WorldWideScience

Sample records for valley forearc basin

  1. Variation in forearc basin development along the Sunda Arc, Indonesia

    Science.gov (United States)

    van der Werff, W.

    The present forearc basin configuration along the Sunda Arc initially appears to have been controlled by extension and differential subsidence of basement blocks in response to the late Eocene collision of India with Asia. The late Oligocene increase in convergence between the South-east Asian and Indian Plates associated with a new pulse of subduction, resulted in basement uplift and the formation of a regional unconformity that can be recognized along the entire Sunda Arc. From the early to late Miocene, the Sumba and Savu forearc sectors along the eastern Sunda Arc may have been characterized by forearc extension. Submarine fan deposition on the arcward side of the evolving accretionary prism represents the first phase in forearc basin deposition. These fans were subsequently covered by basin and slope sediments derived from the evolving magmatic arc. Structural response to increased late Miocene compression varied along strike of the Sunda Arc. North of Bali, Lombok and Sumbawa, the incipient collision between Australia and the western Banda Arc caused back-arc thrusting and basin inversion. Towards the south of Java, an increase in both the size of the accretionary prism and convergence rates resulted in uplift and large scale folding of the outer forearc basin strata. Along the west coast of Sumatra, increased compression resulted in uplift along the inner side of the forearc along older transcurrent faults. Uplift of West Sumatra was followed by the deposition of a westward prograding sequence of terrigenous sediments that resulted in the development of a broad shelf. Initial forearc basin subsidence relates to the age of the subducting oceanic lithosphere, on top of which the basin is situated. Along the western Sunda Arc, both fexural loading of the evolving accretionary prism, and across arc strike-slip faulting represent additional factors that result in forearc subsidence.

  2. Ophiolitic basement to the Great Valley forearc basin, California, from seismic and gravity data: Implications for crustal growth at the North American continental margin

    Science.gov (United States)

    Godfrey, N.J.; Beaudoin, B.C.; Klemperer, S.L.; Levander, A.; Luetgert, J.; Meltzer, A.; Mooney, W.; Tréhu, A.

    1997-01-01

    The nature of the Great Valley basement, whether oceanic or continental, has long been a source of controversy. A velocity model (derived from a 200-km-long east-west reflection-refraction profile collected south of the Mendocino triple junction, northern California, in 1993), further constrained by density and magnetic models, reveals an ophiolite underlying the Great Valley (Great Valley ophiolite), which in turn is underlain by a westward extension of lower-density continental crust (Sierran affinity material). We used an integrated modeling philosophy, first modeling the seismic-refraction data to obtain a final velocity model, and then modeling the long-wavelength features of the gravity data to obtain a final density model that is constrained in the upper crust by our velocity model. The crustal section of Great Valley ophiolite is 7-8 km thick, and the Great Valley ophiolite relict oceanic Moho is at 11-16 km depth. The Great Valley ophiolite does not extend west beneath the Coast Ranges, but only as far as the western margin of the Great Valley, where the 5-7-km-thick Great Valley ophiolite mantle section dips west into the present-day mantle. There are 16-18 km of lower-density Sierran affinity material beneath the Great Valley ophiolite mantle section, such that a second, deeper, "present-day" continental Moho is at about 34 km depth. At mid-crustal depths, the boundary between the eastern extent of the Great Valley ophiolite and the western extent of Sierran affinity material is a near-vertical velocity and density discontinuity about 80 km east of the western margin of the Great Valley. Our model has important implications for crustal growth at the North American continental margin. We suggest that a thick ophiolite sequence was obducted onto continental material, probably during the Jurassic Nevadan orogeny, so that the Great Valley basement is oceanic crust above oceanic mantle vertically stacked above continental crust and continental mantle.

  3. Mechanics of Formation of Forearc Basins of Indonesia and Alaska

    Science.gov (United States)

    Cassola, T.; Willett, S.; Kopp, H.

    2010-12-01

    In this study, the mechanics of forearc basins will be the object of a numerical investigation to understand the relationships between the wedge deformation and forearc basin formation. The aim of this work is to gain insight into the dynamics of the formation of the forearc basin on top of a deforming accretionary wedge, including the mechanism of formation of accommodation space and preservation of basin stratigraphy. Our tool is a two-dimensional numerical model that includes the rheological properties of the rock, including effective internal friction angle, effective basal friction angle, thermally-activated viscosity and strain softening. We also simulate different sedimentation rates in the basin, to study the influence of underfilled and overfilled basin conditions on wedge deformation. The stratigraphy in the basin is simulated, because, as noted in earlier studies, underfilled conditions incourage tectonic deformation in the inner wedge. We compare the numerical model to basins along the Sunda-Java Trench and the Alaskan margin. The Sunda-Java Trench shows a variety of structural and basin styles including underfilled and overfilled basins and different wedge geometries along the same trench. We interprete and document these structural styles, using depth migrated seismic sections of the Sunda Trench, obtained in three surveys, GINCO (11/98 - 01/99), MERAMEX (16/09/04 - 7/10/04) and SINDBAD (9/10/06 - 9/11/06) and made available by the IFM-GEOMAR group in Kiel and the Bundesanstalt für Geowissenschaften and Rohstoffe (BGR) in Hannover. On the Alaska margin we focus on the Kenai Peninsula, Kodiak Island plateau. This segment of the margin has one of the largest accretionary wedge - forearc basin systems in the world. It also exhibits a double forearc basin system with an interior basin (Cook inlet) and an outer basin, outboard of Kodiak Island, which is a prime candidate for a negative-alpha basin, as described by Fuller et al., (Geology, 2006). A number

  4. 2Dbasin modelling of the hydrocarbon systems in the forearc basin of Sumatra; 2D-Beckenmodellierung des Kohlenwasserstoff-Systems im Forearc-Bereich von Sumatra

    Energy Technology Data Exchange (ETDEWEB)

    Stratmann, V.; Berglar, K.; Lutz, R.; Schloemer, S. [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany); Djajadihardja, Y.S. [Agency for the Assessment and Application of Technology, Jakarta (Indonesia)

    2008-10-23

    In the forearc basin of Sumatra, individual industrial drillings indicated the existence of hydrocarbons. The authors of the contribution under consideration report on an investigation of the hydrocarbon system within this forearc basin by means of a two-dimensional modelling of this basin. The structural development of the basins in the forearc area proceeded differently. Therefore, geophysical data for the investigation of the geological structures as well as geological/geochemical data were raised. The preliminary results of the two-dimensional modelling of the Simeulue basin northwest from Sumatra are presented.

  5. Forearc Basin Stratigraphy and Interactions With Accretionary Wedge Growth According to the Critical Taper Concept

    Science.gov (United States)

    Noda, Atsushi

    2018-03-01

    Forearc basins are important constituents of sediment traps along subduction zones; the basin stratigraphy records various events that the basin experienced. Although the linkage between basin formation and accretionary wedge growth suggests that mass balance exerts a key control on their evolution, the interaction processes between basin and basement remain poorly understood. This study performed 2-D numerical simulations in which basin stratigraphy was controlled by changes in sediment fluxes with accretionary wedge growth according to the critical taper concept. The resultant stratigraphy depended on the degree of filling (i.e., whether the basin was underfilled or overfilled) and the volume balance between the sediment flux supplied to the basin from the hinterland and the accommodation space in the basin. The trenchward progradation of deposition with onlapping contacts on the trenchside basin floor occurred during the underfilled phase, which formed a wedge-shaped sedimentary unit. In contrast, the landward migration of the depocenter, with the tilting of strata, was characteristic for the overfilled phase. Condensed sections marked stratigraphic boundaries, indicating when sediment supply or accommodation space was limited. The accommodation-limited intervals could have formed during the end of wedge uplift or when the taper angle decreased and possibly associated with the development of submarine canyons as conduits for bypassing sediments from the hinterland. Variations in sediment fluxes and their balance exerted a strong influence on the stratigraphic patterns in forearc basins. Assessing basin stratigraphy could be a key to evaluating how subduction zones evolve through their interactions with changing surface processes.

  6. Holocene faulting in the Bellingham forearc basin: upper-plate deformation at the northern end of the Cascadia subduction zone

    Science.gov (United States)

    Kelsey, Harvey M.; Sherrod, Brian L.; Blakely, Richard J.; Haugerud, Ralph A.

    2013-01-01

    The northern Cascadia forearc takes up most of the strain transmitted northward via the Oregon Coast block from the northward-migrating Sierra Nevada block. The north-south contractional strain in the forearc manifests in upper-plate faults active during the Holocene, the northern-most components of which are faults within the Bellingham Basin. The Bellingham Basin is the northern of four basins of the actively deforming northern Cascadia forearc. A set of Holocene faults, Drayton Harbor, Birch Bay, and Sandy Point faults, occur within the Bellingham Basin and can be traced from onshore to offshore using a combination of aeromagnetic lineaments, paleoseismic investigations and scarps identified using LiDAR imagery. With the recognition of such Holocene faults, the northernmost margin of the actively deforming Cascadia forearc extends 60 km north of the previously recognized limit of Holocene forearc deformation. Although to date no Holocene faults are recognized at the northern boundary of the Bellingham Basin, which is 15 km north of the international border, there is no compelling tectonic reason to expect that Holocene faults are limited to south of the international border.

  7. Insights on the structural control of a Neogene forearc basin in Northern Chile: A geophysical approach

    Science.gov (United States)

    García-Pérez, Tiaren; Marquardt, Carlos; Yáñez, Gonzalo; Cembrano, José; Gomila, Rodrigo; Santibañez, Isabel; Maringue, José

    2018-06-01

    The comprehensive study of intramountain basins located in the Coastal Cordillera of the continental emergent Andean forearc in Northern Chile, enables the better understanding of the nature and evolution of the upper crustal deformation during the Neogene and Quaternary. A case study is the extensive extensional half-graben Alto Hospicio basin. The basin is cut by the Coastal Cliff, which exposes the deformed Neogene basin fill. Also exposed are several structural systems, some of which affect Quaternary surfaces. The results of the integrated geophysical surveys (Electromagnetic Transient and Gravity) allow us to fully constrain the geometry of the Alto Hospicio basin and the lithological relationship between the subsurface geological units. The structural geology analysis assesses the deformation regimes affecting the faults present in the basin and surrounding area. Altogether evidence a change in the deformation regime from an EW extensional deformation during the Miocene-Pliocene to a NS compression in the Quaternary as is presented in this study. We suggest this deformation change is related to a small change in the convergence vector orientation during the Pliocene.

  8. Sedimentologic development of a Late Oligocene Miocene forearc embayment, Valdivia Basin Complex, southern Chile

    Science.gov (United States)

    le Roux, J. P.; Elgueta, Sara

    2000-01-01

    Deposition of Tertiary sediments in the southeastern part of the Valdivia Basin commenced during the Late Oligocene with the rapid incision of rivers draining the Palaeo-Coastal Range. Alluvial fans developing along the steep valley flanks joined gravelly braided streams transporting bedload to the coast. Tectonic and eustatic stability lasting into the Early Miocene subsequently allowed lateral erosion of the valley flanks and the development of extensive fluvial and estuarine peat swamps. This stable period was interrupted briefly by a volcanic eruption at 23.5 Ma. Shortly after 23 Ma, rapid uplift caused by an acceleration in plate convergence resulted in renewed erosion of the landscape, as reflected in the deposition of coarse river gravels. Basin subsidence and marine transgression proceeding up the river valleys subsequently formed still, deep embayments, occasionally disturbed by debris flows and turbidity currents originating on the steep, wooded valley flanks. At the upper limits of the inlets, bayhead deltas, tidal flats and beaches existed. In some areas, fan deltas prograded into the embayments, as reflected in the interfingering relationship between conglomerates and marine mudrocks. In the deeper parts of the embayments, the frequency of debris flows and turbidity currents increased markedly during periods of relative sea-level lowstand. The landscape was eventually inundated by continued subsidence and marine transgression, which lasted until a possibly eustatic sea-level fall in the early Tortonian.

  9. Formation of forearc basins by collision between seamounts and accretionary wedges: an example from the New Hebrides subduction zone

    Science.gov (United States)

    Collot, J.-Y.; Fisher, M.A.

    1989-01-01

    Seabeam data reveal two deep subcircular reentrants in the lower arc slope of the New Hebrides island arc that may illustrate two stages in the development of a novel type of forearc basin. The Malekula reentrant lies just south of the partly subducted Bougainville seamount. This proximity, as well as the similarity in morphology between the reentrant and an indentation in the lower arc slope off Japan, suggests that the Malekula reentrant formed by the collision of a seamount with the arc. An arcuate fold-thrust belt has formed across the mouth of the reentrant, forming the toe of a new accretionary wedge. The Efate reentrant may show the next stage in basin development. This reentrant lies landward of a lower-slope ridge that may have begun to form as an arcuate fold-thrust belt across the mouth of a reentrant. This belt may have grown by continued accretion at the toe of the wedge, by underplating beneath the reentrant, and by trapping of sediment shed from the island arc. These processes could result in a roughly circular forearc basin. Basins that may have formed by seamount collision lie within the accretionary wedge adjacent to the Aleutian trenches. -Authors

  10. Upper Paleogene shallow-water events in the Sandino Forearc Basin, Nicaragua-Costa Rica - response to tectonic uplift

    Science.gov (United States)

    Andjic, Goran; Baumgartner-Mora, Claudia; Baumgartner, Peter O.

    2016-04-01

    The Upper Cretaceous-Neogene Sandino Forearc Basin is exposed in the southeastern Nicaraguan Isthmus and in the northwestern corner of Costa Rica. It consists of an elongated, slightly folded belt (160 km long/30 km wide). During Campanian to Oligocene, the predominantly deep-water pelagic, hemipelagic and turbiditic sequences were successively replaced by shelf siliciclastics and carbonates at different steps of the basin evolution. We have made an inventory of Tertiary shallow-water limestones in several areas of Nicaragua and northern Costa Rica. They always appear as isolated rock bodies, generally having an unconformable stratigraphic contact with the underlying detrital sequences. The presence of these short-lived carbonate shoals can be attributed to local or regional tectonic uplift in the forearc area. The best-preserved exposure of such a carbonate buildup is located on the small Isla Juanilla (0.15 km2, Junquillal Bay, NW Costa Rica). The whole island is made of reef carbonates, displaying corals in growth position, associated with coralline red algae (Juanilla Formation). Beds rich in Larger Benthic Foraminifera such as Lepidocyclina undosa -favosa group permit to date this reef as late Oligocene. A first uplift event affected the Nicaraguan Isthmus, that rose from deep-water to shelfal settings in the latest Eocene-earliest Oligocene. The upper Oligocene Juanilla Formation formed on an anticline that developed during the early Oligocene, contemporaneously with other folds observed in the offshore Sandino Forearc Basin. During the early Oligocene, a period of global sea-level fall, the folded tectonic high underwent deep erosion. During the late Oligocene, a time of overall stable eustatic sea level, tectonic uplift gave way to moderate subsidence, creating accommodation space for reef growth. A 4th or 5th order (Milankovic-type) glacio-eustatic sea level rise, could also have triggered reef growth, but its preservation implies at least moderate

  11. Fore-arc Deformation in the Paola Basin Segment (Offshore Western Calabria) of the Tyrrhenian-Ionian Subduction System

    Science.gov (United States)

    Pepe, F.; Corradino, M.; Nicolich, R.; Barreca, G.; Bertotti, G.; Ferranti, L.; Monaco, C.

    2017-12-01

    The 3D stratigraphic architecture and Late Neogene to Recent tectonic evolution of the Paola Basin (offshore western Calabria), a segment in the fore-arc of the Tyrrhenian-Ionian subduction system, is reconstructed by using a grid of high-penetration reflection seismics. Oligocene to Messinian deposits are interpreted all along the profile. They tend to fossilize preexisting topography and reach the largest thicknesses between (fault controlled) basement highs. Plio-Quaternary deposits are found over the entire area and display variations in thickness and tectonic style. They are thicken up to 4.5 km in the depocenter of the basin, and decrease both in the east and west termination of the lines. The Paola Basin can be partitioned into two sectors with different tectonic deformation, separated by a NNW-SSE elongated area that coincides with the basin depocenter. Tectonic features associated with strike-slip restraining and releasing bends are widely spread over the western sector of the basin. Overall, they form an approximately NS-trending and geomorphically prominent ridge separating the Paola Basin from the Marsili abyssal plain. A high-angle, NNE-trending, normal fault system develops on the south-west tip of the basin, where the faults offset the Messinian horizon of ca. 500 m. Data suggest that limited vertical slip occurs along reverse faults detected at the border and inside the sedimentary infilling of the Paola Basin, reaching thickness of more than 3.8s two way travel time. The reflection sequence pattern can be interpreted as a result of the infilling of the thrust-top basin related to a prograding system, located between a growth ramp-anticline to the west and a culmination of basement-thrust sheets to the East. We propose that the Paola Basin developed near the northern edge of the Ionian slab where tearing of the lithosphere is expected. Also, the strike-slip fault system is a kinematic consequence of obliquely convergent subduction settings, where

  12. In situ stress and pore pressure in the Kumano Forearc Basin, offshore SW Honshu from downhole measurements during riser drilling

    Science.gov (United States)

    Saffer, D. M.; Flemings, P. B.; Boutt, D.; Doan, M.-L.; Ito, T.; McNeill, L.; Byrne, T.; Conin, M.; Lin, W.; Kano, Y.; Araki, E.; Eguchi, N.; Toczko, S.

    2013-05-01

    situ stress and pore pressure are key parameters governing rock deformation, yet direct measurements of these quantities are rare. During Integrated Ocean Drilling Program (IODP) Expedition #319, we drilled through a forearc basin at the Nankai subduction zone and into the underlying accretionary prism. We used the Modular Formation Dynamics Tester tool (MDT) for the first time in IODP to measure in situ minimum stress, pore pressure, and permeability at 11 depths between 729.9 and 1533.9 mbsf. Leak-off testing at 708.6 mbsf conducted as part of drilling operations provided a second measurement of minimum stress. The MDT campaign included nine single-probe (SP) tests to measure permeability and in situ pore pressure and two dual-packer (DP) tests to measure minimum principal stress. Permeabilities defined from the SP tests range from 6.53 × 10-17 to 4.23 × 10-14 m2. Pore fluid pressures are near hydrostatic throughout the section despite rapid sedimentation. This is consistent with the measured hydraulic diffusivity of the sediments and suggests that the forearc basin should not trap overpressures within the upper plate of the subduction zone. Minimum principal stresses are consistently lower than the vertical stress. We estimate the maximum horizontal stress from wellbore failures at the leak-off test and shallow MDT DP test depths. The results indicate a normal or strike-slip stress regime, consistent with the observation of abundant active normal faults in the seaward-most part of the basin, and a general decrease in fault activity in the vicinity of Site C0009.

  13. Field and experimental evidence for coseismic ruptures along shallow creeping faults in forearc sediments of the Crotone Basin, South Italy

    Science.gov (United States)

    Balsamo, Fabrizio; Aldega, Luca; De Paola, Nicola; Faoro, Igor; Storti, Fabrizio

    2014-05-01

    Large seismic slip occurring along shallow creeping faults in tectonically active areas represents an unsolved paradox, which is largely due to our poor understanding of the mechanics governing creeping faults, and to the lack of documented geological evidence showing how coseismic rupturing overprints creep in near-surface conditions. In this contribution we integrate field, petrophysical, mineralogical and friction data to characterize the signature of coseismic ruptures propagating along shallow creeping faults affecting unconsolidated forearc sediments of the seismically active Crotone Basin, in South Italy. Field observations of fault zones show widespread foliated cataclasites in fault cores, locally overprinted by sharp slip surfaces decorated by thin (0.5-1.5 cm) black gouge layers. Compared to foliated cataclasites, black gouges have much lower grain size, porosity and permeability, which may have facilitated slip weakening by thermal fluid pressurization. Moreover, black gouges are characterized by distinct mineralogical assemblages compatible with high temperatures (180-200°C) due to frictional heating during seismic slip. Foliated cataclasites and black gouges were also produced by laboratory friction experiments performed on host sediments at sub-seismic (≤ 0.1 m/s) and seismic (1 m/s) slip rates, respectively. Black gouges display low friction coefficients (0.3) and velocity-weakening behaviours, as opposed to high friction coefficients (0.65) and velocity-strengthening behaviours shown by the foliated cataclasites. Our results show that narrow black gouges developed within foliated cataclasites represent a potential diagnostic marker for episodic seismic activity in shallow creeping faults. These findings can help understanding the time-space partitioning between aseismic and seismic slip of faults at shallow crustal levels, impacting on seismic hazard evaluation of subduction zones and forearc regions affected by destructive earthquakes and

  14. Acoustic and gravity features of mud volcanoes along the seaward part of the Kumano forearc basin, Nankai region, central Japan

    Science.gov (United States)

    Asada, M.

    2017-12-01

    Mud volcanoes (MV) are geological features that are observed all over the world, especially along plate convergent margins. MVs bring fluid and sediment to the surface from depth. MVs around Japan are expected to transport of information from the shallow portions of the seismogenic zone. The Kumano forearc basin (FAB) in the Nankai region is the most studied area in Japan. It is bounded by a shelf on the north, and the Kumano Basin edge fault zone (KBEFZ) on the south. The Kumano FAB has 1-2 km of sediment and overlies the accretionary prism. There are at least 14 MVs in the Kumano Basin. Most of them are found over the northern basin floor, and at least one MV is at the KBEFZ. The MV at the KBEFZ is imaged on a 3D seismic data set as a small topographic feature on seafloor with a disrupted BSR below it. On high-resolution acoustic imagery, it is an 80 100m-high hill with a crater-like depression. It is characterized by a negative ph anomaly detected just above it. High-backscatter seafloor recognized around the MV suggests that harder seafloor exists in that area. To determine whether large subseafloor diapirs exist below active MVs, we try to detect the gravity contrast between the allochthonous materials and basin sediment. Gravity data were collected by research vessels over the area in 2012 2017. After corrections of drift and Etovos effects, absolute gravity, free-air and Bouguer gravity anomalies were calculated. The gravity data do not always show anomalies directly on MVs over the northern basin, thus suggesting that larger diapirs which have gravity contrast over a few milli-Gals do not exist below most of MVs in this basin. Instead, a large negative gravity anomaly is found at the northeastern end of the Kumano Basin. Localized positive anomalies exist along the KBEFZ in the area of theMV. The positive anomaly may suggest that an allochthonous high-density sediment body intrudes along the highly deformed, weak, fault zone.

  15. Miocene-Recent sediment flux in the south-central Alaskan fore-arc basin governed by flat-slab subduction

    Science.gov (United States)

    Finzel, Emily S.; Enkelmann, Eva

    2017-04-01

    The Cook Inlet in south-central Alaska contains the early Oligocene to Recent stratigraphic record of a fore-arc basin adjacent to a shallowly subducting oceanic plateau. Our new measured stratigraphic sections and detrital zircon U-Pb geochronology and Hf isotopes from Neogene strata and modern rivers illustrate the effects of flat-slab subduction on the depositional environments, provenance, and subsidence in fore-arc sedimentary systems. During the middle Miocene, fluvial systems emerged from the eastern, western, and northern margins of the basin. The axis of maximum subsidence was near the center of the basin, suggesting equal contributions from subsidence drivers on both margins. By the late Miocene, the axis of maximum subsidence had shifted westward and fluvial systems originating on the eastern margin of the basin above the flat-slab traversed the entire width of the basin. These mud-dominated systems reflect increased sediment flux from recycling of accretionary prism strata. Fluvial systems with headwaters above the flat-slab region continued to cross the basin during Pliocene time, but a change to sandstone-dominated strata with abundant volcanogenic grains signals a reactivation of the volcanic arc. The axis of maximum basin subsidence during late Miocene to Pliocene time is parallel to the strike of the subducting slab. Our data suggest that the character and strike-orientation of the down-going slab may provide a fundamental control on the nature of depositional systems, location of dominant provenance regions, and areas of maximum subsidence in fore-arc basins.

  16. Anaerobic oxidation of methane at a marine methane seep in a forearc sediment basin off Sumatra, Indian Ocean

    Directory of Open Access Journals (Sweden)

    Michael eSiegert

    2011-12-01

    Full Text Available A cold methane-seep was discovered in a forearc sediment basin off the island Sumatra, exhibiting a methane-seep adapted microbial community. A defined seep centre of activity, like in mud volcanoes, was not discovered. The seep area was rather characterized by a patchy distribution of active spots. The relevance of AOM was reflected by 13C depleted isotopic signatures of dissolved inorganic carbon (DIC. The anaerobic conversion of methane to CO2 was confirmed in a 13C-labelling experiment. Methane fuelled a vital microbial and invertebrate community which was reflected in cell numbers of up to 4 x 109 cells cm 3 sediment and 13C depleted guts of crabs populating the seep area. The microbial community was analysed by total cell counting, catalyzed reporter deposition – fluorescence in situ hybridisation (CARD-FISH, quantitative real-time PCR (qPCR and denaturing gradient gel electrophoresis (DGGE. CARD-FISH cell counts and qPCR measurements showed the presence of Bacteria and Archaea, but only small numbers of Eukarya. The archaeal community comprised largely members of ANME-1 and ANME-2. Furthermore, members of the Crenarchaeota were frequently detected in the DGGE analysis. Three major bacterial phylogenetic groups (δ-Proteobacteria, candidate division OP9 and Anaerolineaceae were abundant across the study area. Several of these sequences were closely related to the genus Desulfococcus of the family Desulfobacteraceae, which is in good agreement with previously described AOM sites. In conclusion, the majority of the microbial community at the seep consisted of AOM related microorganisms, while the relevance of higher hydrocarbons as microbial substrates was negligible.

  17. Anaerobic Oxidation of Methane at a Marine Methane Seep in a Forearc Sediment Basin off Sumatra, Indian Ocean.

    Science.gov (United States)

    Siegert, Michael; Krüger, Martin; Teichert, Barbara; Wiedicke, Michael; Schippers, Axel

    2011-01-01

    A cold methane seep was discovered in a forearc sediment basin off the island Sumatra, exhibiting a methane-seep adapted microbial community. A defined seep center of activity, like in mud volcanoes, was not discovered. The seep area was rather characterized by a patchy distribution of active spots. The relevance of anaerobic oxidation of methane (AOM) was reflected by (13)C-depleted isotopic signatures of dissolved inorganic carbon. The anaerobic conversion of methane to CO(2) was confirmed in a (13)C-labeling experiment. Methane fueled a vital microbial community with cell numbers of up to 4 × 10(9) cells cm(-3) sediment. The microbial community was analyzed by total cell counting, catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH), quantitative real-time PCR (qPCR), and denaturing gradient gel electrophoresis (DGGE). CARD-FISH cell counts and qPCR measurements showed the presence of Bacteria and Archaea, but only small numbers of Eukarya. The archaeal community comprised largely members of ANME-1 and ANME-2. Furthermore, members of the Crenarchaeota were frequently detected in the DGGE analysis. Three major bacterial phylogenetic groups (δ-Proteobacteria, candidate division OP9, and Anaerolineaceae) were abundant across the study area. Several of these sequences were closely related to the genus Desulfococcus of the family Desulfobacteraceae, which is in good agreement with previously described AOM sites. In conclusion, the majority of the microbial community at the seep consisted of AOM-related microorganisms, while the relevance of higher hydrocarbons as microbial substrates was negligible.

  18. Eocene extension in Idaho generated massive sediment floods into Franciscan trench and into Tyee, Great Valley, and Green River basins

    Science.gov (United States)

    Dumitru, Trevor A.; Ernst, W.G.; Wright, James E.; Wooden, Joseph L.; Wells, Ray E.; Farmer, Lucia P.; Kent, Adam J.R.; Graham, Stephan A.

    2013-01-01

    The Franciscan Complex accretionary prism was assembled during an ∼165-m.y.-long period of subduction of Pacific Ocean plates beneath the western margin of the North American plate. In such fossil subduction complexes, it is generally difficult to reconstruct details of the accretion of continent-derived sediments and to evaluate the factors that controlled accretion. New detrital zircon U-Pb ages indicate that much of the major Coastal belt subunit of the Franciscan Complex represents a massive, relatively brief, surge of near-trench deposition and accretion during Eocene time (ca. 53–49 Ma). Sediments were sourced mainly from the distant Idaho Batholith region rather than the nearby Sierra Nevada. Idaho detritus also fed the Great Valley forearc basin of California (ca. 53–37 Ma), the Tyee forearc basin of coastal Oregon (49 to ca. 36 Ma), and the greater Green River lake basin of Wyoming (50–47 Ma). Plutonism in the Idaho Batholith spanned 98–53 Ma in a contractional setting; it was abruptly superseded by major extension in the Bitterroot, Anaconda, Clearwater, and Priest River metamorphic core complexes (53–40 Ma) and by major volcanism in the Challis volcanic field (51–43 Ma). This extensional tectonism apparently deformed and uplifted a broad region, shedding voluminous sediments toward depocenters to the west and southeast. In the Franciscan Coastal belt, the major increase in sediment input apparently triggered a pulse of massive accretion, a pulse ultimately controlled by continental tectonism far within the interior of the North American plate, rather than by some tectonic event along the plate boundary itself.

  19. Geophysical Surveys of the Hydrologic Basin Underlying Yosemite Valley, California.

    Science.gov (United States)

    Maher, E. L.; Shaw, K. A.; Carey, C.; Dunn, M. E.; Whitman, S.; Bourdeau, J.; Eckert, E.; Louie, J. N.; Stock, G. M.

    2017-12-01

    UNR students in an Applied Geophysics course conducted geophysical investigations in Yosemite Valley during the months of March and August 2017. The goal of the study is to understand better the depth to bedrock, the geometry of the bedrock basin, and the properties of stratigraphy- below the valley floor. Gutenberg and others published the only prior geophysical investigation in 1956, to constrain the depth to bedrock. We employed gravity, resistivity, and refraction microtremor(ReMi) methods to investigate the interface between valley fill and bedrock, as well as shallow contrasts. Resistivity and ReMi arrays along three north-south transects investigated the top 50-60m of the basin fill. Gravity results constrained by shallow measurements suggest a maximum depth of 1000 m to bedrock. ReMi and resistivity techniques identified shallow contrasts in shear velocity and electrical resistivity that yielded information about the location of the unconfined water table, the thickness of the soil zone, and spatial variation in shallow sediment composition. The upper several meters of sediment commonly showed shear velocities below 200 m/s, while biomass-rich areas and sandy river banks could be below 150 m/s. Vs30 values consistently increased towards the edge of the basin. The general pattern for resistivity profiles was a zone of relatively high resistivity, >100 ohm-m, in the top 4 meters, followed by one or more layers with decreased resistivity. According to gravity measurements, assuming either -0.5 g/cc or -0.7 g/cc density contrast between bedrock and basin sediments, a maximum depth to bedrock is found south of El Capitan at respectively, 1145 ± 215 m or 818 ± 150 m. Longitudinal basin geometry coincides with the basin depth geometry discussed by Gutenberg in 1956. Their results describe a "double camel" shape where the deepest points are near El Capitan and the Ahwahnee Hotel and is shallowest near Yosemite Falls, in a wider part of the valley. An August Deep

  20. The Role of Source Material in Basin Sedimentation, as Illustrated within Eureka Valley, Death Valley National Park, CA.

    Science.gov (United States)

    Lawson, M. J.; Yin, A.; Rhodes, E. J.

    2015-12-01

    Steep landscapes are known to provide sediment to sink regions, but often petrological factors can dominate basin sedimentation. Within Eureka Valley, in northwestern Death Valley National Park, normal faulting has exposed a steep cliff face on the western margin of the Last Chance range with four kilometers of vertical relief from the valley floor and an angle of repose of nearly 38 degrees. The cliff face is composed of Cambrian limestone and dolomite, including the Bonanza King, Carrara and Wood Canyon formations. Interacting with local normal faulting, these units preferentially break off the cliff face in coherent blocks, which result in landslide deposits rather than as finer grained material found within the basin. The valley is well known for a large sand dune, which derives its sediment from distal sources to the north, instead of from the adjacent Last Chance Range cliff face. During the Holocene, sediment is sourced primary from the northerly Willow Wash and Cucomungo canyon, a relatively small drainage (less than 80 km2) within the Sylvan Mountains. Within this drainage, the Jurassic quartz monzonite of Beer Creek is heavily fractured due to motion of the Fish Valley Lake - Death Valley fault zone. Thus, the quartz monzonite is more easily eroded than the well-consolidated limestone and dolomite that forms the Last Change Range cliff face. As well, the resultant eroded material is smaller grained, and thus more easily transported than the limestone. Consequently, this work highlights an excellent example of the strong influence that source material can have on basin sedimentation.

  1. Preliminary hydrogeologic assessment near the boundary of the Antelope Valley and El Mirage Valley groundwater basins, California

    Science.gov (United States)

    Stamos, Christina L.; Christensen, Allen H.; Langenheim, Victoria

    2017-07-19

    The increasing demands on groundwater for water supply in desert areas in California and the western United States have resulted in the need to better understand groundwater sources, availability, and sustainability. This is true for a 650-square-mile area that encompasses the Antelope Valley, El Mirage Valley, and Upper Mojave River Valley groundwater basins, about 50 miles northeast of Los Angeles, California, in the western part of the Mojave Desert. These basins have been adjudicated to ensure that groundwater rights are allocated according to legal judgments. In an effort to assess if the boundary between the Antelope Valley and El Mirage Valley groundwater basins could be better defined, the U.S. Geological Survey began a cooperative study in 2014 with the Mojave Water Agency to better understand the hydrogeology in the area and investigate potential controls on groundwater flow and availability, including basement topography.Recharge is sporadic and primarily from small ephemeral washes and streams that originate in the San Gabriel Mountains to the south; estimates range from about 400 to 1,940 acre-feet per year. Lateral underflow from adjacent basins has been considered minor in previous studies; underflow from the Antelope Valley to the El Mirage Valley groundwater basin has been estimated to be between 100 and 1,900 acre-feet per year. Groundwater discharge is primarily from pumping, mostly by municipal supply wells. Between October 2013 and September 2014, the municipal pumpage in the Antelope Valley and El Mirage Valley groundwater basins was reported to be about 800 and 2,080 acre-feet, respectively.This study was motivated by the results from a previously completed regional gravity study, which suggested a northeast-trending subsurface basement ridge and saddle approximately 3.5 miles west of the boundary between the Antelope Valley and El Mirage Valley groundwater basins that might influence groundwater flow. To better define potential basement

  2. Geothermal systems of the Mono Basin-Long Valley region, eastern California and western Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, C.T.; Flynn, T.; Chapman, R.H.; Trexler, D.T.; Chase, G.R.; Bacon, C.F.; Ghusn, G. Jr.

    1985-01-01

    The region that includes Mono Basin, Long Valley, the Bridgeport-Bodie Hills area, and Aurora, in eastern California and western Nevada was studied to determine the possible causes and interactions of the geothermal anomalies in the Mono Basin-Long Valley region as a whole. A special goal of the study was to locate possible shallow bodies of magma and to determine their influence on the hydrothermal systems in the region. (ACR)

  3. Gas in Place Resource Assessment for Concentrated Hydrate Deposits in the Kumano Forearc Basin, Offshore Japan, from NanTroSEIZE and 3D Seismic Data

    Science.gov (United States)

    Taladay, K.; Boston, B.

    2015-12-01

    Natural gas hydrates (NGHs) are crystalline inclusion compounds that form within the pore spaces of marine sediments along continental margins worldwide. It has been proposed that these NGH deposits are the largest dynamic reservoir of organic carbon on this planet, yet global estimates for the amount of gas in place (GIP) range across several orders of magnitude. Thus there is a tremendous need for climate scientists and countries seeking energy security to better constrain the amount of GIP locked up in NGHs through the development of rigorous exploration strategies and standardized reservoir characterization methods. This research utilizes NanTroSEIZE drilling data from International Ocean Drilling Program (IODP) Sites C0002 and C0009 to constrain 3D seismic interpretations of the gas hydrate petroleum system in the Kumano Forearc Basin. We investigate the gas source, fluid migration mechanisms and pathways, and the 3D distribution of prospective HCZs. There is empirical and interpretive evidence that deeply sourced fluids charge concentrated NGH deposits just above the base of gas hydrate stability (BGHS) appearing in the seismic data as continuous bottoms simulating reflections (BSRs). These HCZs cover an area of 11 by 18 km, range in thickness between 10 - 80 m with an average thickness of 40 m, and are analogous to the confirmed HCZs at Daini Atsumi Knoll in the eastern Nankai Trough where the first offshore NGH production trial was conducted in 2013. For consistency, we calculated a volumetric GIP estimate using the same method employed by Japan Oil, Gas and Metals National Corporation (JOGMEC) to estimate GIP in the eastern Nankai Trough. Double BSRs are also common throughout the basin, and BGHS modeling along with drilling indicators for gas hydrates beneath the primary BSRs provides compelling evidence that the double BSRs reflect a BGHS for structure-II methane-ethane hydrates beneath a structure-I methane hydrate phase boundary. Additional drilling

  4. Potential for a significant deep basin geothermal system in Tintic Valley, Utah

    Science.gov (United States)

    Hardwick, C.; Kirby, S.

    2014-12-01

    The combination of regionally high heat flow, deep basins, and permeable reservoir rocks in the eastern Great Basin may yield substantial new geothermal resources. We explore a deep sedimentary basin geothermal prospect beneath Tintic Valley in central Utah using new 2D and 3D models coupled with existing estimates of heat flow, geothermometry, and shallow hydrologic data. Tintic Valley is a sediment-filled basin bounded to the east and west by bedrock mountain ranges where heat-flow values vary from 85 to over 240 mW/m2. Based on modeling of new and existing gravity data, a prominent 30 mGal low indicates basin fill thickness may exceed 2 km. The insulating effect of relatively low thermal conductivity basin fill in Tintic Valley, combined with typical Great Basin heat flow, predict temperatures greater than 150 °C at 3 km depth. The potential reservoir beneath the basin fill is comprised of Paleozoic carbonate and clastic rocks. The hydrology of the Tintic Valley is characterized by a shallow, cool groundwater system that recharges along the upper reaches of the basin and discharges along the valley axis and to a series of wells. The east mountain block is warm and dry, with groundwater levels just above the basin floor and temperatures >50 °C at depth. The west mountain block contains a shallow, cool meteoric groundwater system. Fluid temperatures over 50 °C are sufficient for direct-use applications, such as greenhouses and aquaculture, while temperatures exceeding 140°C are suitable for binary geothermal power plants. The geologic setting and regionally high heat flow in Tintic Valley suggest a geothermal resource capable of supporting direct-use geothermal applications and binary power production could be present.

  5. Evaluation of Water Security in Kathmandu Valley before and after Water Transfer from another Basin

    OpenAIRE

    Bhesh Raj Thapa; Hiroshi Ishidaira; Vishnu Prasad Pandey; Tilak Mohan Bhandari; Narendra Man Shakya

    2018-01-01

    Kathmandu Upatyaka Khanepani Limited (KUKL) has planned to harness water from outside the valley from Melamchi as an inter-basin project to supply water inside the ring road (core valley area) of the Kathmandu Valley (KV). The project, called the “Melamchi Water Supply Project (MWSP)”, is expected to have its first phase completed by the end of September 2018 and its second phase completed by the end of 2023 to supply 170 MLD (million liters a day) through the first phase and an additional 34...

  6. Waterbird habitat in California's Central Valley basins under climate, urbanization, and water management scenarios

    Science.gov (United States)

    Matchett, Elliott L.; Fleskes, Joseph

    2018-01-01

    California's Central Valley provides critical, but threatened habitat and food resources for migrating and wintering waterfowl, shorebirds, and other waterbirds. The Central Valley is comprised of nine basins that were defined by the Central Valley Joint Venture (CVJV) to assist in conservation planning. Basins vary in composition and extent of habitats, which primarily include croplands and wetlands that rely on water supplies shared with other competing human and environmental uses. Changes in climate, urban development, and water supply management are uncertain and could reduce future availability of water supplies supporting waterbird habitats and limit effectiveness of wetland restoration planned by the CVJV to support wintering waterbirds. We modeled 17 plausible scenarios including combinations of three climate projections, three urbanization rates, and five water supply management options to promote agricultural and urban water uses, with and without wetland restoration. Our research examines the reduction in quantity and quality of habitats during the fall migration-wintering period by basin under each scenario, and the efficacy of planned wetland restoration to compensate reductions in flooded areas of wetland habitats. Scenario combinations of projected climate, urbanization, and water supply management options reduced availability of flooded cropland and wetland habitats during fall-winter and degraded the quality of seasonal wetlands (i.e., summer-irrigation for improved forage production), though the extent and frequency of impacts varied by basin. Planned wetland restoration may substantially compensate for scenario-related effects on wetland habitats in each basin. However, results indicate that Colusa, Butte, Sutter, San Joaquin, and Tulare Basins may require additional conservation to support summer-irrigation of seasonal wetlands and winter-flooding of cropland habitats. Still further conservation may be required to provide sufficient areas of

  7. Geologic evaluation of the Oasis Valley basin, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Fridrich, C.J.; Minor, S.A.; and Mankinen, E.A.

    2000-01-13

    This report documents the results of a geologic study of the area between the underground-nuclear-explosion testing areas on Pahute Mesa, in the northwesternmost part of the Nevada Test Site, and the springs in Oasis Valley, to the west of the Test Site. The new field data described in this report are also presented in a geologic map that is a companion product(Fridrich and others, 1999) and that covers nine 7.5-minute quadrangles centered on Thirsty Canyon SW, the quadrangle in which most of the Oasis Valley springs are located. At the beginning of this study, published detailed maps were available for 3 of the 9 quadrangles of the study area: namely Thirsty Canyon (O'Connor and others, 1966); Beatty (Maldonado and Hausback, 1990); and Thirsty Canyon SE (Lipman and others, 1966). Maps of the last two of these quadrangles, however, required extensive updating owing to recent advances in understanding of the regional structure and stratigraphy. The new map data are integrated in this re port with new geophysical data for the Oasis Valley area, include gravity, aeromagnetic, and paleomagnetic data (Grauch and others, 1997; written comm., 1999; Mankinen and others, 1999; Hildenbrand and others, 1999; Hudson and others, 1994; Hudson, unpub. data).

  8. Hydrogeologic Framework and Ground Water in Basin-Fill Deposits of the Diamond Valley Flow System, Central Nevada

    Science.gov (United States)

    Tumbusch, Mary L.; Plume, Russell W.

    2006-01-01

    The Diamond Valley flow system, an area of about 3,120 square miles in central Nevada, consists of five hydrographic areas: Monitor, Antelope, Kobeh, and Diamond Valleys and Stevens Basin. Although these five areas are in a remote part of Nevada, local government officials and citizens are concerned that the water resources of the flow system eventually could be further developed for irrigation or mining purposes or potentially for municipal use outside the study area. In order to better understand the flow system, the U.S. Geological Survey in cooperation with Eureka, Lander, and Nye Counties and the Nevada Division of Water Resources, is conducting a multi-phase study of the flow system. The principal aquifers of the Diamond Valley flow system are in basin-fill deposits that occupy structural basins comprised of carbonate rocks, siliciclastic sedimentary rocks, igneous intrusive rocks, and volcanic rocks. Carbonate rocks also function as aquifers, but their extent and interconnections with basin-fill aquifers are poorly understood. Ground-water flow in southern Monitor Valley is from the valley margins toward the valley axis and then northward to a large area of discharge by evapotranspiration (ET) that is formed south of a group of unnamed hills near the center of the valley. Ground-water flow from northern Monitor Valley, Antelope Valley, and northern and western parts of Kobeh Valley converges to an area of ground-water discharge by ET in central and eastern Kobeh Valley. Prior to irrigation development in the 1960s, ground-water flow in Diamond Valley was from valley margins toward the valley axis and then northward to a large discharge area at the north end of the valley. Stevens Basin is a small upland basin with internal drainage and is not connected with other parts of the flow system. After 40 years of irrigation pumping, a large area of ground-water decline has developed in southern Diamond Valley around the irrigated area. In this part of Diamond

  9. Analysis of the influence of tectonics on the evolution of valley networks based on SRTM DEM, Jemma River basin, Ethiopia

    Czech Academy of Sciences Publication Activity Database

    Kusák, Michal; Kropáček, J.; Vilímek, V.; Schillaci, C.

    2016-01-01

    Roč. 39, č. 1 (2016), 37-50 ISSN 1724-4757 Institutional support: RVO:67985891 Keywords : valley network * tectonic lineaments * Jemma River basin * Ethiopian Highlands Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  10. Hydrogeology and water quality of the West Valley Creek Basin, Chester County, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Sloto, Ronald A.; Reif, Andrew G.

    1997-01-01

    The West Valley Creek Basin drains 20.9 square miles in the Piedmont Physiographic Province of southeastern Pennsylvania and is partly underlain by carbonate rocks that are highly productive aquifers. The basin is undergoing rapid urbanization that includes changes in land use and increases in demand for public water supply and wastewater disposal. Ground water is the sole source of supply in the basin.West Valley Creek flows southwest in a 1.5-mile-wide valley that is underlain by folded and faulted carbonate rocks and trends east-northeast, parallel to regional geologic structures. The valley is flanked by hills underlain by quartzite and gneiss to the north and by phyllite and schist to the south. Surface water and ground water flow from the hills toward the center of the valley. Ground water in the valley flows west-southwest parallel to the course of the stream. Seepage investigations identified losing reaches in the headwaters area where streams are underlain by carbonate rocks and gaining reaches downstream. Tributaries contribute about 75 percent of streamflow. The ground-water and surface-water divides do not coincide in the carbonate valley. The ground-water divide is about 0.5 miles west of the surface-water divide at the eastern edge of the carbonate valley. Underflow to the east is about 1.1 inches per year. Quarry dewatering operations at the western edge of the valley may act partly as an artificial basin boundary, preventing underflow to the west. Water budgets for 1990, a year of normal precipitation (45.8 inches), and 1991, a year of sub-normal precipitation (41.5 inches), were calculated. Streamflow was 14.61 inches in 1990 and 12.08 inches in 1991. Evapotranspiration was estimated to range from 50 to 60 percent of precipitation. Base flow was about 62 percent of streamflow in both years. Exportation by sewer systems was about 3 inches from the basin and, at times, equaled base flow during the dry autumn of 1991. Recharge was estimated to be 18

  11. Quaternary tectonics and basin history of Pahrump and Stewart Valleys, Nevada and California

    International Nuclear Information System (INIS)

    Hoffard, J.L.

    1991-05-01

    The Pahrump fault system is an active fault system located in Pahrump and Stewart Valleys, Nevada and California, in the southern part of the Basin and Range Province. This system is 50 km long by 30 km wide and is comprised of three fault zones: the right-lateral East Nopah fault zone, the right-oblique Pahrump Valley fault zone, and the normal West Spring Mountains fault zone. All three zones have geomorphic evidence for late Quaternary activity. Analysis of active fault patterns and seismic reflection lines suggests that the Pahrump basin has had a two-stage genesis, an early history associated with a period of low angle detachment faulting probably active 10-15 Ma, and a more recent history related to the present dextral shear system, probably active post-4 Ma

  12. Radon emanation of heterogeneous basin deposits in Kathmandu Valley, Nepal

    Science.gov (United States)

    Girault, Frédéric; Gajurel, Ananta Prasad; Perrier, Frédéric; Upreti, Bishal Nath; Richon, Patrick

    2011-01-01

    Effective radium-226 concentration ( EC Ra) has been measured in soil samples from seven horizontal and vertical profiles of terrace scarps in the northern part of Kathmandu Valley, Nepal. The samples belong to the Thimi, Gokarna, and Tokha Formations, dated from 50 to 14 ky BP, and represent a diverse fluvio-deltaic sedimentary facies mainly consisting of gravelly to coarse sands, black, orange and brown clays. EC Ra was measured in the laboratory by radon-222 emanation. The samples ( n = 177) are placed in air-tight glass containers, from which, after an accumulation time varying from 3 to 18 days, the concentration of radon-222, radioactive decay product of radium-226 and radioactive gas with a half-life of 3.8 days, is measured using scintillation flasks. The EC Ra values from the seven different profiles of the terrace deposits vary from 0.4 to 43 Bq kg -1, with profile averages ranging from 12 ± 1 to 27 ± 2 Bq kg -1. The values have a remarkable consistency along a particular horizon of sediment layers, clearly demonstrating that these values can be used for long distance correlations of the sediment horizons. Widely separated sediment profiles, representing similar stratigraphic positions, exhibit consistent EC Ra values in corresponding stratigraphic sediment layers. EC Ra measurements therefore appear particularly useful for lithologic and stratigraphic discriminations. For comparison, EC Ra values of soils from different localities having various sources of origin were also obtained: 9.2 ± 0.4 Bq kg -1 in soils of Syabru-Bensi (Central Nepal), 23 ± 1 Bq kg -1 in red residual soils of the Bhattar-Trisuli Bazar terrace (North of Kathmandu), 17.1 ± 0.3 Bq kg -1 in red residual soils of terrace of Kalikasthan (North of Trisuli Bazar) and 10 ± 1 Bq kg -1 in red residual soils of a site near Nagarkot (East of Kathmandu). The knowledge of EC Ra values for these various soils is important for modelling radon exhalation at the ground surface, in particular

  13. Radon emanation of heterogeneous basin deposits in Kathmandu Valley, Nepal

    International Nuclear Information System (INIS)

    Girault, F.; Perrier, F.; Ananta Prasad Gajurel; Bishal Nath Upreti; Richon, P.

    2011-01-01

    Effective radium-226 concentration (EC Ra ) has been measured in soil samples from seven horizontal and vertical profiles of terrace scarps in the northern part of Kathmandu Valley, Nepal. The samples belong to the Thimi, Gokarna, and Tokha Formations, dated from 50 to 14 ky BP, and represent a diverse fluvio-deltaic sedimentary facies mainly consisting of gravelly to coarse sands, black, orange and brown clays. EC Ra was measured in the laboratory by radon-222 emanation. The samples (n = 177) are placed in airtight glass containers, from which, after an accumulation time varying from 3 to 18 days, the concentration of radon-222, radioactive decay product of radium-226 and radioactive gas with a half-life of 3.8 days, is measured using scintillation flasks. The EC Ra values from the seven different profiles of the terrace deposits vary from 0.4 to 43 Bq kg -1 , with profile averages ranging from 12 ± 1 to 27 ± 2 Bq kg -1 . The values have a remarkable consistency along a particular horizon of sediment layers, clearly demonstrating that these values can be used for long distance correlations of the sediment horizons. Widely separated sediment profiles, representing similar stratigraphic positions, exhibit consistent EC Ra values in corresponding stratigraphic sediment layers. EC Ra measurements therefore appear particularly useful for lithologic and stratigraphic discriminations. For comparison, EC Ra values of soils from different localities having various sources of origin were also obtained: 9.2 ± 0.4 Bq kg -1 in soils of Syabru-Bensi (Central Nepal), 23 ± 1 Bq kg -1 in red residual soils of the Bhattar-Trisuli Bazar terrace (North of Kathmandu), 17.1 ± 0.3 Bq kg -1 in red residual soils of terrace of Kalikasthan (North of Trisuli Bazar) and 10 ± 1 Bq kg -1 in red residual soils of a site near Nagarkot (East of Kathmandu). The knowledge of EC Ra values for these various soils is important for modelling radon exhalation at the ground surface, in particular

  14. Evolution of fore-arc and back-arc sedimentary basins with focus on the Japan subduction system and its analogues

    Science.gov (United States)

    Sato, Hiroshi; Ishiyama, Tatsuya; Matenco, Liviu; Nader, Fadi Henri

    2017-07-01

    The International Lithosphere Program (ILP) seeks to elucidate the nature, dynamics, origin and evolution of the lithosphere through international, multidisciplinary geoscience research projects and coordinating committees (Cloetingh and Negendank, 2010). The focus of the Task Force VI Sedimentary Basins activities is to foster collaborations between academia, research institutes and industry in all domains relevant for the understanding of sedimentary basins, from regional to nano-scale, from the deep earth to near surface processes (e.g., Roure et al., 2010, 2013). In this activity, it is important to develop and validate novel concepts of sedimentary basin evolution and topography building by incorporating geological/geophysical datasets and methodologies applied to worldwide natural laboratories (Cloetingh et al., 2011; Cloetingh and Willett, 2013; Matenco and Andriessen, 2013). The Task Force aims to understand and predict the processes that control the formation and evolution of the coupled orogens and sedimentary basins system through integration of field studies, analytical techniques and numerical/analogue modelling. At the same time, the Task Force aims to promote research in the domain of sedimentary basins evolution and quantitative tectonics for the study of mountain building and the subsequent extensional collapse, and their quantitative implications for vertical motions on different temporal and spatial scales (Gibson et al., 2015; Matenco et al., 2016; Roure, 2008; Seranne et al., 2015). The implications of tectonics on basin fluids (fluid-flow and rock-fluid interactions) are important to understand and predict geo-resources (e.g., Nader, 2016). Important is to initiate innovative research lines in linking the evolution of sedimentary systems by integrating cross-disciplinary expertise with a focus on integrated sedimentary basins and orogenic evolution. The key is to strengthen the synergy between academic research and applied industry in large

  15. Analysis of the Carmel Valley alluvial ground-water basin, Monterey County, California

    Science.gov (United States)

    Kapple, Glenn W.; Mitten, Hugh T.; Durbin, Timothy J.; Johnson, Michael J.

    1984-01-01

    A two-dimensional, finite-element, digital model was developed for the Carmel Valley alluvial ground-water basin using measured, computed, and estimated discharge and recharge data for the basin. Discharge data included evapotranspiration by phreatophytes and agricultural, municipal, and domestic pumpage. Recharge data included river leakage, tributary runoff, and pumping return flow. Recharge from subsurface boundary flow and rainfall infiltration was assumed to be insignificant. From 1974 through 1978, the annual pumping rate ranged from 5,900 to 9,100 acre-feet per year with 55 percent allotted to municipal use principally exported out of the valley, 44 percent to agricultural use, and 1 percent to domestic use. The pumpage return flow within the valley ranged from 900 to 1,500 acre-feet per year. The aquifer properties of transmissivity (about 5,900 feet squared per day) and of the storage coefficient (0.19) were estimated from an average alluvial thickness of 75 feet and from less well-defined data on specific capacity and grain-size distribution. During calibration the values estimated for hydraulic conductivity and storage coefficient for the lower valley were reduced because of the smaller grain size there. The river characteristics were based on field and laboratory analyses of hydraulic conductivity and on altitude survey data. The model is intended principally for simulation of flow conditions using monthly time steps. Time variations in transmissivity and short-term, highrecharge potential are included in the model. The years 1974 through 1978 (including "pre-" and "post-" drought) were selected because of the extreme fluctuation in water levels between the low levels measured during dry years and the above-normal water levels measured during the preceding and following wet years. Also, during this time more hydrologic information was available. Significantly, computed water levels were generally within a few feet of the measured levels, and computed

  16. Geothermal energy from deep sedimentary basins: The Valley of Mexico (Central Mexico)

    Science.gov (United States)

    Lenhardt, Nils; Götz, Annette E.

    2015-04-01

    The geothermal potential of the Valley of Mexico has not been addressed in the past, although volcaniclastic settings in other parts of the world contain promising target reservoir formations. A first assessment of the geothermal potential of the Valley of Mexico is based on thermophysical data gained from outcrop analogues, covering all lithofacies types, and evaluation of groundwater temperature and heat flow values from literature. Furthermore, the volumetric approach of Muffler and Cataldi (1978) leads to a first estimation of ca. 4000 TWh (14.4 EJ) of power generation from Neogene volcanic rocks within the Valley of Mexico. Comparison with data from other sedimentary basins where deep geothermal reservoirs are identified shows the high potential of the Valley of Mexico for future geothermal reservoir utilization. The mainly low permeable lithotypes may be operated as stimulated systems, depending on the fracture porosity in the deeper subsurface. In some areas also auto-convective thermal water circulation might be expected and direct heat use without artificial stimulation becomes reasonable. Thermophysical properties of tuffs and siliciclastic rocks qualify them as promising target horizons (Lenhardt and Götz, 2015). The here presented data serve to identify exploration areas and are valuable attributes for reservoir modelling, contributing to (1) a reliable reservoir prognosis, (2) the decision of potential reservoir stimulation, and (3) the planning of long-term efficient reservoir utilization. References Lenhardt, N., Götz, A.E., 2015. Geothermal reservoir potential of volcaniclastic settings: The Valley of Mexico, Central Mexico. Renewable Energy. [in press] Muffler, P., Cataldi, R., 1978. Methods for regional assessment of geothermal resources. Geothermics, 7, 53-89.

  17. Tectono-geomorphic indices of the Erin basin, NE Kashmir valley, India

    Science.gov (United States)

    Ahmad, Shabir; Alam, Akhtar; Ahmad, Bashir; Afzal, Ahsan; Bhat, M. I.; Sultan Bhat, M.; Farooq Ahmad, Hakim; Tectonics; Natural Hazards Research Group

    2018-01-01

    The present study aims to assess the tectonic activity in the Erin basin (NE Kashmir) on the basis of several relevant geomorphic indices and field observations. We use Digital Elevation Model (SRTM) and Survey of India (SoI) topographic maps in GIS environment to compute the geomorphic indices. The indices i.e., convex hypsometric curve, high hypsometric integral value (Hi > 0.5), low basin elongation ratio (Eb = 0.17), low mountain front sinuosity values (Smf = 1.08 average), low valley floor width ratios (Vf 4) suggest that the area is tectonically active. Moreover, prominent irregularities (knickpoints/knickzones) along longitudinal profile of the Erin River even in homogenous resistant lithology (Panjal trap) and anomalous stream gradient index (SL) values reflect that the Erin basin is dissected by two faults (EF-1 and EF-2) with NNW-SSE and SSW-NNE trends respectively. The results of this preliminary study further substantiate the recent GPS studies, which argue that the maximum strain is accumulating in the NE part of the Kashmir Himalaya.

  18. Quantitative reconstruction of cross-sectional dimensions and hydrological parameters of gravelly fluvial channels developed in a forearc basin setting under a temperate climatic condition, central Japan

    Science.gov (United States)

    Shibata, Kenichiro; Adhiperdana, Billy G.; Ito, Makoto

    2018-01-01

    Reconstructions of the dimensions and hydrological features of ancient fluvial channels, such as bankfull depth, bankfull width, and water discharges, have used empirical equations developed from compiled data-sets, mainly from modern meandering rivers, in various tectonic and climatic settings. However, the application of the proposed empirical equations to an ancient fluvial succession should be carefully examined with respect to the tectonic and climatic settings of the objective deposits. In this study, we developed empirical relationships among the mean bankfull channel depth, bankfull channel depth, drainage area, bankfull channel width, mean discharge, and bankfull discharge using data from 24 observation sites of modern gravelly rivers in the Kanto region, central Japan. Some of the equations among these parameters are different from those proposed by previous studies. The discrepancies are considered to reflect tectonic and climatic settings of the present river systems, which are characterized by relatively steeper valley slope, active supply of volcaniclastic sediments, and seasonal precipitation in the Kanto region. The empirical relationships derived from the present study can be applied to modern and ancient gravelly fluvial channels with multiple and alternate bars, developed in convergent margin settings under a temperate climatic condition. The developed empirical equations were applied to a transgressive gravelly fluvial succession of the Paleogene Iwaki Formation, Northeast Japan as a case study. Stratigraphic thicknesses of bar deposits were used for estimation of the bankfull channel depth. In addition, some other geomorphological and hydrological parameters were calculated using the empirical equations developed by the present study. The results indicate that the Iwaki Formation fluvial deposits were formed by a fluvial system that was represented by the dimensions and discharges of channels similar to those of the middle to lower reaches of

  19. High-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region, California

    Science.gov (United States)

    Ponce, D. A.; Mangan, M.; McPhee, D.

    2013-12-01

    A new high-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region greatly enhances previous magnetic interpretations that were based on older, low-resolution, and regional aeromagnetic data sets and provides new insights into volcano-tectonic processes. The surveyed area covers a 8,750 km2 NNW-trending swath situated between the Sierra Nevada to the west and the Basin and Range Province to the east. The surveyed area includes the volcanic centers of Mono Lake, Mono-Inyo Craters, Mammoth Mountain, Devils Postpile, and Long Valley Caldera. The NW-trending eastern Sierra frontal fault zone crosses through the study area, including the active Mono Lake, Silver Lake, Hartley Springs, Laurel Creek, and Hilton Creek faults. Over 6,000 line-kilometers of aeromagnetic data were collected at a constant terrain clearance of 150 m, a flight-line spacing of 400 m, and a tie-line spacing of 4 km. Data were collected via helicopter with an attached stinger housing a magnetic sensor using a Scintrex CS-3 cesium magnetometer. In the northern part of the survey area, data improve the magnetic resolution of the individual domes and coulees along Mono Craters and a circular shaped magnetic anomaly that coincides with a poorly defined ring fracture mapped by Kistler (1966). Here, aeromagnetic data combined with other geophysical data suggests that Mono Craters may have preferentially followed a pre-existing plutonic basement feature that may have controlled the sickle shape of the volcanic chain. In the northeastern part of the survey, aeromagnetic data reveal a linear magnetic anomaly that correlates with and extends a mapped fault. In the southern part of the survey, in the Sierra Nevada block just south of Long Valley Caldera, aeromagnetic anomalies correlate with NNW-trending Sierran frontal faults rather than to linear NNE-trends observed in recent seismicity over the last 30 years. These data provide an important framework for the further analysis of the

  20. Ethiopian Central Rift Valley basin hydrologic modelling using HEC-HMS and ArcSWAT

    Science.gov (United States)

    Pascual-Ferrer, Jordi; Candela, Lucila; Pérez-Foguet, Agustí

    2013-04-01

    An Integrated Water Resources Management (IWRM) shall be applied to achieve a sustainable development, to increase population incomes without affecting lives of those who are highly dependent on the environment. First step should be to understand water dynamics at basin level, starting by modeling the basin water resources. For model implementation, a large number of data and parameters are required, but those are not always available, especially in some developing countries where different sources may have different data, there is lack of information on data collection, etc. The Ethiopian Central Rift Valley (CRV) is an endorheic basin covering an area of approximately 10,000 km2. For the period 1996-2005, the average annual volume of rainfall accounted for 9.1 Mm3, and evapotranspiration for 8 Mm3 (Jansen et al., 2007). From the environmental point of view, basin ecosystems are endangered due to human activities. Also, poverty is widespread all over the basin, with population mainly living from agriculture on a subsistence economy. Hence, there is an urgent need to set an IWRM, but datasets required for water dynamics simulation are not too reliable. In order to reduce uncertainty of numerical simulation, two semi-distributed open software hydrologic models were implemented: HEC-HMS and ArcSWAT. HEC-HMS was developed by the United States Army Corps of Engineers (USACoE) Hydrologic Engineering Center (HEC) to run precipitation-runoff simulations for a variety of applications in dendritic watershed systems. ArcSWAT includes the SWAT (Soil and Water Assessment Tool, Arnold et al., 1998) model developed for the USDA Agricultural Research Service into ArcGIS (ESRI®). SWAT was developed to assess the impact of land management practices on large complex watersheds with varying soils, land use and management conditions over long periods of time (Neitsch et al., 2005). According to this, ArcSWAT would be the best option for IWRM implementation in the basin. However

  1. Floods of November-December 1950 in the Central Valley basin, California

    Science.gov (United States)

    Paulsen, C.G.

    1953-01-01

    The flood of November-December 1950 in the Central Valley basin was the greatest in most parts of the basin since the turn of the century and probably was exceeded in the lower San Joaquin River basin only by the historic flood of 1862. In respect to monetary loss, the 1950 flood was the most disastrous in the history of the basin. Loss of life was remarkably small when one considers the extensive damage and destruction to homes and other property, which is estimated at 33 million dollars. Outstanding features of the flood were its unprecedented occurrence so early in the winter flood season, its magnitude in respect to both peak and volume in most major tributaries, and the occurrence of a succession of near-peak flows with a period of three weeks. The flood was caused by a series of storms during the period November 16 to December 8, which brought exceptionally warm, moisture-laden air inland against the Sierra Nevada range and caused intense rainfall, instead of snowfall, at unusually high altitudes. Basin-wide totals of rainfall during the period ranged from 30 inches over the Yuba and American River basins to 13 inches over the upper Sacramento and Feather River basins. Based on continuous records of discharge on major tributaries for periods ranging from 22 to 55 years and averaging about 43 years, the 1950 flood peaks were the greatest of record on the American, Cosumnes, Mokelumne, Stanislaus, Tuolumne, Merced, Chowchilla, Fresno, lower San Joaquin, Kings, Kaweah, Tule, and Kern Rivers. Second highest peak of record occurred during the flood of March 1928 on the Yuba, American and Mokelumne Rivers; the flood of Marcn 1940 on Cosumnes River; the flood of January 1911 on the Stanislaus and Tuolumne Rivers; the flood of December 1937 on the Merced, Kings, and Kaweah Rivers; the flood of March 1938 on the Chowchilla, Fresno, and lower San Joaquin Rivers; and the flood of March 1943 on the Tule and Kern Rivers. Peak discharges for 1950 did not exceed previous

  2. Large-scale gravity sliding in the Miocene Shadow Valley Supradetachment Basin, Eastern Mojave Desert, California

    Science.gov (United States)

    Davis, G. A.; Friedmann, S. J.

    2005-12-01

    The Miocene Shadow Valley basin in the eastern Mojave Desert of California developed above the active west-dipping Kingston Range-Halloran Hills extensional detachment fault system between 13.5 and ca. 7 mybp. Although mass-wasting processes are common phenomena in supradetachment basins, the Shadow Valley basin is an exceptional locale for the study of such processes, especially rock-avalanches and gravity sliding. A score of megabreccias, interpreted as rock-avalanche deposits, and half that number of very large (> 1 km 2, up to 200 m thick), internally intact gravity-driven slide sheets are interbedded with various sedimentary facies. The slide sheets, variably composed of Proterozoic crystalline rocks and Proterozoic, Paleozoic, and Tertiary sedimentary strata, moved across both depositional and erosional surfaces in the basin. Although the majority consist of Paleozoic carbonate rocks, the largest slide sheet, the Eastern Star crystalline allochthon, contains Proterozoic gneisses and their sedimentary cover and is now preserved as klippen atop Miocene lacustrine and alluvial fan deposits over an area > 40 km 2. Estimates of slide sheet runouts into the basin from higher eastern and northern source terranes range from approximately a few km to > 10 km; in most cases the exact provenances of the slide blocks are not known. The basal contacts of Shadow Valley slide sheets are characteristically knife sharp, show few signs of lithologic mixing of upper- and lower-plate rocks, and locally exhibit slickensided and striated, planar fault-like bases. Pronounced folding of overridden Miocene lacustrine and fan deposits beneath the Eastern Star allochthon extends to depths up to 40 m at widely scattered localities. We conclude that this slow moving slide sheet encountered isolated topographic asperities (hills) and that stress transfer across the basal slide surface produced folding of footwall strata. Synkinematic gypsum veins in footwall playa sediments, with fibers

  3. Erosion and deposition by supercritical density flows during channel avulsion and backfilling: Field examples from coarse-grained deepwater channel-levée complexes (Sandino Forearc Basin, southern Central America)

    Science.gov (United States)

    Lang, Jörg; Brandes, Christian; Winsemann, Jutta

    2017-03-01

    Erosion and deposition by supercritical density flows can strongly impact the facies distribution and architecture of submarine fans. Field examples from coarse-grained channel-levée complexes from the Sandino Forearc Basin (southern Central America) show that cyclic-step and antidune deposits represent common sedimentary facies of these depositional systems and relate to the different stages of avulsion, bypass, levée construction and channel backfilling. During channel avulsion, large-scale scour-fill complexes (18 to 29 m deep, 18 to 25 m wide, 60 to > 120 m long) were incised by supercritical density flows. The multi-storey infill of the large-scale scour-fill complexes comprises amalgamated massive, normally coarse-tail graded or widely spaced subhorizontally stratified conglomerates and pebbly sandstones, interpreted as deposits of the hydraulic-jump zone of cyclic steps. The large-scale scour-fill complexes can be distinguished from small-scale channel fills based on the preservation of a steep upper margin and a coarse-grained infill comprising mainly amalgamated hydraulic-jump zone deposits. Channel fills include repeated successions deposited by cyclic steps with superimposed antidunes. The deposits of the hydraulic-jump zone of cyclic steps comprise regularly spaced scours (0.2 to 2.6 m deep, 0.8 to 23 m long) infilled by intraclast-rich conglomerates or pebbly sandstones, displaying normal coarse-tail grading or backsets. These deposits are laterally and vertically associated with subhorizontally stratified, low-angle cross-stratified or sinusoidally stratified sandstones and pebbly sandstones, which were deposited by antidunes on the stoss side of the cyclic steps during flow re-acceleration. The field examples indicate that so-called spaced stratified deposits may commonly represent antidune deposits with varying stratification styles controlled by the aggradation rate, grain-size distribution and amalgamation. The deposits of small-scale cyclic

  4. Biopetrology of coals from Krishnavaram area, Chintalapudi sub-basin, Godavari valley coalfields, Andhra Pradesh

    Energy Technology Data Exchange (ETDEWEB)

    Sarate, O.S. [Birbal Sahni Institute of Palaeobotany, Lucknow (India)

    2001-07-01

    Critical analysis of the constitution and rank of the sub-surface coal deposits from Krishnavaram area in the Chintalapudi sub-basin of Godavari valley coalfield is presented. Three coal/shale zones viz. A, B and C (in the ascending order) are encountered from Barakar Formation and lower Kamthi Member of the Lower Gondwana sequence. Zone C mostly contains shaly beds interbedded with thin coal bands (mostly shaly coal), and as such has no economic significance. Zone B is dominated by the vitric and mixed type of coal which has attained high volatile bituminous B and C ranks. The lowermost Zone A is characterised by mixed and fusic coal types with high volatile bituminous C rank. Both the zones A and B contain good quality coal and bear high economic potential. Cold and humid climate with alternating dry and oxidising spells have been interpreted from the constitution of coal. Moreover, the accumulation of thick pile of sediments rich in organic matter is attributed to the sinking of the basin floor due to the activation of faults. Later tectonic events either caused extinction or drastically reduced the number of the floral elements and formed thick shaly horizons interrupting the continuity of the coal facies.

  5. A survey of valleys and basins of the Western USA for the capacity to produce winter ozone.

    Science.gov (United States)

    Mansfield, Marc L; Hall, Courtney F

    2018-04-18

    High winter ozone in the Uintah Basin, Utah, and the Upper Green River Basin, Wyoming, occurs because of the confluence of three separate factors: (1) extensive oil or natural gas production, (2) topography conducive to strong multi-day thermal inversions, and (3) snow cover. We surveyed 13 basins and valleys in the western USA for the existence and magnitude of these factors. Seven of the basins, because winter ozone measurements were available, were assigned to four different behavioral classes. Based on similarities among the basins, the remaining six were also given a tentative assignment. Two classes (1 and 2) correspond to basins with high ozone because all three factors listed above are present at sufficient magnitude. Class 3 corresponds to rural basins with ozone at background levels, and occurs because at least one of the three factors is weak or absent. Class 4 corresponds to ozone below background levels, and occurs, for example, in urban basins whose emissions scavenge ozone. All three factors are present in the Wind River Basin, Wyoming, but compared to the Uintah or the Upper Green Basins, it has only moderate oil and gas production, and is assigned to class 3. We predict that the Wind River Basin, as well as other class 3 basins that have inversions and snow cover, would transition from background (class 3) to high ozone behavior (class 1 or 2) if oil or gas production were to intensify, or to class 4 (low winter ozone) if they were to become urban. Implication Statement High ozone concentrations in winter only occur in basins or valleys that have an active oil and natural gas production industry, multi-day thermal inversions, and snow cover; and have only been documented in two basins worldwide. We have examined a number of other candidate basins in the Western USA and conclude that these factors are either absent or too weak to produce high winter ozone. This study illustrates how strong each factor needs to be before winter ozone can be expected

  6. Chapter 2. Assessment of undiscovered conventional oil and gas resources--Upper Jurassic-Lower Cretaceous Cotton Valley group, Jurassic Smackover interior salt basins total petroleum system, in the East Texas basin and Louisiana-Mississippi salt basins provinces.

    Science.gov (United States)

    Dyman, T.S.; Condon, S.M.

