of OCS system, referring many kinds of architecture pattern, the architecture of OCS is established which is a component-based layered system using many patterns such as the MVC and proxy. (authors)

  11. Technology Development for a Neutrino Astrophysical Observatory

    International Nuclear Information System (INIS)

    Chaloupka, V.; Cole, T.; Crawford, H.J.; He, Y.D.; Jackson, S.; Kleinfelder, S.; Lai, K.W.; Learned, J.; Ling, J.; Liu, D.; Lowder, D.; Moorhead, M.; Morookian, J.M.; Nygren, D.R.; Price, P.B.; Richards, A.; Shapiro, G.; Shen, B.; Smoot, George F.; Stokstad, R.G.; VanDalen, G.; Wilkes, J.; Wright, F.; Young, K.

    1996-01-01

    We propose a set of technology developments relevant to the design of an optimized Cerenkov detector for the study of neutrino interactions of astrophysical interest. Emphasis is placed on signal processing innovations that enhance significantly the quality of primary data. These technical advances, combined with field experience from a follow-on test deployment, are intended to provide a basis for the engineering design for a kilometer-scale Neutrino Astrophysical Observatory

  12. A robotic observatory in the city

    Science.gov (United States)

    Ruch, Gerald T.; Johnston, Martin E.

    2012-05-01

    The University of St. Thomas (UST) Observatory is an educational facility integrated into UST's undergraduate curriculum as well as the curriculum of several local schools. Three characteristics combine to make the observatory unique. First, the telescope is tied directly to the support structure of a four-story parking ramp instead of an isolated pier. Second, the facility can be operated remotely over an Internet connection and is capable of performing observations without a human operator. Third, the facility is located on campus in the heart of a metropolitan area where light pollution is severe. Our tests indicate that, despite the lack of an isolated pier, vibrations from the ramp do not degrade the image quality at the telescope. The remote capability facilitates long and frequent observing sessions and allows others to use the facility without traveling to UST. Even with the high background due to city lights, the sensitivity and photometric accuracy of the system are sufficient to fulfill our pedagogical goals and to perform a variety of scientific investigations. In this paper, we outline our educational mission, provide a detailed description of the observatory, and discuss its performance characteristics.

  13. LAGO: The Latin American giant observatory

    Science.gov (United States)

    Sidelnik, Iván; Asorey, Hernán; LAGO Collaboration

    2017-12-01

    The Latin American Giant Observatory (LAGO) is an extended cosmic ray observatory composed of a network of water-Cherenkov detectors (WCD) spanning over different sites located at significantly different altitudes (from sea level up to more than 5000 m a.s.l.) and latitudes across Latin America, covering a wide range of geomagnetic rigidity cut-offs and atmospheric absorption/reaction levels. The LAGO WCD is simple and robust, and incorporates several integrated devices to allow time synchronization, autonomous operation, on board data analysis, as well as remote control and automated data transfer. This detection network is designed to make detailed measurements of the temporal evolution of the radiation flux coming from outer space at ground level. LAGO is mainly oriented to perform basic research in three areas: high energy phenomena, space weather and atmospheric radiation at ground level. It is an observatory designed, built and operated by the LAGO Collaboration, a non-centralized collaborative union of more than 30 institutions from ten countries. In this paper we describe the scientific and academic goals of the LAGO project - illustrating its present status with some recent results - and outline its future perspectives.

  14. The Lowell Observatory Predoctoral Fellowship Program

    Science.gov (United States)

    Prato, Lisa A.; Shkolnik, E.

    2014-01-01

    Lowell Observatory is pleased to solicit applications for our Predoctoral Fellowship Program. Now beginning its seventh year, this program is designed to provide unique research opportunities to graduate students in good standing, currently enrolled at Ph.D. granting institutions. Lowell staff research spans a wide range of topics, from astronomical instrumentation, to icy bodies in our solar system, exoplanet science, stellar populations, star formation, and dwarf galaxies. The Observatory's new 4.3 meter Discovery Channel Telescope has successfully begun science operations and we anticipate the commissioning of several new instruments in 2014, making this a particularly exciting time to do research at Lowell. Student research is expected to lead to a thesis dissertation appropriate for graduation at the doctoral level at the student's home institution. The Observatory provides competitive compensation and full benefits to student scholars. For more information, see http://www2.lowell.edu/rsch/predoc.php and links therein. Applications for Fall 2014 are due by May 1, 2014.

  15. Recent results from the Compton Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Michelson, P.F.; Hansen, W.W. [Stanford Univ., CA (United States)

    1994-12-01

    The Compton Observatory is an orbiting astronomical observatory for gamma-ray astronomy that covers the energy range from about 30 keV to 30 GeV. The Energetic Gamma Ray Experiment Telescope (EGRET), one of four instruments on-board, is capable of detecting and imaging gamma radiation from cosmic sources in the energy range from approximately 20 MeV to 30 GeV. After about one month of tests and calibration following the April 1991 launch, a 15-month all sky survey was begun. This survey is now complete and the Compton Observatory is well into Phase II of its observing program which includes guest investigator observations. Among the highlights from the all-sky survey discussed in this presentation are the following: detection of five pulsars with emission above 100 MeV; detection of more than 24 active galaxies, the most distant at redshift greater than two; detection of many high latitude, unidentified gamma-ray sources, some showing significant time variability; detection of at least two high energy gamma-ray bursts, with emission in one case extending to at least 1 GeV. EGRET has also detected gamma-ray emission from solar flares up to energies of at least 2 GeV and has observed gamma-rays from the Large Magellanic Cloud.

  16. The brazilian indigenous planetary-observatory

    Science.gov (United States)

    Afonso, G. B.

    2003-08-01

    We have performed observations of the sky alongside with the Indians of all Brazilian regions that made it possible localize many indigenous constellations. Some of these constellations are the same as the other South American Indians and Australian aborigines constellations. The scientific community does not have much of this information, which may be lost in one or two generations. In this work, we present a planetary-observatory that we have made in the Park of Science Newton Freire-Maia of Paraná State, in order to popularize the astronomical knowledge of the Brazilian Indians. The planetary consists, essentially, of a sphere of six meters in diameter and a projection cylinder of indigenous constellations. In this planetary we can identify a lot of constellations that we have gotten from the Brazilian Indians; for instance, the four seasonal constellations: the Tapir (spring), the Old Man (summer), the Deer (autumn) and the Rhea (winter). A two-meter height wooden staff that is posted vertically on the horizontal ground similar to a Gnomon and stones aligned with the cardinal points and the soltices directions constitutes the observatory. A stone circle of ten meters in diameter surrounds the staff and the aligned stones. During the day we observe the Sun apparent motions and at night the indigenous constellations. Due to the great community interest in our work, we are designing an itinerant indigenous planetary-observatory to be used in other cities mainly by indigenous and primary schools teachers.

  17. The properties of radio ellipticals

    International Nuclear Information System (INIS)

    Sparks, W.B.; Disney, M.J.; Rodgers, A.W.

    1984-01-01

    Optical and additional radio data are presented for the bright galaxies of the Disney and Wall survey (1977 Mon. Not. R. Astron. Soc. 179, 235). These data form the basis of a statistical comparison of the properties of radio elliptical galaxies to radio-quiet ellipticals. The correlations may be explained by the depth of the gravitational potential well in which the galaxy resides governing the circumstances under which an elliptical galaxy rids itself of internally produced gas. (author)

  18. Central radio sources

    International Nuclear Information System (INIS)

    Phinney, E.S.

    1985-01-01

    The compact radio sources in the nuclei of most active galaxies lie closer to their centers of activity than any other region accessible to observation, excepting only the broad emission line region. They provide uniquely strong evidence for bulk motion of matter at relativistic velocities, encouraging the belief that the activity originates in a gravitational potential well whose escape velocity is of the order of the speed of light. The observational facts are reviewed as well as several theoretical pictures of them. Those places where systematic observations could help to distinguish the true theoretical picture from the many competing forgeries are emphasized. 76 references

  19. Radio Frequency Anechoic Chamber Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the design, manufacture, and test of antenna systems. The facility is also used as an electromagnetic compatibility/radio frequency interference...

  20. Radio Telescopes Reveal Youngest Stellar Corpse

    Science.gov (United States)

    2004-06-01

    collapses violently, rebounding in a cataclysmic blast that spews most of its material into interstellar space. What remains is either a neutron star, with its material compressed to the density of an atomic nucleus, or a black hole, with its matter compressed so tightly that its gravitational pull is so strong that not even light can escape it. A team of scientists studied a supernova called SN 1986J in a galaxy known as NGC 891. The supernova was discovered in 1986, but astronomers believe the explosion actually occurred about three years before. Using the National Science Foundation's Very Long Baseline Array (VLBA), Robert C. Byrd Green Bank Telescope (GBT), and Very Large Array (VLA), along with radio telescopes from the European VLBI Network, they made images that showed fine details of how the explosion evolves over time. "SN 1986J has shown a brightly-emitting object at its center that only became visible recently. This is the first time such a thing has been seen in any supernova," said Michael Bietenholz, of York University in Toronto, Ontario. Bietenholz worked with Norbert Bartel, also of York University, and Michael Rupen of the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, on the project. The scientists reported their findings in the June 10 edition of Science Express. "A supernova is likely the most energetic single event in the Universe after the Big Bang. It is just fascinating to see how the smoke from the explosion is blown away and how now after all these years the fiery center is unveiled. It is a textbook story, now witnessed for the first time," Bartel said. Analysis of the bright central object shows that its characteristics are different from the outer shell of explosion debris in the supernova. "We can't yet tell if this bright object at the center is caused by material being sucked into a black hole or if it results from the action of a young pulsar, or neutron star," said Rupen. "It's very exciting because it's either the

  1. "Movie Star" Acting Strangely, Radio Astronomers Find

    Science.gov (United States)

    1999-01-01

    Astronomers have used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to make the first-ever time-lapse "movie" showing details of gas motions around a star other than our Sun. The study, the largest observational project yet undertaken using Very Long Baseline Interferometry, has produced surprising results that indicate scientists do not fully understand stellar atmospheres. The "movie" shows that the atmosphere of a pulsating star more than 1,000 light-years away continues to expand during a part of the star's pulsation period in which astronomers expected it to start contracting. Philip Diamond and Athol Kemball, of the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, announced their findings at the American Astronomical Society's meeting in Austin, TX, today. "The continued expansion we're seeing contradicts current theoretical models for how these stars work," Diamond said. "The models have assumed spherical symmetry in the star's atmosphere, and our movie shows that this is not the case. Such models suggest that a shock wave passes outward from the star. Once it's passed, then the atmosphere should begin to contract because of the star's gravity. We've long passed that point and the contraction has not begun." The time-lapse images show that the gas motions are not uniform around the star. Most of the motion is that of gas moving directly outward from the star's surface. However, in about one-fourth of the ring, there are peculiar motions that do not fit this pattern. The scientists speculate that the rate of mass loss may not be the same from all parts of the star's surface. "A similar star behaved as predicted when studied a few years ago, so we're left to wonder what's different about this one," Diamond said. "Right now, we think that different rates of mass loss in the two stars may be the cause of the difference. This star is losing mass at 100 times the rate of the star in the earlier study." "This

  2. TMT approach to observatory software development process

    Science.gov (United States)

    Buur, Hanne; Subramaniam, Annapurni; Gillies, Kim; Dumas, Christophe; Bhatia, Ravinder

    2016-07-01

    The purpose of the Observatory Software System (OSW) is to integrate all software and hardware components of the Thirty Meter Telescope (TMT) to enable observations and data capture; thus it is a complex software system that is defined by four principal software subsystems: Common Software (CSW), Executive Software (ESW), Data Management System (DMS) and Science Operations Support System (SOSS), all of which have interdependencies with the observatory control systems and data acquisition systems. Therefore, the software development process and plan must consider dependencies to other subsystems, manage architecture, interfaces and design, manage software scope and complexity, and standardize and optimize use of resources and tools. Additionally, the TMT Observatory Software will largely be developed in India through TMT's workshare relationship with the India TMT Coordination Centre (ITCC) and use of Indian software industry vendors, which adds complexity and challenges to the software development process, communication and coordination of activities and priorities as well as measuring performance and managing quality and risk. The software project management challenge for the TMT OSW is thus a multi-faceted technical, managerial, communications and interpersonal relations challenge. The approach TMT is using to manage this multifaceted challenge is a combination of establishing an effective geographically distributed software team (Integrated Product Team) with strong project management and technical leadership provided by the TMT Project Office (PO) and the ITCC partner to manage plans, process, performance, risk and quality, and to facilitate effective communications; establishing an effective cross-functional software management team composed of stakeholders, OSW leadership and ITCC leadership to manage dependencies and software release plans, technical complexities and change to approved interfaces, architecture, design and tool set, and to facilitate

  3. Solar Indices - Solar Radio Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  4. Preparing the Plate Boundary Observatory GNSS Network for the Future

    Science.gov (United States)

    Austin, K. E.; Walls, C. P.; Dittman, T.; Mann, D.; Boyce, E. S.; Basset, A.; Woolace, A. C.; Turner, R.; Lawrence, S.; Rhoades, S.; Pyatt, C.; Willoughby, H.; Feaux, K.; Mattioli, G. S.

    2017-12-01

    The EarthScope Plate Boundary Observatory (PBO) GNSS network, funded by the NSF and operated by UNAVCO, is comprised of 1100 permanent GPS and GNSS stations spanning three principal tectonic regimes and is administered by distinct management. The GPS-only network was initially designed for daily data file downloads primarily for tectonic analysis. This low data volume requirement and circa-2004 IP-based cellular/VSat modems provided significant freedom for station placement and enabled science-targeted installation of stations in some of the most remote and geologically interesting areas. Community requests for high-rate data downloads for GNSS seismology, airborne LiDAR surveys, meteorological/GNSS/seismic real-time data flow and other demands, however, require significantly increased bandwidth beyond the 5-20 kB/s transfer rates that were needed as part of the original design. Since the close of construction in September 2008, PBO enhancements have been implemented through additional funding by the NSF (ARRA/Cascadia), NOAA, and NASA and in collaboration with stakeholders such as Caltrans, ODOT, Scripps, and the USGS. Today, only 18 of the original cell modems remain, with 601 upgraded cell modems providing 3G/4G/LTE data communications that support transfer rates ranging from 80-400 kB/s. Radio network expansion and upgrades continue to harden communications using both 2.4 GHz and 5.8 GHz radios. 78 VSAT and 5 manual download sites remain. PBO-wide the network capabilities for 1 Hz & 5 Hz downloads or low latency 1 Hz streaming are 85%, 80% and 65% of PBO stations, respectively, with 708 active 1 Hz streams. Vaisala meteorological instruments are located at 140 sites most of which stream GPS/Met data in real time. GPS-only receivers are being replaced with GNSS receivers and antennas. Today, there are 279 stations in the PBO network with either GLONASS enabled Trimble NetR9 or full GNSS constellation Septentrio PolaRx5 receivers. Just as the scale and

  5. Better building of valley fills

    Energy Technology Data Exchange (ETDEWEB)

    Chironis, N.P.

    1980-03-01

    Current US regulations for building valley fills or head of hollow fills to hold excess spoil resulting from contour mining are meeting with considerable opposition, particularly from operators in steep-slope areas. An alternative method has been submitted to the Office of Surface Mining by Virgina. Known as the zoned concept method, it has already been used successfully in building water-holding dams and coal refuse embankments on sloping terrain. The ways in which drainage and seepage are managed are described.

  6. Dramatugi Penyiar Radio

    Directory of Open Access Journals (Sweden)

    Hastika Yanti Nora

    2009-07-01

    Full Text Available Dramaturgy is the work of Erving Goffman. He wrote "Presentation of Self in Everyday Life" in '1959. Following the theatrical analogy, Goffman spoke of a front stage and back stage. The front stage is that part of the performance that generally functions in rather fixed and general ways to define the situation for those who observed the performance. The back stage is situation where facts suppressed in the front or various kinds of informal actions may appear. A back stage is usually adjacent to the front stage, but it also cut off from it. Everyone in this world have to run his role in their everyday life. It also a radio announcer. As an actor, they have to be a nice and friendy person when they perform to make air personality, that is  a good  impression, from their audience. But before their perform in the front stage, there so much to do to prepare in the backstage. The front and back stage is radio announcer dramaturgy.

  7. Genetic programming applied to RFI mitigation in radio astronomy

    Science.gov (United States)

    Staats, K.

    2016-12-01

    Genetic Programming is a type of machine learning that employs a stochastic search of a solutions space, genetic operators, a fitness function, and multiple generations of evolved programs to resolve a user-defined task, such as the classification of data. At the time of this research, the application of machine learning to radio astronomy was relatively new, with a limited number of publications on the subject. Genetic Programming had never been applied, and as such, was a novel approach to this challenging arena. Foundational to this body of research, the application Karoo GP was developed in the programming language Python following the fundamentals of tree-based Genetic Programming described in "A Field Guide to Genetic Programming" by Poli, et al. Karoo GP was tasked with the classification of data points as signal or radio frequency interference (RFI) generated by instruments and machinery which makes challenging astronomers' ability to discern the desired targets. The training data was derived from the output of an observation run of the KAT-7 radio telescope array built by the South African Square Kilometre Array (SKA-SA). Karoo GP, kNN, and SVM were comparatively employed, the outcome of which provided noteworthy correlations between input parameters, the complexity of the evolved hypotheses, and performance of raw data versus engineered features. This dissertation includes description of novel approaches to GP, such as upper and lower limits to the size of syntax trees, an auto-scaling multiclass classifier, and a Numpy array element manager. In addition to the research conducted at the SKA-SA, it is described how Karoo GP was applied to fine-tuning parameters of a weather prediction model at the South African Astronomical Observatory (SAAO), to glitch classification at the Laser Interferometer Gravitational-wave Observatory (LIGO), and to astro-particle physics at The Ohio State University.

  8. Tuning in to pavement radio

    NARCIS (Netherlands)

    Ellis, S.

    1989-01-01

    This article describes a phenomenon known all over Africa, for which there is no really satisfactory term in English but which is summed up in the French term 'radio trottoir', literally 'pavement radio'. It may be defined as the popular and unofficial discussion of current affairs in Africa,

  9. Wide Field Radio Transient Surveys

    Science.gov (United States)

    Bower, Geoffrey

    2011-04-01

    The time domain of the radio wavelength sky has been only sparsely explored. Nevertheless, serendipitous discovery and results from limited surveys indicate that there is much to be found on timescales from nanoseconds to years and at wavelengths from meters to millimeters. These observations have revealed unexpected phenomena such as rotating radio transients and coherent pulses from brown dwarfs. Additionally, archival studies have revealed an unknown class of radio transients without radio, optical, or high-energy hosts. The new generation of centimeter-wave radio telescopes such as the Allen Telescope Array (ATA) will exploit wide fields of view and flexible digital signal processing to systematically explore radio transient parameter space, as well as lay the scientific and technical foundation for the Square Kilometer Array. Known unknowns that will be the target of future transient surveys include orphan gamma-ray burst afterglows, radio supernovae, tidally-disrupted stars, flare stars, and magnetars. While probing the variable sky, these surveys will also provide unprecedented information on the static radio sky. I will present results from three large ATA surveys (the Fly's Eye survey, the ATA Twenty CM Survey (ATATS), and the Pi GHz Survey (PiGSS)) and several small ATA transient searches. Finally, I will discuss the landscape and opportunities for future instruments at centimeter wavelengths.

  10. MULTIFREQUENCY RADIO MEASUREMENTS OF SUPERNOVA 1987A OVER 22 YEARS

    International Nuclear Information System (INIS)

    Zanardo, G.; Staveley-Smith, L.; Potter, T. M.; Ball, Lewis; Kesteven, M. J.; Manchester, R. N.; Tzioumis, A. K.; Gaensler, B. M.; Ng, C.-Y.

    2010-01-01

    We present extensive observations of the radio emission from the remnant of supernova (SN) 1987A made with the Australia Telescope Compact Array (ATCA), since the first detection of the remnant in 1990. The radio emission has evolved in time providing unique information on the interaction of the SN shock with the circumstellar medium. We particularly focus on the monitoring observations at 1.4, 2.4, 4.8, and 8.6 GHz, which have been made at intervals of 4-6 weeks. The flux density data show that the remnant brightness is now increasing exponentially, while the radio spectrum is flattening. The current spectral index value of -0.68 represents an 18 ± 3% increase over the last eight years. The exponential trend in the flux is also found in the ATCA imaging observations at 9 GHz, which have been made since 1992, approximately twice a year, as well as in the 843 MHz data set from the Molonglo Observatory Synthesis Telescope from 1987 to 2007 March. Comparisons with data at different wavelengths (X-ray, Hα) are made. The rich data set that has been assembled in the last 22 years forms a basis for a better understanding of the evolution of the supernova remnant.

