WorldWideScience

Sample records for valley earthquake sequence

  1. Evidence for strong Holocene earthquake(s) in the Wabash Valley seismic zone

    International Nuclear Information System (INIS)

    Obermeier, S.

    1991-01-01

    Many small and slightly damaging earthquakes have taken place in the region of the lower Wabash River Valley of Indiana and Illinois during the 200 years of historic record. Seismologists have long suspected the Wabash Valley seismic zone to be capable of producing earthquakes much stronger than the largest of record (m b 5.8). The seismic zone contains the poorly defined Wabash Valley fault zone and also appears to contain other vaguely defined faults at depths from which the strongest earthquakes presently originate. Faults near the surface are generally covered with thick alluvium in lowlands and a veneer of loess in uplands, which make direct observations of faults difficult. Partly because of this difficulty, a search for paleoliquefaction features was begun in 1990. Conclusions of the study are as follows: (1) an earthquake much stronger than any historic earthquake struck the lower Wabash Valley between 1,500 and 7,500 years ago; (2) the epicentral region of the prehistoric strong earthquake was the Wabash Valley seismic zone; (3) apparent sites have been located where 1811-12 earthquake accelerations can be bracketed

  2. The Pocatello Valley, Idaho, earthquake

    Science.gov (United States)

    Rogers, A. M.; Langer, C.J.; Bucknam, R.C.

    1975-01-01

    A Richter magnitude 6.3 earthquake occurred at 8:31 p.m mountain daylight time on March 27, 1975, near the Utah-Idaho border in Pocatello Valley. The epicenter of the main shock was located at 42.094° N, 112.478° W, and had a focal depth of 5.5 km. This earthquake was the largest in the continental United States since the destructive San Fernando earthquake of February 1971. The main shock was preceded by a magnitude 4.5 foreshock on March 26. 

  3. Catastrophic valley fills record large Himalayan earthquakes, Pokhara, Nepal

    Science.gov (United States)

    Stolle, Amelie; Bernhardt, Anne; Schwanghart, Wolfgang; Hoelzmann, Philipp; Adhikari, Basanta R.; Fort, Monique; Korup, Oliver

    2017-12-01

    Uncertain timing and magnitudes of past mega-earthquakes continue to confound seismic risk appraisals in the Himalayas. Telltale traces of surface ruptures are rare, while fault trenches document several events at best, so that additional proxies of strong ground motion are needed to complement the paleoseismological record. We study Nepal's Pokhara basin, which has the largest and most extensively dated archive of earthquake-triggered valley fills in the Himalayas. These sediments form a 148-km2 fan that issues from the steep Seti Khola gorge in the Annapurna Massif, invading and plugging 15 tributary valleys with tens of meters of debris, and impounding several lakes. Nearly a dozen new radiocarbon ages corroborate at least three episodes of catastrophic sedimentation on the fan between ∼700 and ∼1700 AD, coinciding with great earthquakes in ∼1100, 1255, and 1344 AD, and emplacing roughly >5 km3 of debris that forms the Pokhara Formation. We offer a first systematic sedimentological study of this formation, revealing four lithofacies characterized by thick sequences of mid-fan fluvial conglomerates, debris-flow beds, and fan-marginal slackwater deposits. New geochemical provenance analyses reveal that these upstream dipping deposits of Higher Himalayan origin contain lenses of locally derived river clasts that mark time gaps between at least three major sediment pulses that buried different parts of the fan. The spatial pattern of 14C dates across the fan and the provenance data are key to distinguishing these individual sediment pulses, as these are not evident from their sedimentology alone. Our study demonstrates how geomorphic and sedimentary evidence of catastrophic valley infill can help to independently verify and augment paleoseismological fault-trench records of great Himalayan earthquakes, while offering unparalleled insights into their long-term geomorphic impacts on major drainage basins.

  4. Geomorphic legacy of medieval Himalayan earthquakes in the Pokhara Valley

    Science.gov (United States)

    Schwanghart, Wolfgang; Bernhardt, Anne; Stolle, Amelie; Hoelzmann, Philipp; Adhikari, Basanta R.; Andermann, Christoff; Tofelde, Stefanie; Merchel, Silke; Rugel, Georg; Fort, Monique; Korup, Oliver

    2016-04-01

    The Himalayas and their foreland belong to the world's most earthquake-prone regions. With millions of people at risk from severe ground shaking and associated damages, reliable data on the spatial and temporal occurrence of past major earthquakes is urgently needed to inform seismic risk analysis. Beyond the instrumental record such information has been largely based on historical accounts and trench studies. Written records provide evidence for damages and fatalities, yet are difficult to interpret when derived from the far-field. Trench studies, in turn, offer information on rupture histories, lengths and displacements along faults but involve high chronological uncertainties and fail to record earthquakes that do not rupture the surface. Thus, additional and independent information is required for developing reliable earthquake histories. Here, we present exceptionally well-dated evidence of catastrophic valley infill in the Pokhara Valley, Nepal. Bayesian calibration of radiocarbon dates from peat beds, plant macrofossils, and humic silts in fine-grained tributary sediments yields a robust age distribution that matches the timing of nearby M>8 earthquakes in ~1100, 1255, and 1344 AD. The upstream dip of tributary valley fills and X-ray fluorescence spectrometry of their provenance rule out local sediment sources. Instead, geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation and debris flows that had plugged several tributaries with tens of meters of calcareous sediment from the Annapurna Massif >60 km away. The landscape-changing consequences of past large Himalayan earthquakes have so far been elusive. Catastrophic aggradation in the wake of two historically documented medieval earthquakes and one inferred from trench studies underscores that Himalayan valley fills should be considered as potential archives of past earthquakes. Such valley fills are pervasive in the Lesser Himalaya though high erosion rates reduce

  5. Surface slip during large Owens Valley earthquakes

    KAUST Repository

    Haddon, E. K.; Amos, C. B.; Zielke, Olaf; Jayko, A. S.; Burgmann, R.

    2016-01-01

    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from approximate to 1.0 to 6.0 m and average 3.31.1 m (2 sigma). Vertical offsets are predominantly east-down between approximate to 0.1 and 2.4 m, with a mean of 0.80.5 m. The average lateral-to-vertical ratio compiled at specific sites is approximate to 6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7-11 m and net average of 4.41.5 m, corresponding to a geologic M-w approximate to 7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.12.0 m, 12.8 +/- 1.5 m, and 16.6 +/- 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between approximate to 0.6 and 1.6 mm/yr (1 sigma) over the late Quaternary.

  6. Surface slip during large Owens Valley earthquakes

    Science.gov (United States)

    Haddon, E.K.; Amos, C.B.; Zielke, O.; Jayko, Angela S.; Burgmann, R.

    2016-01-01

    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from ∼1.0 to 6.0 m and average 3.3 ± 1.1 m (2σ). Vertical offsets are predominantly east-down between ∼0.1 and 2.4 m, with a mean of 0.8 ± 0.5 m. The average lateral-to-vertical ratio compiled at specific sites is ∼6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7–11 m and net average of 4.4 ± 1.5 m, corresponding to a geologic Mw ∼7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.1 ± 2.0 m, 12.8 ± 1.5 m, and 16.6 ± 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between ∼0.6 and 1.6 mm/yr (1σ) over the late Quaternary.

  7. Surface slip during large Owens Valley earthquakes

    KAUST Repository

    Haddon, E. K.

    2016-01-10

    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from approximate to 1.0 to 6.0 m and average 3.31.1 m (2 sigma). Vertical offsets are predominantly east-down between approximate to 0.1 and 2.4 m, with a mean of 0.80.5 m. The average lateral-to-vertical ratio compiled at specific sites is approximate to 6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7-11 m and net average of 4.41.5 m, corresponding to a geologic M-w approximate to 7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.12.0 m, 12.8 +/- 1.5 m, and 16.6 +/- 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between approximate to 0.6 and 1.6 mm/yr (1 sigma) over the late Quaternary.

  8. Repeated catastrophic valley infill following medieval earthquakes in the Nepal Himalaya

    Science.gov (United States)

    Schwanghart, Wolfgang; Bernhardt, Anne; Stolle, Amelie; Hoelzmann, Philipp; Adhikari, Basanta R.; Andermann, Christoff; Tofelde, Stefanie; Merchel, Silke; Rugel, Georg; Fort, Monique; Korup, Oliver

    2016-01-01

    Geomorphic footprints of past large Himalayan earthquakes are elusive, although they are urgently needed for gauging and predicting recovery times of seismically perturbed mountain landscapes. We present evidence of catastrophic valley infill following at least three medieval earthquakes in the Nepal Himalaya. Radiocarbon dates from peat beds, plant macrofossils, and humic silts in fine-grained tributary sediments near Pokhara, Nepal’s second-largest city, match the timing of nearby M > 8 earthquakes in ~1100, 1255, and 1344 C.E. The upstream dip of tributary valley fills and x-ray fluorescence spectrometry of their provenance rule out local sources. Instead, geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation and debris flows that had plugged several tributaries with tens of meters of calcareous sediment from a Higher Himalayan source >60 kilometers away.

  9. Repeated catastrophic valley infill following medieval earthquakes in the Nepal Himalaya.

    Science.gov (United States)

    Schwanghart, Wolfgang; Bernhardt, Anne; Stolle, Amelie; Hoelzmann, Philipp; Adhikari, Basanta R; Andermann, Christoff; Tofelde, Stefanie; Merchel, Silke; Rugel, Georg; Fort, Monique; Korup, Oliver

    2016-01-08

    Geomorphic footprints of past large Himalayan earthquakes are elusive, although they are urgently needed for gauging and predicting recovery times of seismically perturbed mountain landscapes. We present evidence of catastrophic valley infill following at least three medieval earthquakes in the Nepal Himalaya. Radiocarbon dates from peat beds, plant macrofossils, and humic silts in fine-grained tributary sediments near Pokhara, Nepal's second-largest city, match the timing of nearby M > 8 earthquakes in ~1100, 1255, and 1344 C.E. The upstream dip of tributary valley fills and x-ray fluorescence spectrometry of their provenance rule out local sources. Instead, geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation and debris flows that had plugged several tributaries with tens of meters of calcareous sediment from a Higher Himalayan source >60 kilometers away. Copyright © 2016, American Association for the Advancement of Science.

  10. Rumours about the Po Valley earthquakes of 20th and 29th May 2012

    Science.gov (United States)

    La Longa, Federica; Crescimbene, Massimo; Camassi, Romano; Nostro, Concetta

    2013-04-01

    The history of rumours is as old as human history. Even in remote antiquity, rumours, gossip and hoax were always in circulation - in good or bad faith - to influence human affairs. Today with the development of mass media, rise of the internet and social networks, rumours are ubiquitous. The earthquakes, because of their characteristics of strong emotional impact and unpredictability, are among the natural events that more cause the birth and the spread of rumours. For this reason earthquakes that occurred in the Po valley the 20th and 29th May 2012 generated and still continue to generate a wide variety of rumours regarding issues related to the earthquake, its effects, the possible causes, future predictions. For this reason, as occurred during the L'Aquila earthquake sequence in 2009, following the events of May 2012 in Emilia Romagna was created a complex initiative training and information that at various stages between May and September 2012, involved population, partly present in the camp, and then the school staff of the municipalities affected by the earthquake. This experience has been organized and managed by the Department of Civil Protection (DPC), the National Institute of Geophysics and Volcanology (INGV), the Emilia Romagna region in collaboration with the Network of University Laboratories for Earthquake Engineering (RELUIS), the Health Service Emilia Romagna Regional and voluntary organizations of civil protection in the area. Within this initiative, in the period June-September 2012 were collected and catalogued over 240 rumours. In this work rumours of the Po Valley are studied in their specific characteristics and strategies and methods to fight them are also discussed. This work of collection and discussion of the rumours was particularly important to promote good communication strategies and to fight the spreading of the rumours. Only in this way it was possible to create a full intervention able to supporting both the local institutions and

  11. Pattern of ground deformation in Kathmandu valley during 2015 Gorkha Earthquake, central Nepal

    Science.gov (United States)

    Ghimire, S.; Dwivedi, S. K.; Acharya, K. K.

    2016-12-01

    The 25th April 2015 Gorkha Earthquake (Mw=7.8) epicentered at Barpak along with thousands of aftershocks released seismic moment nearly equivalent to an 8.0 Magnitude earthquake rupturing a 150km long fault segment. Although Kathmandu valley was supposed to be severely devastated by such major earthquake, post earthquake scenario is completely different. The observed destruction is far less than anticipated as well as the spatial pattern is different than expected. This work focuses on the behavior of Kathmandu valley sediments during the strong shaking by the 2015 Gorkha Earthquake. For this purpose spatial pattern of destruction is analyzed at heavily destructed sites. To understand characteristics of subsurface soil 2D-MASW survey was carried out using a 24-channel seismograph system. An accellerogram recorded by Nepal Seismological Center was analyzed to characterize the strong ground motion. The Kathmandu valley comprises fluvio-lacustrine deposit with gravel, sand, silt and clay along with few exposures of basement rocks within the sediments. The observations show systematic repetition of destruction at an average interval of 2.5km mostly in sand, silt and clay dominated formations. Results of 2D-MASW show the sites of destruction are characterized by static deformation of soil (liquefaction and southerly dipping cracks). Spectral analysis of the accelerogram indicates maximum power associated with frequency of 1.0Hz. The result of this study explains the observed spatial pattern of destruction in Kathmandu valley. This is correlated with the seismic energy associated with the frequency of 1Hz, which generates an average wavelength of 2.5km with an average S-wave velocity of 2.5km/s. The cumulative effect of dominant frequency and associated wavelength resulted in static deformation of surface soil layers at an average interval of 2.5km. This phenomenon clearly describes the reason for different scenario than that was anticipated in Kathmandu valley.

  12. A new strategy for earthquake focal mechanisms using waveform-correlation-derived relative polarities and cluster analysis: Application to the 2014 Long Valley Caldera earthquake swarm

    Science.gov (United States)

    Shelly, David R.; Hardebeck, Jeanne L.; Ellsworth, William L.; Hill, David P.