    2006-01-01

    The Jurassic Smackover Interior Salt Basins Total Petroleum System is defined for this assessment to include (1) Upper Jurassic Smackover Formation carbonates and calcareous shales and (2) Upper Jurassic and Lower Cretaceous Cotton Valley Group organic-rich shales. The Jurassic Smackover Interior Salt Basins Total Petroleum System includes four conventional Cotton Valley assessment units: Cotton Valley Blanket Sandstone Gas (AU 50490201), Cotton Valley Massive Sandstone Gas (AU 50490202), Cotton Valley Updip Oil and Gas (AU 50490203), and Cotton Valley Hypothetical Updip Oil (AU 50490204). Together, these four assessment units are estimated to contain a mean undiscovered conventional resource of 29.81 million barrels of oil, 605.03 billion cubic feet of gas, and 19.00 million barrels of natural gas liquids. The Cotton Valley Group represents the first major influx of clastic sediment into the ancestral Gulf of Mexico. Major depocenters were located in south-central Mississippi, along the Louisiana-Mississippi border, and in northeast Texas. Reservoir properties and production characteristics were used to identify two Cotton Valley Group sandstone trends across northern Louisiana and east Texas: a high-permeability blanket-sandstone trend and a downdip, low-permeability massive-sandstone trend. Pressure gradients throughout most of both trends are normal, which is characteristic of conventional rather than continuous basin-center gas accumulations. Indications that accumulations in this trend are conventional rather than continuous include (1) gas-water contacts in at least seven fields across the blanket-sandstone trend, (2) relatively high reservoir permeabilities, and (3) high gas-production rates without fracture stimulation. Permeability is sufficiently low in the massive-sandstone trend that gas-water transition zones are vertically extensive and gas-water contacts are poorly defined. The interpreted presence of gas-water contacts within the Cotton Valley

  7. Analog model study of the ground-water basin of the Upper Coachella Valley, California

    Science.gov (United States)

    Tyley, Stephen J.

    1974-01-01

    An analog model of the ground-water basin of the upper Coachella Valley was constructed to determine the effects of imported water on ground-water levels. The model was considered verified when the ground-water levels generated by the model approximated the historical change in water levels of the ground-water basin caused by man's activities for the period 1986-67. The ground-water basin was almost unaffected by man's activities until about 1945 when ground-water development caused the water levels to begin to decline. The Palm Springs area has had the largest water-level decline, 75 feet since 1986, because of large pumpage, reduced natural inflow from the San Gorgonio Pass area, and diversions of natural inflows at Snow and Falls Creeks and Chino Canyon starting in 1945. The San Gorgonio Pass inflow had been reduced from about 18,000 acre-feet in 1986 to about 9,000 acre-feet by 1967 because of increased ground-water pumpage in the San Gorgonio Pass area, dewatering of the San Gorgonio Pass area that took place when the tunnel for the Metropolitan Water District of Southern California was drilled, and diversions of surface inflow at Snow and Falls Creeks. In addition, 1944-64 was a period of below-normal precipitation which, in part, contributed to the declines in water levels in the Coachella Valley. The Desert Hot Springs, Garnet Hill, and Mission Creek subbasins have had relatively little development; consequently, the water-level declines have been small, ranging from 5 to 15 feet since 1986. In the Point Happy area a decline of about 2 feet per year continued until 1949 when delivery of Colorado River water to the lower valley through the Coachella Canal was initiated. Since 1949 the water levels in the Point Happy area have been rising and by 1967 were above their 1986 levels. The Whitewater River subbasin includes the largest aquifer in the basin, having sustained ground-water pumpage of about 740,000 acre-feet from 1986 to 1967, and will probably

  8. Sequence stratigraphic analysis and the origins of Tertiary brown coal lithotypes, Latrobe Valley, Gippsland Basin, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Holdgate, G R; Kershaw, A P; Sluiter, I R.K. [Monash University, Clayton, Vic. (Australia). Dept. of Earth Sciences

    1995-11-01

    Sequence analysis methods have been applied to the onshore Gippsland Basin and to the Latrobe Valley Group coal measures. In the east of the Latrobe Valley evidence for marine transgressions into the coal measures are recorded in most of the interseam sediment splits by the presence of contained foraminifer and dinoflagellates. To the west these splits pinch out into continuous coal. However, they can be followed westwards as enhanced organic sulphur levels along sharply defined boundaries between light coal lithotypes below and dark coal lithotypes above. The dark lithotype immediately overlying each of these boundaries contains the highest sulphur value and warmer climate pollen assemblages. Colorimeter and lithotype logging supports an upwards lightening cyclicity to coal colour at 12-20 m intervals through the approx. 100 m thick seams, with cycle boundaries defined at sharp planar to undulating surfaces. The lightening upward lithotype cycles together with their unique boundary conditions are interpreted as parasequences and parasequence boundaries respectively. Each major coal seam can comprise up to five parasequences and is interpreted to represent deposition during an outbuilding high stand systems tract at one of several maximum periods of Tertiary coastal onlap. Stratigraphic correlation of the sequence boundaries identified in the coal measures to the internationally dated marine Seaspray Group, provides a basis for chronostratigraphic correlation of the coal successions to the coastal onlap charts of Haq et al (1989). It appears that each major seam is confined to high standards of third order eustatic cycles. It follows that the lithotype cycles that comprise each seam are related to fourth order eustatic cycles. 49 refs., 11 figs., 1 tab.

  9. Evaluation of Water Security in Kathmandu Valley before and after Water Transfer from another Basin

    Directory of Open Access Journals (Sweden)

    Bhesh Raj Thapa

    2018-02-01

    Full Text Available Kathmandu Upatyaka Khanepani Limited (KUKL has planned to harness water from outside the valley from Melamchi as an inter-basin project to supply water inside the ring road (core valley area of the Kathmandu Valley (KV. The project, called the “Melamchi Water Supply Project (MWSP”, is expected to have its first phase completed by the end of September 2018 and its second phase completed by the end of 2023 to supply 170 MLD (million liters a day through the first phase and an additional 340 MLD through the second phase. The area has recently faced a severe water deficit and KUKL’s existing infrastructure has had a limited capability, supplying only 19% of the water that is demanded in its service areas during the dry season and 31% during the wet season. In this context, this study aims to assess the temporal trends and spatial distribution of household water security index (WSI, defined as a ratio of supply to demand for domestic water use for basic human water requirements (50 L per capita per day (lpcd and economic growth (135 lpcd as demand in pre- and post-MWSP scenarios. For this purpose, data on water demand and supply with infrastructure were used to map the spatial distribution of WSI and per capita water supply using ArcMap. Results show a severe water insecurity condition in the year 2017 in all KUKL service areas (SAs, which is likely to improve after completion of the MWSP. It is likely that recent distribution network and strategies may lead to inequality in water distribution within the SAs. This can possibly be addressed by expanding existing distribution networks and redistributing potable water, which can serve an additional 1.21 million people in the area. Service providers may have to develop strategies to strengthen a set of measures including improving water supply infrastructures, optimizing water loss, harnessing additional water from hills, and managing water within and outside the KUKL SAs in the long run to cover

  10. Comparison of peak discharges among sites with and without valley fills for the July 8-9, 2001 flood in the headwaters of Clear Fork, Coal River basin, mountaintop coal-mining region, southern West Virginia

    Science.gov (United States)

    Wiley, Jeffrey B.; Brogan, Freddie D.

    2003-01-01

    The effects of mountaintop-removal mining practices on the peak discharges of streams were investigated in six small drainage basins within a 7-square-mile area in southern West Virginia. Two of the small basins had reclaimed valley fills, one basin had reclaimed and unreclaimed valley fills, and three basins did not have valley fills. Indirect measurements of peak discharge for the flood of July 8-9, 2001, were made at six sites on streams draining the small basins. The sites without valley fills had peak discharges with 10- to 25-year recurrence intervals, indicating that rainfall intensities and totals varied among the study basins. The flood-recurrence intervals for the three basins with valley fills were determined as though the peak discharges were those from rural streams without the influence of valley fills, and ranged from less than 2 years to more than 100 years.

  11. Evaluating Hydrologic Transience in Watershed Delineation, Numerical Modeling and Solute Transport in the Great Basin. Clayton Valley, Nevada

    Science.gov (United States)

    Underdown, C. G.; Boutt, D. F.; Hynek, S. A.; Munk, L. A.

    2017-12-01

    Importance of transience in managed groundwater systems is generally determined by timeframe of management decisions. Watersheds with management times shorter than the aquifer (watershed) response time, or the time it takes a watershed to recover from a change in hydrologic state, would not include the new state and are treated as steady-state. However, these watersheds will experience transient response between hydrologic states. Watershed response time is a function of length. Therefore flat, regional watersheds characteristic of the Great Basin have long response times. Defining watershed extents as the area in which the water budget is balanced means inputs equal outputs. Steady-state budgets in the Great Basin have been balanced by extending watershed boundaries to include more area for recharge; however, the length and age of requisite flow paths are poorly constrained and often unrealistic. Inclusion of stored water in hydrologic budget calculations permits water balance within smaller contributing areas. As groundwater flow path lengths, depths, and locations differ between steady-state and transient systems, so do solute transport mechanisms. To observe how transience affects response time and solute transport, a refined (transient) version of the USGS steady-state groundwater flow model of the Great Basin is evaluated. This model is used to assess transient changes in contributing area for Clayton Valley, a lithium-brine producing endorheic basin in southwestern Nevada. Model runs of various recharge, discharge and storage bounds are created from conceptual models based upon historical climate data. Comparing results of the refined model to USGS groundwater observations allows for model validation and comparison against the USGS steady-state model. The transient contributing area to Clayton Valley is 85% smaller than that calculated from the steady-state solution, however several long flow paths important to both water and solute budgets at Clayton Valley

  12. Palms and Palm Communities in the Upper Ucayali River Valley - a Little-Known Region in the Amazon Basin

    DEFF Research Database (Denmark)

    Balslev, Henrik; Eiserhardt, Wolf L.; Kristiansen, Thea

    2010-01-01

    The Amazon region and its palms are inseparable. Palms make up such an important part of the rain forest ecosystem that it is impossible to imagine the Amazon basin without them. Palms are visible in the canopy and often fill up the forest understory. Palms – because of their edible fruits...... – are cornerstone species for the survival of many animals, and palms contribute substantially to forest inventories in which they are often among the ten most important families. Still, the palms and palm communities of some parts of the Amazon basin remain poorly studied and little known. We travelled to a little......-explored corner of the western Amazon basin, the upper Ucayali river valley. There, we encountered 56 different palms, 18 of which had not been registered for the region previously, and 21 of them were found 150–400 km beyond their previously known limits....

  13. Heat flow in Railroad Valley, Nevada and implications for geothermal resources in the south-central Great Basin

    Science.gov (United States)

    Williams, C.F.; Sass, J.H.

    2006-01-01

    The Great Basin is a province of high average heat flow (approximately 90 mW m-2), with higher values characteristic of some areas and relatively low heat flow (characteristic of an area in south-central Nevada known as the Eureka Low. There is hydrologie and thermal evidence that the Eureka Low results from a relatively shallow, hydrologically controlled heat sink associated with interbasin water flow in the Paleozoic carbonate aquifers. Evaluating this hypothesis and investigating the thermal state of the Eureka Low at depth is a high priority for the US Geological Survey as it prepares a new national geothermal resource assessment. Part of this investigation is focused on Railroad Valley, the site of the largest petroleum reservoirs in Nevada and one of the few locations within the Eureka Low with a known geothermal system. Temperature and thermal conductivity data have been acquired from wells in Railroad Valley in order to determine heat flow in the basin. The results reveal a complex interaction of cooling due to shallow ground-water flow, relatively low (49 to 76 mW m-2) conductive heat flow at depth in most of the basin, and high (up to 234 mW m-2) heat flow associated with the 125??C geothermal system that encompasses the Bacon Flat and Grant Canyon oil fields. The presence of the Railroad Valley geothermal resource within the Eureka Low may be reflect the absence of deep ground-water flow sweeping heat out of the basin. If true, this suggests that other areas in the carbonate aquifer province may contain deep geothermal resources that are masked by ground-water flow.

  14. Seismic site characterization of an urban dedimentary basin, Livermore Valley, California: Site tesponse, basin-edge-induced surface waves, and 3D simulations

    Science.gov (United States)

    Hartzell, Stephen; Leeds, Alena L.; Ramirez-Guzman, Leonardo; Allen, James P.; Schmitt, Robert G.

    2016-01-01

    Thirty‐two accelerometers were deployed in the Livermore Valley, California, for approximately one year to study sedimentary basin effects. Many local and near‐regional earthquakes were recorded, including the 24 August 2014 Mw 6.0 Napa, California, earthquake. The resulting ground‐motion data set is used to quantify the seismic response of the Livermore basin, a major structural depression in the California Coast Range Province bounded by active faults. Site response is calculated by two methods: the reference‐site spectral ratio method and a source‐site spectral inversion method. Longer‐period (≥1  s) amplification factors follow the same general pattern as Bouguer gravity anomaly contours. Site response spectra are inverted for shallow shear‐wave velocity profiles, which are consistent with independent information. Frequency–wavenumber analysis is used to analyze plane‐wave propagation across the Livermore Valley and to identify basin‐edge‐induced surface waves with back azimuths different from the source back azimuth. Finite‐element simulations in a 3D velocity model of the region illustrate the generation of basin‐edge‐induced surface waves and point out strips of elevated ground velocities along the margins of the basin.

  15. Turbidite pathways in Cascadia Basin and Tufts abyssal plain, Part A, Astoria Channel, Blanco Valley, and Gorda Basin

    Science.gov (United States)

    Wolf, Stephen C.; Hamer, Michael R.

    1999-01-01

    This open-file report was prepared in support of the USGS Earthquake Hazards of Cascadia Project. The primary objective of this phase of the project is to determine recurrence intervals of turbidites in Cascadia basin-floor channel systems and evaluate implications of this event record for the paleoseismic history of the Cascadia subduction zone. The purpose of this study is to determine whether the canyon/channel systems themselves are blocked or deformed in such a way that the downstream turbidite stratigraphy might be biased. To accomplish this investigation approximately 7500 kilometers of pre-existing 3.5 KHz seismic data were evaluated to determine the direction and extent of the Astoria Channel/pathway system, which originates at the base of the Astoria Fan. Additionally, distribution and thickness of turbidite sediment sequences were determined along each identified pathway. Bathymetery and distance were used to determine gradients along the main pathway axis and for each of the secondary pathways that feed into it. Channel pathways were identified on the basis of channel phyisiography, where visible at the seafloor, subbottom channel configuration, and acoustic packets of sediments that might represent turbidite deposits. A principal result of this study is that the Astoria Channel/pathway extends continuously from the base of the Astoria Fan southward along the base of the continental slope through the Blanco Valley, then heads southwestward through the Gorda Basin and into the region of the Escanaba Trough. Additionally it was determined that the Astoria Channel is filled and basically buried for it's full length south of 44 degrees latitude. The 44 North Slump, as defined by Goldfinger (1999, see Map 3 ref.), may have been instrumental in blocking the pathway and thus contributed to the filling of the channel/pathway. Sheets 1 and 2 show the Astoria and secondary turbidite pathways highlighted in blue. Ship survey tracklines are shown for the area

  16. Hydro-meteorological trends in the Gidabo catchment of the Rift Valley Lakes Basin of Ethiopia

    Science.gov (United States)

    Belihu, Mamuye; Abate, Brook; Tekleab, Sirak; Bewket, Woldeamlak

    2018-04-01

    The global and regional variability and changes of climate and stream flows are likely to have significant influence on water resource availability. The magnitude and impacts of climate variability and change differs spatially and temporally. This study examines the long term hydroclimatic changes, analyses of the hydro-climate variability and detect whether there exist significant trend or not in the Gidabo catchment, rift valley lakes basin of Ethiopia. Precipitation, temperature and stream flow time series data were used in monthly, seasonal and annual time scales. The precipitation and temperature data span is between 1982 and 2014 and that of stream flow is between 1976 and 2006. To detect trends the analysis were done by using Mann Kendal (MK), Sen's graphical method and to detect change point using the Pettit test. The comparison of trend analysis between MK trend test and Sen graphical method results depict mostly similar pattern. The annual rainfall trends exhibited a significant decrease by about 12 mm per year in the upstream, which is largely driven by the significant decrease in the peak season rainfall. The Pettit test revealed that the years 1997 and 2007 were the change points. It is noted that the rise of temperature over a catchment might have decreased the availability of soil moisture which resulted in less runoff. The temperature analyses also revealed that the catchment was getting warmer; particularly in the upstream. The minimum temperature trend showed a significant increase about 0.08°c per annum. There is generally a decreasing trend in stream flow. The monthly stream flow also exhibited a decreasing trend in February, March and September. The decline in annual and seasonal rainfall and the increase in temperature lead to more evaporation and directly affecting the stream flow negatively. This trend compounded with the growth of population and increasing demand for irrigation water exacerbates the competing demand for water resources. It

  17. Analysis of projected water availability with current basin management plan, Pajaro Valley, California

    Science.gov (United States)

    Hanson, R. T.; Lockwood, B.; Schmid, Wolfgang

    2014-11-01

    The projection and analysis of the Pajaro Valley Hydrologic Model (PVHM) 34 years into the future using MODFLOW with the Farm Process (MF-FMP) facilitates assessment of potential future water availability. The projection is facilitated by the integrated hydrologic model, MF-FMP that fully couples the simulation of the use and movement of water from precipitation, streamflow, runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. MF-FMP allows for more complete analysis of conjunctive-use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface-water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within ;water-balance subregions; (WBS) comprised of one or more model cells that can represent a single farm, a group of farms, watersheds, or other hydrologic or geopolitical entities. Analysis of conjunctive use would be difficult without embedding the fully coupled supply-and-demand into a fully coupled simulation, and are difficult to estimate a priori. The analysis of projected supply and demand for the Pajaro Valley indicate that the current water supply facilities constructed to provide alternative local sources of supplemental water to replace coastal groundwater pumpage, but may not completely eliminate additional overdraft. The simulation of the coastal distribution system (CDS) replicates: 20 miles of conveyance pipeline, managed aquifer recharge and recovery (MARR) system that captures local runoff, and recycled-water treatment facility (RWF) from urban wastewater, along with the use of other blend water supplies, provide partial relief and substitution for coastal pumpage (aka in-lieu recharge). The effects of these Basin Management Plan (BMP) projects were analyzed subject to historical climate variations and

  18. Salinity Trends in the Upper Colorado River Basin Upstream From the Grand Valley Salinity Control Unit, Colorado, 1986-2003

    Science.gov (United States)

    Leib, Kenneth J.; Bauch, Nancy J.

    2008-01-01

    In 1974, the Colorado River Basin Salinity Control Act was passed into law. This law was enacted to address concerns regarding the salinity content of the Colorado River. The law authorized various construction projects in selected areas or 'units' of the Colorado River Basin intended to reduce the salinity load in the Colorado River. One such area was the Grand Valley Salinity Control Unit in western Colorado. The U. S. Geological Survey has done extensive studies and research in the Grand Valley Salinity Control Unit that provide information to aid the U.S. Bureau of Reclamation and the Natural Resources Conservation Service in determining where salinity-control work may provide the best results, and to what extent salinity-control work was effective in reducing salinity concentrations and loads in the Colorado River. Previous studies have indicated that salinity concentrations and loads have been decreasing downstream from the Grand Valley Salinity Control Unit, and that the decreases are likely the result of salinity control work in these areas. Several of these reports; however, also document decreasing salinity loads upstream from the Grand Valley Salinity Control Unit. This finding was important because only a small amount of salinity-control work was being done in areas upstream from the Grand Valley Salinity Control Unit at the time the findings were reported (late 1990?s). As a result of those previous findings, the U.S. Bureau of Reclamation entered into a cooperative agreement with the U.S. Geological Survey to investigate salinity trends in selected areas bracketing the Grand Valley Salinity Control Unit and regions upstream from the Grand Valley Salinity Control Unit. The results of the study indicate that salinity loads were decreasing upstream from the Grand Valley Salinity Control Unit from 1986 through 2003, but the rates of decrease have slowed during the last 10 years. The average rate of decrease in salinity load upstream from the Grand Valley

  19. Preliminary evaluation of the radioactive waste isolation potential of the alluvium-filled valleys of the Great Basin

    International Nuclear Information System (INIS)

    Smyth, J.R.; Crowe, B.M.; Halleck, P.M.; Reed, A.W.

    1979-08-01

    The occurrences, geologic features, hydrology, and thermal, mechanical, and mineralogical properties of the alluvium-filled valleys are compared with those of other media within the Great Basin. Computer modeling of heat conduction indicates that heat generated by the radioactive waste can be dissipated through the alluvium in a manner that will not threaten the integrity of the repository, although waste emplacement densities will be lower than for other media available. This investigation has not revealed any failure mechanism by which one can rule out alluvium as a primary waste isolation medium. However, the alluvium appears to rank behind one or more other possible media in all properties examined except, perhaps, in sorption properties. It is therefore recommended that alluvium be considered as a secondary isolation medium unless primary sites in other rock types in the Great Basin are eliminated from consideration on grounds other than those considered here

  20. Status and understanding of groundwater quality in the Monterey Bay and Salinas Valley Basins, 2005-California GAMA Priority Basin Project

    Science.gov (United States)

    Kulongoski, Justin T.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the approximately 1,000 square mile (2,590 km2) Monterey Bay and Salinas Valley Basins (MS) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in central California in Monterey, Santa Cruz, and San Luis Obispo Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA MS study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer systems (hereinafter referred to as primary aquifers). The assessment is based on water-quality and ancillary data collected in 2005 by the USGS from 97 wells and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifers were defined by the depth intervals of the wells listed in the CDPH database for the MS study unit. The quality of groundwater in the primary aquifers may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifers of the MS study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal and (or) California regulatory or

  1. Groundwater quality in the Western San Joaquin Valley study unit, 2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Fram, Miranda S.

    2017-06-09

    Water quality in groundwater resources used for public drinking-water supply in the Western San Joaquin Valley (WSJV) was investigated by the USGS in cooperation with the California State Water Resources Control Board (SWRCB) as part of its Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. The WSJV includes two study areas: the Delta–Mendota and Westside subbasins of the San Joaquin Valley groundwater basin. Study objectives for the WSJV study unit included two assessment types: (1) a status assessment yielding quantitative estimates of the current (2010) status of groundwater quality in the groundwater resources used for public drinking water, and (2) an evaluation of natural and anthropogenic factors that could be affecting the groundwater quality. The assessments characterized the quality of untreated groundwater, not the quality of treated drinking water delivered to consumers by water distributors.The status assessment was based on data collected from 43 wells sampled by the U.S. Geological Survey for the GAMA Priority Basin Project (USGS-GAMA) in 2010 and data compiled in the SWRCB Division of Drinking Water (SWRCB-DDW) database for 74 additional public-supply wells sampled for regulatory compliance purposes between 2007 and 2010. To provide context, concentrations of constituents measured in groundwater were compared to U.S. Environmental Protection Agency (EPA) and SWRCB-DDW regulatory and non-regulatory benchmarks for drinking-water quality. The status assessment used a spatially weighted, grid-based method to estimate the proportion of the groundwater resources used for public drinking water that has concentrations for particular constituents or class of constituents approaching or above benchmark concentrations. This method provides statistically unbiased results at the study-area scale within the WSJV study unit, and permits comparison of the two study areas to other areas assessed by the GAMA Priority Basin Project

  2. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    Science.gov (United States)

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley ground-water basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, ground water provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most ground-water pumping in the valley occurs in the Antelope Valley ground-water basin, which includes the rapidly growing cities of Lancaster and Palmdale. Ground-water-level declines of more than 200 feet in some parts of the ground-water basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may continue to increase reliance on ground water. To better understand the ground-water flow system and to develop a tool to aid in effectively managing the water resources, a numerical model of ground-water flow and land subsidence in the Antelope Valley ground-water basin was developed using old and new geohydrologic information. The ground-water flow system consists of three aquifers: the upper, middle, and lower aquifers. The aquifers, which were identified on the basis of the hydrologic properties, age, and depth of the unconsolidated deposits, consist of gravel, sand, silt, and clay alluvial deposits and clay and silty clay lacustrine deposits. Prior to ground-water development in the valley, recharge was primarily the infiltration of runoff from the surrounding mountains. Ground water flowed from the recharge areas to discharge areas around the playas where it discharged either from the aquifer system as evapotranspiration or from springs. Partial barriers to horizontal ground-water flow, such as faults, have been identified in the ground-water basin. Water-level declines owing to

  3. Petrography and geochemistry of Oligocene bituminous coal from the Jiu Valley, Petrosani basin (southern Carpathian Mountains), Romania

    Energy Technology Data Exchange (ETDEWEB)

    Belkin, Harvey E.; Tewalt, Susan J. [U.S. Geological Survey, 956 National Center, Reston, VA 20192 (United States); Hower, James C. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); Stucker, J.D. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); University of Kentucky Department of Earth and Environmental Sciences, Lexington, KY 40506 (United States); O' Keefe, Jennifer M.K. [Morehead State University, Morehead, KY, 40351 (United States); Tatu, Calin A. [University of Medicine and Pharmacy, Department of Immunology, Clinical Laboratory No. 1, Pta. E. Murgu No. 2, RO-1900 Timisoara (Romania); Buia, Grigore [University of Petrosani, Department of Geology, University St. 20, RO-2675 Petrosani (Romania)

    2010-05-01

    Belt samples of Oligocene (Chattian) bituminous coal from 10 underground mines located in the Jiu Valley, Hunedoara County, Petrosani basin, Romania, have been examined and analyzed for proximate and ultimate analysis, major-, minor- and trace-element chemistry, organic petrography, and vitrinite reflectance. The mineral chemistry and mode of occurrence of trace elements also have been investigated using SEM and electron microprobe techniques. Twenty coal beds occur in the Jiu Valley and most of the samples are from bed no. 3, the most productive bed of the Dilja-Uricani Formation of Oligocene age. The Petrosani basin, oriented SW-NE, is 48-km long, 10-km wide at the eastern part and 2-km wide at the western part. The coal mines are distributed along the center of the valley generally following the Jiu de Vest River. Reflectance measurements indicate that the rank of the coals ranges from high-volatile B to high-volatile A bituminous. Overall, rank decreases from the southwest to the northeast. In bed no. 3, R{sub max} varies from 0.75% in the northeast to 0.93% in the southwest. Although, most Oligocene coals in Romania and adjacent countries are lignite in rank, the Jiu Valley bituminous coals have been affected by regional metamorphism and attending hydrothermal fluids related to the Alpine orogenic event. The coals are all dominated by vitrinite; resinite and funginite are important minor macerals in most of the coals. Pyrite and carbonate generally dominate the mineral assemblages with carbonate more abundant in the northwest. Siderite occurs as nodules and masses within the macerals (generally vitrinite). Dolomite and calcite occur as fracture fillings, plant-cell fillings, and in other authigenic forms. Late-stage fracture fillings are siderite, dolomite, calcite, and ankerite. In one instance, two populations of siderite ({proportional_to} 35 and {proportional_to} 45 wt.% FeO) plus ankerite fill a large fracture. Late-stage pyrite framboid alteration is Ni

  4. Geologic characterization report for the Paradox Basin Study Region, Utah Study Areas. Volume 6. Salt Valley

    International Nuclear Information System (INIS)

    1984-12-01

    Surface landforms in the Salt Valley Area are generally a function of the Salt Valley anticline and are characterized by parallel and subparallel cuestaform ridges and hogbacks and flat valley floors. The most prominent structure in the Area is the Salt Valley anticline. Erosion resulting from the Tertiary uplift of the Colorado Plateau led to salt dissolution and subsequent collapse along the crest of the anticline. Continued erosion removed the collapse material, forming an axial valley along the crest of the anticline. Paleozoic rocks beneath the salt bearing Paradox Formation consist of limestone, dolomite, sandstone, siltstone and shale. The salt beds of the Paradox Formation occur in distinct cycles separated by an interbed sequence of anhydrite, carbonate, and clastic rocks. The Paradox Formation is overlain by Pennsylvanian limestone; Permian sandstone; and Mesozoic sandstone, mudstone, conglomerate and shale. No earthquakes have been reported in the Area during the period of the historic record and contemporary seismicity appears to be diffusely distributed, of low level and small magnitude. The upper unit includes the Permian strata and upper Honaker Trail Formation. The current data base is insufficient to estimate ground-water flow rates and directions in this unit. The middle unit includes the evaporites in the Paradox Formation and no laterally extensive flow systems are apparent. The lower unit consists of the rocks below the Paradox Formation where permeabilities vary widely, and the apparent flow direction is toward the west. 108 refs., 39 figs., 9 tabs

  5. Geologic characterization report for the Paradox Basin Study Region, Utah Study Areas. Volume 6: Salt Valley

    Science.gov (United States)

    1984-12-01

    Surface landforms in the Salt Valley Area are generally a function of the Salt Valley anticline and are characterized by parallel and subparallel cuestaform ridges and hogbacks and flat valley floors. The most prominent structure in the Area is the Salt Valley anticline. Erosion resulting from the Tertiary uplift of the Colorado Plateau led to salt dissolution and subsequent collapse along the crest of the anticline. Continued erosion removed the collapse material, forming an axial valley along the crest of the anticline. Paleozoic rocks beneath the salt bearing Paradox Formation consist of limestone, dolomite, sandstone, siltstone and shale. The salt beds of the Paradox formation occur in distinct cycles separated by an interbed sequence of anhydrite, carbonate, and clastic rocks. The Paradox Formation is overlain by Pennsylvanian limestone; Permian sandstone; and Mesozoic sandstone, mudstone, conglomerate and shale. No earthquakes have been reported in the area during the period of the historic record and contemporary seismicity appears to be diffusely distributed, of low level and small magnitude. The upper unit includes the Permian strata and upper Honaker trail formation.

  6. Morphometric analysis of Martian valley network basins using a circularity function

    Science.gov (United States)

    Luo, Wei; Howard, Alan D.

    2005-12-01

    This paper employs a circularity function to quantify the internal morphology of Martian watershed basins in Margaritifer Sinus region and to infer the primary erosional processes that led to their current geomorphologic characteristics and possible climatic conditions under which these processes operated. The circularity function describes the elongation of a watershed basin at different elevations. We have used the circularity functions of terrestrial basins that were interpreted as having been modified by (1) erosion related to primarily groundwater sapping and (2) erosion related to primarily rainfall and surface run-off, as well as the circularity functions of cratering basins on the Moon, in order to formulate discriminant functions that are able to separate the three types of landforms. The spatial pattern of the classification of Martian basins based on discriminant functions shows that basins that look morphologically similar to terrestrial fluvial basins are mostly clustered near the mainstream at low elevation, while those that look morphologically similar to terrestrial basins interpreted as groundwater sapping origin are located near the tributaries and at higher elevation. There are more of the latter than the former. This spatial distribution is inconsistent with a continuous Earth-like warm and wet climate for early Mars. Instead, it is more aligned with an overall early dry climate punctuated with episodic wet periods. Alternatively, the concentrated erosion in the mainstream could also be caused by a change of water source from rainfall to snowfall or erosion cut through a duricrust layer.

  7. Facies Analysis of Tertiary Basin-Filling Rocks of the Death Valley Regional Ground-Water System and Surrounding Areas, Nevada and California; TOPICAL

    International Nuclear Information System (INIS)

    Sweetkind, D.S.; Fridrich, C.J.; Taylor, Emily

    2002-01-01

    Existing hydrologic models of the Death Valley region typically have defined the Cenozoic basins as those areas that are covered by recent surficial deposits, and have treated the basin-fill deposits that are concealed under alluvium as a single unit with uniform hydrologic properties throughout the region, and with depth. Although this latter generalization was known to be flawed, it evidently was made because available geologic syntheses did not provide the basis for a more detailed characterization. As an initial attempt to address this problem, this report presents a compilation and synthesis of existing and new surface and subsurface data on the lithologic variations between and within the Cenozoic basin fills of this region. The most permeable lithologies in the Cenozoic basin fills are freshwater limestones, unaltered densely welded tuffs, and little-consolidated coarse alluvium. The least permeable lithologies are playa claystones, altered nonwelded tuffs, and tuffaceous and cl ay-matrix sediments of several types. In all but the youngest of the basin fills, permeability probably decreases strongly with depth owing to a typically increasing abundance of volcanic ash or clay in the matrices of the clastic sediments with increasing age (and therefore with increasing depth in general), and to increasing consolidation and alteration (both hydrothermal and diagenetic) with increasing depth and age. This report concludes with a categorization of the Cenozoic basins of the Death Valley region according to the predominant lithologies in the different basin fills and presents qualitative constraints on the hydrologic properties of these major lithologic categories

  8. Gondwana sedimentation in the Chintalapudi sub-basin, Godavari Valley, Andhra Pradesh

    Energy Technology Data Exchange (ETDEWEB)

    Lakshminarayana, G. [Geological Survey of India, Calcutta (India). Division of Monitoring

    1995-10-01

    A 3000 m thick Gondwana lithic fill consisting of multifacies associations were preserved in a NW-SE oriented intracratonic Chintalapudi sub-basin set across the Eastern Chat Complex (EGC). Sedimentation commenced with the deposition of diamictite-rhythmite sequence of the Talchir Formation in glacio-lacustrine environment. The succeeding sandstone-coal cyclothems of the Barakar Formation were formed in fluvial-coal swamps complex. The fluvial streams flowed across the EGC, originating somewhere in the southeast beyond the East Coast of India. Phase wise upliftment of the EGC during Mesozoic imparted changes to the Permian intercontinental drainage system which started supplying increased amount of detritus to the basin. Basin marginal faults were first formed at the beginning of Triassic. Alluvial fans originated in the east and southeast and northwesterly flowing braided streams deposited the conglomerate sandstone sequence of the Kamthi Formation. The Early Jurassic uplift of the Mailaram high in the north imparted westerly shift to the braided rivers during the Kota sedimentation. Due to prominence of Kamavarapukota ridge in the south by Early Cretaceous, the drainage pattern became centripetal and short-lived high sinuous rivers debouched into the basin. The silting up of the Chintalapudi sub-basin with the sandstone-claystone sequence of the Gangapur Formation marks the culmination of the Gondwana sedimentation, perhaps, coinciding with the breakup of India from the Gondwanaland.

  9. Groundwater Pumping and Streamflow in the Yuba Basin, Sacramento Valley, California

    Science.gov (United States)

    Moss, D. R.; Fogg, G. E.; Wallender, W. W.

    2011-12-01

    Water transfers during drought in California's Sacramento Valley can lead to increased groundwater pumping, and as yet unknown effects on stream baseflow. Two existing groundwater models of the greater Sacramento Valley together with localized, monitoring of groundwater level fluctuations adjacent to the Bear, Feather, and Yuba Rivers, indicate cause and effect relations between the pumping and streamflow. The models are the Central Valley Hydrologic Model (CVHM) developed by the U.S. Geological Survey and C2VSIM developed by Department of Water Resources. Using two models which have similar complexity and data but differing approaches to the agricultural water boundary condition illuminates both the water budget and its uncertainty. Water budget and flux data for localized areas can be obtained from the models allowing for parameters such as precipitation, irrigation recharge, and streamflow to be compared to pumping on different temporal scales. Continuous groundwater level measurements at nested, near-stream piezometers show seasonal variations in streamflow and groundwater levels as well as the timing and magnitude of recharge and pumping. Preliminary results indicate that during years with relatively wet conditions 65 - 70% of the surface recharge for the groundwater system comes from irrigation and precipitation and 30 - 35% comes from streamflow losses. The models further indicate that during years with relatively dry conditions, 55 - 60% of the surface recharge for the groundwater system comes from irrigation and precipitation while 40 - 45% comes from streamflow losses. The models irrigation water demand, surface-water and groundwater supply, and deep percolation are integrated producing values for irrigation pumping. Groundwater extractions during the growing season, approximately between April and October, increase by almost 200%. The effects of increased pumping seasonally are not readily evident in stream stage measurements. However, during dry time

  10. A multiple-tracer approach to understanding regional groundwater flow in the Snake Valley area of the eastern Great Basin, USA

    International Nuclear Information System (INIS)

    Gardner, Philip M.; Heilweil, Victor M.

    2014-01-01

    Highlights: • Age tracers and noble gases constrain intra- and inter-basin groundwater flow. • Tritium indicates modern (<60 yr) recharge occurring in all mountain areas. • Noble-gas data identify an important interbasin hydraulic discontinuity. • Further groundwater development may significantly impact Snake Valley springs. - Abstract: Groundwater in Snake Valley and surrounding basins in the eastern Great Basin province of the western United States is being targeted for large-scale groundwater extraction and export. Concern about declining groundwater levels and spring flows in western Utah as a result of the proposed groundwater withdrawals has led to efforts that have improved the understanding of this regional groundwater flow system. In this study, environmental tracers (δ 2 H, δ 18 O, 3 H, 14 C, 3 He, 4 He, 20 Ne, 40 Ar, 84 Kr, and 129 Xe) and major ions from 142 sites were evaluated to investigate groundwater recharge and flow-path characteristics. With few exceptions, δ 2 H and δ 18 O show that most valley groundwater has similar ratios to mountain springs, indicating recharge is dominated by relatively high-altitude precipitation. The spatial distribution of 3 H, terrigenic helium ( 4 He terr ), and 3 H/ 3 He ages shows that modern groundwater (<60 yr) in valley aquifers is found only in the western third of the study area. Pleistocene and late-Holocene groundwater is found in the eastern parts of the study area. The age of Pleistocene groundwater is supported by minimum adjusted radiocarbon ages of up to 32 ka. Noble gas recharge temperatures (NGTs) are generally 1–11 °C in Snake and southern Spring Valleys and >11 °C to the east of Snake Valley and indicate a hydraulic discontinuity between Snake and Tule Valleys across the northern Confusion Range. The combination of NGTs and 4 He terr shows that the majority of Snake Valley groundwater discharges as springs, evapotranspiration, and well withdrawals within Snake Valley rather than

  11. Geology, water-quality, hydrology, and geomechanics of the Cuyama Valley groundwater basin, California, 2008--12

    Science.gov (United States)

    Everett, Rhett; Gibbs, Dennis R.; Hanson, Randall T.; Sweetkind, Donald S.; Brandt, Justin T.; Falk, Sarah E.; Harich, Christopher R.

    2013-01-01

    To assess the water resources of the Cuyama Valley groundwater basin in Santa Barbara County, California, a series of cooperative studies were undertaken by the U.S. Geological Survey and the Santa Barbara County Water Agency. Between 2008 and 2012, geologic, water-quality, hydrologic and geomechanical data were collected from selected sites throughout the Cuyama Valley groundwater basin. Geologic data were collected from three multiple-well groundwater monitoring sites and included lithologic descriptions of the drill cuttings, borehole geophysical logs, temperature logs, as well as bulk density and sonic velocity measurements of whole-core samples. Generalized lithologic characterization from the monitoring sites indicated the water-bearing units in the subsurface consist of unconsolidated to partly consolidated sand, gravel, silt, clay, and occasional cobbles within alluvial fan and stream deposits. Analysis of geophysical logs indicated alternating layers of finer- and coarser-grained material that range from less than 1 foot to more than 20 feet thick. On the basis of the geologic data collected, the principal water-bearing units beneath the monitoring-well sites were found to be composed of younger alluvium of Holocene age, older alluvium of Pleistocene age, and the Tertiary-Quaternary Morales Formation. At all three sites, the contact between the recent fill and younger alluvium is approximately 20 feet below land surface. Water-quality samples were collected from 12 monitoring wells, 27 domestic and supply wells, 2 springs, and 4 surface-water sites and were analyzed for a variety of constituents that differed by site, but, in general, included trace elements; nutrients; dissolved organic carbon; major and minor ions; silica; total dissolved solids; alkalinity; total arsenic and iron; arsenic, chromium, and iron species; and isotopic tracers, including the stable isotopes of hydrogen and oxygen, activities of tritium, and carbon-14 abundance. Of the 39

  12. Status and understanding of groundwater quality in the Santa Clara River Valley, 2007-California GAMA Priority Basin Project

    Science.gov (United States)

    Burton, Carmen A.; Montrella, Joseph; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the approximately 460-square-mile Santa Clara River Valley study unit was investigated from April through June 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. The Santa Clara River Valley study unit contains eight groundwater basins located in Ventura and Los Angeles Counties and is within the Transverse and Selected Peninsular Ranges hydrogeologic province. The Santa Clara River Valley study unit was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected in 2007 by the USGS from 42 wells on a spatially distributed grid, and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined as that part of the aquifer system corresponding to the perforation intervals of wells listed in the CDPH database for the Santa Clara River Valley study unit. The quality of groundwater in the primary aquifer system may differ from that in shallow or deep water-bearing zones; for example, shallow groundwater may be more vulnerable to surficial contamination. Eleven additional wells were sampled by the USGS to improve understanding of factors affecting water quality.The status assessment of the quality of the groundwater used data from samples analyzed for anthropogenic constituents, such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents, such as major ions and trace elements. The status assessment is intended to characterize the quality of untreated groundwater resources in the primary aquifers of the Santa Clara River Valley study unit

  13. Groundwater quality in the shallow aquifers of the Tulare, Kaweah, and Tule Groundwater Basins and adjacent highlands areas, Southern San Joaquin Valley, California

    Science.gov (United States)

    Fram, Miranda S.

    2017-01-18

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the Tulare, Kaweah, and Tule groundwater basins and adjacent highlands areas of the southern San Joaquin Valley constitute one of the study units being evaluated.

  14. IODP Expedition 352 (Bonin Forearc): First Results

    Science.gov (United States)

    Pearce, J. A.; Reagan, M. K.; Stern, R. J.; Petronotis, K. E.

    2014-12-01

    IODP Expedition #352 (Testing Subduction Initiation and Ophiolite Models by Drilling the Outer Izu-Bonin-Mariana Forearc: July 30-Sept. 29, 2014) is just underway at the time of writing. It is testing the Stern-Bloomer hypothesis that subduction initiation (SI) was followed by a strongly extensional period of slab sinking and trench roll-back and then by a transitional period leading to the establishment of significant slab-parallel plate motion and hence normal subduction. The Expedition aims to carry out offset drilling at two sites near 28°30'N in the Bonin forearc. Ideally, these together will give the vertical volcanic stratigraphy needed to trace the geodynamic and petrogenetic processes associated with SI, and provide the complete reference section required for comparison with volcanic sequences of possible SI origin found on land in ophiolite complexes and elsewhere. We predict, but need to confirm, a c. 1.0-1.5km sequence with basal, MORB-like forearc basalts (known as FAB) marking the initial period of extension, boninites characterizing the transitional period, and tholeiitic and calc-alkaline lavas marking the establishment of normal arc volcanism. Study of such a sequence will enable us to understand the chemical gradients within and across these volcanic units, to reconstruct mantle flow and melting processes during the course of SI, and to test the hypothesis that fore-arc lithosphere created during SI is the birthplace of most supra-subduction zone ophiolites. Here, we present the first Expedition results, including (a) the volcanic stratigraphic record and subdivision into lava units, (b) the classifications and interpretations made possible by shipboard (portable XRF and ICP) analyses and down-hole measurements, and (c) the biostratigraphic, magnetic, mineralogical, sedimentary and structural constraints on the geological history of the SI section and the interactions between magmatic, hydrothermal and tectonic activity during its evolution.

  15. The forearc crustal evolution of Izu-Bonin (Ogasawara) region obtained by seismic reflection and refraction surveys

    Science.gov (United States)

    Yamashita, M.; Kodaira, S.; Takahashi, N.; Tatsumi, Y.; Kaneda, Y.

    2009-12-01

    The Izu-Bonin (Ogasawara)-Mariana (IBM) arc is known to the typical oceanic island arc, and it is the most suitable area to understand the growth process of island arc. By previous seismic survey and deep sea drilling, convex basements are distributed along North-South direction in present forearc region. The convex basements are reported to be formed during Oligocene and Eocene (Taylor, 1992). In IBM forearc region, the middle crust with 6 km/s is recognized by seismic survey using OBSs. In IBM region, four IODP drilling sites are proposed in order to understand comprehensive growth process of arc and continental crust evolution. Two of them are located in forearc region. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) carried out multi-channel seismic reflection survey using 7,800/12,000 cu.in. air gun and 5-6 km streamer with 444/204 ch hydrophones in the IBM region since 2004. We investigate the crustal structure beneath the Izu-Bonin forearc region for contribution of IBM drilling site along five long survey lines, which are across from present volcanic front to forearc basin. Seismic refraction survey is also conducted across forearc region using 84 OBSs every 1 km interval. Shallow crustal structure can be classified four units including basement which compared between previous drilling results and obtained seismic profiles. In IBM forearc region, thick sedimentary basin distribute from east side of volcanic front. Two convex basement peaks are indicated in across profile of forearc region. These peaks are estimated the top of paleoarc (Oligocene and Eocene) by previous ODP drilling. The half graben structure with major displacement is identified from west side of present volcanic front to the top of Oligocene arc. On the other hand, there is no displacement of sediments between the Oligocene arc and Eocene arc. This result shows the same origin of basement between the present volcanic front and Oligocene arc. There is long time difference of

  16. Analysis of geophysical well logs from the Mariano Lake-Lake Valley drilling project, San Juan Basin, Northwestern New Mexico

    International Nuclear Information System (INIS)

    Scott, J.H.

    1986-01-01

    Geophysical well logs were obtained in eight deep holes drilled and cored by the U.S. Geological Survey to examine the geology of the Mariano Lake-Lake Valley area in the southern part of the San Juan basin, New Mexico. The logs were made to determine the petrophysical properties of the rocks penetrated by the holes, to aid in making stratigraphic correlations between the holes, and to estimate the grade of uranium enrichment in mineralized zones. The logs can be divided into six categories-nuclear, electric, sonic, magnetic, dipmeter, and borehole conditions. Examples of these logs are presented and related to lithological and petrophysical properties of the cores recovered. Gamma-ray and prompt fission neutron logs were used to estimate uranium grade in mineralized zones. Resistivity and spontaneous potential logs were used to make stratigraphic correlations between drill holes and to determine the variability of the sandstone:mudstone ratios of the major sedimentary units. In one drill hole a dipmeter log was used to estimate the direction of sediment transport of the fluvial host rock. Magnetic susceptibility logs provided supportive information for a laboratory study of magnetic mineral alteration in drill cores. This study was used to infer the geochemical and hydrologic environment associated with uranium deposition in the project area

  17. Analysis of projected water availability with current basin management plan, Pajaro Valley, California

    Science.gov (United States)

    Hanson, Randall T.; Lockwood, Brian; Schmid, Wolfgang

    2014-01-01

    The projection and analysis of the Pajaro Valley Hydrologic Model (PVHM) 34 years into the future using MODFLOW with the Farm Process (MF-FMP) facilitates assessment of potential future water availability. The projection is facilitated by the integrated hydrologic model, MF-FMP that fully couples the simulation of the use and movement of water from precipitation, streamflow, runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. MF-FMP allows for more complete analysis of conjunctive-use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface-water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within “water-balance subregions” (WBS) comprised of one or more model cells that can represent a single farm, a group of farms, watersheds, or other hydrologic or geopolitical entities. Analysis of conjunctive use would be difficult without embedding the fully coupled supply-and-demand into a fully coupled simulation, and are difficult to estimate a priori.

  18. Evaluation of volatile organic compounds in two Mojave Desert basins-Mojave River and Antelope Valley-in San Bernardino, Los Angeles, and Kern Counties, California, June-October 2002

    Science.gov (United States)

    Densmore, Jill N.; Belitz, Kenneth; Wright, Michael T.; Dawson, Barbara J.; Johnson, Tyler D.

    2005-01-01

    The California Aquifer Susceptibility Assessment of the Ground-Water Ambient Monitoring and Assessment Program was developed to assess water quality and susceptibility of ground-water resources to contamination from surficial sources. This study focuses on the Mojave River and the Antelope Valley ground-water basins in southern California. Volatile organic compound (VOC) data were evaluated in conjunction with tritium data to determine a potential correlation with aquifer type, depth to top of perforations, and land use to VOC distribution and occurrence in the Mojave River and the Antelope Valley Basins. Detection frequencies for VOCs were compiled and compared to assess the distribution in each area. Explanatory variables were evaluated by comparing detection frequencies for VOCs and tritium and the number of compounds detected. Thirty-three wells were sampled in the Mojave River Basin (9 in the floodplain aquifer, 15 in the regional aquifer, and 9 in the sewered subset of the regional aquifer). Thirty-two wells were sampled in the Antelope Valley Basin. Quality-control samples also were collected to identify, quantify, and document bias and variability in the data. Results show that VOCs generally were detected slightly more often in the Antelope Valley Basin samples than in the Mojave River Basin samples. VOCs were detected more frequently in the floodplain aquifer than in the regional aquifer and the sewered subset. Tritium was detected more frequently in the Mojave River Basin samples than in the Antelope Valley Basin samples, and it was detected more frequently in the floodplain aquifer than in the regional aquifer and the sewered subset. Most of the samples collected in both basins for this study contained old water (water recharged prior to 1952). In general, in these desert basins, tritium need not be present for VOCs to be present. When VOCs were detected, young water (water recharge after 1952) was slightly more likely to be contaminated than old water

  19. A Study of the Connection Among Basin-Fill Aquifers, Carbonate-Rock Aquifers, and Surface-Water Resources in Southern Snake Valley, Nevada

    Science.gov (United States)

    ,

    2008-01-01

    The Secretary of the Interior through the Southern Nevada Public Lands Management Act approved funding for research to improve understanding of hydrologic systems that sustain numerous water-dependent ecosystems on Federal lands in Snake Valley, Nevada. Some of the streams and spring-discharge areas in and adjacent to Great Basin National Park have been identified as susceptible to ground-water withdrawals (Elliott and others, 2006) and research has shown a high potential for ground-water flow from southern Spring Valley into southern Snake Valley through carbonate rocks that outcrop along a low topographic divide known as the Limestone Hills (Welch and others, 2007). Comprehensive geologic, hydrologic, and chemical information will be collected and analyzed to assess the hydraulic connection between basin-fill aquifers and surface-water resources, water-dependent ecological features, and the regional carbonate-rock aquifer, the known source of many high-discharge springs. Understanding these connections is important because proposed projects to pump and export ground water from Spring and Snake Valleys in Nevada may result in unintended capture of water currently supplying springs, streams, wetlands, limestone caves, and other biologically sensitive areas (fig. 1). The methods that will be used in this study may be transferable to other areas in the Great Basin. The National Park Service, Bureau of Land Management, U.S. Fish and Wildlife Service, and U.S. Forest Service submitted the proposal for funding this research to facilitate science-based land management. Scientists from the U.S. Geological Survey (USGS) Water Resources and Geologic Disciplines, and the University of Nevada, Reno, will accomplish four research elements through comprehensive data collection and analysis that are concentrated in two distinct areas on the eastern and southern flanks of the Snake Range (fig. 2). The projected time line for this research is from July 2008 through September 2011.

  20. Subduction zone forearc serpentinites as incubators for deep microbial life

    NARCIS (Netherlands)

    Plümper, Oliver|info:eu-repo/dai/nl/37155960X; King, Helen E.|info:eu-repo/dai/nl/411261088; Geisler, Thorsten; Liu, Yang|info:eu-repo/dai/nl/411298119; Pabst, Sonja; Savov, Ivan P.; Rost, Detlef; Zack, Thomas

    2017-01-01

    Serpentinization-fueled systems in the cool, hydrated forearc mantle of subduction zones may provide an environment that supports deep chemolithoautotrophic life. Here, we examine serpentinite clasts expelled from mud volcanoes above the Izu–Bonin–Mariana subduction zone forearc (Pacific Ocean) that

  1. California GAMA Program: Sources and Transport of Nitrate in Groundwater in the Livermore Valley Basin, California

    International Nuclear Information System (INIS)

    Beller, H; Eaton, G F; Ekwurzel, B E; Esser, B K; Hu, Q; Hudson, G B; Leif, R; McNab, W; Moody-Bartel, C; Moore, K; Moran, J E

    2005-01-01

    A critical component of the State Water Resource Control Board's Groundwater Ambient Monitoring and Assessment (GAMA) Program is to assess the major threats to groundwater resources that supply drinking water to Californians (Belitz et al., 2004). Nitrate concentrations approaching and greater than the maximum contaminant level (MCL) are impairing the viability of many groundwater basins as drinking water sources Source attribution and nitrate fate and transport are therefore the focus of special studies under the GAMA program. This report presents results of a study of nitrate contamination in the aquifer beneath the City of Livermore, where high nitrate levels affect both public supply and private domestic wells. Nitrate isotope data are effective in determining contaminant sources, especially when combined with other isotopic tracers such as stable isotopes of water and tritium-helium ages to give insight into the routes and timing of nitrate inputs to the flow system. This combination of techniques is demonstrated in Livermore, where it is determined that low nitrate reclaimed wastewater predominates in the northwest, while two flowpaths with distinct nitrate sources originate in the southeast. Along the eastern flowpath, (delta) 15 N values greater than 10(per t housand) indicate that animal waste is the primary source. Diminishing concentrations over time suggest that contamination results from historical land use practices. The other flowpath begins in an area where rapid recharge, primarily of low nitrate imported water (identified by stable isotopes of water and a tritium-helium residence time of less than 1 year), mobilizes a significant local nitrate source, bringing groundwater concentrations above the MCL of 45 mg NO 3 L -1 . In this area, artificial recharge of imported water via local arroyos induces flux of the contaminant to the regional aquifer. The low (delta) 15 N value (3.1(per t housand)) in this location implicates synthetic fertilizer

  2. Constraints on inner forearc deformation from balanced cross sections, Fila Costeña thrust belt, Costa Rica

    Science.gov (United States)

    Sitchler, Jason C.; Fisher, Donald M.; Gardner, Thomas W.; Protti, Marino

    2007-12-01

    The Fila Costeña thrust belt in the forearc of Costa Rica is accommodating a significant portion of the convergence of the Cocos plate and Panama microplate. Geologic mapping of the thrust belt depicts a duplex with three horses that incorporate Eocene limestones and Oligocene to early Miocene clastics inboard of the subducting Cocos Ridge axis. By constructing a cross section at this location along a NE-SW trending transect perpendicular to the thrust belt, we constrain a shortening rate of approximately 40 mm/a and propose that as much as 50% of the total plate convergence rate is taken up in the inner forearc. The Eocene limestones at the base of the thrust sheets pinch out in both directions away from the onland projection of the Cocos Ridge axis owing to decrease in slip on faults and a lateral ramp in the basal décollement. The thrust belt terminates near the Panama border at the onland projection of the subducting Panama Fracture Zone. These observations suggest that shortening is propagating to the east with the migration of the Panama triple junction and the onset of shallow subduction of the thickened edge of the Cocos plate. The absence of similar features in the Nicaraguan forearc, where the subducting crust is older, subducts more steeply, and lacks incoming ridges and seamounts, indicates that deformation of the forearc basin in Costa Rica reflects greater coupling between the converging plates inboard of the Cocos Ridge.

  3. The glacially overdeepened trough of the Salzach Valley, Austria: Bedrock geometry and sedimentary fill of a major Alpine subglacial basin

    Science.gov (United States)

    Pomper, Johannes; Salcher, Bernhard C.; Eichkitz, Christoph; Prasicek, Günther; Lang, Andreas; Lindner, Martin; Götz, Joachim

    2017-10-01

    Overdeepened valleys are unambiguous features of glacially sculpted landscapes. They result from erosion at the bed of the glacier and their size and shape is determined by ice dynamics and the characteristics of the underlying bedrock. Major overdeepened valleys representing vertical bedrock erosion of several hundreds of meters are characteristic features of many trunk valleys in the formerly glaciated parts of the Alpine mountain belt. The thick sedimentary fill usually hinders attempts to unravel bedrock geometry, formation history and fill characteristics. Based on reflection seismic data and core-logs from multiple deep drillings we construct a detailed bedrock model of the Lower Salzach Valley trough, one of the largest overdeepened valleys in the European Alps. The analysed overdeepened structure characterized by a strongly undulating topography. Two reaches of enhanced erosion can be identified and are suggested to be related to variations in bedrock erodibility and a triple glacier confluence. The sedimentary fill shows clear characteristics of rapid infilling and subaqueous fan delta deposits indicate a strong influence of tributary streams. Associated surface lowering of the valley floor had a major impact on tributary stream incision but also on the available ice accumulation area at subsequent glaciations. The extent to which fills of earlier glaciations have been preserved from erosion during the last glacial maximum remains ambiguous and demands further exploration. To our knowledge the presented bedrock model is one of the best defined of any major overdeepened trunk valley.

  4. Implications of diapir-derived detritus and gypsic paleosols in Lower Triassic strata near the Castle Valley salt wall, Paradox Basin, Utah

    Science.gov (United States)

    Lawton, Timothy F.; Buck, Brenda J.

    2006-10-01

    Gypsum-bearing growth strata and sedimentary facies of the Moenkopi Formation on the crest and NE flank of the Castle Valley salt wall in the Paradox Basin record salt rise, evaporite exposure, and salt-withdrawal subsidence during the Early Triassic. Detrital gypsum and dolomite clasts derived from the middle Pennsylvanian Paradox Formation were deposited in strata within a few kilometers of the salt wall and indicate that salt rise rates roughly balanced sediment accumulation, resulting in long-term exposure of mobile evaporite. Deposition took place primarily in flood-basin or inland sabkha settings that alternated between shallow subaqueous and subaerial conditions in a hyperarid climate. Matrix-supported and clast-supported conglomerates with gypsum fragments represent debris-flow deposits and reworked debris-flow deposits, respectively, interbedded with flood-basin sandstone and siltstone during development of diapiric topography. Mudstone-rich flood-basin deposits with numerous stage I to III gypsic paleosols capped by eolian gypsum sand sheets accumulated during waning salt-withdrawal subsidence. Association of detrital gypsum, eolian gypsum, and gypsic paleosols suggests that the salt wall provided a common source for gypsum in the surrounding strata. This study documents a previously unrecognized salt weld with associated growth strata containing diapir-derived detritus and gypsic palesols that can be used to interpret halokinesis.

  5. Groundwater-level trends and forecasts, and salinity trends, in the Azraq, Dead Sea, Hammad, Jordan Side Valleys, Yarmouk, and Zarqa groundwater basins, Jordan

    Science.gov (United States)

    Goode, Daniel J.; Senior, Lisa A.; Subah, Ali; Jaber, Ayman

    2013-01-01

    Changes in groundwater levels and salinity in six groundwater basins in Jordan were characterized by using linear trends fit to well-monitoring data collected from 1960 to early 2011. On the basis of data for 117 wells, groundwater levels in the six basins were declining, on average about -1 meter per year (m/yr), in 2010. The highest average rate of decline, -1.9 m/yr, occurred in the Jordan Side Valleys basin, and on average no decline occurred in the Hammad basin. The highest rate of decline for an individual well was -9 m/yr. Aquifer saturated thickness, a measure of water storage, was forecast for year 2030 by using linear extrapolation of the groundwater-level trend in 2010. From 30 to 40 percent of the saturated thickness, on average, was forecast to be depleted by 2030. Five percent of the wells evaluated were forecast to have zero saturated thickness by 2030. Electrical conductivity was used as a surrogate for salinity (total dissolved solids). Salinity trends in groundwater were much more variable and less linear than groundwater-level trends. The long-term linear salinity trend at most of the 205 wells evaluated was not increasing, although salinity trends are increasing in some areas. The salinity in about 58 percent of the wells in the Amman-Zarqa basin was substantially increasing, and the salinity in Hammad basin showed a long-term increasing trend. Salinity increases were not always observed in areas with groundwater-level declines. The highest rates of salinity increase were observed in regional discharge areas near groundwater pumping centers.

  6. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Slide and Grass Valley Fires, San Bernardino County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Slide and Grass Valley Fires in San Bernardino County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 3.50 inches (88.90 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  7. Studies of geology and hydrology in the Basin and Range province, southwestern United States, for isolation of high-level radioactive waste-characterization of the Death Valley region, Nevada and California

    International Nuclear Information System (INIS)

    Bedinger, M.S.; Sargent, K.A.; Langer, W.H.

    1989-01-01

    The Death Valley region, Nevada and California, in the Basin and Range province, is an area of about 80,200 sq km located in southern Nevada and southeastern California. Precambrian metamorphic and intrusive basement rocks are overlain by a thick section of Paleozoic clastic and evaporitic sedimentary rocks. Mesozoic and Cenozoic rocks include extrusive and intrusive rocks and clastic sedimentary rocks. Structural features within the Death Valley indicate a long and complex tectonic evolution from late Precambrian to the present. Potential repository host media in the region include granite and other coarse-grained plutonic rocks, ashflow tuff, basaltic and andesitic lava flows, and basin fill. The Death Valley region is composed largely of closed topographic basins that are apparently coincident with closed groundwater flow systems. In these systems, recharge occurs sparingly at higher altitudes by infiltration of precipitation or by infiltration of ephemeral runoff. Discharge occurs largely by spring flow and by evaporation and transpiration in the playas. Death Valley proper, for which the region was named, is the ultimate discharge area for a large, complex system of groundwater aquifers that occupy the northeastern part of the region. The deepest part of the system consists of carbonate aquifers that connect closed topographic basins at depth. The discharge from the system occurs in several intermediate areas that are geomorphically, stratigraphically, and structurally controlled. Ultimately, most groundwater flow terminates by discharge to Death Valley; groundwater is discharged to the Colorado River from a small part of the region

  8. High pollution events in the Great Salt Lake Basin and its adjacent valleys. Insights on mechanisms and spatial distribution of the formation of secondary aerosol.

    Science.gov (United States)

    Franchin, A.; Middlebrook, A. M.; Baasandorj, M.; Brown, S. S.; Fibiger, D. L.; Goldberger, L.; McDuffie, E. E.; Moravek, A.; Murphy, J. G.; Thornton, J. A.; Womack, C.

    2017-12-01

    High pollution events are common in many locations in the U.S.A. and around the world. They can last several days or up to weeks and they negatively affect human health, deteriorate visibility, and increase premature mortality. The main causes for high pollution events are related to meteorology and sources. They often happen in the winter, when high emissions, stagnation and reduced mixing, due to a shallow boundary layer, cause high concentrations of pollutants to accumulate. In the last decades, the air quality in the U.S. has seen an overall improvement, due to the reductions in particulate and gaseous pollutants. However, some areas remain critical. The Great Salt Lake Basin and its adjacent valleys are currently areas where high pollution events are a serious environmental problem involving more than 2.4 million people. We will present the results of the Utah Wintertime Fine Particulate Study (UWFPS) that took place in winter 2017. During UWFPS, we carried out airborne measurements of aerosol chemical composition and precursor vapor concentrations over the Great Salt Lake Basin and its adjacent valleys. We will give insights into how and under which conditions conversion of precursor vapors into aerosol particles takes place in the area. We will also present a comparison of our measurements with models that will provide an insight of the mechanisms that lead to the formation of secondary aerosol particles. With the results of our work, we aim to inform strategies for pollution control in the future.

  9. Status of groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units, 2005-08: California GAMA Priority Basin Project

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study units are located in California's Central Valley and include parts of Butte, Colusa, Glenn, Placer, Sacramento, Shasta, Solano, Sutter, Tehama, Yolo, and Yuba Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The three study units were designated to provide spatially-unbiased assessments of the quality of untreated groundwater in three parts of the Central Valley hydrogeologic province, as well as to provide a statistically consistent basis for comparing water quality regionally and statewide. Samples were collected in 2005 (Southern Sacramento Valley), 2006 (Middle Sacramento Valley), and 2007-08 (Northern Sacramento Valley). The GAMA studies in the Southern, Middle, and Northern Sacramento Valley were designed to provide statistically robust assessments of the quality of untreated groundwater in the primary aquifer systems that are used for drinking-water supply. The assessments are based on water-quality data collected by the USGS from 235 wells in the three study units in 2005-08, and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter, referred to as primary aquifers) assessed in this study are defined by the depth intervals of the wells in the CDPH database for each study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. The status of the current quality of the groundwater resource was assessed by using data from samples analyzed for volatile organic

  10. Petroleum systems and geologic assessment of undiscovered oil and gas, Cotton Valley group and Travis Peak-Hosston formations, East Texas basin and Louisiana-Mississippi salt basins provinces of the northern Gulf Coast region. Chapters 1-7.

    Science.gov (United States)

    ,

    2006-01-01

    The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The USGS recently completed an assessment of undiscovered oil and gas potential of the Cotton Valley Group and Travis Peak and Hosston Formations in the East Texas Basin and Louisiana-Mississippi Salt Basins Provinces in the Gulf Coast Region (USGS Provinces 5048 and 5049). The Cotton Valley Group and Travis Peak and Hosston Formations are important because of their potential for natural gas resources. This assessment is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). The USGS used this geologic framework to define one total petroleum system and eight assessment units. Seven assessment units were quantitatively assessed for undiscovered oil and gas resources.

  11. Late Miocene-Pleistocene evolution of a Rio Grande rift subbasin, Sunshine Valley-Costilla Plain, San Luis Basin, New Mexico and Colorado

    Science.gov (United States)

    Ruleman, C.A.; Thompson, R.A.; Shroba, R.R.; Anderson, M.; Drenth, B.J.; Rotzien, J.; Lyon, J.

    2013-01-01

    The Sunshine Valley-Costilla Plain, a structural subbasin of the greater San Luis Basin of the northern Rio Grande rift, is bounded to the north and south by the San Luis Hills and the Red River fault zone, respectively. Surficial mapping, neotectonic investigations, geochronology, and geophysics demonstrate that the structural, volcanic, and geomorphic evolution of the basin involves the intermingling of climatic cycles and spatially and temporally varying tectonic activity of the Rio Grande rift system. Tectonic activity has transferred between range-bounding and intrabasin faults creating relict landforms of higher tectonic-activity rates along the mountain-piedmont junction. Pliocene–Pleistocene average long-term slip rates along the southern Sangre de Cristo fault zone range between 0.1 and 0.2 mm/year with late Pleistocene slip rates approximately half (0.06 mm/year) of the longer Quaternary slip rate. During the late Pleistocene, climatic influences have been dominant over tectonic influences on mountain-front geomorphic processes. Geomorphic evidence suggests that this once-closed subbasin was integrated into the Rio Grande prior to the integration of the once-closed northern San Luis Basin, north of the San Luis Hills, Colorado; however, deep canyon incision, north of the Red River and south of the San Luis Hills, initiated relatively coeval to the integration of the northern San Luis Basin.Long-term projections of slip rates applied to a 1.6 km basin depth defined from geophysical modeling suggests that rifting initiated within this subbasin between 20 and 10 Ma. Geologic mapping and geophysical interpretations reveal a complex network of northwest-, northeast-, and north-south–trending faults. Northwest- and northeast-trending faults show dual polarity and are crosscut by north-south– trending faults. This structural model possibly provides an analog for how some intracontinental rift structures evolve through time.

  12. Simulated effects of groundwater pumping and artificial recharge on surface-water resources and riparian vegetation in the Verde Valley sub-basin, Central Arizona

    Science.gov (United States)

    Leake, Stanley A.; Pool, Donald R.

    2010-01-01

    In the Verde Valley sub-basin, groundwater use has increased in recent decades. Residents and stakeholders in the area have established several groups to help in planning for sustainability of water and other resources of the area. One of the issues of concern is the effect of groundwater pumping in the sub-basin on surface water and on groundwater-dependent riparian vegetation. The Northern Arizona Regional Groundwater-Flow Model by Pool and others (in press) is the most comprehensive and up-to-date tool available to understand the effects of groundwater pumping in the sub-basin. Using a procedure by Leake and others (2008), this model was modified and used to calculate effects of groundwater pumping on surface-water flow and evapotranspiration for areas in the sub-basin. This report presents results for the upper two model layers for pumping durations of 10 and 50 years. Results are in the form of maps that indicate the fraction of the well pumping rate that can be accounted for as the combined effect of reduced surface-water flow and evapotranspiration. In general, the highest and most rapid responses to pumping were computed to occur near surface-water features simulated in the modified model, but results are not uniform along these features. The results are intended to indicate general patterns of model-computed response over large areas. For site-specific projects, improved results may require detailed studies of the local hydrologic conditions and a refinement of the modified model in the area of interest.

  13. Cenozoic foreland basins of Central Andes: a preliminary provenance U-Pb zircon analysis of sedimentary sequences of Calchaqui Valley

    International Nuclear Information System (INIS)

    Oliveira, Alisson Lopes; Hauser, Natalia; Pimentel, Marcio Martins; Matteini, Massimo; Coira, Beatriz; Alonso, Ricardo; Barrientos, Andrea

    2015-01-01

    The Eocene of northwestern Argentina records complex basin and structural evolution, including continental sedimentation of the post-rift Salta Basin and the beginning of the Andean uplift and foreland system evolution. This illuminates a significant period of evolutionary history of this and surrounding basins in northwestern Argentina. U-Pb zircon analyses by LA-ICP-MS for three formations representing post-rift to foreland stages allowed interpretation about provenance terrains. The Lumbrera Formation, representing the post-rift stage, shows bimodal sources with a main zircon population around 462 Ma, and a second population around 1023 Ma. The Los Colorados and Angastaco Formations representing the sedimentation in a foreland basin, show a unimodal source around 490 Ma, and 517 Ma respectively. Zircons younger than 50 Ma were not identified during this study. (author)

  14. Cenozoic foreland basins of Central Andes: a preliminary provenance U-Pb zircon analysis of sedimentary sequences of Calchaqui Valley

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Alisson Lopes; Hauser, Natalia; Pimentel, Marcio Martins; Matteini, Massimo, E-mail: alisson_oliveira@hotmail.com [Universidade de Brasilia (UnB), DF (Brazil). Laboratorio de Geocronologia; Galli, Claudia Ines [Faculdad de Ingenieria, Universidad Nacional de Jujuy (Argentina); Coira, Beatriz [CIT Jujuy, CONICET. Instituto de Geologia y Mineria (Argentina); Alonso, Ricardo; Barrientos, Andrea [Instituto CEGA, CONICET. Universidad Nacional de Salta (Argentina)

    2015-07-01

    The Eocene of northwestern Argentina records complex basin and structural evolution, including continental sedimentation of the post-rift Salta Basin and the beginning of the Andean uplift and foreland system evolution. This illuminates a significant period of evolutionary history of this and surrounding basins in northwestern Argentina. U-Pb zircon analyses by LA-ICP-MS for three formations representing post-rift to foreland stages allowed interpretation about provenance terrains. The Lumbrera Formation, representing the post-rift stage, shows bimodal sources with a main zircon population around 462 Ma, and a second population around 1023 Ma. The Los Colorados and Angastaco Formations representing the sedimentation in a foreland basin, show a unimodal source around 490 Ma, and 517 Ma respectively. Zircons younger than 50 Ma were not identified during this study. (author)

  15. Silurian extension in the Upper Connecticut Valley, United States and the origin of middle Paleozoic basins in the Québec embayment

    Science.gov (United States)

    Rankin, D.W.; Coish, R.A.; Tucker, R.D.; Peng, Z.X.; Wilson, S.A.; Rouff, A.A.

    2007-01-01

    Pre-Silurian strata of the Bronson Hill arch (BHA) in the Upper Connecticut Valley, NH-VT are host to the latest Ludlow Comerford Intrusive Suite consisting, east to west, of a mafic dike swarm with sheeted dikes, and an intrusive complex. The rocks are mostly mafic but with compositions ranging from gabbro to leucocratic tonalite. The suite is truncated on the west by the Monroe fault, a late Acadian thrust that carries rocks of the BHA westward over Silurian-Devonian strata of the Connecticut Valley-Gaspe?? trough (CVGT). Dikes intrude folded strata with a pre-intrusion metamorphic fabric (Taconian?) but they experienced Acadian deformation. Twenty fractions of zircon and baddeleyite from three sample sites of gabbrodiorite spanning nearly 40 km yield a weighted 207Pb/206Pb age of 419 ?? 1 Ma. Greenschist-facies dikes, sampled over a strike distance of 35 km, were tholeiitic basalts formed by partial melting of asthenospheric mantle, with little or no influence from mantle or crustal lithosphere. The dike chemistry is similar to mid-ocean ridge, within-plate, and back-arc basin basalts. Parent magmas originated in the asthenosphere and were erupted through severely thinned lithosphere adjacent to the CVGT. Extensive middle Paleozoic basins in the internides of the Appalachian orogen are restricted to the Que??bec embayment of the Laurentian rifted margin, and include the CVGT and the Central Maine trough (CMT), separated from the BHA by a Silurian tectonic hinge. The NE-trending Comerford intrusions parallel the CVGT, CMT, and the tectonic hinge, and indicate NW-SE extension. During post-Taconian convergence, the irregular margins of composite Laurentia and Avalon permitted continued collision in Newfoundland (St. Lawrence promontory) and coeval extension in the Que??bec embayment. Extension may be related to hinge retreat of the northwest directed Brunswick subduction complex and rise of the asthenosphere following slab break-off. An alternative hypothesis is

  16. Natural recharge estimation and uncertainty analysis of an adjudicated groundwater basin using a regional-scale flow and subsidence model (Antelope Valley, California, USA)

    Science.gov (United States)

    Siade, Adam J.; Nishikawa, Tracy; Martin, Peter

    2015-01-01

    Groundwater has provided 50–90 % of the total water supply in Antelope Valley, California (USA). The associated groundwater-level declines have led the Los Angeles County Superior Court of California to recently rule that the Antelope Valley groundwater basin is in overdraft, i.e., annual pumpage exceeds annual recharge. Natural recharge consists primarily of mountain-front recharge and is an important component of the total groundwater budget in Antelope Valley. Therefore, natural recharge plays a major role in the Court’s decision. The exact quantity and distribution of natural recharge is uncertain, with total estimates from previous studies ranging from 37 to 200 gigaliters per year (GL/year). In order to better understand the uncertainty associated with natural recharge and to provide a tool for groundwater management, a numerical model of groundwater flow and land subsidence was developed. The transient model was calibrated using PEST with water-level and subsidence data; prior information was incorporated through the use of Tikhonov regularization. The calibrated estimate of natural recharge was 36 GL/year, which is appreciably less than the value used by the court (74 GL/year). The effect of parameter uncertainty on the estimation of natural recharge was addressed using the Null-Space Monte Carlo method. A Pareto trade-off method was also used to portray the reasonableness of larger natural recharge rates. The reasonableness of the 74 GL/year value and the effect of uncertain pumpage rates were also evaluated. The uncertainty analyses indicate that the total natural recharge likely ranges between 34.5 and 54.3 GL/year.