  11. Solar radio proxies for improved satellite orbit prediction

    Science.gov (United States)

    Yaya, Philippe; Hecker, Louis; Dudok de Wit, Thierry; Fèvre, Clémence Le; Bruinsma, Sean

    2017-12-01

    Specification and forecasting of solar drivers to thermosphere density models is critical for satellite orbit prediction and debris avoidance. Satellite operators routinely forecast orbits up to 30 days into the future. This requires forecasts of the drivers to these orbit prediction models such as the solar Extreme-UV (EUV) flux and geomagnetic activity. Most density models use the 10.7 cm radio flux (F10.7 index) as a proxy for solar EUV. However, daily measurements at other centimetric wavelengths have also been performed by the Nobeyama Radio Observatory (Japan) since the 1950's, thereby offering prospects for improving orbit modeling. Here we present a pre-operational service at the Collecte Localisation Satellites company that collects these different observations in one single homogeneous dataset and provides a 30 days forecast on a daily basis. Interpolation and preprocessing algorithms were developed to fill in missing data and remove anomalous values. We compared various empirical time series prediction techniques and selected a multi-wavelength non-recursive analogue neural network. The prediction of the 30 cm flux, and to a lesser extent that of the 10.7 cm flux, performs better than NOAA's present prediction of the 10.7 cm flux, especially during periods of high solar activity. In addition, we find that the DTM-2013 density model (Drag Temperature Model) performs better with (past and predicted) values of the 30 cm radio flux than with the 10.7 flux.

  12. CONSTRAINING RADIO EMISSION FROM MAGNETARS

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, P.; Kaspi, V. M.; Dib, R. [Department of Physics, Rutherford Physics Building, McGill University, 3600 University Street, Montreal, Quebec H3A 2T8 (Canada); Champion, D. J. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn (Germany); Hessels, J. W. T., E-mail: plazar@physics.mcgill.ca [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands)

    2012-01-10

    We report on radio observations of five magnetars and two magnetar candidates carried out at 1950 MHz with the Green Bank Telescope in 2006-2007. The data from these observations were searched for periodic emission and bright single pulses. Also, monitoring observations of magnetar 4U 0142+61 following its 2006 X-ray bursts were obtained. No radio emission was detected for any of our targets. The non-detections allow us to place luminosity upper limits of L{sub 1950} {approx}< 1.60 mJy kpc{sup 2} for periodic emission and L{sub 1950,single} {approx}< 7.6 Jy kpc{sup 2} for single pulse emission. These are the most stringent limits yet for the magnetars observed. The resulting luminosity upper limits together with previous results are discussed, as is the importance of further radio observations of radio-loud and radio-quiet magnetars.

  13. Radio observations of symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A E [Commonwealth Scientific and Industrial Research Organization, Epping (Australia). Div. of Radiophysics; Allen, D A

    1978-09-01

    A search for 2-cm continuum emission from 91 symbiotic stars has been undertaken using the Parkes radio telescope. Nine sources have been detected, four of which are reported for the first time. The radio spectral indices are mostly about + 0.6; these are interpreted in terms of mass loss. In two stars a portion of the radio spectrum has an index of zero, and for one of these stars (RX Puppis) this is plausibly a manifestation of the cessation of symbiotic activity that occurred about two decades ago. There is an extraordinarily good correlation between the detectability at 2cm and the presence of circumstellar dust, but not between the radio and optical domains. The importance of continued radio monitoring of HM Sagittae over the next few years is stressed.

  14. SOLAR RADIO TYPE-I NOISE STORM MODULATED BY CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Iwai, K.; Tsuchiya, F.; Morioka, A.; Misawa, H.; Miyoshi, Y.; Masuda, S.; Shimojo, M.; Shiota, D.; Inoue, S.

    2012-01-01

    The first coordinated observations of an active region using ground-based radio telescopes and the Solar Terrestrial Relations Observatory (STEREO) satellites from different heliocentric longitudes were performed to study solar radio type-I noise storms. A type-I noise storm was observed between 100 and 300 MHz during a period from 2010 February 6 to 7. During this period the two STEREO satellites were located approximately 65° (ahead) and –70° (behind) from the Sun-Earth line, which is well suited to observe the earthward propagating coronal mass ejections (CMEs). The radio flux of the type-I noise storm was enhanced after the preceding CME and began to decrease before the subsequent CME. This time variation of the type-I noise storm was directly related to the change of the particle acceleration processes around its source region. Potential-field source-surface extrapolation from the Solar and Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI) magnetograms suggested that there was a multipolar magnetic system around the active region from which the CMEs occurred around the magnetic neutral line of the system. From our observational results, we suggest that the type-I noise storm was activated at a side-lobe reconnection region that was formed after eruption of the preceding CME. This magnetic structure was deformed by a loop expansion that led to the subsequent CME, which then suppressed the radio burst emission.

  15. California's restless giant: the Long Valley Caldera

    Science.gov (United States)

    Hill, David P.; Bailey, Roy A.; Hendley, James W.; Stauffer, Peter H.; Marcaida, Mae

    2014-01-01

    Scientists have monitored geologic unrest in the Long Valley, California, area since 1980. In that year, following a swarm of strong earthquakes, they discovered that the central part of the Long Valley Caldera had begun actively rising. Unrest in the area persists today. The U.S. Geological Survey (USGS) continues to provide the public and civil authorities with current information on the volcanic hazard at Long Valley and is prepared to give timely warnings of any impending eruption.

  16. GAIA virtual observatory - development and practices

    Science.gov (United States)

    Syrjäsuo, Mikko; Marple, Steve

    2010-05-01

    The Global Auroral Imaging Access, or GAIA, is a virtual observatory providing quick access to summary data from satellite and ground-based instruments that remote sense auroral precipitation (http://gaia-vxo.org). This web-based service facilitates locating data relevant to particular events by simultaneously displaying summary images from various data sets around the world. At the moment, there are GAIA server nodes in Canada, Finland, Norway and the UK. The development is an international effort and the software and metadata are freely available. The GAIA system is based on a relational database which is queried by a dedicated software suite that also creates the graphical end-user interface if such is needed. Most commonly, the virtual observatory is used interactively by using a web browser: the user provides the date and the type of data of interest. As the summary data from multiple instruments are displayed simultaneously, the user can conveniently explore the recorded data. The virtual observatory provides essentially instant access to the images originating from all major auroral instrument networks including THEMIS, NORSTAR, GLORIA and MIRACLE. The scientific, educational and outreach use is limited by creativity rather than access. The first version of the GAIA was developed at the University of Calgary (Alberta, Canada) in 2004-2005. This proof-of-concept included mainly THEMIS and MIRACLE data, which comprised of millions of summary plots and thumbnail images. However, it was soon realised that a complete re-design was necessary to increase flexibility. In the presentation, we will discuss the early history and motivation of GAIA as well as how the development continued towards the current version. The emphasis will be on practical problems and their solutions. Relevant design choices will also be highlighted.

  17. Decision Analysis Tools for Volcano Observatories

    Science.gov (United States)

    Hincks, T. H.; Aspinall, W.; Woo, G.

    2005-12-01

    Staff at volcano observatories are predominantly engaged in scientific activities related to volcano monitoring and instrumentation, data acquisition and analysis. Accordingly, the academic education and professional training of observatory staff tend to focus on these scientific functions. From time to time, however, staff may be called upon to provide decision support to government officials responsible for civil protection. Recognizing that Earth scientists may have limited technical familiarity with formal decision analysis methods, specialist software tools that assist decision support in a crisis should be welcome. A review is given of two software tools that have been under development recently. The first is for probabilistic risk assessment of human and economic loss from volcanic eruptions, and is of practical use in short and medium-term risk-informed planning of exclusion zones, post-disaster response, etc. A multiple branch event-tree architecture for the software, together with a formalism for ascribing probabilities to branches, have been developed within the context of the European Community EXPLORIS project. The second software tool utilizes the principles of the Bayesian Belief Network (BBN) for evidence-based assessment of volcanic state and probabilistic threat evaluation. This is of practical application in short-term volcano hazard forecasting and real-time crisis management, including the difficult challenge of deciding when an eruption is over. An open-source BBN library is the software foundation for this tool, which is capable of combining synoptically different strands of observational data from diverse monitoring sources. A conceptual vision is presented of the practical deployment of these decision analysis tools in a future volcano observatory environment. Summary retrospective analyses are given of previous volcanic crises to illustrate the hazard and risk insights gained from use of these tools.

  18. Protection of Hawaii's Observatories from Light Pollution

    Science.gov (United States)

    Wainscoat, Richard J.

    2018-01-01

    Maunakea Observatory, located on the island of Hawaii, is among the world darkest sites for astronomy. Strong efforts to preserve the dark night sky over the last forty years have proven successful. Artificial light presently adds only approximately 2% to the natural night sky brightness. The techniques being used to protect Maunakea from light pollution will be described, along with the challenges that are now being faced.Haleakala Observatory, located on the island of Maui, is also an excellent observing site, and is among the best sites in the United States. Lighting restrictions in Maui County are much weaker, and consequently, the night sky above Haleakala is less well protected. Haleakala is closer to Honolulu and the island of Oahu (population approximately 1 million), and the glow from Oahu makes the northwestern sky brighter.Much of the lighting across most of the United States, including Hawaii, is presently being converted to LED lighting. This provides an opportunity to replace existing poorly shielded lights with properly shielded LED fixtures, but careful spectral management is essential. It is critically important to only use LED lighting that is deficient in blue and green light. LED lighting also is easy to dim. Dimming of lights later at night, when there is no need for brighter lighting, is an important tool for reducing light pollution.Techniques used to protect astronomical observatories from light pollution are similar to the techniques that must be used to protect animals that are affected by light at night, such as endangered birds and turtles. These same techniques are compatible with recent human health related lighting recommendations from the American Medical Association.

  19. Radio opaque gloves

    International Nuclear Information System (INIS)

    Whittaker, A.V.; Whittaker, R.E. Jr.; Goldstrom, R.A.; Shipko, F.J.

    1975-01-01

    Radiation shielding garments and accessories, such as radio-opaque gloves for surgeons, shielding against the harmful x-ray radiation in a fluoroscopic zone, are advantageously different from garments for shielding from other medical uses of x-rays. Such garments are provided with zones of differing opacity, whereby desired sensitivity and ''feel'' through the glove material is retained. One feature is the provision of an ''opacity gradient'' across the glove cross section with opacity being relatively low at the fingertip area (lesser shield-thickness), but relatively high at the less nonprehensile hand zones, such as the palm. Glove fabrication techniques for achieving such an opacity gradient are described. (U.S.)

  20. MUSIC RADIO-JOURNALISM

    Directory of Open Access Journals (Sweden)

    Dubovtceva Ludmila I.

    2014-04-01

    Full Text Available The article is based on years of practical experience, the author highlights the main radio genres in which music correspondent, music reviewer, music commentator, and music leading and a disc jockey work. Theoretical principles of their creative activities are analyzed in common journalistic genres, such as interview, reportage, talk show, live broadcast, radiofilm, as well as specialized genres like concert on demand and music competition. Journalist’ speech is seen as a logical element, the incoming with music in art-structural relationships. However, it does not become the predominant sound layer and aims to harmonious correlation or local penetration into music opus. In addition, important links in music journalism are defined the auxiliary "offscreen" editor's job and keeping the original sound archive. The author cites a number of own work examples on the air.

  1. Radio-adaptive response

    International Nuclear Information System (INIS)

    Ikushima, T.

    1992-01-01

    Knowledge about cellular events in mammalian cells exposed to low doses of ionizing radiation is meager. Recent works showed that human lymphocytes become resistant to radiation-induced chromosomal damage after exposure to low doses of ionizing radiation. Experimental evidence for radio-adaptive response (RAR) in cultured mammalian cells was obtained. Exposure to very low doses of gamma-rays or tritium beta-rays make cells less susceptible to the induction of micronuclei and sister chromatid exchanges by subsequent higher doses. Many important characteristics of the novel response suggest that RAR is a stress response resulting in the enhanced repair of chromosomal DNA damage in cell under restricted conditions. Experiments are still in progress in order to elucidate the molecular basis for RAR processes. (author). 13 refs.; 2 figs., 1 tab

  2. Implementing Software Defined Radio

    CERN Document Server

    Grayver, Eugene

    2013-01-01

    Software Defined Radio makes wireless communications easier, more efficient, and more reliable. This book bridges the gap between academic research and practical implementation. When beginning a project, practicing engineers, technical managers, and graduate students can save countless hours by considering the concepts presented in these pages. The author covers the myriad options and trade-offs available when selecting an appropriate hardware architecture. As demonstrated here, the choice between hardware- and software-centric architecture can mean the difference between meeting an aggressive schedule and bogging down in endless design iterations. Because of the author’s experience overseeing dozens of failed and successful developments, he is able to present many real-life examples. Some of the key concepts covered are: Choosing the right architecture for the market – laboratory, military, or commercial Hardware platforms – FPGAs, GPPs, specialized and hybrid devices Standardization efforts to ens...

  3. Radio-adaptive response

    International Nuclear Information System (INIS)

    Ikushima, Takaji

    1991-01-01

    An adaptive response to radiation stress was found in cultured Chinese hamster V79 cells, as a suppressed induction of micronuclei (MNs) and sister chromatid exchanges (SCEs) in the cells conditioned by very low doses. The important characteristics of the novel chromosomal response, called radio-adaptive response (RAR), that have newly emerged in this study are: 1) Low doses of beta-rays from tritiated water (HTO) as well as tritiated thymidine can cause the RAR. 2) Thermal neutrons, a high LET radiation, can not act as tritium beta-rays or gamma-rays. 3) The RAR expression is suppressed by an inhibition of protein synthesis. 4) Several proteins are newly synthesized concurrently with the RAR expression after adapting doses, viewed by two-dimensional electrophoresis of cellular proteins. These results suggest that the RAR is an adaptive chromosomal DNA repair induced by very low doses of low LET radiations under restricted conditions, accompanying the inducible specific gene expression. (author)

  4. A turbulent radio jet

    International Nuclear Information System (INIS)

    Kahn, F.D.

    1983-01-01

    A relativistic plasma flow can explain many of the observations on the one-sided jets, which are associated with radio sources that show superluminal motions in their cores. The pressure from the ambient medium will communicate across the jet in a relatively short distance, typically 30 kpc. The friction between the jet and the external medium then makes the flow go turbulent. As a result the jet dissipates energy and will be brought to rest within a few hundred kpc, if it does not strike an obstacle before. The mean flow in the jet is strongly sheared and stretches the lines of force of any magnetic field frozen into the plasma. The dominant field direction, as seen from the rest frame of the plasma, is therefore parallel to the length of the jet. Polarization measurements have shown that this is in fact the case. (author)

  5. AGONIZAN RADIOS MINERAS

    Directory of Open Access Journals (Sweden)

    Raquel Salinas

    2015-01-01

    Full Text Available Se ofrece un amplio análisis sobre la industria electoral, recordando que un candidato a presidente es "un producto para la venta". Se Desmenuzan las estrategias utilizadas en el plebiscito chileno,las elecciones norteamericanas con el NO a BUSH. El Mercadeo Social es una nueva metodología utilizada en proyectos de desarrollo a nivel de campo por ello se hace un esclarecimiento y clarifica el vínculo con la comunicación. Se agrega temas como: Los modelos de recepción de mensajes cuyos marcos conceptuales y metodologías aún no se han adaptado al potencial de esta línea de trabajo.Se analiza la agonía de las radios mineras en Bolivia en la que 42 años de historia y heroísmo se desmoronan.

  6. Radio-isotopic tracers

    International Nuclear Information System (INIS)

    Wolfangel, R.G.

    1976-01-01

    The invention concerns the dispersions that may be used for preparing radio-isotopic tracers, technetium labelled dispersions, processes for preparing these dispersions and their use as tracers. Technetium 99m sulphur colloids are utilized as scintillation tracers to give a picture of the reticulo-endothelial system, particularly the liver and spleen. A dispersion is provided which only requires the addition of a radioactive nuclide to form a radioactively labelled dispersion that can be injected as a tracer. It is formed of a colloid of tin sulphur dispersed in an aqueous buffer solution. Such a reagent has the advantage of being safe and reliable and is easier to use. The colloid can be prepared more quickly since additions of several different reagents are avoided. There is no need to heat up and no sulphuretted hydrogen, which is a toxic gas, is used [fr

  7. Radio frequency picosecond phototube

    International Nuclear Information System (INIS)

    Margaryan, A.; Carlini, R.; Ent, R.; Grigoryan, N.; Gyunashyan, K.; Hashimoto, O.; Hovater, K.; Ispiryan, M.; Knyazyan, S.; Kross, B.; Majewski, S.; Marikyan, G.; Mkrtchyan, M.; Parlakyan, L.; Popov, V.; Tang, L.; Vardanyan, H.; Yan, C.; Zhamkochyan, S.; Zorn, C.

    2006-01-01

    We propose a photon detector for recording low-level and ultra-fast optical signals, based on radio frequency (RF) analysis of low-energy photoelectrons (PEs). By using currently developed 500 MHz RF deflector, it is possible to scan circularly and detect single PEs, amplified in multi-channel plates (MCPs). The operation of the tube is investigated by means of thermionic electron source. It is demonstrated that the signals generated in the MCP can be processed event by event; by using available nanosecond electronics and that time resolution better than 20 ps can be achieved. Timing characteristics of the Cherenkov detector with RF phototube in a 'head-on' geometry is investigated by means of Monte Carlo simulation

  8. Radio frequency picosecond phototube

    Energy Technology Data Exchange (ETDEWEB)

    Margaryan, A. [Yerevan Physics Institute, 2 Alikhanian Brothers Street, Yerevan 375036 (Armenia)]. E-mail: mat@mail.yerphi.am; Carlini, R. [Thomas Jefferson National Accelerator Facility, Newport News VA 23606 (United States); Ent, R. [Thomas Jefferson National Accelerator Facility, Newport News VA 23606 (United States); Grigoryan, N. [Yerevan Physics Institute, 2 Alikhanian Brothers Street, Yerevan 375036 (Armenia); Gyunashyan, K. [Yerevan State University of Architecture and Construction, Yerevan (Armenia); Hashimoto, O. [Tohoku University, Sendai 98-77 (Japan); Hovater, K. [Thomas Jefferson National Accelerator Facility, Newport News VA 23606 (United States); Ispiryan, M. [University of Houston, 4800 Calhoun Rd, Houston TX 77204 (United States); Knyazyan, S. [Yerevan Physics Institute, 2 Alikhanian Brothers Street, Yerevan 375036 (Armenia); Kross, B. [Thomas Jefferson National Accelerator Facility, Newport News VA 23606 (United States); Majewski, S. [Thomas Jefferson National Accelerator Facility, Newport News VA 23606 (United States); Marikyan, G. [Yerevan Physics Institute, 2 Alikhanian Brothers Street, Yerevan 375036 (Armenia); Mkrtchyan, M. [Yerevan Physics Institute, 2 Alikhanian Brothers Street, Yerevan 375036 (Armenia); Parlakyan, L. [Yerevan Physics Institute, 2 Alikhanian Brothers Street, Yerevan 375036 (Armenia); Popov, V. [Thomas Jefferson National Accelerator Facility, Newport News VA 23606 (United States); Tang, L. [Thomas Jefferson National Accelerator Facility, Newport News VA 23606 (United States); Vardanyan, H. [Yerevan Physics Institute, 2 Alikhanian Brothers Street, Yerevan 375036 (Armenia); Yan, C. [Thomas Jefferson National Accelerator Facility, Newport News VA 23606 (United States); Zhamkochyan, S. [Yerevan Physics Institute, 2 Alikhanian Brothers Street, Yerevan 375036 (Armenia); Zorn, C. [Thomas Jefferson National Accelerator Facility, Newport News VA 23606 (United States)

    2006-10-15

    We propose a photon detector for recording low-level and ultra-fast optical signals, based on radio frequency (RF) analysis of low-energy photoelectrons (PEs). By using currently developed 500 MHz RF deflector, it is possible to scan circularly and detect single PEs, amplified in multi-channel plates (MCPs). The operation of the tube is investigated by means of thermionic electron source. It is demonstrated that the signals generated in the MCP can be processed event by event; by using available nanosecond electronics and that time resolution better than 20 ps can be achieved. Timing characteristics of the Cherenkov detector with RF phototube in a 'head-on' geometry is investigated by means of Monte Carlo simulation.