    2016-01-01

    In microseismicity analyses, reliable focal mechanisms can typically be obtained for only a small subset of located events. We address this limitation here, presenting a framework for determining robust focal mechanisms for entire populations of very small events. To achieve this, we resolve relative P and S wave polarities between pairs of waveforms by using their signed correlation coefficients—a by-product of previously performed precise earthquake relocation. We then use cluster analysis to group events with similar patterns of polarities across the network. Finally, we apply a standard mechanism inversion to the grouped data, using either catalog or correlation-derived P wave polarity data sets. This approach has great potential for enhancing analyses of spatially concentrated microseismicity such as earthquake swarms, mainshock-aftershock sequences, and industrial reservoir stimulation or injection-induced seismic sequences. To demonstrate its utility, we apply this technique to the 2014 Long Valley Caldera earthquake swarm. In our analysis, 85% of the events (7212 out of 8494 located by Shelly et al. [2016]) fall within five well-constrained mechanism clusters, more than 12 times the number with network-determined mechanisms. Of the earthquakes we characterize, 3023 (42%) have magnitudes smaller than 0.0. We find that mechanism variations are strongly associated with corresponding hypocentral structure, yet mechanism heterogeneity also occurs where it cannot be resolved by hypocentral patterns, often confined to small-magnitude events. Small (5–20°) rotations between mechanism orientations and earthquake location trends persist when we apply 3-D velocity models and might reflect a geometry of en echelon, interlinked shear, and dilational faulting.

  13. Stress triggering and the Canterbury earthquake sequence

    Science.gov (United States)

    Steacy, Sandy; Jiménez, Abigail; Holden, Caroline

    2014-01-01

    The Canterbury earthquake sequence, which includes the devastating Christchurch event of 2011 February, has to date led to losses of around 40 billion NZ dollars. The location and severity of the earthquakes was a surprise to most inhabitants as the seismic hazard model was dominated by an expected Mw > 8 earthquake on the Alpine fault and an Mw 7.5 earthquake on the Porters Pass fault, 150 and 80 km to the west of Christchurch. The sequence to date has included an Mw = 7.1 earthquake and 3 Mw ≥ 5.9 events which migrated from west to east. Here we investigate whether the later events are consistent with stress triggering and whether a simple stress map produced shortly after the first earthquake would have accurately indicated the regions where the subsequent activity occurred. We find that 100 per cent of M > 5.5 earthquakes occurred in positive stress areas computed using a slip model for the first event that was available within 10 d of its occurrence. We further find that the stress changes at the starting points of major slip patches of post-Darfield main events are consistent with triggering although this is not always true at the hypocentral locations. Our results suggest that Coulomb stress changes contributed to the evolution of the Canterbury sequence and we note additional areas of increased stress in the Christchurch region and on the Porters Pass fault.

  14. Clustered and transient earthquake sequences in mid-continents

    Science.gov (United States)

    Liu, M.; Stein, S. A.; Wang, H.; Luo, G.

    2012-12-01

    Earthquakes result from sudden release of strain energy on faults. On plate boundary faults, strain energy is constantly accumulating from steady and relatively rapid relative plate motion, so large earthquakes continue to occur so long as motion continues on the boundary. In contrast, such steady accumulation of stain energy does not occur on faults in mid-continents, because the far-field tectonic loading is not steadily distributed between faults, and because stress perturbations from complex fault interactions and other stress triggers can be significant relative to the slow tectonic stressing. Consequently, mid-continental earthquakes are often temporally clustered and transient, and spatially migrating. This behavior is well illustrated by large earthquakes in North China in the past two millennia, during which no single large earthquakes repeated on the same fault segments, but moment release between large fault systems was complementary. Slow tectonic loading in mid-continents also causes long aftershock sequences. We show that the recent small earthquakes in the Tangshan region of North China are aftershocks of the 1976 Tangshan earthquake (M 7.5), rather than indicators of a new phase of seismic activity in North China, as many fear. Understanding the transient behavior of mid-continental earthquakes has important implications for assessing earthquake hazards. The sequence of large earthquakes in the New Madrid Seismic Zone (NMSZ) in central US, which includes a cluster of M~7 events in 1811-1812 and perhaps a few similar ones in the past millennium, is likely a transient process, releasing previously accumulated elastic strain on recently activated faults. If so, this earthquake sequence will eventually end. Using simple analysis and numerical modeling, we show that the large NMSZ earthquakes may be ending now or in the near future.

  15. Comparison of aftershock sequences between 1975 Haicheng earthquake and 1976 Tangshan earthquake

    Science.gov (United States)

    Liu, B.

    2017-12-01

    The 1975 ML 7.3 Haicheng earthquake and the 1976 ML 7.8 Tangshan earthquake occurred in the same tectonic unit. There are significant differences in spatial-temporal distribution, number of aftershocks and time duration for the aftershock sequence followed by these two main shocks. As we all know, aftershocks could be triggered by the regional seismicity change derived from the main shock, which was caused by the Coulomb stress perturbation. Based on the rate- and state- dependent friction law, we quantitative estimated the possible aftershock time duration with a combination of seismicity data, and compared the results from different approaches. The results indicate that, aftershock time durations from the Tangshan main shock is several times of that form the Haicheng main shock. This can be explained by the significant relationship between aftershock time duration and earthquake nucleation history, normal stressand shear stress loading rateon the fault. In fact the obvious difference of earthquake nucleation history from these two main shocks is the foreshocks. 1975 Haicheng earthquake has clear and long foreshocks, while 1976 Tangshan earthquake did not have clear foreshocks. In that case, abundant foreshocks may mean a long and active nucleation process that may have changed (weakened) the rocks in the source regions, so they should have a shorter aftershock sequences for the reason that stress in weak rocks decay faster.

  16. Strong Motion Network of Medellín and Aburrá Valley: technical advances, seismicity records and micro-earthquake monitoring

    Science.gov (United States)

    Posada, G.; Trujillo, J. C., Sr.; Hoyos, C.; Monsalve, G.

    2017-12-01

    The tectonics setting of Colombia is determined by the interaction of Nazca, Caribbean and South American plates, together with the Panama-Choco block collision, which makes a seismically active region. Regional seismic monitoring is carried out by the National Seismological Network of Colombia and the Accelerometer National Network of Colombia. Both networks calculate locations, magnitudes, depths and accelerations, and other seismic parameters. The Medellín - Aburra Valley is located in the Northern segment of the Central Cordillera of Colombia, and according to the Colombian technical seismic norm (NSR-10), is a region of intermediate hazard, because of the proximity to seismic sources of the Valley. Seismic monitoring in the Aburra Valley began in 1996 with an accelerometer network which consisted of 38 instruments. Currently, the network consists of 26 stations and is run by the Early Warning System of Medellin and Aburra Valley (SIATA). The technical advances have allowed the real-time communication since a year ago, currently with 10 stations; post-earthquake data is processed through operationally near-real-time, obtaining quick results in terms of location, acceleration, spectrum response and Fourier analysis; this information is displayed at the SIATA web site. The strong motion database is composed by 280 earthquakes; this information is the basis for the estimation of seismic hazards and risk for the region. A basic statistical analysis of the main information was carried out, including the total recorded events per station, natural frequency, maximum accelerations, depths and magnitudes, which allowed us to identify the main seismic sources, and some seismic site parameters. With the idea of a more complete seismic monitoring and in order to identify seismic sources beneath the Valley, we are in the process of installing 10 low-cost shake seismometers for micro-earthquake monitoring. There is no historical record of earthquakes with a magnitude

  17. Hotspots, Lifelines, and the Safrr Haywired Earthquake Sequence

    Science.gov (United States)

    Ratliff, J. L.; Porter, K.

    2014-12-01

    Though California has experienced many large earthquakes (San Francisco, 1906; Loma Prieta, 1989; Northridge, 1994), the San Francisco Bay Area has not had a damaging earthquake for 25 years. Earthquake risk and surging reliance on smartphones and the Internet to handle everyday tasks raise the question: is an increasingly technology-reliant Bay Area prepared for potential infrastructure impacts caused by a major earthquake? How will a major earthquake on the Hayward Fault affect lifelines (roads, power, water, communication, etc.)? The U.S. Geological Survey Science Application for Risk Reduction (SAFRR) program's Haywired disaster scenario, a hypothetical two-year earthquake sequence triggered by a M7.05 mainshock on the Hayward Fault, addresses these and other questions. We explore four geographic aspects of lifeline damage from earthquakes: (1) geographic lifeline concentrations, (2) areas where lifelines pass through high shaking or potential ground-failure zones, (3) areas with diminished lifeline service demand due to severe building damage, and (4) areas with increased lifeline service demand due to displaced residents and businesses. Potential mainshock lifeline vulnerability and spatial demand changes will be discerned by superimposing earthquake shaking, liquefaction probability, and landslide probability damage thresholds with lifeline concentrations and with large-capacity shelters. Intersecting high hazard levels and lifeline clusters represent potential lifeline susceptibility hotspots. We will also analyze possible temporal vulnerability and demand changes using an aftershock shaking threshold. The results of this analysis will inform regional lifeline resilience initiatives and response and recovery planning, as well as reveal potential redundancies and weaknesses for Bay Area lifelines. Identified spatial and temporal hotspots can provide stakeholders with a reference for possible systemic vulnerability resulting from an earthquake sequence.

  18. Predicted Liquefaction in the Greater Oakland and Northern Santa Clara Valley Areas for a Repeat of the 1868 Hayward Earthquake

    Science.gov (United States)

    Holzer, T. L.; Noce, T. E.; Bennett, M. J.

    2008-12-01

    Probabilities of surface manifestations of liquefaction due to a repeat of the 1868 (M6.7-7.0) earthquake on the southern segment of the Hayward Fault were calculated for two areas along the margin of San Francisco Bay, California: greater Oakland and the northern Santa Clara Valley. Liquefaction is predicted to be more common in the greater Oakland area than in the northern Santa Clara Valley owing to the presence of 57 km2 of susceptible sandy artificial fill. Most of the fills were placed into San Francisco Bay during the first half of the 20th century to build military bases, port facilities, and shoreline communities like Alameda and Bay Farm Island. Probabilities of liquefaction in the area underlain by this sandy artificial fill range from 0.2 to ~0.5 for a M7.0 earthquake, and decrease to 0.1 to ~0.4 for a M6.7 earthquake. In the greater Oakland area, liquefaction probabilities generally are less than 0.05 for Holocene alluvial fan deposits, which underlie most of the remaining flat-lying urban area. In the northern Santa Clara Valley for a M7.0 earthquake on the Hayward Fault and an assumed water-table depth of 1.5 m (the historically shallowest water level), liquefaction probabilities range from 0.1 to 0.2 along Coyote and Guadalupe Creeks, but are less than 0.05 elsewhere. For a M6.7 earthquake, probabilities are greater than 0.1 along Coyote Creek but decrease along Guadalupe Creek to less than 0.1. Areas with high probabilities in the Santa Clara Valley are underlain by latest Holocene alluvial fan levee deposits where liquefaction and lateral spreading occurred during large earthquakes in 1868 and 1906. The liquefaction scenario maps were created with ArcGIS ModelBuilder. Peak ground accelerations first were computed with the new Boore and Atkinson NGA attenuation relation (2008, Earthquake Spectra, 24:1, p. 99-138), using VS30 to account for local site response. Spatial liquefaction probabilities were then estimated using the predicted ground motions

  19. Source modeling of the 2015 Mw 7.8 Nepal (Gorkha) earthquake sequence: Implications for geodynamics and earthquake hazards

    Science.gov (United States)

    McNamara, D. E.; Yeck, W. L.; Barnhart, W. D.; Schulte-Pelkum, V.; Bergman, E.; Adhikari, L. B.; Dixit, A.; Hough, S. E.; Benz, H. M.; Earle, P. S.

    2017-09-01

    The Gorkha earthquake on April 25th, 2015 was a long anticipated, low-angle thrust-faulting event on the shallow décollement between the India and Eurasia plates. We present a detailed multiple-event hypocenter relocation analysis of the Mw 7.8 Gorkha Nepal earthquake sequence, constrained by local seismic stations, and a geodetic rupture model based on InSAR and GPS data. We integrate these observations to place the Gorkha earthquake sequence into a seismotectonic context and evaluate potential earthquake hazard. Major results from this study include (1) a comprehensive catalog of calibrated hypocenters for the Gorkha earthquake sequence; (2) the Gorkha earthquake ruptured a 150 × 60 km patch of the Main Himalayan Thrust (MHT), the décollement defining the plate boundary at depth, over an area surrounding but predominantly north of the capital city of Kathmandu (3) the distribution of aftershock seismicity surrounds the mainshock maximum slip patch; (4) aftershocks occur at or below the mainshock rupture plane with depths generally increasing to the north beneath the higher Himalaya, possibly outlining a 10-15 km thick subduction channel between the overriding Eurasian and subducting Indian plates; (5) the largest Mw 7.3 aftershock and the highest concentration of aftershocks occurred to the southeast the mainshock rupture, on a segment of the MHT décollement that was positively stressed towards failure; (6) the near surface portion of the MHT south of Kathmandu shows no aftershocks or slip during the mainshock. Results from this study characterize the details of the Gorkha earthquake sequence and provide constraints on where earthquake hazard remains high, and thus where future, damaging earthquakes may occur in this densely populated region. Up-dip segments of the MHT should be considered to be high hazard for future damaging earthquakes.

  20. Triggered surface slips in the Coachella Valley area associated with the 1992 Joshua Tree and Landers, California, Earthquakes

    Science.gov (United States)

    Rymer, M.J.