  17. Surface sediment remobilization triggered by earthquakes in the Nankai forearc region

    Science.gov (United States)

    Okutsu, N.; Ashi, J.; Yamaguchi, A.; Irino, T.; Ikehara, K.; Kanamatsu, T.; Suganuma, Y.; Murayama, M.

    2017-12-01

    Submarine landslides triggered by earthquakes generate turbidity currents (e.g. Piper et al., 1988; 1999). Recently several studies report that the remobilization of the surface sediment triggered by earthquakes can also generate turbidity currents. However, studies that proposed such process are still limited (e.g. Ikehara et al., 2016; Mchugh et al., 2016; Moernaut et al., 2017). The purpose of this study is to examine those sedimentary processes in the Nankai forearc region, SW Japan using sedimentary records. We collected 46 cm-long multiple core (MC01) and a 6.7 m-long piston core (PC03) from the small basin during the R/V Shinsei Maru KS-14-8 cruise. The small confined basin, which is our study site, block the paths of direct sediment supply from river-submarine canyon system. The sampling site is located at the ENE-WSW elongated basin between the accretionary prism and the forearc basin off Kumano without direct sediment supply from river-submarine canyon system. The basin exhibits a confined basin that captures almost of sediments supplied from outside. Core samples are mainly composed of silty clay or very fine sand. Cs-137 measurement conducted on a MC01 core shows constantly high value at the upper 17 cm section and no detection below it. Moreover, the sedimentary structure is similar to fine-grained turbidite described by Stow and Shanmgam (1980), we interpret the upper 17 cm of MC01 as muddy turbidite. Grain size distribution and magnetic susceptibility also agree to this interpretation. Rapid sediment deposition after 1950 is assumed and the most likely event is the 2004 off Kii peninsula earthquakes (Mw=6.6-7.4). By calculation from extent of provenance area, which are estimated by paleocurrent analysis and bathymetric map, and thickness of turbidite layer we conclude that surface 1 cm of slope sediments may be remobilized by the 2004 earthquakes. Muddy turbidites are also identified in a PC03 core. The radiocarbon age gap of 170 years obtained

  18. Conceptual framework and trend analysis of water-level responses to hydrologic stresses, Pahute Mesa–Oasis Valley groundwater basin, Nevada, 1966-2016

    Science.gov (United States)

    Jackson, Tracie R.; Fenelon, Joseph M.

    2018-05-31

    This report identifies water-level trends in wells and provides a conceptual framework that explains the hydrologic stresses and factors causing the trends in the Pahute Mesa–Oasis Valley (PMOV) groundwater basin, southern Nevada. Water levels in 79 wells were analyzed for trends between 1966 and 2016. The magnitude and duration of water-level responses to hydrologic stresses were analyzed graphically, statistically, and with water-level models.The conceptual framework consists of multiple stress-specific conceptual models to explain water-level responses to the following hydrologic stresses: recharge, evapotranspiration, pumping, nuclear testing, and wellbore equilibration. Dominant hydrologic stresses affecting water-level trends in each well were used to categorize trends as nonstatic, transient, or steady state.The conceptual framework of water-level responses to hydrologic stresses and trend analyses provide a comprehensive understanding of the PMOV basin and vicinity. The trend analysis links water-level fluctuations in wells to hydrologic stresses and potential factors causing the trends. Transient and steady-state trend categorizations can be used to determine the appropriate water-level data for groundwater studies.

  19. Precipitation and runoff simulations of select perennial and ephemeral watersheds in the middle Carson River basin, Eagle, Dayton, and Churchill Valleys, west-central Nevada

    Science.gov (United States)

    Jeton, Anne E.; Maurer, Douglas K.

    2011-01-01

    The effect that land use may have on streamflow in the Carson River, and ultimately its impact on downstream users can be evaluated by simulating precipitation-runoff processes and estimating groundwater inflow in the middle Carson River in west-central Nevada. To address these concerns, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, began a study in 2008 to evaluate groundwater flow in the Carson River basin extending from Eagle Valley to Churchill Valley, called the middle Carson River basin in this report. This report documents the development and calibration of 12 watershed models and presents model results and the estimated mean annual water budgets for the modeled watersheds. This part of the larger middle Carson River study will provide estimates of runoff tributary to the Carson River and the potential for groundwater inflow (defined here as that component of recharge derived from percolation of excess water from the soil zone to the groundwater reservoir). The model used for the study was the U.S. Geological Survey's Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Models were developed for 2 perennial watersheds in Eagle Valley having gaged daily mean runoff, Ash Canyon Creek and Clear Creek, and for 10 ephemeral watersheds in the Dayton Valley and Churchill Valley hydrologic areas. Model calibration was constrained by daily mean runoff for the 2 perennial watersheds and for the 10 ephemeral watersheds by limited indirect runoff estimates and by mean annual runoff estimates derived from empirical methods. The models were further constrained by limited climate data adjusted for altitude differences using annual precipitation volumes estimated in a previous study. The calibration periods were water years 1980-2007 for Ash Canyon Creek, and water years 1991-2007 for Clear Creek. To

  20. Adaptation of a pattern-scaling approach for assessment of local (village/valley) scale water resources and related vulnerabilities in the Upper Indus Basin

    Science.gov (United States)

    Forsythe, Nathan; Kilsby, Chris G.; Fowler, Hayley J.; Archer, David R.

    2010-05-01

    The water resources of the Upper Indus Basin (UIB) are of the utmost importance to the economic wellbeing of Pakistan. The irrigated agriculture made possible by Indus river runoff underpins the food security for Pakistan's nearly 200 million people. Contributions from hydropower account for more than one fifth of peak installed electrical generating capacity in a country where widespread, prolonged load-shedding handicaps business activity and industrial development. Pakistan's further socio-economic development thus depends largely on optimisation of its precious water resources. Confident, accurate seasonal predictions of water resource availability coupled with sound understanding of interannual variability are urgent insights needed by development planners and infrastructure managers at all levels. This study focuses on the challenge of providing meaningful quantitative information at the village/valley scale in the upper reaches of the UIB. Proceeding by progressive reductions in scale, the typology of the observed UIB hydrological regimes -- glacial, nival and pluvial -- are examined with special emphasis on interannual variability for individual seasons. Variations in discharge (runoff) are compared to observations of climate parameters (temperature, precipitation) and available spatial data (elevation, snow cover and snow-water-equivalent). The first scale presented is composed of the large-scale, long-record gauged UIB tributary basins. The Pakistan Water and Power Development Authority (WAPDA) has maintained these stations for several decades in order to monitor seasonal flows and accumulate data for design of further infrastructure. Data from basins defined by five gauging stations on the Indus, Hunza, Gilgit and Astore rivers are examined. The second scale presented is a set of smaller gauged headwater catchments with short records. These gauges were installed by WAPDA and its partners amongst the international development agencies to assess potential

  1. Na-Cl-Br systematics of fluid inclusions from Mississippi Valley-type deposits, Appalachian Basin: Constraints on solute origin and migration paths

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, S.E.; Martini, A.M.; Appold, M.S.; Walter, L.M.; Huston, T.J. [Univ. of Michigan, Ann Arbor, MI (United States); Furman, F.C. [Univ. of Missouri, Rolla, MO (United States)

    1996-01-01

    This study evaluated Na-Cl-Br systematics of fluid inclusion-hosted brines in Mississippi Valley-type (MVT) deposits from the Appalachian Basin. Unlike other geochemical tracers such as lead and strontium isotopes which constrain metal sources, Na-Cl-Br systematics identify sources of brine salinity. Saline formation waters can vary systematically within and between basins with regard to their Na-Cl-Br compositions depending on the importance of halite dissolution relative to retention of subaerially evaporated seawater for the halogen budget. Oil field brine compositions from the Illinois and Appalachian basins are quite distinct in their Na-Cl-Br systematics. Compositions of saline fluid inclusions in MVT deposits generally are consistent with these regional differences. These results shed new light on the extent of regional flow systems and on the geochemical evolution of saline fluids responsible for mineralization. Nearly all fluid inclusions analyzed from the Appalachian MVT deposits have Na/Br and Cl/Br ratios less than modern seawater, consistent with ratios observed in marine brines involved in halite precipitation. The Na-Cl-Br systematics of the brines responsible for Appalachian MVT deposits may be inherited from original marine brines refluxed into the porous carbonate shelf sediments that host these deposits. The Cl/Br and Na/Br ratios of most fluid inclusion-hosted brines from Appalachian MVT sphalerites and fluorites fall into two compositional groups, one from the Lower Cambrian paleoaquifer and another from the Lower Ordovician paleoaquifer. Leachates from most MVT barite deposits form a third compositional group having lower Na/Br and Cl/Br ratios than the other two. Appalachian MVT leachate compositions differ significantly from those in MVT deposits in the Cincinnati arch-midcontinent region suggesting that these two MVT provinces formed from brines of different origin or flow path. 59 refs., 8 figs., 2 tabs.

  2. Study on the reliability of the underground conveyor belt system installed at Vulcan Mine, the Jiu Valley Basin in Romania

    Directory of Open Access Journals (Sweden)

    Tomuș Ovidiu-Bogdan

    2017-01-01

    Full Text Available The paper deals with a comprehensive reliability analysis of the conveyor belts belonging to an underground coal mine in the Jiu Valley, Romania. As resulted from the mine management reports, the transportation system is responsible for many downtimes and is a real bottleneck in the constant and adequate production, and the suspicion is the weak state of belt conveyers, which are the spinal column of the extraction process. For this reason, a comprehensive reliability analysis has been decided, in order to deliver a maintenance-upgrading plan.

  3. Chapter 7. The GIS project for the geologic assessment of undiscovered oil and gas in the Cotton Valley group and Travis Peak and Hosston formations, East Texas basin and Louisiana-Mississippi salt basins provinces.

    Science.gov (United States)

    Biewick, Laura

    2006-01-01

    A geographic information system (GIS) focusing on the Upper Jurassic-Lower Cretaceous Cotton Valley Group and the Lower Cretaceous Travis Peak and Hosston Formations in the northern Gulf Coast region was developed as a visual-analysis tool for the U.S. Geological Survey's 2002 assessment of undiscovered, technically recoverable oil and natural gas resources in the East Texas Basin and Louisiana-Mississippi Salt Basins Provinces. The Central Energy Resources Team of the U.S. Geological Survey has also developed an Internet Map Service to deliver the GIS data to the public. This mapping tool utilizes information from a database about the oil and natural gas endowment of the United States-including physical locations of geologic and geographic data-and converts the data into visual layers. Portrayal and analysis of geologic features on an interactive map provide an excellent tool for understanding domestic oil and gas resources for strategic planning, formulating economic and energy policies, evaluating lands under the purview of the Federal Government, and developing sound environmental policies. Assessment results can be viewed and analyzed or downloaded from the internet web site, http://energy.cr.usgs.gov/oilgas/noga/ .

  4. An inverted continental Moho and serpentinization of the forearc mantle.

    Science.gov (United States)

    Bostock, M G; Hyndman, R D; Rondenay, S; Peacock, S M

    2002-05-30

    Volatiles that are transported by subducting lithospheric plates to depths greater than 100 km are thought to induce partial melting in the overlying mantle wedge, resulting in arc magmatism and the addition of significant quantities of material to the overlying lithosphere. Asthenospheric flow and upwelling within the wedge produce increased lithospheric temperatures in this back-arc region, but the forearc mantle (in the corner of the wedge) is thought to be significantly cooler. Here we explore the structure of the mantle wedge in the southern Cascadia subduction zone using scattered teleseismic waves recorded on a dense portable array of broadband seismometers. We find very low shear-wave velocities in the cold forearc mantle indicated by the exceptional occurrence of an 'inverted' continental Moho, which reverts to normal polarity seaward of the Cascade arc. This observation provides compelling evidence for a highly hydrated and serpentinized forearc region, consistent with thermal and petrological models of the forearc mantle wedge. This serpentinized material is thought to have low strength and may therefore control the down-dip rupture limit of great thrust earthquakes, as well as the nature of large-scale flow in the mantle wedge.

  5. Subduction zone forearc serpentinites as incubators for deep microbial life

    Science.gov (United States)

    Plümper, Oliver; King, Helen E.; Geisler, Thorsten; Liu, Yang; Pabst, Sonja; Savov, Ivan P.; Rost, Detlef; Zack, Thomas

    2017-04-01

    Serpentinization-fueled systems in the cool, hydrated forearc mantle of subduction zones may provide an environment that supports deep chemolithoautotrophic life. Here, we examine serpentinite clasts expelled from mud volcanoes above the Izu-Bonin-Mariana subduction zone forearc (Pacific Ocean) that contain complex organic matter and nanosized Ni-Fe alloys. Using time-of-flight secondary ion mass spectrometry and Raman spectroscopy, we determined that the organic matter consists of a mixture of aliphatic and aromatic compounds and functional groups such as amides. Although an abiotic or subduction slab-derived fluid origin cannot be excluded, the similarities between the molecular signatures identified in the clasts and those of bacteria-derived biopolymers from other serpentinizing systems hint at the possibility of deep microbial life within the forearc. To test this hypothesis, we coupled the currently known temperature limit for life, 122 °C, with a heat conduction model that predicts a potential depth limit for life within the forearc at ˜10,000 m below the seafloor. This is deeper than the 122 °C isotherm in known oceanic serpentinizing regions and an order of magnitude deeper than the downhole temperature at the serpentinized Atlantis Massif oceanic core complex, Mid-Atlantic Ridge. We suggest that the organic-rich serpentinites may be indicators for microbial life deep within or below the mud volcano. Thus, the hydrated forearc mantle may represent one of Earth’s largest hidden microbial ecosystems. These types of protected ecosystems may have allowed the deep biosphere to thrive, despite violent phases during Earth’s history such as the late heavy bombardment and global mass extinctions.

  6. Subduction zone forearc serpentinites as incubators for deep microbial life.

    Science.gov (United States)

    Plümper, Oliver; King, Helen E; Geisler, Thorsten; Liu, Yang; Pabst, Sonja; Savov, Ivan P; Rost, Detlef; Zack, Thomas

    2017-04-25

    Serpentinization-fueled systems in the cool, hydrated forearc mantle of subduction zones may provide an environment that supports deep chemolithoautotrophic life. Here, we examine serpentinite clasts expelled from mud volcanoes above the Izu-Bonin-Mariana subduction zone forearc (Pacific Ocean) that contain complex organic matter and nanosized Ni-Fe alloys. Using time-of-flight secondary ion mass spectrometry and Raman spectroscopy, we determined that the organic matter consists of a mixture of aliphatic and aromatic compounds and functional groups such as amides. Although an abiotic or subduction slab-derived fluid origin cannot be excluded, the similarities between the molecular signatures identified in the clasts and those of bacteria-derived biopolymers from other serpentinizing systems hint at the possibility of deep microbial life within the forearc. To test this hypothesis, we coupled the currently known temperature limit for life, 122 °C, with a heat conduction model that predicts a potential depth limit for life within the forearc at ∼10,000 m below the seafloor. This is deeper than the 122 °C isotherm in known oceanic serpentinizing regions and an order of magnitude deeper than the downhole temperature at the serpentinized Atlantis Massif oceanic core complex, Mid-Atlantic Ridge. We suggest that the organic-rich serpentinites may be indicators for microbial life deep within or below the mud volcano. Thus, the hydrated forearc mantle may represent one of Earth's largest hidden microbial ecosystems. These types of protected ecosystems may have allowed the deep biosphere to thrive, despite violent phases during Earth's history such as the late heavy bombardment and global mass extinctions.

  7. Status of groundwater quality in the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit, 2008-2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Parsons, Mary C.; Hancock, Tracy Connell; Kulongoski, Justin T.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the approximately 963-square-mile Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in southern California in San Bernardino, Riverside, San Diego, and Imperial Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The GAMA Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected by the U.S. Geological Survey from 52 wells (49 grid wells and 3 understanding wells) and on water-quality data from the California Department of Public Health database. The primary aquifer system was defined by the depth intervals of the wells listed in the California Department of Public Health database for the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifer system of the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit, not the

  8. Petrology of forearc basalt-related isotropic gabbros from the Bonin Ridge, Izu-Bonin forearc

    Science.gov (United States)

    Garcia, S. E.; Loocke, M. P.; Snow, J. E.

    2017-12-01

    The early arc volcanic rocks exposed on the Bonin Ridge (BR), a large forearc massif in the Izu-Bonin arc, have provided us with a natural laboratory for the study of subduction initiation and early arc development. The BR has been the subject of focused sampling by way of dredging, diving, and drilling (IODP EXP352) expeditions which have revealed a composite stratigraphy consisting, from bottom to top, of intercalated peridotites and gabbros, isotropic gabbros, sheeted dykes, and a lava sequence which transitions from forearc basalt (FAB) to more arc-like volcanics up section. Although little has been published regarding the moho-transition zone rocks of the BR in comparison to the volcanic rocks, even less work has been published regarding the isotropic gabbros recovered in close association with FABs. Ishizuka et al. (2011) determined that the isotropic gabbros are compositionally and temporally related to the FABs. We provide the first petrologic characterization, including petrography and electron probe microanalysis, of a suite of FAB-related gabbros recovered by dredge D42 of the 2007 R/V Hakuho Maru KH07-02 dredging cruise. Preliminary petrographic observations of the fourteen thin sections reveal that all of the samples contain variable amounts of relict orthopyroxene and consist of five disseminated oxide gabbros, 5 oxide gabbros, and 2 gabbros. We note that all of the D42 gabbros exhibit strong textural variability akin to the varitextured gabbros described in the dyke-gabbro transition of ophiolites (e.g., MacLeod and Yaouancq, 2000). Geochemical data from this critically understudied horizon have the potential to inform regarding the nature of crustal accretion during subduction initiation and the formation, migration, and evolution of FABs. Further, with many authors comparing the volcanic record and crustal stratigraphy of the BR to ophiolites (e.g., Ishizuka et al., 2014), these data would provide another in situ analogue for comparison with the

  9. Structural imprints at the front of the Chocó-Panamá indenter: Field data from the North Cauca Valley Basin, Central Colombia

    Science.gov (United States)

    Suter, F.; Sartori, M.; Neuwerth, R.; Gorin, G.

    2008-11-01

    The northern Andes are a complex area where tectonics is dominated by the interaction between three major plates and accessory blocks, in particular, the Chocó-Panamá and Northern Andes Blocks. The studied Cauca Valley Basin is located at the front of the Chocó-Panamá Indenter, where the major Romeral Fault System, active since the Cretaceous, changes its kinematics from right-lateral in the south to left-lateral in the north. Structural studies were performed at various scales: DEM observations in the Central Cordillera between 4 and 5.7°N, aerial photograph analyses, and field work in the folded Oligo-Miocene rocks of the Serranía de Santa Barbara and in the flat-lying, Pleistocene Quindío-Risaralda volcaniclastic sediments interfingering with the lacustrine to fluviatile sediments of the Zarzal Formation. The data acquired allowed the detection of structures with a similar orientation at every scale and in all lithologies. These families of structures are arranged similarly to Riedel shears in a right-lateral shear zone and are superimposed on the Cretaceous Romeral suture. They appear in the Central Cordillera north of 4.5°N, and define a broad zone where 060-oriented right-lateral distributed shear strain affects the continental crust. The Romeral Fault System stays active and strain partitioning occurs among both systems. The southern limit of the distributed shear strain affecting the Central Cordillera corresponds to the E-W trending Garrapatas-Ibagué shear zone, constituted by several right-stepping, en-échelon, right-lateral, active faults and some lineaments. North of this shear zone, the Romeral Fault System strike changes from NNE to N. Paleostress calculations gave a WNW-ESE trending, maximum horizontal stress, and 69% of compressive tensors. The orientation of σ1 is consistent with the orientation of the right-lateral distributed shear strain and the compressive state characterizing the Romeral Fault System in the area: it bisects the

  10. Ground-water flow and simulated effects of development in Paradise Valley, a basin tributary to the Humboldt River in Humboldt County, Nevada

    Science.gov (United States)

    Prudic, David E.; Herman, M.E.

    1996-01-01

    A computer model was used to characterize ground-water flow in Paradise Valley, Nevada, and to evaluate probable long-term effects of five hypothetical development scenarios. One finding of the study is that concentrating pumping at the south end of Paradise Valley may increase underflow from the adjacent Humboldt River valley, and might affect flow in the river.

  11. The Origin of Carbon-bearing Volatiles in Surprise Valley Hot Springs in the Great Basin: Carbon Isotope and Water Chemistry Characterizations

    Science.gov (United States)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.; Romanek, Christopher; Datta, Saugata; Darnell, Mike; Bissada, Adry K.

    2013-01-01

    There are numerous hydrothermal fields within the Great Basin of North America, some of which have been exploited for geothermal resources. With methane and other carbon-bearing compounds being observed, in some cases with high concentrations, however, their origins and formation conditions remain unknown. Thus, studying hydrothermal springs in this area provides us an opportunity to expand our knowledge of subsurface (bio)chemical processes that generate organic compounds in hydrothermal systems, and aid in future development and exploration of potential energy resources as well. While isotope measurement has long been used for recognition of their origins, there are several secondary processes that may generate variations in isotopic compositions: oxidation, re-equilibration of methane and other alkanes with CO2, mixing with compounds of other sources, etc. Therefore, in addition to isotopic analysis, other evidence, including water chemistry and rock compositions, are necessary to identify volatile compounds of different sources. Surprise Valley Hot Springs (SVHS, 41 deg 32'N, 120 deg 5'W), located in a typical basin and range province valley in northeastern California, is a terrestrial hydrothermal spring system of the Great Basin. Previous geophysical studies indicated the presence of clay-rich volcanic and sedimentary rocks of Tertiary age beneath the lava flows in late Tertiary and Quaternary. Water and gas samples were collected for a variety of chemical and isotope composition analyses, including in-situ pH, alkalinity, conductivity, oxidation reduction potential (ORP), major and trace elements, and C and H isotope measurements. Fluids issuing from SVHS can be classified as Na-(Cl)-SO4 type, with the major cation and anion being Na+ and SO4(2-), respectively. Thermodynamic calculation using ORP and major element data indicated that sulfate is the most dominant sulfur species, which is consistent with anion analysis results. Aquifer temperatures at depth

  12. The Origin of Carbon-bearing Volatiles in Surprise Valley Hot Springs in the Great Basin: Carbon Isotope aud Water Chemistry Characterizations

    Science.gov (United States)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.; Romanek, Christopher; Datta, Saugata; Darnell, Mike; Bissada, Adry K.

    2013-01-01

    There are numerous hydrothermal fields within the Great Basin of North America, some of which have been exploited for geothermal resources. With methane and other carbon-bearing compounds being observed, in some cases with high concentrations, however, their origins and formation conditions remain unknown. Thus, studying hydrothermal springs in this area provides us an opportunity to expand our knowledge of subsurface (bio)chemical processes that generate organic compounds in hydrothermal systems, and aid in future development and exploration of potential energy resources as well. While isotope measurement has long been used for recognition of their origins, there are several secondary processes that may generate variations in isotopic compositions: oxidation, re-equilibration of methane and other alkanes with CO2, mixing with compounds of other sources, etc. Therefore, in addition to isotopic analysis, other evidence, including water chemistry and rock compositions, are necessary to identify volatile compounds of different sources. Surprise Valley Hot Springs (SVHS, 41º32'N, 120º5'W), located in a typical basin and range province valley in northeastern California, is a terrestrial hydrothermal spring system of the Great Basin. Previous geophysical studies indicated the presence of clay-rich volcanic and sedimentary rocks of Tertiary age beneath the lava flows in late Tertiary and Quaternary. Water and gas samples were collected for a variety of chemical and isotope composition analyses, including in-situ pH, alkalinity, conductivity, oxidation reduction potential (ORP), major and trace elements, and C and H isotope measurements. Fluids issuing from SVHS can be classified as Na-(Cl)-SO4 type, with the major cation and anion being Na+ and SO4 2-, respectively. Thermodynamic calculation using ORP and major element data indicated that sulfate is the most dominant sulfur species, which is consistent with anion analysis results. Aquifer temperatures at depth estimated

  13. Physical properties of fore-arc basalt and boninite in Izu-Bonin-Mariana forearc recovered by IODP Expedition 352

    Science.gov (United States)

    Honda, M.; Michibayashi, K.; Almeev, R. R.; Christeson, G. L.; Sakuyama, T.; Yamamoto, Y.; Watanabe, T.

    2016-12-01

    The Izu-Bonin-Mariana (IBM) arc is a typical intraoceanic arc system and is the type locality for subduction initiation. IODP-IBM project is aimed to understand subduction initiation, arc evolution, and continental crust formation. Expedition 352 is one of the IBM projects and that has drilled four sites at the IBM fore-arc. Expedition 352 has successfully recovered fore-arc basalts and boninites related to seafloor spreading during the subduction initiation as well as the earliest arc development. The fore-arc basalts were recovered from two sites (U1440 and U1441) at the deeper trench slope to the east, whereas the boninites were recovered from two sites (U1439 and U1442) at the shallower slope to the west. In this study, we studied textures and physical properties of both the fore-arc basalt and the boninite samples recovered by IODP Expedition 352. The fore-arc basalt samples showed aphyric texture, whereas the boninites showed hyaloclastic, aphyric and porphyritic textures. For the physical properties, we measured density, porosity, P-wave velocity and anisotropy of magnetic susceptibility. P-wave velocities were measured under ordinary and confining pressure. As a result, the densities are in a range between 2 g/cm3 and 3 g/cm3. The porosities are in a range between 5 % and 40 %. The P-wave velocities are in a wide range from 3 km/s to 5.5 km/s and have a positive correlation to the densities. The magnetic susceptibilities showed bimodal distributions so that the physical properties were classified into two groups: a high magnetic susceptibility group (>5×10-3) and a low magnetic susceptibility group (<5×10-3). The high magnetic susceptibility group is almost identical with the fore-arc basalt and boninite samples with the higher correlation trend between the P-wave velocities and the densities, whereas the low magnetic susceptibility group is only the boninite samples with the lower correlation trend between the P-wave velocities and the densities. It

  14. The sero-epidemiology of Rift Valley fever in people in the Lake Victoria Basin of western Kenya.

    Directory of Open Access Journals (Sweden)

    Elizabeth Anne Jessie Cook

    2017-07-01

    Full Text Available Rift Valley fever virus (RVFV is a zoonotic arbovirus affecting livestock and people. This study was conducted in western Kenya where RVFV outbreaks have not previously been reported. The aims were to document the seroprevalence and risk factors for RVFV antibodies in a community-based sample from western Kenya and compare this with slaughterhouse workers in the same region who are considered a high-risk group for RVFV exposure. The study was conducted in western Kenya between July 2010 and November 2012. Individuals were recruited from randomly selected homesteads and a census of slaughterhouses. Structured questionnaire tools were used to collect information on demographic data, health, and risk factors for zoonotic disease exposure. Indirect ELISA on serum samples determined seropositivity to RVFV. Risk factor analysis for RVFV seropositivity was conducted using multi-level logistic regression. A total of 1861 individuals were sampled in 384 homesteads. The seroprevalence of RVFV in the community was 0.8% (95% CI 0.5-1.3. The variables significantly associated with RVFV seropositivity in the community were increasing age (OR 1.2; 95% CI 1.1-1.4, p<0.001, and slaughtering cattle at the homestead (OR 3.3; 95% CI 1.0-10.5, p = 0.047. A total of 553 slaughterhouse workers were sampled in 84 ruminant slaughterhouses. The seroprevalence of RVFV in slaughterhouse workers was 2.5% (95% CI 1.5-4.2. Being the slaughterman, the person who cuts the animal's throat (OR 3.5; 95% CI 1.0-12.1, p = 0.047, was significantly associated with RVFV seropositivity. This study investigated and compared the epidemiology of RVFV between community members and slaughterhouse workers in western Kenya. The data demonstrate that slaughtering animals is a risk factor for RVFV seropositivity and that slaughterhouse workers are a high-risk group for RVFV seropositivity in this environment. These risk factors have been previously reported in other studies providing further

  15. The sero-epidemiology of Rift Valley fever in people in the Lake Victoria Basin of western Kenya.

    Science.gov (United States)

    Cook, Elizabeth Anne Jessie; Grossi-Soyster, Elysse Noel; de Glanville, William Anson; Thomas, Lian Francesca; Kariuki, Samuel; Bronsvoort, Barend Mark de Clare; Wamae, Claire Njeri; LaBeaud, Angelle Desiree; Fèvre, Eric Maurice

    2017-07-01

    Rift Valley fever virus (RVFV) is a zoonotic arbovirus affecting livestock and people. This study was conducted in western Kenya where RVFV outbreaks have not previously been reported. The aims were to document the seroprevalence and risk factors for RVFV antibodies in a community-based sample from western Kenya and compare this with slaughterhouse workers in the same region who are considered a high-risk group for RVFV exposure. The study was conducted in western Kenya between July 2010 and November 2012. Individuals were recruited from randomly selected homesteads and a census of slaughterhouses. Structured questionnaire tools were used to collect information on demographic data, health, and risk factors for zoonotic disease exposure. Indirect ELISA on serum samples determined seropositivity to RVFV. Risk factor analysis for RVFV seropositivity was conducted using multi-level logistic regression. A total of 1861 individuals were sampled in 384 homesteads. The seroprevalence of RVFV in the community was 0.8% (95% CI 0.5-1.3). The variables significantly associated with RVFV seropositivity in the community were increasing age (OR 1.2; 95% CI 1.1-1.4, p<0.001), and slaughtering cattle at the homestead (OR 3.3; 95% CI 1.0-10.5, p = 0.047). A total of 553 slaughterhouse workers were sampled in 84 ruminant slaughterhouses. The seroprevalence of RVFV in slaughterhouse workers was 2.5% (95% CI 1.5-4.2). Being the slaughterman, the person who cuts the animal's throat (OR 3.5; 95% CI 1.0-12.1, p = 0.047), was significantly associated with RVFV seropositivity. This study investigated and compared the epidemiology of RVFV between community members and slaughterhouse workers in western Kenya. The data demonstrate that slaughtering animals is a risk factor for RVFV seropositivity and that slaughterhouse workers are a high-risk group for RVFV seropositivity in this environment. These risk factors have been previously reported in other studies providing further evidence for RVFV

  16. On the Relationship of Dynamic Forearc Processes in Southern Peru to the Development and Preservation of Andean Topography

    Science.gov (United States)

    Hall, S. R.; Farber, D. L.; Audin, L.; Saillard, M.; Finkel, R. C.

    2008-12-01

    After more than 40 years of study, the timing and nature of Andean uplift remains an area of great scientific debate. The forearc of the Andean margin is of particular neotectonic interest, as previous models of Andean orogenesis attributed little-no Neogene deformation to the western margin of Altiplano. However, using the combination of remote sensing with high-resolution data, in situ cosmogenic isotope concentrations and thermochronology, in recent years the community has made important advances in addressing the rates, timings, styles, and locations of active deformation within the forearc of the Andean margin. To first order, we find that - both in terms of tectonics and climate - since 10Ma, the Andean forearc has been quite a dynamic region. Neotectonic studies in this region have been facilitated by the high degree of geomorphic surface preservation that the hyperarid (for at least the last 3My) coastal Atacama Desert has provided. Specifically, in southern Peru (14°-18°S), vast pediment surfaces have been abandoned through incision along the major river drainages that carve the deep canyons into the Precordillera and Western Cordillera. While the exact timing of the periods of more intense incision plausibly correspond with climate events, the total amount of incision integrated over many climate cycles is a useful indicator of tectonic activity. In this region, we find a number of geomorphic and structural features that provide strong evidence for distributed crustal deformation along range-sub-parallel contractile and strike-slip structures. Specifically, we see 1) ancient surfaces reflecting erosion rates as low as chronologies, and 6) Pleistocene mass-wasting events accommodating the redistribution of ~109-1010 m3 of material per event. Furthermore, the observation that Pleistocene incision rates are comparable with Late Miocene and Pliocene rates, suggests to us, that the rates and style of surface uplift within the forearc of southern Peru has

  17. The Costs of Benefit Sharing: Historical and Institutional Analysis of Shared Water Development in the Ferghana Valley, the Syr Darya Basin

    Directory of Open Access Journals (Sweden)

    Ilkhom Soliev

    2015-06-01

    Full Text Available Ongoing discussions on water-energy-food nexus generally lack a historical perspective and more rigorous institutional analysis. Scrutinizing a relatively mature benefit sharing approach in the context of transboundary water management, the study shows how such analysis can be implemented to facilitate understanding in an environment of high institutional and resource complexity. Similar to system perspective within nexus, benefit sharing is viewed as a positive sum approach capable of facilitating cooperation among riparian parties by shifting the focus from the quantities of water to benefits derivable from its use and allocation. While shared benefits from use and allocation are logical corollary of the most fundamental principles of international water law, there are still many controversies as to the conditions under which benefit sharing could serve best as an approach. Recently, the approach has been receiving wider attention in the literature and is increasingly applied in various basins to enhance negotiations. However, relatively little attention has been paid to the costs associated with benefit sharing, particularly in the long run. The study provides a number of concerns that have been likely overlooked in the literature and examines the approach in the case of the Ferghana Valley shared by Kyrgyzstan, Tajikistan and Uzbekistan utilizing data for the period from 1917 to 2013. Institutional analysis traces back the origins of property rights of the transboundary infrastructure, shows cooperative activities and fierce negotiations on various governance levels. The research discusses implications of the findings for the nexus debate and unveils at least four types of costs associated with benefit sharing: (1 Costs related to equity of sharing (horizontal and vertical; (2 Costs to the environment; (3 Transaction costs and risks of losing water control; and (4 Costs as a result of likely misuse of issue linkages.

  18. Chemistry and isotopic composition of precipitation and surface waters in Khumbu valley (Nepal Himalaya): N dynamics of high elevation basins.

    Science.gov (United States)

    Balestrini, Raffaella; Polesello, Stefano; Sacchi, Elisa

    2014-07-01

    We monitored the chemical and isotopic compositions of wet depositions, at the Pyramid International Laboratory (5050 ma.s.l.), and surrounding surface waters, in the Khumbu basin, to understand precipitation chemistry and to obtain insights regarding ecosystem responses to atmospheric inputs. The major cations in the precipitation were NH4(+) and Ca(2+), whereas the main anion was HCO3(-), which constituted approximately 69% of the anions, followed by NO3(-), SO4(2-) and Cl(-). Data analysis suggested that Na(+), Cl(-) and K(+) were derived from the long-range transport of marine aerosols. Ca(2+), Mg(2+) and HCO3(-) were related to rock and soil dust contributions and the NO3(-) and SO4(2-) concentrations were derived from anthropogenic sources. Furthermore, NH4(+) was derived from gaseous NH3 scavenging. The isotopic composition of weekly precipitation ranged from -1.9 to -23.2‰ in δ(18)O, and from -0.8 to -174‰ in δ(2)H, with depleted values characterizing the central part of the monsoon period. The chemical composition of the stream water was dominated by calcite and/or gypsum dissolution. However, the isotopic composition of the stream water did not fully reflect the composition of the monsoon precipitation, which suggested that other water sources contributed to the stream flow. Precipitation contents for all ions were the lowest ones among those measured in high elevation sites around the world. During the monsoon periods the depositions were not substantially influenced by anthropogenic inputs, while in pre- and post-monsoon seasons the Himalayas could not represent an effective barrier for airborne pollution. In the late monsoon phase, the increase of ionic contents in precipitation could also be due to a change in the moisture source. The calculated atmospheric N load (0.30 kg ha(-1) y(-1)) was considerably lower than the levels that were measured in other high-altitude environments. Nevertheless, the NO3(-) concentrations in the surface waters

  19. Chemistry and isotopic composition of precipitation and surface waters in Khumbu valley (Nepal Himalaya): N dynamics of high elevation basins

    International Nuclear Information System (INIS)

    Balestrini, Raffaella; Polesello, Stefano; Sacchi, Elisa

    2014-01-01

    We monitored the chemical and isotopic compositions of wet depositions, at the Pyramid International Laboratory (5050 m a.s.l.), and surrounding surface waters, in the Khumbu basin, to understand precipitation chemistry and to obtain insights regarding ecosystem responses to atmospheric inputs. The major cations in the precipitation were NH 4 + and Ca 2+ , whereas the main anion was HCO 3 − , which constituted approximately 69% of the anions, followed by NO 3 − , SO 4 2− and Cl − . Data analysis suggested that Na + , Cl − and K + were derived from the long-range transport of marine aerosols. Ca 2+ , Mg 2+ and HCO 3 − were related to rock and soil dust contributions and the NO 3 − and SO 4 2− concentrations were derived from anthropogenic sources. Furthermore, NH 4 + was derived from gaseous NH 3 scavenging. The isotopic composition of weekly precipitation ranged from − 1.9 to − 23.2‰ in δ 18 O, and from − 0.8 to − 174‰ in δ 2 H, with depleted values characterizing the central part of the monsoon period. The chemical composition of the stream water was dominated by calcite and/or gypsum dissolution. However, the isotopic composition of the stream water did not fully reflect the composition of the monsoon precipitation, which suggested that other water sources contributed to the stream flow. Precipitation contents for all ions were the lowest ones among those measured in high elevation sites around the world. During the monsoon periods the depositions were not substantially influenced by anthropogenic inputs, while in pre- and post-monsoon seasons the Himalayas could not represent an effective barrier for airborne pollution. In the late monsoon phase, the increase of ionic contents in precipitation could also be due to a change in the moisture source. The calculated atmospheric N load (0.30 kg ha −1 y −1 ) was considerably lower than the levels that were measured in other high-altitude environments. Nevertheless, the NO 3

  20. Chemistry and isotopic composition of precipitation and surface waters in Khumbu valley (Nepal Himalaya): N dynamics of high elevation basins

    Energy Technology Data Exchange (ETDEWEB)

    Balestrini, Raffaella, E-mail: balestrini@irsa.cnr.it [Water Research Institute, National Research Council (IRSA-CNR), Via del Mulino 19, Brugherio, MB (Italy); Polesello, Stefano [Water Research Institute, National Research Council (IRSA-CNR), Via del Mulino 19, Brugherio, MB (Italy); Sacchi, Elisa [Department of Earth and Environmental Sciences, University of Pavia and IGG-CNR, Via Ferrata 1, 27100 Pavia (Italy)

    2014-07-01

    We monitored the chemical and isotopic compositions of wet depositions, at the Pyramid International Laboratory (5050 m a.s.l.), and surrounding surface waters, in the Khumbu basin, to understand precipitation chemistry and to obtain insights regarding ecosystem responses to atmospheric inputs. The major cations in the precipitation were NH{sub 4}{sup +} and Ca{sup 2+}, whereas the main anion was HCO{sub 3}{sup −}, which constituted approximately 69% of the anions, followed by NO{sub 3}{sup −}, SO{sub 4}{sup 2−} and Cl{sup −}. Data analysis suggested that Na{sup +}, Cl{sup −} and K{sup +} were derived from the long-range transport of marine aerosols. Ca{sup 2+}, Mg{sup 2+} and HCO{sub 3}{sup −} were related to rock and soil dust contributions and the NO{sub 3}{sup −} and SO{sub 4}{sup 2−} concentrations were derived from anthropogenic sources. Furthermore, NH{sub 4}{sup +} was derived from gaseous NH{sub 3} scavenging. The isotopic composition of weekly precipitation ranged from − 1.9 to − 23.2‰ in δ{sup 18}O, and from − 0.8 to − 174‰ in δ{sup 2}H, with depleted values characterizing the central part of the monsoon period. The chemical composition of the stream water was dominated by calcite and/or gypsum dissolution. However, the isotopic composition of the stream water did not fully reflect the composition of the monsoon precipitation, which suggested that other water sources contributed to the stream flow. Precipitation contents for all ions were the lowest ones among those measured in high elevation sites around the world. During the monsoon periods the depositions were not substantially influenced by anthropogenic inputs, while in pre- and post-monsoon seasons the Himalayas could not represent an effective barrier for airborne pollution. In the late monsoon phase, the increase of ionic contents in precipitation could also be due to a change in the moisture source. The calculated atmospheric N load (0.30 kg ha{sup −1} y{sup −1

  1. Status and understanding of groundwater quality in the two southern San Joaquin Valley study units, 2005-2006 - California GAMA Priority Basin Project

    Science.gov (United States)

    Burton, Carmen A.; Shelton, Jennifer L.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the southern San Joaquin Valley was investigated from October 2005 through March 2006 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. There are two study units located in the southern San Joaquin Valley: the Southeast San Joaquin Valley (SESJ) study unit and the Kern County Subbasin (KERN) study unit. The GAMA Priority Basin Project in the SESJ and KERN study units was designed to provide a statistically unbiased, spatially distributed assessment of untreated groundwater quality within the primary aquifers. The status assessment is based on water-quality and ancillary data collected in 2005 and 2006 by the USGS from 130 wells on a spatially distributed grid, and water-quality data from the California Department of Public Health (CDPH) database. Data was collected from an additional 19 wells for the understanding assessment. The aquifer systems (hereinafter referred to as primary aquifers) were defined as that part of the aquifer corresponding to the perforation interval of wells listed in the CDPH database for the SESJ and KERN study units. The status assessment of groundwater quality used data from samples analyzed for anthropogenic constituents such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents such as major ions and trace elements. The status assessment is intended to characterize the quality of untreated groundwater resources within the primary aquifers in the SESJ and KERN study units, not the quality of drinking water delivered to consumers. Although the status assessment applies to untreated groundwater, Federal and California regulatory and non-regulatory water-quality benchmarks that apply to drinking water are used

  2. Large-scale slope failure and active erosion occurring in the southwest Ryukyu fore-arc area

    Directory of Open Access Journals (Sweden)

    T. Matsumoto

    2001-01-01

    Full Text Available The southwestern Ryukyu area east of Taiwan Island is an arcuate boundary between Philippine Sea Plate and Eurasian Plate. The topographic features in the area are characterised by (1 a large-scale amphitheatre off Ishigaki Island, just on the estimated epicentre of the tsunamigenic earthquake in 1771, (2 lots of deep sea canyons located north of the amphitheatre, (3 15–20 km wide fore-arc basin, (4 15–20 km wide flat plane in the axial area of the trench, (5 E-W trending half grabens located on the fore-arc area, etc., which were revealed by several recent topographic survey expeditions. The diving survey by SHINKAI6500 in the fore-arc area on a spur located 120 km south of Ishigaki Island was carried out in 1992. The site is characterised dominantly by rough topography consisting of a series of steep slopes and escarpments. A part of the surface is eroded due to the weight of the sediment itself and consequently the basement layer is exposed. The site was covered with suspended particles during the diving, due to the present surface sliding and erosion. The same site was resurveyed in 1997 by ROV KAIKO, which confirmed the continuous slope failure taking place in the site. Another example that was observed by KAIKO expedition in 1997 is a largescale mud block on the southward dipping slope 80 km south of Ishigaki Island. This is apparently derived from the shallower part of the steep slope on the southern edge of the fan deposit south of Ishigaki Island. The topographic features suggest N-S or NE-SW tensional stress over the whole study area. In this sense, the relative motion between the two plates in this area is oblique to the plate boundary. So, the seaward migration of the plate boundary may occur due to the gravitational instability at the boundary of the two different lithospheric structures. This is evidenced by a lack of accretionary sediment on the fore-arc and the mechanism of a recent earthquake which occurred on 3 May 1998 in

  3. Status and understanding of groundwater quality in the Bear Valley and Lake Arrowhead Watershed Study Unit, 2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Mathany, Timothy; Burton, Carmen

    2017-06-20

    Groundwater quality in the 112-square-mile Bear Valley and Lake Arrowhead Watershed (BEAR) study unit was investigated as part of the Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit comprises two study areas (Bear Valley and Lake Arrowhead Watershed) in southern California in San Bernardino County. The GAMA-PBP is conducted by the California State Water Resources Control Board (SWRCB) in cooperation with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory.The GAMA BEAR study was designed to provide a spatially balanced, robust assessment of the quality of untreated (raw) groundwater from the primary aquifer systems in the two study areas of the BEAR study unit. The assessment is based on water-quality collected by the USGS from 38 sites (27 grid and 11 understanding) during 2010 and on water-quality data from the SWRCB-Division of Drinking Water (DDW) database. The primary aquifer system is defined by springs and the perforation intervals of wells listed in the SWRCB-DDW water-quality database for the BEAR study unit.This study included two types of assessments: (1) a status assessment, which characterized the status of the quality of the groundwater resource as of 2010 by using data from samples analyzed for volatile organic compounds, pesticides, and naturally present inorganic constituents, such as major ions and trace elements, and (2) an understanding assessment, which evaluated the natural and human factors potentially affecting the groundwater quality. The assessments were intended to characterize the quality of groundwater resources in the primary aquifer system of the BEAR study unit, not the treated drinking water delivered to consumers. Bear Valley study area and the Lake Arrowhead Watershed study area were also compared statistically on the basis of water-quality results and factors potentially affecting the groundwater quality.Relative concentrations (RCs

  4. Lower Cretaceous Xigaze ophiolites formed in the Gangdese forearc : Evidence from paleomagnetism, sediment provenance, and stratigraphy

    NARCIS (Netherlands)

    Huang, Wentao; van Hinsbergen, Douwe J J; Maffione, Marco; Orme, Devon A.; Dupont-Nivet, Guillaume; Guilmette, Carl; Ding, Lin; Guo, Zhaojie; Kapp, Paul

    2015-01-01

    The India-Asia suture zone of southern Tibet exposes Lower Cretaceous Xigaze ophiolites and radiolarian cherts, and time-equivalent Asian-derived clastic forearc sedimentary rocks (Xigaze Group). These ophiolites have been interpreted to have formed in the forearc of the north-dipping subduction

  5. Quantification and economic valuation of the capture of CO2 for Eucalyptus plantations, established by the Preca in the carboniferous Basins of Cesar, Cauca Valley, Cauca and Highland Cundiboyacense

    International Nuclear Information System (INIS)

    Diaz Fonseca, Sandra Ximena; Molano Morales, Miguel Angel

    2001-01-01

    This study, as first measure it looks for to quantify the tons of CO 2 captured by the increment in the biomass of forestall plantations of the Eucalyptus genus established by the PRECA of Ecocarbon in the carboniferous basins of the Cesar, Cauca Valley, Cauca and Highland Cundiboyacense and in second measure to determine the economic value that the sale of this environmental service can represent for a developing country as Colombia. The results obtained for each one of the plantations in each carboniferous basin are determined, and statistical models that will allow calculating the capture of CO 2 carried out by plantations of three different species of Eucalyptus (E. camaldulensis, e. grandis and E. globulus), starting from the volume in foot of the timber only barked

  6. Quantification and economic valuation of the capture of CO2 for plantations of the Eucalyptus, genus, settled down by the PRECA in the carboniferous basins of Cesar, Cauca Valley, Cauca and Cundiboyacense Highland

    International Nuclear Information System (INIS)

    Diaz F, Sandra Ximena; Molano M, Miguel Angel

    2001-01-01

    In this study, the first measure is to quantify the tons of CO 2 captured by the increment in the biomass of forest plantations of the Eucalyptus genus, settled down by the PRECA of Ecocarbon in the carboniferous basins of the Cesar, Cauca Valley, Cauca and Cundiboyacense highland and in second measure to determine the economic value that the sale of this environmental service can represent for a developing country as Colombia. The results obtained for each one of the plantations settled down in each carboniferous basin are determined and statistical models that will allow to calculate the capture of CO 2 carried out by plantations of three different species of Eucalyptus (E. Camaldulensis, E. grandis and E. globulus)

  7. Pesticides in Water and Suspended Sediment of the Alamo and New Rivers, Imperial Valley/Salton Sea Basin, California, 2006-2007

    Science.gov (United States)

    Orlando, James L.; Smalling, Kelly L.; Kuivila, Kathryn

    2008-01-01

    Water and suspended-sediment samples were collected at eight sites on the Alamo and New Rivers in the Imperial Valley/Salton Sea Basin of California and analyzed for both current-use and organochlorine pesticides by the U.S. Geological Survey. Samples were collected in the fall of 2006 and spring of 2007, corresponding to the seasons of greatest pesticide use in the basin. Large-volume water samples (up to 650 liters) were collected at each site and processed using a flow-through centrifuge to isolate suspended sediments. One-liter water samples were collected from the effluent of the centrifuge for the analysis of dissolved pesticides. Additional samples were collected for analysis of dissolved organic carbon and for suspended-sediment concentrations. Water samples were analyzed for a suite of 61 current-use and organochlorine pesticides using gas chromatography/mass spectrometry. A total of 25 pesticides were detected in the water samples, with seven pesticides detected in more than half of the samples. Dissolved concentrations of pesticides observed in this study ranged from below their respective method detection limits to 8,940 nanograms per liter (EPTC). The most frequently detected compounds in the water samples were chlorpyrifos, DCPA, EPTC, and trifluralin, which were observed in more than 75 percent of the samples. The maximum concentrations of most pesticides were detected in samples from the Alamo River. Maximum dissolved concentrations of carbofuran, chlorpyrifos, diazinon, and malathion exceeded aquatic life benchmarks established by the U.S. Environmental Protection Agency for these pesticides. Suspended sediments were analyzed for 87 current-use and organochlorine pesticides using microwave-assisted extraction, gel permeation chromatography for sulfur removal, and either carbon/alumina stacked solid-phase extraction cartridges or deactivated Florisil for removal of matrix interferences. Twenty current-use pesticides were detected in the suspended

  8. A serpentinite-hosted ecosystem in the Southern Mariana Forearc.

    Science.gov (United States)

    Ohara, Yasuhiko; Reagan, Mark K; Fujikura, Katsunori; Watanabe, Hiromi; Michibayashi, Katsuyoshi; Ishii, Teruaki; Stern, Robert J; Pujana, Ignacio; Martinez, Fernando; Girard, Guillaume; Ribeiro, Julia; Brounce, Maryjo; Komori, Naoaki; Kino, Masashi

    2012-02-21

    Several varieties of seafloor hydrothermal vents with widely varying fluid compositions and temperatures and vent communities occur in different tectonic settings. The discovery of the Lost City hydrothermal field in the Mid-Atlantic Ridge has stimulated interest in the role of serpentinization of peridotite in generating H(2)- and CH(4)-rich fluids and associated carbonate chimneys, as well as in the biological communities supported in highly reduced, alkaline environments. Abundant vesicomyid clam communities associated with a serpentinite-hosted hydrothermal vent system in the southern Mariana forearc were discovered during a DSV Shinkai 6500 dive in September 2010. We named this system the "Shinkai Seep Field (SSF)." The SSF appears to be a serpentinite-hosted ecosystem within a forearc (convergent margin) setting that is supported by fault-controlled fluid pathways connected to the decollement of the subducting slab. The discovery of the SSF supports the prediction that serpentinite-hosted vents may be widespread on the ocean floor. The discovery further indicates that these serpentinite-hosted low-temperature fluid vents can sustain high-biomass communities and has implications for the chemical budget of the oceans and the distribution of abyssal chemosynthetic life.

  9. Simulation of climate change in San Francisco Bay Basins, California: Case studies in the Russian River Valley and Santa Cruz Mountains

    Science.gov (United States)

    Flint, Lorraine E.; Flint, Alan L.

    2012-01-01

    As a result of ongoing changes in climate, hydrologic and ecologic effects are being seen across the western United States. A regional study of how climate change affects water resources and habitats in the San Francisco Bay area relied on historical climate data and future projections of climate, which were downscaled to fine spatial scales for application to a regional water-balance model. Changes in climate, potential evapotranspiration, recharge, runoff, and climatic water deficit were modeled for the Bay Area. In addition, detailed studies in the Russian River Valley and Santa Cruz Mountains, which are on the northern and southern extremes of the Bay Area, respectively, were carried out in collaboration with local water agencies. Resource managers depend on science-based projections to inform planning exercises that result in competent adaptation to ongoing and future changes in water supply and environmental conditions. Results indicated large spatial variability in climate change and the hydrologic response across the region; although there is warming under all projections, potential change in precipitation by the end of the 21st century differed according to model. Hydrologic models predicted reduced early and late wet season runoff for the end of the century for both wetter and drier future climate projections, which could result in an extended dry season. In fact, summers are projected to be longer and drier in the future than in the past regardless of precipitation trends. While water supply could be subject to increased variability (that is, reduced reliability) due to greater variability in precipitation, water demand is likely to steadily increase because of increased evapotranspiration rates and climatic water deficit during the extended summers. Extended dry season conditions and the potential for drought, combined with unprecedented increases in precipitation, could serve as additional stressors on water quality and habitat. By focusing on the

  10. Post-magmatic tectonic deformation of the outer Izu-Bonin-Mariana forearc system: initial results of IODP Expedition 352

    Science.gov (United States)

    Kurz, Walter; Ferré, Eric C.; Robertson, Alastair; Avery, Aaron; Christeson, Gail L.; Morgan, Sally; Kutterorf, Steffen; Sager, William W.; Carvallo, Claire; Shervais, John; Party IODP Expedition 352, Scientific

    2015-04-01

    IODP Expedition 352 was designed to drill through the entire volcanic sequence of the Bonin forearc. Four sites were drilled, two on the outer fore arc and two on the upper trench slope. Site survey seismic data, combined with borehole data, indicate that tectonic deformation in the outer IBM fore arc is mainly post-magmatic. Post-magmatic extension resulted in the formation of asymmetric sedimentary basins such as, for example, the half-grabens at sites 352-U1439 and 352-U1442 located on the upper trench slope. Along their eastern margins these basins are bounded by west-dipping normal faults. Sedimentation was mainly syn-tectonic. The lowermost sequence of the sedimentary units was tilted eastward by ~20°. These tilted bedding planes were subsequently covered by sub-horizontally deposited sedimentary beds. Based on biostratigraphic constraints, the minimum age of the oldest sediments is ~ 35 Ma; the timing of the sedimentary unconformities lies between ~ 27 and 32 Ma. At sites 352-U1440 and 352-U1441, located on the outer forearc, post-magmatic deformation resulted mainly in strike-slip faults possibly bounding the sedimentary basins. The sedimentary units within these basins were not significantly affected by post-sedimentary tectonic tilting. Biostratigraphic ages indicate that the minimum age of the basement-cover contact lies between ~29.5 and 32 Ma. Overall, the post-magmatic tectonic structures observed during Expedition 352 reveal a multiphase tectonic evolution of the outer IBM fore arc. At sites 352-U1439 and 352-U1442, shear with dominant reverse to oblique reverse displacement was localized along distinct subhorizontal cataclastic shear zones as well as steeply dipping slickensides and shear fractures. These structures, forming within a contractional tectonic regime, were either re-activated as or cross-cut by normal-faults as well as strike-slip faults. Extension was also accommodated by steeply dipping to subvertical mineralized veins and

  11. An example of Alaknanda valley, Garhwal Himalaya, India

    Indian Academy of Sciences (India)

    2014) have been best explained by the geometry .... flows through narrow valley confined by the steep valley slopes. ... valley (figure 3b) which opens up around Srina- ... Method. 4.1 Drainage basin and stream network. Digital Elevation Model (DEM) helps in extracting ... was processed to fill the pits or sinks, and to obtain.

  12. Is the Central America forearc sliver part of the North America plate?

    Science.gov (United States)

    Guzman-Speziale, M.

    2012-04-01

    The Central America Forearc sliver is located between the Central America volcanic arc and the Middle America trench. Several authors have suggested that the forearc is being displaced to the northwest with respect to the Caribbean plate; they point to right-lateral, normal-faulting earthquakes along the Central America volcanic arc as prime evidence of this displacement. Apparently, the forearc continues to the northwest into southeastern Mexico, although this portion of the forearc is not being displaced. I present evidence that suggests that the forearc indeed continues into southeastern Mexico and that it belongs to the North America plate. Physiographically, there is a continuity of the forearc into the Coastal plains of southeastern (Chiapas) Mexico, across the Motagua and Polochic faults. Offshore, cross-sections of the Middle America trench are similar along the mexican (Chiapas) segment, and the Central American segment. Furthermore, at the northwestern end of the coastal plain there are no compressive structures, which suggests that the coastal plain is not being displaced to the northwest. As a matter of fact, fault-plane solutions for shallow earthquakes show extension rather than compression. Shallow, interplate earthquakes along the trench show similar parameters along both segments. P-axes and earthquake slip vectors have consistent azimuths, which relate better with Cocos-North America convergence than with Cocos-Caribbean. Azimuth of T-axes for normal-faulting earthquakes also agree well with Cocos-North America convergence. Similarity in several parameters is thus found across both segments, the Chiapas coastal plain and the Central America forearc sliver proper. This suggests that both segments are continuous and probably one and the same, and belonging to the North America plate. Perhaps more properly, the forearc sliver extends into southeastern Mexico and is part of the zone of deformation associated to the Cocos-North America-Caribbean plates

  13. A comparison of estimates of basin-scale soil-moisture evapotranspiration and estimates of riparian groundwater evapotranspiration with implications for water budgets in the Verde Valley, Central Arizona, USA

    Science.gov (United States)

    Tillman, Fred; Wiele, Stephen M.; Pool, Donald R.

    2015-01-01

    Population growth in the Verde Valley in Arizona has led to efforts to better understand water availability in the watershed. Evapotranspiration (ET) is a substantial component of the water budget and a critical factor in estimating groundwater recharge in the area. In this study, four estimates of ET are compared and discussed with applications to the Verde Valley. Higher potential ET (PET) rates from the soil-water balance (SWB) recharge model resulted in an average annual ET volume about 17% greater than for ET from the basin characteristics (BCM) recharge model. Annual BCM PET volume, however, was greater by about a factor of 2 or more than SWB actual ET (AET) estimates, which are used in the SWB model to estimate groundwater recharge. ET also was estimated using a method that combines MODIS-EVI remote sensing data and geospatial information and by the MODFLOW-EVT ET package as part of a regional groundwater-flow model that includes the study area. Annual ET volumes were about same for upper-bound MODIS-EVI ET for perennial streams as for the MODFLOW ET estimates, with the small differences between the two methods having minimal impact on annual or longer groundwater budgets for the study area.

  14. Submarine Landslides and Mass-Transport Deposition in the Nankai fore-arc

    Science.gov (United States)

    Strasser, M.; Henry, P.; Kanamatsu, T.; Moe, K.; Moore, G. F.; IODP Expedition 333 Scientists

    2011-12-01

    Multiple lines of evidence exist for a range of sediment mass movement processes within the shallow megasplay fault zone (MSFZ) area and the adjacent slope basin in the outer fore-arc of the Nankai subduction zone, Japan. Diagnostic features observed in 3-D reflection seismic data and in cores from Integrated Ocean Drilling Program (IODP) Expedition 316 document a complex mass movement history spanning at least ˜2.87 million years. Various modes and scales of sediment remobilization can be related to the different morphotectonic settings in which they occurred and allow integration of knowledge on the spatial and temporal distribution of submarine landslides into a holistic reconstruction of the tectonostratigraphic evolution. New data from the most-recent Nankai IODP Expedition 333, which drilled and cored a Pleistocene-to-Holocene succession of the slope-basin seaward of the MSFZ, provides unprecedented details on submarine landslide processes occurring over the last Million year. The slope-basin represents the depocentre for downslope sediment transport and is characterized in 3-D reflection seismic data by several mass-transport deposits (MTDs), including an up to 180 m thick MTD. Here we present D/V Chikyu shipboard results and first post cruise results from Site C0018, including litho- bio- magneto- tephra- and stable isotope-stratigraphy, X-ray computed tomography analysis and physical properties data. Six MTDs were identified from visual core description and X-ray CT-scans. The thickest MTD is also the oldest (emplaced between 0.85 and 1.05 Ma) and it coincides with a lithological transition between a sandy turbidite sequence below, and ash-bearing hemipelagites comprising several MTDs above. Deformation styles within the MTD are heterogeneous: intervals of disturbed sediments are interbedded within intervals inferred to retain original, coherent bedding. In three occurrences the base of the MTD is defined by a shear zone within fine-grained sediments

  15. Regional potentiometric-surface map of the Great Basin carbonate and alluvial aquifer system in Snake Valley and surrounding areas, Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada

    Science.gov (United States)

    Gardner, Philip M.; Masbruch, Melissa D.; Plume, Russell W.; Buto, Susan G.

    2011-01-01

    Water-level measurements from 190 wells were used to develop a potentiometric-surface map of the east-central portion of the regional Great Basin carbonate and alluvial aquifer system in and around Snake Valley, eastern Nevada and western Utah. The map area covers approximately 9,000 square miles in Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada. Recent (2007-2010) drilling by the Utah Geological Survey and U.S. Geological Survey has provided new data for areas where water-level measurements were previously unavailable. New water-level data were used to refine mapping of the pathways of intrabasin and interbasin groundwater flow. At 20 of these locations, nested observation wells provide vertical hydraulic gradient data and information related to the degree of connection between basin-fill aquifers and consolidated-rock aquifers. Multiple-year water-level hydrographs are also presented for 32 wells to illustrate the aquifer system's response to interannual climate variations and well withdrawals.

  16. Numerical simulation of groundwater artificial recharge in a semiarid-climate basin of northwest Mexico, case study the Guadalupe Valley Aquifer, Baja California

    Science.gov (United States)

    Campos-Gaytan, J. R.; Herrera-Oliva, C. S.

    2013-05-01

    In this study was analyzed through a regional groundwater flow model the effects on groundwater levels caused by the application of different future groundwater management scenarios (2007-2025) at the Guadalupe Valley, in Baja California, Mexico. Among these studied alternatives are those scenarios designed in order to evaluate the possible effects generated for the groundwater artificial recharge in order to satisfy a future water demand with an extraction volume considered as sustainable. The State of Baja California has been subject to an increment of the agricultural, urban and industrials activities, implicating a growing water-demand. However, the State is characterized by its semiarid-climate with low surface water availability; therefore, has resulted in an extensive use of groundwater in local aquifer. Water level measurements indicate there has been a decline in water levels in the Guadalupe Valley for the past 30 years. The Guadalupe Valley aquifer represents one the major sources of water supply in Ensenada region. It supplies about 25% of the water distributed by the public water supplier at the city of Ensenada and in addition constitutes the main water resource for the local wine industries. Artificially recharging the groundwater system is one water resource option available to the study zone, in response to increasing water demand. The existing water supply system for the Guadalupe Valley and the city of Ensenada is limited since water use demand periods in 5 to 10 years or less will require the construction of additional facilities. To prepare for this short-term demand, one option available to water managers is to bring up to approximately 3.0 Mm3/year of treated water of the city of Ensenada into the valley during the low-demand winter months, artificially recharge the groundwater system, and withdraw the water to meet the summer demands. A 2- Dimensional groundwater flow was used to evaluate the effects of the groundwater artificial recharge

  17. Basins in ARC-continental collisions

    Science.gov (United States)

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  18. Geomorphic indices and relative tectonic uplift in the Guerrero sector of the Mexican forearc

    Directory of Open Access Journals (Sweden)

    Krzysztof Gaidzik

    2017-07-01

    The results of the applied landscape analysis reveal considerable variations in relief, topography and geomorphic indices values along the Guerrero sector of the Mexican subduction zone. We argue that the reported differences are indicative of tectonic deformation and of variations in relative tectonic uplift along the studied forearc. A significant drop from central and eastern parts of the study area towards the west in values of RVA (from ∼500 to ∼300, SL (from ∼500 to ca. 400, maximum SL (from ∼1500–2500 to ∼1000 and ksn (from ∼150 to ∼100 denotes a decrease in relative tectonic uplift in the same direction. We suggest that applied geomorphic indices values and forearc topography are independent of climate and lithology. Actual mechanisms responsible for the observed variations and inferred changes in relative forearc tectonic uplift call for further studies that explain the physical processes that control the forearc along strike uplift variations and that determine the rates of uplift. The proposed methodology and results obtained through this study could prove useful to scientists who study the geomorphology of forearc regions and active subduction zones.

  19. Forearc serpentinites as probes into the chemical, petrological and biological diversity of subduction zones

    Science.gov (United States)

    Savov, I. P.

    2017-12-01

    The mantle region that cover the variously fluid-saturated and heated subducted slabs is a site where colossal serpentinization processes occur. Nowhere this is more evident than in the forearcs of convergent plate margins, where the amount of fluids leaving the slabs and intermingling with the overlaying mantle wedge is maximized. The nature of this forearc serpentinization processes can be studied at accretionary prisms, serpentinite mud volcanoes (ODP Sites 125 and 195; IODP Exp. 366- all in the Marianas), or via tectonically exhumed, Proterozoic to modern, forearc melange complexes worldwide (Greenland, California, Kamchatka, Armenia, Cuba, Colombia, among others). I shall review the marine and continental settings hosting forearc serpentinites (FS) with emphasis on the FS fluid and mineral chemistry, imaging of isotopes/elements/molecules and textures (via ToF SIMS), and the environment and the P-T conditions that may lead to stable microbial communities like the recently discovered one under S.Chamorro Seamount that suggests life can exist in the forearcs as deep as 12 km (Plumper et al., 2017; PNAS). FS are very similar to classical abyssal serpentinites (from FZ or TF on the seafloor). They have similar mineralogy, textures, are major reservoir of fluid mobile trace elements (B, Li, Cs, As, Sb, I, Br) and also are a host of often vast isotope fractionations (B, Li, I). Yet differences exist and need to be further explored as both of these serpentinite types may take part of the subducted slab inventory and affect the input-output budgets across the "Subduction Factory". FS are often associated with blueschists, which combined with the FS may help us more fully explore the P-T-t evolution of the entire forearc region.

  20. Helium as a tracer for fluids released from Juan de Fuca lithosphere beneath the Cascadia forearc

    Science.gov (United States)

    McCrory, Patricia A.; Constantz, James E.; Hunt, Andrew G.; Blair, James Luke

    2016-01-01

    The ratio between helium isotopes (3He/4He) provides an excellent geochemical tracer for investigating the sources of fluids sampled at the Earth's surface. 3He/4He values observed in 25 mineral springs and wells above the Cascadia forearc document a significant component of mantle-derived helium above Juan de Fuca lithosphere, as well as variability in 3He enrichment across the forearc. Sample sites arcward of the forearc mantle corner (FMC) generally yield significantly higher ratios (1.2-4.0 RA) than those seaward of the corner (0.03-0.7 RA). The highest ratios in the Cascadia forearc coincide with slab depths (40-45 km) where metamorphic dehydration of young oceanic lithosphere is expected to release significant fluid and where tectonic tremor occurs, whereas little fluid is expected to be released from the slab depths (25-30 km) beneath sites seaward of the corner.Tremor (considered a marker for high fluid pressure) and high RA values in the forearc are spatially correlated. The Cascadia tremor band is centered on its FMC, and we tentatively postulate that hydrated forearc mantle beneath Cascadia deflects a significant portion of slab-derived fluids updip along the subduction interface, to vent in the vicinity of its corner. Furthermore, high RA values within the tremor band just arcward of the FMC, suggest that the innermost mantle wedge is relatively permeable.Conceptual models require: (1) a deep fluid source as a medium to transport primordial 3He; (2) conduits through the lithosphere which serve to speed fluid ascent to the surface before significant dilution from radiogenic 4He can occur; and (3) near lithostatic fluid pressure to keep conduits open. Our spatial correlation between high RA values and tectonic tremor provides independent evidence that tremor is associated with deep fluids, and it further suggests that high pore pressures associated with tremor may serve to keep fractures open for 3He migration through ductile upper mantle and lower crust.

  1. Mantle hydration and Cl-rich fluids in the subduction forearc

    Science.gov (United States)

    Reynard, Bruno

    2016-12-01

    In the forearc region, aqueous fluids are released from the subducting slab at a rate depending on its thermal state. Escaping fluids tend to rise vertically unless they meet permeability barriers such as the deformed plate interface or the Moho of the overriding plate. Channeling of fluids along the plate interface and Moho may result in fluid overpressure in the oceanic crust, precipitation of quartz from fluids, and low Poisson ratio areas associated with tremors. Above the subducting plate, the forearc mantle wedge is the place of intense reactions between dehydration fluids from the subducting slab and ultramafic rocks leading to extensive serpentinization. The plate interface is mechanically decoupled, most likely in relation to serpentinization, thereby isolating the forearc mantle wedge from convection as a cold, potentially serpentinized and buoyant, body. Geophysical studies are unique probes to the interactions between fluids and rocks in the forearc mantle, and experimental constrains on rock properties allow inferring fluid migration and fluid-rock reactions from geophysical data. Seismic velocities reveal a high degree of serpentinization of the forearc mantle in hot subduction zones, and little serpentinization in the coldest subduction zones because the warmer the subduction zone, the higher the amount of water released by dehydration of hydrothermally altered oceanic lithosphere. Interpretation of seismic data from petrophysical constrain is limited by complex effects due to anisotropy that needs to be assessed both in the analysis and interpretation of seismic data. Electrical conductivity increases with increasing fluid content and temperature of the subduction. However, the forearc mantle of Northern Cascadia, the hottest subduction zone where extensive serpentinization was first demonstrated, shows only modest electrical conductivity. Electrical conductivity may vary not only with the thermal state of the subduction zone, but also with time for

  2. Valley Fever

    Science.gov (United States)

    ... valley fever. These fungi are commonly found in soil in specific regions. The fungi's spores can be stirred into the air by ... species have a complex life cycle. In the soil, they grow as a mold with long filaments that break off into airborne ...

  3. Understanding the groundwater dynamics in the Southern Rift Valley Lakes Basin (Ethiopia). Multivariate statistical analysis method, oxygen (δ 18O) and deuterium (δ 2H)

    International Nuclear Information System (INIS)

    Girum Admasu Nadew; Zebene Lakew Tefera

    2013-01-01

    Multivariate statistical analysis is very important to classify waters of different hydrochemical groups. Statistical techniques, such as cluster analysis, can provide a powerful tool for analyzing water chemistry data. This method is used to test water quality data and determine if samples can be grouped into distinct populations that may be significant in the geologic context, as well as from a statistical point of view. Multivariate statistical analysis method is applied to the geochemical data in combination with δ 18 O and δ 2 H isotopes with the objective to understand the dynamics of groundwater using hierarchical clustering and isotope analyses. The geochemical and isotope data of the central and southern rift valley lakes have been collected and analyzed from different works. Isotope analysis shows that most springs and boreholes are recharged by July and August rainfalls. The different hydrochemical groups that resulted from the multivariate analysis are described and correlated with the geology of the area and whether it has any interaction with a system or not. (author)

  4. THE SEPTEMBER 2013 RAIN AND FLOOD EVENTS IN THE FLAM’S VALLEY BASIN. CAUSES, CHARACTERISTICS AND THEIR IMPACT UPON THE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    BORCAN MIHAELA

    2014-03-01

    Full Text Available Between 11.09 and 14.09 2013 the north-eastern part of Tulcea County, especially the areas located around Somova village was affected by heavy, torrential rainfall that totalized over 30 mm/sq m and triggered dangerous hydrological phenomena (important slope, stream and river flows. As a result of these heavy downpours, Flam’s Valley was affected by an exceptional flash-flood which measured a peak discharge that reached a 1% exceeding probability. Another destructive characteristic of the weather phenomena that occurred in September 2013 was that the heavy rain was accompanied by violent gusty winds that resembled tornado-like features, bringing serious threat to houses, households and roads. In this paper we have analyzed the weather features that produced the September 2013 flash flood from both a spatial and a temporal perspective. The hydrological analysis focuses on the peak discharge that was recorded during the flash flood as well as on the characteristics elements of the topographic profiles. The paper ends with a brief presentation of the consequences that the weather and hydrological phenomena had upon the environment and population as well.

  5. Tritium dating of underground water from the Jian River valley and Houjialiang loess platform in the basin side-band of the East-Mountain Region of Taiyuan

    International Nuclear Information System (INIS)

    Yu Songsheng; Wu Qinghua

    1991-01-01

    The tritium content is measured in underground water from the basin side-band of the East-Mountain Region of Taiyuan, Shanxi Province, and hence the age, i.e. resident time, of underground water is estimated. The region belongs to deep water-poor zone in a long loess ridge situated in a loess hill plateau. The level of underground water is 40-80 m deep hidden. In the runway and the scouring channel the aqueous bed is of river pebble and cobble, with a level of 2-10 m in depth. The age of underground water from different wells were determined to be 23a, 14a, 25a, 41a and 53a respectively

  6. Small martian valleys: Pristine and degraded morphology

    International Nuclear Information System (INIS)

    Baker, V.R.; Partridge, J.B.