  9. Radio propagation measurement and channel modelling

    CERN Document Server

    Salous, Sana

    2013-01-01

    While there are numerous books describing modern wireless communication systems that contain overviews of radio propagation and radio channel modelling, there are none that contain detailed information on the design, implementation and calibration of radio channel measurement equipment, the planning of experiments and the in depth analysis of measured data. The book would begin with an explanation of the fundamentals of radio wave propagation and progress through a series of topics, including the measurement of radio channel characteristics, radio channel sounders, measurement strategies

  10. Citizen Observatories: A Standards Based Architecture

    Science.gov (United States)

    Simonis, Ingo

    2015-04-01

    A number of large-scale research projects are currently under way exploring the various components of citizen observatories, e.g. CITI-SENSE (http://www.citi-sense.eu), Citclops (http://citclops.eu), COBWEB (http://cobwebproject.eu), OMNISCIENTIS (http://www.omniscientis.eu), and WeSenseIt (http://www.wesenseit.eu). Common to all projects is the motivation to develop a platform enabling effective participation by citizens in environmental projects, while considering important aspects such as security, privacy, long-term storage and availability, accessibility of raw and processed data and its proper integration into catalogues and international exchange and collaboration systems such as GEOSS or INSPIRE. This paper describes the software architecture implemented for setting up crowdsourcing campaigns using standardized components, interfaces, security features, and distribution capabilities. It illustrates the Citizen Observatory Toolkit, a software suite that allows defining crowdsourcing campaigns, to invite registered and unregistered participants to participate in crowdsourcing campaigns, and to analyze, process, and visualize raw and quality enhanced crowd sourcing data and derived products. The Citizen Observatory Toolkit is not a single software product. Instead, it is a framework of components that are built using internationally adopted standards wherever possible (e.g. OGC standards from Sensor Web Enablement, GeoPackage, and Web Mapping and Processing Services, as well as security and metadata/cataloguing standards), defines profiles of those standards where necessary (e.g. SWE O&M profile, SensorML profile), and implements design decisions based on the motivation to maximize interoperability and reusability of all components. The toolkit contains tools to set up, manage and maintain crowdsourcing campaigns, allows building on-demand apps optimized for the specific sampling focus, supports offline and online sampling modes using modern cell phones with

  11. Pulsating stars and the Virtual Observatory

    Science.gov (United States)

    Suárez, Juan Carlos

    2017-09-01

    Virtual Observatory is one of the most used internet-based protocols in astronomy. It has become somewhat natural to find, manage, compare, visualize and download observations from very different archives of astronomical observations with no effort. The VO technology beyond that is now being a reality for asteroseismology, not only for observations but also for theoretical models. Here I give a brief description of the most important VO tools related with asteroseismology, as well as a rough outline of the current development in this field.

  12. Recent Results from the Pierre Auger observatory

    International Nuclear Information System (INIS)

    Kampert, Karl-Heinz

    2010-01-01

    The Pierre Auger observatory is a hybrid air shower experiment which uses multiple detection techniques to investigate the origin, spectrum, and composition of ultrahigh energy cosmic rays. We present recent results on these topics and discuss their implications to the understanding the origin of the most energetic particles in nature as well as for physics beyond the Standard Model, such as violation of Lorentz invariance and 'top-down' models of cosmic ray production. Future plans, including enhancements underway at the southern site in Argentina will be presented. (author)

  13. Pulsating stars and the Virtual Observatory

    Directory of Open Access Journals (Sweden)

    Suárez Juan Carlos

    2017-01-01

    Full Text Available Virtual Observatory is one of the most used internet-based protocols in astronomy. It has become somewhat natural to find, manage, compare, visualize and download observations from very different archives of astronomical observations with no effort. The VO technology beyond that is now being a reality for asteroseismology, not only for observations but also for theoretical models. Here I give a brief description of the most important VO tools related with asteroseismology, as well as a rough outline of the current development in this field.

  14. The Virtual Solar Observatory: Progress and Diversions

    Science.gov (United States)

    Gurman, Joseph B.; Bogart, R. S.; Amezcua, A.; Hill, Frank; Oien, Niles; Davey, Alisdair R.; Hourcle, Joseph; Mansky, E.; Spencer, Jennifer L.

    2017-08-01

    The Virtual Solar Observatory (VSO) is a known and useful method for identifying and accessing solar physics data online. We review current "behind the scenes" work on the VSO, including the addition of new data providers and the return of access to data sets to which service was temporarily interrupted. We also report on the effect on software development efforts when government IT “security” initiatives impinge on finite resoruces. As always, we invite SPD members to identify data sets, services, and interfaces they would like to see implemented in the VSO.

  15. Magnetospheric radio sounding

    International Nuclear Information System (INIS)

    Ondoh, Tadanori; Nakamura, Yoshikatsu; Koseki, Teruo; Watanabe, Sigeaki; Murakami, Toshimitsu

    1977-01-01

    Radio sounding of the plasmapause from a geostationary satellite has been investigated to observe time variations of the plasmapause structure and effects of the plasma convection. In the equatorial plane, the plasmapause is located, on the average, at 4 R sub(E) (R sub(E); Earth radius), and the plasma density drops outwards from 10 2 -10 3 /cm 3 to 1-10/cm 3 in the plasmapause width of about 600 km. Plasmagrams showing a relation between the virtual range and sounding frequencies are computed by ray tracing of LF-VLF waves transmitted from a geostationary satellite, using model distributions of the electron density in the vicinity of the plasmapause. The general features of the plasmagrams are similar to the topside ionograms. The plasmagram has no penetration frequency such as f 0 F 2 , but the virtual range of the plasmagram increases rapidly with frequency above 100 kHz, since the distance between a satellite and wave reflection point increases rapidly with increasing the electron density inside the plasmapause. The plasmapause sounder on a geostationary satellite has been designed by taking account of an average propagation distance of 2 x 2.6 R sub(E) between a satellite (6.6 R sub(E)) and the plasmapause (4.0 R sub(E)), background noise, range resolution, power consumption, and receiver S/N of 10 dB. The 13-bit Barker coded pulses of baud length of 0.5 msec should be transmitted in direction parallel to the orbital plane at frequencies for 10 kHz-2MHz in a pulse interval of 0.5 sec. The transmitter peak power of 70 watts and 700 watts are required respectively in geomagnetically quiet and disturbed (strong nonthermal continuum emissions) conditions for a 400 meter cylindrical dipole of 1.2 cm diameter on the geostationary satellite. This technique will open new area of radio sounding in the magnetosphere. (auth.)

  16. Small martian valleys: Pristine and degraded morphology

    International Nuclear Information System (INIS)

    Baker, V.R.; Partridge, J.B.

    1986-01-01

    The equatorial heavily cratered uplands of Mars are dissected by two classes of small valleys that are intimately associated in compound networks. Pristine valleys with steep valley walls preferentially occupy downstream portions of compound basins. Degraded valleys with eroded walls are laterally more extensive and have higher drainage densities than pristine valleys. Morphometric and crater-counting studies indicate that relatively dense drainage networks were emplaced on Mars during the heavy bombardment about 4.0 b.y. ago. Over a period of approximately 10 8 years, these networks were degraded and subsequently invaded by headwardly extending pristine valleys. The pristine valleys locally reactivated the compound networks, probably through sapping processes dependent upon high water tables. Fluvial activity in the heavily cratered uplands generally ceased approximately 3.8--3.9 b.y. ago, coincident with the rapid decline in cratering rates. The relict compound valleys on Mars are morphometrically distinct from most terrestrial drainage systems. The differences might be caused by a Martian valley formation episode characterized by hyperaridity, by inadequate time for network growth, by very permeable rock types, or by a combination of factors

  17. EPA Region 1 - Valley Depth in Meters

    Science.gov (United States)

    Raster of the Depth in meters of EPA-delimited Valleys in Region 1.Valleys (areas that are lower than their neighbors) were extracted from a Digital Elevation Model (USGS, 30m) by finding the local average elevation, subtracting the actual elevation from the average, and selecting areas where the actual elevation was below the average. The landscape was sampled at seven scales (circles of 1, 2, 4, 7, 11, 16, and 22 km radius) to take into account the diversity of valley shapes and sizes. Areas selected in at least four scales were designated as valleys.

  18. A Regional Groundwater Observatory to Enhance Analysis and Management of Water Resources

    Science.gov (United States)

    Yoder, A. M.; Maples, S.; Hatch, N. R.; Fogg, G. E.

    2017-12-01

    Timely, effective management of groundwater often does not happen because timely information on the state of the groundwater system is seldom available. A groundwater observatory for monitoring real-time groundwater level fluctuations is being developed in the American-Cosumnes groundwater system of Sacramento County, California. The observatory records the consequences of complex interplay between pumpage, recharge, drought, and floods in the context of a heterogeneous stratigraphic framework that has been extensively characterized with more than 1,100 well logs. Preliminary results show increases in recharge caused by removal of flood control levees to allow more frequent floodplain inundation as well as consequences of the 2012-16 drought followed by the wet winter of 2016-17. Comparison of recharge rates pre- and post-levee breach restoration show significant increases in recharge, despite the presence of fine-grained floodplain soils. Estimated total recharge corresponded closely with the frequency and magnitude of flood events in any given water year. The lowest value calculated for estimated recharge was from 2012-2013, 490 +/- 220 ac-ft (0.65 +/- 0.29 ac-ft per acre). The highest estimated recharge value calculated was for the 2015-2016 water year and was 3180 +/- 1430 ac-ft (2.83 +/- 1.27 ac-ft per acre). These preliminary numbers will be updated with more comprehensive estimates based on a full analysis of the 2016-17 data. The increase in data transfer efficiency afforded by the observatory can be widely used by the many parties reliant on Central Valley groundwater and can serve as a model for real-time data collection in support of California's Sustainable Groundwater Management Act, passed in 2014.

  19. THE UNIFICATION OF POWERFUL QUASARS AND RADIO GALAXIES AND THEIR RELATION TO OTHER MASSIVE GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Podigachoski, Pece; Barthel, Peter [Kapteyn Astronomical Institute, University of Groningen, 9747 AD Groningen (Netherlands); Haas, Martin [Astronomisches Institut, Ruhr Universität, D-44801 Bochum (Germany); Leipski, Christian [Max-Planck Institut für Astronomie (MPIA), D-69117 Heidelberg (Germany); Wilkes, Belinda, E-mail: podigachoski@astro.rug.nl [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2015-06-10

    The unification model for powerful radio galaxies (RGs) and radio-loud quasars postulates that these objects are intrinsically the same but viewed along different angles. Herschel Space Observatory data permit the assessment of that model in the far-infrared spectral window. We analyze photometry from Spitzer and Herschel for the distant 3CR hosts, and find that RGs and quasars have different mid-infrared, but indistinguishable far-infrared colors. Both these properties, the former being orientation dependent and the latter orientation invariant, are in line with expectations from the unification model. Adding powerful radio-quiet active galaxies and typical massive star-forming (SF) galaxies to the analysis, we demonstrate that infrared colors not only provide an orientation indicator, but can also distinguish active from SF galaxies.

  20. Energy Storage and Release through the Solar Activity Cycle Models Meet Radio Observations

    CERN Document Server

    Nindos, Alexander

    2012-01-01

    For nearly sixty years, radio observations have provided a unique insight into the physics of the active and quiescent solar atmosphere. Thanks to the variety of emission mechanisms and to the large altitude range available to observations, fundamental plasma parameters have been measured from the low chromosphere to the upper corona and interplanetary medium. This book presents current research in solar radio astronomy and shows how well it fits in the exceptional scientific context brought by the current space solar observatories. It essentially contains contributed research and review papers presented during the 2010 Community of European Solar Radio Astronomers (CESRA) meeting, which took place in Belgium in June 2010. This book is aimed at graduate students and researchers working in solar physics and space science. Previously published in Solar Physics journal, Vol. 273/2, 2011.

  1. THE UNIFICATION OF POWERFUL QUASARS AND RADIO GALAXIES AND THEIR RELATION TO OTHER MASSIVE GALAXIES

    International Nuclear Information System (INIS)

    Podigachoski, Pece; Barthel, Peter; Haas, Martin; Leipski, Christian; Wilkes, Belinda

    2015-01-01

    The unification model for powerful radio galaxies (RGs) and radio-loud quasars postulates that these objects are intrinsically the same but viewed along different angles. Herschel Space Observatory data permit the assessment of that model in the far-infrared spectral window. We analyze photometry from Spitzer and Herschel for the distant 3CR hosts, and find that RGs and quasars have different mid-infrared, but indistinguishable far-infrared colors. Both these properties, the former being orientation dependent and the latter orientation invariant, are in line with expectations from the unification model. Adding powerful radio-quiet active galaxies and typical massive star-forming (SF) galaxies to the analysis, we demonstrate that infrared colors not only provide an orientation indicator, but can also distinguish active from SF galaxies

  2. A landscape scale valley confinement algorithm: Delineating unconfined valley bottoms for geomorphic, aquatic, and riparian applications

    Science.gov (United States)

    David E. Nagel; John M. Buffington; Sharon L. Parkes; Seth Wenger; Jaime R. Goode

    2014-01-01

    Valley confinement is an important landscape characteristic linked to aquatic habitat, riparian diversity, and geomorphic processes. This report describes a GIS program called the Valley Confinement Algorithm (VCA), which identifies unconfined valleys in montane landscapes. The algorithm uses nationally available digital elevation models (DEMs) at 10-30 m resolution to...

  3. South African Radio League Introduction to Amateur Radio: A study guide for the Radio Amateur Examination

    CSIR Research Space (South Africa)

    Burger, Chris

    2016-01-01

    Full Text Available ) .............................................................................. 15 1.12 The Radio Amateurs’ Examination .......................................................................... 15 1.13 Restrictions on the Use of an Amateur Radio Station .............................................. 16 Chapter 2: Operating... ............................................................................................. 116 14.1 Theory of Operation ............................................................................................... 116 14.2 Turns Ratio...

  4. Radio and infrared observations of (almost) one hundred non-Seyfert Markarian galaxies

    Science.gov (United States)

    Dressel, Linda L.

    1987-01-01

    The 13 cm flux densities of 96 non-Seyfert Markarian galaxies were measured at Arecibo Observatory. Far infrared flux densities have been published for 78 of these galaxies in the IRAS catalog. The radio, infrared, and optical fluxes of these galaxies and of a magnitude limited sample of normal galaxies were compared to clarify the nature of the radio emission in Markarian galaxies. It was found that Markarian galaxies of a given apparent magnitude and Hubble type generally have radio fluxes several times higher that the fluxes typical of normal galaxies of the same magnitude and type. Remarkably, the ratio of radio flux to far infrared flux is nearly the same for most of these starburst galaxies and for normal spiral disks. However, the compact and peculiar Markarian galaxies consistently have about 60% more radio flux per unit infrared flux than the other Markarian galaxies and the normal spirals. It is not clear whether this difference reflects a difference in the evolution of the starbursts in these galaxies or whether there is excess radio emission of nonstellar origin.

  5. Construction of a Radio-Telescope Prototype in the 12 GHz Band

    Science.gov (United States)

    Ordóñez, J.; Quijano, A.; Luna, A.

    2017-07-01

    Radio astronomy is important in the branch of the Astronomy that studies the celestial bodies through their emissions in the domain of the radio waves, to obtain information of these bodies, astronomers must design new types of telescopes that can capture radiation at different wavelengths, including radio telescopes. This paper presents the construction of a prototype of an educational radio telescope, which is made using materials that are easily accessible and inexpensive. The construction of a radio telescope, will allow to carry out research in the field of radio astronomy, since at present it has not been possible to penetrate this branch due to the lack of an adequate equipment in the University of Nariño. The issues that are addressed in the construction of this instrument, its use and the analysis of the data, are very varied and with a high content of multidiciplinariety, gathering basic topics in areas such as astrophysics, physics, electronics, computing, mechanics, which are necessary for Concrete the efficient use of this instrument. For the development of the project, it counts with the advice of the director and researcher of the astronomical observatory of the University of Nariño MSc. Alberto Quijano Vodniza and Dr. Abraham Luna Castellanos of the National Institute of Astrophysics, Optics and Electronics INAOE. In addition to the construction of radiotelescope the final phase consists of the storage and analysis of data obtained with the observation of some celestial bodies that comply with The range in the 12 GHz band for study.

  6. Radio Astronomy Explorer /RAE/. I - Observations of terrestrial radio noise.

    Science.gov (United States)

    Herman, J. R.; Caruso, J. A.; Stone, R. G.

    1973-01-01

    Radio Astronomy Explorer (RAE) I data are analyzed to establish characteristics of HF terrestrial radio noise at an altitude of about 6000 km. Time and frequency variations in amplitude of the observed noise well above cosmic noise background are explained on the basis of temporal and spatial variations in ionospheric critical frequency coupled with those in noise source distributions. It is shown that terrestrial radio noise regularly breaks through the ionosphere and reaches RAE with magnitudes 15 dB and more above cosmic noise background, on frequencies above the F-layer critical frequency.

  7. NASA Unveils First Images From Chandra X-Ray Observatory

    Science.gov (United States)

    1999-08-01

    to precisely measure these X-rays tells how much of each element is present. With this information, astronomers can investigate how the elements necessary for life are created and spread throughout the galaxy by exploding stars. "Chandra will help to confirm one of the most fascinating theories of modern science -- that we came from the stars," said Professor Robert Kirshner of Harvard University. "Its ability to make X-ray images of comparable quality to optical images will have an impact on virtually every area of astronomy." Chandra also imaged a distant and very luminous quasar -- a single star-like object -- sporting a powerful X-ray jet blasting into space. The quasar radiates with the power of 10 trillion suns, energy which scientists believe comes from a supermassive black hole at its center. Chandra's image, combined with radio telescope observations, should provide insight into the process by which supermassive black holes can produce such cosmic jets. "Chandra has allowed NASA to seize the opportunity to put the U.S. back in the lead of observational X-ray astronomy," said Dr. Edward Weiler, Associate Administrator of Space Science, NASA Headquarters, Washington, DC. "History teaches us that whenever you develop a telescope 10 times better than what came before, you will revolutionize astronomy. Chandra is poised to do just that." The Chandra X-ray observatory was named in honor of the late Nobel laureate Subrahmanyan Chandrasekhar. NASA's Marshall Space Flight Center manages the Chandra program. TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. Press: Fact Sheet The first Chandra images will be posted to the Internet at: http://chandra.nasa.gov and http://chandra.harvard.edu NASA press releases and other information are available automatically by sending an Internet electronic mail message to domo@hq.nasa.gov. In the body of the

  8. West Valley Demonstration Project, West Valley, New York: Annual report

    International Nuclear Information System (INIS)

    1989-01-01

    Under the West Valley Demonstration Project Act, Public Law 96-368, liquid high-level radioactive waste stored at the Western New York Nuclear Services Center, West Valley, New York, that resulted from spent nuclear fuel reprocessing operations conducted between 1966 and 1972, is to be solidified in borosilicate glass and transported to a federal repository for geologic disposal. A major milestone was reached in May 1988 when the Project began reducing the volume of the liquid high-level waste. By the end of 1988, approximately 15 percent of the initial inventory had been processed into two waste streams. The decontaminated low-level liquid waste is being solidified in cement. The high-level waste stream is being stored in an underground tank pending its incorporation into borosilicate glass. Four tests of the waste glass melter system were completed. These tests confirmed equipment operability, control system reliability, and provided samples of waste glass for durability testing. In mid-1988, the Department validated an integrated cost and schedule plan for activities required to complete the production of the waste borosilicate glass. Design of the radioactive Vitrification Facility continued

  9. The Lowell Observatory Predoctoral Scholar Program

    Science.gov (United States)

    Prato, Lisa; Nofi, Larissa

    2018-01-01

    Lowell Observatory is pleased to solicit applications for our Predoctoral Scholar Fellowship Program. Now beginning its tenth year, this program is designed to provide unique research opportunities to graduate students in good standing, currently enrolled at Ph.D. granting institutions. Lowell staff research spans a wide range of topics, from astronomical instrumentation, to icy bodies in our solar system, exoplanet science, stellar populations, star formation, and dwarf galaxies. Strong collaborations, the new Ph.D. program at Northern Arizona University, and cooperative links across the greater Flagstaff astronomical community create a powerful multi-institutional locus in northern Arizona. Lowell Observatory's new 4.3 meter Discovery Channel Telescope is operating at full science capacity and boasts some of the most cutting-edge and exciting capabilities available in optical/infrared astronomy. Student research is expected to lead to a thesis dissertation appropriate for graduation at the doctoral level at the student's home institution. For more information, see http://www2.lowell.edu/rsch/predoc.php and links therein. Applications for Fall 2018 are due by May 1, 2018; alternate application dates will be considered on an individual basis.

  10. SPASE, Metadata, and the Heliophysics Virtual Observatories

    Science.gov (United States)

    Thieman, James; King, Todd; Roberts, Aaron

    2010-01-01

    To provide data search and access capability in the field of Heliophysics (the study of the Sun and its effects on the Solar System, especially the Earth) a number of Virtual Observatories (VO) have been established both via direct funding from the U.S. National Aeronautics and Space Administration (NASA) and through other funding agencies in the U.S. and worldwide. At least 15 systems can be labeled as Virtual Observatories in the Heliophysics community, 9 of them funded by NASA. The problem is that different metadata and data search approaches are used by these VO's and a search for data relevant to a particular research question can involve consulting with multiple VO's - needing to learn a different approach for finding and acquiring data for each. The Space Physics Archive Search and Extract (SPASE) project is intended to provide a common data model for Heliophysics data and therefore a common set of metadata for searches of the VO's. The SPASE Data Model has been developed through the common efforts of the Heliophysics Data and Model Consortium (HDMC) representatives over a number of years. We currently have released Version 2.1 of the Data Model. The advantages and disadvantages of the Data Model will be discussed along with the plans for the future. Recent changes requested by new members of the SPASE community indicate some of the directions for further development.