    2000-01-01

    The Coachella Valley area was strongly shaken by the 1992 Joshua Tree (23 April) and Landers (28 June) earthquakes, and both events caused triggered slip on active faults within the area. Triggered slip associated with the Joshua Tree earthquake was on a newly recognized fault, the East Wide Canyon fault, near the southwestern edge of the Little San Bernardino Mountains. Slip associated with the Landers earthquake formed along the San Andreas fault in the southeastern Coachella Valley. Surface fractures formed along the East Wide Canyon fault in association with the Joshua Tree earthquake. The fractures extended discontinuously over a 1.5-km stretch of the fault, near its southern end. Sense of slip was consistently right-oblique, west side down, similar to the long-term style of faulting. Measured offset values were small, with right-lateral and vertical components of slip ranging from 1 to 6 mm and 1 to 4 mm, respectively. This is the first documented historic slip on the East Wide Canyon fault, which was first mapped only months before the Joshua Tree earthquake. Surface slip associated with the Joshua Tree earthquake most likely developed as triggered slip given its 5 km distance from the Joshua Tree epicenter and aftershocks. As revealed in a trench investigation, slip formed in an area with only a thin (Salton Trough. A paleoseismic trench study in an area of 1992 surface slip revealed evidence of two and possibly three surface faulting events on the East Wide Canyon fault during the late Quaternary, probably latest Pleistocene (first event) and mid- to late Holocene (second two events). About two months after the Joshua Tree earthquake, the Landers earthquake then triggered slip on many faults, including the San Andreas fault in the southeastern Coachella Valley. Surface fractures associated with this event formed discontinuous breaks over a 54-km-long stretch of the fault, from the Indio Hills southeastward to Durmid Hill. Sense of slip was right

  1. Keeping the History in Historical Seismology: The 1872 Owens Valley, California Earthquake

    International Nuclear Information System (INIS)

    Hough, Susan E.

    2008-01-01

    The importance of historical earthquakes is being increasingly recognized. Careful investigations of key pre-instrumental earthquakes can provide critical information and insights for not only seismic hazard assessment but also for earthquake science. In recent years, with the explosive growth in computational sophistication in Earth sciences, researchers have developed increasingly sophisticated methods to analyze macroseismic data quantitatively. These methodological developments can be extremely useful to exploit fully the temporally and spatially rich information source that seismic intensities often represent. For example, the exhaustive and painstaking investigations done by Ambraseys and his colleagues of early Himalayan earthquakes provides information that can be used to map out site response in the Ganges basin. In any investigation of macroseismic data, however, one must stay mindful that intensity values are not data but rather interpretations. The results of any subsequent analysis, regardless of the degree of sophistication of the methodology, will be only as reliable as the interpretations of available accounts - and only as complete as the research done to ferret out, and in many cases translate, these accounts. When intensities are assigned without an appreciation of historical setting and context, seemingly careful subsequent analysis can yield grossly inaccurate results. As a case study, I report here on the results of a recent investigation of the 1872 Owen's Valley, California earthquake. Careful consideration of macroseismic observations reveals that this event was probably larger than the great San Francisco earthquake of 1906, and possibly the largest historical earthquake in California. The results suggest that some large earthquakes in California will generate significantly larger ground motions than San Andreas fault events of comparable magnitude

  2. Long Aftershock Sequences within Continents and Implications for Earthquake Hazard Assessment

    Science.gov (United States)

    Stein, S. A.; Liu, M.

    2014-12-01

    Recent seismicity in the Tangshan region in North China has prompted concern about a repetition of the 1976 M7.8 earthquake that destroyed the city, killing more than 242,000 people. However, the decay of seismicity there implies that the recent earthquakes are probably aftershocks of the 1976 event. This 37-year sequence is an example of the phenomenon that aftershock sequences within continents are often significantly longer than the typical 10 years at plate boundaries. The long sequence of aftershocks in continents is consistent with a simple friction-based model predicting that the length of aftershock sequences varies inversely with the rate at which faults are loaded. Hence the slowly-deforming continents tend to have aftershock sequences significantly longer than at rapidly-loaded plate boundaries. This effect has two consequences for hazard assessment. First, within the heavily populated continents that are typically within plate interiors, assessments of earthquake hazards rely significantly on the assumption that the locations of small earthquakes shown by the short historical record reflect continuing deformation that will cause future large earthquakes. This assumption would lead to overestimation of the hazard in presently active areas and underestimation elsewhere, if some of these small events are aftershocks. Second, successful attempts to remove aftershocks from catalogs used for hazard assessment would underestimate the hazard, because much of the hazard is due to the aftershocks, and the declustering algorithms implicitly assume short aftershock sequences and thus do not remove long-duration ones.

  3. Strong ground motion in the Kathmandu Valley during the 2015 Gorkha, Nepal, earthquake

    Science.gov (United States)

    Takai, Nobuo; Shigefuji, Michiko; Rajaure, Sudhir; Bijukchhen, Subeg; Ichiyanagi, Masayoshi; Dhital, Megh Raj; Sasatani, Tsutomu

    2016-01-01

    On 25 April 2015, a large earthquake of Mw 7.8 occurred along the Main Himalayan Thrust fault in central Nepal. It was caused by a collision of the Indian Plate beneath the Eurasian Plate. The epicenter was near the Gorkha region, 80 km northwest of Kathmandu, and the rupture propagated toward east from the epicentral region passing through the sediment-filled Kathmandu Valley. This event resulted in over 8000 fatalities, mostly in Kathmandu and the adjacent districts. We succeeded in observing strong ground motions at our four observation sites (one rock site and three sedimentary sites) in the Kathmandu Valley during this devastating earthquake. While the observed peak ground acceleration values were smaller than the predicted ones that were derived from the use of a ground motion prediction equation, the observed peak ground velocity values were slightly larger than the predicted ones. The ground velocities observed at the rock site (KTP) showed a simple velocity pulse, resulting in monotonic-step displacements associated with the permanent tectonic offset. The vertical ground velocities observed at the sedimentary sites had the same pulse motions that were observed at the rock site. In contrast, the horizontal ground velocities as well as accelerations observed at three sedimentary sites showed long duration with conspicuous long-period oscillations, due to the valley response. The horizontal valley response was characterized by large amplification (about 10) and prolonged oscillations. However, the predominant period and envelope shape of their oscillations differed from site to site, indicating a complicated basin structure. Finally, on the basis of the velocity response spectra, we show that the horizontal long-period oscillations on the sedimentary sites had enough destructive power to damage high-rise buildings with natural periods of 3 to 5 s.

  4. Relocation and Seismogenic Structure of the 1998 Zhangbei-Shangyi Earthquake Sequence

    Science.gov (United States)

    Yang, Z.

    2002-05-01

    An earthquake of magnitude 6.2 occurred in the Zhangbei-Shangyi region in the northern China on January 10, 1998. The earthquake was about 180km to the northwest of the Beijing City and was felt at Beijing. This earthquake is the largest event since the 1976 great Tangshan earthquake of magnitude 7.8 in the northern China. Historically seismicity in the Zhangbei-Shangyi region was very low. In the epicentral area no active fault constituting the seismogenic geological features capable of generating moderate earthquakes like this earthquake has been found before the earthquake. Nor surface faulting has been observed after the earthquake. Field geological investigation after the earthquake found two conjugate surface features trending NNE-NE and NNW-WNW. Because of the geometry of the seismic network the hypocentral distribution of the Zhangbei-Shangyi earthquake sequence given by routine location exhibited no any preferable orientation feature. In this study the Zhangbei-Shangyi earthquake and its aftershocks with magnitude equal or lager than 3.0 were relocated using both the master event relative relocation algorithm and the double-difference earthquake relocation algorithm (Waldhauser, 2000). Both algorithms gave consistent results within accuracy limits. The epicenter of the main shock was 41.15­aN and 114.46­aE, which was located 4km apart from the macro-epicenter of this event. The focal depth of the main shock was 15 km. The epicenters of aftershocks of this earthquake sequence distribute in a nearly vertical plane and its vicinity with orientation N20­aE. The results of relocation for the Zhangbei-Shangyi earthquake sequence clearly indicate that the seismogenic structure of this event is a N20­aE striking fault with right-lateral reverse slip, and that the occurrence of the Zhangbei-Shangyi earthquake is tectonically driven by the horizontal and oriented ENE compression stress, same as that of the stress field in northern China.

  5. 2017 Valparaíso earthquake sequence and the megathrust patchwork of central Chile

    NARCIS (Netherlands)

    Nealy, Jennifer L.; Herman, Matthew W.; Moore, Ginevra L.; Hayes, Gavin P.; Benz, Harley M.; Bergman, Eric A.; Barrientos, Sergio E.

    2017-01-01

    In April 2017, a sequence of earthquakes offshore Valparaíso, Chile, raised concerns of a potential megathrust earthquake in the near future. The largest event in the 2017 sequence was a M6.9 on 24 April, seemingly colocated with the last great-sized earthquake in the region—a M8.0 in March 1985.

  6. Strong-motion observations of the M 7.8 Gorkha, Nepal, earthquake sequence and development of the N-shake strong-motion network

    Science.gov (United States)

    Dixit, Amod; Ringler, Adam; Sumy, Danielle F.; Cochran, Elizabeth S.; Hough, Susan E.; Martin, Stacey; Gibbons, Steven; Luetgert, James H.; Galetzka, John; Shrestha, Surya; Rajaure, Sudhir; McNamara, Daniel E.

    2015-01-01

    We present and describe strong-motion data observations from the 2015 M 7.8 Gorkha, Nepal, earthquake sequence collected using existing and new Quake-Catcher Network (QCN) and U.S. Geological Survey NetQuakes sensors located in the Kathmandu Valley. A comparison of QCN data with waveforms recorded by a conventional strong-motion (NetQuakes) instrument validates the QCN data. We present preliminary analysis of spectral accelerations, and peak ground acceleration and velocity for earthquakes up to M 7.3 from the QCN stations, as well as preliminary analysis of the mainshock recording from the NetQuakes station. We show that mainshock peak accelerations were lower than expected and conclude the Kathmandu Valley experienced a pervasively nonlinear response during the mainshock. Phase picks from the QCN and NetQuakes data are also used to improve aftershock locations. This study confirms the utility of QCN instruments to contribute to ground-motion investigations and aftershock response in regions where conventional instrumentation and open-access seismic data are limited. Initial pilot installations of QCN instruments in 2014 are now being expanded to create the Nepal–Shaking Hazard Assessment for Kathmandu and its Environment (N-SHAKE) network.

  7. Near Fault Strong Ground Motion Records in the Kathmandu Valley during the 2015 Gorkha Nepal Earthquake

    Science.gov (United States)

    Takai, N.; Shigefuji, M.; Rajaure, S.; Bijukchhen, S.; Ichiyanagi, M.; Dhital, M. R.; Sasatani, T.

    2015-12-01

    Kathmandu is the capital of Nepal and is located in the Kathmandu Valley, which is formed by soft lake sediments of Plio-Pleistocene origin. Large earthquakes in the past have caused significant damage as the seismic waves were amplified in the soft sediments. To understand the site effect of the valley structure, we installed continuous recording accelerometers in four different parts of the valley. Four stations were installed along a west-to-east profile of the valley at KTP (Kirtipur; hill top), TVU (Kirtipur; hill side), PTN (Patan) and THM (Thimi). On 25 April 2015, a large interplate earthquake Mw 7.8 occurred in the Himalayan Range of Nepal. The focal area estimated was about 200 km long and 150 km wide, with a large slip area under the Kathmandu Valley where our strong motion observation stations were installed. The strong ground motions were observed during this large damaging earthquake. The maximum horizontal peak ground acceleration at the rock site was 271 cm s-2, and the maximum horizontal peak ground velocity at the sediment sites reached 112 cm s-1. We compared these values with the empirical attenuation formula for strong ground motions. We found the peak accelerations were smaller and the peak velocities were approximately the same as the predicted values. The rock site KTP motions are less affected by site amplification and were analysed further. The horizontal components were rotated to the fault normal (N205E) and fault parallel (N115E) directions using the USGS fault model. The velocity waveforms at KTP showed about 5 s triangular pulses on the N205E and the up-down components; however the N115E component was not a triangular pulse but one cycle sinusoidal wave. The velocity waveforms at KTP were integrated to derive the displacement waveforms. The derived displacements at KTP are characterized by a monotonic step on the N205E normal and up-down components. The displacement waveforms of KTP show permanent displacements of 130 cm in the fault

  8. An ongoing earthquake sequence near Dhaka, Bangladesh, from regional recordings

    Science.gov (United States)

    Howe, M.; Mondal, D. R.; Akhter, S. H.; Kim, W.; Seeber, L.; Steckler, M. S.

    2013-12-01

    Earthquakes in and around the syntaxial region between the continent-continent collision of the Himalayan arc and oceanic subduction of the Sunda arc result primarily from the convergence of India and Eurasia-Sunda plates along two fronts. The northern front, the convergence of the Indian and Eurasian plates, has produced the Himalayas. The eastern front, the convergence of the Indian and Sunda plates, ranges from ocean-continent subduction at the Andaman Arc and Burma Arc, and transitions to continent-continent collision to the north at the Assam Syntaxis in northeast India. The India-Sunda convergence at the Burma Arc is extremely oblique. The boundary-normal convergence rate is ~17 mm/yr while the boundary-parallel rate is ~45 mm/yr including the well-known Sagaing strike-slip fault, which accommodates about half the shear component. This heterogeneous tectonic setting produces multiple earthquake sources that need to be considered when assessing seismic hazard and risk in this region. The largest earthquakes, just as in other subduction systems, are expected to be interplate events that occur on the low-angle megathrusts, such as the Mw 9.2 2004 Sumatra-Andaman earthquake and the 1762 earthquake along the Arakan margin. These earthquakes are known to produce large damage over vast areas, but since they account for large fault motions they are relatively rare. The majority of current seismicity in the study area is intraplate. Most of the seismicity associated with the Burma Arc subduction system is in the down-going slab, including the shallow-dipping part below the megathrust flooring the accretionary wedge. The strike of the wedge is ~N-S and Dhaka lies at its outer limit. One particular source relevant to seismic risk in Dhaka is illuminated by a multi-year sequence of earthquakes in Bangladesh less than 100 km southeast of Dhaka. The population in Dhaka (now at least 15 million) has been increasing dramatically due to rapid urbanization. The vulnerability

  9. The Bergshamra earthquake sequence of December 23, 1979

    International Nuclear Information System (INIS)

    Kulhanek, O.; John, N.; Meyer, K.; Eck, T. van; Wahlstroem, R.