    1986-01-01

    The equatorial heavily cratered uplands of Mars are dissected by two classes of small valleys that are intimately associated in compound networks. Pristine valleys with steep valley walls preferentially occupy downstream portions of compound basins. Degraded valleys with eroded walls are laterally more extensive and have higher drainage densities than pristine valleys. Morphometric and crater-counting studies indicate that relatively dense drainage networks were emplaced on Mars during the heavy bombardment about 4.0 b.y. ago. Over a period of approximately 10 8 years, these networks were degraded and subsequently invaded by headwardly extending pristine valleys. The pristine valleys locally reactivated the compound networks, probably through sapping processes dependent upon high water tables. Fluvial activity in the heavily cratered uplands generally ceased approximately 3.8--3.9 b.y. ago, coincident with the rapid decline in cratering rates. The relict compound valleys on Mars are morphometrically distinct from most terrestrial drainage systems. The differences might be caused by a Martian valley formation episode characterized by hyperaridity, by inadequate time for network growth, by very permeable rock types, or by a combination of factors

  7. Prolonged extension and subsidence of the Peruvian forearc during the Cenozoic

    Science.gov (United States)

    Viveen, Willem; Schlunegger, Fritz

    2018-04-01

    Ocean-continental subduction zones are commonly associated with compressional stress fields, which ultimately result in regional uplift of the overriding plate. This has particularly been inferred by most studies for the western margin of the Peruvian Andes. However, local geological observations have contested this idea. Here, we present a review of existing local and international literature supplemented by new structural and geomorphic observations that suggest that nearly the entire central (15° to 11° S latitude) and northern Peruvian forearc (11° to 6° S latitude) are under extension with a slight tendency to transtension instead of compression, and that this region has experienced a prolonged period of subsidence since the middle-late Eocene, interrupted by short pulses of uplift. In contrast, the southern Peruvian forearc (15° to 18° S latitude) has experienced (trans)tension from the middle-late Eocene until recent in combination with uplift. The central and southern Peruvian forearc that was influenced by the passage of the Nazca ridge experienced transtension and subsidence until the middle-late Miocene and alternating phases of compressional and transtensional tectonics afterwards. These new findings on the geodynamic development of the Peruvian forearc need to be considered in future reconstructions of the mechanisms at work within this subduction zone.

  8. Rapid fore-arc extension and detachment-mode spreading following subduction initiation

    NARCIS (Netherlands)

    Morris, Antony; Anderson, Mark W.; Omer, Ahmed; Maffione, Marco; van Hinsbergen, Douwe J.J.

    2017-01-01

    Most ophiolites have geochemical signatures that indicate formation by suprasubduction seafloor spreading above newly initiated subduction zones, and hence they record fore-arc processes operating following subduction initiation. They are frequently underlain by a metamorphic sole formed at the top

  9. Ground-Water Quality Data in the Monterey Bay and Salinas Valley Basins, California, 2005 - Results from the California GAMA Program

    Science.gov (United States)

    Kulongoski, Justin T.; Belitz, Kenneth

    2007-01-01

    Ground-water quality in the approximately 1,000-square-mile Monterey Bay and Salinas Valley study unit was investigated from July through October 2005 as part of the California Ground-Water Ambient Monitoring and Assessment (GAMA) program. The study was designed to provide a spatially unbiased assessment of raw ground-water quality, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 94 public-supply wells and 3 monitoring wells in Monterey, Santa Cruz, and San Luis Obispo Counties. Ninety-one of the public-supply wells sampled were selected to provide a spatially distributed, randomized monitoring network for statistical representation of the study area. Six wells were sampled to evaluate changes in water chemistry: three wells along a ground-water flow path were sampled to evaluate lateral changes, and three wells at discrete depths from land surface were sampled to evaluate changes in water chemistry with depth from land surface. The ground-water samples were analyzed for volatile organic compounds (VOCs), pesticides, pesticide degradates, nutrients, major and minor ions, trace elements, radioactivity, microbial indicators, and dissolved noble gases (the last in collaboration with Lawrence Livermore National Laboratory). Naturally occurring isotopes (tritium, carbon-14, helium-4, and the isotopic composition of oxygen and hydrogen) also were measured to help identify the source and age of the sampled ground water. In total, 270 constituents and water-quality indicators were investigated for this study. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain water quality. In addition, regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. In this study, only six constituents, alpha radioactivity, N

  10. Differential Extension, Displacement Transfer, and the South to North Decrease in Displacement on the Furnace Creek - Fish Lake Valley Fault System, Western Great Basin.

    Science.gov (United States)

    Katopody, D. T.; Oldow, J. S.

    2015-12-01

    The northwest-striking Furnace Creek - Fish Lake Valley (FC-FLV) fault system stretches for >250 km from southeastern California to western Nevada, forms the eastern boundary of the northern segment of the Eastern California Shear Zone, and has contemporary displacement. The FC-FLV fault system initiated in the mid-Miocene (10-12 Ma) and shows a south to north decrease in displacement from a maximum of 75-100 km to less than 10 km. Coeval elongation by extension on north-northeast striking faults within the adjoining blocks to the FC-FLV fault both supply and remove cumulative displacement measured at the northern end of the transcurrent fault system. Elongation and displacement transfer in the eastern block, constituting the southern Walker Lane of western Nevada, exceeds that of the western block and results in the net south to north decrease in displacement on the FC-FLV fault system. Elongation in the eastern block is accommodated by late Miocene to Pliocene detachment faulting followed by extension on superposed, east-northeast striking, high-angle structures. Displacement transfer from the FC-FLV fault system to the northwest-trending faults of the central Walker Lane to the north is accomplished by motion on a series of west-northwest striking transcurrent faults, named the Oriental Wash, Sylvania Mountain, and Palmetto Mountain fault systems. The west-northwest striking transcurrent faults cross-cut earlier detachment structures and are kinematically linked to east-northeast high-angle extensional faults. The transcurrent faults are mapped along strike for 60 km to the east, where they merge with north-northwest faults forming the eastern boundary of the southern Walker Lane. The west-northwest trending transcurrent faults have 30-35 km of cumulative left-lateral displacement and are a major contributor to the decrease in right-lateral displacement on the FC-FLV fault system.

  11. Report on Radiocarbon Analysis of Surface Sediments from the Fore-Arc Basin of Nankai Trough

    National Research Council Canada - National Science Library

    Pohlman, John

    2004-01-01

    .... Radiocarbon analysis of the total organic carbon (TOC) and total inorganic carbon (TIC) on 30 sediment samples from two multicores and six piston cores was performed to investigate the fate of methane carbon in sediment of the Nankal Trough...

  12. Quaternary Tectonic and Climatic Processes shaping the Central Andean hyperarid forearc (southern Peru)

    Science.gov (United States)

    Audin, Laurence; Benavente, Carlos; Zerathe, Swann; Saillard, Marianne; Hall, Sarah R.; Farber, Daniel L.

    2015-04-01

    Understanding the forearc structure and processes related to Quaternary evolution and uplift of the Western Andean Cordillera remains an outstanding scientific issue. Models of Andean Plateau evolution based on Tertiary volcanic stratigraphy since 5Ma suggest that the deformation was focused along the eastern margin of the plateau and that minimal uplift occurred along the Pacific margin. On the contrary, new tectonic data and Quaternary surface 10Be dating highlight the presence of recently active deformation, incision and alluvial processes within the upper Andean forearc together with a regional uplift of the coastal zone. Additionally, the high obliquity observed in the northern Arica Bend region makes it an ideal target to discuss whether partitioning of the oblique convergence is accommodated by the neotectonic features that dissect the Quaternary forearc. Our goals are both to decipher the Quaternary tectonic and climatic processes shaping the hyperarid forearc along strike and across strike. Finally, we aim to quantify the respective influence of these factors in the overall uplift of the Western Andes. Indeed, sequences of pediment surfaces, landslide products, paleolake deposits and marine terraces found along the oblique Peruvian margin are a unique set of datable markers that can be used to quantify the rates of Quaternary processes. In this study, we focus on the southern Peru hyperarid Atacama area where regional surfaces and tectonic markers (scarps, folds, temporary streams and paleolake levels offsets…) are well preserved for the Quaternary timescale. Numerous landsliding events align on the major fault segments and reflect Plio-Pleistocene climatic and tectonic activity together with filled and strath terraces. As the present day sea-level is one of the highest levels recorded for Quaternary time span, any emerged marine terrace is preserved by tectonic coastal uplift. In particular, the geomorphic and chronologic correlation between marine and

  13. Sedimentological characteristics and depositional environment of Upper Gondwana rocks in the Chintalapudi sub-basin of the Godavari valley, Andhra Pradesh, India

    Science.gov (United States)

    Ramamohanarao, T.; Sairam, K.; Venkateswararao, Y.; Nagamalleswararao, B.; Viswanath, K.

    2003-03-01

    The Kota (Early to Middle Jurassic) and Gangapur (Early Cretaceous) rocks of the Chintalapudi sub-basin of Gondwana are poorly to very poorly sorted, positively to very positively skewed, and leptokurtic to very leptokurtic. The Kota rocks show a single prominent truncation line at the inflection of saltation/suspension at 2.0 φ of the river mode of transportation. The Gangapur rocks show two truncation lines of saltation/suspension, one at 0.5-1.7 φ and the other at 2.4-4.0 φ. These are inferred to be due to a high turbulent phase of the river. On the multigroup multivariant discriminant functions V1- V2 diagram, the bulk of the samples from Kota and Gangapur fall in the field of turbidite deposition. This study supports the view that the discrimination of river from turbidite deposits on this diagram is poor since both deposits are identical in terms of settling velocity distribution. On the C- M diagram, the Kota and Gangapur rocks show segments of rolling, bottom suspension, and graded suspension during river transport of sediment. The Q-R segments of graded suspension for these rocks have a C/ M ratio of 2.5, which is close to the ratio of the turbidites. The Kota and Gangapur rocks have nearly the same assemblage of heavy minerals. The provenance is inferred to consist of basic igneous rocks, acid igneous rocks, high-grade metamorphic rocks and sedimentary rocks.

  14. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    Science.gov (United States)

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  15. Forearc kinematics in obliquely convergent margins: Examples from Nicaragua and the northern Lesser Antilles

    Science.gov (United States)

    Turner, Henry L., III

    In this study, I use surface velocities derived from GPS geodesy, elastic half-space dislocation models, and modeled Coulomb stress changes to investigate deformation in the over-riding plate at obliquely convergent margins at the leading and trailing edges of the Caribbean plate. The two principal study areas are western Nicaragua, where the Cocos plate subducts beneath the Caribbean plate, and the northern Lesser Antilles, where the North American plate subducts beneath the Caribbean plate. In Nicaragua, plate convergence is rapid at 84 mm yr1 with a small angle of obliquity of 10° along a slightly concave portion of the Middle America Trench. GPS velocities for the period from 2000 to 2004 from sites located in the Nicaraguan forearc confirmed forearc sliver motion on the order of ˜14 mm yr1 in close agreement with the value predicted by DeMets (2001). These results are presented here in Chapter 3 and were reported in Geophysical Research Letters (Turner et al., 2007). GPS observations made on sites located in the interior and on the eastern coast of Nicaragua during the same time period were combined with new data from eastern Honduras to help better constrain estimates of rigid Caribbean plate motion (DeMets et al., 2007). Slip approaching the plate convergence rate along the Nicaraguan and El Salvadoran sections of the Middle America Trench was quantitatively demonstrated by finite element modeling of this section of the plate interface using GPS velocities from our Nicaraguan network together with velocities from El Salvador and Honduras as model constraints (Correa-Mora, 2009). The MW 6.9 earthquake that ruptured the seismogenic zone offshore Nicaragua on October 9, 2004 resulted in coseismic displacements and post-seismic motion at GPS sites in the central part of the Nicaraguan forearc that currently prevent extension of interseismic time-series in this region. An elastic half-space dislocation model was used to estimate coseismic displacements at these

  16. Iron-titanium oxide minerals and magnetic susceptibility anomalies in the Mariano Lake-Lake Valley cores - Constraints on conditions of uranium mineralization in the Morrison Formation, San Juan Basin, New Mexico

    International Nuclear Information System (INIS)

    Reynolds, R.L.; Fishman, N.S.; Scott, J.H.; Hudson, M.R.

    1986-01-01

    Petrographic study of the Mariano Lake-Lake Valley cores reveals three distinct zones of postdepositional alteration of detrital Fe-Ti (iron-titanium) oxide minerals in the Westwater Canyon Member of the Upper Jurassic Morrisson Formation. In the uranium-bearing and adjacent portions of the Westwater Canyon, these detrital Fe-Ti oxide minerals have been thoroughly altered by leaching of iron. Stratigraphically lower parts of the Westwater Canyon and the underlying Recapture Member are characterized by preservation of Fe-Ti oxide grains, primarily magnetite and ilmenite, and of hematite, and by an absence or uranium concentrations. Partly destroyed Fe-Ti oxide minerals occupy an interval between the zones of destruction and preservation. Alteration patterns of the Fe-Ti oxide minerals are reflected in bore-hole magnetic susceptibility logs. Magnetic susceptibility response in the upper parts of the Westwater Canyon Member is flat and uniformly <500 μSI units, but at greater depths it fluctuates sharply, from <1,000 to nearly 8,000 μSI units. The boundary between uniformly low and high magnetic susceptibility response corresponds closely to the interval that divides the zone of completely altered from the zone of preserved detrital Fe-Ti oxide minerals. The alteration pattern suggests that solutions responsible for destruction of the Fe-ti oxide minerals originated in the overlying Brushy Basin Member of the Morrison Formation. Previous studies indicate that these solutions were rich in soluble organic matter and perhaps in uranium. Uranium precipitation may have been controlled by a vertically fluctuation interface between organic-rich solutions and geochemically different fluids in which the detrital Fe-Ti oxide minerals were preserved

  17. Groundwater-flow and land-subsidence model of Antelope Valley, California

    Science.gov (United States)

    Siade, Adam J.; Nishikawa, Tracy; Rewis, Diane L.; Martin, Peter; Phillips, Steven P.

    2014-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley groundwater basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, groundwater provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most groundwater pumping in the valley occurs in the Antelope Valley groundwater basin, which includes the rapidly growing cities of Lancaster and Palmdale. Groundwater-level declines of more than 270 feet in some parts of the groundwater basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may increase reliance on groundwater.

  18. Temperature profiles from Salt Valley, Utah

    Science.gov (United States)

    Sass, J. H.; Lachenbruch, A. H.; Smith, E. P.

    Temperature profiles were obtained in the nine drilled wells as part of a thermal study of the Salt Valley anticline, Paradox Basin, Utha. Thermal conductivities were also measured on 10 samples judged to be representative of the rocks encountered in the deepest hole. The temperature profiles and thermal conductivities are presented, together with preliminary interpretive remarks and suggestions for additional work.

  19. Palinspastic reconstruction and geological evolution of Permian residual marine basins bordering China and Mongolia

    Directory of Open Access Journals (Sweden)

    Gen-Yao Wu

    2014-04-01

    Full Text Available One main feature of the tectono-paleogeographic evolution of the southern branch of the Paleo-Asian Ocean was that there developed residual marine basins in former backarc/forearc regions after the disappearance of oceanic crust. The paper illustrates the viewpoint taking the evolution of Dalandzadgad and Solonker oceanic basins as examples. The Dalandzadgad ocean subducted southwards during the Silurian-Devonian, created an intra-oceanic arc and a backarc basin in southern Mongolia. In addition, a continent marginal arc formed along the national boundary between China and Mongolia, the south of which was a backarc basin. The oceanic basin closed and arc–arc (continent collision occurred during the early Early Permian, followed by two residual marine basins developing in the former backarc regions, named the South Gobi Basin in southern Mongolia and the Guaizihu Basin in western Inner Mongolia. The Solonker ocean subducted southwards and finally disappeared during the early Middle Permian. Afterwards, two residual marine basins occurred in northern China, the Zhesi Basin being situated in the former backarc region and the Wujiatun Basin in the former forearc region. The late Middle Permian was the most optimum period for the developing residual marine basins, when they covered a vast area. The basin evolution differentiated during the early Late Permian, with a general trend of uplift in the east and of subsidence in the west. The Upper Permian in the South Gobi Basin was characterized by coal-bearing strata hosting economically valuable coal fields. A transgression invaded westwards and the Chandmani-Bayanleg Basin was created in southwest Mongolia during the middle-late stage of the Late Permian. Correspondingly, the coal formation entered a flourishing time, with thick coal beds and sedimentary interbeds. All of these basins, namely, both the marine and nonmarine residual basins, reversed and closed by the end of Permian.

  20. Zircon U-Pb age of the Pescadero felsite: A late Cretaceous igneous event in the forearc, west-central California Coast Ranges

    Science.gov (United States)

    Ernst, W.G.; Martens, U.C.; McLaughlin, R.J.; Clark, J.C.; Moore, Diane E.

    2011-01-01

    forearc units of the Transverse Ranges. Based on zircon U-Pb ages, geologic and petrographic relations, the Pescadero felsite and a capping, sheared metaconglomerate underlie the Pigeon Point Formation. We infer that the magma formed by anatexis of Franciscan or Great Valley clastic sedimentary rocks originating from a parental Mesozoic Sierran-Mojave-Salinian calcalkaline arc. The felsite erupted during Late Cretaceous time, was metamorphosed to pumpellyite-prehnite grade within the subduction zone, and then was rapidly exhumed, weakly zeolitized, and exposed before Pigeon Point forearc deposition. Pescadero vol canism apparently reflects a previously unrecognized ca. 86-90 Ma felsic igneous event in the accretionary margin. ?? 2011 Geological Society of America.

  1. Petrology and Geochemistry of Serpentinized Peridotites from a Bonin Fore-arc Seamount

    Science.gov (United States)

    Tian, L.; Tuoyu, W.; Dong, Y. H.; Gao, J.; Wu, S.

    2016-12-01

    Serpentinites, which contain up to 13 wt.% of water, are an important reservoir for chemical recycling in subduction zones. During the last two decades, many observations documented the occurrence of fore-arc mantle serpentinites in different locations. Here, we present petrology and whole rock chemistry for serpentinized peridotites dredged from the Hahajima Seamount, which is located 20-60 km west of the junction of the Bonin Trench and the Mariana Trench. Combined with published geochemical data of serpentinites from the Torishima Seamount, Conical Seamount and South Chamorro Seamount in the Izu-Bonin-Mariana fore-arc region, it will allow us to better understand the average composition of serpentinized fore-arc mantle overlying the subducting slab and the role of serpentinized mantle playing in the subduction zone geochemical cycle. The studied ultramafic rocks from the Hahajima Seamount are extensively serpentinized and hydrated (73 to 83%), with loss of ignition values ranging between 13 and 15 wt.%. Our results show that the serpentinized peridotites have Mg number from 88 to 90, and the average MgO/SiO2 is 0.93. The average Al2O3 (0.48 wt.%) and CaO (0.23 wt.%) contents are very low, consistent with low clinopyroxene abundances, and the overall depleted character of the mantle harzburgite protoliths. The serpentinized peridotites from the Hahajima Seamount exhibit similar "U" shape rare earth element (REE) patterns ([La/Sm]N = 3.1-3.6), at higher overall abundances, to the Conical and South Chamorro Seamount suites. One exceptional sample shows the similar REE pattern as serpentinized peridotites from the Torishima Seamount, with depleted light REE concentration ([La/Sm]N =0.7). All the serpentinized peridotites from these four fore-arc seamounts show strong enrichment in fluid-mobile and lithophile elements (U, Pb, Sr and Li). The geochemical signature of the serpentinized peridotites from the seamounts in the Izu-Bonin-Mariana fore-arc region could be

  2. Searching for conditions of observation of subduction seismogenic zone transients on Ocean Bottom Seismometers deployed at the Lesser Antilles submerged fore-arc

    Science.gov (United States)

    Bécel, Anne; Laigle, Mireille; Diaz, Jordi; Hirn, Alfred; Flueh, Ernst; Charvis, Philippe

    2010-05-01

    different instruments deployments, it provided diverse views, as through different glasses. This ultimately proved valuable to help extract the harder facts from their diverse appearances when seen through different instruments and in different types of sites. After analyzing the data for spurious and instrument-related peculiarities, and possible interpretation pitfalls, it remains that the noise level shows an overwhelming influence of the marine domain due to both its own sources, hydrosphere motions, and to meteorological-climatological actions. As well, the response of the laterally variable fore-arc basin on top of which measurements have to be made is much adverse to quality recording, with respect to seismological observatories on land which can be buried deep into basement rocks. The study of this noise itself may allow us to initiate a discussion of the interactions of the oceanic and atmospheric processes with the Solid Earth. Transients at depth in the subduction zone have been tentatively discussed in terms of its seismogenic evolution. If such transient events would indeed have a component over a very broad spectral range from NVT to LP and ULP events as it has been suggested very recently in Japan (Ide et al., 2008), the conditions and the best observation windows in which they can be best searched for are now documented for ocean bottom recording in the case of the Lesser Antilles subduction zone.

  3. Groundwater quality in Coachella Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Coachella Valley is one of the study areas being evaluated. The Coachella study area is approximately 820 square miles (2,124 square kilometers) and includes the Coachella Valley groundwater basin (California Department of Water Resources, 2003). Coachella Valley has an arid climate, with average annual rainfall of about 6 inches (15 centimeters). The runoff from the surrounding mountains drains to rivers that flow east and south out of the study area to the Salton Sea. Land use in the study area is approximately 67 percent (%) natural, 21% agricultural, and 12% urban. The primary natural land cover is shrubland. The largest urban areas are the cities of Indio and Palm Springs (2010 populations of 76,000 and 44,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Coachella Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Coachella Valley are completed to depths between 490 and 900 feet (149 to 274 meters), consist of solid casing from the land surface to a depth of 260 to 510 feet (79 to 155 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to

  4. Sea-floor drainage features of Cascadia Basin and the adjacent continental slope, northeast Pacific Ocean

    Science.gov (United States)

    Hampton, M.A.; Karl, Herman A.; Kenyon, Neil H.

    1989-01-01

    Sea-floor drainage features of Cascadia Basin and the adjacent continental slope include canyons, primary fan valleys, deep-sea valleys, and remnant valley segments. Long-range sidescan sonographs and associated seismic-reflection profiles indicate that the canyons may originate along a mid-slope escarpment and grow upslope by mass wasting and downslope by valley erosion or aggradation. Most canyons are partly filled with sediment, and Quillayute Canyon is almost completely filled. Under normal growth conditions, the larger canyons connect with primary fan valleys or deep-sea valleys in Cascadia Basin, but development of accretionary ridges blocks or re-routes most canyons, forcing abandonment of the associated valleys in the basin. Astoria Fan has a primary fan valley that connects with Astoria Canyon at the fan apex. The fan valley is bordered by parallel levees on the upper fan but becomes obscure on the lower fan, where a few valley segments appear on the sonographs. Apparently, Nitinat Fan does not presently have a primary fan valley; none of the numerous valleys on the fan connect with a canyon. The Willapa-Cascadia-Vancouver-Juan de Fuca deep-sea valley system bypasses the submarine fans and includes deeply incised valleys to broad shallow swales, as well as within-valley terraces and hanging-valley confluences. ?? 1989.

  5. Proterozoic intracontinental basin: The Vindhyan example

    Indian Academy of Sciences (India)

    basins display marked similarities in their lithology, depositional setting and stratigraphic architecture. (Naqvi and Rogers 1987). This note sum- marises the stratigraphy, stratal architecture, sed- imentology and geochronology of the Vindhyan. Supergroup occurring in the Son valley region. (figure 1). 2. The Vindhyan basin.

  6. Groundwater-quality data in the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit, 2008-2010--Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Wright, Michael T.; Beuttel, Brandon S.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the 12,103-square-mile Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts (CLUB) study unit was investigated by the U.S. Geological Survey (USGS) from December 2008 to March 2010, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program's Priority Basin Project (PBP). The GAMA-PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The CLUB study unit was the twenty-eighth study unit to be sampled as part of the GAMA-PBP. The GAMA CLUB study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the primary aquifer systems, and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The primary aquifer systems (hereinafter referred to as primary aquifers) are defined as parts of aquifers corresponding to the perforation intervals of wells listed in the California Department of Public Health (CDPH) database for the CLUB study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from the quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to surficial contamination. In the CLUB study unit, groundwater samples were collected from 52 wells in 3 study areas (Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts) in San Bernardino, Riverside, Kern, San Diego, and Imperial Counties. Forty-nine of the wells were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and three wells were selected to aid in evaluation of water-quality issues (understanding wells). The groundwater samples were analyzed for organic constituents (volatile

  7. Bedrock geologic map of the Spring Valley, West Plains, and parts of the Piedmont and Poplar Bluff 30'x60' quadrangles, Missouri, including the upper Current River and Eleven Point River drainage basins

    Science.gov (United States)

    Weary, David J.; Harrison, Richard W.; Orndorff, Randall C.; Weems, Robert E.; Schindler, J. Stephen; Repetski, John E.; Pierce, Herbert A.

    2015-01-01

    This map covers the drainage basins of the upper Current River and the Eleven Point River in the Ozark Plateaus physiographic province of southeastern Missouri. The two surface drainage basins are contiguous in their headwaters regions, but are separated in their lower reaches by the lower Black River basin in the southeast corner of the map area. Numerous dye-trace studies demonstrate that in the contiguous headwaters areas, groundwater flows from the Eleven Point River basin into the Current River basin. Much of the groundwater discharge of the Eleven Point River basin emanates from Big Spring, located on the Current River. This geologic map and cross sections were produced to help fulfill a need to understand the geologic framework of the region in which this subsurface flow occurs.

  8. The Portland Basin: A (big) river runs through it

    Science.gov (United States)

    Evarts, Russell C.; O'Connor, Jim E.; Wells, Ray E.; Madin, Ian P.

    2009-01-01

    Metropolitan Portland, Oregon, USA, lies within a small Neogene to Holocene basin in the forearc of the Cascadia subduction system. Although the basin owes its existence and structural development to its convergent-margin tectonic setting, the stratigraphic architecture of basin-fill deposits chiefly reflects its physiographic position along the lower reaches of the continental-scale Columbia River system. As a result of this globally unique setting, the basin preserves a complex record of aggradation and incision in response to distant as well as local tectonic, volcanic, and climatic events. Voluminous flood basalts, continental and locally derived sediment and volcanic debris, and catastrophic flood deposits all accumulated in an area influenced by contemporaneous tectonic deformation and variations in regional and local base level.

  9. Mariana Forearc Serpentine Mud Volcanoes Harbor Novel Communities of Extremophilic Archaea

    Science.gov (United States)

    Curtis, A. C.; Moyer, C. L.

    2005-12-01

    Since the Eocene (45 Ma) the Pacific Plate has been subducting beneath the Philippine Plate in the western Pacific ocean. This process has given rise to the Mariana Islands. As a direct result of this non-accretionary subduction, the Mariana Island Arc contains a broad forearc zone of serpentinite mud volcanoes located between the island chain and the trench. Forearc faulting, due to high pressure and low temperature build-up, produce slurries of mud and rock that mix with slab derived fluids and rise in conduits. Due to dehydration of the overlying mantle, native rock is converted to serpentinite, which squeezes out at fractures along the sea floor. This results in giant mud volcanoes (~30 km diameter and ~2 km high) that form a chain between 50 and 150 km behind the trench axis. Microbial samples were collected using Jason II from seven mud volcanoes along the length of the forearc and community fingerprinting was applied to genomic DNA using terminal restriction length polymorphism (T-RFLP). The resulting data were compared with traditional clone library and sequence analysis from samples obtained from the southernmost mud volcano, South Chamorro, site 1200, holes D and E, sampled during ODP Leg 195. The dominant archaeal phylotypes found clustered into two groups within the Methanobacteria, a class of anaerobic methanogens and methylotrophs. These phylotypes were detected at three of the seven mud volcanoes sampled and comprised 61% of the archaeal clone library from 1200 E. The first group was most closely related to the order Methanobacteriales, however, these novel phylotypes had similarity values of up to 0.90 at best with some resulting at 0.48. The second novel group of phylotypes were most closely related to order Methanosarcinales, with similarity values in the range of 0.50 to 0.22, indicating a relatively weak association with known phylotypes. At 1200 D, phylotypes associated with non-thermophilic Marine Group I Crenarchaeota were detected

  10. Forearc oceanic crust in the Izu-Bonin arc - new insights from active-source seismic survey -

    Science.gov (United States)

    Kodaira, S.; Noguchi, N.; Takahashi, N.; Ishizuka, O.; Kaneda, Y.

    2009-12-01

    Petrological studies have suggested that oceanic crust is formed in forearc areas during the initial stage of subduction. However, there is little geophysical evidence for the formation of oceanic crust in those regions. In order to examine crustal formation process associated with a subduction initiation process, we conducted an active-source seismic survey at a forearc region in the Izu-Bonin intra-oceanic arc. The resultant seismic image shows a remarkably thin crust (less than 10 km) at the northern half of the Bonin ridge (at the north of the Chichi-jima) and abrupt thickening the crust (~ 20 km thick) toward the south (at the Haha-jima). Comparison of velocity-depth profiles of the thin forearc crust of the Bonin ridge with those of typical oceanic crusts showed them to be seismologically identical. The observed structural variation also well corresponds to magmatic activities along the forearc. Boninitic magmatism is evident in the area of thin crust and tholeiitic-calcalkaline andesitic volcanism in the area of thick crust. Based on high precision dating studies of those volcanic rocks, we interpreted that the oceanic-type thin crust associated with boninitic volcanism has been created soon after the initiation of subduction (45-48 Ma) and and that the nonoceanic thick crust was created by tholeiitic-calcalkaline andesitic magmatism after the boninitic magmatism was ceased. The above seismological evidences strongly support the idea of forearc oceanic crust (or phiolite) created by forearc spreading in the initial stage of subduction along the intra-oceanic arc.

  11. Geologic summary of the Owens Valley drilling project, Owens and Rose Valleys, Inyo County, California

    International Nuclear Information System (INIS)

    Schaer, D.W.

    1981-07-01

    The Owens Valley Drilling Project consists of eight drill holes located in southwest Inyo County, California, having an aggregate depth of 19,205 feet (5853 m). Project holes penetrated the Coso Formation of upper Pliocene or early Pleistocene age and the Owens Lake sand and lakebed units of the same age. The project objective was to improve the reliability of uranium-potential-resource estimates assigned to the Coso Formation in the Owens Valley region. Uranium-potential-resource estimates for this area in $100 per pound U 3 O 8 forward-cost-category material have been estimatd to be 16,954 tons (15,384 metric tons). This estimate is based partly on project drilling results. Within the Owens Valley project area, the Coso Formation was encountered only in the Rose Valley region, and for this reason Rose Valley is considered to be the only portion of the project area favorable for economically sized uranium deposits. The sequence of sediments contained in the Owens Valley basin is considered to be largely equivalent but lithologically dissimilar to the Coso Formation of Haiwee Ridge and Rose Valley. The most important factor in the concentration of significant amounts of uranium in the rock units investigated appears to be the availability of reducing agents. Significant amounts of reductants (pyrite) were found in the Coso Formation. No organic debris was noted. Many small, disconnected uranium occurrences, 100 to 500 ppM U 3 O 8 , were encountered in several of the holes

  12. The Tonalá fault in southeastern Mexico: Evidence that the Central America forearc sliver is not being detached?

    Science.gov (United States)

    Guzman-Speziale, M.; Molina-Garza, R. S.

    2012-12-01

    The Tonalá fault is a NW-SE oriented feature that flanks the Chiapas Massif on its southwestern side. Several authors coincide that the fault originally developed as a right-lateral structure in the Jurassic, but was reactivated as a left-lateral fault in the Miocene. Seismicity along the fault is low: Only one earthquake with magnitude 5.0 or larger is reported along the Tonalá fault in the years 1964 to present. Fault-plane solutions determined by the Mexican Seismological Survey for earthquakes along the fault show left-lateral, strike-slip faulting. The Tonalá fault lies on the northwestern continuation of the Central America volcanic arc. The volcanic arc is the site of medium-sized (magnitudes up to 6.5) shallow, right-lateral, strike-slip earthquakes. This has led several workers to propose that the forearc sliver is being detached from the Caribbean plate along the arc, moving northward. GPS studies have confirmed relative motion between the Chortis block and the forearc sliver. Recent and current motion along the Tonalá fault is in contradiction with motion and detachment of the forearc sliver along the Central America volcanic arc. Left-lateral motion along it cannot accomodate northwest displacement of the forearc sliver. Motion of the Central America forearc would require NW directed compression between the continental shelf of Chiapas and the forearc itself, which is not observed. Therefore, either another fault (or faults) accomodates right-lateral motion and detachment of the forearc sliver, or the sliver is not being detached and relative motion between the forearc sliver and the Chortis block corresponds to displacement of the latter. We suggest that, as proposed by previous authors, the Tonalá fault is instead part of a fault system that runs from the state of Oaxaca (the Valle Nacional fault), forming an arc concave to the northeast, and running perpendicular to the maximum slope of subduction in the area.

  13. Water resources of Parowan Valley, Iron County, Utah

    Science.gov (United States)

    Marston, Thomas M.

    2017-08-29

    Parowan Valley, in Iron County, Utah, covers about 160 square miles west of the Red Cliffs and includes the towns of Parowan, Paragonah, and Summit. The valley is a structural depression formed by northwest-trending faults and is, essentially, a closed surface-water basin although a small part of the valley at the southwestern end drains into the adjacent Cedar Valley. Groundwater occurs in and has been developed mainly from the unconsolidated basin-fill aquifer. Long-term downward trends in groundwater levels have been documented by the U.S. Geological Survey (USGS) since the mid-1950s. The water resources of Parowan Valley were assessed during 2012 to 2014 with an emphasis on refining the understanding of the groundwater and surface-water systems and updating the groundwater budget.Surface-water discharge of five perennial mountain streams that enter Parowan Valley was measured from 2013 to 2014. The total annual surface-water discharge of the five streams during 2013 to 2014 was about 18,000 acre-feet (acre-ft) compared to the average annual streamflow of about 22,000 acre-ft from USGS streamgages operated on the three largest of these streams from the 1940s to the 1980s. The largest stream, Parowan Creek, contributes more than 50 percent of the annual surface-water discharge to the valley, with smaller amounts contributed by Red, Summit, Little, and Cottonwood Creeks.Average annual recharge to the Parowan Valley groundwater system was estimated to be about 25,000 acre-ft from 1994 to 2013. Nearly all recharge occurs as direct infiltration of snowmelt and rainfall on the Markagunt Plateau east of the valley. Smaller amounts of recharge occur as infiltration of streamflow and unconsumed irrigation water near the east side of the valley on alluvial fans associated with mountain streams at the foot of the Red Cliffs. Subsurface flow from the mountain block to the east of the valley is a significant source of groundwater recharge to the basin-fill aquifer

  14. Basal erosion: barrier to earthquake propagation? Insight from the northern chilean forearc

    Science.gov (United States)

    Cubas, N.

    2017-12-01

    Subducted topographic features have often been suspected as barriers to large earthquake propagation. These features would induce basal erosion, leading to a large network of fractures impeding large nucleation or shear localization. Looking for correlation between basal erosion and megathrust ruptures is thus critical nowadays to understand earthquake mechanics and infer rupture scenarios. In this study, we propose to seek possible location of basal erosion from the forearc morphology by applying the critical taper theory. We focus on the North Chile subduction zone that has experienced four major earthquakes during the last two decades and where basal erosion and seamount subduction have already been suspected. Basal erosion should occur when the basal friction approaches the internal friction. We thus seek what part of the forearc is at critical state and select areas for which the two frictions are almost equal. We find a large band, located at 25km depth, from the Mejillones peninsula to the Iquique region at critical state with very high basal friction. The critical areas seem to surround the Tocopilla 2007 Mw 7.7 and the Iquique 2014 Mw 8.1 ruptures. When compared with the interseismic coupling, except for the Tocopilla segment, the critical areas are located in low-coupled zones. More interestingly, the reported normal faults of the forearc do not appear above the erosional areas but rather between them. These normal faults are systematically located above locked patches and seismic asperities. These areas are actually at extensional critical state and characterized by a very low effective friction. We thus suspect the extensional features to be related to earthquakes rather than basal erosion. We then look for similar relationships along the Sumatra subduction zone to see if basal erosion is a common process. The Tocopilla and Iquique earthquakes ruptured only part of the northern Chile seismic gap although the full segment was ready for a new large

  15. Valley polarization in bismuth

    Science.gov (United States)

    Fauque, Benoit

    2013-03-01

    The electronic structure of certain crystal lattices can contain multiple degenerate valleys for their charge carriers to occupy. The principal challenge in the development of valleytronics is to lift the valley degeneracy of charge carriers in a controlled way. In bulk semi-metallic bismuth, the Fermi surface includes three cigar-shaped electron valleys lying almost perpendicular to the high symmetry axis known as the trigonal axis. The in-plane mass anisotropy of each valley exceeds 200 as a consequence of Dirac dispersion, which drastically reduces the effective mass along two out of the three orientations. According to our recent study of angle-dependent magnetoresistance in bismuth, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. As a consequence of a unique combination of high mobility and extreme mass anisotropy in bismuth, the effect is visible even at room temperature in a magnetic field of 1 T. Thus, a modest magnetic field can be used as a valley valve in bismuth. The results of our recent investigation of angle-dependent magnetoresistance in other semi-metals and doped semiconductors suggest that a rotating magnetic field can behave as a valley valve in a multi-valley system with sizeable mass anisotropy.

  16. The structure of the Calabrian subduction system from the fore-arc to the back-arc: new insights from wide-angle seismic data

    Science.gov (United States)

    Prada, M.; Sallares, V.; Ranero, C. R.; Grevemeyer, I.; Zitellini, N.

    2017-12-01

    The Calabrian arc is a Neogene-Quaternary arcuate orogen result from the subduction of the Ionian Lithosphere under Calabria. The SE migration of this subduction system, triggered by slab rollback, caused the opening of the Tyrrhenian back-arc basin. The large-scale lithospheric structure of the subduction system is mostly imaged by regional earthquake tomography studies. The limited resolution of these studies, however, hinders the definition of smaller-scale details on the location, nature and transition of different lithospheric domains, which are crucial to study the geodynamic evolution of the system. Here we perform travel-time tomography of offshore and onshore active-source wide-angle seismic data to define the 2D Vp structure of the entire Calabrian subduction system. The data were acquired along a 550 km-long transect that extends from the Tyrrhenian back-arc domain to the fore-arc in the Ionian Sea, across Calabria. From NW to SE, the tomographic model shows abrupt variations of the velocity structure. In the back-arc system, particularly in the Vavilov and Marsili basins, OBS sections lack PmP-like arrivals and the velocity structure shows a continuous and strong vertical velocity gradient of 1 s-1. These results strongly support the presence of a basement made of exhumed mantle rocks. Between the Vavilov and Marsili basins, a relatively thick, low-velocity block is interpreted to be of continental affinity. The transition between Marsili Basin and Calabria is marked by a steep Moho geometry that shallows from SE to NW, revealing a dramatic crustal thinning along the N Calabrian margin. The lower crust of the margin has localized Vp of 7 km/s under the submarine volcanic arc. SE Calabria, the model shows a strong horizontal velocity gradient that is interpreted as the backstop of the subduction. In the Ionian, a 3-5 km thick sedimentary wedge thickens towards the NW. The frontal part of the wedge shows sub-vertical low-velocity anomalies indicating the

  17. Ancient mantle in a modern arc: osmium isotopes in izu-bonin-mariana forearc peridotites

    Science.gov (United States)

    Parkinson; Hawkesworth; Cohen

    1998-09-25

    Mantle peridotites drilled from the Izu-Bonin-Mariana forearc have unradiogenic 187Os/188Os ratios (0.1193 to 0.1273), which give Proterozoic model ages of 820 to 1230 million years ago. If these peridotites are residues from magmatism during the initiation of subduction 40 to 48 million years ago, then the mantle that melted was much more depleted in incompatible elements than the source of mid-ocean ridge basalts (MORB). This result indicates that osmium isotopes record information about ancient melting events in the convecting upper mantle not recorded by incompatible lithophile isotope tracers. Subduction zones may be a graveyard for ancient depleted mantle material, and portions of the convecting upper mantle may be less radiogenic in osmium isotopes than previously recognized.

  18. Stratigraphic and tectonic control of deep-water scarp accumulation in Paleogene synorogenic basins: a case study of the Súľov Conglomerates (Middle Váh Valley, Western Carpathians

    Directory of Open Access Journals (Sweden)

    Soták Ján

    2017-10-01

    Full Text Available The Súľov Conglomerates represent mass-transport deposits of the Súľov-Domaniža Basin. Their lithosomes are intercalated by claystones of late Thanetian (Zones P3 - P4, early Ypresian (Zones P5 - E2 and late Ypresian to early Lutetian (Zones E5 - E9 age. Claystone interbeds contain rich planktonic and agglutinated microfauna, implying deep-water environments of gravity-flow deposition. The basin was supplied by continental margin deposystems, and filled with submarine landslides, fault-scarp breccias, base-of-slope aprons, debris-flow lobes and distal fans of debrite and turbidite deposits. Synsedimentary tectonics of the Súľov-Domaniža Basin started in the late Thanetian - early Ypresian by normal faulting and disintegration of the orogenic wedge margin. Fault-related fissures were filled by carbonate bedrock breccias and banded crystalline calcite veins (onyxites. The subsidence accelerated during the Ypresian and early Lutetian by gravitational collapse and subcrustal tectonic erosion of the CWC plate. The basin subsided to lower bathyal up to abyssal depth along with downslope accumulation of mass-flow deposits. Tectonic inversion of the basin resulted from the Oligocene - early Miocene transpression (σ1 rotated from NW-SE to NNW-SSE, which changed to a transpressional regime during the Middle Miocene (σ1 rotated from NNE-SSW to NE-SW. Late Miocene tectonics were dominated by an extensional regime with σ3 axis in NNW-SSE orientation.

  19. 187Os/188Os of boninites from the Izu-Bonin-Mariana forearc, IODP Exp 352

    Science.gov (United States)

    Niles, D. E.; Nelson, W. R.; Reagan, M. K.; Pearce, J. A.; Godard, M.; Shervais, J. W.

    2016-12-01

    The Izu-Bonin-Mariana (IBM) subduction zone is an ideal laboratory in which to study the evolution of a subduction zone from its initiation to the development of modern-day arc volcanism. Boninite lavas were produced in the IBM forearc region during the early stages of subduction and are thought to have been generated by flux melting the previously depleted mantle wedge. Mariana forearc mantle peridotites record unradiogenic 187Os/188Os signatures (0.1193-0.1273) supporting the existence of variably depleted mantle in this region (Parkinson et al., 1998). In order to understand the connection between the regional mantle, slab-derived fluids, and the generation of boninites, Re-Os isotopic data were measured on subset of boninite-series lavas obtained during IODP Expedition 352. Preliminary age-corrected (48 Ma) 187Os/188Os isotopic data for boninite-series lavas (sites U1439C and U1442A) are unradiogenic to modestly radiogenic (0.1254-0.1390) compared to primitive mantle (0.1296), consistent with Os isotopic data from boninite sands from the Bonin Islands (0.1279-0.1382; Suzuki et al., 2011). The least radiogenic boninites have 187Os/188Os (< 0.1296) values consistent with average MORB mantle recorded globally by abyssal peridotites (0.1238 ± 0.0042; Rudnick & Walker, 2009). However, boninite lavas were not derived from the most refractory ancient mantle recorded by Mariana peridotites. Unradiogenic boninites generally have higher Os abundances (0.043-0.567 ppb), whereas more radiogenic boninites have low Os abundances (0.015-0.036). Due to their low Os abundances, the moderately radiogenic isotopic signatures may be the result of interaction with highly radiogenic seawater or incorporation of radiogenic sediment (e.g. Suzuki et al. 2011). However, the radiogenic values could also be the result of fluid flux from the subducting Pacific plate.

  20. Does permanent extensional deformation in lower forearc slopes indicate shallow plate-boundary rupture?

    Science.gov (United States)

    Geersen, J.; Ranero, C. R.; Kopp, H.; Behrmann, J. H.; Lange, D.; Klaucke, I.; Barrientos, S.; Diaz-Naveas, J.; Barckhausen, U.; Reichert, C.

    2018-05-01

    Seismic rupture of the shallow plate-boundary can result in large tsunamis with tragic socio-economic consequences, as exemplified by the 2011 Tohoku-Oki earthquake. To better understand the processes involved in shallow earthquake rupture in seismic gaps (where megathrust earthquakes are expected), and investigate the tsunami hazard, it is important to assess whether the region experienced shallow earthquake rupture in the past. However, there are currently no established methods to elucidate whether a margin segment has repeatedly experienced shallow earthquake rupture, with the exception of mechanical studies on subducted fault-rocks. Here we combine new swath bathymetric data, unpublished seismic reflection images, and inter-seismic seismicity to evaluate if the pattern of permanent deformation in the marine forearc of the Northern Chile seismic gap allows inferences on past earthquake behavior. While the tectonic configuration of the middle and upper slope remains similar over hundreds of kilometers along the North Chilean margin, we document permanent extensional deformation of the lower slope localized to the region 20.8°S-22°S. Critical taper analyses, the comparison of permanent deformation to inter-seismic seismicity and plate-coupling models, as well as recent observations from other subduction-zones, including the area that ruptured during the 2011 Tohoku-Oki earthquake, suggest that the normal faults at the lower slope may have resulted from shallow, possibly near-trench breaking earthquake ruptures in the past. In the adjacent margin segments, the 1995 Antofagasta, 2007 Tocopilla, and 2014 Iquique earthquakes were limited to the middle and upper-slope and the terrestrial forearc, and so are upper-plate normal faults. Our findings suggest a seismo-tectonic segmentation of the North Chilean margin that seems to be stable over multiple earthquake cycles. If our interpretations are correct, they indicate a high tsunami hazard posed by the yet un

  1. MORPHOMETRIC ASPECTS IN THE BÂRLAD BASIN

    Directory of Open Access Journals (Sweden)

    BĂLAN OANA

    2015-03-01

    Full Text Available Bârlad valley morphometry is strongly influenced by lithology, geological structure and climatic conditions. Between its springs and the outflow we noticed notable deviations from valley monocline structure and from the consecvent overall direction of the river system. Morphometric analysis of the Bârlad valley cumulates and summarizes the sequence of events that occurred in its hydrographic basin, which in turn has been actively reflected in indices such as generated the altimetry, the relief depth fragmentation.

  2. Groundwater quality in the Antelope Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Antelope Valley is one of the study areas being evaluated. The Antelope study area is approximately 1,600 square miles (4,144 square kilometers) and includes the Antelope Valley groundwater basin (California Department of Water Resources, 2003). Antelope Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lakebeds in the lower parts of the valley. Land use in the study area is approximately 68 percent (%) natural (mostly shrubland and grassland), 24% agricultural, and 8% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Palmdale and Lancaster (2010 populations of 152,000 and 156,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Antelope Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Antelope Valley are completed to depths between 360 and 700 feet (110 to 213 meters), consist of solid casing from the land surface to a depth of 180 to 350 feet (55 to 107 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation and sewer and septic

  3. Groundwater quality in the Owens Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Owens Valley is one of the study areas being evaluated. The Owens study area is approximately 1,030 square miles (2,668 square kilometers) and includes the Owens Valley groundwater basin (California Department of Water Resources, 2003). Owens Valley has a semiarid to arid climate, with average annual rainfall of about 6 inches (15 centimeters). The study area has internal drainage, with runoff primarily from the Sierra Nevada draining east to the Owens River, which flows south to Owens Lake dry lakebed at the southern end of the valley. Beginning in the early 1900s, the City of Los Angeles began diverting the flow of the Owens River to the Los Angeles Aqueduct, resulting in the evaporation of Owens Lake and the formation of the current Owens Lake dry lakebed. Land use in the study area is approximately 94 percent (%) natural, 5% agricultural, and 1% urban. The primary natural land cover is shrubland. The largest urban area is the city of Bishop (2010 population of 4,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to the Owens Lake dry lakebed. The primary aquifers in Owens Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database

  4. Greening Turner Valley

    International Nuclear Information System (INIS)

    Byfield, M.

    2010-01-01

    This article discussed remedial activities undertaken in the Turner Valley. Remedial action in the valley must satisfy the financial concerns of engineers and investors as well as the environmental concerns of residents and regulators. Natural gas production in the Turner Valley began in 1914. The production practices were harmful and wasteful. Soil and water pollution was not considered a problem until recently. The impacts of cumulative effects and other pollution hazards are now being considered as part of many oil and gas environmental management programs. Companies know it is cheaper and safer to prevent pollutants from being released, and more efficient to clean them up quickly. Oil and gas companies are also committed to remediating historical problems. Several factors have simplified remediation plans in the Turner Valley. Area real estate values are now among the highest in Alberta. While the valley residents are generally friendly to the petroleum industry, strong communication with all stakeholders in the region is needed. 1 fig.

  5. Chemical and thermal evolution of diagenetic fluids and the genesis of U and Cu ore in and adjacent to the Paradox Basin with emphasis on the Lisbon Valley and Temple Mountain areas, Utah and Colorado

    International Nuclear Information System (INIS)

    Morrison, S.J.

    1986-01-01

    Strata-of the central Colorado Plateau of southeastern Utah and southwestern Colorado hot Cu(+/-Ag) ore in salt anticline related faults, and stratiform sandstone-type uranium deposits. The goals of this study were to develop, evaluate, and interpret a geochemical data base from a restricted stratigraphic interval, and to develop models of the chemical and thermal evolution of the interaction of rock framework with pore fluids. Fluid inclusions, mineral chemistry, and C/O stable isotopes in calcite gangue associated with vein-type copper ore at Lisbon Valley suggest mixing of two solutions caused precipitation of the ore. Regularly interstratified chlorite/smectite (corrensite) coats grains in marine and eolian sandstones of the Permian Cutler Formation in the Lisbon Valley area. Local hydrothermal fluids rising along the Lisbon fault apparently permeated the Cutler red-bed section and precipitated the clay minerals. Detailed petrographic studies and fluid inclusion data from calcite cements in the Moss Back Member, support theories of syndiagenetic mobilization of humic compounds, uranium fixation and cementation at Lisbon Valley. The Temple Mountain area hosts uranium ore bodies that are unique among sandstone-type uranium deposits in structural setting, mineralogy, exotic elements, and the occurrence of asphaltite in the ores. This study suggests that warm fluids (70 0 C) have migrated along ring fractures bounding the collapse structure as evidenced by fluid inclusions trapped in authigenic dolomite in the basal Triassic Wingate Sandstone. K/Ar dates using alunite indicate that fluid migration was active as late as 13 my. Modeling suggests that dolomite at the Wingate/Chinle contact precipitated as two fluids mixed

  6. Charcterization of meadow ecosystems based on watershed and valley segment/reach scale characteristics [chapter 7

    Science.gov (United States)

    Wendy Trowbridge; Jeanne C. Chambers; Dru Germanoski; Mark L. Lord; Jerry R. Miller; David G. Jewett

    2011-01-01

    Great Basin riparian meadows are highly sensitive to both natural and anthropogenic disturbance. As detailed in earlier chapters, streams in the central Great Basin have a natural tendency to incise due to their geomorphic history (Miller and others 2001, 2004). Anthropogenic disturbances, including overgrazing by livestock, mining activities, and roads in the valley...

  7. Potential hydrologic characterization wells in Amargosa Valley

    International Nuclear Information System (INIS)

    Lyles, B.; Mihevc, T.

    1994-09-01

    More than 500 domestic, agricultural, and monitoring wells were identified in the Amargosa Valley. From this list, 80 wells were identified as potential hydrologic characterization wells, in support of the US Department of Energy (DOE) Underground Test Area/Remedial Investigation and Feasibility Study (UGTA/RIFS). Previous hydrogeologic studies have shown that groundwater flow in the basin is complex and that aquifers may have little lateral continuity. Wells located more than 10 km or so from the Nevada Test Site (NTS) boundary may yield data that are difficult to correlate to sources from the NTS. Also, monitoring well locations should be chosen within the guidelines of a hydrologic conceptual model and monitoring plan. Since these do not exist at this time, recompletion recommendations will be restricted to wells relatively close (approximately 20 km) to the NTS boundary. Recompletion recommendations were made for two abandoned agricultural irrigation wells near the town of Amargosa Valley (previously Lathrop Wells), for two abandoned wildcat oil wells about 10 km southwest of Amargosa Valley, and for Test Well 5 (TW-5), about 10 km east of Amargosa Valley

  8. Microscopic Identification of Prokaryotes in Modern and Ancient Halite, Saline Valley and Death Valley, California

    Science.gov (United States)

    Schubert, Brian A.; Lowenstein, Tim K.; Timofeeff, Michael N.

    2009-06-01

    Primary fluid inclusions in halite crystallized in Saline Valley, California, in 1980, 2004-2005, and 2007, contain rod- and coccoid-shaped microparticles the same size and morphology as archaea and bacteria living in modern brines. Primary fluid inclusions from a well-dated (0-100,000 years), 90 m long salt core from Badwater Basin, Death Valley, California, also contain microparticles, here interpreted as halophilic and halotolerant prokaryotes. Prokaryotes are distinguished from crystals on the basis of morphology, optical properties (birefringence), and uniformity of size. Electron micrographs of microparticles from filtered modern brine (Saline Valley), dissolved modern halite crystals (Saline Valley), and dissolved ancient halite crystals (Death Valley) support in situ microscopic observations that prokaryotes are present in fluid inclusions in ancient halite. In the Death Valley salt core, prokaryotes in fluid inclusions occur almost exclusively in halite precipitated in perennial saline lakes 10,000 to 35,000 years ago. This suggests that trapping and preservation of prokaryotes in fluid inclusions is influenced by the surface environment in which the halite originally precipitated. In all cases, prokaryotes in fluid inclusions in halite from the Death Valley salt core are miniaturized (<1 μm diameter cocci, <2.5 μm long, very rare rod shapes), which supports interpretations that the prokaryotes are indigenous to the halite and starvation survival may be the normal response of some prokaryotes to entrapment in fluid inclusions for millennia. These results reinforce the view that fluid inclusions in halite and possibly other evaporites are important repositories of microbial life and should be carefully examined in the search for ancient microorganisms on Earth, Mars, and elsewhere in the Solar System.

  9. Diurnal cycle of air pollution in the Kathmandu Valley, Nepal: 2. Modeling results

    Science.gov (United States)

    Panday, Arnico K.; Prinn, Ronald G.; SchäR, Christoph

    2009-11-01

    After completing a 9-month field experiment studying air pollution and meteorology in the Kathmandu Valley, Nepal, we set up the mesoscale meteorological model MM5 to simulate the Kathmandu Valley's meteorology with a horizontal resolution of up to 1 km. After testing the model against available data, we used it to address specific questions to understand the factors that control the observed diurnal cycle of air pollution in this urban basin in the Himalayas. We studied the dynamics of the basin's nocturnal cold air pool, its dissipation in the morning, and the subsequent growth and decay of the mixed layer over the valley. During mornings, we found behavior common to large basins, with upslope flows and basin-center subsidence removing the nocturnal cold air pool. During afternoons the circulation in the Kathmandu Valley exhibited patterns common to plateaus, with cooler denser air originating over lower regions west of Kathmandu arriving through mountain passes and spreading across the basin floor, thereby reducing the mixed layer depth. We also examined the pathways of pollutant ventilation out of the valley. The bulk of the pollution ventilation takes place during the afternoon, when strong westerly winds blow in through the western passes of the valley, and the pollutants are rapidly carried out through passes on the east and south sides of the valley. In the evening, pollutants first accumulate near the surface, but then are lifted slightly when katabatic flows converge underneath. The elevated polluted layers are mixed back down in the morning, contributing to the morning pollution peak. Later in the morning a fraction of the valley's pollutants travels up the slopes of the valley rim mountains before the westerly winds begin.

  10. Tracing halogen and B cycling in subduction zones based on obducted, subducted and forearc serpentinites of the Dominican Republic.

    Science.gov (United States)

    Pagé, Lilianne; Hattori, Keiko

    2017-12-19

    Serpentinites are important reservoirs of fluid-mobile elements in subduction zones, contributing to volatiles in arc magmas and their transport into the Earth's mantle. This paper reports halogen (F, Cl, Br, I) and B abundances of serpentinites from the Dominican Republic, including obducted and subducted abyssal serpentinites and forearc mantle serpentinites. Abyssal serpentinite compositions indicate the incorporation of these elements from seawater and sediments during serpentinization on the seafloor and at slab bending. During their subduction and subsequent lizardite-antigorite transition, F and B are retained in serpentinites, whilst Cl, Br and I are expelled. Forearc mantle serpentinite compositions suggest their hydration by fluids released from subducting altered oceanic crust and abyssal serpentinites, with only minor sediment contribution. This finding is consistent with the minimal subduction of sediments in the Dominican Republic. Forearc mantle serpentinites have F/Cl and B/Cl ratios similar to arc magmas, suggesting the importance of serpentinite dehydration in the generation of arc magmatism in the mantle wedge.

  11. Stable isotope compositions of serpentinite seamounts in the Mariana forearc: Serpentinization processes, fluid sources and sulfur metasomatism

    Science.gov (United States)

    Alt, J.C.; Shanks, Wayne C.

    2006-01-01

    The Mariana and Izu-Bonin arcs in the western Pacific are characterized by serpentinite seamounts in the forearc that provide unique windows into the mantle wedge. We present stable isotope (O, H, S, and C) data for serpentinites from Conical seamount in the Mariana forearc and S isotope data for Torishima seamount in the Izu-Bonin forearc in order to understand the compositions of fluids and temperatures of serpentinization in the mantle wedge, and to investigate the transport of sulfur from the slab to the mantle wedge. Six serpentine mineral separates have a restricted range of ??18O (6.5-8.5???). Antigorite separates have ??D values of -29.5??? to -45.5??? that reflect serpentinization within the mantle wedge whereas chrysotile has low ??D values (-51.8??? to -84.0???) as the result of re-equilibration with fluids at low temperatures. Fractionation of oxygen isotopes between serpentine and magnetite indicate serpentinization temperatures of 300-375 ??C. Two late cross-fiber chrysotile veins have higher ??18O values of 8.9??? to 10.8??? and formed at lower temperatures (as low as ???100 ??C). Aqueous fluids in equilibrium with serpentine at 300-375 ??C had ??18O = 6.5-9??? and ??D = -4??? to -26???, consistent with sediment dehydration reactions at temperatures arc lavas. ?? 2006 Elsevier B.V. All rights reserved.

  12. Analysis of overdeepened valleys using the digital elevation model of the bedrock surface of Northern Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, P.

    2010-11-15

    Based on surface and borehole information, together with pre-existing regional and local interpretations, a 7,150 square kilometre Raster Digital Elevation Model (DEM) of the bedrock surface of northern Switzerland was constructed using a 25 m cell size. This model represents a further important step in the understanding of Quaternary sediment distribution and is open to a broad field of application and analysis, including hydrogeological, geotechnical and geophysical studies as well as research in the field of Pleistocene landscape evolution. An analysis of the overdeepened valleys in the whole model area and, more specifically in the Reuss area, shows that, in most cases, overdeepening is restricted to the areas covered by the Last Glaciation Maximum (LGM). However, at various locations relatively narrow overdeepened valleys outreach the tongue basins and the LGM ice shield limits. Therefore, an earlier and further-reaching glacial event has probably contributed significantly to the overdeepening of these valleys. No significant overdeepening has been identified downstream of Boettstein (Aare) and Kaiserstuhl (Rhine), although the ice extended considerably further downstream, at least during the most extensive glaciation. Except for the bedrock between Brugg and Boettstein, no overdeepened valleys are found significantly north of the outcrop of Mesozoic limestone of the Folded and Tabular Jura. A detailed analysis of the Reuss area shows that the Lake and Suhre valleys are separated from the Emmen-Gisikon Reuss valley basin by a significant bedrock barrier. The individual bedrock valleys are divided into several sub-basins, indicating a multiphase evolution of the valleys. Some of the swells or barriers separating the sub-basins coincide with known late LGM retreat stages. In the Suhre valley, an old fluvial valley floor with restricted overdeepened sections is documented. (author)

  13. Seismic velocity structure of the forearc in northern Cascadia from Bayesian inversion of teleseismic data

    Science.gov (United States)

    Gosselin, J.; Audet, P.; Schaeffer, A. J.

    2017-12-01

    The seismic velocity structure in the forearc of subduction zones provides important constraints on material properties, with implications for seismogenesis. In Cascadia, previous studies have imaged a downgoing low-velocity zone (LVZ) characterized by an elevated P-to-S velocity ratio (Vp/Vs) down to 45 km depth, near the intersection with the mantle wedge corner, beyond which the signature of the LVZ disappears. These results, combined with the absence of a "normal" continental Moho, indicate that the down-going oceanic crust likely carries large amounts of overpressured free fluids that are released downdip at the onset of crustal eclogitization, and are further stored in the mantle wedge as serpentinite. These overpressured free fluids affect the stability of the plate interface and facilitate slow slip. These results are based on the inversion and migration of scattered teleseismic data for individual layer properties; a methodology which suffers from regularization and smoothing, non-uniqueness, and does not consider model uncertainty. This study instead applies trans-dimensional Bayesian inversion of teleseismic data collected in the forearc of northern Cascadia (the CAFÉ experiment in northern Washington) to provide rigorous, quantitative estimates of local velocity structure, and associated uncertainties (particularly Vp/Vs structure and depth to the plate interface). Trans-dimensional inversion is a generalization of fixed-dimensional inversion that includes the number (and type) of parameters required to describe the velocity model (or data error model) as unknown in the problem. This allows model complexity to be inherently determined by data information content, not by subjective regularization. The inversion is implemented here using the reversible-jump Markov chain Monte Carlo algorithm. The result is an ensemble set of candidate velocity-structure models which approximate the posterior probability density (PPD) of the model parameters. The solution

  14. The geologic history of Margaritifer basin, Mars

    Science.gov (United States)

    Salvatore, M. R.; Kraft, M. D.; Edwards, Christopher; Christensen, P.R.

    2016-01-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava (ULM) outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre Basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  15. Trench Parallel Bouguer Anomaly (TPBA): A robust measure for statically detecting asperities along the forearc of subduction zones

    Science.gov (United States)

    Raeesi, M.

    2009-05-01

    During 1970s some researchers noticed that large earthquakes occur repeatedly at the same locations. These observations led to the asperity hypothesis. At the same times some researchers noticed that there was a relationship between the location of great interplate earthquakes and the submarine structures, basins in particular, over the rupture area in the forearc regions. Despite these observations there was no comprehensive and reliable hypothesis explaining the relationship. There were numerous cons and pros to the various hypotheses given in this regard. In their pioneering study, Song and Simons (2003) approached the problem using gravity data. This was a turning point in seismology. Although their approach was correct, appropriate gravity anomaly had to be used in order to reveal the location and extent of the asperities. Following the method of Song and Simons (2003) but using the Bouguer gravity anomaly that we called "Trench Parallel Bouguer Anomaly", TPBA, we found strong, logical, and convincing relation between the TPBA-derived asperities and the slip distribution as well as earthquake distribution, foreshocks and aftershocks in particular. Various parameters with different levels of importance are known that affect the contact between the subducting and the overriding plates, We found that the TPBA can show which are the important factors. Because the TPBA-derived asperities are based on static physical properties (gravity and elevation), they do not suffer from instabilities due to the trade-offs, as it happens for asperities derived in dynamic studies such as waveform inversion. Comparison of the TPBA-derived asperities with rupture processes of the well-studied great earthquakes, reveals the high level of accuracy of the TPBA. This new measure opens a forensic viewpoint on the rupture process along the subduction zones. The TPBA reveals the reason behind 9+ earthquakes and it explains where and why they occur. The TPBA reveals the areas that can

  16. Mélange versus forearc contributions to sedimentation and uplift, during rapid denudation of a young Banda forearc-continent collisional belt

    NARCIS (Netherlands)

    Duffy, Brendan; Kalansky, Julie; Bassett, Kari; Harris, Ron; Quigley, Mark; van Hinsbergen, Douwe J J; Strachan, Lorna J.; Rosenthal, Yair

    2017-01-01

    New sedimentary geochemistry and petrographic analyses provide the most extensive sedimentary documentation yet of the rapid denudation of the young Timor orogen. The data from three basins including two widely-separated, well-dated sections of the Synorogenic Megasequence of Timor-Leste, and a

  17. 3D Electromagnetic Imaging of Fluid Distribution Below the Kii Peninsula, SW Japan Forearc

    Science.gov (United States)

    Kinoshita, Y.; Ogawa, Y.; Ichiki, M.; Yamaguchi, S.; Fujita, K.; Umeda, K.; Asamori, K.

    2017-12-01

    Although Kii peninsula is located in the forearc of southwest Japan, it has high temperature hot springs and fluids from mantle are inferred from the isotopic ratio of helium. Non-volcanic tremors underneath the Kii Peninsula suggest rising fluids from the slab.Previously, in the southern part of the Kii Peninsula, wide band magnetotelluric measurements were carried out (Fujita et al. ,1997; Umeda et al., 2004). These studies could image the existence of the conductivity anomaly in the shallow and deep crust, however they used two dimensional inversions and three-dimensionality is not fully taken into consideration. As part of the "Crustal Dynamics" project, we have measured 20 more stations so that the whole wide-band MT stations constitute grids for three-dimensional modeling of the area. In total we have 51 wide-band magnetotelluric sites. Preliminary 3d inverse modeling showed the following features. (1) The high resistivity in the eastern Kii Peninsula at depths of 5-40km. This may imply consolidated magma body of Kumano Acidic rocks underlain by resistive Philippine Sea Plate which subducts with a low dip angle. (2) The northwestern part of Kii Peninsula has the shallow low resistivity in the upper crust, around which high seismicity is observed. (3) The northwestern part of the survey area has a deeper conductor. This implies a wedge mantle where the Philippine Sea subduction has a higher dip angle.

  18. Hydrogeologic and geochemical characterization of groundwater resources in Deep Creek Valley and adjacent areas, Juab and Tooele Counties, Utah, and Elko and White Pine Counties, Nevada

    Science.gov (United States)

    Gardner, Philip M.; Masbruch, Melissa D.

    2015-09-18

    The water resources of Deep Creek Valley were assessed during 2012–13 with an emphasis on better understanding the groundwater flow system and groundwater budget. Surface-water resources are limited in Deep Creek Valley and are generally used for agriculture. Groundwater is the predominant water source for most other uses and to supplement irrigation. Most groundwater withdrawal in Deep Creek Valley occurs from the unconsolidated basin-fill deposits, in which conditions are generally unconfined near the mountain front and confined in the lower-altitude parts of the valley. Productive aquifers are also present in fractured bedrock that occurs along the valley margins and beneath the basin-fill deposits. The consolidated-rock and basin-fill aquifers are hydraulically connected in many areas with much of the recharge occurring in the consolidated-rock mountain blocks and most of the discharge occurring from the lower-altitude basin-fill deposits.

  19. Hydrology of modern and late Holocene lakes, Death Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, D.N.

    1996-07-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi{sup 2}, closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area.

  20. Hydrology of modern and late Holocene lakes, Death Valley, California

    International Nuclear Information System (INIS)

    Grasso, D.N.

    1996-01-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi 2 , closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area

  1. The carbon stable isotope biogeochemistry of streams, Taylor Valley, Antarctica

    International Nuclear Information System (INIS)

    Lyons, W.B.; Leslie, D.L.; Harmon, R.S.; Neumann, K.; Welch, K.A.; Bisson, K.M.; McKnight, D.M.

    2013-01-01

    Highlights: ► δ 13 C-DIC reported from McMurdo Dry Valleys, Antarctica, streams. ► Stream water δ 13 C PDB values range −9.4‰ to +5.1‰, largely inorganic in character. ► Atmospheric exchange is the dominant control on δ 13 C-DIC. - Abstract: The McMurdo Dry Valleys region of Antarctica is the largest ice-free region on the continent. This study reports the first C stable isotope measurements for dissolved inorganic C present in ephemeral streams in four dry valleys that flow for four to twelve weeks during the austral summer. One of these valleys, Taylor Valley, has been the focus of the McMurdo Dry Valleys Long-Term Ecological Research (MCM-LTER) program since 1993. Within Taylor Valley, numerous ephemeral streams deliver water to three perennially ice-covered, closed-basin lakes: Lake Fryxell, Lake Hoare, and Lake Bonney. The Onyx River in the Wright Valley, the longest river in Antarctica, flows for 40 km from the Wright Lower Glacier and Lake Brownworth at the foot of the glacier to Lake Vanda. Streamflow in the McMurdo Dry Valley streams is produced primarily from glacial melt, as there is no overland flow. However, hyporheic zone exchange can be a major hydrogeochemical process in these streams. Depending on landscape position, these streams vary in gradient, channel substrate, biomass abundance, and hyporheic zone extent. This study sampled streams from Taylor, Wright, Garwood, and Miers Valleys and conducted diurnal sampling of two streams of different character in Taylor Valley. In addition, transect sampling was undertaken of the Onyx River in Wright Valley. The δ 13 C PDB values from these streams span a range of greater than 14‰, from −9.4‰ to +5.1‰, with the majority of samples falling between −3‰ and +2‰, suggesting that the C stable isotope composition of dissolved C in McMurdo Dry Valley streams is largely inorganic in character. Because there are no vascular plants on this landscape and no groundwater input to these

  2. Geothermal resource assessment of western San Luis Valley, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Zacharakis, Ted G.; Pearl, Richard Howard; Ringrose, Charles D.

    1983-01-01

    The Colorado Geological Survey initiated and carried out a fully integrated assessment program of the geothermal resource potential of the western San Luis Valley during 1979 and 1980. The San Luis Valley is a large intermontane basin located in southcentral Colorado. While thermal springs and wells are found throughout the Valley, the only thermal waters found along the western part of the Valley are found at Shaw Warm Springs which is a relatively unused spring located approximately 6 miles (9.66 km) north of Del Norte, Colorado. The waters at Shaws Warm Spring have a temperature of 86 F (30 C), a discharge of 40 gallons per minute and contain approximately 408 mg/l of total dissolved solids. The assessment program carried out din the western San Luis Valley consisted of: soil mercury geochemical surveys; geothermal gradient drilling; and dipole-dipole electrical resistivity traverses, Schlumberger soundings, Audio-magnetotelluric surveys, telluric surveys, and time-domain electro-magnetic soundings and seismic surveys. Shaw Warm Springs appears to be the only source of thermal waters along the western side of the Valley. From the various investigations conducted the springs appear to be fault controlled and is very limited in extent. Based on best evidence presently available estimates are presented on the size and extent of Shaw Warm Springs thermal system. It is estimated that this could have an areal extent of 0.63 sq. miles (1.62 sq. km) and contain 0.0148 Q's of heat energy.

  3. Geomorphological and geological property of short active fault in fore-arc region of Japan

    International Nuclear Information System (INIS)

    Sasaki, Toshinori; Inoue, Daiei; Ueta, Keiichi; Miyakoshi, Katsuyoshi

    2009-01-01

    The important issue in the earthquake magnitude evaluation method is the classification of short active faults or lineaments. It is necessary to determine the type of active fault to be included in the earthquake magnitude evaluation. The particular group of fault is the surface earthquake faults that are presumed to be branched faults of large interplate earthquakes in subduction zones. We have classified short lineaments in two fore-arc regions of Japan through geological and geomorphological methods based on field survey and aerial photograph interpretation. The first survey is conducted at Enmeiji Fault in Boso Peninsula. The fault is known to have been displaced by 1923 Taisho Kanto earthquake. The altitude distributions of marine terrace surfaces are different on both sides of the fault. In other words, this fault has been displaced repeatedly by the large interplate earthquakes in the past. However, the recurrent interval of this fault is far longer than the large interplate earthquake calculated by the slip rate and the displacement per event. The second survey is conducted in the western side of Muroto Peninsula, where several short lineaments are distributed. We have found several fault outcrops along the few, particular lineaments. The faults in the region have similar properties to Enmeiji Fault. On the other hand, short lineaments are found to be structural landforms. The comparison of the two groups enables us to classify the short lineaments based on the geomorphological property and geological cause of these faults. Displacement per event is far larger than displacement deduced from length of the active fault. Recurrence interval of the short active fault is far longer than that of large interplate earthquake. Displacement of the short active fault has cumulative. The earthquake magnitude of the faults have these characters need to be evaluated by the plate boundary fault or the long branched seismogenic fault. (author)

  4. Forearc structure in the Lesser Antilles inferred from depth to the Curie temperature and thermo-mechanical simulations

    Science.gov (United States)

    Gailler, Lydie; Arcay, Diane; Münch, Philippe; Martelet, Guillaume; Thinon, Isabelle; Lebrun, Jean-Frédéric

    2017-06-01

    Imaging deep active volcanic areas remains a challenge in our understanding of their activity and evolution, especially in subduction zones. Study of magnetic anomalies is appropriate to access such dynamics in depth. The magnetic anomaly pattern of the Lesser Antilles Arc (LAA) subduction is studied through Curie Point Depth (CPD), interpreted as the depth of the 580 °C isotherm, and developed to better assess the deep thermal structure of the arc. The depth of the estimated CPD exhibits a complex topography. Keeping in mind the overall uncertainty associated with this method, a main doming is evidenced below the Guadeloupe archipelago. Its apex is shifted towards the ancient arc, suggesting a very hot state of the fore-arc/arc domain. To better understand the LAA thermal state, we perform 2D thermo-mechanical simulations of the subduction zone. Recalling that magnetite is a serpentinization by-product, we simulate water transfer triggered by slab dehydration to test the assumption of fore-arc serpentinization suggested by the positive magnetic anomaly in the vicinity of the Guadeloupe archipelago. In this area, the subduction-induced arc lithosphere hydration and related weakening trigger a fast heating of the upper plate by basal convective removal. This process of fast arc lithosphere thinning may apply where simultaneously the volcanic arc is split in two and normal convergence is high enough. As serpentinization strongly decreases P-wave velocity, we propose a new interpretation of a published seismic profile below Guadeloupe. The seismic layer previously interpreted as the arc lower crust may rather be a layer of serpentinized mantle, as supported by spatial correlations between gravimetric and magnetic anomalies. Consequently, at the scale of Guadeloupe Island, the fore-arc Moho would be shallower than initially assumed, with a dome shape more consistent with both the extensive deformation active since the Oligocene in the inner fore-arc and the CPD doming.