  11. Fine Guidance Sensing for Coronagraphic Observatories

    Science.gov (United States)

    Brugarolas, Paul; Alexander, James W.; Trauger, John T.; Moody, Dwight C.

    2011-01-01

    Three options have been developed for Fine Guidance Sensing (FGS) for coronagraphic observatories using a Fine Guidance Camera within a coronagraphic instrument. Coronagraphic observatories require very fine precision pointing in order to image faint objects at very small distances from a target star. The Fine Guidance Camera measures the direction to the target star. The first option, referred to as Spot, was to collect all of the light reflected from a coronagraph occulter onto a focal plane, producing an Airy-type point spread function (PSF). This would allow almost all of the starlight from the central star to be used for centroiding. The second approach, referred to as Punctured Disk, collects the light that bypasses a central obscuration, producing a PSF with a punctured central disk. The final approach, referred to as Lyot, collects light after passing through the occulter at the Lyot stop. The study includes generation of representative images for each option by the science team, followed by an engineering evaluation of a centroiding or a photometric algorithm for each option. After the alignment of the coronagraph to the fine guidance system, a "nulling" point on the FGS focal point is determined by calibration. This alignment is implemented by a fine alignment mechanism that is part of the fine guidance camera selection mirror. If the star images meet the modeling assumptions, and the star "centroid" can be driven to that nulling point, the contrast for the coronagraph will be maximized.

  12. Developing a Virtual Network of Research Observatories

    Science.gov (United States)

    Hooper, R. P.; Kirschtl, D.

    2008-12-01

    The hydrologic community has been discussing the concept of a network of observatories for the advancement of hydrologic science in areas of scaling processes, in testing generality of hypotheses, and in examining non-linear couplings between hydrologic, biotic, and human systems. The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) is exploring the formation of a virtual network of observatories, formed from existing field studies without regard to funding source. Such a network would encourage sharing of data, metadata, field methods, and data analysis techniques to enable multidisciplinary synthesis, meta-analysis, and scientific collaboration in hydrologic and environmental science and engineering. The virtual network would strive to provide both the data and the environmental context of the data through advanced cyberinfrastructure support. The foundation for this virtual network is Water Data Services that enable the publication of time-series data collected at fixed points using a services-oriented architecture. These publication services, developed in the CUAHSI Hydrologic Information Systems project, permit the discovery of data from both academic and government sources through a single portal. Additional services under consideration are publication of geospatial data sets, immersive environments based upon site digital elevation models, and a common web portal to member sites populated with structured data about the site (such as land use history and geologic setting) to permit understanding the environmental context of the data being shared.

  13. OPTICAL SPECTRA OF CANDIDATE INTERNATIONAL CELESTIAL REFERENCE FRAME (ICRF) FLAT-SPECTRUM RADIO SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Maslennikov, K. [Central Astronomical Observatory at Pulkovo, Pulkovskoye Shosse, 65/1, 196140, St. Petersburg (Russian Federation); Boldycheva, A., E-mail: oleg.titov@ga.gov.au [Ioffe Physical Technical Institute, 26 Polytekhnicheskaya, St. Petersburg, 194021 (Russian Federation)

    2013-07-01

    Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame. We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.

  14. The Pocatello Valley, Idaho, earthquake

    Science.gov (United States)

    Rogers, A. M.; Langer, C.J.; Bucknam, R.C.

    1975-01-01

    A Richter magnitude 6.3 earthquake occurred at 8:31 p.m mountain daylight time on March 27, 1975, near the Utah-Idaho border in Pocatello Valley. The epicenter of the main shock was located at 42.094° N, 112.478° W, and had a focal depth of 5.5 km. This earthquake was the largest in the continental United States since the destructive San Fernando earthquake of February 1971. The main shock was preceded by a magnitude 4.5 foreshock on March 26. 

  15. Radwaste challenge at Beaver Valley

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Duquesne Light Company met the problem of accumulating low-level radioactive waste at its Beaver Valley nuclear plant with an aggressive program to reduce the quantity of contaminated material and demonstrate that the plant was improving its radiological protection. There was also an economic incentive to reduce low-level wastes. The imaginative campaign involved workers in the reduction effort through training and the adoption of practical approaches to reducing the amount of material exposed to radiation that include sorting trash by radiation level and a compacting system. 4 figures

  16. The Owens Valley Millimeter Array

    International Nuclear Information System (INIS)

    Padin, S.; Scott, S.L.; Woody, D.P.; Scoville, N.Z.; Seling, T.V.

    1991-01-01

    The telescopes and signal processing systems of the Owens Valley Millimeter Array are considered, and improvements in the sensitivity and stability of the instrument are characterized. The instrument can be applied to map sources in the 85 to 115 GHz and 218 to 265 GHz bands with a resolution of about 1 arcsec in the higher frequency band. The operation of the array is fully automated. The current scientific programs for the array encompass high-resolution imaging of protoplanetary/protostellar disk structures, observations of molecular cloud complexes associated with spiral structure in nearby galaxies, and observations of molecular structures in the nuclei of spiral and luminous IRAS galaxies. 9 refs

  17. X rays from radio binaries

    International Nuclear Information System (INIS)

    Apparao, K.M.V.

    1977-01-01

    Reference is made to the radio binary systems CC Cas, AR Lac, β Per (Algol), β Lyr, b Per and Cyg X-1. It is stated that a thermal interpretation of the radiation from Algol requires a much larger x-ray flux than the observed value of 3.8 x 10 -11 erg/cm 2 /sec/keV in the 2 to 6 keV energy range. Observations of some non-thermal flares, together with the small size of the radio source in Algol, indicate that the radio emission is non-thermal in nature. The radio emission is interpreted as synchrotron radiation and it is suggested that the observed x-ray emission is due to inverse Compton scattering of the light of the primary star by the radio electrons. The x-ray emission from other radio binaries is also calculated using this model. The energy for the radio electrons can arise from annihilation of magnetic lines connecting the binary stars, twisted by the rotation of the stars. (U.K.)

  18. 75 FR 10439 - Cognitive Radio Technologies and Software Defined Radios

    Science.gov (United States)

    2010-03-08

    ... petition could not through the exercise of due diligence have learned of the facts in question prior to... to a wide variety of radio services, including safety-of-life services--the Commission holds the...

  19. radio frequency based radio frequency based water level monitor

    African Journals Online (AJOL)

    eobe

    ABSTRACT. This paper elucidates a radio frequency (RF) based transmission and reception system used to remotely monitor and .... range the wireless can cover but in this prototype, it ... power supply to the system, the sensed water level is.

  20. Introduction to solar radio astronomy and radio physics

    International Nuclear Information System (INIS)

    Krueger, A.

    1979-01-01

    A systematic summary is presented of the work done during the last thirty years in the field of solar radio astronomy from the standpoint of general solar physics. Instrumental aspects, observations and theory are covered. A brief introduction is given to the matter consisting of the history of solar radio astronomy and some fundamentals of astronomy and solar physics are outlined. Some topics of the instrumental background of solar radio astronomy and the main results of observations are presented. The elements of a theoretical interpretation of solar radio observations are reported and a synthesis of both observation and theory contributing to a general picture of solar and solar-terrestrial physics is outlined. (C.F./Auth)

  1. Science Potential of a Deep Ocean Antineutrino Observatory

    International Nuclear Information System (INIS)

    Dye, S.T.

    2007-01-01

    This paper presents science potential of a deep ocean antineutrino observatory being developed at Hawaii. The observatory design allows for relocation from one site to another. Positioning the observatory some 60 km distant from a nuclear reactor complex enables precision measurement of neutrino mixing parameters, leading to a determination of neutrino mass hierarchy and θ 13 . At a mid-Pacific location the observatory measures the flux and ratio of uranium and thorium decay neutrinos from earth's mantle and performs a sensitive search for a hypothetical natural fission reactor in earth's core. A subsequent deployment at another mid-ocean location would test lateral heterogeneity of uranium and thorium in earth's mantle

  2. Availability and Access to Data from Kakioka Magnetic Observatory, Japan

    Directory of Open Access Journals (Sweden)

    Yasuhiro Minamoto

    2013-06-01

    Full Text Available The Japan Meteorological Agency (JMA is operating four geomagnetic observatories in Japan. Kakioka Magnetic Observatory (KMO, commissioned in 1913, is the oldest. The hourly records at KMO cover over almost 100 years. KMO is JMA's headquarters for geomagnetic and geoelectric observations. Almost all data are available at the KMO website free of charge for researchers. KMO and two other observatories have been certified as INTERMAGNET observatories, and quasi-real-time geomagnetic data from them are available at the INTERMAGNET website.

  3. Introduction to international radio regulations

    Energy Technology Data Exchange (ETDEWEB)

    Struzak, R

    2003-12-15

    These notes introduce the ITU Radio Regulations and related UN and WTO agreements that specify how terrestrial and satellite radio should be used in all countries over the planet. Access to the existing information infrastructure, and to that of the future Information Society, depends critically on these regulations. The paper also discusses few problems related to the use of the radio frequencies and satellite orbits. The notes are extracted from a book under preparation, in which these issues are discussed in more detail. (author)

  4. Introduction to international radio regulations

    International Nuclear Information System (INIS)

    Struzak, R.

    2003-01-01

    These notes introduce the ITU Radio Regulations and related UN and WTO agreements that specify how terrestrial and satellite radio should be used in all countries over the planet. Access to the existing information infrastructure, and to that of the future Information Society, depends critically on these regulations. The paper also discusses few problems related to the use of the radio frequencies and satellite orbits. The notes are extracted from a book under preparation, in which these issues are discussed in more detail. (author)

  5. Magnetogasdynamics of double radio sources

    International Nuclear Information System (INIS)

    Nepveu, M.

    1979-01-01

    The magnetogasdynamical behaviour of plasmoids moving through an ambient gas is investigated numerically with a two-dimensional code, based on the SHASTA scheme. The astrophysical importance of this study lies in the observed extended extragalactic radio sources. It is assumed that plasma clouds with cylinder symmetry are ejected from the nucleus of a galaxy. Their large-scale evolution in the intergalactic medium (IGM) is followed. The gas dynamics of an ejected cloud, the magnetogasdynamics of ejected clouds, the Christiansen-Pacholczyk-Scott picture for radio galaxies and the shear layers in double radio sources are studied. (Auth.)

  6. Shoestring Budget Radio Astronomy (Abstract)

    Science.gov (United States)

    Hoot, J. E.

    2017-12-01

    (Abstract only) The commercial exploitation of microwave frequencies for cellular, WiFi, Bluetooth, HDTV, and satellite digital media transmission has brought down the cost of the components required to build an effective radio telescope to the point where, for the cost of a good eyepiece, you can construct and operate a radio telescope. This paper sets forth a family of designs for 1421 MHz telescopes. It also proposes a method by which operators of such instruments can aggregate and archive data via the Internet. With 90 or so instruments it will be possible to survey the entire radio sky for transients with a 24 hour cadence.

  7. Participation of the Abastumani Astrophysical Observatory in Different Programs for Coordinated Investigation of Cyg X-1

    Science.gov (United States)

    Kumsiashvili, M. I.; Kochiashvili, N. T.

    2000-10-01

    Broad-band photometric observations of the black hole candidate Cyg X-1 were carried out in 1975-1998 at the Abastumani Astrophysical Observatory in the framework of coordinated observations, at the varies observatories of the former Soviet Union. All data have been reduced to a homogeneous set.Comparison of the optical and X-ray data clearly shows the existence of several kinds of variability. Analysis of the prolonged photoelectric observations of V 1357 Cyg=Cyg X-1 confirmed long-period optical variation of this X-ray binary system with the period of 294 d revealed by Kemp et al. This periodicity is most strongly pronounced at the orbital period phase when the optical star is in front of the X-ray source. Variations of the mean level of Cyg X-1 and of the light curve form with the phase of the period 294 d agree well with the model of the precessing accretion disk which radiates in the optical range mainly by scattering and processing of the optical star radiation. The direction of the disc precession coincides with that of the orbital motion and it is hard to understand this fact in the models with the forced precession. The triple system model is less probable. There are also observations of this objects made in the Abastumani Observatory in 1982-1988 which are represented the Table and light curves. These observations have not discussed by coordinators. The observations taken in the course of the International campaign "The Optical Monitoring of the Unique Astrophysical Objects" were realized by the observatories located on the territories of Georgia, Russia, Uzbekistan and Ukraine in 1994-1998. They are united in a single set, taking into account the systemic differences between them. Number of usual observations is 2247 in 399 nights in U B V R bands. The observations were performed simultaneously in X-ray band in the energy range of 2-10 keV (ASM/RXTE), and 20-100 keV (BASTE/CGRO), and also with radio observations at the Mullard radio observatory. Our

  8. Atmospheric anthropic impacts tracked by the French atmospheric mobile observatory

    Science.gov (United States)

    Cuesta, J.; Chazette, P.; Flamant, P. H.

    2009-04-01

    A new ATmospheric Mobile ObServatory, so called "ATMOS", has been developed by the LiMAG "Lidar, Meteorology and Geophysics" team of the Institut Pierre Simon Laplace (IPSL) in France, in order to contribute to international field campaigns for studying atmospheric physico-chemistry, air quality and climate (i.e. aerosols, clouds, trace gazes, atmospheric dynamics and energy budget) and the ground-based validation of satellite observations. ATMOS has been deployed in the framework of i) LISAIR, for monitoring air quality in Paris in 2005, ii) AMMA "African Monsoon Multidisciplinary Analysis", in Tamanrasset and in Niamey for observing the aerosols and the atmospheric boundary layer in the Sahara and in the Sahel in 2006, iii) COPS "Convectively and Orographycally driven Precipitation Study" in the Rhin Valley in 2007 and iv) the validation of the spatial mission CALIPSO, launched in April 2006. In the coming years, ATMOS will be deployed i) in the Paris Megacity, in the framework of MEGAPOLI (2009-2010), ii) in southern France (near Marseille) for the Chemistry-Aerosol Mediterranean Experiment CHARMEX (2011-2012) and iii) the validation of ADM-Aeolus in 2010-2011 and Earth-Care in 2012. ATMOS payload is modular, accounting for the different platforms, instruments and measuring techniques. The deployment of ATMOS is an essential contribution to field campaigns, complementing the fixed sites, and a potential alternative of airborne platforms, heavier and more expensive. ATMOS mobile payload comprises both the remote sensing platform MOBILIS ("Moyens mOBIles de téLédetection de l'IPSL") and the in-situ physico-chemical station SAMMO ("Station Aérosols et chiMie MObile"). MOBILIS is an autonomous and high-performance system constituted by a full set of active and passive remote sensing instrumentation (i.e. Lidars and radiometers), whose payload may be adapted for either i) long term fixed monitoring in a maritime container or a shelter, ii) ground-based transect

  9. Deep Impact as a World Observatory Event: Synergies in Space, Time, and Wavelength

    CERN Document Server

    Käufl, H.U; ESO/VUB Conference

    2009-01-01

    In the context of the NASA Deep Impact space mission, comet 9P/Tempel1 has been at the focus of an unprecedented worldwide long-term multi-wavelength observation campaign. The comet was also studied throughout its perihelion passage by various sources including the Deep Impact mission itself, the Hubble Space Telescope, Spitzer, Rosetta, XMM and all major ground-based observatories in a wavelength band from cm-wave radio astronomy to x-rays. This book includes the proceedings of a meeting that brought together an audience of theoreticians and observers - across the electromagnetic spectrum and from different sites and projects - to make full use of the massive ground-based observing data set. The coherent presentation of all data sets illustrates and examines the various observational constraints on modelling the cometary nucleus, cometary gas, cometary plasma, cometary dust, and the comet's surface and its activity.

  10. Telescope Array Radar (TARA) observatory for Ultra-High Energy Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, R.; Othman, M. Abou Bakr [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Allen, C. [University of Kansas, Lawrence, KS 66045 (United States); Beard, L. [Purdue University, West Lafayette, IN 47907 (United States); Belz, J. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Besson, D. [University of Kansas, Lawrence, KS 66045 (United States); Moscow Engineering and Physics Institute, 31 Kashirskaya Shosse, Moscow 115409 (Russian Federation); Byrne, M.; Farhang-Boroujeny, B.; Gardner, A. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Gillman, W.H. [Gillman and Associates, Salt Lake City, UT 84106 (United States); Hanlon, W. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Hanson, J. [University of Kansas, Lawrence, KS 66045 (United States); Jayanthmurthy, C. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Kunwar, S. [University of Kansas, Lawrence, KS 66045 (United States); Larson, S.L. [Utah State University, Logan, Utah 84322 (United States); Myers, I., E-mail: isaac@cosmic.utah.edu [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Prohira, S.; Ratzlaff, K. [University of Kansas, Lawrence, KS 66045 (United States); Sokolsky, P. [University of Utah, 115 S 1400 E #201 JFB, Salt Lake City, UT 84112 (United States); Takai, H. [Brookhaven National Laboratory, Upton, NY 11973 (United States); and others

    2014-12-11

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  11. Telescope Array Radar (TARA) observatory for Ultra-High Energy Cosmic Rays

    International Nuclear Information System (INIS)

    Abbasi, R.; Othman, M. Abou Bakr; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Farhang-Boroujeny, B.; Gardner, A.; Gillman, W.H.; Hanlon, W.; Hanson, J.; Jayanthmurthy, C.; Kunwar, S.; Larson, S.L.; Myers, I.; Prohira, S.; Ratzlaff, K.; Sokolsky, P.; Takai, H.

    2014-01-01

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems

  12. Telescope Array Radar (TARA) observatory for Ultra-High Energy Cosmic Rays

    Science.gov (United States)

    Abbasi, R.; Othman, M. Abou Bakr; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Farhang-Boroujeny, B.; Gardner, A.; Gillman, W. H.; Hanlon, W.; Hanson, J.; Jayanthmurthy, C.; Kunwar, S.; Larson, S. L.; Myers, I.; Prohira, S.; Ratzlaff, K.; Sokolsky, P.; Takai, H.; Thomson, G. B.; Von Maluski, D.

    2014-12-01

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest "conventional" cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  13. The excess radio background and fast radio transients

    International Nuclear Information System (INIS)

    Kehayias, John; Kephart, Thomas W.; Weiler, Thomas J.

    2015-01-01

    In the last few years ARCADE 2, combined with older experiments, has detected an additional radio background, measured as a temperature and ranging in frequency from 22 MHz to 10 GHz, not accounted for by known radio sources and the cosmic microwave background. One type of source which has not been considered in the radio background is that of fast transients (those with event times much less than the observing time). We present a simple estimate, and a more detailed calculation, for the contribution of radio transients to the diffuse background. As a timely example, we estimate the contribution from the recently-discovered fast radio bursts (FRBs). Although their contribution is likely 6 or 7 orders of magnitude too small (though there are large uncertainties in FRB parameters) to account for the ARCADE 2 excess, our development is general and so can be applied to any fast transient sources, discovered or yet to be discovered. We estimate parameter values necessary for transient sources to noticeably contribute to the radio background

  14. Radio frequency integrated circuit design for cognitive radio systems

    CERN Document Server

    Fahim, Amr

    2015-01-01

    This book fills a disconnect in the literature between Cognitive Radio systems and a detailed account of the circuit implementation and architectures required to implement such systems.  Throughout the book, requirements and constraints imposed by cognitive radio systems are emphasized when discussing the circuit implementation details.  In addition, this book details several novel concepts that advance state-of-the-art cognitive radio systems.  This is a valuable reference for anybody with background in analog and radio frequency (RF) integrated circuit design, needing to learn more about integrated circuits requirements and implementation for cognitive radio systems. ·         Describes in detail cognitive radio systems, as well as the circuit implementation and architectures required to implement them; ·         Serves as an excellent reference to state-of-the-art wideband transceiver design; ·         Emphasizes practical requirements and constraints imposed by cognitive radi...

  15. Valley-dependent band structure and valley polarization in periodically modulated graphene

    Science.gov (United States)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  16. Sustainable agricultural development in inland valleys

    NARCIS (Netherlands)

    Zwart, S.J.

    2018-01-01

    The inland valley in Africa are common landscapes that have favorable conditions for agricultural production. Compared to the surrounding uplands they are characterized by a relatively high and secure water availability and high soil fertility levels. Inland valleys thus have a high agricultural

  17. Valley dependent transport in graphene L junction

    Science.gov (United States)

    Chan, K. S.

    2018-05-01

    We studied the valley dependent transport in graphene L junctions connecting an armchair lead and a zigzag lead. The junction can be used in valleytronic devices and circuits. Electrons injected from the armchair lead into the junction is not valley polarized, but they can become valley polarized in the zigzag lead. There are Fermi energies, where the current in the zigzag lead is highly valley polarized and the junction is an efficient generator of valley polarized current. The features of the valley polarized current depend sensitively on the widths of the two leads, as well as the number of dimers in the armchair lead, because this number has a sensitive effect on the band structure of the armchair lead. When an external potential is applied to the junction, the energy range with high valley polarization is enlarged enhancing its function as a generator of highly valley polarized current. The scaling behavior found in other graphene devices is also found in L junctions, which means that the results presented here can be extended to junctions with larger dimensions after appropriate scaling of the energy.