    1980-08-01

    On December 23, 1979 an earthquake sequence occurred near Bergshamra-Roslagen, Sweden, about 50 km northeast of Stockholm. The main shock, which has been assigned a magnitude Msub(L)=3.2, has been followed, with a 3 minute delay, by a shock of magnitude Msub(L)=2.6 and, with additional 21-minute delay, by a third shock of magnitude Msub(L)=2.0. Whereas the main shock was recorded by almost all Finnish, Norwegian and Swedish permanent stations, the whole sequence has been observed only at UPP (Δ=68 km). A six-week field survey in the epicentral area revealed a number of small aftershocks located close to the main shock. The Bergshamra sequence took place in a zone of very low seismicity in eastern central Sweden and for Swedish earthquakes at unusual shallow depth. Since the epicentre lies less than 100 km from a nuclear power plant in Forsmark, the sequence received publicity which was not in proportion to the size of the shock. At his occasion, some rather strange explanations of the shock emerged. (Auth.)

  10. Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.

    1997-01-01

    This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modeling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial Valley earthquake in California (U .S .A.). The results of the study indicate that while all three approaches can successfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....

  11. Non-Stationary Modelling and Simulation of Near-Source Earthquake Ground Motion

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Kirkegaard, Poul Henning; Fouskitakis, G. N.

    This paper is concerned with modelling and simulation of near-source earthquake ground motion. Recent studies have revealed that these motions show heavy non-stationary behaviour with very low frequencies dominating parts of the earthquake sequence. Modelling and simulation of this behaviour...... by an epicentral distance of 16 km and measured during the 1979 Imperial valley earthquake in California (USA). The results of the study indicate that while all three approaches can succesfully predict near-source ground motions, the Neural Network based one gives somewhat poorer simulation results....

  12. Numerical Simulation of Stress evolution and earthquake sequence of the Tibetan Plateau

    Science.gov (United States)

    Dong, Peiyu; Hu, Caibo; Shi, Yaolin

    2015-04-01

    The India-Eurasia's collision produces N-S compression and results in large thrust fault in the southern edge of the Tibetan Plateau. Differential eastern flow of the lower crust of the plateau leads to large strike-slip faults and normal faults within the plateau. From 1904 to 2014, more than 30 earthquakes of Mw > 6.5 occurred sequentially in this distinctive tectonic environment. How did the stresses evolve during the last 110 years, how did the earthquakes interact with each other? Can this knowledge help us to forecast the future seismic hazards? In this essay, we tried to simulate the evolution of the stress field and the earthquake sequence in the Tibetan plateau within the last 110 years with a 2-D finite element model. Given an initial state of stress, the boundary condition was constrained by the present-day GPS observation, which was assumed as a constant rate during the 110 years. We calculated stress evolution year by year, and earthquake would occur if stress exceed the crustal strength. Stress changes due to each large earthquake in the sequence was calculated and contributed to the stress evolution. A key issue is the choice of initial stress state of the modeling, which is actually unknown. Usually, in the study of earthquake triggering, people assume the initial stress is zero, and only calculate the stress changes by large earthquakes - the Coulomb failure stress changes (Δ CFS). To some extent, this simplified method is a powerful tool because it can reveal which fault or which part of a fault becomes more risky or safer relatively. Nonetheless, it has not utilized all information available to us. The earthquake sequence reveals, though far from complete, some information about the stress state in the region. If the entire region is close to a self-organized critical or subcritical state, earthquake stress drop provides an estimate of lower limit of initial state. For locations no earthquakes occurred during the period, initial stress has to be

  13. The 2007 Mentawai earthquake sequence on the Sumatra megathrust

    Science.gov (United States)

    Konca, A.; Avouac, J.; Sladen, A.; Meltzner, A. J.; Kositsky, A. P.; Sieh, K.; Fang, P.; Li, Z.; Galetzka, J.; Genrich, J.; Chlieh, M.; Natawidjaja, D. H.; Bock, Y.; Fielding, E. J.; Helmberger, D. V.

    2008-12-01

    The Sumatra Megathrust has recently produced a flurry of large interplate earthquakes starting with the giant Mw 9.15, Aceh earthquake of 2004. All of these earthquakes occurred within the area monitored by the Sumatra Geodetic Array (SuGAr), which provided exceptional records of near-field co-seismic and postseismic ground displacements. The most recent of these major earthquakes, an Mw 8.4 earthquake and an Mw 7.9 earthquake twelve hours later, occurred in the Mentawai islands area where devastating historical earthquakes had happened in 1797 and 1833. The 2007 earthquake sequence provides an exceptional opportunity to understand the variability of the earthquakes along megathrusts and their relation to interseismic coupling. The InSAR, GPS and teleseismic modeling shows that 2007 earthquakes ruptured a fraction of the strongly coupled Mentawai patch of the megathrust, which is also only a fraction of the 1833 rupture area. It also released a much smaller moment than the one released in 1833, or than the deficit of moment that has accumulated since. Both earthquakes of 2007 consist of 2 sub-events which are 50 to 100 km apart from each other. On the other hand, the northernmost slip patch of 8.4 and southern slip patch of 7.9 earthquakes abut each other, but they ruptured 12 hours apart. Sunda megathrust earthquakes of recent years include a rupture of a strongly coupled patch that closely mimics a prior rupture of that patch and which is well correlated with the interseismic coupling pattern (Nias-Simeulue section), as well as a rupture sequence of a strongly coupled patch that differs substantially in the details from its most recent predecessors (Mentawai section). We conclude that (1) seismic asperities are probably persistent features which arise form heterogeneous strain build up in the interseismic period; and (2) the same portion of a megathrust can rupture in different ways depending on whether asperities break as isolated events or cooperate to produce

  14. The 2016 Kumamoto earthquake sequence.

    Science.gov (United States)

    Kato, Aitaro; Nakamura, Kouji; Hiyama, Yohei

    2016-01-01

    Beginning in April 2016, a series of shallow, moderate to large earthquakes with associated strong aftershocks struck the Kumamoto area of Kyushu, SW Japan. An M j 7.3 mainshock occurred on 16 April 2016, close to the epicenter of an M j 6.5 foreshock that occurred about 28 hours earlier. The intense seismicity released the accumulated elastic energy by right-lateral strike slip, mainly along two known, active faults. The mainshock rupture propagated along multiple fault segments with different geometries. The faulting style is reasonably consistent with regional deformation observed on geologic timescales and with the stress field estimated from seismic observations. One striking feature of this sequence is intense seismic activity, including a dynamically triggered earthquake in the Oita region. Following the mainshock rupture, postseismic deformation has been observed, as well as expansion of the seismicity front toward the southwest and northwest.

  15. The 2016 Kumamoto earthquake sequence

    Science.gov (United States)

    KATO, Aitaro; NAKAMURA, Kouji; HIYAMA, Yohei

    2016-01-01

    Beginning in April 2016, a series of shallow, moderate to large earthquakes with associated strong aftershocks struck the Kumamoto area of Kyushu, SW Japan. An Mj 7.3 mainshock occurred on 16 April 2016, close to the epicenter of an Mj 6.5 foreshock that occurred about 28 hours earlier. The intense seismicity released the accumulated elastic energy by right-lateral strike slip, mainly along two known, active faults. The mainshock rupture propagated along multiple fault segments with different geometries. The faulting style is reasonably consistent with regional deformation observed on geologic timescales and with the stress field estimated from seismic observations. One striking feature of this sequence is intense seismic activity, including a dynamically triggered earthquake in the Oita region. Following the mainshock rupture, postseismic deformation has been observed, as well as expansion of the seismicity front toward the southwest and northwest. PMID:27725474

  16. Scenario earthquake hazards for the Long Valley Caldera-Mono Lake area, east-central California (ver. 2.0, January 2018)

    Science.gov (United States)

    Chen, Rui; Branum, David M.; Wills, Chris J.; Hill, David P.

    2014-06-30

    As part of the U.S. Geological Survey’s (USGS) multi-hazards project in the Long Valley Caldera-Mono Lake area, the California Geological Survey (CGS) developed several earthquake scenarios and evaluated potential seismic hazards, including ground shaking, surface fault rupture, liquefaction, and landslide hazards associated with these earthquake scenarios. The results of these analyses can be useful in estimating the extent of potential damage and economic losses because of potential earthquakes and also for preparing emergency response plans.The Long Valley Caldera-Mono Lake area has numerous active faults. Five of these faults or fault zones are considered capable of producing magnitude ≥6.7 earthquakes according to the Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2) developed by the 2007 Working Group on California Earthquake Probabilities (WGCEP) and the USGS National Seismic Hazard Mapping Program. These five faults are the Fish Slough, Hartley Springs, Hilton Creek, Mono Lake, and Round Valley Faults. CGS developed earthquake scenarios for these five faults in the study area and for the White Mountains Fault Zone to the east of the study area.In this report, an earthquake scenario is intended to depict the potential consequences of significant earthquakes. A scenario earthquake is not necessarily the largest or most damaging earthquake possible on a recognized fault. Rather it is both large enough and likely enough that emergency planners should consider it in regional emergency response plans. In particular, the ground motion predicted for a given scenario earthquake does not represent a full probabilistic hazard assessment, and thus it does not provide the basis for hazard zoning and earthquake-resistant building design.Earthquake scenarios presented here are based on fault geometry and activity data developed by the WGCEP, and are consistent with the 2008 Update of the United States National Seismic Hazard Maps (NSHM). Alternatives

  17. Rupture processes of the 2013-2014 Minab earthquake sequence, Iran

    Science.gov (United States)

    Kintner, Jonas A.; Ammon, Charles J.; Cleveland, K. Michael; Herman, Matthew

    2018-06-01

    We constrain epicentroid locations, magnitudes and depths of moderate-magnitude earthquakes in the 2013-2014 Minab sequence using surface-wave cross-correlations, surface-wave spectra and teleseismic body-wave modelling. We estimate precise relative locations of 54 Mw ≥ 3.8 earthquakes using 48 409 teleseismic, intermediate-period Rayleigh and Love-wave cross-correlation measurements. To reduce significant regional biases in our relative locations, we shift the relative locations to align the Mw 6.2 main-shock centroid to a location derived from an independent InSAR fault model. Our relocations suggest that the events lie along a roughly east-west trend that is consistent with the faulting geometry in the GCMT catalogue. The results support previous studies that suggest the sequence consists of left-lateral strain release, but better defines the main-shock fault length and shows that most of the Mw ≥ 5.0 aftershocks occurred on one or two similarly oriented structures. We also show that aftershock activity migrated westwards along strike, away from the main shock, suggesting that Coulomb stress transfer played a role in the fault failure. We estimate the magnitudes of the relocated events using surface-wave cross-correlation amplitudes and find good agreement with the GCMT moment magnitudes for the larger events and underestimation of small-event size by catalogue MS. In addition to clarifying details of the Minab sequence, the results demonstrate that even in tectonically complex regions, relative relocation using teleseismic surface waves greatly improves the precision of relative earthquake epicentroid locations and can facilitate detailed tectonic analyses of remote earthquake sequences.

  18. Integrated Earthquake Risk Assessment in the Kathmandu Valley - A Case Study

    Science.gov (United States)

    Schaper, Julia; Anhorn, Johannes; Khazai, Bijan; Nüsser, Marcus

    2013-04-01

    Rapid urban growth is a process which can be observed in cities worldwide. Managing these growing urban areas has become a major challenge for both governing bodies and citizens. Situated not only in a highly earthquake and landslide-prone area, but comprising also the cultural and political capital of Nepal, the fast expanding Kathmandu Valley in the Himalayan region is of particular interest. Vulnerability assessment has been an important tool for spatial planning in this already densely populated area. The magnitude 8.4 earthquake of Bihar in 1934 cost 8600 Nepalis their lives, destroyed 20% of the Kathmandu building stock and heavily damaged another 40%. Since then, Kathmandu has grown into a hub with over a million inhabitants. Rapid infrastructure and population growth aggravate the vulnerability conditions, particularly in the core area of Metropolitan Kathmandu. We propose an integrative framework for vulnerability and risk in Kathmandu Valley. In order to move towards a more systemic and integrated approach, we focus on interactions between natural hazards, physically engineered systems and society. High resolution satellite images are used to identify structural vulnerability of the building stock within the study area. Using object-based image analysis, the spatial dynamics of urban growth are assessed and validated using field data. Complementing this is the analysis of socio-economic attributes gained from databases and field surveys. An indicator-based vulnerability and resilience index will be operationalized using multi-attribute value theory and statistical methods such as principal component analysis. The results allow for a socio-economic comparison of places and their relative potential for harm and loss. The objective in this task is to better understand the interactions between nature and society, engineered systems and built environments through the development of an interdisciplinary framework on systemic seismic risk and vulnerability. Data

  19. Source characteristics of the Fairview, OK, earthquake sequence and its relationship to industrial activities

    Science.gov (United States)

    Yeck, W. L.; Weingarten, M.; Benz, H.; McNamara, D. E.; Herrmann, R. B.; Rubinstein, J. L.; Earle, P. S.; Bergman, E.