  5. Hydrogeologic framework and occurrence, movement, and chemical characterization of groundwater in Dixie Valley, west-central Nevada

    Science.gov (United States)

    Huntington, Jena M.; Garcia, C. Amanda; Rosen, Michael R.

    2014-01-01

    Dixie Valley, a primarily undeveloped basin in west-central Nevada, is being considered for groundwater exportation. Proposed pumping would occur from the basin-fill aquifer. In response to proposed exportation, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation and Churchill County, conducted a study to improve the understanding of groundwater resources in Dixie Valley. The objective of this report is to characterize the hydrogeologic framework, the occurrence and movement of groundwater, the general water quality of the basin-fill aquifer, and the potential mixing between basin-fill and geothermal aquifers in Dixie Valley. Various types of geologic, hydrologic, and geochemical data were compiled from previous studies and collected in support of this study. Hydrogeologic units in Dixie Valley were defined to characterize rocks and sediments with similar lithologies and hydraulic properties influencing groundwater flow. Hydraulic properties of the basin-fill deposits were characterized by transmissivity estimated from aquifer tests and specific-capacity tests. Groundwater-level measurements and hydrogeologic-unit data were combined to create a potentiometric surface map and to characterize groundwater occurrence and movement. Subsurface inflow from adjacent valleys into Dixie Valley through the basin-fill aquifer was evaluated using hydraulic gradients and Darcy flux computations. The chemical signature and groundwater quality of the Dixie Valley basin-fill aquifer, and potential mixing between basin-fill and geothermal aquifers, were evaluated using chemical data collected from wells and springs during the current study and from previous investigations. Dixie Valley is the terminus of the Dixie Valley flow system, which includes Pleasant, Jersey, Fairview, Stingaree, Cowkick, and Eastgate Valleys. The freshwater aquifer in the study area is composed of unconsolidated basin-fill deposits of Quaternary age. The basin-fill hydrogeologic unit

  6. An underground view of the Albuquerque Basin

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, J.W.; Haase, C.S.; Lozinsky, R.P. [New Mexico Bureau of Mines and Mineral Resources, Socorro, NM (United States)

    1995-12-31

    Development of valid hydrogeologic models of New Mexico`s ``critical groundwater basins`` has been a long-term objective of the New Mexico Bureau of Mines and Mineral Resources (NMBMMR), a division of New Mexico Tech. The best possible information on basin hydrogeology is needed not only for incorporation in numerical models of groundwater-flow systems, which are necessary for proper management of limited water resources, but also for addressing public concerns relating to a wide range of important environmental issues. In the latter case, a hydrogeologist must be prepared to provide appropriate explanations of why groundwater systems behave physically and chemically as they do in both natural and man-disturbed situations. The paper describes the regional geologic setting, the geologic setting of the Albuquerque Basin, basin- and valley-fill stratigraphy, and the hydrogeologic model of the Albuquerque Basin. 77 refs., 6 figs., 1 tab.

  7. Ultramafic clasts from the South Chamorro serpentine mud volcano reveal a polyphase serpentinization history of the Mariana forearc mantle

    Science.gov (United States)

    Kahl, Wolf-Achim; Jöns, Niels; Bach, Wolfgang; Klein, Frieder; Alt, Jeffrey C.

    2015-06-01

    Serpentine seamounts located on the outer half of the pervasively fractured Mariana forearc provide an excellent window into the forearc devolatilization processes, which can strongly influence the cycling of volatiles and trace elements in subduction zones. Serpentinized ultramafic clasts recovered from an active mud volcano in the Mariana forearc reveal microstructures, mineral assemblages and compositions that are indicative of a complex polyphase alteration history. Petrologic phase relations and oxygen isotopes suggest that ultramafic clasts were serpentinized at temperatures below 200 °C. Several successive serpentinization events represented by different vein generations with distinct trace element contents can be recognized. Measured in situ Rb/Cs ratios are fairly uniform ranging between 1 and 10, which is consistent with Cs mobilization from sediments at lower temperatures and lends further credence to the low-temperature conditions proposed in models of the thermal structure in forearc settings. Late veins show lower fluid mobile element (FME) concentrations than early veins, suggesting a decreasing influence of fluid discharge from the subducting slab on the composition of the serpentinizing fluids. The continuous microfabric and mineral chemical evolution observed in the ultramafic clasts may have implications as to the origin and nature of the serpentinizing fluids. We hypothesize that opal and smectite dehydration produce quartz-saturated fluids with high FME contents and Rb/Cs between 1 and 4 that cause the early pervasive serpentinization. The partially serpentinized material may then be eroded from the basal plane of the suprasubduction mantle wedge. Serpentinization continued but the interacting fluids did not carry a pronounced sedimentary signature, either because FMEs were no longer released from the slab, or due to an en route loss of FMEs. Late chrysotile veins that document the increased access of fluids in a now fluid-dominated regime are

  8. Forearc Sliver Translation, a Lack of Arc-Normal Strain Accumulation, and Interplate Thrust Earthquakes: GPS Geodesy in Western Nicaragua

    Science.gov (United States)

    Turner, H. L.; Mattioli, G. S.; Jansma, P. E.; Styron, R. H.

    2007-05-01

    We have been investigating the kinematics of the Nicaraguan forearc using campaign GPS measurements of our geodetic network made over the last seven years (Turner et al., 2007). We currently have interseismic velocities for 18 campaign sites and have installed 10 additional sites in the backarc to investigate the nature of the transition from forearc sliver motion to stable Caribbean Plate motion. Our work focusing on the later issue is presented elsewhere at this meeting (Styron et al., 2007). Corrections for modeled coseismic offsets from the Jan. 13, 2001 Mw7.7 earthquake off the coast of El Salvador have been applied to our campaign site velocities. Some of our time-series are also strongly affected by coseismic and postseismic effects of the Oct. 9, 2004 Mw6.9 earthquake off of the coast of Nicaragua. The geodetic effects of this event are being removed from the affected time-series for interseismic velocity analysis. We have also derived interseismic velocities for five continuous GPS sites in the region. Our GPS results confirm previous predictions of northwest transport of a forearc sliver with an average Northwest velocity of ~15 mm yr-1, but show little evidence for an arc- normal component of strain accumulation associated with locking on the subduction interface. However, the amount of seismicity along this section of the Middle America Trench, including several recent large events such as the 1992 Mw7.6 and 2004 Mw6.9 earthquakes, indicates some amount of locking is present. Several possibilities may account for the apparent contradiction between the GPS results and observed seismicity. The locked zone may be too shallow and too far offshore for the arc-normal component to show up in our network, or the arc-normal signal may be masked by post-seismic effects from the 1992 offshore earthquake. If coupling between the downgoing slab and the overriding plate is weak or limited to a small seismogenic zone, then arc-parallel motion of the forearc sliver may

  9. Subsurface imaging in a sector of Cerro Prieto transform fault near to pull-apart basin, Mexicali Valley, Baja California, Mexico, based on crooked lines 2D seismic reflection.

    Science.gov (United States)

    Mares-Agüero, M. A.; González-Escobar, M.; Arregui, S.

    2016-12-01

    In the transition zone between San Andres continental transformation system and the coupled transform faults system and rifting of Gulf of California is located the Cerro Prieto pull-apart basin delimitated by Imperial fault (northeast) and Cerro Prieto fault (CPF) (southwest), this last, is the limit west of Cerro Prieto geothermic field (CPGF). Crooked lines 2D seismic reflection, covering a portion near the intersection of CPF and CPGF are processed and interpreted. The seismic data were obtained in the early 80's by Petróleos Mexicanos (PEMEX). By decades, technical and investigation works in Cerro Prieto geothermic field and its vicinity had mapped faults at several depths but do not stablish a clear limit where this faults and CPF interact due the complex hydrothermal effects imaging the subsurface. The profiles showing the presence of a zone of uplift effect due to CPF. Considering the proximity of the profiles to CPF, it is surprising almost total absence of faults. A strong reflector around 2 km of depth, it is present in all profiles. This seismic reflector is considered a layer of shale, result of the correlation with a well located in the same region.

  10. Breathing Valley Fever

    Centers for Disease Control (CDC) Podcasts

    2014-02-04

    Dr. Duc Vugia, chief of the Infectious Diseases Branch in the California Department of Public Health, discusses Valley Fever.  Created: 2/4/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/5/2014.

  11. Groundwater quality in the western San Joaquin Valley, California

    Science.gov (United States)

    Fram, Miranda S.

    2017-06-09

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Western San Joaquin Valley is one of the study units being evaluated. 

  12. Groundwater quality in the Southern Sacramento Valley, California

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Southern Sacramento Valley is one of the study units being evaluated.

  13. Groundwater quality in the Northern Sacramento Valley, California

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Northern Sacramento Valley is one of the study units being evaluated.

  14. Tectonic drivers of the Wrangell block: Insights on fore-arc sliver processes from 3-D geodynamic models of Alaska

    Science.gov (United States)

    Haynie, K. L.; Jadamec, M. A.

    2017-07-01

    Intracontinental shear zones can play a key role in understanding how plate convergence is manifested in the upper plate in regions of oblique subduction. However, the relative role of the driving forces from the subducting plate and the resisting force from within intracontinental shear zones is not well understood. Results from high-resolution, geographically referenced, instantaneous 3-D geodynamic models of flat slab subduction at the oblique convergent margin of Alaska are presented. These models investigate how viscosity and length of the Denali fault intracontinental shear zone as well as coupling along the plate boundary interface modulate motion of the Wrangell block fore-arc sliver and slip across the Denali fault. Models with a weak Denali fault (1017 Pa s) and strong plate coupling (1021 Pa s) were found to produce the fastest motions of the Wrangell block (˜10 mm/yr). The 3-D models predict along-strike variation in motion along the Denali fault, changing from dextral strike-slip motion in the eastern segment to oblique convergence toward the fault apex. Models further show that the flat slab drives oblique motion of the Wrangell block and contributes to 20% (models with a short fault) and 28% (models with a long fault) of the observed Quaternary slip rates along the Denali fault. The 3-D models provide insight into the general processes of fore-arc sliver mechanics and also offer a 3-D framework for interpreting hazards in regions of flat slab subduction.

  15. Potassium isotope variations in forearc boninite-series volcanics from Chichijima

    Science.gov (United States)

    Parendo, C. A.; Jacobsen, S. B.; Yamashita, K.; Okano, O.

    2017-12-01

    Variability in the K content of arc lavas is related to fundamental processes. These include (1) the transfer of material from the subducting slab to the mantle wedge, (2) melting occurring within the mantle wedge, and (3) differentiation processes, such as fractional crystallization, which greatly modify the compositions of magma bodies that erupt arc lavas. To explore these processes, samples from Chichijima, an island that is part of the Izu-Bonin forearc, were analyzed for 41K/39K ratios. Analyses were made using an Isoprobe-P MC-ICPMS equipped with a hexapole collision and reaction cell. Precisions obtained were typically about 0.05 ‰ (2SE). We have acquired 41K/39K ratios from eight samples. 41K/39K ratios are reported relative to an estimate of Bulk Silicate Earth. Six of the analyzed samples have 41K/39K ratios that span a range between -0.01 and -0.48 ‰. One sample has a much higher value, +0.44 ‰, and one a much lower value, -1.38 ‰. The samples are variably differentiated, with MgO content ranging approximately from 17 to 1 wt. %. An apparent trend is observed in which the most primitive lavas have 41K/39K ratios near 0.0 ‰ and more evolved lavas have more negative values. A working hypothesis is that 41K/39K ratios vary among these samples because of fractional crystallization. However, multiple other processes need to be considered, including, for some samples, possible post-emplacement alteration. If fractional crystallization is controlling 41K/39K ratios, this requires a precipitating mineral that both incorporates a substantial amount of K and fractionates 41K/39K ratios. Minerals that potentially meet these criteria include feldspars and micas. Effects on 41K/39K ratios may become more pronounced during the later stages of differentiation, when precipitating minerals incorporate more K. Further study will test this hypothesis and explore which minerals may be causing isotopic fractionation. If the fractional crystallization effects can

  16. Geochemistry of the Bonin Fore-arc Volcanic Sequence: Results from IODP Expedition 352

    Science.gov (United States)

    Godard, M.; Ryan, J. G.; Shervais, J. W.; Whattam, S. A.; Sakuyama, T.; Kirchenbaur, M.; Li, H.; Nelson, W. R.; Prytulak, J.; Pearce, J. A.; Reagan, M. K.

    2015-12-01

    The Izu-Bonin-Mariana intraoceanic arc system, in the western Pacific, results from ~52 My of subduction of the Pacific plate beneath the eastern margin of the Philippine Sea plate. Four sites were drilled south of the Bonin Islands during IODP Expedition 352 and 1.22 km of igneous basement was cored upslope to the west of the trough. These stratigraphically controlled igneous suites allow study of the earliest stages of arc development from seafloor spreading to convergence. We present the preliminary results of a detailed major and trace element (ICPMS) study on 128 igneous rocks drilled during Expedition 352. Mainly basalts and basaltic andesites were recovered at the two deeper water sites (U1440 and U1441) and boninites at the two westernmost sites (U1439 and U1442). Sites U1440 and U1441 basaltic suites are trace element depleted (e.g. Yb 4-6 x PM); they have fractionated REE patterns (LREE/HREE = 0.2-0.4 x C1-chondrites) compared to mid-ocean ridge basalts. They have compositions overlapping that of previously sampled Fore-Arc Basalts (FAB) series. They are characterized also by an increase in LILE contents relative to neighboring elements up-section (e.g. Rb/La ranging from <1 to 3-7 x PM at Site U1440) suggesting a progressive contamination of their source by fluids. This process in turn may have favored melting and efficient melt extraction from the source and thus its extreme depletion. Boninites are depleted in moderately incompatible elements with a decrease in their contents up-section (e.g. Yb = ~6.2 to 2.8 x C1-chondrite at Site U1439). These changes in trace element contents are associated with the development of a positive Zr-Hf anomaly relative to neighboring elements and a strong increase in LILE (e.g., Zr/Sm=~1 to 2.6 x PM and Rb/La=1-2 to 10-18). The progressive upward depletion of boninitic lavas could reveal the incorporation of harzburgitic residues from FAB generation into their mantle source.

  17. Commercial production of ethanol in the San Luis Valley, Colorado. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hewlett, E.M.; Erickson, M.V.; Ferguson, C.D.; Boswell, B.S.; Walter, K.M.; Hart, M.L.; Sherwood, P.B.

    1983-07-01

    The commercial feasibility of producing between 76 and 189 million liters (20 to 50 million gallons) of ethanol annually in the San Luis Valley, Colorado using geothermal energy as the primary heat source was assessed. The San Luis Valley is located in south-central Colorado. The valley is a high basin situated approximately 2316 meters (7600 feet) above sea level which contains numerous warm water wells and springs. A known geothermal resource area (IGRA) is located in the east-central area of the valley. The main industry in the valley is agriculture, while the main industry in the surrounding mountains is lumber. Both of these industries can provide feedstocks for the production of ethanol.

  18. Commercial production of ethanol in the San Luis Valley, Colorado. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hewlett, E.M.; Erickson, M.V.; Ferguson, C.D.; Sherwood, P.B.; Boswell, B.S.; Walter, K.M.; Hart, M.L.

    1983-07-01

    The purpose of this study is to assess the commercial feasibility of producing between 76 and 189 million liters (20 and 50 million gallons) of ethanol annually in the San Luis Valley, Colorado using geothermal energy as the primary heat source. The San Luis Valley is located in south-central Colorado. The valley is a high basin situated approximately 2316 meters (7600 feet) above sea level which contains numerous warm water wells and springs. A known geothermal resource area (KGRA) is located in the east-central area of the valley. The main industry in the valley is agriculture, while the main industry in the surrounding mountains is lumber. Both of these industries can provide feedstock for the production of ethanol.

  19. Structural Evolution of the East Sierra Valley System (Owens Valley and Vicinity, California: A Geologic and Geophysical Synthesis

    Directory of Open Access Journals (Sweden)

    Richard J. Blakely

    2013-04-01

    Full Text Available The tectonically active East Sierra Valley System (ESVS, which comprises the westernmost part of the Walker Lane-Eastern California Shear Zone, marks the boundary between the highly extended Basin and Range Province and the largely coherent Sierra Nevada-Great Valley microplate (SN-GVm, which is moving relatively NW. The recent history of the ESVS is characterized by oblique extension partitioned between NNW-striking normal and strike-slip faults oriented at an angle to the more northwesterly relative motion of the SN-GVm. Spatially variable extension and right-lateral shear have resulted in a longitudinally segmented valley system composed of diverse geomorphic and structural elements, including a discontinuous series of deep basins detected through analysis of isostatic gravity anomalies. Extension in the ESVS probably began in the middle Miocene in response to initial westward movement of the SN-GVm relative to the Colorado Plateau. At ca. 3–3.5 Ma, the SN-GVm became structurally separated from blocks directly to the east, resulting in significant basin-forming deformation in the ESVS. We propose a structural model that links high-angle normal faulting in the ESVS with coeval low-angle detachment faulting in adjacent areas to the east.

  20. Structural evolution of the east Sierra Valley system (Owens Valley and vicinity), California: a geologic and geophysical synthesis

    Science.gov (United States)

    Stevens, Calvin H.; Stone, Paul; Blakely, Richard J.

    2013-01-01

    The tectonically active East Sierra Valley System (ESVS), which comprises the westernmost part of the Walker Lane-Eastern California Shear Zone, marks the boundary between the highly extended Basin and Range Province and the largely coherent Sierra Nevada-Great Valley microplate (SN-GVm), which is moving relatively NW. The recent history of the ESVS is characterized by oblique extension partitioned between NNW-striking normal and strike-slip faults oriented at an angle to the more northwesterly relative motion of the SN-GVm. Spatially variable extension and right-lateral shear have resulted in a longitudinally segmented valley system composed of diverse geomorphic and structural elements, including a discontinuous series of deep basins detected through analysis of isostatic gravity anomalies. Extension in the ESVS probably began in the middle Miocene in response to initial westward movement of the SN-GVm relative to the Colorado Plateau. At ca. 3-3.5 Ma, the SN-GVm became structurally separated from blocks directly to the east, resulting in significant basin-forming deformation in the ESVS. We propose a structural model that links high-angle normal faulting in the ESVS with coeval low-angle detachment faulting in adjacent areas to the east.

  1. Implications of Eocene-age Philippine Sea and forearc basalts for initiation and early history of the Izu-Bonin-Mariana arc

    Science.gov (United States)

    Yogodzinski, Gene M.; Bizimis, Michael; Hickey-Vargas, Rosemary; McCarthy, Anders; Hocking, Benjamin D.; Savov, Ivan P.; Ishizuka, Osamu; Arculus, Richard

    2018-05-01

    Whole-rock isotope ratio (Hf, Nd, Pb, Sr) and trace element data for basement rocks at ocean drilling Sites U1438, 1201 and 447 immediately west of the KPR (Kyushu-Palau Ridge) are compared to those of FAB (forearc basalts) previously interpreted to be the initial products of IBM subduction volcanism. West-of-KPR basement basalts (drill sites U1438, 1201, 447) and FAB occupy the same Hf-Nd and Pb-Pb isotopic space and share distinctive source characteristics with εHf mostly > 16.5 and up to εHf = 19.8, which is more radiogenic than most Indian mid-ocean ridge basalts (MORB). Lead isotopic ratios are depleted, with 206Pb/204Pb = 17.8-18.8 accompanying relatively high 208Pb/204Pb, indicating an Indian-MORB source unlike that of West Philippine Basin plume basalts. Some Sr isotopes show affects of seawater alteration, but samples with 87Sr/86Sr 8.0 appear to preserve magmatic compositions and also indicate a common source for west-of-KPR basement and FAB. Trace element ratios resistant to seawater alteration (La/Yb, Lu/Hf, Zr/Nb, Sm/Nd) in west-of-KPR basement are generally more depleted than normal MORB and so also appear similar to FAB. At Site U1438, only andesite sills intruding sedimentary rocks overlying the basement have subduction-influenced geochemical characteristics (εNd ∼ 6.6, εHf ∼ 13.8, La/Yb > 2.5, Nd/Hf ∼ 9). The key characteristic that unites drill site basement rocks west of KPR and FAB is the nature of their source, which is more depleted in lithophile trace elements than average MORB but with Hf, Nd, and Pb isotope ratios that are common in MORB. The lithophile element-depleted nature of FAB has been linked to initiation of IBM subduction in the Eocene, but Sm-Nd model ages and errorchron relationships in Site U1438 basement indicate that the depleted character of the rocks is a regional characteristic that was produced well prior to the time of subduction initiation and persists today in the source of modern IBM arc volcanic rocks with

  2. Tertiary stratigraphy and basin evolution, southern Sabah (Malaysian Borneo)

    Science.gov (United States)

    Balaguru, Allagu; Nichols, Gary

    2004-08-01

    New mapping and dating of strata in the southern part of the Central Sabah Basin in northern Borneo has made it possible to revise the lithostratigraphy and chronostratigraphy of the area. The recognition in the field of an Early Miocene regional unconformity, which may be equivalent to the Deep Regional Unconformity recognised offshore, has allowed the development of a stratigraphic framework of groups and formations, which correspond to stages in the sedimentary basin development of the area. Below the Early Miocene unconformity lies ophiolitic basement, which is overlain by an accretionary complex of Eocene age and a late Paleogene deep water succession which formed in a fore-arc basin. The late Paleogene deposits underwent syn-depositional deformation, including the development of extensive melanges, all of which can be demonstrated to lie below the unconformity in this area. Some localised limestone deposition occurred during a period of uplift and erosion in the Early Miocene, following which there was an influx of clastic sediments deposited in delta and pro-deltaic environments in the Middle Miocene. These deltaic to shallow marine deposits are now recognised as forming two coarsening-upward successions, mapped as the Tanjong and Kapilit Formations. The total thickness of these two formations in the Central Sabah Basin amounts to 6000 m, only half of the previous estimates, although the total stratigraphic thickness of Cenozoic clastic strata in Sabah may be more than 20,000 m.

  3. Composição e configuração da paisagem da sub-bacia do arroio jacaré, Vale do Taquari, RS, com ênfase nas áreas de florestas Landscape composition and configuration of jacaré stream sub-basin, Taquari Valley, RS, with emphasis on the forest areas

    Directory of Open Access Journals (Sweden)

    Gisele Cemin

    2009-08-01

    Full Text Available A conversão de áreas com cobertura florestal contínua por fragmentos florestais vem contribuindo para a diminuição da diversidade biológica, em função da perda de micro-habitats únicos, mudanças nos padrões de dispersão e migração, isolamento de habitats e erosão do solo. A solução desses problemas está intimamente vinculada ao planejamento e manutenção de bacias hidrográficas. A sub-bacia do Arroio Jacaré, localizada no Vale do Taquari, RS, compreende uma área de 538,98 km², onde estão parcial ou totalmente inseridos nove municípios. Essa bacia se encontra em uma região de ecótono entre as formações vegetais do tipo Floresta Estacional Decidual (FED e Floresta Ombrófila Mista - Mata de Araucária (FOM. Foram elaboradas e analisadas informações relacionadas às características estruturais das classes de mata na região (FED, FOM e vegetação secundária, utilizando-se imagem do satélite Landsat 7 ETM+, referente à passagem 04/02/2002 e software de Sistemas de Informações Geográficas (SIG Idrisi, 3.2, software de Ecologia de Paisagem Fragstats 3.3. Os resultados indicaram que a região apresenta aproximadamente 50% de suas matas nativas conservadas ou em estágio de regeneração, porém de forma altamente fragmentada, com 87,82% dos fragmentos menores que 1 ha. Considerando um efeito de borda de 50 m, em torno de 40% dos fragmentos ainda apresentam área nuclear.The conversion of continuous forest coverage areas into forest fragments has contributed to the decrease of the biological diversity due to the micro-habitat loss, changes in dispersion and migration patterns, habitats' isolation and soil erosion. The solution for those problems is intimately linked to the planning and maintenance of hydrographic basins. Jacaré's stream sub-basin is located in Taquari Valley, RS, with an area of 538,98 km², where nine municipal districts are partially or totally inserted. This basin is in an ecotone area among

  4. Stable isotope compositions of serpentinite seamounts in the Mariana forearc: Serpentinization processes, fluid sources and sulfur metasomatism

    Science.gov (United States)

    Alt, J.C.; Shanks, Wayne C.

    2006-01-01

    The Mariana and Izu-Bonin arcs in the western Pacific are characterized by serpentinite seamounts in the forearc that provide unique windows into the mantle wedge. We present stable isotope (O, H, S, and C) data for serpentinites from Conical seamount in the Mariana forearc and S isotope data for Torishima seamount in the Izu-Bonin forearc in order to understand the compositions of fluids and temperatures of serpentinization in the mantle wedge, and to investigate the transport of sulfur from the slab to the mantle wedge. Six serpentine mineral separates have a restricted range of ??18O (6.5-8.5???). Antigorite separates have ??D values of -29.5??? to -45.5??? that reflect serpentinization within the mantle wedge whereas chrysotile has low ??D values (-51.8??? to -84.0???) as the result of re-equilibration with fluids at low temperatures. Fractionation of oxygen isotopes between serpentine and magnetite indicate serpentinization temperatures of 300-375 ??C. Two late cross-fiber chrysotile veins have higher ??18O values of 8.9??? to 10.8??? and formed at lower temperatures (as low as ???100 ??C). Aqueous fluids in equilibrium with serpentine at 300-375 ??C had ??18O = 6.5-9??? and ??D = -4??? to -26???, consistent with sediment dehydration reactions at temperatures aragonite veins in metabasalt and siltstone clasts within the serpentinite flows have ??18O = 16.7-24.5???, consistent with the serpentinizing fluids at temperatures <250 ??C. ??13C values of 0.1-2.5??? suggest a source in subducting carbonate sediments. The ??34S values of sulfide in serpentinites on Conical Seamount (-6.7??? to 9.8???) result from metasomatism through variable reduction of aqueous sulfate (??34S = 14???) derived from slab sediments. Despite sulfur metasomatism, serpentinites have low sulfur contents (generally < 164 ppm) that reflect the highly depleted nature of the mantle wedge. The serpentinites are mostly enriched in 34S (median ??34Ssulfide = 4.5???), consistent with a 34S

  5. 77 FR 33237 - Saline Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National...

    Science.gov (United States)

    2012-06-05

    ... Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National Park, Inyo... an Environmental Impact Statement for the Saline Valley Warm Springs Management Plan, Death Valley... analysis process for the Saline Valley Warm Springs Management Plan for Death Valley [[Page 33238...

  6. Salts in the dry valleys of Antartica

    Science.gov (United States)

    Gibson, E. K., Jr.; Presley, B. J.; Hatfield, J.

    1984-01-01

    The Dry Valleys of Antarctica are examples of polar deserts which are rare geological features on the Earth. Such deserts typically have high salinities associated with their closed-basin waters and on many surficial materials throughout them. In order to examine the possible sources for the salts observed in association with the soils in the Dry Valleys. The chloride and bromide concentrations of the water leachates from 58 soils and core samples were measured. The Cl/Br ratio for seawater is 289 and ratios measured for most of the 58 soils studied (greater than 85% of the soils studied) was larger than the seawater ratio (ratios typically were greater than 1000 and ranged up to 50,000). The enrichment in Cl relative to Br is strong evidence that the alts present within the soils were derived from seawater during ordinary evaporation processes, and not from the deposition of Cl and Br from aerosols or from rock weathering as has often been suggested.

  7. The California Valley grassland

    Science.gov (United States)

    Keeley, J.E.; Schoenherr, Allan A.

    1990-01-01

    Grasslands are distributed throughout California from Oregon to Baja California Norte and from the coast to the desert (Brown 1982) (Figure 1). This review will focus on the dominant formation in cismontane California, a community referred to as Valley Grassland (Munz 1959). Today, Valley Grassland is dominated by non-native annual grasses in genera such as Avena (wild oat), Bromus (brome grass), and Hordeum (barley), and is often referred to as the California annual grassland. On localized sites, native perennial bunchgrasses such as Stipa pultra (purple needle grass) may dominate and such sites are interpreted to be remnants of the pristine valley grassland. In northwestern California a floristically distinct formation of the Valley Grassland, known as Coast Prairie (Munz 1959) or Northern Coastal Grassland (Holland and Keil 1989) is recognized. The dominant grasses include many native perennial bunchgrasses in genera such as Agrostis, Calamagrostis, Danthonia, Deschampsia, Festuca, Koeleria and Poa (Heady et al. 1977). Non-native annuals do not dominate, but on some sites non-native perennials like Anthoxanthum odoratum may colonize the native grassland (Foin and Hektner 1986). Elevationally, California's grasslands extend from sea level to at leas 1500 m. The upper boundary is vague because montane grassland formations are commonly referred to as meadows; a community which Munz (1959) does not recognize. Holland and Keil (1989) describe the montane meadow as an azonal community; that is, a community restricted not so much to a particular climatic zone but rather controlled by substrate characteristics. They consider poor soil-drainage an over-riding factor in the development of montane meadows and, in contrast to grasslands, meadows often remain green through the summer drought. Floristically, meadows are composed of graminoids; Cyperaceae, Juncaceae, and rhizomatous grasses such as Agropyron (wheat grass). Some bunchgrasses, such as Muhlenbergia rigens, are

  8. Palaeointensity determinations and rock magnetic properties on rocks from Izu-Bonin-Mariana fore-arc (IODP Exp. 352).

    Science.gov (United States)

    Carvallo, Claire; Camps, Pierre; Sager, Will; Poidras, Thierry

    2017-04-01

    IODP Expedition 352 cored igneous rocks from the Izu-Bonin-Mariana fore-arc crust: Sites U1440 and U1441 recovered Eocene basalts and related rocks whereas Sites U1439 and U1442 recovered Eocene boninites and related rocks. We selected samples from Holes U1439C, U1440B and U1440A for paleointensity measurements. Hysteresis measurements and high and low-temperature magnetization curves show that samples from Hole U1440B undergo magnetochemical changes when heated and are mostly composed of single-domain (SD) or pseudo-single-domain (PSD) titanomaghemite. In contrast, the same measurements show that most selected samples from Holes U1439C and U1442A are thermally stable and are composed of either SD or PSD titanomagnetite with very little titanium content, or SD ferromagnetic grains with a large paramagnetic contribution. Thellier-Thellier paleointensity experiments carried out on U1439C and U1442A samples give a good success rate of 25/60 and Virtual Dipole Moment values between 1.3 and 3.5 ×1022 Am2. Multispecimen paleointensity experiments carried out on 55 samples from Hole U1440B (divided into 4 groups) and 20 from Hole U1439C gave poor quality result, but they seem to indicate a VDM around 4-6 ×1022 Am2 in Hole U1440B fore-arc basalts. These results are in agreement with the low few VDM values previously measured on rocks from Eocene. However, they do not support an inverse relationship between intensity of the field and rate of reversal, since the rate of reversal in Eocene was rather low.

  9. Palaeointensity determinations and magnetic properties on Eocene rocks from Izu-Bonin-Mariana forearc (IODP Exp. 352)

    Science.gov (United States)

    Carvallo, C.; Camps, P.; Sager, W. W.; Poidras, T.

    2017-09-01

    IODP Expedition 352 cored igneous rocks from the Izu-Bonin-Mariana forearc crust. Cores from Sites U1440 and U1441 recovered Eocene basalts and related rocks and cores from Sites U1439 and U1442 recovered Eocene boninites and related rocks. We selected samples from Holes U1439C, U1440B and U1442A for palaeointensity measurements. Hysteresis measurements and high and low-temperature magnetization curves show that samples from Hole U1440B undergo magneto-chemical changes when heated and are mostly composed of single-domain (SD) or pseudo-single-domain (PSD) titanomaghemite. In contrast, the same measurements show that most selected samples from Holes U1439C and U1442A are thermally stable and are composed of either SD or PSD titanomagnetite with very little titanium content, or SD ferromagnetic grains with a large paramagnetic contribution. Thellier-Thellier palaeointensity experiments carried out on U1439C and U1442A samples give a good success rate of 25/60 and Virtual Dipole Moment (VDM) values between 1.3 and 3.5 × 1022 Am2. Multispecimen palaeointensity experiments with the domain-state corrected method carried out on 55 samples from Hole U1440B (divided into four groups) and 20 from Hole U1439C gave poor quality results, but indicated a VDM around 4-6 × 1022 Am2 in Hole U1440B forearc basalts. These results are in agreement with the few, low VDM values previously measured on Eocene rocks. However, they do not support an inverse relationship between field intensity and reversal rate for this period of time, since the Eocene reversal rate was low.

  10. Source Evolution After Subduction Initiation as Recorded in the Izu-Bonin-Mariana Fore-arc Crust

    Science.gov (United States)

    Shervais, J. W.; Reagan, M. K.; Pearce, J. A.; Shimizu, K.

    2015-12-01

    Drilling in the Izu-Bonin-Mariana (IBM) fore-arc during IODP Expedition 352 and DSDP Leg 60 recovered consistent stratigraphic sequences of volcanic rocks reminiscent of those found in many ophiolites. The oldest lavas in these sections are "fore-arc basalts" (FAB) with ~51.5 Ma ages. Boninites began eruption approximately 2-3 m.y. later (Ishizuka et al., 2011, EPSL; Reagan et al., 2013, EPSL) and further from the trench. First results from IODP Expedition 352 and preliminary post-cruise data suggest that FAB at Sites U1440 and U1441 were generated by decompression melting during near-trench sea-floor spreading, and that fluids from the subducting slab were not involved in their genesis. Temperatures appear to have been unusually high and pressures of melting appear to have been unusually low compared to mid-ocean ridges. Spreading rates at this time appear to have been robust enough to maintain a stable melt lens. Incompatible trace element abundances are low in FAB compared to even depleted MORB. Nd and Hf Isotopic compositions published before the expedition suggest that FAB were derived from typical MORB source mantle. Thus, their extreme deletion resulted from unusually high degrees of melting immediately after subduction initiation. The oldest boninites from DSDP Site 458 and IODP Sites U1439 and U1442 have relatively high concentrations of fluid-soluble elements, low concentrations of REE, and light depleted REE patterns. Younger boninites, have even lower REE concentrations, but have U-shaped REE patterns. Our first major and trace element compositions for the FAB through boninite sequence suggests that melting pressures and temperatures decreased through time, mantle became more depleted though time, and spreading rates waned during boninite genesis. Subduction zone fluids involved in boninite genesis appear to have been derived from progressively higher temperatures and pressures over time as the subducting slab thermally matured.

  11. Pleistocene vertical motions of the Costa Rican outer forearc from subducting topography and a migrating fracture zone triple junction

    Science.gov (United States)

    Edwards, Joel H.; Kluesner, Jared W.; Silver, Eli A.; Bangs, Nathan L.

    2018-01-01

    Understanding the links between subducting slabs and upper-plate deformation is a longstanding goal in the field of tectonics. New 3D seismic sequence stratigraphy, mapped within the Costa Rica Seismogenesis Project (CRISP) seismic-reflection volume offshore southern Costa Rica, spatiotemporally constrains several Pleistocene outer forearc processes and provides clearer connections to subducting plate dynamics. Three significant shelf and/or slope erosional events at ca. 2.5–2.3 Ma, 1.95–1.78 Ma, and 1.78–1.19 Ma, each with notable differences in spatial extent, volume removed, and subsequent margin response, caused abrupt shifts in sedimentation patterns and rates. These shifts, coupled with observed deformation, suggest three primary mechanisms for Pleistocene shelf and slope vertical motions: (1) regional subaerial erosion and rapid subsidence linked to the southeastward Panama Fracture Zone triple-junction migration, with associated abrupt bathymetric variations and plate kinematic changes; (2) transient, kilometer-scale uplift and subsidence due to inferred subducting plate topography; and (3) progressive outer wedge shortening accommodated by landward- and seaward-dipping thrust faults and fold development due to the impinging Cocos Ridge. Furthermore, we find that the present-day wedge geometry (to within ∼3 km along strike) has been maintained through the Pleistocene, in contrast to modeled landward margin retreat. We also observe that deformation, i.e., extension and shortening, is decoupled from net margin subsidence. Our findings do not require basal erosion, and they suggest that the vertical motions of the Costa Rican outer forearc are not the result of a particular continuous process, but rather are a summation of plate to plate changes (e.g., passage of a fracture zone triple junction) and episodic events (e.g., subducting plate topography).

  12. Groundwater budgets for Detrital, Hualapai, and Sacramento Valleys, Mohave County, Arizona, 2007-08

    Science.gov (United States)

    Garner, Bradley D.; Truini, Margot

    2011-01-01

    The United States Geological Survey, in cooperation with the Arizona Department of Water Resources, initiated an investigation of the hydrogeology and water resources of Detrital, Hualapai, and Sacramento Valleys in northwestern Arizona in 2005, and this report is part of that investigation. Water budgets were developed for Detrital, Hualapai, and Sacramento Valleys to provide a generalized understanding of the groundwater systems in this rural area that has shown some evidence of human-induced water-level declines. The valleys are within the Basin and Range physiographic province and consist of thick sequences of permeable alluvial sediment deposited into basins bounded by relatively less permeable igneous and metamorphic rocks. Long-term natural recharge rates (1940-2008) for the alluvial aquifers were estimated to be 1,400 acre-feet per year (acre-ft/yr) for Detrital Valley, 5,700 acre-ft/yr for Hualapai Valley, and 6,000 acre-ft/yr for Sacramento Valley. Natural discharge rates were assumed to be equal to natural recharge rates, on the basis of the assumption that all groundwater withdrawals to date have obtained water from groundwater storage. Groundwater withdrawals (2007-08) for the alluvial aquifers were less than 300 acre-ft/yr for Detrital Valley, about 9,800 acre-ft/yr for Hualapai Valley, and about 4,500 acre-ft/yr for Sacramento Valley. Incidental recharge from leaking water-supply pipes, septic systems, and wastewater-treatment plants accounted for about 35 percent of total recharge (2007-08) across the study area. Natural recharge and discharge values in this study were 24-50 percent higher than values in most previously published studies. Water budgets present a spatially and temporally "lumped" view of water resources and incorporate many sources of uncertainty in this study area where only limited data presently are available.

  13. Upper Neogene stratigraphy and tectonics of Death Valley — a review

    Science.gov (United States)

    Knott, J. R.; Sarna-Wojcicki, A. M.; Machette, M. N.; Klinger, R. E.

    2005-12-01

    New tephrochronologic, soil-stratigraphic and radiometric-dating studies over the last 10 years have generated a robust numerical stratigraphy for Upper Neogene sedimentary deposits throughout Death Valley. Critical to this improved stratigraphy are correlated or radiometrically-dated tephra beds and tuffs that range in age from > 3.58 Ma to Mormon Point. This new geochronology also establishes maximum and minimum ages for Quaternary alluvial fans and Lake Manly deposits. Facies associated with the tephra beds show that ˜3.3 Ma the Furnace Creek basin was a northwest-southeast-trending lake flanked by alluvial fans. This paleolake extended from the Furnace Creek to Ubehebe. Based on the new stratigraphy, the Death Valley fault system can be divided into four main fault zones: the dextral, Quaternary-age Northern Death Valley fault zone; the dextral, pre-Quaternary Furnace Creek fault zone; the oblique-normal Black Mountains fault zone; and the dextral Southern Death Valley fault zone. Post - 3.3 Ma geometric, structural, and kinematic changes in the Black Mountains and Towne Pass fault zones led to the break up of Furnace Creek basin and uplift of the Copper Canyon and Nova basins. Internal kinematics of northern Death Valley are interpreted as either rotation of blocks or normal slip along the northeast-southwest-trending Towne Pass and Tin Mountain fault zones within the Eastern California shear zone.

  14. Rift Valley Fever.

    Science.gov (United States)

    Hartman, Amy

    2017-06-01

    Rift Valley fever (RVF) is a severe veterinary disease of livestock that also causes moderate to severe illness in people. The life cycle of RVF is complex and involves mosquitoes, livestock, people, and the environment. RVF virus is transmitted from either mosquitoes or farm animals to humans, but is generally not transmitted from person to person. People can develop different diseases after infection, including febrile illness, ocular disease, hemorrhagic fever, or encephalitis. There is a significant risk for emergence of RVF into new locations, which would affect human health and livestock industries. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Budgets and chemical characterization of groundwater for the Diamond Valley flow system, central Nevada, 2011–12

    Science.gov (United States)

    Berger, David L.; Mayers, C. Justin; Garcia, C. Amanda; Buto, Susan G.; Huntington, Jena M.

    2016-07-29

    The Diamond Valley flow system consists of six hydraulically connected hydrographic areas in central Nevada. The general down-gradient order of the areas are southern and northern Monitor Valleys, Antelope Valley, Kobeh Valley, Stevens Basin, and Diamond Valley. Groundwater flow in the Diamond Valley flow system terminates at a large playa in the northern part of Diamond Valley. Concerns relating to continued water-resources development of the flow system resulted in a phased hydrologic investigation that began in 2005 by the U.S. Geological Survey in cooperation with Eureka County. This report presents the culmination of the phased investigation to increase understanding of the groundwater resources of the basin-fill aquifers in the Diamond Valley flow system through evaluations of groundwater chemistry and budgets. Groundwater chemistry was characterized using major ions and stable isotopes from groundwater and precipitation samples. Groundwater budgets accounted for all inflows, outflows, and changes in storage, and were developed for pre-development (pre-1950) and recent (average annual 2011–12) conditions. Major budget components include groundwater discharge by evapotranspiration and groundwater withdrawals; groundwater recharge by precipitation, and interbasin flow; and storage change.

  16. Heat flow in Indian Gondwana basins and heat production of their basement rocks

    Energy Technology Data Exchange (ETDEWEB)

    Rao, G.V.; Rao, R.U.M.

    1983-01-01

    Temperatures have been measured in eight boreholes (ranging from 260 to 800 m in depth) in five Gondwana basins of the Damodar and Son valleys. With the aid of about 250 thermal conductivity determinations on core samples from these holes, heat flow has been evaluated. Measurements of radioactive heat generation have been made on samples of Precambrian gneisses constituting the basement for the Sonhat (Son valley) and Chintalapudi (Godavari valley) basins. Heat-flow values from all of the Damodar valley basins are within the narrow range of 69-79 mW/m exp(2). The value from the Sonhat basin (107 mW/m exp(2)) is significantly higher. The generally high heat flows observed in Gondwana basins of India cannot be attributed to the known tectonism or igneous activity associated with these basins. The plots of heat flow vs. heat generation for three Gondwana basins (Jharia, Sonhat and Chintalapudi) are on the same line as those of three regions in the exposed Precambrian crystalline terrains in the northern part of the Indian shield. This indicates that the crust under exposed regions of the Precambrian crystalline rocks as well as the Gondwana basins, form an integral unit as far as the present-day geothermal character is concerned. (5 figs., 14 refs., 4 tables).

  17. Heat flow in Indian Gondwana basins and heat production of their basement rocks

    Science.gov (United States)

    Rao, G. V.; Rao, R. U. M.

    1983-01-01

    Temperatures have been measured in eight boreholes (ranging from 260 to 800 m in depth) in five Gondwana basins of the Damodar and Son valleys. With the aid of about 250 thermal conductivity determinations on core samples from these holes, heat flow has been evaluated. Measurements of radioactive heat generation have been made on samples of Precambrian gneisses constituting the basement for the Sonhat (Son valley) and Chintalapudi (Godavari valley) basins. Heat-flow values from all of the Damodar valley basins are within the narrow range of 69-79 mW/m 2. The value from the Sonhat basin (107 mW/m 2) is significantly higher. The generally high heat flows observed in Gondwana basins of India cannot be attributed to the known tectonism or igneous activity associated with these basins. The plots of heat flow vs. heat generation for three Gondwana basins (Jharia, Sonhat and Chintalapudi) are on the same line as those of three regions in the exposed Precambrian crystalline terrains in the northern part of the Indian shield. This indicates that the crust under exposed regions of the Precambrian crystalline rocks as well as the Gondwana basins, form an integral unit as far as the present-day geothermal character is concerned.

  18. Geophysical Well-Log Measurements in Three Drill Holes at Salt Valley, Utah

    OpenAIRE

    Daniels, Jeffrey J.; Hite, Robert J.; Scott, James H.; U.S. Geological Survey

    1980-01-01

    Three exploratory drill holes were drilled at Salt Valley, Utah, to study the geologic, physical, geochemical, and hydrologic properties of the evaporite sequence in the Permian Paradox Member of the Hermosa Formation. The results of these studies will be used to help to determine the suitability of salt deposits in the Paradox basin as a storage medium for radioactive waste material.

  19. Early Permian conodont fauna and stratigraphy of the Garden Valley Formation, Eureka County, Nevada

    Science.gov (United States)

    Wardlaw, Bruce R.; Gallegos, Dora M.; Chernykh, Valery V.; Snyder, Walter S.

    2015-01-01

    The lower part of the Garden Valley Formation yields two distinct conodont faunas. One of late Asselian age dominated by Mesogondolella and Streptognathodus and one of Artinskian age dominated by Sweetognathus with Mesogondolella. The Asselian fauna contains the same species as those found in the type area of the Asselian in the southern Urals including Mesogondolella dentiseparata, described for the first time outside of the Urals. Apparatuses for Sweetognathus whitei, Diplognathodus stevensi, and Idioprioniodus sp. are described. The Garden Valley Formation represents a marine pro-delta basin and platform, and marine and shore fan delta complex deposition. The fan-delta complex was most likely deposited from late Artinskian to late Wordian. The Garden Valley Formation records tremendous swings in depositional setting from shallow-water to basin to shore.

  20. The Kinematics of Central American Fore-Arc Motion in Nicaragua: Geodetic, Geophysical and Geologic Study of Magma-Tectonic Interactions

    Science.gov (United States)

    La Femina, P. C.; Geirsson, H.; Saballos, A.; Mattioli, G. S.

    2017-12-01

    A long-standing paradigm in plate tectonics is that oblique convergence results in strain partitioning and the formation of migrating fore-arc terranes accommodated on margin-parallel strike-slip faults within or in close proximity to active volcanic arcs (e.g., the Sumatran fault). Some convergent margins, however, are segmented by margin-normal faults and margin-parallel shear is accommodated by motion on these faults and by vertical axis block rotation. Furthermore, geologic and geophysical observations of active and extinct margins where strain partitioning has occurred, indicate the emplacement of magmas within the shear zones or extensional step-overs. Characterizing the mechanism of accommodation is important for understanding short-term (decadal) seismogenesis, and long-term (millions of years) fore-arc migration, and the formation of continental lithosphere. We investigate the geometry and kinematics of Quaternary faulting and magmatism along the Nicaraguan convergent margin, where historical upper crustal earthquakes have been located on margin-normal, strike-slip faults within the fore arc and arc. Using new GPS time series, other geophysical and geologic data, we: 1) determine the location of the maximum gradient in forearc motion; 2) estimate displacement rates on margin-normal faults; and 3) constrain the geometric moment rate for the fault system. We find that: 1) forearc motion is 11 mm a-1; 2) deformation is accommodated within the active volcanic arc; and 3) that margin-normal faults can have rates of 10 mm a-1 in agreement with geologic estimates from paleoseismology. The minimum geometric moment rate for the margin-normal fault system is 2.62x107 m3 yr-1, whereas the geometric moment rate for historical (1931-2006) earthquakes is 1.01x107 m3/yr. The discrepancy between fore-arc migration and historical seismicity may be due to aseismic accommodation of fore-arc motion by magmatic intrusion along north-trending volcanic alignments within the

  1. Aburra Valley: Quo vadis?

    International Nuclear Information System (INIS)

    Hermelin, Michel

    2008-01-01

    These paper intents a brief description of the evolution that characterised natural risk prevention in the area surrounding the city of Medellin, Colombia, called the Aburra Valley. Both the lithological and structural composition of the Valle and its topographic and climatic conditions contribute to the abundance of destructive natural phenomena as earthquakes, slope movements, flash floods and, in a lower proportion, to floods. The population increase, which reaches now 3.5 millions inhabitants and the frequent occupation of sites exposed to natural hazards have resulted in numerous disasters. At present two entities called SIMPAD and DAPARD work on risk prevention, on city and department scale respectively. The amount of knowledge about physical environment is considered to be insufficient, together with regulations which should direct land use in accordance to restrictions related to natural hazards. Several seminars on this topic have already been carried out and the organisers of the present one, destined to commemorate the twentieth anniversary of the Villatina disaster, should make the decision to meet each two years. Furthermore, the creation of a permanent commission dedicated to study past events, to foster information broadcasting and to seek a better knowledge of the Aburra Valley, should be considered

  2. Middle Pleistocene infill of Hinkley Valley by Mojave River sediment and associated lake sediment: Depositional architecture and deformation by strike-slip faults

    Science.gov (United States)

    Miller, David; Haddon, Elizabeth; Langenheim, Victoria; Cyr, Andrew J.; Wan, Elmira; Walkup, Laura; Starratt, Scott W.

    2018-01-01

    Hinkley Valley in the Mojave Desert, near Barstow about 140 km northeast of Los Angeles and midway between Victorville Valley and the Lake Manix basin, contains a thick sedimentary sequence delivered by the Mojave River. Our study of sediment cores drilled in the valley indicates that Hinkley Valley was probably a closed playa basin with stream inflow from four directions prior to Mojave River inflow. The Mojave River deposited thick and laterally extensive clastic wedges originating from the southern valley that rapidly filled much of Hinkley Valley. Sedimentary facies representing braided stream, wetland, delta, and lacustrine depositional environments all are found in the basin fill; in some places, the sequence is greater than 74 m (245 ft) thick. The sediment is dated in part by the presence of the ~631 ka Lava Creek B ash bed low in the section, and thus represents sediment deposition after Victorville basin was overtopped by sediment and before the Manix basin began to be filled. Evidently, upstream Victorville basin filled with sediment by about 650 ka, causing the ancestral Mojave River to spill to the Harper and Hinkley basins, and later to Manix basin.Initial river sediment overran wetland deposits in many places in southern Hinkley Valley, indicating a rapidly encroaching river system. These sediments were succeeded by a widespread lake (“blue” clay) that includes the Lava Creek B ash bed. Above the lake sediment lies a thick section of interlayered stream sediment, delta and nearshore lake sediment, mudflat and/or playa sediment, and minor lake sediment. This stratigraphic architecture is found throughout the valley, and positions of lake sediment layers indicate a successive northward progression in the closed basin. A thin overlapping sequence at the north end of the valley contains evidence for a younger late Pleistocene lake episode. This late lake episode, and bracketing braided stream deposits of the Mojave River, indicate that the river

  3. Gravity study of the Middle Aterno Valley

    Science.gov (United States)

    di Nezza, Maria; di Filippo, Michele; Cesi, Claudio; Ferri, Fernando

    2010-05-01

    A gravity study was carried out to identify the geological and structural features of the Middle Aterno Valley, and intramontane depression in the central Appennines, which was targeted to assess the seismic hazard of the city of L'Aquila and surrounding areas, after the Abruzzo 2009 earthquake. Gravity anomalies have been used for the construction of a 3D model of the area, and gravity data for the construction of Bouguer and residual anomaly maps. These data, together with geological surface data allowed for the understanding of the Plio-quaternary tectonic setting of the basins. The study area has been differentiated into different domains with respect to structural and morphological features of different styles of faults. Geology and gravity data show that the local amplification phenomena are due to the fact that the historical center of L'Aquila was built on a coarse breccias (debris-flow deposits with decameter scale limestone blocks) overlying sandy and clayey lacustrine sediments. As these sediments have a low density, gravity prospecting very easily identifies them. Residual anomalies, showing a relative gravity low corresponding to the historical center of L'Aquila, and surrounding areas, indicated that these sediments are up to 250 m-thick. Gravity prospecting also revealed the uprooting of the reliefs which outcrop in the area of Coppito. These reliefs, practically outcrop in the middle of the basin. Here, the gravity anomalies are negative and not positive as would be expected from outcropping geological bedrock.

  4. Basin amplification of seismic waves in the city of Pahrump, Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Robert E.

    2005-07-01

    Sedimentary basins can increase the magnitude and extend the duration of seismic shaking. This potential for seismic amplification is investigated for Pahrump Valley, Nevada-California. The Pahrump Valley is located approximately 50 km northwest of Las Vegas and 75 km south of the Nevada Test Site. Gravity data suggest that the city of Pahrump sits atop a narrow, approximately 5 km deep sub-basin within the valley. The seismic amplification, or ''site effect'', was investigated using a combination of in situ velocity modeling and comparison of the waveforms and spectra of weak ground motion recorded in the city of Pahrump, Nevada, and those recorded in the nearby mountains. Resulting spectral ratios indicate seismic amplification factors of 3-6 over the deepest portion of Pahrump Valley. This amplification predominantly occurs at 2-2.5 Hz. Amplification over the deep sub-basin is lower than amplification at the sub-basin edge, location of the John Blume and Associates PAHA seismic station, which recorded many underground nuclear tests at the Nevada Test Site. A comprehensive analysis of basin amplification for the city of Pahrump should include 3-D basin modeling, due to the extreme basement topography of the Pahrump Valley.

  5. Geohydrology of the Unconsolidated Valley-Fill Aquifer in the Meads Creek Valley, Schuyler and Steuben Counties, New York

    Science.gov (United States)

    Miller, Todd S.; Bugliosi, Edward F.; Reddy, James E.

    2008-01-01

    The Meads Creek valley encompasses 70 square miles of predominantly forested uplands in the upper Susquehanna River drainage basin. The valley, which was listed as a Priority Waterbody by the New York State Department of Environmental Conservation in 2004, is prone to periodic flooding, mostly in its downstream end, where development is occurring most rapidly. Hydraulic characteristics of the unconsolidated valley-fill aquifer were evaluated, and seepage rates in losing and gaining tributaries were calculated or estimated, in an effort to delineate the aquifer geometry and identify the factors that contribute to flooding. Results indicated that (1) Meads Creek gained about 61 cubic feet of flow per second (about 6.0 cubic feet per second per mile of stream channel) from ground-water discharge and inflow from tributaries in its 10.2-mile reach between the northernmost and southernmost measurement sites; (2) major tributaries in the northern part of the valley are not significant sources of recharge to the aquifer; and (3) major tributaries in the central and southern part of the valley provide recharge to the aquifer. The ground-water portion of streamflow in Meads Creek (excluding tributary inflow) was 11.3 cubic feet per second (ft3/s) in the central part of the valley and 17.2 ft3/s in the southern part - a total of 28.5 ft3/s. Ground-water levels were measured in 29 wells finished in unconfined deposits for construction of a potentiometric-surface map to depict directions of ground-water flow within the valley. In general, ground water flows from the edges of the valley toward Meads Creek and ultimately discharges to it. The horizontal hydraulic gradient for the entire 12-mile-long aquifer averages about 30 feet per mile, whereas the gradient in the southern fourth of the valley averages about half that - about 17 feet per mile. A water budget for the aquifer indicated that 28 percent of recharge was derived from precipitation that falls on the aquifer, 32

  6. The Impact of the Bituminous Coal Combustion from the Thermoelectric Power Plant from Paroseni on the Environment of Jiu Valley

    OpenAIRE

    Mircea Rebrisoreanu; Eugen Traistă; Aronel Matei; Ovidiu Barbu; Vlad A. Codrea

    2002-01-01

    The Jiu Valley Basin is one of the most important coal mining areas in Romania. Other industries, including a power plant, are also well developed in this area. Therefore, pollution is very high. One of the most polluted environmental compounds is the air. High mountains surround the Jiu Valley, which makes difficult the air refreshing. For this reason, it is very important to discuss the air pollution and especially that produced by dust. Since the industrial companies are concentrated in a ...

  7. Faulting at Mormon Point, Death Valley, California: A low-angle normal fault cut by high-angle faults

    Science.gov (United States)

    Keener, Charles; Serpa, Laura; Pavlis, Terry L.

    1993-04-01

    New geophysical and fault kinematic studies indicate that late Cenozoic basin development in the Mormon Point area of Death Valley, California, was accommodated by fault rotations. Three of six fault segments recognized at Mormon Point are now inactive and have been rotated to low dips during extension. The remaining three segments are now active and moderately to steeply dipping. From the geophysical data, one active segment appears to offset the low-angle faults in the subsurface of Death Valley.

  8. Interpreting Fracture Patterns in Sandstones Interbedded with Ductile Strata at the Salt Valley Anticline, Arches National Park, Utah

    OpenAIRE

    Lorenz, John C.; Cooper, Scott P.

    2001-01-01

    Sandstones that overlie or that are interbedded with evaporitic or other ductile strata commonly contain numerous localized domains of fractures, each covering an area of a few square miles. Fractures within the Entrada Sandstone at the Salt Valley Anticline are associated with salt mobility within the underlying Paradox Formation. The fracture relationships observed at Salt Valley (along with examples from Paleozoic strata at the southern edge of the Holbrook basin in northeastern Arizona, a...

  9. Ozone Laminae and Their Entrainment Into a Valley Boundary Layer, as Observed From a Mountaintop Monitoring Station, Ozonesondes, and Aircraft Over California's San Joaquin Valley

    Science.gov (United States)

    Faloona, I. C.; Conley, S. A.; Caputi, D.; Trousdell, J.; Chiao, S.; Eiserloh, A. J., Jr.; Clark, J.; Iraci, L. T.; Yates, E. L.; Marrero, J. E.; Ryoo, J. M.; McNamara, M. E.

    2016-12-01

    The San Joaquin Valley of California is wide ( 75 km) and long ( 400 km), and is situated under strong atmospheric subsidence due, in part, to the proximity of the midlatitude anticyclone of the Pacific High. The capping effect of this subsidence is especially prominent during the warm season when ground level ozone is a serious air quality concern across the region. While relatively clean marine boundary layer air is primarily funneled into the valley below the strong subsidence inversion at significant gaps in the upwind Coast Range mountains, airflow aloft also spills over these barriers and mixes into the valley from above. Because this transmountain flow occurs under the influence of synoptic subsidence it tends to present discrete, laminar sheets of differing air composition above the valley boundary layer. Meanwhile, although the boundary layers tend to remain shallow due to the prevailing subsidence, orographic and anabatic venting of valley boundary layer air around the basin whips up a complex admixture of regional air masses into a "buffer layer" just above the boundary layer (zi) and below the lower free troposphere. We present scalar data of widely varying lifetimes including ozone, methane, NOx, and thermodynamic observations from upwind and within the San Joaquin Valley to better explain this layering and its subsequent erosion into the valley boundary layer via entrainment. Data collected at a mountaintop monitoring station on Chews Ridge in the Coast Range, by coastal ozonesondes, and aircraft are analyzed to document the dynamic layering processes around the complex terrain surrounding the valley. Particular emphasis will be made on observational methods whereby distal ozone can be distinguished from the regional ozone to better understand the influence of exogenous sources on air quality in the valley.

  10. Analysis, design and interventions on valley floors at the city of Alfenas [MG

    Directory of Open Access Journals (Sweden)

    Francisco José Cardoso

    2009-04-01

    Full Text Available The floor of valleys are areas with important physical and environmental characteristics, interacting with diverse natural processes that occur in our planet. With the urbanization, degradation of such areas usually occurs, resulting in the physical, social and cultural withdrawing of the population from the urban river and stream lands. The purpose of this paper is to study the action of the public administration on valley floors and the management tools which may render feasable thee environmental preservation as well as environment and landscape renaturalization of such areas thus promoting echological and functional balance in the urban fluviatic lands. In order to prepare a proposal, several items were studied: the physical environmental characteristics of the valley floors, the transformations associated to urbanization. Based on this research, a plan was made for city of Alfenas [MG] as regards the management of the valley floor lands: a proposal of intervention in one of the hydrographic basins.

  11. Thermo-mineral waters from the Cerna Valley Basin (Romania

    Directory of Open Access Journals (Sweden)

    Ioan Povara

    2008-10-01

    Full Text Available In the south-west of the Southern Carpathians, upstream from the confluence of Cerna with Belareca, an aquifer complex has developed, strongly influenced by hydrogeothermal phenomena, acting within two major geological structures, the Cerna Syncline and the Cerna Graben. The complex consists mainly in Jurassic and Cretaceous carbonate rocks, as well as in the upper part of the Cerna Granite, highly fractured, tectonically sunken into the graben. As a result of the tectonic processes which occurred after the end of the Jurassic-Cretaceous sedimentation cycle, limestones may be encountered at 1100 m altitude in the Mehedinţi Mountains, at 150 ¬¬600 m in the Cerna Syncline or sunken into the Cerna Graben down to depths of 1075 m. In certain sections along Cerna, graben limestones outcrop in an intricate relationship with those of the slopes, facilitating the existence of very large scale uni- or bidirectional hydrodynamic links. The geothermal investigations have shown the existence of some areas with values of the geothermal gradient falling into the 110-200°C/km interval, and temperatures of 13.8-16°C at the depth of 30 m (VELICIU, 1978. The zone with the maximal flux intensity is situated between the Băile Herculane railway station and the Crucea Ghizelei Well, an area where 24 sources (10 wells and 14 springs are known. The geothermal anomaly is also extended to the south (Topleţ, north (Mehadia and north-east (Piatra Puşcată, a fact which is stressed by the existence of hypothermal springs with low mineralization. The physical-chemical parameters of the sources show a strong, north-south, variability. At the entire thermo-mineral reservoir scale, the temperature of the water sources, the total mineralization and the H2S quantity are increasing from the north to the south, and the pH and natural radioactivity are diminishing with the same trend.

  12. Valley development on Hawaiian volcanoes

    International Nuclear Information System (INIS)

    Baker, V.R.; Gulick, V.C.

    1987-01-01

    Work in progress on Hawaiian drainage evolution indicates an important potential for understanding drainage development on Mars. Similar to Mars, the Hawaiian valleys were initiated by surface runoff, subsequently enlarged by groundwater sapping, and eventually stabilized as aquifers were depleted. Quantitative geomorphic measurements were used to evaluate the following factors in Hawaiian drainage evolution: climate, stream processes, and time. In comparing regions of similar climate, drainage density shows a general increase with the age of the volcani island. With age and climate held constant, sapping dominated valleys, in contrast to runoff-dominated valleys, display the following: lower drainage densities, higher ratios of valley floor width to valley height, and more positive profile concavities. Studies of stream junction angles indicate increasing junction angles with time on the drier leeward sides of the major islands. The quantitative geomorphic studies and earlier field work yielded important insights for Martian geomorphology. The importance of ash mantling in controlling infiltration on Hawaii also seems to apply to Mars. The Hawaiian valley also have implications for the valley networks of Martian heavily cratered terrains

  13. Brushy Basin drilling project, Cedar Mountain, Emergy County, Utah

    International Nuclear Information System (INIS)

    Kiloh, K.D.; McNeil, M.; Vizcaino, H.

    1980-03-01

    A 12-hole drilling program was conducted on the northwestern flank of the San Rafael swell of eastern Utah to obtain subsurface geologic data to evaluate the uranium resource potential of the Brushy Basin Member of the Morrison Formation (Jurassic). In the Cedar Mountain-Castle Valley area, the Brushy Basin Member consists primarily of tuffaceous and carbonaceous mudstones. Known uranium mineralization is thin, spotty, very low grade, and occurs in small lenticular pods. Four of the 12 drill holes penetrated thin intervals of intermediate-grade uranium mineralization in the Brushy Basin. The study confirmed that the unit does not contain significant deposits of intermediate-grade uranium

  14. Groundwater quality in the shallow aquifers of the Monterey Bay, Salinas Valley, and adjacent highland areas, California

    Science.gov (United States)

    Burton, Carmen

    2018-05-30

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the groundwater basins around Monterey Bay, the Salinas Valley, and the highlands adjacent to the Salinas Valley constitute one of the study units.

  15. Environmental education for river-basin planning

    Energy Technology Data Exchange (ETDEWEB)

    Saha, S K

    1980-08-01

    Harmonious intervention in land use, a result of environmental education and good planning, can increase the social and economic benefits without precluding development. Modern river basin planning began as a US innovation in 1874 over the subject of water regulation in the west. The Tennessee Valley Authority (TVA) was devised as a state tool for comprehensive river basin planning and development. The TVA example was not repeated in the other 10 US basins by the Corps of Engineers and the Bureau of Reclamation, although the concept of unified development has survived as a three-part relationship of physical,biological, and human forces in which any malfunctioning of one subsystem affects the others. This is evident in problems of water transfer from agricultural to industrial functions and changes to drainage patterns. The potential damage from ignoring these relationships can be avoided with true interdisciplinary communications. 24 references, 2 tables. (DCK)

  16. Chemistry and Isotopic Composition of Slab-Derived Fluids from Serpentine Mud Volcanoes in the Mariana Forearc

    Science.gov (United States)

    Ryan, J. G.; Menzies, C. D.; Teagle, D. A. H.; Price, R. E.; Sissmann, O.; Wheat, C. G.; Boyce, A.

    2017-12-01

    Geological processes at subduction zone margins control seismicity, plutonism/ volcanism, and geochemical cycling between the oceans, crust, and mantle. The down-going plate experiences dehydration, and associated metamorphism alters the physical properties of the plate interface and mantle wedge. The Mariana convergent margin is non-accretionary, and serpentinite mud volcanoes in the pervasively faulted forearc mark loci of fluid and material egress from the subducting slab and forearc mantle. IODP Expedition 366 drilled into three serpentinite mud volcanoes: Yinazao (13 km depth-to-slab); Fantangisña (14 km) and Asùt Tesoru (18 km), allowing comparison with the previously drilled South Chamorro (18 km) and Conical (19 km) Seamounts. We use the changes in chemistry and isotopic composition of porefluids between seamounts to trace the evolution of the downgoing slab and water-rock interactions in the overlying mantle wedge. Boron isotopes allow investigation of the processes governing prograde metamorphism in the downgoing slab, and combined with O, D/H and Sr isotopes are used to assess the balance between seawater and dehydration fluids during mantle wedge serpentinization. The shallowest depth-to-slab seamounts, Yinazao and Fantangisña, are associated with Ca and Sr-enriched, but otherwise solute poor, low alkalinity fluids of pH 11. In contrast, the Asùt Tesoru seamount fluids are markedly higher in Na and Cl, as well as in tracers like B and K, which are associated with the breakdown of slab sheet silicate phases, and are depleted in Ca and Sr compared to seawater. Higher DIC at this site is attributed to slab carbonate decomposition. The elevated pH ( 12.5) is likely due to Fe2+ oxidation, producing H2 and OH- during serpentinization. Asùt Tesoru porefluids are similar to those studied at South Charmorro and Conical Seamounts that have similar depths to slab, although those sites have distinctly lower Na and Cl, but 3-4 times higher B concentrations

  17. Polyphase serpentinization history of Mariana forearc mantle: observations on the microfabric of ultramafic clasts from ODP Leg 195, Site 1200

    Science.gov (United States)

    Kahl, Wolf-Achim; Jöns, Niels; Bach, Wolfgang; Klein, Frieder

    2013-04-01

    In the forearc of the Mariana subduction zone system, a number of seamounts form from extrusion of blueschist and serpentine mud. Ocean Drilling Program Leg 195 drilled the South Chamorro seamount, where ultramafic clasts occur within the mud matrix. These clasts show a complex serpentinization history, which bears the potential for tracking the alteration history during uplift and cooling of mantle wedge rocks to the seafloor. Moreover, the microfabrics of the highly serpentinized harzburgite and dunite clasts exhibit evidence for multiple fracturing events in the forearc mantle. These, in turn, lead to fluid influx and varied styles of serpentinization of harzburgite and dunite. The serpentinized ultramafic clasts exhibit a variety of microfabrics that range from virtually undeformed to strongly deformed samples. Pervasively serpentinized harzburgites feature either an equigranular fabric of serpentinized olivine and orthopyroxene crystals, or different vein generations related to multiple stages of serpentinization. Several types of fluid pathways in harzburgites are present: (i) veins containing brucite and iron oxides, developed linearly without marked conformance with the rock fabric. In places, these veins developed mm-cm wide halos with finger-shaped serpentinization fronts. Veins of type (i) are either developed as syntaxial veins from a single crack-seal event with large magnetite crystals growing from one wall to the other (as confirmed with high-resolution X-ray microtomography), or formed by multiple fluid events. (ii) serpentine veins that encompass regions of marginally serpentinized, microgranular olivine and large orthopyroxene crystals. (iii) extensional serpentine veins (known as "Frankenstein" type). In the clasts studied, their occurrence is restricted to the halo region of type (i) veins. (iv) as a late-stage feature, extensional veins documenting multiple crack-seal events can be present in the serpentinites (either in undeformed regions with

  18. Frictional property of rocks in the Izu-Bonin-Mariana Forearc under high temperature and pressure conditions

    Science.gov (United States)

    Hyodo, G.; Takahashi, M.; Saito, S.; Hirose, T.

    2014-12-01

    The Kanto region in central Japan lies atop of three tectonic plates: the North American Plate, the Pacific Plate, and the Philippine Sea Plate. The collision and subduction of the Izu-Bonin-Mariana (IBM) arc on the Philippine Sea Plate into the Kanto region results in occurring the different type of earthquakes, including seismic slip (e.g., the Kanto earthquake) and aseismic creep (i.e., slow earthquakes around the Boso peninsula). The seismic and aseismic slip seems to generate side by side at almost same depth (probably nearly same P-T conditions). This study focus on frictional property of incoming materials to be subducted into the Kanto region, in order to examine a hypothesis that the different types of slips arise from different input materials. Thus, we have performed friction experiments on rocks that constitute the IBM forearc using a high P-T gas medium apparatus at AIST. We sampled five rocks (marl, boninite, andesite, sheared serpentinite and serpentinized dunite) recovered from the IBM forearc by Leg 125, Ocean Drilling Program (ODP Site 784, 786). The rocks were crushed and sieved into 10˜50 µm in grain size. Experiments were conducted at temperature of 300○C, confining pressure of 156 MPa, pore pressure of 60 MPa and axial displacement rates of 0.1 and 1 µm/s. For marl, andesite and boninite, a periodic stick-slip behavior appears at 1 µm/s. Rise time of the stick-slip behaviors are quite long (3.1, 9.9 and 14.2 sec, for marl, andesite and boninite, respectively). We called such events as a "slow stick-slip". Similar slow stick-slip behaviors were observed in previous studies (Noda and Shimamoto, 2010; Okazaki, 2013; Kaproth and Marone, 2013), but this is first time to recognize this characteristic slip behavior in sedimentary and igneous rocks. Although it is difficult to discuss the diverse slip behaviors observed at the Kanto region based on our limited experimental results, we will examine the conditions where the transition between

  19. Groundwater quality in the Indian Wells Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Indian Wells Valley is one of the study areas being evaluated. The Indian Wells study area is approximately 600 square miles (1,554 square kilometers) and includes the Indian Wells Valley groundwater basin (California Department of Water Resources, 2003). Indian Wells Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lake beds in the lower parts of the valley. Land use in the study area is approximately 97.0 percent (%) natural, 0.4% agricultural, and 2.6% urban. The primary natural land cover is shrubland. The largest urban area is the city of Ridgecrest (2010 population of 28,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from the Sierra Nevada to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and direct infiltration from irrigation and septic systems. The primary sources of discharge are pumping wells and evapotranspiration near the dry lakebeds. The primary aquifers in the Indian Wells study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in

  20. Evidence for slow late-glacial ice retreat in the upper Rangitata Valley, South Island, New Zealand

    Science.gov (United States)

    Shulmeister, J.; Fink, D.; Winkler, S.; Thackray, G. D.; Borsellino, R.; Hemmingsen, M.; Rittenour, T. M.