  18. Beaver assisted river valley formation

    Science.gov (United States)

    Westbrook, Cherie J.; Cooper, D.J.; Baker, B.W.

    2011-01-01

    We examined how beaver dams affect key ecosystem processes, including pattern and process of sediment deposition, the composition and spatial pattern of vegetation, and nutrient loading and processing. We provide new evidence for the formation of heterogeneous beaver meadows on riverine system floodplains and terraces where dynamic flows are capable of breaching in-channel beaver dams. Our data show a 1.7-m high beaver dam triggered overbank flooding that drowned vegetation in areas deeply flooded, deposited nutrient-rich sediment in a spatially heterogeneous pattern on the floodplain and terrace, and scoured soils in other areas. The site quickly de-watered following the dam breach by high stream flows, protecting the deposited sediment from future re-mobilization by overbank floods. Bare sediment either exposed by scouring or deposited by the beaver flood was quickly colonized by a spatially heterogeneous plant community, forming a beaver meadow. Many willow and some aspen seedlings established in the more heavily disturbed areas, suggesting the site may succeed to a willow carr plant community suitable for future beaver re-occupation. We expand existing theory beyond the beaver pond to include terraces within valleys. This more fully explains how beavers can help drive the formation of alluvial valleys and their complex vegetation patterns as was first postulated by Ruedemann and Schoonmaker in 1938. ?? 2010 John Wiley & Sons, Ltd.

  19. Variations of Synchrotron Radio Emissions from Jupiter's Inner Radiation Belt

    Science.gov (United States)

    Lou, Y.-Q.

    2017-09-01

    Variations of Synchrotron Radio Emissions from Jupiter's Inner Radiation Belt Yu-Qing Lou* Physics Department, Tsinghua Centre for Astrophysics (THCA), Tsinghua-National Astronomical Observatories of China (NAOC) joint Research Centre for Astrophysics, Tsinghua University, Beijing 100084, China We describe the basic phenommenology of quasi-periodic 40 minute (QP-40) polar burst activities of Jupiter and their close correlation with the solar wind speed variations at the Jovian magnetosphere. Physically, relativistic electrons of QP-40 bursts most likely come from the circumpolar regions of the inner radiation belt (IRB) which gives off intense synchroton radio emissions in a wide wavelength range. Such relativistic electron bursts also give rise to beamed low-frequency radio bursts along polar magnetic field lines with distinct polarizations from Jupiter's two polar regions. Jovian aurora activities are expected to be also affected by such QP-40 burst activities. We present evidence of short-term (typical timescales shorter than an hour) variabilities of the IRB at 6cm wavelength and describe recent joint radio telescope observation campaign to monitor Jupiter in coordination with JUNO spacecraft. Except for low-frequency polarization features, we anticipate JUNO to detect QP-40 activities from both polar regions during the arrival of high-speed solar wind with intermittency. References 1. Y.-Q. Lou, The Astrophysical Journal, 548, 460 (2001). 2. Y.-Q. Lou, and C. Zheng, Mon. Not. Roy. Astron. Soc. Letters, 344, L1 (2003). 3. Y.-Q. Lou, H. G. Song, Y.Y. Liu, and M. Yang, Mon. Not. Roy. Astron. Soc. Letters, 421, L62 (2012). 4. Y.-Q. Lou, Geophysical Research Letters, 23, 609 (1996). 5. Y.-Q. Lou, Journal of Geophysical Research, 99, 14747 (1994). 6. G. R. Gladstone, et al., Nature, 415, 1000 (2002).

  20. Artificial intelligence for the CTA Observatory scheduler

    Science.gov (United States)

    Colomé, Josep; Colomer, Pau; Campreciós, Jordi; Coiffard, Thierry; de Oña, Emma; Pedaletti, Giovanna; Torres, Diego F.; Garcia-Piquer, Alvaro

    2014-08-01

    The Cherenkov Telescope Array (CTA) project will be the next generation ground-based very high energy gamma-ray instrument. The success of the precursor projects (i.e., HESS, MAGIC, VERITAS) motivated the construction of this large infrastructure that is included in the roadmap of the ESFRI projects since 2008. CTA is planned to start the construction phase in 2015 and will consist of two arrays of Cherenkov telescopes operated as a proposal-driven open observatory. Two sites are foreseen at the southern and northern hemispheres. The CTA observatory will handle several observation modes and will have to operate tens of telescopes with a highly efficient and reliable control. Thus, the CTA planning tool is a key element in the control layer for the optimization of the observatory time. The main purpose of the scheduler for CTA is the allocation of multiple tasks to one single array or to multiple sub-arrays of telescopes, while maximizing the scientific return of the facility and minimizing the operational costs. The scheduler considers long- and short-term varying conditions to optimize the prioritization of tasks. A short-term scheduler provides the system with the capability to adapt, in almost real-time, the selected task to the varying execution constraints (i.e., Targets of Opportunity, health or status of the system components, environment conditions). The scheduling procedure ensures that long-term planning decisions are correctly transferred to the short-term prioritization process for a suitable selection of the next task to execute on the array. In this contribution we present the constraints to CTA task scheduling that helped classifying it as a Flexible Job-Shop Problem case and finding its optimal solution based on Artificial Intelligence techniques. We describe the scheduler prototype that uses a Guarded Discrete Stochastic Neural Network (GDSN), for an easy representation of the possible long- and short-term planning solutions, and Constraint

  1. Radio-adaptive response

    International Nuclear Information System (INIS)

    Ikushima, T.

    1992-01-01

    An adaptive response to radiation stress was found as a suppressed induction of chromosomal damage including micronuclei and sister chromatid exchanges in cultured Chinese hamster V79 cells pre-exposed to very low doses of ionizing radiations. The mechanism underlying this novel chromosomal response, called 'radio-adaptive response (RAR)' has been studied progressively. The following results were obtained in recent experiments. 1. Low doses of β-rays from tritiated water (HTO) as well as tritium-thymidine can cause RAR. 2. Thermal neutrons, a high LET radiation, can not act as tritium β-rays or γ-rays. 3. The RAR expression is suppressed not only by the treatment with an inhibitor of protein synthesis but also by RNA synthesis inhibition. 4. Several proteins are newly synthesized concurrently with the RAR expression after the adapting doses, viewed by two-dimensional electrophoresis of cellular proteins. These results suggests that the RAR might be a cellular stress response to a signal produced preferentially by very low doses of low LET radiation under restricted conditions, accompany the inducible specific gene expression. (author)

  2. Beamsteerable GNSS Radio Occultation ASIC

    Data.gov (United States)

    National Aeronautics and Space Administration — We will develop an integrated RF ASIC to enable high quality radio occultation (RO) weather observations using the Global Navigations System Satellite (GNSS)...

  3. Sea Turtle Radio Telemetry Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radio transmitters attached to sea turtles captured in various fishing gear enabled us to track and measure surfacing time of each turtle. Determining location of...

  4. Zero-Power Radio Device.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    This report describes an unpowered radio receiver capable of detecting and responding to weak signals transmit ted from comparatively long distances . This radio receiver offers key advantages over a short range zero - power radio receiver previously described in SAND2004 - 4610, A Zero - Power Radio Receiver . The device described here can be fabricated as an integrated circuit for use in portable wireless devices, as a wake - up circuit, or a s a stand - alone receiver operating in conjunction with identification decoders or other electroni cs. It builds on key sub - components developed at Sandia National Laboratories over many years. It uses surface acoustic wave (SAW) filter technology. It uses custom component design to enable the efficient use of small aperture antennas. This device uses a key component, the pyroelectric demodulator , covered by Sandia owned U.S. Patent 7397301, Pyroelectric Demodulating Detector [1] . This device is also described in Sandia owned U.S. Patent 97266446, Zero Power Receiver [2].

  5. Press Meeting 20 January 2003: First Light for Europe's Virtual Observatory

    Science.gov (United States)

    2002-12-01

    introduction The Virtual Observatory is an international astronomical community-based initiative. It aims to allow global electronic access to the available astronomical data archives of space and ground-based observatories, sky survey databases. It also aims to enable data analysis techniques through a coordinating entity that will provide common standards, wide-network bandwidth, and state-of-the-art analysis tools. It is now possible to have powerful and expensive new observing facilities at wavelengths from the radio to the X-ray and gamma-ray regions. Together with advanced instrumentation techniques, a vast new array of astronomical data sets will soon be forthcoming at all wavelengths. These very large databases must be archived and made accessible in a systematic and uniform manner to realise the full potential of the new observing facilities. The Virtual Observatory aims to provide the framework for global access to the various data archives by facilitating the standardisation of archiving and data-mining protocols. The AVO will also take advantage of state-of-the-art advances in data-handling software in astronomy and in other fields. The Virtual Observatory initiative is currently aiming at a global collaboration of the astronomical communities in Europe, North and South America, Asia, and Australia under the auspices of the recently formed International Virtual Observatory Alliance. The Astrophysical Virtual Observatory - An Introduction The breathtaking capabilities and ultrahigh efficiency of new ground and space observatories have led to a 'data explosion' calling for innovative ways to process, explore, and exploit these data. Researchers must now turn to the GRID paradigm of distributed computing and resources to solve complex, front-line research problems. To implement this new IT paradigm, you have to join existing astronomical data centres and archives into an interoperating and single unit. This new astronomical data resource will form a Virtual

  6. On the evaluation of Web Radio

    OpenAIRE

    Field, A.N.; Hartel, Pieter H.

    2001-01-01

    We develop an evaluation method for Web radio, and perform it to see what we can be learnt about seven prominent Web radio sites. We also evaluate a commercial FM radio station for control purposes. We present a taxonomy of Web radio, and we give our observations and conclusions on this evaluation.

  7. Radio and line transmission 2

    CERN Document Server

    Roddy, Dermot

    2013-01-01

    Radio and Line Transmission, Volume 2 gives a detailed treatment of the subject as well as an introduction to additional advanced subject matter. Organized into 14 chapters, this book begins by explaining the radio wave propagation, signal frequencies, and bandwidth. Subsequent chapters describe the transmission lines and cables; the aerials; tuned and coupled circuits; bipolar transistor amplifiers; field-effect transistors and circuits; thermionic valve amplifiers; LC oscillators; the diode detectors and modulators; and the superheterodyne receiver. Other chapters explore noise and interfere

  8. Historic Radio Astronomy Working Group

    Science.gov (United States)

    2007-06-01

    This special issue of Astronomische Nachrichten contains the proceedings of a session of the Historic Radio Astronomy Working Group of the International Astronomical Union that took place during the 26th General Assembly of the IAU in Prague on 17th August 2006. In addition to the talks presented in Prague some contributions were solicited to give a more complete overview of `The Early History of European Radio Astronomy'.

  9. Radio astronomy on the moon

    International Nuclear Information System (INIS)

    Burns, J.O.; Asbell, J.

    1987-01-01

    The advantages and opportunities for radio astronomy on the moon during the early to mid 21st century are reviewed. In particular, it is argued that the lack of atmosphere, the extremely low seismic activity, the low RF background, and the natural cryogenic environment make the moon (particularly the far side and the poles) a nearly ideal locale for submillimeter/FIR to VLF (below 10 MHz) radio astronomy. 22 references

  10. RADIO NOISE ADVANCES SEXUAL MATURITY

    African Journals Online (AJOL)

    ansistf-lewis

    Mean age at first egg for the radio birds (143 d) was 13 d significantly earlier than controls, but body weight at ... the first 8 h of a 12-h photoperiod with radio noise, to leave only 4 h of light (4L:20D), supported rates of lay ... Age (AFE) and body weight at, and weight of, first egg were recorded for individual birds, and, after a.

  11. The Steward Observatory asteroid relational database

    Science.gov (United States)

    Sykes, Mark V.; Alvarezdelcastillo, Elizabeth M.

    1991-01-01

    The Steward Observatory Asteroid Relational Database (SOARD) was created as a flexible tool for undertaking studies of asteroid populations and sub-populations, to probe the biases intrinsic to asteroid databases, to ascertain the completeness of data pertaining to specific problems, to aid in the development of observational programs, and to develop pedagogical materials. To date, SOARD has compiled an extensive list of data available on asteroids and made it accessible through a single menu-driven database program. Users may obtain tailored lists of asteroid properties for any subset of asteroids or output files which are suitable for plotting spectral data on individual asteroids. The program has online help as well as user and programmer documentation manuals. The SOARD already has provided data to fulfill requests by members of the astronomical community. The SOARD continues to grow as data is added to the database and new features are added to the program.

  12. Punctuated Evolution of Volcanology: An Observatory Perspective

    Science.gov (United States)

    Burton, W. C.; Eichelberger, J. C.

    2010-12-01

    Volcanology from the perspective of crisis prediction and response-the primary function of volcano observatories-is influenced both by steady technological advances and singular events that lead to rapid changes in methodology and procedure. The former can be extrapolated somewhat, while the latter are surprises or shocks. Predictable advances include the conversion from analog to digital systems and the exponential growth of computing capacity and data storage. Surprises include eruptions such as 1980 Mount St Helens, 1985 Nevado del Ruiz, 1989-1990 Redoubt, 1991 Pinatubo, and 2010 Eyjafjallajokull; the opening of GPS to civilian applications, and the advent of an open Russia. Mount St Helens switched the rationale for volcanology in the USGS from geothermal energy to volcano hazards, Ruiz and Pinatubo emphasized the need for international cooperation for effective early warning, Redoubt launched the effort to monitor even remote volcanoes for purposes of aviation safety, and Eyjafjallajokull hammered home the need for improved ash-dispersion and engine-tolerance models; better GPS led to a revolution in volcano geodesy, and the new Russian Federation sparked an Alaska-Kamchatka scientific exchange. The pattern has been that major funding increases for volcano hazards occur after these unpredictable events, which suddenly expose a gap in capabilities, rather than out of a calculated need to exploit technological advances or meet a future goal of risk mitigation. It is up to the observatory and national volcano hazard program to leverage these sudden funding increases into a long-term, sustainable business model that incorporates both the steadily increasing costs of staff and new technology and prepares for the next volcano crisis. Elements of the future will also include the immediate availability on the internet of all publically-funded volcano data, and subscribable, sophisticated hazard alert systems that run computational, fluid dynamic eruption models. These

  13. In situ vector calibration of magnetic observatories

    Directory of Open Access Journals (Sweden)

    A. Gonsette

    2017-09-01

    Full Text Available The goal of magnetic observatories is to measure and provide a vector magnetic field in a geodetic coordinate system. For that purpose, instrument set-up and calibration are crucial. In particular, the scale factor and orientation of a vector magnetometer may affect the magnetic field measurement. Here, we highlight the baseline concept and demonstrate that it is essential for data quality control. We show how the baselines can highlight a possible calibration error. We also provide a calibration method based on high-frequency absolute measurements. This method determines a transformation matrix for correcting variometer data suffering from scale factor and orientation errors. We finally present a practical case where recovered data have been successfully compared to those coming from a reference magnetometer.

  14. The sunspot databases of the Debrecen Observatory

    Science.gov (United States)

    Baranyi, Tünde; Gyori, Lajos; Ludmány, András

    2015-08-01

    We present the sunspot data bases and online tools available in the Debrecen Heliophysical Observatory: the DPD (Debrecen Photoheliographic Data, 1974 -), the SDD (SOHO/MDI-Debrecen Data, 1996-2010), the HMIDD (SDO/HMI-Debrecen Data, HMIDD, 2010-), the revised version of Greenwich Photoheliographic Data (GPR, 1874-1976) presented together with the Hungarian Historical Solar Drawings (HHSD, 1872-1919). These are the most detailed and reliable documentations of the sunspot activity in the relevant time intervals. They are very useful for studying sunspot group evolution on various time scales from hours to weeks. Time-dependent differences between the available long-term sunspot databases are investigated and cross-calibration factors are determined between them. This work has received funding from the European Community's Seventh Framework Programme (FP7/2012-2015) under grant agreement No. 284461 (eHEROES).

  15. MMS Observatory Thermal Vacuum Results Contamination Summary

    Science.gov (United States)

    Rosecrans, Glenn P.; Errigo, Therese; Brieda, Lubos

    2014-01-01

    The MMS mission is a constellation of 4 observatories designed to investigate the fundamental plasma physics of reconnection in the Earths magnetosphere. Each spacecraft has undergone extensive environmental testing to prepare it for its minimum 2 year mission. The various instrument suites measure electric and magnetic fields, energetic particles, and plasma composition. Thermal vacuum testing was conducted at the Naval Research Laboratory (NRL) in their Big Blue vacuum chamber. The individual spacecraft were tested and enclosed in a cryopanel enclosure called a Hamster cage. Specific contamination control validations were actively monitored by several QCMs, a facility RGA, and at times, with 16 Ion Gauges. Each spacecraft underwent a bakeout phase, followed by 4 thermal cycles. Unique aspects of the TV environment included slow pump downs with represses, thruster firings, Helium identification, and monitoring pressure spikes with Ion gauges. Various data from these TV tests will be shown along with lessons learned.

  16. Virtual Observatory: From Concept to Implementation

    Science.gov (United States)

    Djorgovski, S. G.; Williams, R.

    2005-12-01

    We review the origins of the Virtual Observatory (VO) concept, and the current status of the efforts in this field. VO is the response of the astronomical community to the challenges posed by the modern massive and complex data sets. It is a framework in which information technology is harnessed to organize, maintain, and explore the rich information content of the exponentially growing data sets, and to enable a qualitatively new science to be done with them. VO will become a complete, open, distributed, web-based framework for astronomy of the early 21st century. A number of significant efforts worldwide are now striving to convert this vision into reality. The technological and methodological challenges posed by the information-rich astronomy are also common to many other fields. We see a fundamental change in the way all science is done, driven by the information technology revolution.

  17. SOFIA: The Next Generation Airborne Observatory

    Science.gov (United States)

    Dunham, Edward; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    SOFIA, the Stratospheric Observatory For Infrared Astronomy, will carry a 2.5 meter telescope into the stratosphere on 160 7.5 hour flights per year. At stratospheric altitudes SOFIA will operate above 99% of the water vapor in the Earth's atmosphere, allowing observation of wide regions of the infrared spectrum that are totally obscured from even the best ground-based sites. Its mobility and long range will allow worldwide observation of ephemeral events such as occultations and eclipses. SOFIA will be developed jointly by NASA and DARA, the German space agency. It has been included in the President's budget request to Congress for a development start in FY96 (this October!) and enjoys strong support in Germany. This talk will cover SOFIA's scientific goals, technical characteristics, science operating plan, and political status.

  18. Supernova observations at McDonald Observatory

    International Nuclear Information System (INIS)

    Wheeler, J.C.

    1984-01-01

    The programs to obtain high quality spectra and photometry of supernovae at McDonald Observatory are reviewed. Spectra of recent Type I supernovae in NGC 3227, NGC 3625, and NGC 4419 are compared with those of SN 1981b in NGC 4536 to quantitatively illustrate both the homogeneity of Type I spectra at similar epochs and the differences in detail which will serve as a probe of the physical processes in the explosions. Spectra of the recent supernova in NGC 0991 give for the first time quantitative confirmation of a spectrally homogeneous, but distinct subclass of Type I supernovae which appears to be less luminous and to have lower excitation at maximum light than classical Type I supernovae

  19. Ultra-high energy cosmic rays. Results and status of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Christine [III. Physikalisches Institut A, RWTH Aachen University (Germany); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    The Pierre Auger Observatory is the world's largest experiment detecting extensive air showers initiated by cosmic rays at the highest energies. An area of 3000 km{sup 2} is instrumented by 1660 water Cherenkov detector stations, and 27 fluorescence telescopes overlook the atmosphere above the surface detector array. A hybrid detection principle is achieved by utilizing information of both detectors. A major upgrade of the experiment (AugerPrime) has been decided adding a third detector type, scintillator detector stations located on the water Cherenkov tanks. Thereby, the composition sensitivity of the Pierre Auger Observatory is extended by an improved determination of the muonic shower component. Additionally, underground muon detectors (AMIGA) are deployed. The experiment has been further extended by antennas measuring the emission of radio signals from air showers (AERA). An overview about recent results and the current status of the experiment are given in this talk. Highlights are updated results, e.g. on the energy spectrum, chemical composition or proton-air cross section.

  20. A search for fast radio bursts associated with gamma-ray bursts

    International Nuclear Information System (INIS)

    Palaniswamy, Divya; Wayth, Randall B.; Trott, Cathryn M.; Tingay, Steven J.; Reynolds, Cormac; McCallum, Jamie N.