    2016-12-01

    We characterize the spatio-temporal patterns of seismicity surrounding the February 13, 2016, Mw 5.1 Fairview, Oklahoma earthquake. This earthquake sequence accounts for the largest moment release in the central and eastern US since the November 06, 2011 Mw 5.6 Prague, OK earthquake sequence. To improve the location accuracy of the sequence and measure near-source ground motions, the United States Geological Survey (USGS) deployed eight seismometers and accelerometers in the epicentral region. With the added depth control from these stations, we show that earthquakes primarily occur in the Precambrian basement, at depths of 6-10 km below sea level. The Mw 5.1 mainshock, the largest event in the cluster, locates near the base of the seismicity. Relocated aftershocks delineate a partially unmapped, 14-km-long fault segment that strikes approximately N40°E, partially bridging the gap between previously mapped basement faults to the southwest and northeast. Gas production and hydraulic fracking data from the region show no evidence that either of these activities correlates spatio-temporally with the Fairview sequence. Instead, we suggest that a series of high-rate, Arbuckle injection wells (> 300,000 bbls/month) 8-25 km northeast of this sequence pressurized the reservoir in the far field. Regional injection into the Arbuckle formation increased 7-fold in the 24 months before the initiation of the sequence with some wells operating at rates greater than 1 million barrels per month. Seismicity in the proximity of the high-rate wells is diffuse whilst the energetic Fairview sequence occurs more than 15 km from this region. Our observations point to the critical role pre-existing geologic structures play in the occurrence of large induced earthquakes. This study demonstrates the need for a better understanding of the role of far-field pressurization. High-quality data sets such as this facilitate the USGS mission to improve earthquake hazard identification, especially

  20. A record of large earthquakes during the past two millennia on the southern Green Valley Fault, California

    Science.gov (United States)

    Lienkaemper, James J.; Baldwin, John N.; Turner, Robert; Sickler, Robert R.; Brown, Johnathan

    2013-01-01

    We document evidence for surface-rupturing earthquakes (events) at two trench sites on the southern Green Valley fault, California (SGVF). The 75-80-km long dextral SGVF creeps ~1-4 mm/yr. We identify stratigraphic horizons disrupted by upward-flowering shears and in-filled fissures unlikely to have formed from creep alone. The Mason Rd site exhibits four events from ~1013 CE to the Present. The Lopes Ranch site (LR, 12 km to the south) exhibits three events from 18 BCE to Present including the most recent event (MRE), 1610 ±52 yr CE (1σ) and a two-event interval (18 BCE-238 CE) isolated by a millennium of low deposition. Using Oxcal to model the timing of the 4-event earthquake sequence from radiocarbon data and the LR MRE yields a mean recurrence interval (RI or μ) of 199 ±82 yr (1σ) and ±35 yr (standard error of the mean), the first based on geologic data. The time since the most recent earthquake (open window since MRE) is 402 yr ±52 yr, well past μ~200 yr. The shape of the probability density function (pdf) of the average RI from Oxcal resembles a Brownian Passage Time (BPT) pdf (i.e., rather than normal) that permits rarer longer ruptures potentially involving the Berryessa and Hunting Creek sections of the northernmost GVF. The model coefficient of variation (cv, σ/μ) is 0.41, but a larger value (cv ~0.6) fits better when using BPT. A BPT pdf with μ of 250 yr and cv of 0.6 yields 30-yr rupture probabilities of 20-25% versus a Poisson probability of 11-17%.

  1. Variations in the geomagnetic and gravitational background associated with two strong earthquakes of the May 2012 sequence in the Po Valley Plain (Italy).

    Science.gov (United States)

    Straser, Valentino

    2013-04-01

    Reawakening of seismic activity in the Emilian Po Valley Plain (Italy) resulted in 2,492 earthquakes over five and a half months: 2,270 with M= 7. The mainshock was recorded during the night of 20 May 2012, at 04:03:52 Italian time (02:03:52 UTC) with epicentre in Finale Emilia, at a depth of 6.3km, by the Italian National Institute of Geophysics and Vulcanology (INGV). A long sequence of telluric shocks occurred in the same seismic district in the areas between the provinces of Modena, Ferrara, Mantua, Reggio Emilia, Bologna and Rovigo. In addition to the general devastation plus damage to civil and industrial buildings and the historical heritage, the earthquakes resulted in a total of 27 victims. Concomitant with the two strongest quakes, recorded on 20 and 29 May 2012, respectively, as in the case of others, variations were noted in the geomagnetic background by the LTPA monitoring station in Rome (Italy). The geomagnetic background variations were associated with the appearance of radio-anomalies in a frequency range from 0.1 to 3.0Hz, as well as gravimetric variations found around 60km from the epicentre. The peak accelerations, detected in correspondence with the strongest shocks on 20 and 29 May 2012, were respectively 0.31g and 0.29g. The appearance of the radio-anomalies coincided, from a temporal point of view, with average gravimetric variations of approximately 30µGal around the epicentre areas, concurrent with the mainshock. In this study, both the appearance of radio-anomalies and the gravitational variations recorded before strong earthquakes were related to the dynamics of the fault and a progressive reduction in granulometry in the core of the fracture, until the point of dislocation was reached. The intense friction in the fault and the damping factors produced before the shock are hypothesized as being proportional to the number of radio-anomalies measured. The radio anomaly is an unknown radio emission that has no characteristics (duration

  2. The Emilia 2012 sequence: a macroseismic survey

    Directory of Open Access Journals (Sweden)

    Andrea Tertulliani

    2012-10-01

    Full Text Available On May 20, 2012, at 4:03 local time (2:03 UTC, a large part of the Po Valley between the cities of Ferrara, Modena and Mantova was struck by a damaging earthquake (Ml 5.9. The epicenter was located by the Istituto Nazionale di Geo-fisica e Vulcanologia (INGV seismic network [ISIDe 2010] at 44.889 ˚N and 11.228 ˚E, approximately 30 km west of Ferrara (Figure 1. The event was preceded by a foreshock that occurred at 01:13 local time, with a magnitude of Ml 4. The mainshock started an intense seismic sequence that lasted for weeks, counting more than 2,000 events, six of which had Ml >5. The strongest earthquakes of this sequence occurred on May 29, 2012, with Ml 5.8 and Ml 5.3, recorded at 9:00 and 12:55 local time, respectively. The epicenters of the May 29, 2012, events were located at the westernmost part of the rupture zone of the May 20, 2012, earthquake (Figure 2. The May 20 and 29, 2012, earthquakes were felt through the whole of northern and central Italy, and as far as Switzerland, Slovenia, Croatia, Austria, south-eastern France and southern Germany. Historical information reveals that the seismic activity in the Po Valley is moderate […

  3. The Mw=8.8 Maule earthquake aftershock sequence, event catalog and locations

    Science.gov (United States)

    Meltzer, A.; Benz, H.; Brown, L.; Russo, R. M.; Beck, S. L.; Roecker, S. W.

    2011-12-01

    The aftershock sequence of the Mw=8.8 Maule earthquake off the coast of Chile in February 2010 is one of the most well-recorded aftershock sequences from a great megathrust earthquake. Immediately following the Maule earthquake, teams of geophysicists from Chile, France, Germany, Great Britain and the United States coordinated resources to capture aftershocks and other seismic signals associated with this significant earthquake. In total, 91 broadband, 48 short period, and 25 accelerometers stations were deployed above the rupture zone of the main shock from 33-38.5°S and from the coast to the Andean range front. In order to integrate these data into a unified catalog, the USGS National Earthquake Information Center develop procedures to use their real-time seismic monitoring system (Bulletin Hydra) to detect, associate, location and compute earthquake source parameters from these stations. As a first step in the process, the USGS has built a seismic catalog of all M3.5 or larger earthquakes for the time period of the main aftershock deployment from March 2010-October 2010. The catalog includes earthquake locations, magnitudes (Ml, Mb, Mb_BB, Ms, Ms_BB, Ms_VX, Mc), associated phase readings and regional moment tensor solutions for most of the M4 or larger events. Also included in the catalog are teleseismic phases and amplitude measures and body-wave MT and CMT solutions for the larger events, typically M5.5 and larger. Tuning of automated detection and association parameters should allow a complete catalog of events to approximately M2.5 or larger for that dataset of more than 164 stations. We characterize the aftershock sequence in terms of magnitude, frequency, and location over time. Using the catalog locations and travel times as a starting point we use double difference techniques to investigate relative locations and earthquake clustering. In addition, phase data from candidate ground truth events and modeling of surface waves can be used to calibrate the

  4. Characterizing Aftershock Sequences of the Recent Strong Earthquakes in Central Italy

    Science.gov (United States)

    Kossobokov, Vladimir G.; Nekrasova, Anastasia K.

    2017-10-01

    The recent strong earthquakes in Central Italy allow for a comparative analysis of their aftershocks from the viewpoint of the Unified Scaling Law for Earthquakes, USLE, which generalizes the Gutenberg-Richter relationship making use of naturally fractal distribution of earthquake sources of different size in a seismic region. In particular, we consider aftershocks as a sequence of avalanches in self-organized system of blocks-and-faults of the Earth lithosphere, each aftershock series characterized with the distribution of the USLE control parameter, η. We found the existence, in a long-term, of different, intermittent levels of rather steady seismic activity characterized with a near constant value of η, which switch, in mid-term, at times of transition associated with catastrophic events. On such a transition, seismic activity may follow different scenarios with inter-event time scaling of different kind, including constant, logarithmic, power law, exponential rise/decay or a mixture of those as observed in the case of the ongoing one associated with the three strong earthquakes in 2016. Evidently, our results do not support the presence of universality of seismic energy release, while providing constraints on modelling seismic sequences for earthquake physicists and supplying decision makers with information for improving local seismic hazard assessments.

  5. Revisiting the Canterbury earthquake sequence after the 14 February 2016 Mw 5.7 event

    NARCIS (Netherlands)

    Herman, Matthew W.; Furlong, Kevin P.

    2016-01-01

    On 14 February 2016, an Mw 5.7 (GNS Science moment magnitude) earthquake ruptured offshore east of Christchurch, New Zealand. This earthquake occurred in an area that had previously experienced significant seismicity from 2010 to 2012 during the Canterbury earthquake sequence, starting with the 2010

  6. Abundant aftershock sequence of the 2015 Mw7.5 Hindu Kush intermediate-depth earthquake

    Science.gov (United States)

    Li, Chenyu; Peng, Zhigang; Yao, Dongdong; Guo, Hao; Zhan, Zhongwen; Zhang, Haijiang

    2018-05-01

    The 2015 Mw7.5 Hindu Kush earthquake occurred at a depth of 213 km beneath the Hindu Kush region of Afghanistan. While many early aftershocks were missing from the global earthquake catalogues, this sequence was recorded continuously by eight broad-band stations within 500 km. Here we use a waveform matching technique to systematically detect earthquakes around the main shock. More than 3000 events are detected within 35 d after the main shock, as compared with 42 listed in the Advanced National Seismic System catalogue (or 196 in the International Seismological Centre catalogue). The aftershock sequence generally follows the Omori's law with a decay constant p = 0.92. We also apply the recently developed double-pair double-difference technique to relocate all detected aftershocks. Most of them are located to the west of the hypocentre of the main shock, consistent with the westward propagation of the main-shock rupture. The aftershocks outline a nearly vertical southward dipping plane, which matches well with one of the nodal planes of the main shock. We conclude that the aftershock sequence of this intermediate-depth earthquake shares many similarities with those for shallow earthquakes and infer that there are some common mechanisms responsible for shallow and intermediate-depth earthquakes.

  7. Characterization of Aftershock Sequences from Large Strike-Slip Earthquakes Along Geometrically Complex Faults

    Science.gov (United States)

    Sexton, E.; Thomas, A.; Delbridge, B. G.

    2017-12-01

    Large earthquakes often exhibit complex slip distributions and occur along non-planar fault geometries, resulting in variable stress changes throughout the region of the fault hosting aftershocks. To better discern the role of geometric discontinuities on aftershock sequences, we compare areas of enhanced and reduced Coulomb failure stress and mean stress for systematic differences in the time dependence and productivity of these aftershock sequences. In strike-slip faults, releasing structures, including stepovers and bends, experience an increase in both Coulomb failure stress and mean stress during an earthquake, promoting fluid diffusion into the region and further failure. Conversely, Coulomb failure stress and mean stress decrease in restraining bends and stepovers in strike-slip faults, and fluids diffuse away from these areas, discouraging failure. We examine spatial differences in seismicity patterns along structurally complex strike-slip faults which have hosted large earthquakes, such as the 1992 Mw 7.3 Landers, the 2010 Mw 7.2 El-Mayor Cucapah, the 2014 Mw 6.0 South Napa, and the 2016 Mw 7.0 Kumamoto events. We characterize the behavior of these aftershock sequences with the Epidemic Type Aftershock-Sequence Model (ETAS). In this statistical model, the total occurrence rate of aftershocks induced by an earthquake is λ(t) = λ_0 + \\sum_{i:t_i

  8. Estimation of 1-D velocity models beneath strong-motion observation sites in the Kathmandu Valley using strong-motion records from moderate-sized earthquakes

    Science.gov (United States)

    Bijukchhen, Subeg M.; Takai, Nobuo; Shigefuji, Michiko; Ichiyanagi, Masayoshi; Sasatani, Tsutomu; Sugimura, Yokito

    2017-07-01

    The Himalayan collision zone experiences many seismic activities with large earthquakes occurring at certain time intervals. The damming of the proto-Bagmati River as a result of rapid mountain-building processes created a lake in the Kathmandu Valley that eventually dried out, leaving thick unconsolidated lacustrine deposits. Previous studies have shown that the sediments are 600 m thick in the center. A location in a seismically active region, and the possible amplification of seismic waves due to thick sediments, have made Kathmandu Valley seismically vulnerable. It has suffered devastation due to earthquakes several times in the past. The development of the Kathmandu Valley into the largest urban agglomerate in Nepal has exposed a large population to seismic hazards. This vulnerability was apparent during the Gorkha Earthquake (Mw7.8) on April 25, 2015, when the main shock and ensuing aftershocks claimed more than 1700 lives and nearly 13% of buildings inside the valley were completely damaged. Preparing safe and up-to-date building codes to reduce seismic risk requires a thorough study of ground motion amplification. Characterizing subsurface velocity structure is a step toward achieving that goal. We used the records from an array of strong-motion accelerometers installed by Hokkaido University and Tribhuvan University to construct 1-D velocity models of station sites by forward modeling of low-frequency S-waves. Filtered records (0.1-0.5 Hz) from one of the accelerometers installed at a rock site during a moderate-sized (mb4.9) earthquake on August 30, 2013, and three moderate-sized (Mw5.1, Mw5.1, and Mw5.5) aftershocks of the 2015 Gorkha Earthquake were used as input motion for modeling of low-frequency S-waves. We consulted available geological maps, cross-sections, and borehole data as the basis for initial models for the sediment sites. This study shows that the basin has an undulating topography and sediment sites have deposits of varying thicknesses

  9. Breaking barriers and halting rupture: the 2016 Amatrice-Visso-Castelluccio earthquake sequence, central Italy

    Science.gov (United States)

    Gregory, L. C.; Walters, R. J.; Wedmore, L. N. J.; Craig, T. J.; McCaffrey, K. J. W.; Wilkinson, M. W.; Livio, F.; Michetti, A.; Goodall, H.; Li, Z.; Chen, J.; De Martini, P. M.