    2018-04-01

    A suite of cosmogenic radionuclide ages taken from boulders on lateral and latero-terminal moraines in the Rangitata Valley, eastern South Island, New Zealand demonstrates that relatively thick ice occupied valley reaches inland of the Rangitata Gorge until c. 21 ka. Thereafter ice began to thin, and by c. 17 ka it had retreated 33 km up-valley of the Rangitata Gorge to the Butler-Brabazon Downs, a structurally created basin in the upper Rangitata Valley. Despite its magnitude, this retreat represents a minor ice volume reduction from 21 ka to 17 ka, and numerous lateral moraines preserved suggest a relatively gradual retreat over that 4 ka period. In contrast to records from adjacent valleys, there is no evidence for an ice-collapse at c. 18 ka. We argue that the Rangitata record constitutes a more direct record of glacial response to deglacial climate than other records where glacial dynamics were influenced by proglacial lake development, such as the Rakaia Valley to the North and the major valleys in the Mackenzie Basin to the south-west. Our data supports the concept of a gradual warming during the early deglaciation in the South Island New Zealand.

  1. Audiomagnetotelluric investigation of Snake Valley, eastern Nevada and western Utah

    Science.gov (United States)

    McPhee, Darcy K.; Pari, Keith; Baird, Frank

    2009-01-01

    Audiomagnetotelluric (AMT) data along four profiles in western Snake Valley and the corresponding two-dimensional (2-D) inverse models reveal subsurface structures that may be significant to ground-water investigations in the area. The AMT method is a valuable tool for estimating the electrical resistivity of the earth over depth ranges from a few meters to less than one kilometer. The method has the potential to identify faults and stratigraphy within basins of eastern Nevada, thereby helping define the hydrogeologic framework of the region.

  2. The Drentsche Aa valley system

    International Nuclear Information System (INIS)

    Gans, W. de.

    1981-01-01

    This thesis is composed of five papers concerned with Late Quaternary geology and geomorphology of the Aa valley system. The correlation and chronostratigraphic position of the layers have been established by radiocarbon dating. (Auth.)

  3. New evidence for Oligocene to Recent slip along the San Juan fault, a terrane-bounding structure within the Cascadia forearc of southern British Columbia, Canada

    Science.gov (United States)

    Harrichhausen, N.; Morell, K. D.; Regalla, C.; Lynch, E. M.

    2017-12-01

    Active forearc deformation in the southern Cascadia subduction zone is partially accommodated by faults in the upper crust in both Washington state and Oregon, but until recently, these types of active forearc faults have not been documented in the northern part of the Cascadia forearc on Vancouver Island, British Columbia. Here we present new evidence for Quaternary slip on the San Juan fault that indicates that this terrane-bounding structure has been reactivated since its last documented slip in the Eocene. Field work targeted by newly acquired hi-resolution lidar topography reveals a deformed debris flow channel network developed within colluvium along the central portion of the San Juan fault, consistent with a surface-rupturing earthquake with 1-2 m of offset since deglaciation 13 ka. Near the western extent of the San Juan fault, marine sediments are in fault contact with mélange of the Pandora Peak Unit. These marine sediments are likely Oligocene or younger in age, given their similarity in facies and fossil assemblages to nearby outcrops of the Carmanah Group sediments, but new dating using strontium isotope stratigraphy will confirm this hypothesis. If these sediments are part of the Carmanah Group, they occur further east and at a higher elevation than previously documented. The presence of Oligocene or younger marine sediments, more than 400 meters above current sea level, requires a substantial amount of Neogene rock uplift that could have been accommodated by slip on the San Juan fault. A preliminary analysis of fault slickensides indicates a change in slip sense from left-lateral to normal along the strike of the fault. Until further mapping and analysis is completed, however, it remains unclear whether this kinematic change reflects spatial and/or temporal variability. These observations suggest that the San Juan fault is likely part of a network of active faults accommodating forearc strain on Vancouver Island. With the recent discovery of

  4. Residual basins

    International Nuclear Information System (INIS)

    D'Elboux, C.V.; Paiva, I.B.

    1980-01-01

    Exploration for uranium carried out over a major portion of the Rio Grande do Sul Shield has revealed a number of small residual basins developed along glacially eroded channels of pre-Permian age. Mineralization of uranium occurs in two distinct sedimentary units. The lower unit consists of rhythmites overlain by a sequence of black shales, siltstones and coal seams, while the upper one is dominated by sandstones of probable fluvial origin. (Author) [pt

  5. Landform Evolution of the Zanskar Valley, Ladakh Himalaya.

    Science.gov (United States)

    Chahal, P.; Kumar, A.; Sharma, P.; Sundriyal, Y.; Srivastava, P.

    2017-12-01

    Zanskar River flow from south-west to north-east, perpendicularly through Higher Himalayan crystalline sequences, Tethyan sedimentary sequences, and Indus Molasses; and finally merge with the Indus River at Nimu. Geologically, the Indus valley is bounded by Ladakh Batholith in the north and highly folded and thrusted Zanskar mountain ranges in the south. Sedimentary sequences of Zanskar ranges are largely of continental origin, which were uplifted and deformed via several north verging thrusts, where Zanskar counter thrust, Choksti and Indus-Bazgo thrusts are important thrust zone, and there is atleast 36 km of crustal shortening in the Zanskar section which continued from middle Miocene to the late Pleistocene. This shortening is accommodated mainly by north or north-east directed Zanskar backthrusts. Two major tributaries of Zanskar: Tsrapchu and Doda, flow in the headwaters, along the strike of South Tibetan Detachment System (STDs), an east-west trending regional fault. The present study incorporate field sedimentology, geomorphology and chronology of landform associated with Zanskar valley. In the upper Zanskar, alluvial fan, valley fill and strath terraces configured the major landforms with paleo-lake deposits­­­ in the area between the fans. The lower catchment, at the confluence of Zanskar and Indus rivers, exhibit mainly valley fill terraces and strath terraces. Chronology suggests diachronous aggradation in the upper and lower Zanskar catchments. In the upper Zanskar large scale valley aggradation took place with simultaneously fan progradation and flooding events from 45-15 ka. Luminescence chronology of the lower Zanskar indicates aggradation from 145-55 ka and 18-12 ka. The two aggradation basins are separated by a deep V-shaped gorge which is approximately 60 km long. The longitudinal profile of the Zanskar River shows several local convexities marking knick point zone, which suggests tectonically controlled topography.

  6. Shallow Sedimentary Structure of the Brahmaputra Valley Constraint from Receiver Functions Analysis

    Science.gov (United States)

    Saikia, Sowrav; Chopra, Sumer; Baruah, Santanu; Singh, Upendra K.

    2017-01-01

    In this study, receiver functions from ten Broadband seismograph stations on Cenozoic sediment formations of Brahmaputra valley and its neighboring region in northeastern part of India are determined. Receiver function traces from this region show delay in peak by 1-2.5 s and associated minor peaks with the direct P-phase peak. Based on such observation, we try to image sedimentary structure of the Brahmaputra valley plain, adjacent Shillong plateau and Himalayan foredeep region. An adapted hybrid global waveform inversion technique has been applied to extract sedimentary basin structure beneath each site. The sedimentary cover of the basin is about 0.5-6.5 km thick across the valley, 0.5-1.0 km on Shillong plateau and 2.0-5.0 km in nearby foredeep region. We have found that sedimentary thickness increases from SW to NE along the Brahmaputra valley and towards the Eastern Himalayan syntaxes. The estimated sediment thickness and S wave velocity structure agree well with the results of previous active source, gravity, and deep borehole studies carried out in this region. The thick crustal low velocity sediment cover in Brahmaputra valley is expected to amplify ground motions during earthquakes and therefore important for seismic hazard assessment of the region.

  7. Ground-water resources of the Sevier River basin between Yuba Dam and Leamington Canyon, Utah

    Science.gov (United States)

    Bjorklund, Louis Jay; Robinson, Gerald B.

    1968-01-01

    The area investigated is a segment of the Sevier River basin, Utah, comprising about 900 square miles and including a 19-mile reach of the Sevier River between Yuba Dam and Leamington Canyon. The larger valleys in the area are southern Juab, Round, and Scipio Valleys. The smaller valleys are Mills, Little, Dog, and Tinctic Wash Valleys.The geology of parts of Scipio, Little, and Mills Valleys and parts of the surrounding highlands was mapped and studied to explain the occurrence of numerous sinkholes in the thre valleys and to show their relation to the large springs in Mills Valley. The sinkholes, which are formed in the alluvium, are alined along faults, which penetrate both the alluvium and the underlying bedrock, and they have been formed by collapse of solution cavities in the underlying bedrock. The bedrock is mostly sandy limestone beds of the upper part of the North Horn Formation and of the Flagstaff Limestone. The numerous faults traversing Scipio Valley in a north-northeasterly direction trend directly toward Molter and Blue Springs in Mills Valley. One fault, which can be traced directly between the springs, probably is the principal channelway for the ground water moving from Scipio and Little Valleys to the springs.

  8. Quaternary Geochronology, Paleontology, and Archaeology of the Upper San Pedro River Valley, Sonora, Mexico

    Science.gov (United States)

    Gaines, E. P.

    2013-12-01

    This poster presents the results of multi-disciplinary investigations of the preservation and extent of Quaternary fossil-bearing strata in the San Pedro River Valley in Sonora, Mexico. Geologic deposits in the portions of the San Pedro Valley in southern Arizona contain one of the best late Cenozoic fossil records known in North America and the best record of early humans and extinct mammals on the continent. The basin in the U.S. is one of the type locations for the Blancan Land Mammal Age. Hemiphilian and Irvingtonian fossils are common. Rancholabrean remains are widespread. Strata in the valley adjacent to the international border with Mexico have yielded the densest concentration of archaeological mammoth-kill sites known in the western hemisphere. Despite more than 60 years of research in the U.S., however, and the fact that over one third of the San Pedro River lies south of the international boundary, little has been known about the late Cenozoic geology of the valley in Mexico. The study reported here utilized extensive field survey, archaeological documentation, paleontological excavations, stratigraphic mapping and alluvial geochronology to determine the nature and extent of Quaternary fossil-bearing deposits in the portions of the San Pedro Valley in Sonora, Mexico. The results demonstrate that the Plio-Pleistocene fossil -bearing formations known from the valley in Arizona extend into the uppermost reaches of the valley in Mexico. Several new fossil sites were discovered that yielded the remains of Camelids, Equus, Mammuthus, and other Proboscidean species. Late Pleistocene archaeological remains were found on the surface of the surrounding uplands. AMS radiocarbon dating demonstrates the widespread preservation of middle- to late- Holocene deposits. However, the late Pleistocene deposits that contain the archaeological mammoth-kill sites in Arizona are absent in the valley in Mexico, and are now known to be restricted to relatively small portions of

  9. Influence of system controls on the Late Quaternary geomorphic evolution of a rapidly-infilled incised-valley system: The lower Manawatu valley, North Island New Zealand

    Science.gov (United States)

    Clement, Alastair J. H.; Fuller, Ian C.

    2018-02-01

    The Manawatu incised-valley estuary was rapidly infilled between 12,000-4700 cal. yr BP. A combination of empirical measurements of sedimentation rates, a reconstruction of relative sea-level (RSL) change, and digital elevation models of key surfaces within the Holocene sedimentary fill of the valley were integrated to produce a numerical model to investigate the influence of the system controls of sea-level change, sediment flux, and accommodation space on the rapid infilling history of the palaeo-estuary. The numerical model indicates that sediment flux into the palaeo-estuary was greatest during the Holocene marine transgression between 12,000-8000 years BP. The average rate of sediment deposition in the estuary during this period was 1.0 M m3 yr- 1. This rapid rate of sedimentation was controlled by the rate of accommodation space creation, as regulated by the rate of sea-level rise and the antecedent configuration of the valley. By the time sea levels stabilised c. 7500 cal. yr BP, the palaeo-estuary had been substantively infilled. Limited accommodation space resulted in rapid infilling of the central basin, though sediment flux into the estuary between 7100 and 4500 cal. yr BP was at a lower rate of 234,000 m3 yr- 1. The limited accommodation space also influenced hydrodynamic conditions in the estuarine central basin, driving export of fine-grained sediment from the estuary. Once the accommodation space of the estuarine basin was infilled sediment bypassed the system, with a consequent reduction in the sedimentation rate in the valley. More accurate partitioning of the sources of sediment driving the infilling is necessary to quantify sediment bypassing. Post-depositional lowering of RSL index points from the valley is driven by neotectonics and sediment compaction.

  10. Hydrodynamic modelling of extreme flood events in the Kashmir valley in India

    Science.gov (United States)

    Jain, Manoj; Parvaze, Sabah

    2017-04-01

    Floods are one of the most predominant, costly and deadly hazards of all natural vulnerabilities. Every year, floods exert a heavy toll on human life and property in many parts of the world. The prediction of river stages and discharge during flood extremes plays a vital role in planning structural and non-structural measures of flood management. The predictions are also valuable to prepare the flood inundation maps and river floodplain zoning. In the Kashmir Valley, floods occur mainly and very often in the Jhelum Basin mostly due to extreme precipitation events and rugged mountainous topography of the basin. These floods cause extreme damage to life and property in the valley from time to time. Excessive rainfall, particularly in higher sub-catchments causes the snow to melt resulting in excessive runoff downhill to the streams causing floods in the Kashmir Valley where Srinagar city is located. However, very few hydrological studies have been undertaken for the Jhelum Basin mainly due to non-availability of hydrological data due to very complex mountainous terrain. Therefore, the present study has been conducted to model the extreme flood events in the Jhelum Basin in Kashmir Valley. An integrated NAM and MIKE 11 HD model has been setup for Jhelum basin up to Ram Munshi Bagh gauging site and then four most extreme historical flood events in the time series has been analyzed separately including the most recent and most extreme flood event of 2014. In September 2014, the Kashmir Valley witnessed the most severe flood in the past 60 years due to catastrophic rainfall from 1st to 6th September wherein the valley received unprecedented rainfall of more than 650 mm in just 3 days breaking record of many decades. The MIKE 11 HD and NAM model has been calibrated using 21 years (1985-2005) data and validated using 9 years (2006-2014) data. The efficiency indices of the model for calibration and validation period is 0.749 and 0.792 respectively. The model simulated

  11. Proglacial vs postglacial depostional environments, the opposing processes that filled the southern North Sea tunnel valleys

    DEFF Research Database (Denmark)

    Moreau, Julien; Huuse, Mads

    ­belt fashion. The formation of the 'backsets' would have been enhanced by supercooling due to the pressure drop during the upward flow of the water from the deepest part of the valleys towards the ice margin, freezing and thus capturing the sediments on the adverse slope. Recently this model has been...... river of Europe facing ice sheets and their proglacial depositional system generates a very intricate stratigraphy with multiple cross­cutting 'basins' in the form of valleys (c. 7 generations) which themselves contain up to 8 complete seismic sequences. Although the task to uild up a complete...

  12. Groundwater discharge by evapotranspiration, Dixie Valley, west-central Nevada, March 2009-September 2011

    Science.gov (United States)

    Garcia, C. Amanda; Huntington, Jena M; Buto, Susan G.; Moreo, Michael T.; Smith, J. LaRue; Andraski, Brian J.

    2014-01-01

    With increasing population growth and land-use change, urban communities in the desert Southwest are progressively looking toward remote basins to supplement existing water supplies. Pending applications by Churchill County for groundwater appropriations from Dixie Valley, Nevada, a primarily undeveloped basin east of the Carson Desert, have prompted a reevaluation of the quantity of naturally discharging groundwater. The objective of this study was to develop a revised, independent estimate of groundwater discharge by evapotranspiration (ETg) from Dixie Valley using a combination of eddy-covariance evapotranspiration (ET) measurements and multispectral satellite imagery. Mean annual ETg was estimated during water years 2010 and 2011 at four eddy-covariance sites. Two sites were in phreatophytic shrubland dominated by greasewood, and two sites were on a playa. Estimates of total ET and ETg were supported with vegetation cover mapping, soil physics considerations, water‑level measurements from wells, and isotopic water sourcing analyses to allow partitioning of ETg into evaporation and transpiration components. Site-based ETg estimates were scaled to the basin level by combining remotely sensed imagery with field reconnaissance. Enhanced vegetation index and brightness temperature data were compared with mapped vegetation cover to partition Dixie Valley into five discharging ET units and compute basin-scale ETg. Evapotranspiration units were defined within a delineated groundwater discharge area and were partitioned as (1) playa lake, (2) playa, (3) sparse shrubland, (4) moderate-to-dense shrubland, and (5) grassland.

  13. Hydrological Modelling the Middle Magdalena Valley (Colombia)

    Science.gov (United States)

    Arenas, M. C.; Duque, N.; Arboleda, P.; Guadagnini, A.; Riva, M.; Donado-Garzon, L. D.

    2017-12-01

    Hydrological distributed modeling is key point for a comprehensive assessment of the feedback between the dynamics of the hydrological cycle, climate conditions and land use. Such modeling results are markedly relevant in the fields of water resources management, natural hazards and oil and gas industry. Here, we employ TopModel (TOPography based hydrological MODEL) for the hydrological modeling of an area in the Middle Magdalena Valley (MMV), a tropical basin located in Colombia. This study is located over the intertropical convergence zone and is characterized by special meteorological conditions, with fast water fluxes over the year. It has been subject to significant land use changes, as a result of intense economical activities, i.e., and agriculture, energy and oil & gas production. The model employees a record of 12 years of daily precipitation and evapotranspiration data as inputs. Streamflow data monitored across the same time frame are used for model calibration. The latter is performed by considering data from 2000 to 2008. Model validation then relies on observations from 2009 to 2012. The robustness of our analyses is based on the Nash-Sutcliffe coefficient (values of this metric being 0.62 and 0.53, respectively for model calibration and validation). Our results reveal high water storage capacity in the soil, and a marked subsurface runoff, consistent with the characteristics of the soil types in the regions. A significant influence on runoff response of the basin to topographical factors represented in the model is evidenced. Our calibrated model provides relevant indications about recharge in the region, which is important to quantify the interaction between surface water and groundwater, specially during the dry season, which is more relevant in climate-change and climate-variability scenarios.

  14. Radioactive hydrogeochemical processes in the Chihuahua-Sacramento Basin, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Burillo, J. C.; Reyes C, M.; Montero C, M. E.; Renteria V, M.; Herrera P, E. F. [Centro de Investigacion en Materiales Avanzados, S. C., Miguel de Cervantes No. 120, Complejo Industrial Chihuahua, 31109 Chihuahua (Mexico); Reyes, I.; Espino, M. S., E-mail: elena.montero@cimav.edu.mx [Universidad Autonoma de Chihuahua, Facultad de Ingenieria, Nuevo Campus Universitario, Chihuahua (Mexico)

    2012-06-15

    The Chihuahua Basin is divided by its morphology into three main sub basins: Chihuahua-Sacramento sub basin, Chihuahua Dam sub basin and Chuviscar River sub basin. In the aquifers at the Sacramento sub basin, specific concentrations of uranium in groundwater range from 460 to 1260 Bq / m{sup 3}. The presence of strata and sandy clay lenses with radiometric anomalies in the N W of Chihuahua Valley was confirmed by a litostatigraphic study and gamma spectrometry measurements of drill cuttings. High uranium activity values found in the water of some deep wells may correspond to the presence of fine material bodies of carbonaceous material, possible forming pa leo-sediment of flooding or pa leo-soils. It is suggested that these clay horizons are uranyl ion collectors. Uranyl may suffer a reduction process by organic material. Furthermore the groundwater, depending on its ph and Eh, oxidizes and re-dissolves uranium. The hydrogeochemical behavior of San Marcos dam and the N W Valley area is the subject of studies that should help to clarify the origin of the radioactive elements and their relationships with other pollutants in the watershed. (Author)

  15. Radioactive hydrogeochemical processes in the Chihuahua-Sacramento Basin, Mexico

    International Nuclear Information System (INIS)

    Burillo, J. C.; Reyes C, M.; Montero C, M. E.; Renteria V, M.; Herrera P, E. F.; Reyes, I.; Espino, M. S.

    2012-01-01

    The Chihuahua Basin is divided by its morphology into three main sub basins: Chihuahua-Sacramento sub basin, Chihuahua Dam sub basin and Chuviscar River sub basin. In the aquifers at the Sacramento sub basin, specific concentrations of uranium in groundwater range from 460 to 1260 Bq / m 3 . The presence of strata and sandy clay lenses with radiometric anomalies in the N W of Chihuahua Valley was confirmed by a litostatigraphic study and gamma spectrometry measurements of drill cuttings. High uranium activity values found in the water of some deep wells may correspond to the presence of fine material bodies of carbonaceous material, possible forming pa leo-sediment of flooding or pa leo-soils. It is suggested that these clay horizons are uranyl ion collectors. Uranyl may suffer a reduction process by organic material. Furthermore the groundwater, depending on its ph and Eh, oxidizes and re-dissolves uranium. The hydrogeochemical behavior of San Marcos dam and the N W Valley area is the subject of studies that should help to clarify the origin of the radioactive elements and their relationships with other pollutants in the watershed. (Author)

  16. Hydrogeologic implications of increased septic-tank-soil-absorption system density, Ogden Valley, Weber County, Utah

    Science.gov (United States)

    Lowe, Mike; Miner, Michael L.; ,

    1990-01-01

    Ground water in Ogden Valley occurs in perched, confined, and unconfined aquifers in the valley fill to depths of 600 feet and more. The confined aquifer, which underlies only the western portion of the valley, is overlain by cleyey silt lacustrine sediments probably deposited during the Bonneville Basin's Little Valley lake cycle sometime between 90,000 and 150,000 years ago. The top of this cleyey silt confining layer is generally 25 to 60 feet below the ground surface. Unconfined conditions occur above and beyond the outer margin of the confining layer. The sediments overlying the confining layer are primarily Lake Bonneville deposits. Water samples from springs, streams, and wells around Pineview Reservoir, and from the reservoir itself, were collected and analyzed. These samples indicate that water quality in Ogden Valley is presently good. Average nitrate concentrations in the shallow unconfined aquifer increase toward the center of Ogden Valley. This trend was not observed in the confined aquifer. There is no evidence, however, of significant water-quality deterioration, even in the vicinity of Huntsville, a town that has been densely developed using septic-tank-soil-absorption systems for much of the time since it was founded in 1860.

  17. Subsurface and petroleum geology of the southwestern Santa Clara Valley ("Silicon Valley"), California

    Science.gov (United States)

    Stanley, Richard G.; Jachens, Robert C.; Lillis, Paul G.; McLaughlin, Robert J.; Kvenvolden, Keith A.; Hostettler, Frances D.; McDougall, Kristin A.; Magoon, Leslie B.

    2002-01-01

    Gravity anomalies, historical records of exploratory oil wells and oil seeps, new organic-geochemical results, and new stratigraphic and structural data indicate the presence of a concealed, oil-bearing sedimentary basin beneath a highly urbanized part of the Santa Clara Valley, Calif. A conspicuous isostatic-gravity low that extends about 35 km from Palo Alto southeastward to near Los Gatos reflects an asymmetric, northwest-trending sedimentary basin comprising low-density strata, principally of Miocene age, that rest on higher-density rocks of Mesozoic and Paleogene(?) age. Both gravity and well data show that the low-density rocks thin gradually to the northeast over a distance of about 10 km. The thickest (approx 4 km thick) accumulation of low-density material occurs along the basin's steep southwestern margin, which may be controlled by buried, northeast-dipping normal faults that were active during the Miocene. Movement along these hypothetical normal faults may been contemporaneous (approx 17–14 Ma) with sedimentation and local dacitic and basaltic volcanism, possibly in response to crustal extension related to passage of the northwestward-migrating Mendocino triple junction. During the Pliocene and Quaternary, the normal faults and Miocene strata were overridden by Mesozoic rocks, including the Franciscan Complex, along northeastward-vergent reverse and thrust faults of the Berrocal, Shannon, and Monte Vista Fault zones. Movement along these fault zones was accompanied by folding and tilting of strata as young as Quaternary and by uplift of the modern Santa Cruz Mountains; the fault zones remain seismically active. We attribute the Pliocene and Quaternary reverse and thrust faulting, folding, and uplift to compression caused by local San Andreas Fault tectonics and regional transpression along the Pacific-North American Plate boundary. Near the southwestern margin of the Santa Clara Valley, as many as 20 exploratory oil wells were drilled between 1891

  18. Crop intensification options and trade-offs with the water balance in the Central Rift Valley of Ethiopia

    NARCIS (Netherlands)

    Debas, Mezegebu

    2016-01-01

    The Central Rift Valley (CRV) of Ethiopia is a closed basin for which claims on land and water have strongly increased over the past decade resulting in over-exploitation of the resources. A clear symptom is the declining trend in the water level of the terminal Lake Abyata. The actual

  19. Sediment budget and tectonic evolution of the Meuse catchment in the Ardennes and the Roer Valley Rift System

    NARCIS (Netherlands)

    Balen, R.T. van; Houtgast, R.F.; Wateren, F.M. van der; Berghe, J. van den; Bogaart, P.W.

    2000-01-01

    The Meuse river system is located in the northeastern part of the Paris Basin, the Ardennes, and the Roer Valley Rift System (RVRS). The Meuse river system developed during the uplift of the Ardennes since the Eocene and it was affected by renewed rifting of the RVRS starting in the Late Oligocene.

  20. Sediment budget and tectonic evolution of the Meuse catchment in the Ardennes and the Roer Valley Rift System.

    NARCIS (Netherlands)

    van Balen, R.T.; Houtgast, R.F.; van der Wateren, F.M.; Vandenberghe, J.; Bogaart, P.W.

    2000-01-01

    The Meuse river system is located in the northeastern part of the Paris Basin, the Ardennes, and the Roer Valley Rift System (RVRS). The Meuse river system developed during the uplift of the Ardennes since the Eocene and it was affected by renewed rifting of the RVRS starting in the Late Oligocene.

  1. Reconstructing late quaternary fluvial process controls in the upper aller valley (north Germany) by means of numerical modeling

    NARCIS (Netherlands)

    Veldkamp, A.; Berg, van den M.; Dijke, van J.J.; Berg van Saparoea, van den R.M.

    2002-01-01

    The morpho-genetic evolution of the upper Aller valley (Weser basin, North Germany) was reconstructed using geological and geomorphologic data integrated within a numerical process model framework (FLUVER-2). The current relief was shaped by Pre-Elsterian fluvial processes, Elsterian and Saalian ice

  2. Reconstructing Late Quaternary fluvial process controls in the upper Aller Valley (North Germany) by means of numerical modeling

    NARCIS (Netherlands)

    Veldkamp, A.; Berg, M.W. van den; Dijke, J.J. van; Berg van den; Saparoea, R.M. van

    2002-01-01

    The morpho-genetic evolution of the upper Aller valley (Weser basin, North Germany) was reconstructed using geological and geomorphologic data integrated within a numerical process model framework (FLUVER-2). The current relief was shaped by Pre-Elsterian fluvial processes, Elsterian and Saalian ice

  3. Late Quaternary uplift rate inferred from marine terraces, Muroto Peninsula, southwest Japan: Forearc deformation in an oblique subduction zone

    Science.gov (United States)

    Matsu'ura, Tabito

    2015-04-01

    Tectonic uplift rates across the Muroto Peninsula, in the southwest Japan forearc (the overriding plate in the southwest Japan oblique subduction zone), were estimated by mapping the elevations of the inner edges of marine terrace surfaces. The uplift rates inferred from marine terraces M1 and M2, which were correlated by tephrochronology with marine isotope stages (MIS) 5e and 5c, respectively, include some vertical offset by local faults but generally decrease northwestward from 1.2-1.6 m ky- 1 on Cape Muroto to 0.3-0.7 m ky- 1 in the Kochi Plain. The vertical deformation of the Muroto Peninsula since MIS 5e and 5c was interpreted as a combination of regional uplift and folding related to the arc-normal offshore Muroto-Misaki fault. A regional uplift rate of 0.46 m ky- 1 was estimated from terraces on the Muroto Peninsula, and the residual deformation of these terraces was attributed to fault-related folding. A mass-balance calculation yielded a shortening rate of 0.71-0.77 m ky- 1 for the Muroto Peninsula, with the Muroto-Misaki fault accounting for 0.60-0.71 m ky- 1, but these rates may be overestimated by as much as 10% given variations of several meters in the elevation difference between the buried shoreline angles and terrace inner edges in the study area. A thrust fault model with flat (5-10° dip) and ramp (60° dip) components is proposed to explain the shortening rate and uplift rate of the Muroto-Misaki fault since MIS 5e. Bedrock deformation also indicates that the northern extension of this fault corresponds to the older Muroto Flexure.

  4. Catastrophic valley fills record large Himalayan earthquakes, Pokhara, Nepal

    Science.gov (United States)

    Stolle, Amelie; Bernhardt, Anne; Schwanghart, Wolfgang; Hoelzmann, Philipp; Adhikari, Basanta R.; Fort, Monique; Korup, Oliver

    2017-12-01

    Uncertain timing and magnitudes of past mega-earthquakes continue to confound seismic risk appraisals in the Himalayas. Telltale traces of surface ruptures are rare, while fault trenches document several events at best, so that additional proxies of strong ground motion are needed to complement the paleoseismological record. We study Nepal's Pokhara basin, which has the largest and most extensively dated archive of earthquake-triggered valley fills in the Himalayas. These sediments form a 148-km2 fan that issues from the steep Seti Khola gorge in the Annapurna Massif, invading and plugging 15 tributary valleys with tens of meters of debris, and impounding several lakes. Nearly a dozen new radiocarbon ages corroborate at least three episodes of catastrophic sedimentation on the fan between ∼700 and ∼1700 AD, coinciding with great earthquakes in ∼1100, 1255, and 1344 AD, and emplacing roughly >5 km3 of debris that forms the Pokhara Formation. We offer a first systematic sedimentological study of this formation, revealing four lithofacies characterized by thick sequences of mid-fan fluvial conglomerates, debris-flow beds, and fan-marginal slackwater deposits. New geochemical provenance analyses reveal that these upstream dipping deposits of Higher Himalayan origin contain lenses of locally derived river clasts that mark time gaps between at least three major sediment pulses that buried different parts of the fan. The spatial pattern of 14C dates across the fan and the provenance data are key to distinguishing these individual sediment pulses, as these are not evident from their sedimentology alone. Our study demonstrates how geomorphic and sedimentary evidence of catastrophic valley infill can help to independently verify and augment paleoseismological fault-trench records of great Himalayan earthquakes, while offering unparalleled insights into their long-term geomorphic impacts on major drainage basins.

  5. Geological Development of the Izu-Bonin Forearc Since the Eocene Based on Biostratigraphic, Rock Magnetic, and Sediment Provenance Observations from IODP Expedition 352 Drill Cores

    Science.gov (United States)

    Petronotis, K. E.; Robertson, A.; Kutterolf, S.; Avery, A.; Baxter, A.; Schindlbeck, J. C.; Wang, K. L.; Acton, G.

    2016-12-01

    International Ocean Discovery Program (IODP) Expedition 352 recovered early Oligocene to recent sediments above Eocene igneous basement at 4 sites in the Izu-Bonin Forearc. The sites were selected to investigate the forearc region since subduction initiation in the Eocene, with Sites U1439 and U1442 being cored into the upper trench slope and Sites U1440 and U1441 into the lower trench slope. Postcruise studies of biostratigraphy, sediment chemistry, tephra composition and chronology and magnetic properties, along with observations from prior coring help constrain the regional geological development. Volcanic activity in the area, as inferred from its influence on sediment composition, has varied between long periods of activity and quiescence. Combined whole-rock sediment chemistry and tephra compositions suggest that during the Oligocene to earliest Miocene ( 30-22 Ma) tuffaceous input of predominantly dacitic composition was mainly derived from the intra-oceanic Izu-Bonin Arc. The early Miocene interval ( 22-15 Ma) lacks tuffaceous input, as supported by rock magnetic data. During this period, the forearc subsided beneath the carbonate compensation depth (CCD), as evidenced by radiolarian-bearing mud and metal-rich silty clay. This was followed by input of tephra with bimodal felsic and mafic compositions from the Izu-Bonin Arc from 15 to 5 Ma. Middle Miocene to Quaternary time was characterized by increased carbonate preservation, coupled with abundant, predominantly felsic tephra input, which is chemically indicative of a Japan continental arc source (Honshu), with additional chemically distinctive input from the Izu-Bonin Arc. Extending back to 32 Ma, tephra layers can be correlated between the upper-slope sites, extrapolated to the less well-dated lower-slope sites, and further correlated with onland Japanese tephra (Kutterolf et al., 2016; Goldschmidt Conference). Overall, the new results provide an improved understanding of the regional tectonic evolution.

  6. Multibeam bathymetric survey of the Ipala Submarine Canyon, Jalisco, Mexico (20°N): The southern boundary of the Banderas Forearc Block?

    Science.gov (United States)

    Urías Espinosa, J.; Bandy, W. L.; Mortera Gutiérrez, C. A.; Núñez Cornú, Fco. J.; Mitchell, N. C.

    2016-03-01

    The Middle America Trench bends sharply northward at 20°N. This, along with the close proximity of the Rivera-North America Euler pole to the northern end of this trench, sharply increases the obliquity of subduction at 20°N. By analogy with other subduction zones with similar sharply changing obliquity, significant trench parallel extension is expected to exist in the forearc region near the bend. To evaluate this possibility, multibeam bathymetric, seafloor backscatter and sub-bottom seismic reflection data were collected in this area during the MORTIC08 campaign of the B.O. El Puma. These data image in detail a large submarine canyon (the Ipala Canyon) extending from the coast at 20°05‧N to the Middle America Trench at 19°50‧N. This canyon is 114 km long and is fed by sediments originating from two, possibly three, small rivers: the Ipala, Tecolotlán and Maria Garza. This canyon deeply incises (up to 600 m) the entire continental slope and at least the outer part of the shelf. Within the canyon, we observe meanders and narrow channels produced by turbidity flows indicating that the canyon is active. In the marginal areas of the canyon slumps, rills, and uplifts suggest that mass movements and fluid flow have had a major impact on the seafloor morphology. The seafloor bathymetry, backscatter images and sub-bottom reflection profiles evidence the tectonic processes occurring in this area. Of particular interest, the canyon is deflected by almost 90° at three locations, the deflections all having a similar azimuth of between 125° and 130°. Given the prominence and geometry of this canyon, along with its tectonic setting, we propose that the presence of the canyon is related to extension produced by the sharp change in the plate convergence. If so, the canyon may lie along the southeast boundary of a major forearc block (the Banderas Forearc Block).

  7. Birds of the St. Croix River valley: Minnesota and Wisconsin

    Science.gov (United States)

    Faanes, Craig A.

    1981-01-01

    The St. Croix River Valley encompasses nearly 11,550 km2 in east-central Minnesota and northwestern Wisconsin. A wide range of habitats are available for birds including upland oak, lowland deciduous, maple-basswood, lowland and upland coniferous forests, natural basin wetlands, and grasslands. Situated in the north-central region of the United States, the valley is a biological 'crossroads' for many species. Because of the mixed affinities of plant communities, the valley includes the northern and southern range limits for a number of species. Also, because the valley lies near the forest-prairie transition zone, many typical western breeding species (e.g. pintail, western meadowlark, yellow-headed blackbird) breed in proximity to typical eastern species such as tufted titmouse, eastern meadowlark, and cardinal. From 1966 to 1980, I conducted extensive surveys of avian distribution and abundance in the St. Croix River Valley. I have supplemented the results of these surveys with published and unpublished observations contributed by many ornithologists. These additional data include compilations from Christmas Bird Counts sponsored by the National Audubon Society and from the Breeding Bird Survey coordinated by the U.S. Fish and Wildlife Service. Three hundred fourteen species have been recorded in the study area; data are presented on the migration period, nesting season distribution, winter distribution, relative abundance, and habitat use of each species. Recognizing the uniqueness of the area, and its importance not only to wildlife but also to man, the U.S. Congress designated the St. Croix a National Scenic Riverway. This action provided a considerable degree of protection to lands along and directly adjacent to the river. Unfortunately, no similar legal measure exists to protect lands away from the river. With the exception of the northern quarter of the St. Croix River Valley, agricultural interests have made significant inroads into the habitat base. The

  8. Hydrothermal alteration of deep sea sediments from the Izu-Bonin fore arc basin, leg 126, ODp. Izuter dot Ogasawara ko no shinkaitei taisekibutsu ni okeru netsusui henshitsu sayo

    Energy Technology Data Exchange (ETDEWEB)

    Tazaki, K. (Shimane Univ., Shimane (Japan). Faculty of Science)

    1991-08-25

    The deep sea drilling according to ODP has been performed in the Izu-Bonin arc during a period of April 22 to June 19 in 1989, and the drilling across the forearc, island arc and backarc was successful in the Leg 126 of it. The drill length of 1682 m at Site 793 was achieved and it is the deepest world record including the drilling of basement. In this report, the various measurements and observations were performed focussing the hydrothermal effects accompanied with the volcanic activities, on the Site 793 achieved the longest drilling in the forearc basin and the Site 792 in the same forearc. As a result, there are many dehydration veins, clastic dikes and small faults in the volcanic sediments, and the gypsum, smectite, zeolite and prehnite etc. are filled in these parts as a zonal distribution, suggesting the thermal gradient and thermal history at that time. The volcanic glass and feldspar etc. are changed partly to the smectite and zeolite etc. by the hydrothermal alteration. The effective keys as mentioned above were obtained about the temperature condition of hydrothermal alteration and the paleo-environment. 31 refs., 15figs.

  9. Origin and in situ concentrations of hydrocarbons in the Kumano forearc basin from drilling mud gas monitoring during IODP NanTroSEIZE Exp. 319

    International Nuclear Information System (INIS)

    Wiersberg, Thomas; Schleicher, Anja M.; Horiguchi, Keika; Doan, Mai-Linh; Eguchi, Nobuhisa; Erzinger, Jörg

    2015-01-01

    Highlights: • Exp. 319 of IODP was the first cruise in the history of scientific ocean drilling with drilling mud gas monitoring. • Hydrocarbons were the only formation-derived gases identified in drilling mud. • Chemical and isotopic compositions of hydrocarbons exhibit a microbial origin. • Absolute CH 4 concentrations in the formation reaching up to 24 L gas /L sediment . - Abstract: NanTroSEIZE Exp. 319 of the Integrated Ocean Drilling Program (IODP) was the first cruise in the history of scientific ocean drilling with drilling mud circulation through a riser. Drilling mud was pumped through the drill string and returned to the drill ship through the riser pipe during drilling of hole C0009A from 703 to 1604 mbsf (meter below sea floor) and hole enlargement from 703 to 1569 mbsf. During riser drilling, gas from returning drilling mud was continuously extracted, sampled and analyzed in real time to reveal information on the gas composition and gas concentrations at depth. Hydrocarbons were the only formation-derived gases identified in drilling mud and reached up to 14 vol.% of methane and 48 ppmv of ethane. The chemical and isotopic compositions of hydrocarbons exhibit a microbial origin. Hydrocarbons released from drilling mud and cuttings correlate with visible allochthonous material (wood, lignite) in drilling cuttings. At greater depth, addition of small but increasing amounts of hydrocarbons probably from low-temperature thermal degradation of organic matter is indicated. The methane content is also tightly correlated with several intervals of low Poisson’s ratio from Vp/Vs observed in sonic velocity logs, suggesting that the gas is situated in the pore space of the rock as free gas. The gas concentrations in the formation, determined from drilling mud gas monitoring, reaching up to 24 L gas /L sediment for methane in hole C0009A, in line with gas concentrations from interpreted downhole sonic logs

  10. Late quaternary faulting along the Death Valley-Furnace Creek fault system, California and Nevada

    International Nuclear Information System (INIS)

    Brogan, G.E.; Kellogg, K.S.; Terhune, C.L.; Slemmons, D.B.

    1991-01-01

    The Death Valley-Furnace Creek fault system, in California and Nevada, has a variety of impressive late Quaternary neotectonic features that record a long history of recurrent earthquake-induced faulting. Although no neotectonic features of unequivocal historical age are known, paleoseismic features from multiple late Quaternary events of surface faulting are well developed throughout the length of the system. Comparison of scarp heights to amount of horizontal offset of stream channels and the relationships of both scarps and channels to the ages of different geomorphic surfaces demonstrate that Quaternary faulting along the northwest-trending Furnace Creek fault zone is predominantly right lateral, whereas that along the north-trending Death Valley fault zone is predominantly normal. These observations are compatible with tectonic models of Death Valley as a northwest- trending pull-apart basin

  11. Influence of basin connectivity on sediment source, transport, and storage within the Mkabela Basin, South Africa

    Directory of Open Access Journals (Sweden)

    J. R. Miller

    2013-02-01

    Full Text Available The management of sediment and other non-point source (NPS pollution has proven difficult, and requires a sound understanding of particle movement through the drainage system. The primary objective of this investigation was to obtain an understanding of NPS sediment source(s, transport, and storage within the Mkabela Basin, a representative agricultural catchment within the KwaZulu–Natal Midlands of eastern South Africa, by combining geomorphic, hydrologic and geochemical fingerprinting analyses.

    The Mkabela Basin can be subdivided into three distinct subcatchments that differ in their ability to transport and store sediment along the axial valley. Headwater (upper catchment areas are characterized by extensive wetlands that act as significant sediment sinks. Mid-catchment areas, characterized by higher relief and valley gradients, exhibit few wetlands, but rather are dominated by a combination of alluvial and bedrock channels that are conducive to sediment transport. The lower catchment exhibits a low-gradient alluvial channel that is boarded by extensive riparian wetlands that accumulate large quantities of sediment (and NPS pollutants.

    Fingerprinting studies suggest that silt- and clay-rich layers found within wetland and reservoir deposits of the upper and upper-mid subcatchments are derived from the erosion of fine-grained, valley bottom soils frequently utilized as vegetable fields. Coarser-grained deposits within these wetlands and reservoirs result from the erosion of sandier hillslope soils extensively utilized for sugar cane, during relatively high magnitude runoff events that are capable of transporting sand-sized sediment off the slopes. Thus, the source of sediment to the axial valley varies as a function of sediment size and runoff magnitude. Sediment export from upper to lower catchment areas was limited until the early 1990s, in part because the upper catchment wetlands were hydrologically disconnected from

  12. Spirit's West Valley Panorama

    Science.gov (United States)

    2008-01-01

    NASA'S Mars Exploration Rover Spirit captured this westward view from atop a low plateau where Sprit spent the closing months of 2007. After several months near the base of the plateau called 'Home Plate' in the inner basin of the Columbia Hills range inside Gusev Crater, Spirit climbed onto the eastern edge of the plateau during the rover's 1,306th Martian day, or sol, (Sept. 5, 2007). It examined rocks and soils at several locations on the southern half of Home Plate during September and October. It was perched near the western edge of Home Plate when it used its panoramic camera (Pancam) to take the images used in this view on sols 1,366 through 1,369 (Nov. 6 through Nov. 9, 2007). With its daily solar-energy supply shrinking as Martian summer turned to fall, Spirit then drove to the northern edge of Home Plate for a favorable winter haven. The rover reached that northward-tilting site in December, in time for the fourth Earth-year anniversary of its landing on Mars. Spirit reached Mars on Jan. 4, 2004, Universal Time (Jan. 3, 2004, Pacific Standard Time). It landed at a site at about the center of the horizon in this image. This panorama covers a scene spanning left to right from southwest to northeast. The western edge of Home Plate is in the foreground, generally lighter in tone than the more distant parts of the scene. A rock-dotted hill in the middle distance across the left third of the image is 'Tsiolkovski Ridge,' about 30 meters or 100 feet from the edge of Home Plate and about that same distance across. A bump on the horizon above the left edge of Tsiolkovski Ridge is 'Grissom Hill,' about 8 kilometers or 5 miles away. At right, the highest point of the horizon is 'Husband Hill,' to the north and about 800 meters or half a mile away. This view combines separate images taken through Pancam filters centered on wavelengths of 753 nanometers, 535 nanometers and 432 nanometers to produce an approximately true-color panorama.

  13. Spatiotemporal Patterns of Ice Mass Variations and the Local Climatic Factors in the Riparian Zone of Central Valley, California

    Science.gov (United States)

    Inamdar, P.; Ambinakudige, S.

    2016-12-01

    Californian icefields are natural basins of fresh water. They provide irrigation water to the farms in the central valley. We analyzed the ice mass loss rates, air temperature and land surface temperature (LST) in Sacramento and San Joaquin basins in California. The digital elevation models from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to calculate ice mass loss rate between the years 2002 and 2015. Additionally, Landsat TIR data were used to extract the land surface temperature. Data from local weather stations were analyzed to understand the spatiotemporal trends in air temperature. The results showed an overall mass recession of -0.8 ± 0.7 m w.e.a-1. We also noticed an about 60% loss in areal extent of the glaciers in the study basins between 2000 and 2015. Local climatic factors, along with the global climate patterns might have influenced the negative trends in the ice mass loss. Overall, there was an increase in the air temperature by 0.07± 0.02 °C in the central valley between 2000 and 2015. Furthermore, LST increased by 0.34 ± 0.4 °C and 0.55± 0.1 °C in the Sacramento and San Joaquin basins. Our preliminary results show the decrease in area and mass of ice mass in the basins, and changing agricultural practices in the valley.

  14. Sediment Thickness and a WEST-EAST Geologic Cross Section in the Caracas Valley

    OpenAIRE

    KANTAK, PETER; SCHMITZ, MICHAEL; AUDEMARD, FRANCK

    2005-01-01

    Caracas is located at the Caribbean - South America plate boundary zone, with an associated strike slip fault system, which accommodates the relative movement of both plates and is responsible for the seismic hazard in the region. The damage pattern of the 1967 Caracas earthquake emphasized the existence of important site effects due to the sedimentary basin fill of the Caracas valley. A revised map of the sedimentary thickness was developed during this study, based on drill holes (mostly fro...

  15. Possible effects of groundwater pumping on surface water in the Verde Valley, Arizona

    Science.gov (United States)

    Leake, Stanley A.; Haney, Jeanmarie

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with The Nature Conservancy, has applied a groundwater model to simulate effects of groundwater pumping and artificial recharge on surface water in the Verde Valley sub-basin of Arizona. Results are in two sets of maps that show effects of locations of pumping or recharge on streamflow. These maps will help managers make decisions that will meet water needs and minimize environmental impacts.

  16. Groundwater quality in the Bear Valley and Lake Arrowhead Watershed, California

    Science.gov (United States)

    Mathany, Timothy; Burton, Carmen; Fram, Miranda S.

    2017-06-20

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Bear Valley and Lake Arrowhead Watershed study areas in southern California compose one of the study units being evaluated.

  17. Timing of Mississippi Valley-type mineralization: Relation to Appalachian orogenic events

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, S.E.; van der Pluijm, B.A. (Univ. of Michigan, Ann Arbor (USA))

    1990-11-01

    Although Mississippi Valley-type deposits in Lower Ordovician carbonate rocks of the Appalachian orogen are commonly interpreted to have been precipitated by basinal brines, the timing of brine migration remains poorly known. Late Paleozoic K-Ar isotopic ages on authigenic K-feldspar, which is widespread in Appalachian carbonate rocks, as well as evidence of paleomagnetic overprints of similar age, have focused attention on the possibility that these Mississippi Valley-type deposits formed as a result of late Paleozoic deformation. Geologic and geochemical similarities among most of these deposits, from Georgia to Newfoundland, including unusually high sphalerite/galena ratios, isotopically heavy sulfur, and relatively nonradiogenic lead, suggest that they are coeval. Sphalerite sand that parallels host-rock layering in many of the deposits indicates that mineralization occurred before regional deformation. Although the late Paleozoic age of deformation in the southern Appalachians provides little constraint on the age of Mississippi Valley-type mineralization, deformation of these deposits in the Newfoundland Appalachians is early to middle Paleozoic in age. Thus, if Ordovician-hosted, Appalachian Mississippi Valley-type deposits are coeval, they must have formed by middle Paleozoic time and cannot be the product of a late Paleozoic fluid-expulsion event. This hypothesis has important implications for basin evolution, fluid events, and remagnetization in the Appalachians.

  18. Summary of Hydrologic Data for the Tuscarawas River Basin, Ohio, with an Annotated Bibliography

    Science.gov (United States)

    Haefner, Ralph J.; Simonson, Laura A.

    2010-01-01

    The Tuscarawas River Basin drains approximately 2,600 square miles in eastern Ohio and is home to 600,000 residents that rely on the water resources of the basin. This report summarizes the hydrologic conditions in the basin, describes over 400 publications related to the many factors that affect the groundwater and surface-water resources, and presents new water-quality information and a new water-level map designed to provide decisionmakers with information to assist in future data-collection efforts and land-use decisions. The Tuscarawas River is 130 miles long, and the drainage basin includes four major tributary basins and seven man-made reservoirs designed primarily for flood control. The basin lies within two physiographic provinces-the Glaciated Appalachian Plateaus to the north and the unglaciated Allegheny Plateaus to the south. Topography, soil types, surficial geology, and the overall hydrology of the basin were strongly affected by glaciation, which covered the northern one-third of the basin over 10,000 years ago. Within the glaciated region, unconsolidated glacial deposits, which are predominantly clay-rich till, overlie gently sloping Pennsylvanian-age sandstone, limestone, coal, and shale bedrock. Stream valleys throughout the basin are filled with sands and gravels derived from glacial outwash and alluvial processes. The southern two-thirds of the basin is characterized by similar bedrock units; however, till is absent and topographic relief is greater. The primary aquifers are sand- and gravel-filled valleys and sandstone bedrock. These sands and gravels are part of a complex system of aquifers that may exceed 400 feet in thickness and fill glacially incised valleys. Sand and gravel aquifers in this basin are capable of supporting sustained well yields exceeding 1,000 gallons per minute. Underlying sandstones within 300 feet of the surface also provide substantial quantities of water, with typical well yields of up to 100 gallons per minute

  19. A hydrogeologic map of the Death Valley region, Nevada, and California, developed using GIS techniques

    International Nuclear Information System (INIS)

    Faunt, C.C.; D'Agnese, F.A.; Turner, A.K.

    1997-01-01

    In support of Yucca Mountain site characterization studies, a hydrogeologic framework was developed, and a hydrogeologic map was constructed for the Death Valley region. The region, covering approximately 100,000 km 2 along the Nevada-California border near Las Vegas, is characterized by isolated mountain ranges juxtaposed against broad, alluvium-filled valleys. Geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. The regional ground-water flow system can best be described as a series of connected intermontane basins in which ground-water flow occurs in basin-fill deposits, carbonate rocks, clastic rocks, and volcanic rocks. Previous investigations have developed more site-specific hydrogeologic relationships; however, few have described all the lithologies within the Death Valley regional ground-water flow system. Information required to characterize the hydrogeologic units in the region was obtained from regional geologic maps and reports. Map data were digitized from regional geologic maps and combined into a composite map using a geographic information system. This map was simplified to show 10 laterally extensive hydrogeologic units with distinct hydrologic properties. The hydraulic conductivity values for the hydrogeologic units range over 15 orders of magnitude due to the variability in burial depth and degree of fracturing

  20. Stratigraphic architecture of back-filled incised-valley systems: Pennsylvanian-Permian lower Cutler beds, Utah, USA

    Science.gov (United States)

    Wakefield, Oliver J. W.; Mountney, Nigel P.

    2013-12-01

    The Pennsylvanian to Permian lower Cutler beds collectively form the lowermost stratigraphic unit of the Cutler Group in the Paradox Basin, southeast Utah. The lower Cutler beds represent a tripartite succession comprising lithofacies assemblages of aeolian, fluvial and shallow-marine origin, in near equal proportion. The succession results from a series of transgressive-regressive cycles, driven by repeated episodes of climatic variation and linked changes in relative sea-level. Relative sea-level changes created a number of incised-valleys, each forming through fluvial incision during lowered base-level. Aeolian dominance during periods of relative sea-level lowstand aids incised-valley identification as the erosive bounding surface juxtaposes incised-valley infill against stacked aeolian faces. Relative sea-level rises resulted in back-flooding of the incised-valleys and their infill via shallow-marine and estuarine processes. Back-flooded valleys generated marine embayments within which additional local accommodation was exploited. Back-filling is characterised by a distinctive suite of lithofacies arranged into a lowermost, basal fill of fluvial channel and floodplain architectural elements, passing upwards into barform elements with indicators of tidal influence, including inclined heterolithic strata and reactivation surfaces. The incised-valley fills are capped by laterally extensive and continuous marine limestone elements that record the drowning of the valleys and, ultimately, flooding and accumulation across surrounding interfluves (transgressive surface). Limestone elements are characterised by an open-marine fauna and represent the preserved expression of maximum transgression.

  1. Petroleum systems of the Upper Magdalena Valley, Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, L.F.; Rangel, A. [Instituto Colombiano del Petroleo, Bucaramanga (Colombia). ECOPETROL

    2004-03-01

    In the Upper Magdalena Valley, Colombia, four petroleum systems were identified. Two petroleum systems are located in the Girardot sub-basin and the other two in the Neiva sub- basin. Limestones laterally changing to shales of the lower part of the Villeta Gp, deposited during Albian and Turonian marine flooding events, constitutes the main source rocks of the oil families. These rocks contain 1-4% TOC and type II kerogen. The littoral quartz arenites of the Caballos (Albian) and Monserrate (Maastrichtian) Fms. are the main reservoir rocks. Seal rocks are Cretaceous and Paleocene shales. Overburden includes the Cretaceous rocks and the Tertiary molasse deposited simultaneously with development of two opposite verging thrust systems during Cenozoic time. These deformation events were responsible for trap creation. Except for the Villarrica area, where the source rock reached maturity during the Paleocene, generation occurred during Miocene. Two oil families are identified, each in both sub-basins: One derived from a clay-rich source and the second from a carbonate-rich source rock lithofacies of the lower part of Villeta Gp. Geochemical source-rock to oil correlations are demonstrated for the three of the petroleum systems. Up-dip lateral migration distances are relatively short and faults served as vertical migration pathways. A huge amount of oil was probably degraded at surface, as a result of Miocene deformation and erosion. (author)

  2. Late Quaternary evolution of the San Antonio Submarine Canyon in the central Chile forearc (∼33°S)

    Science.gov (United States)

    Laursen, Jane; Normark, William R.

    2002-01-01

    Hydrosweep swath-bathymetry and seismic-reflection data reveal the morphology, sedimentary processes, and structural controls on the submarine San Antonio Canyon. The canyon crosses the forearc slope of the central Chile margin for more than 150 km before it empties into the Chile Trench near 33°S latitude. In its upper reaches, the nearly orthogonal segments of the San Antonio Canyon incise ∼1 km into thick sediment following underlying margin-perpendicular basement faults and along the landward side of a prominent margin-parallel thrust ridge on the outer mid-slope. At a breach in the outer ridge, the canyon makes a sharp turn into the San Antonio Reentrant. Resistance to erosion of outcropping basement at the head of the reentrant has prevented the development of a uniformly sloping thalweg, leaving gentle gradients (6°) across the lower slope. Emergence of an obstruction across the head of the San Antonio Reentrant has trapped sediment in the mid-slope segments of the canyon. Presently, little sediment appears to reach the Chile Trench through the San Antonio Canyon. The development of the San Antonio Canyon was controlled by the impact of a subducted seamount, which formed the San Antonio Reentrant and warped the middle slope along its landward advancing path. Incision of the canyon landward of the outer mid-slope ridge may be ascribed to a combination of headward erosion and entrenchment by captured unconfined turbidity currents. Flushing of the canyon was likely enhanced during the lowered sea level of the last glaciation. Where the canyon occupies the triangular embayment of the reentrant at the base of the slope, sediment has ponded behind a small accretionary ridge. On the trench floor opposite the San Antonio Canyon mouth, a 200-m-thick levee–overbank complex formed on the left side of a distributary channel emanating from a breach in the accretionary ridge. Axial transfer of sediment was inhibited to the north of the San Antonio Canyon mouth

  3. Hydrology of the Upper Malad River basin, southeastern Idaho

    Science.gov (United States)

    Pluhowski, Edward J.

    1970-01-01

    The report area comprises 485 square miles in the Basin and Range physiographic province. It includes most of eastern' Oneida County and parts of Franklin, Bannock, and Power Counties of southeastern Idaho. Relief is about 5,000 feet; the floor of the Malad Valley is at an average altitude of about 4,400 feet. Agriculture is, by far, ,the principal economic .activity. In 1960 the population of the upper Malad River basin was about 3,600, of which about 60 percent resided in Malad City, the county seat of Oneida County. The climate is semiarid throughout the Malad Valley and its principal tributary valleys; ,above 6,500 feet the climate is subhumid. Annual precipitation ranges from about 13 inches in the lower Malad Valley to more than 30 inches on the highest peaks of the Bannock and Malad ranges. Owing to ,the normally clear atmospheric conditions, large daily and seasonal temperature fluctuations are common. Topography, distance from the Pacific Ocean, .and the general atmospheric circulation are the principal factors governing the climate of the Malad River basin. The westerlies transport moisture from the P.acific Ocean toward southeastern Idaho. The north-south tren4ing mountains flanking the basin are oriented orthogonally to the moisture flux so that they are very effective in removing precipitable water from the air. A minimum uplift of 6,000 feet is required to transport moisture from the Pacific source region; accordingly, most air masses are desiccated long before they reach the Malad basin. Heaviest precipitation is generally associated with steep pressure gradients in the midtroposphere that are so oriented as to cause a deep landward penetration of moisture from the Pacific Ocean. Annual water yields in the project area range from about 0.8 inch in the, lower Malad Valley to more than 19 inches on the high peaks north and east of Malad City. The mean annual water yield for the entire basin is 4 inches, or about 115,000 acre-feet. Evaporation is

  4. Ground water in selected areas in the Klamath Basin, Oregon

    Science.gov (United States)

    Leonard, A.R.; Harris, A.B.

    1973-01-01

    GROUNDWATER FEATURES OF SIX LOWLAND AREAS IN THE KLAMATH BASIN OF OREGON--KLAMATH MARSH AREA, AND SPRAGUE RIVER, SWAN LAKE, YONNA, POE, AND LANGELL VALLEYS--ARE DESCRIBED. RUGGED MOUNTAINS AND RIDGES SURROUND AND SEPARATE THESE LOWLANDS WHERE FLOORS RANGE IN ALTITUDE FROM 4,100 FEET IN POE VALLEY TO 4,600 FEET NORTH OF KLAMATH MARSH. THE SIX AREAS EXTEND OVER A NORTH-SOUTH DISTANCE OF 70 MILES, AN EAST-WEST DISTANCE OF 40 MILES, AND INCLUDE AN AREA OF APPROXIMATELY 600 SQUARE MILES. THE AREA IS SEMIARID AND RECEIVED ABOUT 14 TO 18 INCHES OF PRECIPITATION A YEAR. EXTINCT VOLCANOES AND THEIR EXTRUSIONS CHARACTERIZE THE AREA. MOST WELLS TAP PERMEABLE BASALT OR CINDERY RUBBLE BENEATH THE LACUSTRINE BEDS. THE DEPTHS OF WELLS RANGE FROM LESS THAN 50 TO NEARLY 2,000 FEET--MOST ARE BETWEEN 100 AND 1,000 FEET DEEP. FLOWING WELLS OCCUR IN ALL AREAS EXCEPT SWAN LAKE VALLEY. THE MOST EXTENSIVE AREA OF FLOWING WELLS IS IN THE SPRAGUE RIVER VALLEY, WHERE ABOUT 25 WELLS, SOME FLOWING MORE THAN 2,000 GPM, SUPPLY WATER FOR IRRIGATION. WATER LEVELS IN WELLS FLUCTUATE SEASONALLY FROM 1 TO 4 FEET. GROUNDWATER IN THE BASIN IS OF EXCELLENT QUALITY FOR DRINKING, IRRIGATION, AND MOST INDUSTRIAL USES.

  5. Hydrogeology of the West Siberian Basin

    International Nuclear Information System (INIS)

    Foley, M.G.; Bradley, D.J.; Cole, C.R.

    1996-01-01

    Nuclear fuel cycle activities of the former Soviet Union (FSU) have resulted in extensive radioactive contaminant releases to the environment in western Siberia. We are developing three-dimensional numerical models of the hydrogeology and potential contaminant migration in the West Siberian Basin. We have assumed that ground-water flow in the West Siberian Basin is topographically driven, with recharge to the basin occurring in the highlands on the west, east, and south, and internal discharge localized in numerous river valleys and lakes that ultimately discharge north to the ocean. We are modeling the regional hydrogeology as three-dimensional, steady-state, saturated flow that is recharged from above. We acquired topographic, geologic, hydrostratigraphic, hydrogeologic, and water-balance data for the West Siberian Basin and constructed a regional water table. We correlated and combined 70 different rock types derived from published descriptions of West Siberian Basin rocks into 17 rock types appropriate for assignment of hydrogeologic properties on the basis of spatial heterogeneity and constituent (i.e., sand, silt, and clay) diversity. Examination of resulting three-dimensional assemblages of rock types showed that they were consistent with published and inferred paleogeography and depositional processes. Calibrating the basin's moisture balance (i.e., recharge and discharge) to the derived water table determined plausible input parameter values for unknowns such as hydraulic conductivities. The general directions of calculated ground-water flow suggest that major rivers act as discharge areas, with upwelling below the rivers extending down into the basement rocks, and that ground-water divides that penetrate the entire thickness of the model are evident between major rivers

  6. Better building of valley fills

    Energy Technology Data Exchange (ETDEWEB)

    Chironis, N.P.

    1980-03-01

    Current US regulations for building valley fills or head of hollow fills to hold excess spoil resulting from contour mining are meeting with considerable opposition, particularly from operators in steep-slope areas. An alternative method has been submitted to the Office of Surface Mining by Virgina. Known as the zoned concept method, it has already been used successfully in building water-holding dams and coal refuse embankments on sloping terrain. The ways in which drainage and seepage are managed are described.

  7. Source apportionment of PM10 mass and particulate carbon in the Kathmandu Valley, Nepal

    Science.gov (United States)

    Kim, Bong Mann; Park, Jin-Soo; Kim, Sang-Woo; Kim, Hyunjae; Jeon, Haeun; Cho, Chaeyoon; Kim, Ji-Hyoung; Hong, Seungkyu; Rupakheti, Maheswar; Panday, Arnico K.; Park, Rokjin J.; Hong, Jihyung; Yoon, Soon-Chang

    2015-12-01

    The Kathmandu Valley in Nepal is a bowl-shaped urban basin in the Himalayan foothills with a serious problem of fine particulate air pollution that impacts local health and impairs visibility. Particulate carbon concentrations have reached severe levels that threaten the health of 3.5 million local residents. Moreover, snow and ice on the Himalayan mountains are melting as a result of additional warming due to particulate carbon, especially high black carbon concentrations. To date, the sources of the Valley's particulate carbon and the impacts of different sources on particulate carbon concentrations are not well understood. Thus, before an effective control strategy can be developed, these particulate carbon sources must be identified and quantified. Our study has found that the four primary sources of particulate carbon in the Kathmandu Valley during winter are brick kilns, motor vehicles, fugitive soil dust, and biomass/garbage burning. Their source contributions are quantified using a recently developed new multivariate receptor model SMP. In contrast to other highly polluted areas such as China, secondary contribution is almost negligible in Kathmandu Valley. Brick kilns (40%), motor vehicles (37%) and biomass/garbage burning (22%) have been identified as the major sources of elemental carbon (black carbon) in the Kathmandu Valley during winter, while motor vehicles (47%), biomass/garbage burning (32%), and soil dust (13%) have been identified as the most important sources of organic carbon. Our research indicates that controlling emissions from motor vehicles, brick kilns, biomass/garbage burning, and soil dust is essential for the mitigation of the particulate carbon that threatens public health, impairs visibility, and influences climate warming within and downwind from the Kathmandu Valley. In addition, this paper suggests several useful particulate carbon mitigation methods that can be applied to Kathmandu Valley and other areas in South Asia with

  8. Investigating Groundwater Depletion and Aquifer Degradation in Central Valley California from Space

    Science.gov (United States)

    Ojha, C.; Shirzaei, M.; Werth, S.; Argus, D. F.

    2017-12-01

    The Central Valley in California includes one of the world's largest and yet most stressed aquifer systems. The large demand for groundwater, accelerated by population growth and extreme droughts, has been depleting the region's groundwater resources for decades. However, the lack of dense monitoring networks and inaccurate information on geophysical aquifer response pose serious challenges to water management efforts in the area and put the groundwater at high risk. Here, we performed a joint analysis of large SAR interferometric data sets acquired by ALOS L-band satellite in conjunction with the groundwater level observations across the Central Valley. We used 420 L-band SAR images acquired on the ascending orbit track during period Dec 24, 2006 - Jan 1, 2010, and generated more than 1600 interferograms with a pixel size of 100 m × 100 m. We also use data from 1600 observational wells providing continuous measurements of groundwater level within the study period for our analysis. We find that in the south and near Tulare Lake, north of Tule and south of Kaweah basin in San Joaquin valley, the subsidence rate is greatest at up to 20-25 cm/yr, while in Sacramento Valley the subsidence rate is lower at 1-3 cm/yr. From the characterization of the elastic and inelastic storage coefficients, we find that Kern, Tule, Tulare, Kaweah and Merced basins in the San Joaquin Valley are more susceptible to permanent compaction and aquifer storage loss. Kern County shows 0.23%-1.8% of aquifer storage loss during the study period, and has higher percentage loss than adjacent basins such as Tule and Tulare Lake with 0.15%-1.2% and 0.2 %-1.5% loss, respectively. Overall, we estimate that the aquifers across the valley lost a total of 28 km3 of groundwater and 2% of their storage capacity during the study period. Our unique observational evidence including valley-wide estimate of mechanical properties of aquifers and model results will not only facilitate monitoring water deficits

  9. Geologic Assessment of Undiscovered Oil and Gas Resources of the North Cuba Basin, Cuba

    Science.gov (United States)

    Schenk, Christopher J.

    2010-01-01

    Petroleum generation in the North Cuba Basin is primarily the result of thrust loading of Jurassic and Cretaceous source rocks during formation of the North Cuba fold and thrust belt in the Late Cretaceous to Paleogene. The fold and thrust belt formed as Cuban arc-forearc rocks along the leading edge of the Caribbean plate translated northward during the opening of the Yucatan Basin and collided with the passive margin of southern North America in the Paleogene. Petroleum fluids generated during thrust loading migrated vertically into complex structures in the fold and thrust belt, into structures in the foreland basin, and possibly into carbonate reservoirs along the margins of the Yucatan and Bahama carbonate platforms. The U.S. Geological Survey (USGS) defined a Jurassic-Cretaceous Composite Total Petroleum System (TPS) and three assessment units (AU)-North Cuba Fold and Thrust Belt AU, North Cuba Foreland Basin AU, and the North Cuba Platform Margin Carbonate AU-within this TPS based mainly on structure and reservoir type (fig. 1). There is considerable geologic uncertainty as to the extent of petroleum migration that might have occurred within this TPS to form potential petroleum accumulations. Taking this geologic uncertainty into account, especially in the offshore area, the mean volumes of undiscovered resources in the composite TPS of the North Cuba Basin are estimated at (1) 4.6 billion barrels of oil (BBO), with means ranging from an F95 probability of 1 BBO to an F5 probability of 9 BBO; and (2) 8.6 trillion cubic feet of of gas (TCFG), of which 8.6 TCFG is associated with oil fields, and about 1.2 TCFG is in nonassociated gas fields in the North Cuba Foreland Basin AU.

  10. Preliminary results of hydrogeologic investigations Humboldt River Valley, Winnemucca, Nevada

    Science.gov (United States)

    Cohen, Philip M.

    1964-01-01

    Most of the ground water of economic importance and nearly all the ground water closely associated with the flow o# the Humboldt River in the. 40-mile reach near Winnemucca, Nev., are in unconsolidated sedimentary deposits. These deposits range in age from Pliocene to Recent and range in character from coarse poorly sorted fanglomerate to lacustrine strata of clay, silt, sand, and gravel. The most permeable deposit consists of sand and gravel of Lake Lahontan age--the so-called medial gravel unit--which is underlain and overlain by fairly impermeable silt and clay also of Lake Lahontan age. The ultimate source of nearly all the water in the study area is precpitation within the drainage basin of the Humboldt River. Much of this water reaches the study, area as flow or underflow of the Humboldt River and as underflow from other valleys tributary to the study area. Little if any flow from the tributary streams in the study area usually reaches the Humboldt River. Most of the tributary streamflow within the study area evaporates or is transpired by vegetation, but a part percolates downward through unconsolidated deposits of the alluvial fans flanking the mountains and move downgradient as ground-water underflow toward the Humboldt River. Areas that contribute significant amounts of ground-water underflow to. the valley of the Humboldt River within the study area are (1) the valley of the Humboldt River upstream from the study area, (2) the Pole Creek-Rock Creek area, (3) Paradise Valley, and (4) Grass Valley and the northwestern slope of the Sonoma Range. The total average underflow from these areas in the period 1949-61 was about 14,000-19,000 acre-feet per year. Much of this underflow discharged into the Humboldt River within the study area and constituted a large part of the base flow of the river. Streamflow in the Humboldt River increases substantially in the early spring, principally because of runoff to the river in the reaches upstream from the study area

  11. Evolution of mineralizing brines in the east Tennessee Mississippi Valley-type ore field

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, S.E.; Gesink, J.A.; Haynes, F.M. (Univ. of Michingan, Ann Arbor (USA))

    1989-05-01

    The east Tennessee Mississippi Valley-type (MVT) ore field contains barite-fluorite and sphalterite deposits in a continuous paleoaquifer consisting of breccia zones in the Upper Cambrian-Lower Ordovician Knox Group. Paragenetic observations and fluid inclusion compositions in these deposits indicate that the Knox paleoaquifer was invaded first by Ca-rich brines (Ca:Na about 1) that deposited fluorite and barite, and later by Na-Ca brines (Ca:Na = 0.1 to 0.5) that deposited sphalerite. Geologic relation sindicate that these brines were derived from the southeast, in the area of the Middle Ordovician Servier foreland shale basin, and that imposed by fluorite solubility indicate further that all original connate water in the Sevier basin was required to deposit the estimated flourite reserves of the ore field.Thus, the later, sphalerite-depositing brines represent recycled meteoric water from the Sevier basin or connate brines from underlying (Cambrian) shales.

  12. Geological techniques utilized in trap Spring Field discovery, Railroad Valley, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Dolly, E.D.

    1980-01-01

    The trap at Eagle Springs Field is a combination stratigraphic truncation-subcrop-fault trap. Production occurs from matrix and fracture porosity in reservoirs in the Sheep Pass Formation (Cretaceous and Eocene) and the Garrett Ranch volcanic group (Oligocene). Probably the most unique feature about the field is that the production occurs from the highest position on the lowermost fault block at the basin margin. On the adjacent higher fault blocks the reservoir beds were removed by erosion during the basin and range orogenic event. The position of the truncated edge of the lower Tertiary reservoir units is controlled by the fault pattern at the margin of the valley-basin Graben. Detailed geomorphic studies indicated that this fault pattern may be identified at the surface. Regional geomorphic mapping of fault patterns was conducted to localize areas with possible subcrop truncation patterns similar to Eagle Springs Field. 20 references.

  13. California's restless giant: the Long Valley Caldera

    Science.gov (United States)

    Hill, David P.; Bailey, Roy A.; Hendley, James W.; Stauffer, Peter H.; Marcaida, Mae

    2014-01-01

    Scientists have monitored geologic unrest in the Long Valley, California, area since 1980. In that year, following a swarm of strong earthquakes, they discovered that the central part of the Long Valley Caldera had begun actively rising. Unrest in the area persists today. The U.S. Geological Survey (USGS) continues to provide the public and civil authorities with current information on the volcanic hazard at Long Valley and is prepared to give timely warnings of any impending eruption.

  14. Year 2000 estimated population dose for the Tennessee Valley region

    International Nuclear Information System (INIS)

    Fletcher, J.F.; Strauch, S.; Siegel, G.R.; Witherspoon, J.P.

    1976-01-01

    A comprehensive study has recently been completed of the potential regional radiological dose in the Tennessee and Cumberland river basins in the year 2000, resulting from the operation of nuclear facilities. This study, sponsored jointly by the U.S. Energy Research and Development Administration and the Tennessee Valley Authority, was performed by the Hanford Engineering Development Laboratory (HEDL), the Oak Ridge National Laboratory (ORNL), and the Atmospheric Turbulence and Diffusion Laboratory (ATDL). This study considered the operation in the year 2000 of 33,000 MWe of nuclear capacity within the study area, and of 110,000 MWe in adjacent areas, together with supporting nuclear fuel fabrication and reprocessing facilities. Air and water transport models used and methods for calculating nuclide concentrations on the ground are discussed

  15. Data-mining Based Detection of Glaciers: Quantifying the Extent of Alpine Valley Glaciation

    Directory of Open Access Journals (Sweden)

    Wei Luo

    2015-07-01

    Full Text Available The extent of glaciation in alpine valleys often gives clues to past climates, plate movement, mountain landforms, bedrock geology and more. However, without field investigation, the degree to which a valley was affected by a glacier has been difficult to assess. We developed a model that uses quantitative parameters derived from digital elevations model (DEM data to predict whether a glacier was likely present in an alpine valley. The model's inputs are mainly derived from the basin hypsometry, and a new parameter termed the Hypothetical Basin Equilibrium Elevation (HBEE, which is based on the equilibrium elevation altitude (ELA of a glacier. We used data mining techniques that comb through large data sets to find patterns for classification and prediction as the basis for the model. Four classifiers were utilized, and each was tested with two different training set/test data ratios of nearly 150 basins that were previously delineated as fully- or non-glaciated. The classifiers had a predictive accuracy of up to 90% with none falling below 72%. Two of the classifiers, classification tree and naïve-Bayes, have graphical outputs that visually describe the classification process, predictive results, and in the naïve-Bayes case, the relative effectiveness towards the model of each attribute. In all scenarios, the HBEE was found to be an accurate predictor for the model. The model can be applied to any area where glaciation may have occurred, but is particularly useful in areas where the valley is inaccessible for detailed field investigation.