    2014-01-01

    The detection of seven fast radio bursts (FRBs) has recently been reported. FRBs are short duration (∼1 ms), highly dispersed radio pulses from astronomical sources. The physical interpretation for the FRBs remains unclear but is thought to involve highly compact objects at cosmological distance. It has been suggested that a fraction of FRBs could be physically associated with gamma-ray bursts (GRBs). Recent radio observations of GRBs have reported the detection of two highly dispersed short duration radio pulses using a 12 m radio telescope at 1.4 GHz. Motivated by this result, we have performed a systematic and sensitive search for FRBs associated with GRBs. We have observed five GRBs at 2.3 GHz using a 26 m radio telescope located at the Mount Pleasant Radio Observatory, Hobart. The radio telescope was automated to rapidly respond to Gamma-ray Coordination Network notifications from the Swift satellite and slew to the GRB position within ∼140 s. The data were searched for pulses up to 5000 pc cm –3 in dispersion measure and pulse widths ranging from 640 μs to 25.60 ms. We did not detect any events ≥6σ. An in depth statistical analysis of our data shows that events detected above 5σ are consistent with thermal noise fluctuations only. A joint analysis of our data with previous experiments shows that previously claimed detections of FRBs from GRBs are unlikely to be astrophysical. Our results are in line with the lack of consistency noted between the recently presented FRB event rates and GRB event rates.

  1. A Fast Radio Burst Every Second?

    Science.gov (United States)

    Kohler, Susanna

    2017-09-01

    far. [Fialkov Loeb 2017]The FRB luminosity functionFRBs may all have the same intrinsic brightness (like Type Ia supernovae, for instance). Alternatively, there may be many more faint and dim FRBs than bright ones (like the distribution of galaxy luminosities). Thisdifference affects the number of FRBs we could detect.The host galaxy populationAre FRBs most commonly hosted by low-mass galaxies like FRB 121102? Or do they occur in high-mass galaxies as well? This affects the number of FRBs we would expect to observe at different redshifts.Future HopeBy exploring a range of models that vary these three factors, Fialkov and Loeb find estimates for the rate of FRBs that would appear inthe 500 MHz3.5 GHz frequency band probed by observatories like Parkes, Arecibo, and the Australian Square Kilometre Array Pathfinder (ASKAP).Fialkov and Loeb find that, when we account for faint sources, one FRB may occur per second across the sky in this band. The authors show that future low-frequency radio telescopes with higher sensitivity, such as the Square Kilometre Array, should be able to detect many more of these sources, helping us to differentiate between the models and narrow down the properties of the bursts and their hosts. This, in turn, may finally reveal what causes these mysterious signals.CitationAnastasia Fialkov and Abraham Loeb 2017 ApJL 846 L27. doi:10.3847/2041-8213/aa8905

  2. Canada's Dominion Astrophysical Observatory and the rise of 20th Century Astrophysics and Technology

    Science.gov (United States)

    Hesser, James E.; Bohlender, David; Crabtree, Dennis

    2015-08-01

    Construction of Canada’s Dominion Astrophysical Observatory (DAO) commenced in 1914 with first light on 6 May 1918. Its varied, rich contributions to the astronomical heritage of the 20th century continue into the 21st century. The first major research observatory built with public funding on the West Coast of North America, it was Canada’s first ‘big science’ project. DAO welcomed scientists from around the world to use its 1.8m telescope designed by John Stanley Plaskett working in close collaboration with the Warner and Swasey Company of Cleveland, OH. Their original design was copied seven times around the globe, the last occasion being in the 1960s. From Day 1 the DAO welcomed the public for viewing and interaction with the small scientific staff whose early efforts would today be characterized as ‘Key Projects’. Those efforts included measuring the radial velocities of O and B stars that, interpreted through Oort’s ideas of differential rotation, determined the most reliable estimate of the size and mass of the Milky Way available until radio astronomical techniques emerged in the 1950s. The first organic molecule in interstellar space, CH, was discovered by a DAO astronomer. The first, very puzzling estimate of ~3K for the temperature of interstellar space was deduced from interstellar CN observations a year after interstellar CH and CN were discovered. DAO’s heritage of innovative instrumentation continues to the present day where expertise in optically efficient, mechanically stable spectrographs and adaptive optics are much in evidence at Mauna Kea’s CFHT, Gemini and Subaru observatories. In 2009 the DAO was designated a National Historic Site. This presentation will draw links between DAO, developments of Canadian astronomy and the emergence of Mauna Kea as an exceptional global astronomical reserve.

  3. Goals and strategies in the global control design of the OAJ Robotic Observatory

    Science.gov (United States)

    Yanes-Díaz, A.; Rueda-Teruel, S.; Antón, J. L.; Rueda-Teruel, F.; Moles, M.; Cenarro, A. J.; Marín-Franch, A.; Ederoclite, A.; Gruel, N.; Varela, J.; Cristóbal-Hornillos, D.; Chueca, S.; Díaz-Martín, M. C.; Guillén, L.; Luis-Simoes, R.; Maícas, N.; Lamadrid, J. L.; López-Sainz, A.; Hernández-Fuertes, J.; Valdivielso, L.; Mendes de Oliveira, C.; Penteado, P.; Schoenell, W.; Kanaan, A.

    2012-09-01

    There are many ways to solve the challenging problem of making a high performance robotic observatory from scratch. The Observatorio Astrofísico de Javalambre (OAJ) is a new astronomical facility located in the Sierra de Javalambre (Teruel, Spain) whose primary role will be to conduct all-sky astronomical surveys. The OAJ control system has been designed from a global point of view including astronomical subsystems as well as infrastructures and other facilities. Three main factors have been considered in the design of a global control system for the robotic OAJ: quality, reliability and efficiency. We propose CIA (Control Integrated Architecture) design and OEE (Overall Equipment Effectiveness) as a key performance indicator in order to improve operation processes, minimizing resources and obtaining high cost reduction whilst maintaining quality requirements. The OAJ subsystems considered for the control integrated architecture are the following: two wide-field telescopes and their instrumentation, active optics subsystems, facilities for sky quality monitoring (seeing, extinction, sky background, sky brightness, cloud distribution, meteorological station), domes and several infrastructure facilities such as water supply, glycol water, water treatment plant, air conditioning, compressed air, LN2 plant, illumination, surveillance, access control, fire suppression, electrical generators, electrical distribution, electrical consumption, communication network, Uninterruptible Power Supply and two main control rooms, one at the OAJ and the other remotely located in Teruel, 40km from the observatory, connected through a microwave radio-link. This paper presents the OAJ strategy in control design to achieve maximum quality efficiency for the observatory processes and operations, giving practical examples of our approach.

  4. The Solar Connections Observatory for Planetary Environments

    Science.gov (United States)

    Oliversen, Ronald J.; Harris, Walter M.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    The NASA Sun-Earth Connection theme roadmap calls for comparative study of how the planets, comets, and local interstellar medium (LISM) interact with the Sun and respond to solar variability. Through such a study we advance our understanding of basic physical plasma and gas dynamic processes, thus increasing our predictive capabilities for the terrestrial, planetary, and interplanetary environments where future remote and human exploration will occur. Because the other planets have lacked study initiatives comparable to the terrestrial ITM, LWS, and EOS programs, our understanding of the upper atmospheres and near space environments on these worlds is far less detailed than our knowledge of the Earth. To close this gap we propose a mission to study {\\it all) of the solar interacting bodies in our planetary system out to the heliopause with a single remote sensing space observatory, the Solar Connections Observatory for Planetary Environments (SCOPE). SCOPE consists of a binocular EUV/FUV telescope operating from a remote, driftaway orbit that provides sub-arcsecond imaging and broadband medium resolution spectro-imaging over the 55-290 nm bandpass, and high (R>10$^{5}$ resolution H Ly-$\\alpha$ emission line profile measurements of small scale planetary and wide field diffuse solar system structures. A key to the SCOPE approach is to include Earth as a primary science target. From its remote vantage point SCOPE will be able to observe auroral emission to and beyond the rotational pole. The other planets and comets will be monitored in long duration campaigns centered when possible on solar opposition when interleaved terrestrial-planet observations can be used to directly compare the response of both worlds to the same solar wind stream and UV radiation field. Using a combination of observations and MHD models, SCOPE will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the

  5. Towards a new Mercator Observatory Control System

    Science.gov (United States)

    Pessemier, W.; Raskin, G.; Prins, S.; Saey, P.; Merges, F.; Padilla, J. P.; Van Winckel, H.; Waelkens, C.

    2010-07-01

    A new control system is currently being developed for the 1.2-meter Mercator Telescope at the Roque de Los Muchachos Observatory (La Palma, Spain). Formerly based on transputers, the new Mercator Observatory Control System (MOCS) consists of a small network of Linux computers complemented by a central industrial controller and an industrial real-time data communication network. Python is chosen as the high-level language to develop flexible yet powerful supervisory control and data acquisition (SCADA) software for the Linux computers. Specialized applications such as detector control, auto-guiding and middleware management are also integrated in the same Python software package. The industrial controller, on the other hand, is connected to the majority of the field devices and is targeted to run various control loops, some of which are real-time critical. Independently of the Linux distributed control system (DCS), this controller makes sure that high priority tasks such as the telescope motion, mirror support and hydrostatic bearing control are carried out in a reliable and safe way. A comparison is made between different controller technologies including a LabVIEW embedded system, a PROFINET Programmable Logic Controller (PLC) and motion controller, and an EtherCAT embedded PC (soft-PLC). As the latter is chosen as the primary platform for the lower level control, a substantial part of the software is being ported to the IEC 61131-3 standard programming languages. Additionally, obsolete hardware is gradually being replaced by standard industrial alternatives with fast EtherCAT communication. The use of Python as a scripting language allows a smooth migration to the final MOCS: finished parts of the new control system can readily be commissioned to replace the corresponding transputer units of the old control system with minimal downtime. In this contribution, we give an overview of the systems design, implementation details and the current status of the project.

  6. RADIO WITHOUT A LISTENER: "MAYAK"

    Directory of Open Access Journals (Sweden)

    Bysko Maxim V.

    2017-12-01

    Full Text Available The singularity of this article is that it is entirely based on a critical analysis of only one live musical radio program on the Mayak radio station and dedicated to the life and work of the famous British composer Andrew Lloyd Webber. In principle, the article can be considered a scientific review of the media product. Based on his analysis, the author comes to the paradoxical conclusion that the presence of a listener becomes unnecessary for modern broadcasting. This is stated by many principles of the conduct of the air, presented in the radio program, where all the information load is placed on the guest in the studio, where there is no preparatory work of the DJs, where their inability to navigate the genres of journalism violates communication norms and colloquial ethics, where an obvious deconstructive approach to the material offered for the listener. In addition, the phenomenon of being the DJs in the radio studio exclusively "for themselves" is emphasized by the sound design of the radio program, which runs counter to the logic of auditory perception (for example, the sequence of jingles, as well as the incompetent selection of musical material, which undoubtedly repels professional radio listeners-musicians.

  7. Current problems in astrophysics needing space-based radio astronomy

    International Nuclear Information System (INIS)

    Norman, C.A.

    1987-01-01

    The potential value of space-based radio observatories and VLBI networks for studies of cosmology, AGN and starburst galaxies, the ISM and the intergalactic medium, and molecular clouds and star formation is discussed. Topics examined include distance estimates for masers in external galaxies, high-resolution 21-cm observations of distant-galaxy kinematics and morphology, searches for LF emission from the neutral ISM at redshifts higher than the QSO turnon, detection of changes in the distribution of dark matter surrounding galaxies at redshifts near 1, and observations of Galactic SNRs and filamentary structures near the Galactic center. Consideration is given to comparative studies of the ISM in the Galaxy, the Magellanic Clouds, and M 31; estimates of the molecular content of external galaxies; emssion-line studies of H 2 O masers; and kinematic investigations of bipolar flows and molecular disks. 19 references

  8. The radio properties of infrared-faint radio sources

    Science.gov (United States)

    Middelberg, E.; Norris, R. P.; Hales, C. A.; Seymour, N.; Johnston-Hollitt, M.; Huynh, M. T.; Lenc, E.; Mao, M. Y.

    2011-02-01

    Context. Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4 GHz, but that are invisible at 3.6 μm when using sensitive Spitzer observations with μJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. Aims: High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. Methods: We imaged a sample of 17 IFRS at 4.8 GHz and 8.6 GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. Results: We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4 GHz flux density to 3.6 μm flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. Conclusions: The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.

  9. Electricity and gas market Observatory - 2. Quarter of 2011

    International Nuclear Information System (INIS)

    2011-06-01

    The purpose of the Observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This Observatory is updated every three months and data are available on CRE web site (www.cre.fr)

  10. Electricity and gas market Observatory - 4. Quarter of 2010

    International Nuclear Information System (INIS)

    2010-12-01

    The purpose of the Observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This Observatory is updated every three months and data are available on CRE web site (www.cre.fr)

  11. Electricity and gas market Observatory - 3. Quarter of 2012

    International Nuclear Information System (INIS)

    2012-09-01

    The purpose of the Observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This Observatory is updated every three months and data are available on CRE web site (www.cre.fr)

  12. University Observatory, Ludwig-Maximilians-Universität

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    The University Observatory of Ludwig-Maximilians-Universität was founded in 1816. Astronomers who worked or graduated at the Munich Observatory include: Fraunhofer, Soldner, Lamont, Seeliger and Karl Schwarzschild. At present four professors and ten staff astronomers work here. Funding comes from the Bavarian Government, the German Science Foundation, and other German and European research progra...

  13. Electricity and gas market Observatory - 1. Quarter of 2012

    International Nuclear Information System (INIS)

    2012-03-01

    The purpose of the Observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This Observatory is updated every three months and data are available on CRE web site (www.cre.fr)

  14. Electricity and gas market Observatory - 4. Quarter of 2011

    International Nuclear Information System (INIS)

    2011-12-01

    The purpose of the Observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This Observatory is updated every three months and data are available on CRE web site (www.cre.fr)

  15. Electricity and gas market Observatory - 3. Quarter of 2011

    International Nuclear Information System (INIS)

    2011-09-01

    The purpose of the Observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This Observatory is updated every three months and data are available on CRE web site (www.cre.fr)

  16. Electricity and gas market Observatory - 4. Quarter of 2012

    International Nuclear Information System (INIS)

    2012-12-01

    The purpose of the Observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This Observatory is updated every three months and data are available on CRE web site (www.cre.fr)

  17. Electricity and gas market Observatory - 2. Quarter of 2012

    International Nuclear Information System (INIS)

    2012-06-01

    The purpose of the Observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This Observatory is updated every three months and data are available on CRE web site (www.cre.fr)

  18. Electricity and gas market Observatory - 1. Quarter of 2011

    International Nuclear Information System (INIS)

    2011-03-01

    The purpose of the Observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This Observatory is updated every three months and data are available on CRE web site (www.cre.fr)

  19. Science requirements and the design of cabled ocean observatories

    Directory of Open Access Journals (Sweden)

    H. Mikada

    2006-06-01

    Full Text Available The ocean sciences are beginning a new phase in which scientists will enter the ocean environment and adaptively observe the Earth-Ocean system through remote control of sensors and sensor platforms. This new ocean science paradigm will be implemented using innovative facilities called ocean observatories which provide unprecedented levels of power and communication to access and manipulate real-time sensor networks deployed within many different environments in the ocean basins. Most of the principal design drivers for ocean observatories differ from those for commercial submarine telecommunications systems. First, ocean observatories require data to be input and output at one or more seafloor nodes rather than at a few land terminuses. Second, ocean observatories must distribute a lot of power to the seafloor at variable and fluctuating rates. Third, the seafloor infrastructure for an ocean observatory inherently requires that the wet plant be expandable and reconfigurable. Finally, because the wet communications and power infrastructure is comparatively complex, ocean observatory infrastructure must be designed for low life cycle cost rather than zero maintenance. The origin of these differences may be understood by taking a systems engineering approach to ocean observatory design through examining the requirements derived from science and then going through the process of iterative refinement to yield conceptual and physical designs. This is illustrated using the NEPTUNE regional cabled observatory power and data communications sub-systems.

  20. Electricity and gas market Observatory - 1. Quarter of 2013

    International Nuclear Information System (INIS)

    2013-03-01

    The purpose of the Observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. Since 2013, it also covers the wholesale CO 2 market. This Observatory is updated every three months and data are available on CRE web site (www.cre.fr)

  1. The Geospace Dynamics Observatory; a mission of discovery for Geospace

    Science.gov (United States)

    Spann, J. F.; Paxton, L.; Burch, J. L.; Reardon, P.; Habash Krause, L.; Gallagher, D. L.; Hopkins, R.

    2013-12-01

    Geospace Dynamics Observatory (GDO) takes advantage a repurposed optical system to provide new, unique, and cost-effective insights into the dynamics of geospace. New missions investigating the ITM system and the magnetospheric-ionospheric coupling processes have generally been very focused on specific phenomena, generally limited by the resource constraints and mission size. Exploring options for observing these regions with instrumentation that is 'non-traditional' is not often considered. The possibility of using very large optics to image Geospace has recently come to the fore. This talk will address the science that would be enabled by flying an ultraviolet telescope imaging the ITM region with an aperture greater than 2 meters. A brief overview of the use of this asset in a science-driven mission concept called the Geospace Dynamics Observatory (GDO) will be presented. This talk will explore the optical and technical aspects of the GDO mission and the implementation strategy. Additionally, the case will be made that GDO will address a significant portion of the priority mission science articulated in the recent Solar and Space Physics Decadal Survey, and provide unprecedented discovery opportunities. One of the problems common to all of geospace research is that of resolving temporal and spatial ambiguities: are the observed changes due the fact that the location of the observation has changed or have the state variables changed? This is a particularly vexing problem for low-cost missions that may have to rely on in situ measurements or other low spatial resolution techniques such as GPS radio occultation. The exceptional capabilities of the GDO mission include (1) unprecedented improvement in signal to noise for global-scale imaging of Earth's space environment that enables changes in the Earth's space environment to be resolved with orders of magnitude higher temporal and spatial resolution compared to existing data and other approaches, and (2) unrivaled

  2. Astronomers Win Protection for Key Part of Radio Spectrum

    Science.gov (United States)

    2000-06-01

    International Telecommunication Union meet to painstakingly parcel out the radio frequency spectrum between radio-based applications such as personal communications, satellite broadcasting, GPS and amateur radio, and the sciences of radio astronomy, earth exploration and deep space research. The WRC also coordinates sharing between services in the same radio bands. WRC decisions are incorporated into the Radio Regulations that govern radio services worldwide. The new spectrum allocations for radio astronomy are the first since 1979. Millimeter-wave astronomy was then in its infancy and many of its needs were not yet known. As astronomers began to explore this region of the spectrum they found spectral lines from many interesting molecules in space. Many of those lines had not fallen into the areas originally set aside for astronomy, but most will be under the new allocations. "It's a win for millimeter-wave science," said Dr. John Whiteoak of the Australia Telescope National Facility, Australian delegate to WRC-00. "This secures its future." The protection is a significant step for both existing millimeter-wave telescopes and new ones such as the Atacama Large Millimeter Array (ALMA) now being planned by a U.S.-European consortium. Even at its isolated site in Chile's Atacama desert, ALMA would be vulnerable to interference from satellite emissions. Sensitive radio astronomy receivers are blinded by these emissions, just as an optical telescope would be by a searchlight. "There is more energy at millimeter and sub-millimeter wavelengths washing through the Universe than there is of light or any other kind of radiation," said ALMA Project Scientist, Dr. Al Wootten of the National Radio Astronomy Observatory. "Imaging the sources of this energy can tell us a great deal about the formation of stars and galaxies, and even planets." "But the Earth's atmosphere isn't very kind to us - it has only a few windows at these frequencies, and not very transparent ones at that. They are

  3. Scientists Detect Radio Emission from Rapidly Rotating Cosmic Dust Grains

    Science.gov (United States)

    2001-11-01

    Astronomers have made the first tentative observations of a long-speculated, but never before detected, source of natural radio waves in interstellar space. Data from the National Science Foundation's 140 Foot Radio Telescope at the National Radio Astronomy Observatory in Green Bank, W.Va., show the faint, tell-tale signals of what appear to be dust grains spinning billions of times each second. This discovery eventually could yield a powerful new tool for understanding the interstellar medium - the immense clouds of gas and dust that populate interstellar space. The NRAO 140 Foot Radio Telescope The NRAO 140-Foot Radio Telescope "What we believe we have found," said Douglas P. Finkbeiner of Princeton University's Department of Astrophysics, "is the first hard evidence for electric dipole emission from rapidly rotating dust grains. If our studies are confirmed, it will be the first new source of continuum emission to be conclusively identified in the interstellar medium in nearly the past 20 years." Finkbeiner believes that these emissions have the potential in the future of revealing new and exciting information about the interstellar medium; they also may help to refine future studies of the Cosmic Microwave Background Radiation. The results from this study, which took place in spring 1999, were accepted for publication in Astrophysical Journal. Other contributors to this paper include David J. Schlegel, department of astrophysics, Princeton University; Curtis Frank, department of astronomy, University of Maryland; and Carl Heiles, department of astronomy, University of California at Berkeley. "The idea of dust grains emitting radiation by rotating is not new," comments Finkbeiner, "but to date it has been somewhat speculative." Scientists first proposed in 1957 that dust grains could emit radio signals, if they were caused to rotate rapidly enough. It was believed, however, that these radio emissions would be negligibly small - too weak to be of any impact to

  4. Hidden Valley Search at ATLAS

    CERN Document Server

    Verducci, M

    2011-01-01

    A number of extensions of the Standard Model result in neutral and weakly-coupled particles that decay to multi hadrons or multi leptons with macroscopic decay lengths. These particles with decay paths that can be comparable with ATLAS detector dimensions represent, from an experimental point of view, a challenge both for the trigger and for the reconstruction capabilities of the ATLAS detector. We will present a set of signature driven triggers for the ATLAS detector that target such displaced decays and evaluate their performances for some benchmark models and describe analysis strategies and limits on the production of such long-lived particles. A first estimation of the Hidden Valley trigger rates has been evaluated with 6 pb-1 of data collected at ATLAS during the data taking of 2010.