    2017-12-01

    In 2016 the Central Italian Apennines was struck by a sequence of normal faulting earthquakes that ruptured in three separate events on the 24th August (Mw 6.2), the 26th Oct (Mw 6.1), and the 30th Oct (Mw 6.6). We reveal the complex nature of the individual events and the time-evolution of the sequence using multiple datasets. We will present an overview of the results from field geology, satellite geodesy, GNSS (including low-cost short baseline installations), and terrestrial laser scanning (TLS). Sequences of earthquakes of mid to high magnitude 6 are common in historical and seismological records in Italy and other similar tectonic settings globally. Multi-fault rupture during these sequences can occur in seconds, as in the M 6.9 1980 Irpinia earthquake, or can span days, months, or years (e.g. the 1703 Norcia-L'Aquila sequence). It is critical to determine why the causative faults in the 2016 sequence did not rupture simultaneously, and how this relates to fault segmentation and structural barriers. This is the first sequence of this kind to be observed using modern geodetic techniques, and only with all of the datasets combined can we begin to understand how and why the sequence evolved in time and space. We show that earthquake rupture both broke through structural barriers that were thought to exist, but was also inhibited by a previously unknown structure. We will also discuss the logistical challenges in generating datasets on the time-evolving sequence, and show how rapid response and international collaboration within the Open EMERGEO Working Group was critical for gaining a complete picture of the ongoing activity.

  10. Protracted fluvial recovery from medieval earthquakes, Pokhara, Nepal

    Science.gov (United States)

    Stolle, Amelie; Bernhardt, Anne; Schwanghart, Wolfgang; Andermann, Christoff; Schönfeldt, Elisabeth; Seidemann, Jan; Adhikari, Basanta R.; Merchel, Silke; Rugel, Georg; Fort, Monique; Korup, Oliver

    2016-04-01

    River response to strong earthquake shaking in mountainous terrain often entails the flushing of sediments delivered by widespread co-seismic landsliding. Detailed mass-balance studies following major earthquakes in China, Taiwan, and New Zealand suggest fluvial recovery times ranging from several years to decades. We report a detailed chronology of earthquake-induced valley fills in the Pokhara region of western-central Nepal, and demonstrate that rivers continue to adjust to several large medieval earthquakes to the present day, thus challenging the notion of transient fluvial response to seismic disturbance. The Pokhara valley features one of the largest and most extensively dated sedimentary records of earthquake-triggered sedimentation in the Himalayas, and independently augments paleo-seismological archives obtained mainly from fault trenches and historic documents. New radiocarbon dates from the catastrophically deposited Pokhara Formation document multiple phases of extremely high geomorphic activity between ˜700 and ˜1700 AD, preserved in thick sequences of alternating fluvial conglomerates, massive mud and silt beds, and cohesive debris-flow deposits. These dated fan-marginal slackwater sediments indicate pronounced sediment pulses in the wake of at least three large medieval earthquakes in ˜1100, 1255, and 1344 AD. We combine these dates with digital elevation models, geological maps, differential GPS data, and sediment logs to estimate the extent of these three pulses that are characterized by sedimentation rates of ˜200 mm yr-1 and peak rates as high as 1,000 mm yr-1. Some 5.5 to 9 km3 of material infilled the pre-existing topography, and is now prone to ongoing fluvial dissection along major canyons. Contemporary river incision into the Pokhara Formation is rapid (120-170 mm yr-1), triggering widespread bank erosion, channel changes, and very high sediment yields of the order of 103 to 105 t km-2 yr-1, that by far outweigh bedrock denudation rates

  11. Ground motions from the 2015 Mw 7.8 Gorkha, Nepal, earthquake constrained by a detailed assessment of macroseismic data

    Science.gov (United States)

    Martin, Stacey; Hough, Susan E.; Hung, Charleen

    2015-01-01

    To augment limited instrumental recordings of the Mw 7.8 Gorkha, Nepal, earthquake on 25 April 2015 (Nepali calendar: 12 Baisakh 2072, Bikram Samvat), we collected 3831 detailed media and first-person accounts of macroseismic effects that include sufficiently detailed information to assign intensities. The resulting intensity map reveals the distribution of shaking within and outside of Nepal, with the key result that shaking intensities throughout the near-field region only exceeded intensity 8 on the 1998 European Macroseismic Scale (EMS-98) in rare instances. Within the Kathmandu Valley, intensities were generally 6–7 EMS. This surprising (and fortunate) result can be explained by the nature of the mainshock ground motions, which were dominated by energy at periods significantly longer than the resonant periods of vernacular structures throughout the Kathmandu Valley. Outside of the Kathmandu Valley, intensities were also generally lower than 8 EMS, but the earthquake took a heavy toll on a number of remote villages, where many especially vulnerable masonry houses collapsed catastrophically in 7–8 EMS shaking. We further reconsider intensities from the 1833 earthquake sequence and conclude that it occurred on the same fault segment as the Gorkha earthquake.

  12. Response and recovery lessons from the 2010-2011 earthquake sequence in Canterbury, New Zealand

    Science.gov (United States)

    Pierepiekarz, Mark; Johnston, David; Berryman, Kelvin; Hare, John; Gomberg, Joan S.; Williams, Robert A.; Weaver, Craig S.

    2014-01-01

    The impacts and opportunities that result when low-probability moderate earthquakes strike an urban area similar to many throughout the US were vividly conveyed in a one-day workshop in which social and Earth scientists, public officials, engineers, and an emergency manager shared their experiences of the earthquake sequence that struck the city of Christchurch and surrounding Canterbury region of New Zealand in 2010-2011. Without question, the earthquake sequence has had unprecedented impacts in all spheres on New Zealand society, locally to nationally--10% of the country's population was directly impacted and losses total 8-10% of their GDP. The following paragraphs present a few lessons from Christchurch.

  13. Precursory slow-slip loaded the 2009 L'Aquila earthquake sequence

    Science.gov (United States)

    Borghi, A.; Aoudia, A.; Javed, F.; Barzaghi, R.

    2016-05-01

    Slow-slip events (SSEs) are common at subduction zone faults where large mega earthquakes occur. We report here that one of the best-recorded moderate size continental earthquake, the 2009 April 6 moment magnitude (Mw) 6.3 L'Aquila (Italy) earthquake, was preceded by a 5.9 Mw SSE that originated from the decollement beneath the reactivated normal faulting system. The SSE is identified from a rigorous analysis of continuous GPS stations and occurred on the 12 February and lasted for almost two weeks. It coincided with a burst in the foreshock activity with small repeating earthquakes migrating towards the main-shock hypocentre as well as with a change in the elastic properties of rocks in the fault region. The SSE has caused substantial stress loading at seismogenic depths where the magnitude 4.0 foreshock and Mw 6.3 main shock nucleated. This stress loading is also spatially correlated with the lateral extent of the aftershock sequence.

  14. Dual megathrust slip behaviors of the 2014 Iquique earthquake sequence

    Science.gov (United States)

    Meng, Lingsen; Huang, Hui; Bürgmann, Roland; Ampuero, Jean Paul; Strader, Anne

    2015-02-01

    The transition between seismic rupture and aseismic creep is of central interest to better understand the mechanics of subduction processes. A Mw 8.2 earthquake occurred on April 1st, 2014 in the Iquique seismic gap of northern Chile. This event was preceded by a long foreshock sequence including a 2-week-long migration of seismicity initiated by a Mw 6.7 earthquake. Repeating earthquakes were found among the foreshock sequence that migrated towards the mainshock hypocenter, suggesting a large-scale slow-slip event on the megathrust preceding the mainshock. The variations of the recurrence times of the repeating earthquakes highlight the diverse seismic and aseismic slip behaviors on different megathrust segments. The repeaters that were active only before the mainshock recurred more often and were distributed in areas of substantial coseismic slip, while repeaters that occurred both before and after the mainshock were in the area complementary to the mainshock rupture. The spatiotemporal distribution of the repeating earthquakes illustrates the essential role of propagating aseismic slip leading up to the mainshock and illuminates the distribution of postseismic afterslip. Various finite fault models indicate that the largest coseismic slip generally occurred down-dip from the foreshock activity and the mainshock hypocenter. Source imaging by teleseismic back-projection indicates an initial down-dip propagation stage followed by a rupture-expansion stage. In the first stage, the finite fault models show an emergent onset of moment rate at low frequency ( 0.5 Hz). This indicates frequency-dependent manifestations of seismic radiation in the low-stress foreshock region. In the second stage, the rupture expands in rich bursts along the rim of a semi-elliptical region with episodes of re-ruptures, suggesting delayed failure of asperities. The high-frequency rupture remains within an area of local high trench-parallel gravity anomaly (TPGA), suggesting the presence of

  15. Strain Anomalies during an Earthquake Sequence in the South Iceland Seismic Zone

    Science.gov (United States)

    Arnadottir, T.; Haines, A. J.; Geirsson, H.; Hreinsdottir, S.

    2017-12-01

    The South Iceland Seismic Zone (SISZ) accommodates E-W translation due to oblique spreading between the North American/Hreppar microplate and Eurasian plate, in South Iceland. Strain is released in the SISZ during earthquake sequences that last days to years, at average intervals of 80-100 years. The SISZ is currently in the midst of an earthquake sequence that started with two M6.5 earthquakes in June 2000, and continued with two M6 earthquakes in May 2008. Estimates of geometric strain accumulation, and seismic strain release in these events indicate that they released at most only half of the strain accumulated since the last earthquake cycle in 1896-1912. Annual GPS campaigns and continuous measurements during 2001-2015 were used to calculate station velocities and strain rates from a new method using the vertical derivatives of horizontal stress (VDoHS). This new method allows higher resolution of strain rates than other (older) approaches, as the strain rates are estimated by integrating VDoHS rates obtained by inversion rather than differentiating interpolated GPS velocities. Estimating the strain rates for eight 1-2 year intervals indicates temporal and spatial variation of strain rates in the SISZ. In addition to earthquake faulting, the strain rates in the SISZ are influenced by anthropogenic signals due to geothermal exploitation, and magma movements in neighboring volcanoes - Hekla and Eyjafjallajökull. Subtle signals of post-seismic strain rate changes are seen following the June 2000 M6.5 main shocks, but interestingly, much larger strain rate variations are observed after the two May 2008 M6 main shocks. A prominent strain anomaly is evident in the epicentral area prior to the May 2008 earthquake sequence. The strain signal persists over at least 4 years in the epicentral area, leading up to the M6 main shocks. The strain is primarily extension in ESE-WNW direction (sub-parallel to the direction of plate spreading), but overall shear across the N

  16. The 2016 Mihoub (north-central Algeria) earthquake sequence: Seismological and tectonic aspects

    Science.gov (United States)

    Khelif, M. F.; Yelles-Chaouche, A.; Benaissa, Z.; Semmane, F.; Beldjoudi, H.; Haned, A.; Issaadi, A.; Chami, A.; Chimouni, R.; Harbi, A.; Maouche, S.; Dabbouz, G.; Aidi, C.; Kherroubi, A.

    2018-06-01

    On 28 May 2016 at 23:54 (UTC), an Mw5.4 earthquake occurred in Mihoub village, Algeria, 60 km southeast of Algiers. This earthquake was the largest event in a sequence recorded from 10 April to 15 July 2016. In addition to the permanent national network, a temporary network was installed in the epicentral region after this shock. Recorded event locations allow us to give a general overview of the sequence and reveal the existence of two main fault segments. The first segment, on which the first event in the sequence was located, is near-vertical and trends E-W. The second fault plane, on which the largest event of the sequence was located, dips to the southeast and strikes NE-SW. A total of 46 well-constrained focal mechanisms were calculated. The events located on the E-W-striking fault segment show mainly right-lateral strike-slip (strike N70°E, dip 77° to the SSE, rake 150°). The events located on the NE-SW-striking segment show mainly reverse faulting (strike N60°E, dip 70° to the SE, rake 130°). We calculated the static stress change caused by the first event (Md4.9) of the sequence; the result shows that the fault plane of the largest event in the sequence (Mw5.4) and most of the aftershocks occurred within an area of increased Coulomb stress. Moreover, using the focal mechanisms calculated in this work, we estimated the orientations of the main axes of the local stress tensor ellipsoid. The results confirm previous findings that the general stress field in this area shows orientations aligned NNW-SSE to NW-SE. The 2016 Mihoub earthquake sequence study thus improves our understanding of seismic hazard in north-central Algeria.

  17. The 2006-2007 Kuril Islands great earthquake sequence

    Science.gov (United States)

    Lay, T.; Kanamori, H.; Ammon, C.J.; Hutko, Alexander R.; Furlong, K.; Rivera, L.