  16. Interpretation of shallow crustal structure of the Imperial Valley, California, from seismic reflection profiles

    Energy Technology Data Exchange (ETDEWEB)

    Severson, L.K.

    1987-05-01

    Eight seismic reflection profiles (285 km total length) from the Imperial Valley, California, were provided to CALCRUST for reprocessing and interpretation. Two profiles were located along the western margin of the valley, five profiles were situated along the eastern margin and one traversed the deepest portion of the basin. These data reveal that the central basin contains a wedge of highly faulted sediments that thins to the east. Most of the faulting is strike-slip but there is evidence for block rotations on the scale of 5 to 10 kilometers within the Brawley Seismic Zone. These lines provide insight into the nature of the east and west edges of the Imperial Valley. The basement at the northwestern margin of the valley, to the north of the Superstition Hills, has been normal-faulted and blocks of basement material have ''calved'' into the trough. A blanket of sediments has been deposited on this margin. To the south of the Superstition Hills and Superstition Mountain, the top of the basement is a detachment surface that dips gently into the basin. This margin is also covered by a thick sequence sediments. The basement of the eastern margin consists of metamorphic rocks of the upper plate of the Chocolate Mountain Thrust system underlain by the Orocopia Schist. These rocks dip to the southeast and extend westward to the Sand Hills Fault but do not appear to cross it. Thus, the Sand Hills Fault is interpreted to be the southern extension of the San Andreas Fault. North of the Sand Hills Fault the East Highline Canal seismicity lineament is associated with a strike-slip fault and is probably linked to the Sand Hills Fault. Six geothermal areas crossed by these lines, in agreement with previous studies of geothermal reservoirs, are associated with ''faded'' zones, Bouguer gravity and heat flow maxima, and with higher seismic velocities than surrounding terranes.

  17. Late Tertiary and Quaternary geology of the Tecopa basin, southeastern California

    Energy Technology Data Exchange (ETDEWEB)

    Hillhouse, J.W.

    1987-12-31

    Stratigraphic units in the Tecopa basin, located in southeastern California, provide a framework for interpreting Quaternary climatic change and tectonism along the present Amargosa River. During the late Pliocene and early Pleistocene, a climate that was appreciably wetter than today`s sustained a moderately deep lake in the Tecopa basin. Deposits associated with Lake Tecopa consists of lacustrine mudstone, conglomerate, volcanic ash, and shoreline accumulations of tufa. Age control within the lake deposits is provided by air-fall tephra that are correlated with two ash falls from the Yellowstone caldera and one from the Long Valley caldera. Lake Tecopa occupied a closed basin during the latter part, if not all, of its 2.5-million-year history. Sometime after 0.5 m.y. ago, the lake developed an outlet across Tertiary fanglomerates of the China Ranch Beds leading to the development of a deep canyon at the south end of the basin and establishing a hydrologic link between the northern Amargosa basins and Death Valley. After a period of rapid erosion, the remaining lake beds were covered by alluvial fans that coalesced to form a pediment in the central part of the basin. Holocene deposits consist of unconsolidated sand and gravel in the Amargosa River bed and its deeply incised tributaries, a small playa near Tecopa, alluvial fans without pavements, and small sand dunes. The pavement-capped fan remnants and the Holocene deposits are not faulted or tilted significantly, although basins to the west, such as Death Valley, were tectonically active during the Quaternary. Subsidence of the western basins strongly influenced late Quaternary rates of deposition and erosion in the Tecopa basin.

  18. Aquifer depletion in the Lower Mississippi River Basin: challenges and solutions

    Science.gov (United States)

    The Lower Mississippi River Basin (LMRB) is a nationally- and internationally-important region of intensive agricultural production that relies heavily on the underlying Mississippi River Valley Alluvial Aquifer (MRVAA) for row crop irrigation. Extensive irrigation coupled with the region’s geology ...

  19. EPA Region 1 - Valley Depth in Meters

    Science.gov (United States)

    Raster of the Depth in meters of EPA-delimited Valleys in Region 1.Valleys (areas that are lower than their neighbors) were extracted from a Digital Elevation Model (USGS, 30m) by finding the local average elevation, subtracting the actual elevation from the average, and selecting areas where the actual elevation was below the average. The landscape was sampled at seven scales (circles of 1, 2, 4, 7, 11, 16, and 22 km radius) to take into account the diversity of valley shapes and sizes. Areas selected in at least four scales were designated as valleys.

  20. A landscape scale valley confinement algorithm: Delineating unconfined valley bottoms for geomorphic, aquatic, and riparian applications

    Science.gov (United States)

    David E. Nagel; John M. Buffington; Sharon L. Parkes; Seth Wenger; Jaime R. Goode

    2014-01-01

    Valley confinement is an important landscape characteristic linked to aquatic habitat, riparian diversity, and geomorphic processes. This report describes a GIS program called the Valley Confinement Algorithm (VCA), which identifies unconfined valleys in montane landscapes. The algorithm uses nationally available digital elevation models (DEMs) at 10-30 m resolution to...

  1. Urban air quality of kathmandu valley "Kingdom of Nepal"

    Science.gov (United States)

    Sharma, C. K.

    The oval shaped tectonic basin of Kathmandu valley, occupying about 656 sq.km is situated in the middle sector of Himalayan range. There are three districts in the valley, i.e. Kathmandu, Lalitpur and Bhaktapur. Out of the three, the most populated is Kathmandu city (the capital of Kingdom of Nepal) which has a population of 668,00 in an area of approximately 50 km 2. The energy consumption of the city population is about 1/3 of the total import to Nepal of gasoline, diesel, kerosene, furnace oil and cooking gas. This has resulted heavy pollution of air in the city leading to bronchitis, and throat and chest diseases. Vehicles have increased several fold in recent months and there are 100,000 in number on the road and they have 900 km of road, out of which only 25% is metalled. Most of the two and three wheelers are polluting the air by emission of gases as well as dust particulate. SO 2 has been found to go as high as 202 μg cm -3 and NO 2 to 126 μg cm -3 particularly in winter months when a thick layer of fog covers the valley up to 10 am in the morning. All the gases are mixed within the limited air below the fog and the ground. This creates the problem. Furthermore, municipal waste of 500 m 3 a day and also liquid waste dumped directly into the Bagmati river at the rate of 500,000 ℓ d -1 makes the city ugly and filthy. Unless pollution of air, water and lard are controlled in time, Nepal will lose much of its foreign exchange earnings from the tourist industry. It is found that tourist arrivals have considerably reduced in recent years and most of hotels occupancy is 50-60% in peak time. Nepal is trying to introduce a legal framework for pollution control but it will take time to become effective.

  2. Torrential floods: A potential hazard at the Aburra valley

    International Nuclear Information System (INIS)

    Caballero Acosta, Jose Humberto

    2011-01-01

    Torrential foods are a type of mass movement generally moving through the channels of the creeks, leading to transport large volumes of sediment and debris, unsafe speeds for the people and infrastructure located in areas of accumulation of mountain watersheds susceptible to this phenomenon. Although there is no adequate historical record of such events to the valley of Aburra, if there are some experiences that validate the growing concern about this threat in the region. The geomorphologic and climatic conditions in the valley allow us to call attention to this problem, especially when we consider that the basins have been practically occupied in low or accumulation areas are being subjected to strong constructive pressure, without concern in the negative impact that the inappropriate intervention, can have in the lowlands. It requires interdisciplinary research programs of these phenomena in order to have the scientific information needed to advance threat assessments appropriated to our conditions. It is also important that the authorities and people understand that, in part, the protection of the settlements of the lowland areas of accumulation, depending on management given to the upper reaches of the escarpment and transportation areas.

  3. West Valley Demonstration Project, West Valley, New York: Annual report

    International Nuclear Information System (INIS)

    1989-01-01

    Under the West Valley Demonstration Project Act, Public Law 96-368, liquid high-level radioactive waste stored at the Western New York Nuclear Services Center, West Valley, New York, that resulted from spent nuclear fuel reprocessing operations conducted between 1966 and 1972, is to be solidified in borosilicate glass and transported to a federal repository for geologic disposal. A major milestone was reached in May 1988 when the Project began reducing the volume of the liquid high-level waste. By the end of 1988, approximately 15 percent of the initial inventory had been processed into two waste streams. The decontaminated low-level liquid waste is being solidified in cement. The high-level waste stream is being stored in an underground tank pending its incorporation into borosilicate glass. Four tests of the waste glass melter system were completed. These tests confirmed equipment operability, control system reliability, and provided samples of waste glass for durability testing. In mid-1988, the Department validated an integrated cost and schedule plan for activities required to complete the production of the waste borosilicate glass. Design of the radioactive Vitrification Facility continued

  4. Geomorphology and Geology of the Southwestern Margaritifer Sinus and Argyre Regions of Mars. Part 3: Valley Types and Distribution

    Science.gov (United States)

    Parker, T. J.; Pieri, D. C.

    1985-01-01

    Three major valley tapes were identified in the SW Margaritefer Sinus and Argyre regions. Two are restricted to specific geologic units while the third is independent of the geology. The first type (the small valley networks) are found within the channeled and subdued plains unit in the eastern half of the map, in the grooved and channeled plains unit north of Nirgal Vallis, and in scattered instances in the cratered plateau unit north of Argyre. The even smaller valleys just inside Argyre's rim and on the inner slopes of many large craters are not directly related to the processes which formed the small valleys but are a result, instead, of post-impact modification of the crater walls. The second type of valley network is represented by Nirgal Vallis and the similar, shorter continuation of it to the west. This type is found only in the smooth plains material west of Uzboi Vallis in the map area. The third type of valley network is that of the Uzbol-Holden-Ladon valles system. This system is related to catastrophic outflow from Argyre Basin and is topographically rather than geologically controlled.

  5. Small-scale Forearc Structure from Residual Bathymetry and Vertical Gravity Gradients at the Cocos-North America Subduction Zone offshore Mexico

    Science.gov (United States)

    Garcia, E. S. M.; Ito, Y.

    2017-12-01

    The subduction of topographic relief on the incoming plate at subduction zones causes deformation of the plate interface as well as the overriding plate. Whether the resulting geometric irregularities play any role in inhibiting or inducing seismic rupture is a topic of relevance for megathrust earthquake source studies. A method to discern the small-scale structure at subduction zone forearcs was recently developed by Bassett and Watts (2015). Their technique constructs an ensemble average of the trench-perpendicular topography, and the removal of this regional tectonic signal reveals the short-wavelength residual bathymetric anomalies. Using examples from selected areas at the Tonga, Mariana, and Japan subduction zones, they were able to link residual bathymetric anomalies to the subduction of seamount chains, given the similarities in wavelength and amplitude to the morphology of seamounts that have yet to subduct. We focus here on an analysis of forearc structures found in the Mexico segment of the Middle America subduction zone, and their potential mechanical interaction with areas on the plate interface that have been previously identified as source regions for earthquake ruptures and aseismic events. We identified several prominent residual bathymetric anomalies off the Guerrero and Oaxaca coastlines, mainly in the shallow portion of the plate interface and between 15 and 50 kilometers away from the trench axis. The residual amplitude of these bathymetric anomalies is typically in the hundreds of meters. Some of the residual bathymetric anomalies offshore Oaxaca are found landward of seamount chains on the incoming Cocos Plate, suggesting that these anomalies are associated with the prior subduction of seamounts at the margin. We also separated the residual and regional components of satellite-based vertical gravity gradient data using a directional median filter to isolate the possible gravity signals from the seamount edifices.

  6. The Pocatello Valley, Idaho, earthquake

    Science.gov (United States)

    Rogers, A. M.; Langer, C.J.; Bucknam, R.C.

    1975-01-01

    A Richter magnitude 6.3 earthquake occurred at 8:31 p.m mountain daylight time on March 27, 1975, near the Utah-Idaho border in Pocatello Valley. The epicenter of the main shock was located at 42.094° N, 112.478° W, and had a focal depth of 5.5 km. This earthquake was the largest in the continental United States since the destructive San Fernando earthquake of February 1971. The main shock was preceded by a magnitude 4.5 foreshock on March 26. 

  7. Radwaste challenge at Beaver Valley

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Duquesne Light Company met the problem of accumulating low-level radioactive waste at its Beaver Valley nuclear plant with an aggressive program to reduce the quantity of contaminated material and demonstrate that the plant was improving its radiological protection. There was also an economic incentive to reduce low-level wastes. The imaginative campaign involved workers in the reduction effort through training and the adoption of practical approaches to reducing the amount of material exposed to radiation that include sorting trash by radiation level and a compacting system. 4 figures

  8. The Owens Valley Millimeter Array

    International Nuclear Information System (INIS)

    Padin, S.; Scott, S.L.; Woody, D.P.; Scoville, N.Z.; Seling, T.V.

    1991-01-01

    The telescopes and signal processing systems of the Owens Valley Millimeter Array are considered, and improvements in the sensitivity and stability of the instrument are characterized. The instrument can be applied to map sources in the 85 to 115 GHz and 218 to 265 GHz bands with a resolution of about 1 arcsec in the higher frequency band. The operation of the array is fully automated. The current scientific programs for the array encompass high-resolution imaging of protoplanetary/protostellar disk structures, observations of molecular cloud complexes associated with spiral structure in nearby galaxies, and observations of molecular structures in the nuclei of spiral and luminous IRAS galaxies. 9 refs

  9. Estimating Aquifer Transmissivity Using the Recession-Curve-Displacement Method in Tanzania’s Kilombero Valley

    Directory of Open Access Journals (Sweden)

    William Senkondo

    2017-12-01

    Full Text Available Information on aquifer processes and characteristics across scales has long been a cornerstone for understanding water resources. However, point measurements are often limited in extent and representativeness. Techniques that increase the support scale (footprint of measurements or leverage existing observations in novel ways can thus be useful. In this study, we used a recession-curve-displacement method to estimate regional-scale aquifer transmissivity (T from streamflow records across the Kilombero Valley of Tanzania. We compare these estimates to local-scale estimates made from pumping tests across the Kilombero Valley. The median T from the pumping tests was 0.18 m2/min. This was quite similar to the median T estimated from the recession-curve-displacement method applied during the wet season for the entire basin (0.14 m2/min and for one of the two sub-basins tested (0.16 m2/min. On the basis of our findings, there appears to be reasonable potential to inform water resource management and hydrologic model development through streamflow-derived transmissivity estimates, which is promising for data-limited environments facing rapid development, such as the Kilombero Valley.

  10. Subsurface geology of a potential waste emplacement site, Salt Valley Anticline, Grand County, Utah

    Science.gov (United States)

    Hite, R.J.

    1977-01-01

    The Salt Valley anticline, which is located about 32 km northeast of Moab, Utah, is perhaps one of the most favorable waste emplacement sites in the Paradox basin. The site, which includes about 7.8 km 2, is highly accessible and is adjacent to a railroad. The anticline is one of a series of northwest-trending salt anticlines lying along the northeast edge of the Paradox basin. These anticlines are cored by evaporites of the Paradox Member of the Hermosa Formation of Middle Pennsylvanian age. The central core of the Salt Valley anticline forms a ridgelike mass of evaporites that has an estimated amplitude of 3,600 m. The evaporite core consists of about 87 percent halite rock, which includes some potash deposits; the remainder is black shale, silty dolomite, and anhydrite. The latter three lithologies are referred to as 'marker beds.' Using geophysical logs from drill holes on the anticline, it is possible to demonstrate that the marker beds are complexly folded and faulted. Available data concerning the geothermal gradient and heatflow at the site indicate that heat from emplaced wastes should be rapidly dissipated. Potentially exploitable resources of potash and petroleum are present at Salt Valley. Development of these resources may conflict with use of the site for waste emplacement.

  11. Subsurface geology of a potential waste emplacement site, Salt Valley Anticline, Grand County, Utah

    International Nuclear Information System (INIS)

    Hite, R.J.

    1977-01-01

    The Salt Valley anticline, which is located about 32 km northeast of Moab, Utah, is perhaps one of the most favorable waste emplacement sites in the Paradox basin. The site, which includes about 7.8 km 2 , is highly accessible and is adjacent to a railroad. The anticline is one of a series of northwest-trending salt antilcines lying along the northeast edge of the Paradox basin. These anticlines are cored by evaporites of the Paradox Member of the Hermosa Formation of Middle Pennsylvanian age. The central core of the Salt Valley anticline forms a ridgelike mass of evaporites that has an estimated amplitude of 3,600 m. The evaporite core consists of about 87 percent halite rock, which includes some potash deposits; the remainder is black shale, silty dolomite, and anhydrite. The latter three lithologies are referred to as ''marker beds.'' Using geophysical logs from drill holes on the anticline, it is possible to demonstrate that the marker beds are complexly folded and faulted. Available data concerning the geothermal gradient and heatflow at the site indicate that heat from emplaced wastes should be rapidly dissipated. Potentially exploitable resources of potash and petroleum are present at Salt Valley. Development of these resources may conflict with use of the site for waste emplacement

  12. Valley-dependent band structure and valley polarization in periodically modulated graphene

    Science.gov (United States)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  13. Sustainable agricultural development in inland valleys

    NARCIS (Netherlands)

    Zwart, S.J.

    2018-01-01

    The inland valley in Africa are common landscapes that have favorable conditions for agricultural production. Compared to the surrounding uplands they are characterized by a relatively high and secure water availability and high soil fertility levels. Inland valleys thus have a high agricultural

  14. Valley dependent transport in graphene L junction

    Science.gov (United States)

    Chan, K. S.

    2018-05-01

    We studied the valley dependent transport in graphene L junctions connecting an armchair lead and a zigzag lead. The junction can be used in valleytronic devices and circuits. Electrons injected from the armchair lead into the junction is not valley polarized, but they can become valley polarized in the zigzag lead. There are Fermi energies, where the current in the zigzag lead is highly valley polarized and the junction is an efficient generator of valley polarized current. The features of the valley polarized current depend sensitively on the widths of the two leads, as well as the number of dimers in the armchair lead, because this number has a sensitive effect on the band structure of the armchair lead. When an external potential is applied to the junction, the energy range with high valley polarization is enlarged enhancing its function as a generator of highly valley polarized current. The scaling behavior found in other graphene devices is also found in L junctions, which means that the results presented here can be extended to junctions with larger dimensions after appropriate scaling of the energy.

  15. Beaver assisted river valley formation

    Science.gov (United States)

    Westbrook, Cherie J.; Cooper, D.J.; Baker, B.W.

    2011-01-01

    We examined how beaver dams affect key ecosystem processes, including pattern and process of sediment deposition, the composition and spatial pattern of vegetation, and nutrient loading and processing. We provide new evidence for the formation of heterogeneous beaver meadows on riverine system floodplains and terraces where dynamic flows are capable of breaching in-channel beaver dams. Our data show a 1.7-m high beaver dam triggered overbank flooding that drowned vegetation in areas deeply flooded, deposited nutrient-rich sediment in a spatially heterogeneous pattern on the floodplain and terrace, and scoured soils in other areas. The site quickly de-watered following the dam breach by high stream flows, protecting the deposited sediment from future re-mobilization by overbank floods. Bare sediment either exposed by scouring or deposited by the beaver flood was quickly colonized by a spatially heterogeneous plant community, forming a beaver meadow. Many willow and some aspen seedlings established in the more heavily disturbed areas, suggesting the site may succeed to a willow carr plant community suitable for future beaver re-occupation. We expand existing theory beyond the beaver pond to include terraces within valleys. This more fully explains how beavers can help drive the formation of alluvial valleys and their complex vegetation patterns as was first postulated by Ruedemann and Schoonmaker in 1938. ?? 2010 John Wiley & Sons, Ltd.

  16. Trend in Air Quality of Kathmandu Valley: A Satellite, Observation and Modelling Perspective

    Science.gov (United States)

    Mahapatra, P. S.; Praveen, P. S.; Adhikary, B.; Panday, A. K.; Putero, D.; Bonasoni, P.

    2016-12-01

    Kathmandu (floor area of 340 km2) in Nepal is considered to be a `hot spot' of urban air pollution in South Asia. Its structure as a flat basin surrounded by tall mountains provides a unique case study for analyzing pollution trapped by topography. Only a very small number of cities with similar features have been studied extensively including Mexico and Santiago-de-Chile. This study presents the trend in satellite derived Aerosol Optical Depth (AOD) from MODIS AQUA and TERRA (3x3km, Level 2) over Kathmandu from 2000 to 2015. Trend analysis of AOD shows 35% increase during the study period. Determination of the background pollution would reveal the contribution of only Kathmandu Valley for the observation period. For this, AOD at 1340m altitude outside Kathmandu, but nearby areas were considered as background. This analysis was further supported by investigating AOD at different heights around Kathmandu as well as determining AOD from CALIPSO vertical profiles. These analysis suggest that background AOD contributed 30% in winter and 60% in summer to Kathmandu Valley's observed AOD. Thereafter the background AOD was subtracted from total Kathmandu AOD to determine contribution of only Kathmandu Valley's AOD. Trend analysis of only Kathmandu Valley AOD (subtracting background AOD) suggested an increase of 50% during the study period. Further analysis of Kathmandu's visibility and AOD suggest profound role of background AOD on decreasing visibility. In-situ Black Carbon (BC) mass concentration measurements (BC being used as a proxy for surface observations) at two sites within Kathmandu valley have been analyzed. Kathmandu valley lacks long term trends of ambient air quality measurement data. Therefore, surface observations would be coupled with satellite measurements for understanding the urban air pollution scenario. Modelling studies to estimate the contribution of background pollution to Kathmandu's own pollution as well as the weekend effect on air quality will

  17. South Fork Holston River basin 1988 biomonitoring

    Energy Technology Data Exchange (ETDEWEB)

    Saylor, C.F.; Ahlstedt, S.A.

    1990-06-01

    There is concern over the effects of shifts in land use use practices on the aquatic fauna of streams in the South Fork Holston River basin in northwestern North Carolina and southwestern Virginia. Trout reproduction has noticeably declined in the Watauga River subbasin. The Watauga River and Elk River subbasins have been subjected to commercial and resort development. The Middle fork Holston River and the upper South Fork Holston River subbasins have been affected by agricultural and mining activities, respectively (Cox, 1986). To aid reclamation and management of the South Fork Holston basin, Tennessee Valley Authority (TVA) biologists conducted biomonitoring--including index of biotic integrity and macroinvertebrate sampling--on the Middle Fork Holston, South Fork Holston, Watauga, and Elk Rivers to assess cumulative impairment related to changes in habitat and pollutant loading in these subbasins. Biomonitoring can detect environmental degradation, help document problem areas, and assist in development of strategies for managing water quality. This report discusses the methods and materials and results of the biomonitoring of South Fork Holston River Basin. 13 refs., 5 figs., 12 tabs.

  18. Frost risks in the Mantaro river basin

    Directory of Open Access Journals (Sweden)

    G. Trasmonte

    2008-04-01

    Full Text Available As part of the study on the Mantaro river basin's (central Andes of Perú current vulnerability to climate change, the temporal and spatial characteristics of frosts were analysed. These characteristics included intensity, frequency, duration, frost-free periods, area distribution and historical trends. Maps of frost risk were determined for the entire river basin, by means of mathematical algorithms and GIS (Geographic Information Systems tools, using minimum temperature – 1960 to 2002 period, geomorphology, slope, land-use, types of soils, vegetation and life zones, emphasizing the rainy season (September to April, when the impacts of frost on agriculture are most severe. We recognized four categories of frost risks: low, moderate, high and critical. The critical risks (with a very high probability of occurrence were related to high altitudes on the basin (altitudes higher than 3800 m a.s.l., while the low (or null probability of occurring risks were found in the lower zones (less than 2500 m a.s.l.. Because of the very intense agricultural activity and the high sensitivity of the main crops (Maize, potato, artichoke in the Mantaro valley (altitudes between 3100 and 3300 m a.s.l., moderate to high frost risks can be expected, with a low to moderate probability of occurrence. Another significant result was a positive trend of 8 days per decade in the number of frost days during the rainy season.

  19. Climatology of atmospheric PM10 concentration in the Po Valley

    Science.gov (United States)

    Bigi, A.; Ghermandi, G.

    2014-01-01

    The limits to atmospheric pollutant concentration set by the European Commission provide a challenging target for the municipalities in the Po Valley, because of the characteristic climatic conditions and high population density of this region. In order to assess climatology and trends in the concentration of atmospheric particles in the Po Valley, a dataset of PM10 data from 41 sites across the Po Valley have been analysed, including both traffic and background sites (either urban, suburban or rural). Of these 41 sites, 18 with 10 yr or longer record have been analysed for long term trend in de-seasonalized monthly means, in annual quantiles and in monthly frequency distribution. A widespread significant decreasing trend has been observed at most sites, up to few percent per year, by Generalised Least Square and Theil-Sen method. All 41 sites have been tested for significant weekly periodicity by Kruskal-Wallis test for mean anomalies and by Wilcoxon test for weekend effect magnitude. A significant weekly periodicity has been observed for most PM10 series, particularly in summer and ascribed mainly to anthropic particulate emissions. A cluster analysis has been applied in order to highlight stations sharing similar pollution conditions over the reference period. Five clusters have been found, two gathering the metropolitan areas of Torino and Milano and their respective nearby sites and the other three clusters gathering north-east, north-west and central Po Valley sites respectively. Finally the observed trends in atmospheric PM10 have been compared to trends in provincial emissions of particulates and PM precursors, and analysed along with data on vehicular fleet age, composition and fuel sales. Significant basin-wide drop in emissions occurred for gaseous pollutants, contrarily to emissions of PM10 and PM2.5, whose drop resulted low and restricted to few provinces. It is not clear whether the decrease for only gaseous emissions is sufficient to explain the

  20. Preliminary report on the geology of the Red River Valley drilling project, eastern North Dakota and northwestern Minnesota

    International Nuclear Information System (INIS)

    Moore, W.L.

    1979-01-01

    Thirty-two wells, 26 of which penetrated the Precambrian, were drilled along the eastern edge of the Williston Basin in the eastern tier of counties in North Dakota and in nearby counties in northwestern Minnesota. These tests, along the Red River Valley of the North, were drilled to study the stratigraphy and uranium potential of this area. The drilling program was unsuccessful in finding either significant amounts of uranium or apparently important shows of uranium. It did, however, demonstrate the occurrence of thick elastic sections in the Ordovician, Jurassic and Cretaceous Systems, within the Red River Valley, along the eastern margins of the Williston Basin which could serve as host rocks for uranium ore bodies

  1. Sediment storage and transport in Pancho Rico Valley during and after the Pleistocene-Holocene transition, Coast Ranges of central California (Monterey County)

    Science.gov (United States)

    Garcia, A.F.; Mahan, S.A.

    2009-01-01

    Factors influencing sediment transport and storage within the 156??6 km2 drainage basin of Pancho Rico Creek (PRC), and sediment transport from the PRC drainage basin to its c. 11000 km2 mainstem drainage (Salinas River) are investigated. Numeric age estimates are determined by optically stimulated luminescence (OSL) dating on quartz grains from three sediment samples collected from a 'quaternary terrace a (Qta)' PRC terrace/PRC-tributary fan sequence, which consists dominantly of debris flow deposits overlying fluvial sediments. OSL dating results, morphometric analyses of topography, and field results indicate that the stormy climate of the Pleistocene-Holocene transition caused intense debris-flow erosion of PRC- tributary valleys. However, during that time, the PRC channel was backfilled by Qta sediment, which indicates that there was insufficient discharge in PRC to transport the sediment load produced by tributary-valley denudation. Locally, Salinas Valley alluvial stratigraphy lacks any record of hillslope erosion occurring during the Pleistocene-Holocene transition, in that the alluvial fan formed where PRC enters the Salinas Valley lacks lobes correlative to Qta. This indicates that sediment stripped from PRC tributaries was mostly trapped in Pancho Rico Valley despite the relatively moist climate of the Pleistocene-Holocene transition. Incision into Qta did not occur until PRC enlarged its drainage basin by c. 50% through capture of the upper part of San Lorenzo Creek, which occurred some time after the Pleistocene-Holocene transition. During the relatively dry Holocene, PRC incision through Qta and into bedrock, as well as delivery of sediment to the San Ardo Fan, were facilitated by the discharge increase associated with stream-capture. The influence of multiple mechanisms on sediment storage and transport in the Pancho Rico Valley-Salinas Valley system exemplifies the complexity that (in some instances) must be recognized in order to correctly

  2. Catastrophic flooding origin of shelf valley systems in the English Channel.

    Science.gov (United States)

    Gupta, Sanjeev; Collier, Jenny S; Palmer-Felgate, Andy; Potter, Graeme

    2007-07-19

    Megaflood events involving sudden discharges of exceptionally large volumes of water are rare, but can significantly affect landscape evolution, continental-scale drainage patterns and climate change. It has been proposed that a significant flood event eroded a network of large ancient valleys on the floor of the English Channel-the narrow seaway between England and France. This hypothesis has remained untested through lack of direct evidence, and alternative non-catastrophist ideas have been entertained for valley formation. Here we analyse a new regional bathymetric map of part of the English Channel derived from high-resolution sonar data, which shows the morphology of the valley in unprecedented detail. We observe a large bedrock-floored valley that contains a distinct assemblage of landforms, including streamlined islands and longitudinal erosional grooves, which are indicative of large-scale subaerial erosion by high-magnitude water discharges. Our observations support the megaflood model, in which breaching of a rock dam at the Dover Strait instigated catastrophic drainage of a large pro-glacial lake in the southern North Sea basin. We suggest that megaflooding provides an explanation for the permanent isolation of Britain from mainland Europe during interglacial high-sea-level stands, and consequently for patterns of early human colonisation of Britain together with the large-scale reorganization of palaeodrainage in northwest Europe.

  3. Hidden Valley Search at ATLAS

    CERN Document Server

    Verducci, M

    2011-01-01

    A number of extensions of the Standard Model result in neutral and weakly-coupled particles that decay to multi hadrons or multi leptons with macroscopic decay lengths. These particles with decay paths that can be comparable with ATLAS detector dimensions represent, from an experimental point of view, a challenge both for the trigger and for the reconstruction capabilities of the ATLAS detector. We will present a set of signature driven triggers for the ATLAS detector that target such displaced decays and evaluate their performances for some benchmark models and describe analysis strategies and limits on the production of such long-lived particles. A first estimation of the Hidden Valley trigger rates has been evaluated with 6 pb-1 of data collected at ATLAS during the data taking of 2010.

  4. New data on the Western Transylvanides along the Ampoi Valley (Southern Apuseni Mts., Romania

    Directory of Open Access Journals (Sweden)

    Erika Suciu-Krausz

    2006-04-01

    Full Text Available In order to clarify some of the issues regarding the mineralogical content and the source area of the Cretaceous deposits from Ampoi Valley basin (Southern Apuseni Mountains fourteen lithologic logs were drawn from the Ampoi Valley both side tributaries (Slatinii, Ruzi, Vâltori, Valea lui Paul, Feneş, Călineasa, Fierului Brook, Bobului, Satului, Tăuţi, Galaţi, Presaca Ampoiului, Valea Mică and Valea Mare brooks. The main sedimentary rock types were identified (conglomerates, wacke and lithic sandstones, clays, and marls. The sandstones were classified according to the ternary diagrams. Their petrographic features revealed both a magmatic and a metamorphic source area for them.

  5. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down gradient of the Proposed Yucca Mountain Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Inyo County

    2006-01-01

    Inyo County has participated in oversight activities associated with the Yucca Mountain Nuclear Waste Repository since 1987. The overall goal of these studies are the evaluation of far-field issues related to potential transport, by ground water, or radionuclides into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. In addition to the potential of radionuclide transport through the LCA, Czarnecki (1997), with the US Geological Survey, research indicate potential radionuclide transport through the shallower Tertiary-age aquifer materials with ultimate discharge into the Franklin Lake Playa in Inyo County. The specific purpose of this Cooperative Agreement drilling program was to acquire geological, subsurface geology, and hydrologic data to: (1) establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin; (2) characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and (3) Evaluation the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA

  6. Zinc and Its Isotopes in the Loire River Basin, France

    Science.gov (United States)

    Millot, R.; Desaulty, A. M.; Bourrain, X.

    2014-12-01

    The contribution of human activities such as industries, agriculture and domestic inputs, becomes more and more significant in the chemical composition of the dissolved load of rivers. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. The Loire River in central France is approximately 1010 km long and drains an area of 117,800 km2. In the upper basin, the bedrock is old plutonic rock overlain by much younger volcanic rocks. The intermediate basin includes three major tributaries flowing into the Loire River from the left bank: the Cher, the Indre and the Vienne rivers; the main stream flows westward and its valley stretches toward the Atlantic Ocean. Here, the Loire River drains the sedimentary series of the Paris Basin, mainly carbonate deposits. The lower Loire basin drains pre-Mesozoic basement of the Armorican Massif and its overlying Mesozoic to Cenozoic sedimentary deposits. The Loire River is one of the main European riverine inputs to the Atlantic ocean. Here we are reporting concentration and isotope data for Zn in river waters and suspended sediments from the Loire River Basin. In addition, we also report concentration and isotope data for the different industrial sources within the Loire Basin, as well as data for biota samples such as mussels and oysters from the Bay of Biscay and North Brittany. These organisms are known to be natural accumulators of metal pollutants. Zinc isotopic compositions are rather homogeneous in river waters with δ66Zn values ranging from 0.21 to 0.39‰. This range of variation is very different from anthropogenic signature (industrial and/or agriculture release) that displays δ66Zn values between 0.02 to 0.14‰. This result is in agreement with a geogenic origin and the low Zn concentrations in the Loire River Basin (from 0.8 to 6 µg/L).

  7. Tectonic geomorphology of large normal faults bounding the Cuzco rift basin within the southern Peruvian Andes

    Science.gov (United States)

    Byers, C.; Mann, P.

    2015-12-01

    The Cuzco basin forms a 80-wide, relatively flat valley within the High Andes of southern Peru. This larger basin includes the regional capital of Cuzco and the Urubamba Valley, or "Sacred Valley of the Incas" favored by the Incas for its mild climate and broader expanses of less rugged and arable land. The valley is bounded on its northern edge by a 100-km-long and 10-km-wide zone of down-to-the-south systems of normal faults that separate the lower area of the down-dropped plateau of central Peru and the more elevated area of the Eastern Cordillera foldbelt that overthrusts the Amazon lowlands to the east. Previous workers have shown that the normal faults are dipslip with up to 600 m of measured displacements, reflect north-south extension, and have Holocene displacments with some linked to destructive, historical earthquakes. We have constructed topographic and structural cross sections across the entire area to demonstrate the normal fault on a the plateau peneplain. The footwall of the Eastern Cordillera, capped by snowcapped peaks in excess of 6 km, tilts a peneplain surface northward while the hanging wall of the Cuzco basin is radially arched. Erosion is accelerated along the trend of the normal fault zone. As the normal fault zone changes its strike from east-west to more more northwest-southeast, normal displacement decreases and is replaced by a left-lateral strike-slip component.

  8. Summary geologic report on the Missoula/Bitterroot Drilling Project, Missoula/Bitterroot Basins, Montana

    International Nuclear Information System (INIS)

    Abramiuk, I.N.

    1980-08-01

    The objective of the drilling project was to obtain information to assess the favorability of the Tertiary sedimentary units in the Missoula and Bitterroot Valleys for uranium potential. The group of Montana Tertiary basins, including the Missoula and Bitterroot Basins, has been assigned a speculative uranium potential of 46,557 tons of U 3 O 8 at $100/lb by the 1980 National Uranium Resource Evaluation report. The seven drill holes, two in the Missoula Valley and five in the Bitterroot Valley, verified observations made during surface studies and provided additional information about the subsurface that was previously unknown. No uranium was found, although of the two localities the Bitterroot Valley is the more favorable. Three stratigraphic units were tentatively identified on the basis of lithology: pre-Renova clastic units, Renova Formation equivalents, and Sixmile Creek Formation equivalents. Of the three, the Renova Formation equivalents in the Bitterroot Valley appear to be the most favorable for possible uranium occurrences and the pre-Renova clastic units the least favorable

  9. Historical Population Structure of Central Valley Steelhead and Its Alteration by Dams

    Directory of Open Access Journals (Sweden)

    Steven T. Lindley

    2006-02-01

    Full Text Available Effective conservation and recovery planning for Central Valley steelhead requires an understanding of historical population structure. We describe the historical structure of the Central Valley steelhead evolutionarily significant unit using a multi-phase modeling approach. In the first phase, we identify stream reaches possibly suitable for steelhead spawning and rearing using a habitat model based on environmental envelopes (stream discharge, gradient, and temperature that takes a digital elevation model and climate data as inputs. We identified 151 patches of potentially suitable habitat with more than 10 km of stream habitat, with a total of 25,500 km of suitable habitat. We then measured the distances among habitat patches, and clustered together patches within 35 km of each other into 81 distinct habitat patches. Groups of fish using these 81 patches are hypothesized to be (or to have been independent populations for recovery planning purposes. Consideration of climate and elevation differences among the 81 habitat areas suggests that there are at least four major subdivisions within the Central Valley steelhead ESU that correspond to geographic regions defined by the Sacramento River basin, Suisun Bay area tributaries, San Joaquin tributaries draining the Sierra Nevada, and lower-elevation streams draining to the Buena Vista and Tulare basins, upstream of the San Joaquin River. Of these, it appears that the Sacramento River basin was the main source of steelhead production. Presently, impassable dams block access to 80% of historically available habitat, and block access to all historical spawning habitat for about 38% of the historical populations of steelhead.

  10. Water resources in the Blackstone River basin, Massachusetts

    Science.gov (United States)

    Walker, Eugene H.; Krejmas, Bruce E.

    1983-01-01

    The Blackstone River heads in brooks 6 miles northwest of Worcester and drains about 330 square miles of central Massachusetts before crossing into Rhode Island at Woonsocket. The primary source of the Worcester water supply is reservoirs, but for the remaining 23 communities in the basin, the primary source is wells. Bedrock consists of granitic and metamorphic rocks. Till mantles the uplands and extends beneath stratified drift in the valleys. Stratified glacial drift, consisting of clay, silt, and fine sand deposited in lakes and coarse-textured sand and gravel deposited by streams, is found in lowlands and valleys. The bedrock aquifer is capable of sustaining rural domestic supplies throughout the Blackstone River basin. Bedrock wells yield an average of 10 gallons per minute, but some wells, especially those in lowlands where bedrock probably contains more fractures and receives more recharge than in the upland areas, yield as much as 100 gallons per minute. Glacial sand and gravel is the principal aquifer. It is capable of sustaining municipal supplies. Average daily pumpage from this aquifer in the Blackstone River basin was 10.4 million gallons per day in 1978. The median yield of large-diameter wells in the aquifer is 325 gallons per minute. The range of yields from these wells is 45 to 3,300 gallons per minute. The median specific capacity is about 30 gallons per minute per foot of drawdown.

  11. Metamorphic and geochronogical study of the Triassic El Oro metamorphic complex, Ecuador: Implications for high-temperature metamorphism in a forearc zone

    Science.gov (United States)

    Riel, N.; Guillot, S.; Jaillard, E.; Martelat, J.-E.; Paquette, J.-L.; Schwartz, S.; Goncalves, P.; Duclaux, G.; Thebaud, N.; Lanari, P.; Janots, E.; Yuquilema, J.

    2013-01-01

    In the forearc of the Andean active margin in southwest Ecuador, the El Oro metamorphic complex exhibits a well exposed tilted forearc section partially migmatized. We used Raman spectroscopy on carbonaceous matter (RSCM) thermometry and pseudosections coupled with mineralogical and textural studies to constrain the pressure-temperature (P-T) evolution of the El Oro metamorphic complex during Triassic times. Our results show that anatexis of the continental crust occurred by white-mica and biotite dehydration melting along a 10 km thick crustal domain (from 4.5 to 8 kbar) with increasing temperature from 650 to 700 °C. In the biotite dehydration melting zone, temperature was buffered at 750-820 °C in a 5 km thick layer. The estimated average thermal gradient during peak metamorphism is of 30 °C/km within the migmatitic domain can be partitioned into two apparent gradients parts. The upper part from surface to 7 km depth records a 40-45 °C/km gradient. The lower part records a quasi-adiabatic geotherm with a 10 °C/km gradient consistent with an isothermal melting zone. Migmatites U-Th-Pb geochronology yielded zircon and monazite ages of 229.3 ± 2.1 Ma and 224.5 ± 2.3 Ma, respectively. This thermal event generated S-type magmatism (the Marcabeli granitoid) and was immediately followed by underplating of the high-pressure low-temperature (HP-LT) Arenillas-Panupalí unit at 225.8 ± 1.8 Ma. The association of high-temperature low-pressure (HT-LP) migmatites with HP-LT unit constitutes a new example of a paired metamorphic belt along the South American margin. We propose that in addition to crustal thinning, underplating of the Piedras gabbroic unit before 230 Ma provided the heat source necessary to foster crustal anatexis. Furthermore, its MORB signature shows that the asthenosphere was involved as the source of the heat anomaly. S-type felsic magmatism is widespread during this time and suggests that a large-scale thermal anomaly affected a large part of the

  12. Tectonics, climate and mountain building in the forearc of southern Peru recorded in the 10Be chronology of low-relief surface abandonment

    Science.gov (United States)

    Hall, S. R.; Farber, D.; Audin, L.; Finkel, R. C.

    2009-12-01

    Regional low-relief surfaces have long been recognized as key features to understanding the response of landscapes to surface uplift. The canonical models of low-relief surface formation involve an extended period of tectonic quiescence during which, the fluvial systems bevel the landscape to a uniform elevation. This quiescent period is punctuated by a period(s) of surface uplift, which causes fluvial incision thereby abandoning the low-relief landscape. Over time, as rivers continue to incise in response to changes in sediment supply, river discharge, and base level fall, pieces of the relict low-relief landscape are left as abandoned remnants stranded above active channels. By determining the age of abandoned surfaces, previous workers have identified the onset of a change in the tectonic or climatic setting. One key assumption of this model is that the low-relief surfaces are truly abandoned with no current processes further acting on the surface. To improve our understanding of the underlying assumptions and problems of low-relief surface formation, we have used detailed mapping and absolute dating with cosmogenic 10Be to investigate surfaces in the hyperarid forearc region of southern Peru between ~14° and 18°S. Within this region, marine terraces and strath terraces reflect Plio-Pleistocene surface uplift, and together with the hyperarid climate, ongoing surface uplift provides a perfect natural laboratory to examine the processes affecting low-relief surface abandonment and preservation. With our new chronology we address: 1) the space and time correlations of surfaces, 2) incision rates of streams in response to base-level fall, and 3) surface erosion rates. Multiple surfaces have yielded 10Be surface abandonment ages that span >2 Ma - ~35 ka. While most of the surfaces we have dated are considerably less than 1 Ma, we have located two surfaces which are likely older than 2 Ma and constrain regional erosion rates to be chronology of Pleistocene surface

  13. Effect of glacial-interglacial sea-level changes on the displacement and stress field in the forearc and along the plate interface of subduction zones

    Directory of Open Access Journals (Sweden)

    T. Li

    2012-02-01

    Full Text Available Combined seismological, space-geodetic and numerical studies have shown that the seismicity at subduction zones may be modulated by tides and glacier fluctuations on timescales of 1–100 a, because these changes in loads on Earth's surface are able to alter the stress field in the upper plate and along the plate interface. Here we use a two-dimensional finite-element model of a subduction zone to investigate how glacial-interglacial sea-level changes affect the forearc region and the plate interface. The model results show that a sea-level fall by 125 m over 100 ka causes up to 0.7 m of vertical displacement, with the maximum uplift occurring between the trench and the coast. The uplift signal induced by the sea-level fall decreases to zero ~20 km landward of the coastline. A subsequent sea-level rise by 125 m over 20 ka causes subsidence, which is again most pronounced in the submarine part of the forearc. The sea-level changes cause horizontal displacements of up to 0.12 m, which are directed seaward during sea-level fall and landward during sea-level rise. With respect to the stress field, the sea-level changes lead to variations in the vertical stress and the shear stress of up to 1.23 MPa and 0.4 MPa, respectively. The shear stress variations are highest beneath the coast, i.e. in the area where the sea-level changes cause the strongest flexure. The resulting Coulomb stress changes on the plate interface are of the order of 0.2–0.5 MPa and indicate that earthquakes are promoted during sea-level fall and delayed during sea-level rise. Our findings imply that eustatic sea-level changes during glacial-interglacial periods may have induced displacements and stress changes that were large enough to affect the seismic cycle of subduction thrusts.

  14. Valley-filtered edge states and quantum valley Hall effect in gated bilayer graphene.

    Science.gov (United States)

    Zhang, Xu-Long; Xu, Lei; Zhang, Jun

    2017-05-10

    Electron edge states in gated bilayer graphene in the quantum valley Hall (QVH) effect regime can carry both charge and valley currents. We show that an interlayer potential splits the zero-energy level and opens a bulk gap, yielding counter-propagating edge modes with different valleys. A rich variety of valley current states can be obtained by tuning the applied boundary potential and lead to the QVH effect, as well as to the unbalanced QVH effect. A method to individually manipulate the edge states by the boundary potentials is proposed.

  15. Basalt stratigraphy - Pasco Basin

    International Nuclear Information System (INIS)

    Waters, A.C.; Myers, C.W.; Brown, D.J.; Ledgerwood, R.K.

    1979-10-01

    The geologic history of the Pasco Basin is sketched. Study of the stratigraphy of the area involved a number of techniques including major-element chemistry, paleomagnetic investigations, borehole logging, and other geophysical survey methods. Grande Ronde basalt accumulation in the Pasco Basin is described. An illustrative log response is shown. 1 figure

  16. Melo carboniferous basin

    International Nuclear Information System (INIS)

    Flossdarf, A.

    1988-01-01

    This report is about of the Melo carboniferous basin which limits are: in the South the large and high Tupambae hill, in the west the Paraiso hill and the river mountains, in the North Yaguaron river basin to Candidata in Rio Grande del Sur in Brazil.

  17. Basin Hopping Graph

    DEFF Research Database (Denmark)

    Kucharik, Marcel; Hofacker, Ivo; Stadler, Peter

    2014-01-01

    of the folding free energy landscape, however, can provide the relevant information. Results We introduce the basin hopping graph (BHG) as a novel coarse-grained model of folding landscapes. Each vertex of the BHG is a local minimum, which represents the corresponding basin in the landscape. Its edges connect...

  18. Prospective regional studies: The Rhine Meuse study and the Tennessee Valley study

    International Nuclear Information System (INIS)

    Bayer, A.

    1980-01-01

    Within the scope of this report two regional studies are presented: - the 'Rhein-Maas-Study' within which the expected radiological impact of the population in the Rhein and Maas basin - which is situated within Central Europe - is assessed on the basis of the planned and forecasted development of nuclear energy in the coming decades. - The 'Tennessee Valley Study' within which the expected radiological impact of the population in the Tennessee-Cumberland basis - which is situated within North America - is assessed likewise on the basis of the planned and forecasted development of nuclear energy in the coming decades. (orig./RW)

  19. Duck Valley Habitat Enhancement and Protection, 2001-2002 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Mattie H.; Sellman, Jake (Shoshone-Paiute Nation, Duck Valley Indian Reservation, Owyhee, NV)

    2003-03-01

    The Duck Valley Indian Reservation's Habitat Enhancement project is an ongoing project designed to enhance and protect critical riparian areas, natural springs, the Owhyee River and its tributaries, and native fish spawning areas on the Reservation. The project commenced in 1997 and addresses the Northwest Power Planning Council's measures 10.8C.2, 10.8C.3, and 10.8C.5 of the 1994 Columbia River Basin Fish and Wildlife Program. The performance period covers dates from April 2001 through August 2002.

  20. Assessing the Costs and Benefits of Resilience Investments: Tennessee Valley Authority Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Melissa R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilbanks, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Preston, Benjamin L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kao, Shih-Chieh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bradbury, James [U.S. Department of Energy (DOE), Office of Energy Policy and Systems Analysis (EPSA), Washington, DC (United States)

    2017-01-01

    This report describes a general approach for assessing climate change vulnerabilities of an electricity system and evaluating the costs and benefits of certain investments that would increase system resilience. It uses Tennessee Valley Authority (TVA) as a case study, concentrating on the Cumberland River basin area on the northern side of the TVA region. The study focuses in particular on evaluating risks associated with extreme heat wave and drought conditions that could be expected to affect the region by mid-century. Extreme climate event scenarios were developed using a combination of dynamically downscaled output from the Community Earth System Model and historical heat wave and drought conditions in 1993 and 2007, respectively.

  1. Vegetation - San Felipe Valley [ds172

    Data.gov (United States)

    California Natural Resource Agency — This Vegetation Map of the San Felipe Valley Wildlife Area in San Diego County, California is based on vegetation samples collected in the field in 2002 and 2005 and...

  2. Babesiosis in Lower Hudson Valley, New York

    Centers for Disease Control (CDC) Podcasts

    This podcast discusses a study about an increase in babesiosis in the Lower Hudson Valley of New York state. Dr. Julie Joseph, Assistant Professor of Medicine at New York Medical College, shares details of this study.

  3. Meie mees Silicon Valleys / Kertu Ruus

    Index Scriptorium Estoniae

    Ruus, Kertu, 1977-

    2007-01-01

    Ilmunud ka: Delovõje Vedomosti 5. dets. lk. 4. Peaminister Andrus Ansip avas Eesti Ettevõtluse Sihtasutuse esinduse Silicon Valley pealinnas San Joses. Vt. samas: Ränioru kliima on tehnoloogiasõbralik; Andrus Viirg

  4. Meie ingel Silicon Valleys / Raigo Neudorf

    Index Scriptorium Estoniae

    Neudorf, Raigo

    2008-01-01

    Ettevõtluse Arendamise Sihtasutuse esinduse töölepanekust USAs Silicon Valleys räägib esinduse juht Andrus Viirg. Vt. ka: Eestlasi leidub San Franciscos omajagu; Muljetavaldav karjäär; USAga ammune tuttav

  5. Burrowing Owl - Palo Verde Valley [ds197

    Data.gov (United States)

    California Natural Resource Agency — These burrowing owl observations were collected during the spring and early summer of 1976 in the Palo Verde Valley, eastern Riverside County, California. This is an...

  6. Diverse stakeholders create collaborative, multilevel basin governance for groundwater sustainability

    Directory of Open Access Journals (Sweden)

    Esther Conrad

    2018-01-01

    Full Text Available The Sustainable Groundwater Management Act (SGMA is introducing significant changes in the way groundwater is governed for agricultural use. It requires the formation of groundwater sustainability agencies (GSAs to manage groundwater basins for sustainability with the engagement of all users. That presents opportunities for collaboration, as well as challenges, particularly in basins with large numbers of agricultural water users who have longstanding private pumping rights. The GSA formation process has resulted in the creation of multiple GSAs in many such basins, particularly in the Central Valley. In case studies of three basins, we examine agricultural stakeholders' concerns about SGMA, and how these are being addressed in collaborative approaches to groundwater basin governance. We find that many water districts and private pumpers share a strong interest in maintaining local autonomy, but they have distinct concerns and different options for forming and participating in GSAs. Multilevel collaborative governance structures may help meet SGMA's requirements for broad stakeholder engagement, our studies suggest, while also addressing concerns about autonomy and including agricultural water users in decision-making.

  7. K Basin safety analysis

    International Nuclear Information System (INIS)

    Porten, D.R.; Crowe, R.D.

    1994-01-01

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall

  8. Morphotectonic control of the Białka drainage basin (Central Carpathians: Insights from DEM and morphometric analysis.

    Directory of Open Access Journals (Sweden)

    Wołosiewicz Bartosz

    2016-06-01

    Full Text Available The Białka river valley is directly related to a deep NNW-SSE oriented fault zone. According to the results of previous morphometric analyses, the Białka drainage basin is one of the most tectonically active zones in the Central Carpathians. It is also located within an area of high seismic activity.

  9. ETV REPORT: REMOVAL OF ARSENIC IN DRINKING WATER — BASIN WATER HIGH EFFICIENCY ION EXCHANGE WATER TREATMENT SYSTEM

    Science.gov (United States)

    Verification testing of the Basin Water System was conducted over a 54-day period between April 4, 2005 and May 28, 2005. The test was conducted at the Elsinore Valley Municipal Water District (EVMWD) Corydon Street Well in Lake Elsinore, California. The source water was a raw gr...

  10. Meso- and microscale vein structures in fore-arc basalts and boninites related to post-magmatic tectonic deformation in the outer Izu-Bonin-Mariana fore arc system: preliminary results from IODP Expedition 352

    Science.gov (United States)

    Quandt, Dennis; Micheuz, Peter; Kurz, Walter

    2016-04-01

    The International Ocean Discovery Program (IODP) Expedition 352 aimed to drill through the entire volcanic sequence of the Izu-Bonin-Mariana fore arc. Two drill sites are situated on the outer fore arc composed of fore arc basalts (FAB) whereas two more sites are located on the upper trench slope penetrating the younger boninites. First results from IODP Expedition 352 and preliminary post-cruise data suggest that FAB were generated by decompression melting during near-trench sea-floor spreading, and that fluids from the subducting slab were not involved in their genesis. Subduction zone fluids involved in boninite genesis appear to have been derived from progressively higher temperatures and pressures over time as the subducting slab thermally matured. Structures within the drill cores combined with borehole and site survey seismic data indicate that tectonic deformation in the outer Izu-Bonin-Mariana fore arc is mainly post-magmatic associated with the development of syn-tectonic sedimentary basins. Within the magmatic basement deformation was accommodated by shear along cataclastic fault zones and the formation of tension fractures, shear fractures and hybrid (tension and shear) fractures. Veins form by mineral filling of tension or hybrid fractures and show no or limited observable macroscale displacement along the fracture plane. (Low Mg-) Calcite and/or various types of zeolite are the major vein constituents, where the latter are considered to be alteration products of basaltic glass. Micrite contents vary significantly and are related to neptunian dikes. In boninites calcite develops mainly blocky shapes but veins with fibrous and stretched crystals also occur in places indicating antitaxial as well as ataxial growth, respectively. In FAB calcite forms consistently blocky crystals without any microscopic identifiable growth direction suggesting precipitation from a highly supersaturated fluid under dropping fluid pressure conditions. However, fluid pressure

  11. Electrical valley filtering in transition metal dichalcogenides

    Science.gov (United States)

    Hsieh, Tzu-Chi; Chou, Mei-Yin; Wu, Yu-Shu

    2018-03-01

    This work investigates the feasibility of electrical valley filtering for holes in transition metal dichalcogenides. We look specifically into the scheme that utilizes a potential barrier to produce valley-dependent tunneling rates, and perform the study with both a k .p -based analytic method and a recursive Green's function-based numerical method. The study yields the transmission coefficient as a function of incident energy and transverse wave vector, for holes going through lateral quantum barriers oriented in either armchair or zigzag directions, in both homogeneous and heterogeneous systems. The main findings are the following: (1) The tunneling current valley polarization increases with increasing barrier width or height; (2) both the valley-orbit interaction and band structure warping contribute to valley-dependent tunneling, with the former contribution being manifest in structures with asymmetric potential barriers, and the latter being orientation dependent and reaching maximum for transmission in the armchair direction; and (3) for transmission ˜0.1 , a tunneling current valley polarization of the order of 10 % can be achieved.

  12. Groundwater quality in the Colorado River basins, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Colorado River make up one of the study areas being evaluated. The Colorado River study area is approximately 884 square miles (2,290 square kilometers) and includes the Needles, Palo Verde Mesa, Palo Verde Valley, and Yuma groundwater basins (California Department of Water Resources, 2003). The Colorado River study area has an arid climate and is part of the Sonoran Desert. Average annual rainfall is about 3 inches (8 centimeters). Land use in the study area is approximately 47 percent (%) natural (mostly shrubland), 47% agricultural, and 6% urban. The primary crops are pasture and hay. The largest urban area is the city of Blythe (2010 population of 21,000). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay deposited by the Colorado River or derived from surrounding mountains. The primary aquifers in the Colorado River study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Colorado River basins are completed to depths between 230 and 460 feet (70 to 140 meters), consist of solid casing from the land surface to a depth of 130 of 390 feet (39 to 119 meters), and are screened or perforated below the solid casing. The main source of recharge to the groundwater systems in the Needles, Palo Verde Mesa, and Palo Verde Valley basins is the Colorado River; in the Yuma basin, the main source of recharge is from

  13. The Ogaden Basin, Ethiopia: an underexplored sedimentary basin

    Energy Technology Data Exchange (ETDEWEB)

    Teitz, H.H.

    1991-01-01

    A brief article examines the Ogaden Basin in Ethiopia in terms of basin origin, basin fill and the hydrocarbon exploration history and results. The natural gas find in pre-Jurassic sandstones, which appears to contain substantial reserves, justifies continuing investigations in this largely underexplored basin. (UK).

  14. Silicate diagenesis in deep-sea sediments from the Tonga fore-arc (SW Pacific): a strontium and rare earth elements signature

    International Nuclear Information System (INIS)

    Vitali, F.; Stille, P.; Blanc, G.; Toulkeridis, T.

    2000-01-01

    87 Sr/ 86 Sr isotopic ratios, strontium and Rare Earth Element concentrations obtained on volcano-sedimentary rocks and separated clay mineral and zeolite fractions reveal a formation by pore water-volcanic rock interaction for most of the hydrous silicate minerals of the Site 841 ODP collected from the Tonga fore-arc. Unusual strontium concentrations and isotopic ratios recorded in the Miocene tuffs associated with specific REE patterns indicate that the formation of these hydrous silicates does not follow a simple burial diagenesis model, but was related to the cooling of intruding basaltic sills in the Miocene volcano-sedimentary series. Migration of strontium into the pore water in response to the heat flow induced the formation of Sr-bearing zeolites such as clinoptilolite, heulandite and chabazite. No evidence of any influence of a further thermal pulse in the Eocene rhyolitic tuffs could be found. As recorded by the chemistry of their clay mineral fraction, the rhyolitic tuffs developed a polyphasic diagenetic process, which might have been influenced by a possible circulation of a fluid into structurally weak areas. (authors)

  15. Deep long-period earthquakes west of the volcanic arc in Oregon: evidence of serpentine dehydration in the fore-arc mantle wedge

    Science.gov (United States)

    Vidale, John E.; Schmidt, David A.; Malone, Stephen D.; Hotovec-Ellis, Alicia J.; Moran, Seth C.; Creager, Kenneth C.; Houston, Heidi

    2014-01-01

    Here we report on deep long-period earthquakes (DLPs) newly observed in four places in western Oregon. The DLPs are noteworthy for their location within the subduction fore arc: 40–80 km west of the volcanic arc, well above the slab, and near the Moho. These “offset DLPs” occur near the top of the inferred stagnant mantle wedge, which is likely to be serpentinized and cold. The lack of fore-arc DLPs elsewhere along the arc suggests that localized heating may be dehydrating the serpentinized mantle wedge at these latitudes and causing DLPs by dehydration embrittlement. Higher heat flow in this region could be introduced by anomalously hot mantle, associated with the western migration of volcanism across the High Lava Plains of eastern Oregon, entrained in the corner flow proximal to the mantle wedge. Alternatively, fluids rising from the subducting slab through the mantle wedge may be the source of offset DLPs. As far as we know, these are among the first DLPs to be observed in the fore arc of a subduction-zone system.

  16. Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.

    Science.gov (United States)

    Yang, Yuting; Jiang, Hua; Hang, Zhi Hong

    2018-01-25

    Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.

  17. River basin administration

    Science.gov (United States)

    Management of international rivers and their basins is the focus of the Centre for Comparative Studies on (International) River Basin Administration, recently established at Delft University of Technology in the Netherlands. Water pollution, sludge, and conflicting interests in the use of water in upstream and downstream parts of a river basin will be addressed by studying groundwater and consumption of water in the whole catchment area of a river.Important aspects of river management are administrative and policy aspects. The Centre will focus on policy, law, planning, and organization, including transboundary cooperation, posing standards, integrated environmental planning on regional scale and environmental impact assessments.

  18. Paleozoic evolution of active margin basins in the southern Central Andes (northwestern Argentina and northern Chile)

    Science.gov (United States)

    Bahlburg, H.; Breitkreuz, C.

    originated as an extensional structure at the continental margin of Gondwana. Independent lines of evidence imply that basin evolution was not connected to subduction. Thus, the basin could not have been in a fore-arc position as previously postulated. Above the folded Devonian-Early Carboniferous strata, a continental volcanic arc developed from the Late Carboniferous to the Middle Triassic. It represents the link between the Choiyoi Province in central Chile and Argentina, and the Mitu Group rift in southern Peru. The volcanic arc succession is characterized by the prevalence of silicic lavas and tuffs and volcaniclastic sedimentary rocks. During the latest Carboniferous, a thick ostracod-bearing lacustrine unit formed in an extended lake in the area of the Depresión Preandina. This lake basin originated in an intra-arc tensional setting. During the Early Permian, marine limestones were deposited on a marine platform west and east of the volcanic arc, connected to the depositional area of the Copacabana Formation in southern Peru.

  19. About the issue of monitoring method of Ararat valley soils salinization

    Directory of Open Access Journals (Sweden)

    A.G. Yeghiazaryan

    2017-12-01

    Full Text Available The short description of the agro-ameliorative situation of the Republic of Armenia, particularly, that of Ararat valley shows that the unpredictable and unmanageable process of regime procedures at this area can cause serious consequences, pushing out the agricultural golden fund of the republic from the agricultural turnover, namely the land of Ararat valley. Numerous investigations on the soil reclaimed state in Ararat valley at the Republic of Armenia reveal that they are currently in an extremely threatening condition. The result analyses show that more than 35% of Ararat valley lands of agricultural importance are in insufficiently reclaimed state, moreover the 54% of them are weakly salinized, 11,8% are averagely and strongly salinized and 34.2% are strongly salinized. The analyses of the conducted theoretical and experimental research results show that the above mentioned negative processes are promoted by the depth of the ground water allocation, which in Ararat valley fluctuates within the depth of 1 m, 1-3 m and more than 3 m. According to the distribution area the ground waters on 6,6% land areas of Ararat valley irrigated soils are allocated at the depth of 1 m, in 27,8% land areas the ground waters are allocated at the depth of 1–3 m, and in the rest of 65,6% land area waters are allocated at the depth of more than 3 m. For the prevention of the soils salinization process at Ararat valley and for the development of measures for struggling against it, the impact of ground waters installation depth, their mineralization, calculated evapo-transpiration from the soil and plants, irrigation norm, watering regime and technique, pressure nutrition caused from underground water basin and the impact of evaporation raising from the ground water surfaces on the ground waters level change in the vegetation period is evaluated in the current work. For the evaluation of the above mentioned individual factors the integral

  20. Gravity inversion predicts the nature of the amundsen basin and its continental borderlands near greenland

    DEFF Research Database (Denmark)

    Døssing, Arne; Hansen, Thomas Mejer; Olesen, Arne Vestergaard

    2014-01-01

    the results of 3-D gravity inversion for predicting the sediment thickness and basement geometry within the Amundsen Basin and along its borderlands. We use the recently published LOMGRAV-09 gravity compilation and adopt a process-oriented iterative cycle approach that minimizes misfit between an Earth model...... and observations. The sensitivity of our results to lateral variations in depth and density contrast of the Moho is further tested by a stochastic inversion. Within their limitations, the approach and setup used herein provides the first detailed model of the sediment thickness and basement geometry in the Arctic...... above high-relief basement in the central Amundsen Basin. Significantly, an up to 7 km deep elongated sedimentary basin is predicted along the northern edge of the Morris Jesup Rise. This basin continues into the Klenova Valley south of the Lomonosov Ridge and correlates with an offshore continuation...

  1. Christmas Valley Renewable Energy Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Del Mar, Robert [Oregon Department of Energy, Salem, OR (United States)

    2017-05-22

    In partnership with the Oregon Military Department, the Department of Energy used the award to assess and evaluate renewable resources in a 2,622-acre location in Lake County, central Oregon, leading to future development of up to 200 MW of solar electricity. In partnership with the Oregon Military Department, the Department of Energy used the award to assess and evaluate renewable resources in a 2,622-acre location in Lake County, central Oregon, leading to future development of up to 200 MW of solar electricity. The Oregon Military Department (Military) acquired a large parcel of land located in south central Oregon. The land was previously owned by the US Air Force and developed for an Over-the-Horizon Backscatter Radar Transmitter Facility, located about 10 miles east of the town of Christmas Valley. The Military is investigating a number of uses for the site, including Research and Development (R&D) laboratory, emergency response, military operations, developing renewable energy and related educational programs. One of the key potential uses would be for a large scale solar photovoltaic power plant. This is an attractive use because the site has excellent solar exposure; an existing strong electrical interconnection to the power grid; and a secure location at a moderate cost per acre. The project objectives include: 1. Site evaluation 2. Research and Development (R&D) facility analysis 3. Utility interconnection studies and agreements 4. Additional on-site renewable energy resources analysis 5. Community education, outreach and mitigation 6. Renewable energy and emergency readiness training program for veterans

  2. Formaldehyde Surface Distributions and Variability in the Mexico City Basin

    Science.gov (United States)

    Junkermann, W.; Mohr, C.; Steinbrecher, R.; Ruiz Suarez, L.

    2007-05-01

    Formaldehyde ambient air mole fractions were measured throughout the dry season in March at three different locations in the Mexico City basin. The continuously running instruments were operated at Tenago del Aire, a site located in the Chalco valley in the southern venting area of the basin, at the Intituto Mexicano del Petroleo (IMP) in the northern part of the city and about 30 km north of the city at the campus of the Universidad Tecnològica de Tecamac (UTTEC). The technique used is the Hantzsch technology with a time resolution of 2 minutes and a detection limit of 100 ppt. Daily maxima peaked at 35 ppb formaldehyde in the city and about 15 to 20 ppb at the other sites. During night formaldehyde levels dropped to about 5 ppb or less. It is evident that the observed spatial and temporal variability in near surface formaldehyde distributions is strongly affected by local and regional advection processes.

  3. Watershed Planning Basins

    Data.gov (United States)

    Vermont Center for Geographic Information — The Watershed Planning Basin layer is part of a larger dataset contains administrative boundaries for Vermont's Agency of Natural Resources. The dataset includes...

  4. BASINS Framework and Features

    Science.gov (United States)

    BASINS enables users to efficiently access nationwide environmental databases and local user-specified datasets, apply assessment and planning tools, and run a variety of proven nonpoint loading and water quality models within a single GIS format.

  5. K Basin Hazard Analysis

    International Nuclear Information System (INIS)

    PECH, S.H.

    2000-01-01

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report

  6. K Basin Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  7. K Basins Hazard Analysis

    International Nuclear Information System (INIS)

    WEBB, R.H.

    1999-01-01

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062/Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report

  8. Analysis of Mining-induced Valley Closure Movements

    Science.gov (United States)

    Zhang, C.; Mitra, R.; Oh, J.; Hebblewhite, B.

    2016-05-01

    Valley closure movements have been observed for decades in Australia and overseas when underground mining occurred beneath or in close proximity to valleys and other forms of irregular topographies. Valley closure is defined as the inward movements of the valley sides towards the valley centreline. Due to the complexity of the local geology and the interplay between several geological, topographical and mining factors, the underlying mechanisms that actually cause this behaviour are not completely understood. A comprehensive programme of numerical modelling investigations has been carried out to further evaluate and quantify the influence of a number of these mining and geological factors and their inter-relationships. The factors investigated in this paper include longwall positional factors, horizontal stress, panel width, depth of cover and geological structures around the valley. It is found that mining in a series passing beneath the valley dramatically increases valley closure, and mining parallel to valley induces much more closure than other mining orientations. The redistribution of horizontal stress and influence of mining activity have also been recognised as important factors promoting valley closure, and the effect of geological structure around the valley is found to be relatively small. This paper provides further insight into both the valley closure mechanisms and how these mechanisms should be considered in valley closure prediction models.

  9. Late Pleistocene Hansel Valley basaltic ash, northern Lake Bonneville, Utah, USA

    Science.gov (United States)

    Miller, D.M.; Oviatt, Charles G.; Nash, B.P.

    2008-01-01

    The Hansel Valley ash bed lies within 5 cm of the base of deposits of Lake Bonneville (???28 ka) in the vicinity of Great Salt Lake and provides a useful stratigraphic marker for this area of the lake basin. However, it has not been matched to an eruptive edifice, presumably because such an edifice was eroded by waves of Lake Bonneville. We present data for the chemical composition of the tephra and for possible matching lavas and tephras of the region, as well as grain size data for the tephra in an attempt to identify the location of the eruption. Matches with other tephras are negative, but lavas near the coarsest ash deposits match well with the distinctive high values of TiO2 and P2O5 of the ash. Neither chemistry nor grain size data points uniquely to a source area, but an area near the northwest shore of Great Salt Lake and within Curlew Valley is most likely. The Hansel Valley ash is an example of an ash that has no direct numerical date from proximal deposits, despite considerable study, yet nonetheless is useful for stratigraphic studies by virtue of its known stratigraphic position and approximate age. Basaltic tephras commonly are not as widespread as their rhyolitic counterparts, and in some cases apparently are produced by eruptive sources that are short lived and whose edifices are not persistent. ?? 2007 Elsevier Ltd and INQUA.

  10. Integrated hydrologic model of Pajaro Valley, Santa Cruz and Monterey Counties, California

    Science.gov (United States)

    Hanson, Randall T.; Schmid, Wolfgang; Faunt, Claudia C.; Lear, Jonathan; Lockwood, Brian

    2014-01-01

    Increasing population, agricultural development (including shifts to more water-intensive crops), and climate variability are placing increasingly larger demands on available groundwater resources in the Pajaro Valley, one of the most productive agricultural regions in the world. This study provided a refined conceptual model, geohydrologic framework, and integrated hydrologic model of the Pajaro Valley. The goal of this study was to produce a model capable of being accurate at scales relevant to water management decisions that are being considered in the revision and updates to the Basin Management Plan (BMP). The Pajaro Valley Hydrologic Model (PVHM) was designed to reproduce the most important natural and human components of the hydrologic system and related climatic factors, permitting an accurate assessment of groundwater conditions and processes that can inform the new BMP and help to improve planning for long-term sustainability of water resources. Model development included a revision of the conceptual model of the flow system, reevaluation of the previous model transformed into MODFLOW, implementation of the new geohydrologic model and conceptual model, and calibration of the transient hydrologic model.

  11. Isotope techniques in hydrological studies: application to Chacabuco-Polpaico basin

    International Nuclear Information System (INIS)

    Orphanopoulus Stehr, D.

    1982-01-01

    A hydrogeological study was carried out in a small alluvial valley, 45 kms. north of Santiago, Chile. Although the main economical activity is the agriculture, the valley only has small seasonal rivers. The irrigation water comes from a near basin through a channel of about 100 kms. and from the ground water. The study include aspects like: pumping tests evaluations, well stratigraphy, potentiometric surface fluctuation, water chemistry, stable isotopes and water balances. Isotopes, oxygen-18 and deuterium were used to identify the origin of the ground water in different sections of the valley and the importance of the infiltration. Also experiences were made to evaluate the evaporation of a small damm, using isotopes and the classical water balance methods. (O.S.)

  12. Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho

    Science.gov (United States)

    Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.

    2009-01-01

    Bear Lake, on the Idaho-Utah border, lies in a fault-bounded valley through which the Bear River flows en route to the Great Salt Lake. Surficial deposits in the Bear Lake drainage basin provide a geologic context for interpretation of cores from Bear Lake deposits. In addition to groundwater discharge, Bear Lake received water and sediment from its own small drainage basin and sometimes from the Bear River and its glaciated headwaters. The lake basin interacts with the river in complex ways that are modulated by climatically induced lake-level changes, by the distribution of active Quaternary faults, and by the migration of the river across its fluvial fan north of the present lake. The upper Bear River flows northward for ???150 km from its headwaters in the northwestern Uinta Mountains, generally following the strike of regional Laramide and late Cenozoic structures. These structures likely also control the flow paths of groundwater that feeds Bear Lake, and groundwater-fed streams are the largest source of water when the lake is isolated from the Bear River. The present configuration of the Bear River with respect to Bear Lake Valley may not have been established until the late Pliocene. The absence of Uinta Range-derived quartzites in fluvial gravel on the crest of the Bear Lake Plateau east of Bear Lake suggests that the present headwaters were not part of the drainage basin in the late Tertiary. Newly mapped glacial deposits in the Bear River Range west of Bear Lake indicate several advances of valley glaciers that were probably coeval with glaciations in the Uinta Mountains. Much of the meltwater from these glaciers may have reached Bear Lake via groundwater pathways through infiltration in the karst terrain of the Bear River Range. At times during the Pleistocene, the Bear River flowed into Bear Lake and water level rose to the valley threshold at Nounan narrows. This threshold has been modified by aggradation, downcutting, and tectonics. Maximum lake

  13. Holistic Overview of the Contribution of Tectonic, Geomorphic, and Geologic Factors to the Seismic Hazard of the Kathmandu Valley, Nepal

    Science.gov (United States)

    Banda, S.; Chang, A.; Sanquini, A.; Hilley, G. E.