  5. Radio Frequency Interference Site Survey for Thai Radio Telescopes

    Science.gov (United States)

    Jaroenjittichai, P.; Punyawarin, S.; Singwong, D.; Somboonpon, P.; Prasert, N.; Bandudej, K.; Kempet, P.; Leckngam, A.; Poshyachinda, S.; Soonthornthum, B.; Kramer, B.

    2017-09-01

    Radio astronomical observations have increasingly been threaten by the march of today telecommunication and wireless technology. Performance of radio telescopes lies within the fact that astronomical sources are extremely weak. National Astronomy Research Institute of Thailand (NARIT) has initiated a 5-year project, known as the Radio Astronomy Network and Geodesy for Development (RANGD), which includes the establishment of 40-meter and 13-meter radio telescopes. Possible locations have been narrowed down to three candidates, situated in the Northern part of Thailand, where the atmosphere is sufficiently dry and suitable for 22 and 43 GHz observations. The Radio Frequency Interference (RFI) measurements were carried out with a DC spectrum analyzer and directional antennas at 1.5 meter above ground, from 20 MHz to 6 GHz with full azimuth coverage. The data from a 3-minute pointing were recorded for both horizontal and vertical polarizations, in maxhold and average modes. The results, for which we used to make preliminary site selection, show signals from typical broadcast and telecommunication services and aeronautics applications. The signal intensity varies accordingly to the presence of nearby population and topography of the region.

  6. Radio bursts associated with the pre-evolution of CMES

    International Nuclear Information System (INIS)

    Salas Matamoros, Carolina

    2012-01-01

    Five periods of development of events have been studied of coronal mass ejections (CMEs) (with 22 CMEs events in total): December 13 and 14, 2006, August 1, 2010, October 16, 2010, November 3, 2010 and November 12, 2010 . CMEs studied are those with a width greater than 10 degrees Celsius. The helmet streamers are considered unnecessary for the study. The material observed is based on images and reports for a period of two weeks; one before and one after each event. The activities that have occurred within 15 hours before each CME have been considered as a possible origin. The periods have been described in the forward and reverse method. The observational material used has been based on images in multiple wavelengths. Terrestrial observatories have provided images of the chromosphere and solar corona. Additional observational data were obtained from different satellite observatories around the world. CMEs have been classified into Halo and non-Halo and analyzed the associated source. Additional Symbols (solar radio bursts (RBs) type IV, III, coronal near holes and X-ray flares Class C and B) have been considered important to complement the typical signatures [es

  7. System of the optic-electronic sensors for control position of the radio telescope elements

    Science.gov (United States)

    Konyakhin, Igor; Stepashkin, Ivan; Petrochenko, Andrey

    2016-04-01

    A promising area of modern astronomy is the study of the field of millimeter waves. The use of this band is due to a large extent the spectrum characteristics of the propagation of waves in the atmosphere, short wavelength. Currently, Russia jointly with Uzbekistan is implementing a project to build a radio astronomy observatory on the Suffa plateau (Uzbekistan). The main instrument of the observatory is fully steerable radio telescope RT-70 type. Main mirror telescope is a fragment of an axisymmetric parabolic with a focal length of 21 m, consisting of 1200 reflecting panels; main mirror diameter - 70 m; diameter of counter reflector - 3 m. A feature of the radio telescope as a means of research in the millimeter wavelength range are high for the quality requirements parabolic surface of the primary mirror (standard deviation of points on the surface of the theoretical parabolic is not more than 0.05 mm), to the stability of the mutual arrangement of the primary mirror and the counter reflector (not more than 0, 07 mm) for precision guidance in the corners of the mirror system azimuth and elevation (margin of error 1.5-2"). Weight of structure, temperature changes and air shock result in significant deformation elements radio telescope construction (progressive linear displacements of points of the surface of the main mirror), reaching in the marginal zone of 30 mm; counter reflector shift of up to 60 mm; Unlike the angular position of the axis of the beam pattern of the radio telescope of the measured angle transducers can reach 10 ". Therefore, to ensure the required quality of the reflective elements RT-70 systems, as well as the implementation of precision-guided munitions needs complex measuring deformation elements telescope design. This article deals with the construction of opto-electronic system of remote optoelectronic displacement sensor control elements mirror telescope system.

  8. VizieR Online Data Catalog: Infrared-faint radio sources catalog (Collier+, 2014)

    Science.gov (United States)

    Collier, J. D.; Banfield, J. K.; Norris, R. P.; Schnitzeler, D. H. F. M.; Kimball, A. E.; Filipovic, M. D.; Jarrett, T. H.; Lonsdale, C. J.; Tothill, N. F. H.

    2014-11-01

    The 20cm radio data come from the Unified Radio Catalog (URC) compiled by Kimball & Ivezic (2008AJ....136..684K). This radio catalogue combines data from the National Radio Astronomy Observatory (NRAO) VLA Sky Survey (NVSS; Condon et al., 1998, Cat. VIII/65), Faint Images of the Radio Sky at Twenty Centimeters (FIRST; Becker, White & Helfand, 1995, cat. VIII/92), Green Bank 6cm survey (GB6; Gregory et al., 1996, Cat. VIII/40), the Westerbork Northern Sky Survey (WENSS; Rengelink et al. 1997; de Bruyn et al. 2000, Cat. VIII/62) and the Sloan Digital Sky Survey Data Release 6 (SDSS DR6; Adelman-McCarthy et al., 2008, Cat. II/282). We use updated NVSS and FIRST data from the URC version 2.0 (Kimball & Ivezic, in preparation), which includes a number of new sources as well as updated positions and flux densities. The IR data come from WISE (Wright et al. (WISE Team) 2009, Cat. II/311), which is an all-sky survey centred at 3.4, 4.6, 12 and 22um (referred to as bands W1, W2, W3 and W4), with respective angular resolutions of 6.1, 6.4, 6.5 and 12.0-arcsec (full width at half-maximum, FWHM), and typical 5σ sensitivity levels of 0.08, 0.11, 1 and 6mJy, with sensitivity increasing towards the ecliptic poles. (1 data file).

  9. Radio and x-ray observations of compact sources in or near supernova remnants

    International Nuclear Information System (INIS)

    Seaquist, E.R.; Gilmore, W.S.

    1982-01-01

    We present VLA multifrequency radio observations of six compact radio sources from the list of nine objects proposed by Ryle et al. [Nature 276, 571 (1978)] as a new class of radio star, possibly the stellar remnants of supernovae. We also present the results of a search for x-ray emission from four of these objects with the Einstein observatory. The radio observations provide information on spectra, polarization, time variability, angular structure, and positions for these sources. The bearing of these new data on the nature of the sources is discussed. One particularly interesting result is that the polarization and angular-size measurements are combined in an astrophysical argument to conclude that one of the sources (2013+370) is extragalactic. No x-ray emission was detected from any of the four objects observed, but an extended x-ray source was found coincident with the supernova remnant G 33.6+0.1 near 1849+005. Our measurements provide no compelling arguments to consider any of the six objects studied as radio stars

  10. A study of faint radio sources near the North Galactic Pole

    International Nuclear Information System (INIS)

    Benn, C.R.

    1981-09-01

    A large amount of observational data has been obtained on faint radio sources in a small area of sky near the North Galactic Pole (the 5C 12 area). This provides a new perspective (3 decades in flux density from the 3CR catalogue) on the physical properties and cosmological evolution of extragalactic radio sources. Chapter 1 introduces the problem and concludes that faint-object cosmology is best served by intensive investigation of sources in a small area of sky. An optimum area is chosen, at right ascension 12sup(h) 58sup(m) 43sup(s) and declination 35 0 14' 00'' (1950.0). Chapter 2 describes the 5C12 radio survey (complete to 9mJy apparent flux density at 408MHz) conducted with the One Mile Telescope at Cambridge. Chapter 4 describes a 4.85GHz survey to 20mJy of the area, conducted at Effelsberg. In chapter 5, a program of optical identification for the sources is described, using deep (msub(g) = 22.5, msub(y) = 20.7) Schmidt plates taken at Hale Observatories. A statistical algorithm is developed to cope with the problems of optical confusion due to radio positional errors. Chapter 6 draws on data from the previous 4, and presents results concerning radio source counts, spectral index distributions, optical identifications and clustering. (author)

  11. Measurement of horizontal air showers with the Auger Engineering Radio Array

    Science.gov (United States)

    Kambeitz, Olga

    2017-03-01

    The Auger Engineering Radio Array (AERA), at the Pierre Auger Observatory in Argentina, measures the radio emission of extensive air showers in the 30-80 MHz frequency range. AERA consists of more than 150 antenna stations distributed over 17 km2. Together with the Auger surface detector, the fluorescence detector and the underground muon detector (AMIGA), AERA is able to measure cosmic rays with energies above 1017 eV in a hybrid detection mode. AERA is optimized for the detection of air showers up to 60° zenith angle, however, using the reconstruction of horizontal air showers with the Auger surface array, very inclined showers can also be measured. In this contribution an analysis of the AERA data in the zenith angle range from 62° to 80° will be presented. CoREAS simulations predict radio emission footprints of several km2 for horizontal air showers, which are now confirmed by AERA measurements. This can lead to radio-based composition measurements and energy determination of horizontal showers in the future and the radio detection of neutrino induced showers is possible.

  12. Event reconstruction using the radio-interferometric technique in the frame of AERA

    Energy Technology Data Exchange (ETDEWEB)

    Rogozin, Dmytro [Institut fuer Experimentelle Kernphysik, Karlsruher Institut fuer Technologie (KIT) (Germany); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    It is a well-known fact that there is coherent radio emission induced by extensive air-showers. This fact is exploited in the Auger Engineering Radio Array (AERA), the radio extension of the Pierre Auger Observatory. This is a unique radio experiment due to its world-largest size of 17 km{sup 2}, and due to its precise nanosecond timing calibration. These features become crucial for detection of highly inclined air-showers with their very large foot-prints, and for the ability to apply interferometric reconstruction techniques. The standard reconstruction techniques typically treat all radio stations as separate detectors. Nevertheless there is a possibility to do an interferometric analysis. This means combining all detected signals from all antennas in a specific way. In this talk we present a beam-forming interferometric technique and its application to AERA. According to the definition of the beam-forming quantities one can expect its correlation with the shower parameters such as energy of the primary particle and distance to the shower maximum. At the first step, Monte-Carlo simulations of AERA events including the noise from measured events were used to test these dependencies. The results and the future perspectives of this method are discussed with a particular emphasis on very inclined air-showers where the aforementioned correlations are assumed to be strongest.

  13. IA-Regional-Radio - Social Network for Radio Recommendation

    Science.gov (United States)

    Dziczkowski, Grzegorz; Bougueroua, Lamine; Wegrzyn-Wolska, Katarzyna

    This chapter describes the functions of a system proposed for the music hit recommendation from social network data base. This system carries out the automatic collection, evaluation and rating of music reviewers and the possibility for listeners to rate musical hits and recommendations deduced from auditor's profiles in the form of regional Internet radio. First, the system searches and retrieves probable music reviews from the Internet. Subsequently, the system carries out an evaluation and rating of those reviews. From this list of music hits, the system directly allows notation from our application. Finally, the system automatically creates the record list diffused each day depending on the region, the year season, the day hours and the age of listeners. Our system uses linguistics and statistic methods for classifying music opinions and data mining techniques for recommendation part needed for recorded list creation. The principal task is the creation of popular intelligent radio adaptive on auditor's age and region - IA-Regional-Radio.

  14. Designing Observatories for the Hydrologic Sciences

    Science.gov (United States)

    Hooper, R. P.

    2004-05-01

    The need for longer-term, multi-scale, coherent, and multi-disciplinary data to test hypotheses in hydrologic science has been recognized by numerous prestigious review panels over the past decade (e.g. NRC's Basic Research Opportunities in Earth Science). Designing such observatories has proven to be a challenge not only on scientific, but also technological, economic and even sociologic levels. The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) has undertaken a "paper" prototype design of a hydrologic observatory (HO) for the Neuse River Basin, NC and plans to solicit proposals and award grants to develop implementation plans for approximately 10 basins (which may be defined by topographic or groundwater divides) during the summer of 2004. These observatories are envisioned to be community resources with data available to all scientists, with support facilities to permit their use by both local and remote investigators. This paper presents the broad design concepts which were developed from a national team of scientists for the Neuse River Basin Prototype. There are three fundamental characteristics of a watershed or river basin that are critical for answering the major scientific questions proposed by the NRC to advance hydrologic, biogeochemical and ecological sciences: (1) the store and flux of water, sediment, nutrients and contaminants across interfaces at multiple scales must be identified; (2) the residence time of these constituents, and (3) their flowpaths and response spectra to forcing must be estimated. "Stores" consist of subsurface, land surface and atmospheric volumes partitioned over the watershed. The HO will require "core measurements" which will serve the communities of hydrologic science for long range research questions. The core measurements will also provide context for shorter-term or hypothesis-driven research investigations. The HO will support "mobile measurement facilities" designed to support teams

  15. RADIO VARIABILITY IN SEYFERT NUCLEI

    International Nuclear Information System (INIS)

    Mundell, C. G.; Ferruit, P.; Nagar, N.; Wilson, A. S.

    2009-01-01

    Comparison of 8.4 GHz radio images of a sample of eleven, early-type Seyfert galaxies with previous observations reveals possible variation in the nuclear radio flux density in five of them over a seven year period. Four Seyferts (NGC 2110, NGC 3081, MCG -6-30-15, and NGC 5273) show a decline in their 8.4 GHz nuclear flux density between 1992 and 1999, while one (NGC 4117) shows an increase; the flux densities of the remaining six Seyferts (Mrk 607, NGC 1386, Mrk 620, NGC 3516, NGC 4968, and NGC 7465) have remained constant over this period. New images of MCG -5-23-16 are also presented. We find no correlation between radio variability and nuclear radio luminosity or Seyfert nuclear type, although the sample is small and dominated by type 2 Seyferts. Instead, a possible correlation between the presence of nuclear radio variability and the absence of hundred parsec-scale radio emission is seen, with four out of five marginally resolved or unresolved nuclei showing a change in nuclear flux density, while five out of six extended sources show no nuclear variability despite having unresolved nuclear sources. NGC 2110 is the only source in our sample with significant extended radio structure and strong nuclear variability (∼38% decline in nuclear flux density over seven years). The observed nuclear flux variability indicates significant changes are likely to have occurred in the structure of the nucleus on scales smaller than the VLA beam size (i.e., within the central ∼0.''1 (15 pc)), between the two epochs, possibly due to the appearance and fading of new components or shocks in the jet, consistent with previous detection of subparsec-scale nuclear structure in this Seyfert. Our results suggest that all Seyferts may exhibit variation in their nuclear radio flux density at 8.4 GHz, but that variability is more easily recognized in compact sources in which emission from the variable nucleus is not diluted by unresolved, constant flux density radio jet emission

  16. GROSS- GAMMA RAY OBSERVATORY ATTITUDE DYNAMICS SIMULATOR

    Science.gov (United States)

    Garrick, J.

    1994-01-01

    The Gamma Ray Observatory (GRO) spacecraft will constitute a major advance in gamma ray astronomy by offering the first opportunity for comprehensive observations in the range of 0.1 to 30,000 megaelectronvolts (MeV). The Gamma Ray Observatory Attitude Dynamics Simulator, GROSS, is designed to simulate this mission. The GRO Dynamics Simulator consists of three separate programs: the Standalone Profile Program; the Simulator Program, which contains the Simulation Control Input/Output (SCIO) Subsystem, the Truth Model (TM) Subsystem, and the Onboard Computer (OBC) Subsystem; and the Postprocessor Program. The Standalone Profile Program models the environment of the spacecraft and generates a profile data set for use by the simulator. This data set contains items such as individual external torques; GRO spacecraft, Tracking and Data Relay Satellite (TDRS), and solar and lunar ephemerides; and star data. The Standalone Profile Program is run before a simulation. The SCIO subsystem is the executive driver for the simulator. It accepts user input, initializes parameters, controls simulation, and generates output data files and simulation status display. The TM subsystem models the spacecraft dynamics, sensors, and actuators. It accepts ephemerides, star data, and environmental torques from the Standalone Profile Program. With these and actuator commands from the OBC subsystem, the TM subsystem propagates the current state of the spacecraft and generates sensor data for use by the OBC and SCIO subsystems. The OBC subsystem uses sensor data from the TM subsystem, a Kalman filter (for attitude determination), and control laws to compute actuator commands to the TM subsystem. The OBC subsystem also provides output data to the SCIO subsystem for output to the analysts. The Postprocessor Program is run after simulation is completed. It generates printer and CRT plots and tabular reports of the simulated data at the direction of the user. GROSS is written in FORTRAN 77 and

  17. The Rapid Ice Sheet Change Observatory (RISCO)

    Science.gov (United States)

    Morin, P.; Howat, I. M.; Ahn, Y.; Porter, C.; McFadden, E. M.

    2010-12-01

    The recent expansion of observational capacity from space has revealed dramatic, rapid changes in the Earth’s ice cover. These discoveries have fundamentally altered how scientists view ice-sheet change. Instead of just slow changes in snow accumulation and melting over centuries or millennia, important changes can occur in sudden events lasting only months, weeks, or even a single day. Our understanding of these short time- and space-scale processes, which hold important implications for future global sea level rise, has been impeded by the low temporal and spatial resolution, delayed sensor tasking, incomplete coverage, inaccessibility and/or high cost of data available to investigators. New cross-agency partnerships and data access policies provide the opportunity to dramatically improve the resolution of ice sheet observations by an order of magnitude, from timescales of months and distances of 10’s of meters, to days and meters or less. Advances in image processing technology also enable application of currently under-utilized datasets. The infrastructure for systematically gathering, processing, analyzing and distributing these data does not currently exist. Here we present the development of a multi-institutional, multi-platform observatory for rapid ice change with the ultimate objective of helping to elucidate the relevant timescales and processes of ice sheet dynamics and response to climate change. The Rapid Ice Sheet Observatory (RISCO) gathers observations of short time- and space-scale Cryosphere events and makes them easily accessible to investigators, media and general public. As opposed to existing data centers, which are structured to archive and distribute diverse types of raw data to end users with the specialized software and skills to analyze them, RISCO focuses on three types of geo-referenced raster (image) data products in a format immediately viewable with commonly available software. These three products are (1) sequences of images

  18. Radio science investigations with Voyager

    International Nuclear Information System (INIS)

    Eshleman, V.R.; Tyler, G.L.; Croft, T.A.

    1977-01-01

    The planned radio science investigations during the Voyager missions to the outer planets involve: (1) the use of the radio links to and from the spacecraft for occultation measurements of planetary and satellite atmospheres and ionospheres, the rings of Saturn, the solar corona, and the general-relativistic time delay for radiowave propagation through the Sun's gravity field; (2) radio link measurements of true or apparent spacecraft motion caused by the gravity fields of the planets, the masses of their larger satellites, and characteristics of the interplanetary medium; and (3) related measurements which could provide results in other areas, including the possible detection of long-wavelength gravitational radiation propagating through the Solar System. The measurements will be used to study: atmospheric and ionospheric structure, constituents, and dynamics; the sizes, radial distribution, total mass, and other characteristics of the particles in the rings of Saturn; interior models for the major planets and the mean density and bulk composition of a number of their satellites; the plasma density and dynamics of the solar corona and interplanetary medium; and certain fundamental questions involving gravitation and relativity. The instrumentation for these experiments is the same ground-based and spacecraft radio systems as will be used for tracking and communicating with the Voyager spacecraft, although several important features of these systems have been provided primarily for the radio science investigations. (Auth.)

  19. Observations of radio sources or 'What happened to radio stars?'

    International Nuclear Information System (INIS)

    Conway, R.G.

    1988-01-01

    A review is given of the early history of the interpretation of the radiation mechanisms following the discovery of the discrete radio sources, both galactic and extragalactic. The conflicting views which prevailed in the early fifties are discussed in some detail: some advocated thermal radiation from stars relatively close by, and others proposed the alternative that synchrotron radiation was responsible for the majority of the radio sources. Attention is drawn to the importance of high-resolution interferometry, whereby the structure of many of the sources could be obtained. Red-shift measurements and spectral distributions also played a part in determining distances and flux strengths at the sources. (U.K.)