    2009-01-01

    The southwestern half of a ???500 km long seismic gap in the central Kuril Island arc subduction zone experienced two great earthquakes with extensive preshock and aftershock sequences in late 2006 to early 2007. The nature of seismic coupling in the gap had been uncertain due to the limited historical record of prior large events and the presence of distinctive upper plate, trench and outer rise structures relative to adjacent regions along the arc that have experienced repeated great interplate earthquakes in the last few centuries. The intraplate region seaward of the seismic gap had several shallow compressional events during the preceding decades (notably an MS 7.2 event on 16 March 1963), leading to speculation that the interplate fault was seismically coupled. This issue was partly resolved by failure of the shallow portion of the interplate megathrust in an MW = 8.3 thrust event on 15 November 2006. This event ruptured ???250 km along the seismic gap, just northeast of the great 1963 Kuril Island (Mw = 8.5) earthquake rupture zone. Within minutes of the thrust event, intense earthquake activity commenced beneath the outer wall of the trench seaward of the interplate rupture, with the larger events having normal-faulting mechanisms. An unusual double band of interplate and intraplate aftershocks developed. On 13 January 2007, an MW = 8.1 extensional earthquake ruptured within the Pacific plate beneath the seaward edge of the Kuril trench. This event is the third largest normal-faulting earthquake seaward of a subduction zone on record, and its rupture zone extended to at least 33 km depth and paralleled most of the length of the 2006 rupture. The 13 January 2007 event produced stronger shaking in Japan than the larger thrust event, as a consequence of higher short-period energy radiation from the source. The great event aftershock sequences were dominated by the expected faulting geometries; thrust faulting for the 2006 rupture zone, and normal faulting for

  18. Seismotectonics of the 2014 Chiang Rai, Thailand, earthquake sequence

    Science.gov (United States)

    Pananont, P.; Herman, M. W.; Pornsopin, P.; Furlong, K. P.; Habangkaem, S.; Waldhauser, F.; Wongwai, W.; Limpisawad, S.; Warnitchai, P.; Kosuwan, S.; Wechbunthung, B.

    2017-08-01

    On 5 May 2014, a Mw 6.2 strike-slip earthquake occurred in the Mae Lao region of Chiang Rai province in Thailand. This earthquake took place in a region of known faults and caused substantial damage and injuries, although the region had been previously identified as having a relatively low earthquake hazard. Detailed field reconnaissance and deployment of a dense, temporary, network of broadband seismometers allowed details of the damage and its relationship to seismicity to be analyzed. The aftershock sequence associated with this main shock occurs on two well-defined trends, reflecting the two potential fault planes in earthquake mechanisms for the main shock and the majority of the aftershocks. The damage area was relatively large for an event of this magnitude, but building damage was largely limited to the primary rupture region, while liquefaction and other ground failure are spatially associated with the rupture area and along regional rivers. Stress modeling, combined with the time series and pattern of aftershock activity, leads us to propose that slip near the northern termination of the main shock rupture continued slightly onto a conjugate fault, helping to trigger the distinct pattern of two discrete, conjugate trends of aftershock activity that mirror the kinematics of the main shock fault mechanism.

  19. Identification and characterization of earthquake clusters: a comparative analysis for selected sequences in Italy

    Science.gov (United States)

    Peresan, Antonella; Gentili, Stefania

    2017-04-01

    Identification and statistical characterization of seismic clusters may provide useful insights about the features of seismic energy release and their relation to physical properties of the crust within a given region. Moreover, a number of studies based on spatio-temporal analysis of main-shocks occurrence require preliminary declustering of the earthquake catalogs. Since various methods, relying on different physical/statistical assumptions, may lead to diverse classifications of earthquakes into main events and related events, we aim to investigate the classification differences among different declustering techniques. Accordingly, a formal selection and comparative analysis of earthquake clusters is carried out for the most relevant earthquakes in North-Eastern Italy, as reported in the local OGS-CRS bulletins, compiled at the National Institute of Oceanography and Experimental Geophysics since 1977. The comparison is then extended to selected earthquake sequences associated with a different seismotectonic setting, namely to events that occurred in the region struck by the recent Central Italy destructive earthquakes, making use of INGV data. Various techniques, ranging from classical space-time windows methods to ad hoc manual identification of aftershocks, are applied for detection of earthquake clusters. In particular, a statistical method based on nearest-neighbor distances of events in space-time-energy domain, is considered. Results from clusters identification by the nearest-neighbor method turn out quite robust with respect to the time span of the input catalogue, as well as to minimum magnitude cutoff. The identified clusters for the largest events reported in North-Eastern Italy since 1977 are well consistent with those reported in earlier studies, which were aimed at detailed manual aftershocks identification. The study shows that the data-driven approach, based on the nearest-neighbor distances, can be satisfactorily applied to decompose the seismic

  20. Sand-Venting in the M5.7 Earthquake 3 Jan 2017 and in the Much Larger Penultimate Liquefaction Event with their Sedimentary Setting in an Upstream Valley of the Ganges-Brahmaputra Delta: Implications for Earthquake Hazard

    Science.gov (United States)

    McHugh, C.; Seeber, L.; Akhter, S. H.; Schenck, R. J.; Steckler, M. S.; Kumar, B.; Rajapara, H.; Shovon, A. K.; Singhvi, A. K.

    2017-12-01

    The Ganges-Brahmaputra Delta (GBD) is near the cusp between Sunda subduction and Himalayan collision. Abundant water and fertile sediment support a huge population, but large earthquakes along these broad convergence boundaries have repeatedly caused widespread liquefaction and destruction. The 3 Jan 2017 M5.7 32 km deep (USGS) Ambassa (Tripura, India) earthquake accommodated down-dip extension of the Indian slab where it subducts eastward from the GBD below Burma. This is typical for current seismicity below and east of the GBD, although much larger and shallower thrust earthquakes are anticipated based on GPS. Generally, reported effects in the broad mesoseismal area seem consistent with hypocenter depth and the assigned max MMI V (USGS), but we found surprisingly intense damage and many liquefaction sites in the alluvial northern portion of the Dolai valley in Bangladesh, 36 km NNW of the epicenter. We trenched three liquefaction sites and completed a profile of ten 50m deep wells across the 5 km wide alluvial valley. Fluvial channel sands alternate with overbank silt/clay and organic clay layers suggesting frequent changes in river course, consistent with rapid post glacial sea-level rise, transgression, high-stand aggradation and differential tectonic uplift. The Dolai is one of several short low-relief synclinal valleys in the fold belt draining northward into the Sylhet Basin (NE part of the GBD) where they meet westward drainage richer in sediment. Rapid aggradation by this cross-drainage may have a damming effect and account for the current lacustrine/marshy conditions characteristic of the northern end of these synclinal valleys. Organic rich beds derived from such conditions could encourage overpressure and raise liquefaction potential. The 1.5 m deep trenches revealed fractures and clastic dykes <15 mm wide that fed the 2017 sand vents. Their orientations were N-S, subparallel to the valley and nearby river-banks and at high angle to the fold axes

  1. Earthquake Triggering in the September 2017 Mexican Earthquake Sequence

    Science.gov (United States)

    Fielding, E. J.; Gombert, B.; Duputel, Z.; Huang, M. H.; Liang, C.; Bekaert, D. P.; Moore, A. W.; Liu, Z.; Ampuero, J. P.

    2017-12-01

    Southern Mexico was struck by four earthquakes with Mw > 6 and numerous smaller earthquakes in September 2017, starting with the 8 September Mw 8.2 Tehuantepec earthquake beneath the Gulf of Tehuantepec offshore Chiapas and Oaxaca. We study whether this M8.2 earthquake triggered the three subsequent large M>6 quakes in southern Mexico to improve understanding of earthquake interactions and time-dependent risk. All four large earthquakes were extensional despite the the subduction of the Cocos plate. The traditional definition of aftershocks: likely an aftershock if it occurs within two rupture lengths of the main shock soon afterwards. Two Mw 6.1 earthquakes, one half an hour after the M8.2 beneath the Tehuantepec gulf and one on 23 September near Ixtepec in Oaxaca, both fit as traditional aftershocks, within 200 km of the main rupture. The 19 September Mw 7.1 Puebla earthquake was 600 km away from the M8.2 shock, outside the standard aftershock zone. Geodetic measurements from interferometric analysis of synthetic aperture radar (InSAR) and time-series analysis of GPS station data constrain finite fault total slip models for the M8.2, M7.1, and M6.1 Ixtepec earthquakes. The early M6.1 aftershock was too close in time and space to the M8.2 to measure with InSAR or GPS. We analyzed InSAR data from Copernicus Sentinel-1A and -1B satellites and JAXA ALOS-2 satellite. Our preliminary geodetic slip model for the M8.2 quake shows significant slip extended > 150 km NW from the hypocenter, longer than slip in the v1 finite-fault model (FFM) from teleseismic waveforms posted by G. Hayes at USGS NEIC. Our slip model for the M7.1 earthquake is similar to the v2 NEIC FFM. Interferograms for the M6.1 Ixtepec quake confirm the shallow depth in the upper-plate crust and show centroid is about 30 km SW of the NEIC epicenter, a significant NEIC location bias, but consistent with cluster relocations (E. Bergman, pers. comm.) and with Mexican SSN location. Coulomb static stress

  2. Long Period Earthquakes Beneath California's Young and Restless Volcanoes

    Science.gov (United States)

    Pitt, A. M.; Dawson, P. B.; Shelly, D. R.; Hill, D. P.; Mangan, M.

    2013-12-01

    The newly established USGS California Volcano Observatory has the broad responsibility of monitoring and assessing hazards at California's potentially threatening volcanoes, most notably Mount Shasta, Medicine Lake, Clear Lake Volcanic Field, and Lassen Volcanic Center in northern California; and Long Valley Caldera, Mammoth Mountain, and Mono-Inyo Craters in east-central California. Volcanic eruptions occur in California about as frequently as the largest San Andreas Fault Zone earthquakes-more than ten eruptions have occurred in the last 1,000 years, most recently at Lassen Peak (1666 C.E. and 1914-1917 C.E.) and Mono-Inyo Craters (c. 1700 C.E.). The Long Valley region (Long Valley caldera and Mammoth Mountain) underwent several episodes of heightened unrest over the last three decades, including intense swarms of volcano-tectonic (VT) earthquakes, rapid caldera uplift, and hazardous CO2 emissions. Both Medicine Lake and Lassen are subsiding at appreciable rates, and along with Clear Lake, Long Valley Caldera, and Mammoth Mountain, sporadically experience long period (LP) earthquakes related to migration of magmatic or hydrothermal fluids. Worldwide, the last two decades have shown the importance of tracking LP earthquakes beneath young volcanic systems, as they often provide indication of impending unrest or eruption. Herein we document the occurrence of LP earthquakes at several of California's young volcanoes, updating a previous study published in Pitt et al., 2002, SRL. All events were detected and located using data from stations within the Northern California Seismic Network (NCSN). Event detection was spatially and temporally uneven across the NCSN in the 1980s and 1990s, but additional stations, adoption of the Earthworm processing system, and heightened vigilance by seismologists have improved the catalog over the last decade. LP earthquakes are now relatively well-recorded under Lassen (~150 events since 2000), Clear Lake (~60 events), Mammoth Mountain

  3. Introduction to the focus section on the 2015 Gorkha, Nepal, earthquake

    Science.gov (United States)

    Hough, Susan E.

    2015-01-01

    It has long been recognized that Nepal faces high earthquake hazard, with the most recent large (Mw>7.5) events in 1833 and 1934. When the 25 April 2015Mw 7.8 Gorkha earthquake struck, it appeared initially to be a realization of worst fears. In spite of its large magnitude and proximity to the densely populated Kathmandu valley, however, the level of damage was lower than anticipated, with most vernacular structures within the valley experiencing little or no structural damage. Outside the valley, catastrophic damage did occur in some villages, associated with the high vulnerability of stone masonry construction and, in many cases, landsliding. The unexpected observations from this expected earthquake provide an urgent impetus to understand the event itself and to better characterize hazard from future large Himalayan earthquakes. Toward this end, articles in this special focus section present and describe available data sets and initial results that better illuminate and interpret the earthquake and its effects.

  4. Aftershocks and triggered events of the Great 1906 California earthquake

    Science.gov (United States)

    Meltzner, A.J.; Wald, D.J.

    2003-01-01

    The San Andreas fault is the longest fault in California and one of the longest strike-slip faults in the world, yet little is known about the aftershocks following the most recent great event on the San Andreas, the Mw 7.8 San Francisco earthquake on 18 April 1906. We conducted a study to locate and to estimate magnitudes for the largest aftershocks and triggered events of this earthquake. We examined existing catalogs and historical documents for the period April 1906 to December 1907, compiling data on the first 20 months of the aftershock sequence. We grouped felt reports temporally and assigned modified Mercalli intensities for the larger events based on the descriptions judged to be the most reliable. For onshore and near-shore events, a grid-search algorithm (derived from empirical analysis of modern earthquakes) was used to find the epicentral location and magnitude most consistent with the assigned intensities. For one event identified as far offshore, the event's intensity distribution was compared with those of modern events, in order to contrain the event's location and magnitude. The largest aftershock within the study period, an M ???6.7 event, occurred ???100 km west of Eureka on 23 April 1906. Although not within our study period, another M ???6.7 aftershock occurred near Cape Mendocino on 28 October 1909. Other significant aftershocks included an M ???5.6 event near San Juan Bautista on 17 May 1906 and an M ???6.3 event near Shelter Cove on 11 August 1907. An M ???4.9 aftershock occurred on the creeping segment of the San Andreas fault (southeast of the mainshock rupture) on 6 July 1906. The 1906 San Francisco earthquake also triggered events in southern California (including separate events in or near the Imperial Valley, the Pomona Valley, and Santa Monica Bay), in western Nevada, in southern central Oregon, and in western Arizona, all within 2 days of the mainshock. Of these trigerred events, the largest were an M ???6.1 earthquake near Brawley

  5. Earthquake swarms and the semidiurnal solid earth tide

    Energy Technology Data Exchange (ETDEWEB)

    Klein, F W

    1976-01-01

    Several correlations between peak earthquake activity during swarms and the phase and stress orientation of the calculated solid earth tide are described. The events correlating with the tide are clusters of swarm earthquakes. Swarm clusters from many sequences recorded over several years are used. Significant tidal correlations (which have less than a 5% chance of being observed if earthquakes were random) are found in the Reykjanes Peninsula in Iceland, the central Mid-Atlantic Ridge, the Imperial Valley and northern Gulf of California, and larger (m/sub b/ greater than or equal to 5.0) aftershocks of the 1965 Rat Islands earthquake. In addition, sets of larger single earthquakes on Atlantic and north-east Pacific fracture zones are significantly correlated with the calculated solid tide. No tidal correlation, however, could be found for the Matsushiro Japan swarm of 1965 to 1967. The earthquake-tide correlations other than those of the Reykjanes Peninsula and Mid-Atlantic Ridge can be interpreted as triggering caused by enhancement of the tectonic stress by tidal stress, i.e. the alignment of fault and tidal principal stresses. All tidal correlations except in the Aleutians are associated with oceanic rifts or their landward extensions. If lithospheric plates are decoupled at active rifts, then tidal stresses channeled along the lithospheric stress guide may be concentrated at ridge-type plate boundaries. Tidal triggering of earthquakes at rifts may reflect this possible amplification of tidal strains in the weakened lithosphere at ridges. 25 figures, 2 tables.