    2013-12-01

    Nepal has been a seismically active region since the mid-Eocene collision of the Indian and Eurasian plates. It can be divided into four major tectonostratigraphic units. The Lesser Himalayan Zone, where Kathmandu Valley is located, is bounded to the south by the Main Boundary Thrust (MBT) and to the north by the Main Central Thrust (MCT). These faults, and the Main Frontal Thrust (MFT) traverse the NW-SE length of Nepal and sole into the Main Himalayan Thrust (MHT). Slip along these structures during the Plio-Quaternary has ponded sediment in the interior of the orogen, producing the nearly circular Kathmandu Basin, which hosts a series of radially converging rivers that exit the basin to the south. The sediment that is ponded within the basin consists of alluvial, lacustrine and debris flow deposits that are ~500 m thick. The faults in the vicinity of the Kathmandu Valley currently serve as potential earthquake sources. Sources that might plausibly be generated by these faults are constrained by structural, paleoseismic, and geodetic observations. The continued collision between India and Tibet is reflected in a convergence rate of about 20 mm/yr, as measured by Global Positioning System (GPS) geodetic networks. Strain accumulates on the MHT, and is released during large earthquakes. The epicenter of the 1934 (M8.2) earthquake, about 175 km to the east of Kathmandu, resulted in MMI VIII- IX shaking intensity in the Kathmandu Valley. Seismic waves generated from faults in proximity to Kathmandu may be amplified or attenuated at particular locations due to specific site responses that reflect the geologic framework of the Kathmandu Valley. The ponded sediments within the Kathmandu Basin may contribute to basin effects, trapping seismic waves and prolonging ground motion, as well as increasing the amplitude of the waves as they travel from crystalline outer rocks into the soft lake-bed sediments. A hazard analysis suggests that a M8.0 earthquake originating in the

  14. The lakes of the Jordan Rift Valley

    International Nuclear Information System (INIS)

    Gat, J.R.

    2001-01-01

    This paper presents a summary of the proceedings of a workshop on the Lakes of the Jordan Rift Valley that was held in conjunction with the CRP on The Use of Isotope Techniques in Lake Dynamics Investigations. The paper presents a review of the geological, hydrogeological and physical limnological setting of the lakes in the Jordan Rift Valley, Lake Hula, Lake Kinneret and the Dead Sea. This is complemented by a description of the isotope hydrology of the system that includes the use of a wide range of isotopes: oxygen-18, deuterium, tritium, carbon-14, carbon-13, chlorine isotopes, boron-11 and helium-3/4. Environmental isotope aspects of the salt balances of the lakes, their palaeolimnology and biogeochemical tracers are also presented. The scope of application of isotopic tracers is very broad and provides a clear insight into many aspects of the physical, chemical and biological limnology of the Rift Valley Lakes. (author)

  15. A new Proposal to Mexico Valley Zonification

    Science.gov (United States)

    Flores-Estrella, H. C.; Yussim, S.; Lomnitz, C.

    2004-12-01

    The effects of the Michoacan earthquake (19th September, 1985, Mw 8.1) in Mexico City caused a significant change in the political, social and scientific history, as it was considered the worst seismic disaster ever lived in Mexico. Since then, numerous efforts have been made to understand and determine the parameters that caused the special features registered. One of these efforts had began on 1960 with the work by Marsal and Masari, who published the Mexico Valley seismological and geotechnical zonification (1969), based on gravimetric and shallow borehole data. In this work, we present a revision of the studies that proposed the zonification, a description of the valley geology, and basing on it we propose a new zonification for Mexico Valley.

  16. Geomorphology of Ma'adim Vallis, Mars,and Associated Paleolake Basins

    Science.gov (United States)

    Irwin, Rossman, P., III; Howard, Alan D.; Maxwell, Ted A.

    2004-01-01

    Ma'adim Vallis, one of the largest valleys in the Martian highlands, appears to have originated by catastrophic overflow of a large paleola ke located south of the valley heads. Ma'adim Vallis debouched to Gus ev crater, 900 km to the north, the landing site for the Spirit Mars Exploration Rover. Support for the paleolake overflow hypothesis come s from the following characteristics: (I) With a channel width of 3 km at its head, Ma'adim Vallis originates at two (eastern and western) gaps incised into the divide of the approximately 1.1 M km(exp 2) enc losed Eridania head basin, which suggests a lake as the water source. (2) The sinuous course of Ma'adim Vallis is consistent with overland flow controlled by preexisting surface topography, and structural con trol is not evident or required to explain the valley course. (3) The nearly constant approximately 5 km width of the inner channel through crater rim breaches, the anastomosing course of the wide western tri butary, the migration of the inner channel to the outer margins of be nds in the valley's lower reach, a medial sedimentary bar approximate ly 200 m in height, and a step-pool" sequence are consistent with modeled flows of 1-5 x l0 (exp 6) m(exp 3)/s. Peak discharges were likely higher but are poorly constrained by the relict channel geometry. (4 ) Small direct tributary valleys to Ma'adim Vallis have convex-up lon gitudinal profiles, suggesting a hanging relationship to a valley that was incised quickly relative to the timescales of tributary developm ent. (5) The Eridania basin had adequate volume between the initial d ivide and the incised gap elevations to carve Ma'adim Vallis during a single flood. (6) The Eridania basin is composed of many overlapping , highly degraded and deeply buried impact craters. The floor materials of the six largest craters have an unusually high internal relief ( approximately 1 km) and slope (approximately 0.5-1.5 degrees) among d egraded Martian craters, which are usually

  17. Direct measurement of exciton valley coherence in monolayer WSe2

    KAUST Repository

    Hao, Kai; Moody, Galan; Wu, Fengcheng; Dass, Chandriker Kavir; Xu, Lixiang; Chen, Chang Hsiao; Sun, Liuyang; Li, Ming-yang; Li, Lain-Jong; MacDonald, Allan H.; Li, Xiaoqin

    2016-01-01

    In crystals, energy band extrema in momentum space can be identified by a valley index. The internal quantum degree of freedom associated with valley pseudospin indices can act as a useful information carrier, analogous to electronic charge

  18. Goldstone-Apple Valley Radio Telescope System Theory of Operation

    Science.gov (United States)

    Stephan, George R.

    1997-01-01

    The purpose of this learning module is to enable learners to describe how the Goldstone-Apple Valley Radio Telescope (GAVRT) system functions in support of Apple Valley Science and Technology Center's (AVSTC) client schools' radio astronomy activities.

  19. Mechanical control over valley magnetotransport in strained graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ning, E-mail: maning@stu.xjtu.edu.cn [Department of Physics, MOE Key Laboratory of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Shengli, E-mail: zhangsl@mail.xjtu.edu.cn [Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Daqing, E-mail: liudq@cczu.edu.cn [School of Mathematics and Physics, Changzhou University, Changzhou 213164 (China)

    2016-05-06

    Recent experiments report that the graphene exhibits Landau levels (LLs) that form in the presence of a uniform strain pseudomagnetic field with magnitudes up to hundreds of tesla. We further reveal that the strain removes the valley degeneracy in LLs, and leads to a significant valley polarization with inversion symmetry broken. This accordingly gives rise to the well separated valley Hall plateaus and Shubnikov–de Haas oscillations. These effects are absent in strainless graphene, and can be used to generate and detect valley polarization by mechanical means, forming the basis for the new paradigm “valleytronics” applications. - Highlights: • We explore the mechanical strain effects on the valley magnetotransport in graphene. • We analytically derive the dc collisional and Hall conductivities under strain. • The strain removes the valley degeneracy in Landau levels. • The strain causes a significant valley polarization with inversion symmetry broken. • The strain leads to the well separated valley Hall and Shubnikov–de Haas effects.

  20. The Health Valley: Global Entrepreneurial Dynamics.

    Science.gov (United States)

    Dubuis, Benoit

    2014-12-01

    In the space of a decade, the Lake Geneva region has become the Health Valley, a world-class laboratory for discovering and developing healthcare of the future. Through visionary individuals and thanks to exceptional infrastructure this region has become one of the most dynamic in the field of innovation, including leading scientific research and exceptional actors for the commercialization of academic innovation to industrial applications that will improve the lives of patients and their families. Here follows the chronicle of a spectacular expansion into the Health Valley.

  1. Solar energy innovation and Silicon Valley

    Science.gov (United States)

    Kammen, Daniel M.

    2015-03-01

    The growth of the U. S. and global solar energy industry depends on a strong relationship between science and engineering innovation, manufacturing, and cycles of policy design and advancement. The mixture of the academic and industrial engine of innovation that is Silicon Valley, and the strong suite of environmental policies for which California is a leader work together to both drive the solar energy industry, and keep Silicon Valley competitive as China, Europe and other area of solar energy strength continue to build their clean energy sectors.

  2. Clean Cities Award Winning Coalition: Coachella Valley

    Energy Technology Data Exchange (ETDEWEB)

    ICF Kaiser

    1999-05-20

    Southern California's Coachella Valley became a Clean Cities region in 1996. Since then, they've made great strides. SunLine Transit, the regional public transit provider, was the first transit provider to replace its entire fleet with compressed natural gas buses. They've also built the foundation for a nationally recognized model in the clean air movement, by partnering with Southern California Gas Company to install a refueling station and developing a curriculum for AFV maintenance with the College of the Desert. Today the valley is home to more than 275 AFVs and 15 refueling stations.

  3. Environmental Setting of the Lower Merced River Basin, California

    Science.gov (United States)

    Gronberg, Jo Ann M.; Kratzer, Charles R.

    2006-01-01

    In 1991, the U.S. Geological Survey began to study the effects of natural and anthropogenic influences on the quality of ground water, surface water, biology, and ecology as part of the National Water-Quality Assessment (NAWQA) Program. As part of this program, the San Joaquin-Tulare Basins study unit is assessing parts of the lower Merced River Basin, California. This report provides descriptions of natural and anthropogenic features of this basin as background information to assess the influence of these and other factors on water quality. The lower Merced River Basin, which encompasses the Mustang Creek Subbasin, gently slopes from the northeast to the southwest toward the San Joaquin River. The arid to semiarid climate is characterized by hot summers (highs of mid 90 degrees Fahrenheit) and mild winters (lows of mid 30 degrees Fahrenheit). Annual precipitation is highly variable, with long periods of drought and above normal precipitation. Population is estimated at about 39,230 for 2000. The watershed is predominately agricultural on the valley floor. Approximately 2.2 million pounds active ingredient of pesticides and an estimated 17.6 million pounds active ingredient of nitrogen and phosphorus fertilizer is applied annually to the agricultural land.

  4. Physical properties and seismic structure of Izu-Bonin-Mariana fore-arc crust: Results from IODP Expedition 352 and comparison with oceanic crust

    Science.gov (United States)

    Christeson, G. L.; Morgan, S.; Kodaira, S.; Yamashita, M.; Almeev, R. R.; Michibayashi, K.; Sakuyama, T.; Ferré, E. C.; Kurz, W.

    2016-12-01

    Most of the well-preserved ophiolite complexes are believed to form in suprasubduction zone (SSZ) settings. We compare physical properties and seismic structure of SSZ crust at the Izu-Bonin-Mariana (IBM) fore arc with oceanic crust drilled at Holes 504B and 1256D to evaluate the similarities of SSZ and oceanic crust. Expedition 352 basement consists of fore-arc basalt (FAB) and boninite lavas and dikes. P-wave sonic log velocities are substantially lower for the IBM fore arc (mean values 3.1-3.4 km/s) compared to Holes 504B and 1256D (mean values 5.0-5.2 km/s) at depths of 0-300 m below the sediment-basement interface. For similar porosities, lower P-wave sonic log velocities are observed at the IBM fore arc than at Holes 504B and 1256D. We use a theoretical asperity compression model to calculate the fractional area of asperity contact Af across cracks. Af values are 0.021-0.025 at the IBM fore arc and 0.074-0.080 at Holes 504B and 1256D for similar depth intervals (0-300 m within basement). The Af values indicate more open (but not necessarily wider) cracks in the IBM fore arc than for the oceanic crust at Holes 504B and 1256D, which is consistent with observations of fracturing and alteration at the Expedition 352 sites. Seismic refraction data constrain a crustal thickness of 10-15 km along the IBM fore arc. Implications and inferences are that crust-composing ophiolites formed at SSZ settings could be thick and modified after accretion, and these processes should be considered when using ophiolites as an analog for oceanic crust.

  5. Geochemical fingerprinting of ∼2.5 Ga forearc-arc-backarc related magmatic suites in the Bastar Craton, central India

    Science.gov (United States)

    Asthana, Deepanker; Kumar, Sirish; Vind, Aditya Kumar; Zehra, Fatima; Kumar, Harshavardhan; Pophare, Anil M.

    2018-05-01

    The Pitepani volcanic suite of the Dongargarh Supergroup, central India comprises of a calc-alkaline suite and a tholeiitic suite, respectively. The rare earth element (REE) patterns, mantle normalized plots and relict clinopyroxene chemistry of the Pitepani calc-alkaline suite are akin to high-Mg andesites (HMA) and reveal remarkable similarity to the Cenozoic Setouchi HMA from Japan. The Pitepani HMAs are geochemically correlated with similar rocks in the Kotri-Dongargarh mobile belt (KDMB) and in the mafic dykes of the Bastar Craton. The rationale behind lithogeochemical correlations are that sanukitic HMAs represent fore-arc volcanism over a very limited period of time, under abnormally high temperature conditions and are excellent regional and tectonic time markers. Furthermore, the tholeiitic suites that are temporally and spatially associated with the HMAs in the KDMB and in the mafic dykes of the Bastar Craton are classified into: (a) a continental back-arc suite that are depleted in incompatible elements, and (b) a continental arc suite that are more depleted in incompatible elements, respectively. The HMA suite, the continental back-arc and continental arc suites are lithogeochemically correlated in the KDMB and in the mafic dykes of the Bastar Craton. The three geochemically distinct Neoarchaean magmatic suites are temporally and spatially related to each other and to an active continental margin. The identification of three active continental margin magmatic suites for the first time, provides a robust conceptual framework to unravel the Neoarchaean geodynamic evolution of the Bastar Craton. We propose an active continental margin along the Neoarchaen KDMB with eastward subduction coupled with slab roll back or preferably, ridge-subduction along the Central Indian Tectonic Zone (CITZ) to account for the three distinct magmatic suites and the Neoarchean geodynamic evolution of the Bastar Craton.

  6. Susquehanna River Basin Hydrologic Observing System (SRBHOS)

    Science.gov (United States)

    Reed, P. M.; Duffy, C. J.; Dressler, K. A.

    2004-12-01

    In response to the NSF-CUAHSI initiative for a national network of Hydrologic Observatories, we propose to initiate the Susquehanna River Basin Hydrologic Observing System (SRBHOS), as the northeast node. The Susquehanna has a drainage area of 71, 410 km2. From the headwaters near Cooperstown, NY, the river is formed within the glaciated Appalachian Plateau physiographic province, crossing the Valley and Ridge, then the Piedmont, before finishing its' 444 mile journey in the Coastal Plain of the Chesapeake Bay. The Susquehanna is the major source of water and nutrients to the Chesapeake. It has a rich history in resource development (logging, mining, coal, agriculture, urban and heavy industry), with an unusual resilience to environmental degradation, which continues today. The shallow Susquehanna is one of the most flood-ravaged rivers in the US with a decadal regularity of major damage from hurricane floods and rain-on-snow events. As a result of this history, it has an enormous infrastructure for climate, surface water and groundwater monitoring already in place, including the nations only regional groundwater monitoring system for drought detection. Thirty-six research institutions have formed the SRBHOS partnership to collaborate on a basin-wide network design for a new scientific observing system. Researchers at the partner universities have conducted major NSF research projects within the basin, setting the stage and showing the need for a new terrestrial hydrologic observing system. The ultimate goal of SRBHOS is to close water, energy and solute budgets from the boundary layer to the water table, extending across plot, hillslope, watershed, and river basin scales. SRBHOS is organized around an existing network of testbeds (legacy watershed sites) run by the partner universities, and research institutions. The design of the observing system, when complete, will address fundamental science questions within major physiographic regions of the basin. A nested

  7. Transition of magma genesis estimated by change of chemical composition of Izu-bonin arc volcanism associated with spreading of Shikoku Basin

    Science.gov (United States)

    Haraguchi, S.; Ishii, T.

    2006-12-01

    Arc volcanism in the Izu-Ogasawara arc is separated into first and latter term at the separate of Shikoku Basin. Middle to late Eocene early arc volcanism formed a vast terrane of boninites and island arc tholeiites that is unlike active arc systems. A following modern-style arc volcanism was active during the Oligocene, along which intense tholeiitic and calc-alkaline volcanism continued until 29Ma, before spreading of the back- arc basin. The recent arc volcanism in the Izu-Ogasawara arc have started in the middle Miocene, and it is assumed that arc volcanism were decline during spreading of back-arc basin. In the northern Kyushu-Palau Ridge, submarine bottom materials were dredged during the KT95-9 and KT97-8 cruise by the R/V Tansei-maru, Ocean Research Institute, university of Tokyo, and basaltic to andesitic volcanic rocks were recovered during both cruise except for Komahashi-Daini Seamount where recovered acidic plutonic rocks. Komahashi-Daini Seamount tonalite show 37.5Ma of K-Ar dating, and this age indicates early stage of normal arc volcanism. These volcanic rocks are mainly cpx basalt to andesite. Two pyroxene basalt and andesite are only found from Miyazaki Seamount, northern end of the Kyushu-Palau Ridge. Volcanic rocks show different characteristics from first term volcanism in the Izu-Ogasawara forearc rise and recent arc volcanism. The most characteristic is high content of incompatible elements, that is, these volcanics show two to three times content of incompatible elements to Komahashi-Daini Seamount tonalite and former normal arc volcanism in the Izu outer arc (ODP Leg126), and higher content than recent Izu arc volcanism. This characteristic is similar to some volcanics at the ODP Leg59 Site448 in the central Kyushu- Palau Ridge. Site448 volcanic rocks show 32-33Ma of Ar-Ar ages, which considered beginning of activity of Parece Vela Basin. It is considered that the dredged volcanic rocks are uppermost part of volcanism before spreading of

  8. 退耕还林工程驱动下的土地利用变化合理性研究——以云南芒市为例%The Rationality Evaluation of Land Use Changes in the Middle and Low Mountain Basin and Valley Area of Southwest Yunnan Province Driven by the National Project of Converting Farmland to Forest:A Case Study in Luxi City

    Institute of Scientific and Technical Information of China (English)

    杨子生; 韩华丽; 朱玉碧; 赵乔贵

    2011-01-01

    In present study on land use/land cover change (LUCC), rationality analysis and evaluation of land use change has not been taken seriously. In particular, there is hardly any study on the theory and method system for evaluating rationality of land use change. By taking Luxi City as an example, which is located in the middle and low mountainous basin and valley area in southwest Yunnan, this paper has discussed the concept and connotation of rational degree of land use change and constructed the evaluation target, estimation method, and grading standard system for studying rational degree of land use change. Then, based on these, it has quantitatively analyzed and evaluated the rational degree of the change in every land use type and rational degree of the overall land use change driven by the nearly-eight-year Program of Converting Farmland to Forest in Luxi City. It aims to provide basic foundation for promoting the sustainable use of land resources in mountainous areas and scientific implementation of the Program of Converting Farmland to Forest. The evaluation results reveal the following facts: 1 ) During recent eight years, the whole city witnessed land use type changes in a total area of 77602.80 hm2. Rational degree ( RD value) of the change was only 48.98% while the irrational degree (ID value) was 51.02%, making the change at the "moderately rational" level. 2) Among all land use types, farmland, forest and waste grassland had the largest changes. Farmland was mainly changed into forest, garden plot and waste grassland, a result driven by the Program of Converting Farmland to Forest. During recent eight years, the whole city had 19661.07 hm2 of farmland converted to ecological uses. Of which, 18886. 09 hm2 were the farmland suitable for cultivation (farmland that "should not have been converted" ) and only 774. 98 hm2 were the farmland not suitable for cultivation ( farmland that "should be converted"). The nearly-eight-year Program of Converting

  9. Environmental setting and its relations to water quality in the Kanawha River basin

    Science.gov (United States)

    Messinger, Terence; Hughes, C.A.

    2000-01-01

    The Kanawha River and its major tributary, the New River, drain 12,233 mi2 in West Virginia, Virginia, and North Carolina. Altitude ranges from about 550 ft to more than 4,700 ft. The Kanawha River Basin is mountainous, and includes parts of three physiographic provinces, the Blue Ridge (17 percent), Valley and Ridge (23 percent), and Appalachian Plateaus (60 percent). In the Appalachian Plateaus Province, little of the land is flat, and most of the flat land is in the flood plains and terraces of streams; this has caused most development in this part of the basin to be near streams. The Blue Ridge Province is composed of crystalline rocks, and the Valley and Ridge and Appalachian Plateaus Provinces contain both carbonate and clastic rocks. Annual precipitation ranges from about 36 in. to more than 60 in., and is orographically affected, both locally and regionally. Average annual air temperature ranges from about 43?F to about 55?F, and varies with altitude but not physiographic province. Precipitation is greatest in the summer and least in the winter, and has the least seasonal variation in the Blue Ridge Province. In 1990, the population of the basin was about 870,000, of whom about 25 percent lived in the Charleston, W. Va. metropolitan area. About 75 million tons of coal were mined in the Kanawha River Basin in 1998. This figure represents about 45 percent of the coal mined in West Virginia, and about seven percent of the coal mined in the United States. Dominant forest types in the basin are Northern Hardwood, Oak-Pine, and Mixed Mesophytic. Agricultural land use is more common in the Valley and Ridge and Blue Ridge Provinces than in the Appalachian Plateaus Province. Cattle are the principal agricultural products of the basin. Streams in the Blue Ridge Province and Allegheny Highlands have the most runoff in the basin, and streams in the Valley and Ridge Province and the southwestern Appalachian Plateaus have the least runoff. Streamflow is greatest in the

  10. 27 CFR 9.27 - Lime Kiln Valley.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Lime Kiln Valley. 9.27... OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.27 Lime Kiln Valley. (a) Name. The name of the viticultural area described in this section is “Lime Kiln Valley...

  11. New insight on the water management in Ica Valley-Peru

    Science.gov (United States)

    Guttman, Joseph; Berger, Diego

    2014-05-01

    The Andes divide Peru into three natural drainage basins: Pacific basin, Atlantic basin and Lake Titicaca basin. According to the National Water Authority (ANA), the Pacific basin is the driest basin. The bulk of water that feed the local aquifers in the coastal Pacific region is coming from rivers that flow west from the Andes. One of them is the Ica River- source of the Ica Aquifer and the Pampas de Villacuri Aquifer. The Ica River flows in a graben that was created by a series of faults. The graben is filled with sand and gravel with interbeded and lenses of clay. The aquifer thickness varies between 25 meters to more than 200 meters. The Ica Valley has an extension of 7700 km2 and belongs to the Province of Ica, the second larger economic center in Peru. The Valley is located in the hyperarid region of the Southern Coastal area of Peru with a few millimeters of precipitation per year. The direct recharge is almost zero. The recharge into the Ica Valley aquifer is comes indirectly by infiltration of storm water through the riverbed generates in the Andes, through irrigation canals and by irrigation return flow. In this hyperarid region, local aquifers like the Ica Valley are extremely valuable resources to local populations and are the key sources of groundwater for agriculture and population needs. Therefore, these aquifers play a crucial role in providing people with water and intense attention should be given to manage the water sector properly and to keep the aquifer sustainable for future generations. The total pumping (from rough estimations) is much greater than the direct and indirect recharge. The deficit in the water balance is reflected in large water level decline, out of operation of shallow wells and the ascending of saline water from deeper layers. The change from flood irrigation that contributes about 35-40% of the water to the aquifer, to drip irrigation dramatically reduces the amount of water that infiltrates into the sub-surface from the

  12. Solos da bacia de Taubaté (Vale do Paraíba: levantamento de reconhecimento. Séries monotípicas, suas propriedades genético-morfológicas, físicas e químicas Soils of Taubaté basin (Paraíba Valley

    Directory of Open Access Journals (Sweden)

    F. C. Verdade

    1961-01-01

    Full Text Available A Bacia tie Taubaté corresponde a um «vale de afundimento», onde ocorreram sedimentações no período Terciário, estando atualmente moldada pelo rio Paraíba e seus tributários. A planície aluvial é extensa e de grande importância econômica para o Estado de São Paulo. No presente trabalho é apresentado o levantamento de reconhecimento dos solos da Bacia de Taubaté, cujas finalidades foram determinar as características fisicas e químicas das terras e sua extensão aproximada, visando fornecer dados para o planejamento geral de irrigação e drenagem, ao mesmo tempo que eram identificados os tipos de solos (séries monotipicas para o levantamento detalhado que se processa a partir do município de Pindamonhangaba. As categorias dos solos foram estabelecidas até séries monotípicas, mas a delimitação no campo, em mapas na escala de 1:100 0(0. foi feita nas unidades chamadas associação de séries. Procurou-se grupar na mesma associação solos que, pertencendo ao mesmo grande grupo e formação geológica, tivessem no perfil igual distribuição de classes texturais. Alguns solos, devido à sua pequena extensão ou da ocorrência íntima com outros de associações diferentes, fugiram à regra preliminarmente exposta. O levantamento abrange uma área de 222 980 hectares, incluindo a planície aluvial, as sedimentações terciárias e pequena faixa pré-cambriana que orla a Bacia. Foram estudados 151 perfis, caracterizando 48 séries monotípicas, grupadas em 18 associações de séries. A associação de séries A é constituída de solos pertencentes a sub-ordem Latossolo, formados em sedimentos do Terciário com textura argilosa em todos os horizontes. Os perfis dêstes solos apresentam um horizonte A3 normalmente adensado e um B friável. Compreendem as séries monotipicas: Borda, Cajuru, Feital, Gleba, Guatemala, Pinda, Pinhão, Polêmica, Ponte Alta, Rapadura e Ronco.The Taubaté Basin represents a > where sediments were

  13. Strong ground motion in the Kathmandu Valley during the 2015 Gorkha, Nepal, earthquake

    Science.gov (United States)

    Takai, Nobuo; Shigefuji, Michiko; Rajaure, Sudhir; Bijukchhen, Subeg; Ichiyanagi, Masayoshi; Dhital, Megh Raj; Sasatani, Tsutomu

    2016-01-01

    On 25 April 2015, a large earthquake of Mw 7.8 occurred along the Main Himalayan Thrust fault in central Nepal. It was caused by a collision of the Indian Plate beneath the Eurasian Plate. The epicenter was near the Gorkha region, 80 km northwest of Kathmandu, and the rupture propagated toward east from the epicentral region passing through the sediment-filled Kathmandu Valley. This event resulted in over 8000 fatalities, mostly in Kathmandu and the adjacent districts. We succeeded in observing strong ground motions at our four observation sites (one rock site and three sedimentary sites) in the Kathmandu Valley during this devastating earthquake. While the observed peak ground acceleration values were smaller than the predicted ones that were derived from the use of a ground motion prediction equation, the observed peak ground velocity values were slightly larger than the predicted ones. The ground velocities observed at the rock site (KTP) showed a simple velocity pulse, resulting in monotonic-step displacements associated with the permanent tectonic offset. The vertical ground velocities observed at the sedimentary sites had the same pulse motions that were observed at the rock site. In contrast, the horizontal ground velocities as well as accelerations observed at three sedimentary sites showed long duration with conspicuous long-period oscillations, due to the valley response. The horizontal valley response was characterized by large amplification (about 10) and prolonged oscillations. However, the predominant period and envelope shape of their oscillations differed from site to site, indicating a complicated basin structure. Finally, on the basis of the velocity response spectra, we show that the horizontal long-period oscillations on the sedimentary sites had enough destructive power to damage high-rise buildings with natural periods of 3 to 5 s.

  14. Geology of the north end of the Salt Valley Anticline, Grand County, Utah

    International Nuclear Information System (INIS)

    Gard, L.M. Jr.

    1976-01-01

    The geology and hydrology of a portion of the Salt Valley anticline lying north of Moab, Utah, that is being studied as a potential site for underground storage of nuclear waste in salt are discussed. Selection of this area was based on recommendations made in an earlier appraisal of the potential of Paradox basin salt deposits for such use. Salt Valley anticline, a northwest-trending diapiric structure, consists of Mesozoic sedimentary rocks arched over a thick core of salt of the Paradox Member of the Middle Pennsylvanian Hermosa Formation. Salt began to migrate to form and/or develop this structure shortly after it was deposited, probably in response to faulting. This migration caused upwelling of the salt creating a linear positive area. This positive area, in turn, caused increased deposition of sediments in adjacent areas which further enhanced salt migration. Not until late Jurassic time had flowage of the salt slowed sufficiently to allow sediments of the Morrison and younger formations to be deposited across the salt welt. A thick cap of insoluble residue was formed on top of the salt diapir as a result of salt dissolution through time. The crest of the anticline is breached; it collapsed in two stages during the Tertiary Period. The first stage was graben collapse during the early Tertiary; the second stage occurred after Miocene regional uplift had caused downcutting streams to breach the salt core resulting in further collapse. The axis of the anticline is a narrow generally flat-floored valley containing a few hills composed of downdropped Mesozoic rocks foundered in thecaprock. The caprock, which underlies thin alluvium in the valley, is composed of contorted gypsum, shale, sandstone, and limestone--the insoluble residue of the Paradox salt

  15. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley

    Science.gov (United States)

    Scanlon, Bridget R.; Faunt, Claudia C.; Longuevergne, Laurent; Reedy, Robert C.; Alley, William M.; McGuire, Virginia L.; McMahon, Peter B.

    2012-01-01

    Aquifer overexploitation could significantly impact crop production in the United States because 60% of irrigation relies on groundwater. Groundwater depletion in the irrigated High Plains and California Central Valley accounts for ∼50% of groundwater depletion in the United States since 1900. A newly developed High Plains recharge map shows that high recharge in the northern High Plains results in sustainable pumpage, whereas lower recharge in the central and southern High Plains has resulted in focused depletion of 330 km3 of fossil groundwater, mostly recharged during the past 13,000 y. Depletion is highly localized with about a third of depletion occurring in 4% of the High Plains land area. Extrapolation of the current depletion rate suggests that 35% of the southern High Plains will be unable to support irrigation within the next 30 y. Reducing irrigation withdrawals could extend the lifespan of the aquifer but would not result in sustainable management of this fossil groundwater. The Central Valley is a more dynamic, engineered system, with north/south diversions of surface water since the 1950s contributing to ∼7× higher recharge. However, these diversions are regulated because of impacts on endangered species. A newly developed Central Valley Hydrologic Model shows that groundwater depletion since the 1960s, totaling 80 km3, occurs mostly in the south (Tulare Basin) and primarily during droughts. Increasing water storage through artificial recharge of excess surface water in aquifers by up to 3 km3 shows promise for coping with droughts and improving sustainability of groundwater resources in the Central Valley. PMID:22645352

  16. The geometry of pull-apart basins in the southern part of Sumatran strike-slip fault zone

    Science.gov (United States)

    Aribowo, Sonny

    2018-02-01

    Models of pull-apart basin geometry have been described by many previous studies in a variety tectonic setting. 2D geometry of Ranau Lake represents a pull-apart basin in the Sumatran Fault Zone. However, there are unclear geomorphic traces of two sub-parallel overlapping strike-slip faults in the boundary of the lake. Nonetheless, clear geomorphic traces that parallel to Kumering Segment of the Sumatran Fault are considered as inactive faults in the southern side of the lake. I demonstrate the angular characteristics of the Ranau Lake and Suoh complex pull-apart basins and compare with pull-apart basin examples from published studies. I use digital elevation model (DEM) image to sketch the shape of the depression of Ranau Lake and Suoh Valley and measure 2D geometry of pull-apart basins. This study shows that Ranau Lake is not a pull-apart basin, and the pull-apart basin is actually located in the eastern side of the lake. Since there is a clear connection between pull-apart basin and volcanic activity in Sumatra, I also predict that the unclear trace of the pull-apart basin near Ranau Lake may be covered by Ranau Caldera and Seminung volcanic products.

  17. The Brahmaputra River: a stratigraphic analysis of Holocene avulsion and fluvial valley reoccupation history

    Science.gov (United States)

    Hartzog, T. R.; Goodbred, S. L.

    2011-12-01

    The Brahmaputra River, one of the world's largest braided streams, is a major component of commerce, agriculture, and transportation in India and Bangladesh. Hence any significant change in course, morphology, or behavior would be likely to influence the regional culture and economy that relies on this major river system. The history of such changes is recorded in the stratigraphy deposited by the Brahmaputra River during the Holocene. Here we present stratigraphic analysis of sediment samples from the boring of 41 tube wells over a 120 km transect in the upper Bengal Basin of northern Bangladesh. The transect crosses both the modern fluvial valley and an abandoned fluvial valley about 60 km downstream of a major avulsion node. Although the modern Brahmaputra does not transport gravel, gravel strata are common below 20 m with fluvial sand deposits dominating most of the stratigraphy. Furthermore, the stratigraphy preserves very few floodplain mud strata below the modern floodplain mud cap. These preliminary findings will be assessed to determine their importance in defining past channel migration, avulsion frequency, and the reoccupation of abandoned fluvial valleys. Understanding the avulsion and valley reoccupation history of the Brahmaputra River is important to assess the risk involved with developing agriculture, business, and infrastructure on the banks of modern and abandoned channels. Based on the correlation of stratigraphy and digital surface elevation data, we hypothesize that the towns of Jamalpur and Sherpur in northern Bangladesh were once major ports on the Brahmaputra River even though they now lie on the banks of small underfit stream channels. If Jamalpur and Sherpur represent the outer extent of the Brahmaputra River braid-belt before the last major avulsion, these cities and any communities developed in the abandoned braid-belt assume a high risk of devastation if the next major avulsion reoccupies this fluvial valley. It is important to

  18. Availability of high-magnitude streamflow for groundwater banking in the Central Valley, California

    Science.gov (United States)

    Kocis, Tiffany N.; Dahlke, Helen E.

    2017-08-01

    California’s climate is characterized by the largest precipitation and streamflow variability observed within the conterminous US This, combined with chronic groundwater overdraft of 0.6-3.5 km3 yr-1, creates the need to identify additional surface water sources available for groundwater recharge using methods such as agricultural groundwater banking, aquifer storage and recovery, and spreading basins. High-magnitude streamflow, i.e. flow above the 90th percentile, that exceeds environmental flow requirements and current surface water allocations under California water rights, could be a viable source of surface water for groundwater banking. Here, we present a comprehensive analysis of the magnitude, frequency, duration and timing of high-magnitude streamflow (HMF) for 93 stream gauges covering the Sacramento, San Joaquin and Tulare basins in California. The results show that in an average year with HMF approximately 3.2 km3 of high-magnitude flow is exported from the entire Central Valley to the Sacramento-San Joaquin Delta often at times when environmental flow requirements of the Delta and major rivers are exceeded. High-magnitude flow occurs, on average, during 7 and 4.7 out of 10 years in the Sacramento River and the San Joaquin-Tulare Basins, respectively, from just a few storm events (5-7 1-day peak events) lasting for 25-30 days between November and April. The results suggest that there is sufficient unmanaged surface water physically available to mitigate long-term groundwater overdraft in the Central Valley.

  19. A comprehensive analysis of high-magnitude streamflow and trends in the Central Valley, California

    Science.gov (United States)

    Kocis, T. N.; Dahlke, H. E.

    2017-12-01

    California's climate is characterized by the largest precipitation and streamflow variability observed within the conterminous US. This, combined with chronic groundwater overdraft of 0.6-3.5 km3 yr-1, creates the need to identify additional surface water sources available for groundwater recharge using methods such as agricultural groundwater banking, aquifer storage and recovery, and spreading basins. High-magnitude streamflow, i.e. flow above the 90th percentile, that exceeds environmental flow requirements and current surface water allocations under California water rights, could be a viable source of surface water for groundwater banking. Here, we present a comprehensive analysis of the magnitude, frequency, duration and timing of high-magnitude streamflow (HMF "metrics") over multiple time periods for 93 stream gauges covering the Sacramento, San Joaquin and Tulare basins in California. In addition, we present trend analyses conducted on the same dataset and all HMF metrics using generalized additive models, the Mann-Kendall trend test, and the Signal to Noise Ratio test. The results of the comprehensive analysis show, in short, that in an average year with HMF approximately 3.2 km3 of high-magnitude flow is exported from the entire Central Valley to the Sacramento-San Joaquin Delta, often at times when environmental flow requirements of the Delta and major rivers are exceeded. High-magnitude flow occurs, on average, during 7 and 4.7 out of 10 years in the Sacramento River and the San Joaquin-Tulare Basins, respectively, from just a few storm events (5-7 1-day peak events) lasting for a total of 25-30 days between November and April. Preliminary trend tests suggest that all HMF metrics show limited change over the last 50 years. As a whole, the results suggest that there is sufficient unmanaged surface water physically available to mitigate long-term groundwater overdraft in the Central Valley.

  20. Babesiosis in Lower Hudson Valley, New York

    Centers for Disease Control (CDC) Podcasts

    2011-05-12

    This podcast discusses a study about an increase in babesiosis in the Lower Hudson Valley of New York state. Dr. Julie Joseph, Assistant Professor of Medicine at New York Medical College, shares details of this study.  Created: 5/12/2011 by National Center for Emerging Zoonotic and Infectious Diseases (NCEZID).   Date Released: 5/23/2011.

  1. Rift Valley Fever, Mayotte, 2007–2008

    Science.gov (United States)

    Giry, Claude; Gabrie, Philippe; Tarantola, Arnaud; Pettinelli, François; Collet, Louis; D’Ortenzio, Eric; Renault, Philippe; Pierre, Vincent

    2009-01-01

    After the 2006–2007 epidemic wave of Rift Valley fever (RVF) in East Africa and its circulation in the Comoros, laboratory case-finding of RVF was conducted in Mayotte from September 2007 through May 2008. Ten recent human RVF cases were detected, which confirms the indigenous transmission of RFV virus in Mayotte. PMID:19331733

  2. SADF EARLYIRON AGE EXCAVATIONS IN THETUGELA VALLEY

    African Journals Online (AJOL)

    effect of the high flanking ridges of the Tugela. Valley. The high ... fire. Police intervention and the Bhengu superior- ity in numbers brought an end to the fights just prior to the ..... The tail and three legs of the reptile are miss- ing . . ~C£.'.':.-:".

  3. Geomorphological hazards in Swat valley, Pakistan

    International Nuclear Information System (INIS)

    Usman, A.

    1999-01-01

    This study attempts to describe, interpret and analyze, in depth, the varied geomorphological hazards and their impacts prevailing in the swat valley locate in the northern hilly and mountainous regions of Pakistan. The hills and mountains re zones of high geomorphological activity with rapid rates of weathering, active tectonic activities, abundant precipitation, rapid runoff and heavy sediment transport. Due to the varied topography, lithology, steep slope, erodible soil, heavy winter snowfall and intensive rainfall in the spring and summer seasons, several kinds of geomorphological hazards, such as geomorphic gravitational hazards, Fluvial hazards, Glacial hazards, Geo tectonic hazards, are occurring frequently in swat valley. Amongst them, geomorphic gravitational hazards, such as rock fall rock slide, debris slide mud flow avalanches, are major hazards in mountains and hills while fluvial hazards and sedimentation are mainly confined to the alluvial plain and lowlands of the valley. The Getechtonic hazards, on the other hand, have wide spread distribution in the valley the magnitude and occurrence of each king of hazard is thus, varied according to intensity of process and physical geographic environment. This paper discusses the type distribution and damage due to the various geomorphological hazards and their reduction treatments. The study would to be of particular importance and interest to both natural and social scientists, as well as planner, environmentalists and decision-makers for successful developmental interventions in the region. (author)

  4. Antelope Valley Community College District Education Center.

    Science.gov (United States)

    Newmyer, Joe

    An analysis is provided of a proposal to the Board of Governors of the California Community Colleges by the Antelope Valley Community College District (AVCCD) to develop an education center in Palmdale to accommodate rapid growth. First, pros and cons are discussed for the following major options: (1) increase utilization and/or expand the…

  5. Ecological Researches in the Yagnob Valley

    International Nuclear Information System (INIS)

    Razykov, Z.A.; Yunusov, M.M.; Bezzubov, N.I.; Murtazaev, Kh.; Fajzullaev, B.G.

    2002-01-01

    The article dwells on the resents of the estimation of the ecology surroundings of the Yagnob Valley. The researches included appraisal of radiation background, determination of the amount of heavy and radioactive elements in soil, bottom sedimentations, ashes in plants, water in rivers and wells. Designing on the premise of the researches implemented the ecology surrounding are estimated as propitious man's habitation. (Authors)

  6. 27 CFR 9.174 - Yadkin Valley.

    Science.gov (United States)

    2010-04-01

    ...”. (b) Approved maps. The appropriate maps for determining the boundaries of the Yadkin Valley...-Salem, N.C.; VA; Tenn. (1953, Limited Revision 1962), and, (2) Charlotte, North Carolina; South Carolina... North Carolina within Wilkes, Surry, Yadkin and portions of Stokes, Forsyth, Davidson, and Davie...

  7. 27 CFR 9.41 - Lancaster Valley.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Lancaster Valley. 9.41 Section 9.41 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... through the town of Gap and along Mine Ridge to the 76°07′30″ west longitude line in Paradise Township. (9...

  8. NNSS Soils Monitoring: Plutonium Valley (CAU 366)

    International Nuclear Information System (INIS)

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George; Campbell, Scott

    2012-01-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

  9. College in Paradise! (Paradise Valley Shopping Mall).

    Science.gov (United States)

    Schoolland, Lucile B.

    Rio Salado Community College (RSCC), a non-campus college within the Maricopa Community College District, offers hundreds of day, late afternoon, and evening classes at locations throughout the county. The Paradise Valley community had always participated heavily in the evening classes offered by RSCC at local high schools. In fall 1982, an effort…

  10. Poultry Slaughter facility Zambezi Valley, Mozambique

    NARCIS (Netherlands)

    Vernooij, A.G.; Wilschut, S.

    2015-01-01

    This business plan focuses on the establishment of a slaughterhouse, one of the essential elements of a sustainable and profitable poultry meat value chain. There is a growing demand for poultry meat in the Zambezi Valley, and currently a large part of the consumed broilers comes from other parts of

  11. Business plan Hatchery Facility Zambezi Valley, Mozambique

    NARCIS (Netherlands)

    Vernooij, A.G.; Wilschut, S.

    2015-01-01

    This business plan focuses on the establishment of a hatchery, one of the essential elements of a sustainable and profitable poultry meat value chain. There is a growing demand for poultry meat in the Zambezi Valley, and currently a large part of the consumed broilers comes from other parts of the

  12. Eco-Hydrological Modelling of Stream Valleys

    DEFF Research Database (Denmark)

    Johansen, Ole

    a flow reduction in the order of 20 % in a natural spring, whereas no effect could be measured in neither short nor deep piezometers in the river valley 50 m from the spring. Problems of measuring effects of pumping are partly caused by disturbances from natural water level fluctuations. In this aspect...

  13. Quaternary base-level drops and trigger mechanisms in a closed basin: Geomorphic and sedimentological studies of the Gastre Basin, Argentina

    Science.gov (United States)

    Bilmes, Andrés; Veiga, Gonzalo D.; Ariztegui, Daniel; Castelltort, Sébastien; D'Elia, Leandro; Franzese, Juan R.

    2017-04-01

    Evaluating the role of tectonics and climate as possible triggering mechanisms of landscape reconfigurations is essential for paleoenvironmental and paleoclimatic reconstructions. In this study an exceptional receptive closed Quaternary system of Patagonia (the Gastre Basin) is described, and examined in order to analyze factors triggering base-level drops. Based on a geomorphological approach, which includes new tectonic geomorphology investigations combined with sedimentological and stratigraphic analysis, three large-scale geomorphological systems were identified, described and linked to two major lake-level highstands preserved in the basin. The results indicate magnitudes of base-level drops that are several orders of magnitude greater than present-day water-level fluctuations, suggesting a triggering mechanism not observed in recent times. Direct observations indicating the occurrence of Quaternary faults were not recorded in the region. In addition, morphometric analyses that included mountain front sinuosity, valley width-height ratio, and fan apex position dismiss tectonic fault activity in the Gastre Basin during the middle Pleistocene-Holocene. Therefore, we suggest here that upper Pleistocene climate changes may have been the main triggering mechanism of base-level falls in the Gastre Basin as it is observed in other closed basins of central Patagonia (i.e., Carri Laufquen Basin).

  14. The geochemistry of groundwater resources in the Jordan Valley: The impact of the Rift Valley brines

    Science.gov (United States)

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Polak, A.; Shavit, U.

    2007-01-01

    The chemical composition of groundwater in the Jordan Valley, along the section between the Sea of Galilee and the Dead Sea, is investigated in order to evaluate the origin of the groundwater resources and, in particular, to elucidate the role of deep brines on the chemical composition of the regional groundwater resources in the Jordan Valley. Samples were collected from shallow groundwater in research boreholes on two sites in the northern and southern parts of the Jordan Valley, adjacent to the Jordan River. Data is also compiled from previous published studies. Geochemical data (e.g., Br/Cl, Na/Cl and SO4/Cl ratios) and B, O, Sr and S isotopic compositions are used to define groundwater groups, to map their distribution in the Jordan valley, and to evaluate their origin. The combined geochemical tools enabled the delineation of three major sources of solutes that differentially affect the quality of groundwater in the Jordan Valley: (1) flow and mixing with hypersaline brines with high Br/Cl (>2 ?? 10-3) and low Na/Cl (shallow saline groundwaters influenced by brine mixing exhibit a north-south variation in their Br/Cl and Na/Cl ratios. This chemical trend was observed also in hypersaline brines in the Jordan valley, which suggests a local mixing process between the water bodies. ?? 2007 Elsevier Ltd. All rights reserved.

  15. The Impact of the Bituminous Coal Combustion from the Thermoelectric Power Plant from Paroseni on the Environment of Jiu Valley

    Directory of Open Access Journals (Sweden)

    Mircea Rebrisoreanu

    2002-04-01

    Full Text Available The Jiu Valley Basin is one of the most important coal mining areas in Romania. Other industries, including a power plant, are also well developed in this area. Therefore, pollution is very high. One of the most polluted environmental compounds is the air. High mountains surround the Jiu Valley, which makes difficult the air refreshing. For this reason, it is very important to discuss the air pollution and especially that produced by dust. Since the industrial companies are concentrated in a small area, it is very difficult to identify and prosecute the polluting one. The present paper aims to identify the sources of air pollution, especially among the mining companies, because the power plant is considered the most important polluting agent in this area.

  16. Potential impact on water resources from future volcanic eruptions at Long Valley, Mono County, California, U.S.A

    International Nuclear Information System (INIS)

    Hopson, R.F.

    1991-01-01

    Earthquakes, ground deformation, and increased geothermal activity at Long Valley caldera after mid-1980 suggest the possibility of a volcanic eruption in the near future. An eruption there could have serious consequences for the City of Los Angeles, depending on the magnitude and volume of materials ejected because surface water in Mono Basin plus surface and groundwater in Owens Valley accounts for about 80% of its water supply. Eruptions of moderate to very large magnitude could impede the supply of water from this area for several days, weeks, or even years by discharging small to large volumes of volcanic ash and causing lahars. Soon after an eruption, water quality would likely be affected by the accumulation of organic debris and microorganisms in surface waters

  17. A valley-filtering switch based on strained graphene.

    Science.gov (United States)

    Zhai, Feng; Ma, Yanling; Zhang, Ying-Tao

    2011-09-28

    We investigate valley-dependent transport through a graphene sheet modulated by both the substrate strain and the fringe field of two parallel ferromagnetic metal (FM) stripes. When the magnetizations of the two FM stripes are switched from the parallel to the antiparallel alignment, the total conductance, valley polarization and valley conductance excess change greatly over a wide range of Fermi energy, which results from the dependence of the valley-related transmission suppression on the polarity configuration of inhomogeneous magnetic fields. Thus the proposed structure exhibits the significant features of a valley-filtering switch and a magnetoresistance device.

  18. A valley-filtering switch based on strained graphene

    International Nuclear Information System (INIS)

    Zhai Feng; Ma Yanling; Zhang Yingtao

    2011-01-01

    We investigate valley-dependent transport through a graphene sheet modulated by both the substrate strain and the fringe field of two parallel ferromagnetic metal (FM) stripes. When the magnetizations of the two FM stripes are switched from the parallel to the antiparallel alignment, the total conductance, valley polarization and valley conductance excess change greatly over a wide range of Fermi energy, which results from the dependence of the valley-related transmission suppression on the polarity configuration of inhomogeneous magnetic fields. Thus the proposed structure exhibits the significant features of a valley-filtering switch and a magnetoresistance device. (paper)

  19. Airborne and ground-based transient electromagnetic mapping of groundwater salinity in the Machile–Zambezi Basin, southwestern Zambia

    DEFF Research Database (Denmark)

    Chongo, Mkhuzo; Vest Christiansen, Anders; Tembo, Alice

    2015-01-01

    The geological and morphological evolution of the Kalahari Basin of Southern Africa has given rise to a complex hydrogeological regime that is affected by water quality issues. Among these concerns is the occurrence of saline groundwater. Airborne and ground-based electromagnetic surveying...... of a low-resistivity (below 13 Ωm) valley that extends southwestwards into the Makgadikgadi salt pans. The electrical resistivity distribution is indicative of a full graben related to the Okavango–Linyati Fault system as a result of propagation of the East African Rift Valley System into Southern Africa...

  20. CRYOGENESIS AND GEODYNAMICS OF ICING VALLEYS

    Directory of Open Access Journals (Sweden)

    V. R. Alekseyev

    2015-01-01

    annual air temperature, and the higher is the annual percentage of the territory covered by aufeis ice. The aufeis ratio of the permafrost zone is determined from parameters of over 10000 ice fields and amounts to 0.66 % (50000 km2. In mountains and tablelands, the total area of aufeis deposits amounts to 40000 km2, and the number of ice clusters (0.77 km2 in average exceeds 60000. On the rivers up to 500 km long, the aufeis size depends on the stream rank. In all the natural zones, the majority of gigantic aufeis spots produced by groundwater are located in river valleys of ranks 3 and 4. The square area of aufeis deposits of mixed feed, i.e. produced by river water and groundwater, which occupy the entire river channel, yet do not go beyond the floodplain, amounts to 68000 km2, i.e. by a factor of 1.7 larger than the area of all the aufeis deposits (taryns. The cumulative channel-forming effect of aufeis phenomena is expressed by an increment in the channel network relative to characteristics of the river segments located upstream and downstream of the aufeis glade. This indicator is well correlated with the aufeis ratios of the river basins, morphostructural and cryo-hydrometeorological conditions of the territory under study. The incremental length of the channel network, ρn per one groundwater aufeis deposit is increased, in average, from 3.5 km in mountains in the southern regions of East Siberia to 23 km in the Verkhoyansk-Kolyma mountain system and Chukotka. The value of ρn is decreased to 2.2 km in the plains and intermountain depressions of the Baikal rift system where the average dimensions of the ice fields are smaller. An average incremental length of the channel network per one large groundwater aufeis deposit amounts to 12.2 km, and the total incremental length in continuous and discontinuous permafrost areas (F=7.6 mln km2 is estimated at 690000 km.Combined impacts of aufeis and icing processes on underlying rocks and the channel network is a specific

  1. Preliminary three-dimensional geohydrologic framework of the San Antonio Creek Groundwater Basin, Santa Barbara County, California

    Science.gov (United States)

    Cromwell, G.; Sweetkind, D. S.; O'leary, D. R.

    2017-12-01

    The San Antonio Creek Groundwater Basin is a rural agricultural area that is heavily dependent on groundwater to meet local water demands. The U.S. Geological Survey (USGS) is working cooperatively with Santa Barbara County and Vandenberg Air Force Base to assess the quantity and quality of the groundwater resources within the basin. As part of this assessment, an integrated hydrologic model that will help stakeholders to effectively manage the water resources in the basin is being developed. The integrated hydrologic model includes a conceptual model of the subsurface geology consisting of stratigraphy and variations in lithology throughout the basin. The San Antonio Creek Groundwater Basin is a relatively narrow, east-west oriented valley that is structurally controlled by an eastward-plunging syncline. Basin-fill material beneath the valley floor consists of relatively coarse-grained, permeable, marine and non-marine sedimentary deposits, which are underlain by fine-grained, low-permeability, marine sedimentary rocks. To characterize the system, surficial and subsurface geohydrologic data were compiled from geologic maps, existing regional geologic models, and lithology and geophysical logs from boreholes, including two USGS multiple-well sites drilled as part of this study. Geohydrologic unit picks and lithologic variations are incorporated into a three-dimensional framework model of the basin. This basin (model) includes six geohydrologic units that follow the structure and stratigraphy of the area: 1) Bedrock - low-permeability marine sedimentary rocks; 2) Careaga Formation - fine to coarse grained near-shore sandstone; 3) Paso Robles Formation, lower portion - sandy-gravely deposits with clay and limestone; 4) Paso Robles Formation, middle portion - clayey-silty deposits; 5) Paso Robles Formation, upper portion - sandy-gravely deposits; and 6) recent Quaternary deposits. Hydrologic data show that the upper and lower portions of the Paso Robles Formation are

  2. Origin and Evolution of Li-rich Brines at Clayton Valley, Nevada, USA

    Science.gov (United States)

    Munk, L. A.; Bradley, D. C.; Hynek, S. A.; Chamberlain, C. P.

    2011-12-01

    Lithium is the key component in Li-ion batteries which are the primary energy storage for electric/hybrid cars and most electronics. Lithium is also an element of major importance on a global scale because of interest in increasing reliance on alternative energy sources. Lithium brines and pegmatites are the primary and secondary sources, respectively of all produced Li. The only Li-brine in the USA that is currently in production exists in Clayton Valley, NV. The groundwater brines at Clayton Valley are located in a closed basin with an average evaporation rate of 142 cm/yr. The brines are pumped from six aquifer units that are composed of varying amounts of volcanic ash, gravel, salt, tufa, and fine-grained sediments. Samples collected include spring water, fresh groundwater, groundwater brine, and meteoric water (snow). The brines are classified as Na-Cl waters and the springs and fresh groundwater have a mixed composition and are more dilute than the brines. The Li content of the waters in Clayton Valley ranges from less than 1 μg/L (snow) up to 406.9 mg/L in the lower ash aquifer system (one of six aquifers in the basin). The cold springs surrounding Clayton Valley have Li concentrations of about 1 mg/L. A hot spring located just east of Clayton Valley contains 1.6 mg/L Li. The Li concentration of the fresh groundwater is less than 1 mg/L. Hot groundwater collected in the basin contain 30-40 mg/L Li. Water collected from a geothermal drilling north of Silver Peak, NV, had water with 4.9 mg/L Li at a depth of >1000m. The δD and δ18O isotopic signatures of fresh groundwater and brine form an evaporation path that extends from the global meteoric water line toward the brine from the salt aquifer system (the most isotopically enriched brine with ave. δD = -3.5, ave. δ18O = -67.0). This suggests that mixing of inflow water with the salt aquifer brine could have played an important role in the evolution of the brines. Along with mixing, evaporation appears to

  3. Neotectonic Studies of the Lake Ohrid Basin (FYROM/Albania)

    Science.gov (United States)

    Nadine, H.; Liermann, A.; Glasmacher, U. A.; Reicherter, K. R.

    2010-12-01

    active regions, where erosion cannot outpace the fault slip and are in general getting younger towards the center of the basin. Other characteristics are well preserved wineglass-shaped valleys and triangular facets. In contrast, the plains that stretch along the shore north and south of the lake are dominated by clastic input related to climate variations and uplift/erosion. Apatite fission track analysis shows a range of the apparent ages from 56.5±3.1 to 10.5±0.9 Ma, with a spatial distribution that gives evidence for the activation of separate blocks with differing exhumation and rock uplift history. Fission-track ages from molasses and flysch sediments of the basin fillings show distinctly younger ages than those from basement units. Generally, the Prespa Basin, which is located east of Ohrid Basin, reveals A-FT-ages around 10 Ma close to normal faults, whereas modelling results of the Ohrid Basin suggest a rapid uplift initiated around 1.4 Ma associated with uplift rates on the order of 1 mm/a. Therefore, we assume a westward migration of the extensional basin formation, as the initiation of the Prespa Basin can be placed well before the formation of the Ohrid Basin.

  4. Observations of basin ground motions from a dense seismic array in San Jose, California

    Science.gov (United States)

    Frankel, A.; Carver, D.; Cranswick, E.; Bice, T.; Sell, R.; Hanson, S.

    2001-01-01

    We installed a dense array of 41 digital seismographs in San Jose, California, to evaluate in detail the effects of a deep sedimentary basin and shallow sedimentary deposits on earthquake ground motions. This urban array is located near the eastern edge of the Santa Clara Valley and spans the Evergreen sedimentary basin identified by gravity data. Average station spacing is 1 km, with three stations initially spaced 110 m apart. Despite the high-noise urban environment, the stations of the array successfully triggered on and recorded small local earthquakes (M 2.5-2.8 at 10-25 km distance) and larger regional events such as the M 5.0 Bolinas earthquake (90 km distance), M 4.6-5.6 earthquakes near Mammoth Lakes (270 km distance), M 4.9-5.6 events in western Nevada (420 km distance) and the M 7.1 Hector Mine earthquake (590 km distance). Maps of spectral ratios across the array show that the highest amplitudes in all frequency bands studied (0.125-8 Hz) are generally observed at stations farther from the eastern edge of the Santa Clara Valley. Larger spectral amplitudes are often observed above the western edge of the Evergreen Basin. Snapshots of the recorded wavefield crossing the array for regional events to the east reveal that large, low-frequency (0.125-0.5 Hz) arrivals after the S-wave travel from south to north across the array. A moving-window, cross-correlation analysis finds that these later arrivals are surface waves traveling from the south. The timing and propagation direction of these arrivals indicates that they were likely produced by scattering of incident S waves at the border of the Santa Clara Valley to the south of the array. It is remarkable that the largest low-frequency phases at many of the valley sites for regional events to the east are basin surface waves coming from a direction about 70 degrees different from that of the epicenters. Basin surface waves emanating from the eastern edge of the valley are also identified by the cross

  5. Assessment of regional change in nitrate concentrations in groundwater in the Central Valley, California, USA, 1950s-2000s

    Science.gov (United States)

    Burow, Karen R.; Jurgens, Bryant C.; Belitz, Kenneth; Dubrovsky, Neil M.

    2013-01-01

    A regional assessment of multi-decadal changes in nitrate concentrations was done using historical data and a spatially stratified non-biased approach. Data were stratified into physiographic subregions on the basis of geomorphology and soils data to represent zones of historical recharge and discharge patterns in the basin. Data were also stratified by depth to represent a shallow zone generally representing domestic drinking-water supplies and a deep zone generally representing public drinking-water supplies. These stratifications were designed to characterize the regional extent of groundwater with common redox and age characteristics, two factors expected to influence changes in nitrate concentrations over time. Overall, increasing trends in nitrate concentrations and the proportion of nitrate concentrations above 5 mg/L were observed in the east fans subregion of the Central Valley. Whereas the west fans subregion has elevated nitrate concentrations, temporal trends were not detected, likely due to the heterogeneous nature of the water quality in this area and geologic sources of nitrate, combined with sparse and uneven data coverage. Generally low nitrate concentrations in the basin subregion are consistent with reduced geochemical conditions resulting from low permeability soils and higher organic content, reflecting the distal portions of alluvial fans and historical groundwater discharge areas. Very small increases in the shallow aquifer in the basin subregion may reflect downgradient movement of high nitrate groundwater from adjacent areas or overlying intensive agricultural inputs. Because of the general lack of regionally extensive long-term monitoring networks, the results from this study highlight the importance of placing studies of trends in water quality into regional context. Earlier work concluded that nitrate concentrations were steadily increasing over time in the eastern San Joaquin Valley, but clearly those trends do not apply to other

  6. Temperature Inversions and Permafrost Distribution in a Mountain Valley: Preliminary Results From Wolf Creek, Yukon Territory, Canada

    Science.gov (United States)

    Lewkowicz, A. G.; Smith, K. M.

    2004-12-01

    The BTS (Basal Temperature of Snow) method to predict permafrost probability in mountain basins uses elevation as an easily available and spatially distributed independent variable. The elevation coefficient in the BTS regression model is, in effect, a substitute for ground temperature lapse rates. Previous work in Wolf Creek (60° 8'N 135° W), a mountain basin near Whitehorse, has shown that the model breaks down in a mid-elevation valley (1250 m asl) where actual permafrost probability is roughly twice that predicted by the model (60% vs. 20-30%). The existence of a double tree-line at the site suggested that air temperature inversions might be the cause of this inaccuracy (Lewkowicz and Ednie, 2004). This paper reports on a first year (08/2003-08/2004) of hourly air and ground temperature data collected along an altitudinal transect within the valley in upper Wolf Creek. Measurements were made at sites located 4, 8, 22, 82 and 162 m above the valley floor. Air temperature inversions between the lowest and highest measurement points occurred 42% of the time and in all months, but were most frequent and intense in winter (>60% of December and January) and least frequent in September (snow cover. In many cases, however, air temperature inversions are not duplicated in the ground temperature record. Nevertheless, the annual altitudinal ground temperature gradient is much lower than would be expected from a standard atmospheric lapse rate, suggesting that the inversions do have an important impact on permafrost distribution at this site. More generally, therefore, it appears probable that any reduction in inversion frequency resulting from a more vigorous atmospheric circulation in the context of future climate change, would have a significant effect on permafrost distribution in mountain basins.

  7. New structural/tectonical model and its implication on hydrological thinking and groundwater management - the Lake Tiberias, Jordan Rift Valley

    Science.gov (United States)

    Inbar, Nimrod; Magri, Fabien; Yellin-Dror, Annat; Rosenthal, Eliahu; Möller, Peter; Siebert, Christian; Guttman, Josef

    2014-05-01

    Lake Tiberias is a fresh water lake located at the Kinneret basin which is approximately 30 km long and 10 km wide. It comprises a link in the chain of pull-apart basins that characterizes the structure of the conspicuous Jordan Rift Valley (JRV). The basin surface is about 200 m below mean sea level (msl) and basin-fill attains a thickness of up to 8 km. Until recently, studies focused mainly on the upper strata of basin fill. Consequently, a complete three dimensional geological model, including clear view of the tectonic framework at the Kinneret Basin was incomplete. This situation imposes great difficulty in understanding the local hydrological system and as consequence enforce constrains on groundwater management of the regional aquifers that flows towards the lake. A recently proposed structural/tectonical model (Inbar, 2012) enables revaluation of several geohydrological aspects at Sea of Galilee and its surroundings and a new hydrological model based on those findings aims to clarify those aspects with relation to groundwater management. The deep-seated stratigraphical units were seismically studied at the Kinnarot Valley (southern part of Kinneret basin) where sufficient information is available (Inbar, 2012). This study shows the subsidence and northwestward tilting of the basin floor (pre-rift formations) and the flow of thick Late Miocene salt accumulation accordingly. Furthermore, shallower seismic data, collected at the lake itself, shows a suspected salt dome close to the western boundary fault of the basin (Resnikov et al., 2004). Salt flow is now suggested to be a substantial factor in the tectonic play. At the lake surroundings there are several springs and boreholes where brine immerges from an estimated depth of about 2-3 kilometers. Significant differences in brine characteristics raised questions regarding the location of brine traps, flow mechanism and the mixture process between the fresh water and the brine. However, the effect of the

  8. Recycled Archean sulfur in the mantle wedge of the Mariana Forearc and microbial sulfate reduction within an extremely alkaline serpentine seamount

    Science.gov (United States)

    Aoyama, Shinnosuke; Nishizawa, Manabu; Miyazaki, Junichi; Shibuya, Takazo; Ueno, Yuichiro; Takai, Ken

    2018-06-01

    The identification of microbial activity under extreme conditions is important to define potential boundaries of the habitable and uninhabitable zones of terrestrial and extraterrestrial living forms. The subseafloor regimes of serpentinite seamounts in the Mariana Forearc are among the most extreme environments for life on earth owing to the widespread presence of highly alkaline fluids with pH values greater than 12. The potential activity of sulfate-reducing microorganisms has been suggested within the South Chamorro serpentinite seamounts on the basis of depletion of sulfate and enrichment of dissolved sulfide in pore water. However, the vertical distribution of sulfate-reducing microorganisms and the origin of sulfate are still uncertain. To address these issues, we analyzed quadruple sulfur isotopes of sulfide minerals and pore water sulfate in the upper 56 m of sedimentary sequences at the summit of the S. Chamorro Seamount and those of dissolved sulfate in upwelling fluids collected as deep as 202 mbsf (meters below the seafloor) in a cased hole near the summit of the same seamount. The depth profiles of the concentrations and the δ34S and Δ33S‧ values of sulfide minerals and pore water sulfate indicate microbial sulfate reduction as deep as 30 mbsf. Further, apparent isotopic fractionations (34ε) and exponents of mass dependent relationships (33λ) during sulfate reduction are estimated to be 62 ± 14‰ and 0.512 ± 0.002, respectively. The upwelling fluids show both the chlorine depletion relative to seawater and the negative δ15N values of ammonia (-4‰). Although these signatures point to dehydration of the subducting oceanic plate, the negative Δ33S‧ values of sulfate (-0.16‰ to -0.26‰ with analytical errors of ±0.01‰) are unlikely to originate from surrounding modern crusts. Instead, sulfate in the upwelling fluid likely possess non-mass-dependent (NMD) sulfur. Because NMD sulfur was produced primarily in the Archean atmosphere, our

  9. Petrochemical Results for Volcanic Rocks recovered from SHINKAI 6500 diving on the Bonin Ridge (27°15'N-28°25'N): submarine extension of Ogasawara forearc volcanism

    Science.gov (United States)

    Bloomer, S. H.; Kimura, J.; Stern, R. J.; Ohara, Y.; Ishii, T.; Ishizuka, O.; Haraguchi, S.; Machida, S.; Reagan, M.; Kelley, K.; Hargrove, U.; Wortel, M.; Li, Y. B.

    2004-12-01

    Four SHINKAI 6500 submersible dives (dive #823 to #826) were performed along the Bonin Ridge escarpment west of Ogasawara (Bonin) Islands in the West Pacific during May 2004, in the hopes of finding exposures of lower crust of the IBM forearc. The Ogasawara Islands are located on the Bonin ridge, exposing 48-40 Ma boninites on Chichi-jima and depleted arc tholeiite lavas of the same age on Haha-jima. These extremely depleted lavas are believed to have been generated when subduction began beneath the Izu-Bonin-Mariana oceanic arc system. Subsequent rifting (35-30 Ma) formed the Bonin Trough and a 350 km long N-S trending eastern escarpment (Bonin Ridge), where we concentrated our dives. We observed lavas and volcaniclastic sequences by the four SHINKAI dives along the escarpment, and 16 fresh basaltic to andesitic lava samples have been recovered. The first three dives appear to have sampled volcanic constructs, of presumed Oligocene age, along the escarpment, whereas the last dive sampled exposures similar to Eocene rocks of the Bonin islands, including nummulitic limestone. The lava samples were analyzed by ICP-MS at Shimane University for 30 incompatible trace elements. All samples show arc-like chemical signatures, including elevated concentrations of LIL elements, depletions in Ta and Nb, and spikes in Pb, Sr, and Li. All samples show modest enrichments in LREE. A lava sample from the northernmost dive #824 is identical with the depleted tholeiite from Haha-jima Islands at the southernmost end of the Bonin Ridge in terms of trace element characteristics. Other lava samples from northern three dives (#823, #824, #825) have tholeiitic affinities with more elevated highly incompatible elements. This suggests derivation of the series of lavas by different degree of partial melting of a similar source mantle. Samples from southernmost dive site #826, immediately northwest of Chichi-jima Islands, are boninites with U-shaped REE patterns and relatively enriched Zr and

  10. Water resources development in Santa Clara Valley, California: insights into the human-hydrologic relationship

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Jesse L. [Univ. of California, Berkeley, CA (United States)

    2000-06-01

    Groundwater irrigation is critical to food production and, in turn, to humankind's relationship with its environment. The development of groundwater in Santa Clara Valley, California during the early twentieth century is instructive because (1) responses to unsustainable resource use were largely successful; (2) the proposals for the physical management of the water, although not entirely novel, incorporated new approaches which reveal an evolving relationship between humans and the hydrologic cycle; and (3) the valley serves as a natural laboratory where natural (groundwater basin, surface watershed) and human (county, water district) boundaries generally coincide. Here, I investigate how water resources development and management in Santa Clara Valley was influenced by, and reflective of, a broad understanding of water as a natural resource, including scientific and technological innovations, new management approaches, and changing perceptions of the hydrologic cycle. Market demands and technological advances engendered reliance on groundwater. This, coupled with a series of dry years and laissez faire government policies, led to overdraft. Faith in centralized management and objective engineering offered a solution to concerns over resource depletion, and a group dominated by orchardists soon organized, fought for a water conservation district, and funded an investigation to halt the decline of well levels. Engineer Fred Tibbetts authored an elaborate water salvage and recharge plan that optimized the local water resources by integrating multiple components of the hydrologic cycle. Informed by government investigations, groundwater development in Southern California, and local water law cases, it recognized the limited surface storage possibilities, the spatial and temporal variability, the relatively closed local hydrology, the interconnection of surface and subsurface waters, and the value of the groundwater basin for its storage, transportation, and

  11. Groundwater quality in the shallow aquifers of the Madera–Chowchilla and Kings subbasins, San Joaquin Valley, California

    Science.gov (United States)

    Fram, Miranda S.; Shelton, Jennifer L.

    2018-01-08

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Program’s Priority Basin Project assesses the quality of groundwater resources used for drinking-water supply and increases public access to groundwater-quality information. Many households and small communities in the Madera– Chowchilla and Kings subbasins of the San Joaquin Valley rely on private domestic wells for their drinking-water supplies.

  12. Isotopes and Sustainability of the Shallow Groundwater System in Spring and Snake Valleys, Eastern White Pine County, Nevada

    Science.gov (United States)

    Acheampong, S. Y.

    2007-12-01

    A critical component to managing water resources is understanding the source of ground water that is extracted from a well. Detail information on the source of recharge and the age of groundwater is thus vital for the proper assessment, development, management, and monitoring of the groundwater resources in an area. Great differences in the isotopic composition of groundwater in a basin and the basin precipitation imply that the groundwater in the basin originates from a source outside the basin or is recharged under different climatic conditions. The stable isotopes of oxygen and hydrogen in precipitation were compared with the isotopic composition of water from wells, springs, and creeks to evaluate the source of the shallow groundwater recharge in Spring and Snake Valleys, Nevada, as part of an evaluation of the water resources in the area. Delta deuterium and delta oxygen-18 composition of springs, wells, creeks, and precipitation in Spring and Snake Valleys show that groundwater recharge occurs primarily from winter precipitation in the surrounding mountains. The carbon-14 content of the groundwater ranged from 30 to 95 percent modern carbon (pmc). Twenty two of the thirty samples had carbon-14 values of greater than 50 pmc. The relatively high carbon-14 values suggest that groundwater in the area is recharged by modern precipitation and the waters have rapid travel times. Total dissolved solids content of the samples outside the playa areas are generally low, and suggests that the water has a relatively short travel time between the recharge areas and sample sites. The presence of tritium in some of the springs and wells also indicate that groundwater mixes with post 1952 precipitation. Hydrogen bomb tests which began in 1952 in the northern hemisphere added large amounts of tritium to the atmosphere and reached a peak in 1963. The stable isotopic composition, the high carbon-14 activities, and the presence of tritium, show that the shallow groundwater in

  13. Valley Topological Phases in Bilayer Sonic Crystals

    Science.gov (United States)

    Lu, Jiuyang; Qiu, Chunyin; Deng, Weiyin; Huang, Xueqin; Li, Feng; Zhang, Fan; Chen, Shuqi; Liu, Zhengyou

    2018-03-01

    Recently, the topological physics in artificial crystals for classical waves has become an emerging research area. In this Letter, we propose a unique bilayer design of sonic crystals that are constructed by two layers of coupled hexagonal array of triangular scatterers. Assisted by the additional layer degree of freedom, a rich topological phase diagram is achieved by simply rotating scatterers in both layers. Under a unified theoretical framework, two kinds of valley-projected topological acoustic insulators are distinguished analytically, i.e., the layer-mixed and layer-polarized topological valley Hall phases, respectively. The theory is evidently confirmed by our numerical and experimental observations of the nontrivial edge