  20. Valley-filtered edge states and quantum valley Hall effect in gated bilayer graphene.

    Science.gov (United States)

    Zhang, Xu-Long; Xu, Lei; Zhang, Jun

    2017-05-10

    Electron edge states in gated bilayer graphene in the quantum valley Hall (QVH) effect regime can carry both charge and valley currents. We show that an interlayer potential splits the zero-energy level and opens a bulk gap, yielding counter-propagating edge modes with different valleys. A rich variety of valley current states can be obtained by tuning the applied boundary potential and lead to the QVH effect, as well as to the unbalanced QVH effect. A method to individually manipulate the edge states by the boundary potentials is proposed.

  1. Electricity and gas market observatory. 2. Quarter 2007

    International Nuclear Information System (INIS)

    2007-01-01

    The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web site (www.cre.fr). The present observatory is dedicated only to eligible customers before 1 July 2007, i.e. non-residential customers. Statistics related to residential customers will be published in the next observatory (1 December 2007). Content: A - The electricity market: The retail electricity market (Introduction, Non-residential customer segments and their respective weights, Status at July 1, 2007, Dynamic analysis: 2. Quarter 2007); The wholesale electricity market (Introduction, Wholesale market activity in France, Wholesale market activity in France, Prices on the French wholesale market and European comparison, Import and export volumes, Concentration of the French electricity market, Striking fact of the second quarter 2007); B - The gas market: The retail gas market (Introduction, The non-residential customer segments and their respective weights, Status at July 1, 2007); The wholesale gas market (Gas pricing and gas markets in Europe, The wholesale market in France); C - Appendices: Electricity and gas market observatories combined glossary, Specific electricity market observatory glossary, Specific gas market observatory glossary

  2. TWO EXOPLANETS DISCOVERED AT KECK OBSERVATORY

    International Nuclear Information System (INIS)

    Valenti, Jeff A.; Fischer, Debra; Giguere, Matt; Isaacson, Howard; Marcy, Geoffrey W.; Howard, Andrew W.; Johnson, John A.; Henry, Gregory W.; Wright, Jason T.

    2009-01-01

    We present two exoplanets detected at Keck Observatory. HD 179079 is a G5 subgiant that hosts a hot Neptune planet with M sin i = 27.5 M + in a 14.48 days, low-eccentricity orbit. The stellar reflex velocity induced by this planet has a semiamplitude of K = 6.6 m s -1 . HD 73534 is a G5 subgiant with a Jupiter-like planet of M sin i = 1.1 M Jup and K = 16 m s -1 in a nearly circular 4.85 yr orbit. Both stars are chromospherically inactive and metal-rich. We discuss a known, classical bias in measuring eccentricities for orbits with velocity semiamplitudes, K, comparable to the radial velocity uncertainties. For exoplanets with periods longer than 10 days, the observed exoplanet eccentricity distribution is nearly flat for large amplitude systems (K > 80 m s -1 ), but rises linearly toward low eccentricity for lower amplitude systems (K > 20 m s -1 ).

  3. The CARIBIC flying observatory and its applications

    International Nuclear Information System (INIS)

    Brenninkmeijer, C.

    2012-01-01

    The troposphere can be considered as a complex chemical reactor reaching from the boundary layer up to the tropopause region, in which a multitude of reactions takes place driven by sunlight and supplied with precursors emitted by vegetation, wildfires, and obviously human activities on earth, like burning oil products. Research aircraft (say modified business jets) are far too expensive for a global view of this extensive atmospheric system that changes from day to night, season to season, year to year, and will keep changing. CARIBIC (www.caribic.de) is a logical answer; it is a flying observatory, a 1.5 ton freight container packed with over 15 instruments, for exploring the atmosphere on a regular basis using cargo space in a Lufthansa Airbus A340-600 on intercontinental flights. By means of various results obtained by CARIBIC, about among others volcanic eruptions, the monsoon and accompanying emissions of methane, and long range transport of pollution, we will show how some of the questions atmospheric research grapples with are being addressed, without having a fleet of business jets. (author)

  4. Distributed Computing for the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Chudoba, J.

    2015-01-01

    Pierre Auger Observatory operates the largest system of detectors for ultra-high energy cosmic ray measurements. Comparison of theoretical models of interactions with recorded data requires thousands of computing cores for Monte Carlo simulations. Since 2007 distributed resources connected via EGI grid are successfully used. The first and the second versions of production system based on bash scripts and MySQL database were able to submit jobs to all reliable sites supporting Virtual Organization auger. For many years VO auger belongs to top ten of EGI users based on the total used computing time. Migration of the production system to DIRAC interware started in 2014. Pilot jobs improve efficiency of computing jobs and eliminate problems with small and less reliable sites used for the bulk production. The new system has also possibility to use available resources in clouds. Dirac File Catalog replaced LFC for new files, which are organized in datasets defined via metadata. CVMFS is used for software distribution since 2014. In the presentation we give a comparison of the old and the new production system and report the experience on migrating to the new system. (paper)

  5. Table mountain observatory support to other programs

    International Nuclear Information System (INIS)

    Harris, A.W.

    1988-01-01

    The Table Mountain Observatory (TMO) facilities include well equipped 24 inch and 16 inch telescopes with a 40 inch telescope (owned by Pomona College) due for completion during FY 89. This proposal is to provide operational support (equipment maintenance, setup, and observing assistnce) at TMO to other programs. The program currently most heavily supported by this grant is the asteroid photometry program directed by A. W. Harris. During 1987, about 20 asteroids were observed, including a near-earth asteroid, 1951 Midas. The photometric observations are used to derive rotation periods, estimate shapes and pole orientations, and to define the phase relations of asteroids. The E class asteroid 64 Angelina was observed, and showed the same opposition spike observed of 44 Jysa, last year. Comet observations are made with the narrow band camera system of David Rees, University College London. Observational support and training was provided to students and faculty from Claremont Colleges for variable star observing programs. Researchers propose to continue the asteroid program, with emphasis on measuring phase relations of low and high albedo asteroids at very low phase angles, and supporting collaborative studies of asteroid shapes

  6. Neutrino observations from the Sudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton,J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler,M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Buhler, G.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Clifford, E.T.H.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Doe, P.J.; Doucas, G.; Dragowsky,M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon, N.; Germani, J.V.; Gil, S.; Graham, K.; Grant, D.R.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime, A.; Hykawy, J.G.; Isaac,M.C.P.; Jagam, P.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Klein, J.R.; Knox, A.B.; Komar, R.J.; Kouzes, R.; Kutter,T.; Kyba, C.C.M.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Locke, W.; Luoma, S.; Lyon, J.; Majerus, S.; Mak, H.B.; Maneira, J.; Manor, J.; Marino, A.D.; McCauley, N.; McDonald,D.S.; McDonald, A.B.; McFarlane, K.; McGregor, G.; Meijer, R.; Mifflin,C.; Miller, G.G.; Milton, G.; Moffat, B.A.; Moorhead, M.; Nally, C.W.; Neubauer, M.S.; Newcomer, F.M.; Ng, H.S.; Noble, A.J.; Norman, E.B.; Novikov, V.M.; O' Neill, M.; Okada, C.E.; Ollerhead, R.W.; Omori, M.; Orrell, J.L.; Oser, S.M.; Poon, A.W.P.; Radcliffe, T.J.; Roberge, A.; Robertson, B.C.; Robertson, R.G.H.; Rosendahl, S.S.E.; Rowley, J.K.; Rusu, V.L.; Saettler, E.; Schaffer, K.K.; Schwendener,M.H.; Schulke, A.; Seifert, H.; Shatkay, M.; Simpson, J.J.; Sims, C.J.; et al.

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  7. Recent results from the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Gouffon, Philippe

    2010-01-01

    Full text. The Pierre Auger Observatory has been designed to observe cosmic rays with energies above 1018 eV . The southern site, located in Malargue, Argentina, is now fully operational (since mid 2008) and has been collecting data continuously while being deployed. The northern site, which will give a full sky coverage, is under development in Lamar, Colorado, USA. The PAO uses two complementary techniques to measure the direction of arrival and the energy of the comic rays. In the southern site, its 1600 water Cerenkov tanks, spread over 3000 km 2 , sample the extended air shower front when it hits the ground, measuring time and energy deposited, while the 4 fluorescence detectors stations, each with 6 telescopes, collect the UV light emitted by the shower core, registering the time, intensity and angle of reception. Though the Pierre Auger collaboration will be taking data for the next two decades, several results have already been published based on data collected until 2009 and will be discussed briefly: the energy spectrum and its implications on the GZK cut off controversy, limits on photon and neutrino fluxes, anisotropy, point sources and mass composition. (author)

  8. The upgrade of the HAWC observatory

    Energy Technology Data Exchange (ETDEWEB)

    Schoorlemmer, Harm [Max-Plank-Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: HAWC-Collaboration

    2016-07-01

    The High Altitude Water Cherenkov (HAWC) high-energy gamma-ray observatory has recently been completed near the Sierra Negra volcano in central Mexico. HAWC consists of 300 Water Cherenkov Detectors, each containing 200 tons of purified water, that cover a total surface area of 20,000 m{sup 2}. HAWC observes gamma rays in the 0.1-100 TeV range and has a sensitivity to TeV-scale gamma-ray sources an order of magnitude better than previous air-shower arrays. The HAWC trigger for the highest energy gamma rays reaches an effective area of 10{sup 5} m{sup 2} but many of them are poorly reconstructed because the shower core falls outside the array. An upgrade that increases the present fraction of well reconstructed showers above 10 TeV by a factor of 3-4 can be done with a sparse outrigger array of small water Cherenkov detectors that pinpoint the core position and by that improve the angular resolution of the reconstructed showers. Such an outrigger array would be of the order of 300 small water Cherenkov detectors of 2.5 m{sup 3} placed over an area four times larger than HAWC. The Max Planck Institute fuer Kernphysik in Heidelberg just joined the collaboration and will provide the FADC electronics for the readout of the outrigger tanks. Detailed simulations are being performed to optimize the performance of the upgrade.

  9. Distributed Computing for the Pierre Auger Observatory

    Science.gov (United States)

    Chudoba, J.

    2015-12-01

    Pierre Auger Observatory operates the largest system of detectors for ultra-high energy cosmic ray measurements. Comparison of theoretical models of interactions with recorded data requires thousands of computing cores for Monte Carlo simulations. Since 2007 distributed resources connected via EGI grid are successfully used. The first and the second versions of production system based on bash scripts and MySQL database were able to submit jobs to all reliable sites supporting Virtual Organization auger. For many years VO auger belongs to top ten of EGI users based on the total used computing time. Migration of the production system to DIRAC interware started in 2014. Pilot jobs improve efficiency of computing jobs and eliminate problems with small and less reliable sites used for the bulk production. The new system has also possibility to use available resources in clouds. Dirac File Catalog replaced LFC for new files, which are organized in datasets defined via metadata. CVMFS is used for software distribution since 2014. In the presentation we give a comparison of the old and the new production system and report the experience on migrating to the new system.

  10. Recent results from the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Gouffon, Philippe [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2010-07-01

    Full text. The Pierre Auger Observatory has been designed to observe cosmic rays with energies above 1018 eV . The southern site, located in Malargue, Argentina, is now fully operational (since mid 2008) and has been collecting data continuously while being deployed. The northern site, which will give a full sky coverage, is under development in Lamar, Colorado, USA. The PAO uses two complementary techniques to measure the direction of arrival and the energy of the comic rays. In the southern site, its 1600 water Cerenkov tanks, spread over 3000 km{sup 2}, sample the extended air shower front when it hits the ground, measuring time and energy deposited, while the 4 fluorescence detectors stations, each with 6 telescopes, collect the UV light emitted by the shower core, registering the time, intensity and angle of reception. Though the Pierre Auger collaboration will be taking data for the next two decades, several results have already been published based on data collected until 2009 and will be discussed briefly: the energy spectrum and its implications on the GZK cut off controversy, limits on photon and neutrino fluxes, anisotropy, point sources and mass composition. (author)

  11. Neutrino Observations from the Sudbury Neutrino Observatory

    Science.gov (United States)

    Q. R. Ahmad, R. C. Allen, T. C. Andersen, J. D. Anglin, G. B?hler, J. C. Barton, E. W. Beier, M. Bercovitch, J. Bigu, S. Biller, R. A. Black, I. Blevis, R. J. Boardman, J. Boger, E. Bonvin, M. G. Boulay, M. G. Bowler, T. J. Bowles, S. J. Brice, M. C. Browne, T. V. Bullard, T. H. Burritt, K. Cameron, J. Cameron, Y. D. Chan, M. Chen, H. H. Chen, X. Chen, M. C. Chon, B. T. Cleveland, E. T. H. Clifford, J. H. M. Cowan, D. F. Cowen, G. A. Cox, Y. Dai, X. Dai, F. Dalnoki-Veress, W. F. Davidson, P. J. Doe, G. Doucas, M. R. Dragowsky, C. A. Duba, F. A. Duncan, J. Dunmore, E. D. Earle, S. R. Elliott, H. C. Evans, G. T. Ewan, J. Farine, H. Fergani, A. P. Ferraris, R. J. Ford, M. M. Fowler, K. Frame, E. D. Frank, W. Frati, J. V. Germani, S. Gil, A. Goldschmidt, D. R. Grant, R. L. Hahn, A. L. Hallin, E. D. Hallman, A. Hamer, A. A. Hamian, R. U. Haq, C. K. Hargrove, P. J. Harvey, R. Hazama, R. Heaton, K. M. Heeger, W. J. Heintzelman, J. Heise, R. L. Helmer, J. D. Hepburn, H. Heron, J. Hewett, A. Hime, M. Howe, J. G. Hykawy, M. C. P. Isaac, P. Jagam, N. A. Jelley, C. Jillings, G. Jonkmans, J. Karn, P. T. Keener, K. Kirch, J. R. Klein, A. B. Knox, R. J. Komar, R. Kouzes, T. Kutter, C. C. M. Kyba, J. Law, I. T. Lawson, M. Lay, H. W. Lee, K. T. Lesko, J. R. Leslie, I. Levine, W. Locke, M. M. Lowry, S. Luoma, J. Lyon, S. Majerus, H. B. Mak, A. D. Marino, N. McCauley, A. B. McDonald, D. S. McDonald, K. McFarlane, G. McGregor, W. McLatchie, R. Meijer Drees, H. Mes, C. Mifflin, G. G. Miller, G. Milton, B. A. Moffat, M. Moorhead, C. W. Nally, M. S. Neubauer, F. M. Newcomer, H. S. Ng, A. J. Noble, E. B. Norman, V. M. Novikov, M. O'Neill, C. E. Okada, R. W. Ollerhead, M. Omori, J. L. Orrell, S. M. Oser, A. W. P. Poon, T. J. Radcliffe, A. Roberge, B. C. Robertson, R. G. H. Robertson, J. K. Rowley, V. L. Rusu, E. Saettler, K. K. Schaffer, A. Schuelke, M. H. Schwendener, H. Seifert, M. Shatkay, J. J. Simpson, D. Sinclair, P. Skensved, A. R. Smith, M. W. E. Smith, N. Starinsky, T. D. Steiger, R. G. Stokstad, R. S. Storey, B. Sur, R. Tafirout, N. Tagg, N. W. Tanner, R. K. Taplin, M. Thorman, P. Thornewell, P. T. Trent, Y. I. Tserkovnyak, R. Van Berg, R. G. Van de Water, C. J. Virtue, C. E. Waltham, J.-X. Wang, D. L. Wark, N. West, J. B. Wilhelmy, J. F. Wilkerson, J. Wilson, P. Wittich, J. M. Wouters, and M. Yeh

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  12. Vegetation - San Felipe Valley [ds172

    Data.gov (United States)

    California Natural Resource Agency — This Vegetation Map of the San Felipe Valley Wildlife Area in San Diego County, California is based on vegetation samples collected in the field in 2002 and 2005 and...

  13. Babesiosis in Lower Hudson Valley, New York

    Centers for Disease Control (CDC) Podcasts

    This podcast discusses a study about an increase in babesiosis in the Lower Hudson Valley of New York state. Dr. Julie Joseph, Assistant Professor of Medicine at New York Medical College, shares details of this study.

  14. Meie mees Silicon Valleys / Kertu Ruus

    Index Scriptorium Estoniae

    Ruus, Kertu, 1977-

    2007-01-01

    Ilmunud ka: Delovõje Vedomosti 5. dets. lk. 4. Peaminister Andrus Ansip avas Eesti Ettevõtluse Sihtasutuse esinduse Silicon Valley pealinnas San Joses. Vt. samas: Ränioru kliima on tehnoloogiasõbralik; Andrus Viirg

  15. Meie ingel Silicon Valleys / Raigo Neudorf

    Index Scriptorium Estoniae

    Neudorf, Raigo

    2008-01-01

    Ettevõtluse Arendamise Sihtasutuse esinduse töölepanekust USAs Silicon Valleys räägib esinduse juht Andrus Viirg. Vt. ka: Eestlasi leidub San Franciscos omajagu; Muljetavaldav karjäär; USAga ammune tuttav

  16. Burrowing Owl - Palo Verde Valley [ds197

    Data.gov (United States)

    California Natural Resource Agency — These burrowing owl observations were collected during the spring and early summer of 1976 in the Palo Verde Valley, eastern Riverside County, California. This is an...

  17. Radio Context Awareness and Applications

    Directory of Open Access Journals (Sweden)

    Luca Reggiani

    2013-01-01

    Full Text Available The context refers to “any information that can be used to characterize the situation of an entity, where an entity can be a person, place, or physical object.” Radio context awareness is defined as the ability of detecting and estimating a system state or parameter, either globally or concerning one of its components, in a radio system for enhancing performance at the physical, network, or application layers. In this paper, we review the fundamentals of context awareness and the recent advances in the main radio techniques that increase the context awareness and smartness, posing challenges and renewed opportunities to added-value applications in the context of the next generation of wireless networks.

  18. Modular Software-Defined Radio

    Directory of Open Access Journals (Sweden)

    Rhiemeier Arnd-Ragnar

    2005-01-01

    Full Text Available In view of the technical and commercial boundary conditions for software-defined radio (SDR, it is suggestive to reconsider the concept anew from an unconventional point of view. The organizational principles of signal processing (rather than the signal processing algorithms themselves are the main focus of this work on modular software-defined radio. Modularity and flexibility are just two key characteristics of the SDR environment which extend smoothly into the modeling of hardware and software. In particular, the proposed model of signal processing software includes irregular, connected, directed, acyclic graphs with random node weights and random edges. Several approaches for mapping such software to a given hardware are discussed. Taking into account previous findings as well as new results from system simulations presented here, the paper finally concludes with the utility of pipelining as a general design guideline for modular software-defined radio.

  19. The Importance of Marine Observatories and of RAIA in Particular

    Directory of Open Access Journals (Sweden)

    Luísa Bastos

    2016-08-01

    Full Text Available Coastal and Oceanic Observatories are important tools to provide information on ocean state, phenomena and processes. They meet the need for a better understanding of coastal and ocean dynamics, revealing regional characteristics and vulnerabilities. These observatories are extremely useful to guide human actions in response to natural events and potential climate change impacts, anticipating the occurrence of extreme weather and oceanic events and helping to minimize consequent personal and material damages and costs.International organizations and local governments have shown an increasing interest in operational oceanography and coastal, marine and oceanic observations, which resulted in substantial investments in these areas. A variety of physical, chemical and biological data have been collected to better understand the specific characteristics of each ocean area and its importance in the global context. Also the general public’s interest in marine issues and observatories has been raised, mainly in relation to vulnerability, sustainability and climate change issues. Data and products obtained by an observatory are hence useful to a broad range of stakeholders, from national and local authorities to the population in general.An introduction to Ocean Observatories, including their national and regional importance, and a brief analysis of the societal interest in these observatories and related issues are presented. The potential of a Coastal and Ocean Observatory is then demonstrated using the RAIA observatory as example. This modern and comprehensive observatory is dedicated to improve operational oceanography, technology and marine science for the North Western Iberian coast, and to provide services to a large range of stakeholders.

  20. Radio broadcasting: a conceptual challenge in Latin America

    Directory of Open Access Journals (Sweden)

    Nelia R. Del Bianco

    2012-12-01

    Full Text Available The objective of this paper is to present the partial results of research carried out by the Observatory of Public Radio Broadcasting of Latin America on the changes occurring in the public radio and TV systems in 10 Latin American countries, under the aspects of functioning models, management, financing, and social participation. After the rising to power of governments linked to parties from the left, we verified that communication policies are being established, which aim at closing the gap between traditional state broadcasting stations and the notion of public. This considers the principles that characterize the action of this media, determined by UNESCO (2001: universality, diversity, independence, and differentiation of content in the programming. A hundred and forty broadcasting stations were analyzed from the perspective of being public based on two criteria: those that are under the control of the State direct or indirectly, by means of concessions for use without profit for foundations, companies, and public universities; and those that receive public financing. Based on the analysis of the data, five trend tendencies were observed: the construction of a new regulatory framework; the creation of public companies instead of legal centralized state structures; the institution of relatively autonomous deliberative councils responsible for overseeing the management of the stations; the diversification of funding sources in an attempt to reverse the dependence on government resources; and the renewal of the programming with the opening for independent production.