  6. The Accidental Spokesperson - Science Communication during the 2010-2011 Christchurch, NZ Earthquake Sequence

    Science.gov (United States)

    Furlong, K. P.

    2015-12-01

    Beginning September 4, 2010, with a Mw 7.1 earthquake, a multi-year earthquake sequence changed life in Canterbury NZ. Information communicated by a core group of university-based earthquake scientists provided accessible information to the general public, the press, and policy makers. Although at the start of this prolonged sequence, no one anticipated its longevity nor its impact, this initial (and largest) event did catalyze a demand from the public and policy makers for information and led to some important lessons in how to communicate science to a broad audience as an event unfolds and when it is personally important to the general public. Earthquakes are neither new nor rare to New Zealand, but the Christchurch area was seen as likely suffering only from the far-field effects of a major earthquake on the Alpine Fault or Marlborough fault system. Policy makers had planned and expected that another city such as Wellington would be where they would need to respond. As a visiting faculty at the University of Canterbury, with expertise in earthquake science, I was entrained and engaged in the response - both the scientific and communication aspects. It soon became clear that formal press releases and statements from government ministries and agencies did little to address the questions and uncertainties that the public, the press, and even the policy makers had. Rather, a series of public lectures, broad ranging discussions with the media (both print and radio/television), and OpEd pieces provided by this small group of earthquake focused faculty at the University of Canterbury provided the background information, best estimates of what could occur in the future, and why Earth was acting as it was. This filled a critical gap in science information going to the public, and helped build a level of trust in the public that became critically needed after the situation escalated with subsequent damaging events through early-mid 2011, and onward.

  7. Automatic analysis of the 2015 Gorkha earthquake aftershock sequence.

    Science.gov (United States)

    Baillard, C.; Lyon-Caen, H.; Bollinger, L.; Rietbrock, A.; Letort, J.; Adhikari, L. B.

    2016-12-01

    The Mw 7.8 Gorkha earthquake, that partially ruptured the Main Himalayan Thrust North of Kathmandu on the 25th April 2015, was the largest and most catastrophic earthquake striking Nepal since the great M8.4 1934 earthquake. This mainshock was followed by multiple aftershocks, among them, two notable events that occurred on the 12th May with magnitudes of 7.3 Mw and 6.3 Mw. Due to these recent events it became essential for the authorities and for the scientific community to better evaluate the seismic risk in the region through a detailed analysis of the earthquake catalog, amongst others, the spatio-temporal distribution of the Gorkha aftershock sequence. Here we complement this first study by doing a microseismic study using seismic data coming from the eastern part of the Nepalese Seismological Center network associated to one broadband station in Everest. Our primary goal is to deliver an accurate catalog of the aftershock sequence. Due to the exceptional number of events detected we performed an automatic picking/locating procedure which can be splitted in 4 steps: 1) Coarse picking of the onsets using a classical STA/LTA picker, 2) phase association of picked onsets to detect and declare seismic events, 3) Kurtosis pick refinement around theoretical arrival times to increase picking and location accuracy and, 4) local magnitude calculation based amplitude of waveforms. This procedure is time efficient ( 1 sec/event), reduces considerably the location uncertainties ( 2 to 5 km errors) and increases the number of events detected compared to manual processing. Indeed, the automatic detection rate is 10 times higher than the manual detection rate. By comparing to the USGS catalog we were able to give a new attenuation law to compute local magnitudes in the region. A detailed analysis of the seismicity shows a clear migration toward the east of the region and a sudden decrease of seismicity 100 km east of Kathmandu which may reveal the presence of a tectonic

  8. Multifractal analysis of 2001 Mw 7 . 7 Bhuj earthquake sequence in Gujarat, Western India

    Science.gov (United States)

    Aggarwal, Sandeep Kumar; Pastén, Denisse; Khan, Prosanta Kumar

    2017-12-01

    The 2001 Mw 7 . 7 Bhuj mainshock seismic sequence in the Kachchh area, occurring during 2001 to 2012, has been analyzed using mono-fractal and multi-fractal dimension spectrum analysis technique. This region was characterized by frequent moderate shocks of Mw ≥ 5 . 0 for more than a decade since the occurrence of 2001 Bhuj earthquake. The present study is therefore important for precursory analysis using this sequence. The selected long-sequence has been investigated first time for completeness magnitude Mc 3.0 using the maximum curvature method. Multi-fractal Dq spectrum (Dq ∼ q) analysis was carried out using effective window-length of 200 earthquakes with a moving window of 20 events overlapped by 180 events. The robustness of the analysis has been tested by considering the magnitude completeness correction term of 0.2 to Mc 3.0 as Mc 3.2 and we have tested the error in the calculus of Dq for each magnitude threshold. On the other hand, the stability of the analysis has been investigated down to the minimum magnitude of Mw ≥ 2 . 6 in the sequence. The analysis shows the multi-fractal dimension spectrum Dq decreases with increasing of clustering of events with time before a moderate magnitude earthquake in the sequence, which alternatively accounts for non-randomness in the spatial distribution of epicenters and its self-organized criticality. Similar behavior is ubiquitous elsewhere around the globe, and warns for proximity of a damaging seismic event in an area. OS: Please confirm math roman or italics in abs.

  9. Conceptualizing ¬the Abstractions of Earthquakes Through an Instructional Sequence Using SeisMac and the Rapid Earthquake Viewer

    Science.gov (United States)

    Taber, J.; Hubenthal, M.; Wysession, M.

    2007-12-01

    Newsworthy earthquakes provide an engaging hook for students in Earth science classes, particularly when discussing their effects on people and the landscape. However, engaging students in an analysis of earthquakes that extends beyond death and damage, is frequently hampered by the abstraction of recorded ground motion data in the form of raw seismograms and the inability of most students to personally relate to ground accelerations. To overcome these challenges, an educational sequence has been developed using two software tools: SeisMac by Daniel Griscom, and the Rapid Earthquake Viewer (REV) developed by the University of South Carolina in collaboration with IRIS and DLESE. This sequence presents a unique opportunity for Earth Science teachers to "create" foundational experiences for students as they construction a framework of understanding of abstract concepts. The first activity is designed to introduce the concept of a three-component seismogram and to directly address the very abstract nature of seismograms through a kinesthetic experience. Students first learn to take the pulse of their classroom through a guided exploration of SeisMac, which displays the output of the laptop's built-in Sudden Motion Sensor (a 3-component accelerometer). This exploration allows students to view a 3-component seismogram as they move or tap the laptop and encourages them to propose and carry out experiments to explain the meaning of the 3-component seismogram. Once completed students are then asked to apply this new knowledge to a real 3-component seismogram printed from REV. Next the activity guides students through the process of identifying P and S waves and using SeisMac to connect the physical motion of the laptop to the "wiggles" they see on the SeisMac display and then comparing those to the "wiggles" they see on their seismogram. At this point students are more fully prepared to engage in an S-P location exercise such as those included in many state standards

  10. Paleoseismology of a possible fault scarp in Wenas Valley, central Washington

    Science.gov (United States)

    Sherrod, Brian L.; Barnett, Elizabeth A.; Knepprath, Nichole; Foit, Franklin F.

    2013-01-01

    In October 2009, two trenches excavated across an 11-kilometer-long scarp at Wenas Valley in central Washington exposed evidence for late Quaternary deformation. Lidar imagery of the Wenas Valley illuminated the west-northwest-trending, 2- to 8-meter-high scarp as it bisected alluvial fans developed at the mouths of canyons along the south side of Umtanum Ridge. The alignment of the scarp and aeromagnetic lineaments suggested that the scarp may be a product of and controlled by the same tectonic structure that produced the magnetic lineaments. Several large landslides mapped in the area demonstrated the potential for large mass-wasting events in the area. In order to test whether the scarp was the result of an earthquake-generated surface rupture or a landslide, trenches were excavated at Hessler Flats and McCabe Place. The profiles of bedrock and soil stratigraphy that underlie the scarp in each trench were photographed, mapped, and described, and a sequence of depositional and deformational events established for each trench. The McCabe Place trench exposed a sequence of volcaniclastic deposits overlain by soils and alluvial deposits separated by three unconformities. Six normal faults and two possible reverse faults deformed the exposed strata. Crosscutting relations indicated that up to five earthquakes occurred on a blind reverse fault, and a microprobe analysis of lapilli suggested that the earliest faulting occurred after 47,000 years before present. The Hessler Flat trench exposure revealed weathered bedrock that abuts loess and colluvium deposits and is overlain by soil, an upper sequence of loess, and colluvium. The latter two units bury a distinctive paloesol.

  11. Spatial and Temporal Stress Drop Variations of the 2011 Tohoku Earthquake Sequence

    Science.gov (United States)

    Miyake, H.

    2013-12-01

    The 2011 Tohoku earthquake sequence consists of foreshocks, mainshock, aftershocks, and repeating earthquakes. To quantify spatial and temporal stress drop variations is important for understanding M9-class megathrust earthquakes. Variability and spatial and temporal pattern of stress drop is a basic information for rupture dynamics as well as useful to source modeling. As pointed in the ground motion prediction equations by Campbell and Bozorgnia [2008, Earthquake Spectra], mainshock-aftershock pairs often provide significant decrease of stress drop. We here focus strong motion records before and after the Tohoku earthquake, and analyze source spectral ratios considering azimuth- and distance dependency [Miyake et al., 2001, GRL]. Due to the limitation of station locations on land, spatial and temporal stress drop variations are estimated by adjusting shifts from the omega-squared source spectral model. The adjustment is based on the stochastic Green's function simulations of source spectra considering azimuth- and distance dependency. We assumed the same Green's functions for event pairs for each station, both the propagation path and site amplification effects are cancelled out. Precise studies of spatial and temporal stress drop variations have been performed [e.g., Allmann and Shearer, 2007, JGR], this study targets the relations between stress drop vs. progression of slow slip prior to the Tohoku earthquake by Kato et al. [2012, Science] and plate structures. Acknowledgement: This study is partly supported by ERI Joint Research (2013-B-05). We used the JMA unified earthquake catalogue and K-NET, KiK-net, and F-net data provided by NIED.

  12. Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults.

    Science.gov (United States)

    McGuire, Jeffrey J; Boettcher, Margaret S; Jordan, Thomas H

    2005-03-24

    East Pacific Rise transform faults are characterized by high slip rates (more than ten centimetres a year), predominantly aseismic slip and maximum earthquake magnitudes of about 6.5. Using recordings from a hydroacoustic array deployed by the National Oceanic and Atmospheric Administration, we show here that East Pacific Rise transform faults also have a low number of aftershocks and high foreshock rates compared to continental strike-slip faults. The high ratio of foreshocks to aftershocks implies that such transform-fault seismicity cannot be explained by seismic triggering models in which there is no fundamental distinction between foreshocks, mainshocks and aftershocks. The foreshock sequences on East Pacific Rise transform faults can be used to predict (retrospectively) earthquakes of magnitude 5.4 or greater, in narrow spatial and temporal windows and with a high probability gain. The predictability of such transform earthquakes is consistent with a model in which slow slip transients trigger earthquakes, enrich their low-frequency radiation and accommodate much of the aseismic plate motion.

  13. Proceedings of the 11th United States-Japan natural resources panel for earthquake research, Napa Valley, California, November 16–18, 2016

    Science.gov (United States)

    Detweiler, Shane; Pollitz, Fred

    2017-10-18

    The UJNR Panel on Earthquake Research promotes advanced research toward a more fundamental understanding of the earthquake process and hazard estimation. The Eleventh Joint meeting was extremely beneficial in furthering cooperation and deepening understanding of problems common to both Japan and the United States.The meeting included productive exchanges of information on approaches to systematic observation and modeling of earthquake processes. Regarding the earthquake and tsunami of March 2011 off the Pacific coast of Tohoku and the 2016 Kumamoto earthquake sequence, the Panel recognizes that further efforts are necessary to achieve our common goal of reducing earthquake risk through close collaboration and focused discussions at the 12th UJNR meeting.

  14. Dynamics of Domestic Water Consumption in the Urban Area of the Kathmandu Valley: Situation Analysis Pre and Post 2015 Gorkha Earthquake

    OpenAIRE

    Sadhana Shrestha; Yoko Aihara; Arun Prasad Bhattarai; Niranjan Bista; Sudarshan Rajbhandari; Naoki Kondo; Futaba Kazama; Kei Nishida; Junko Shindo

    2017-01-01

    Information regarding domestic water consumption is vital, as the Kathmandu Valley will soon be implementing the Melamchi Water Supply Project; however, updated information on the current situation after the 2015 Gorkha Earthquake (GEQ) is still lacking. We investigated the dynamics of domestic water consumption pre- and post-GEQ. The piped water supply was short, and consumption varied widely across the Kathmandu Upatyaka Khanepani Limited (KUKL) branches and altitude. The reduction in piped...

  15. Identifying Active Faults by Improving Earthquake Locations with InSAR Data and Bayesian Estimation: The 2004 Tabuk (Saudi Arabia) Earthquake Sequence

    KAUST Repository

    Xu, Wenbin

    2015-02-03

    A sequence of shallow earthquakes of magnitudes ≤5.1 took place in 2004 on the eastern flank of the Red Sea rift, near the city of Tabuk in northwestern Saudi Arabia. The earthquakes could not be well located due to the sparse distribution of seismic stations in the region, making it difficult to associate the activity with one of the many mapped faults in the area and thus to improve the assessment of seismic hazard in the region. We used Interferometric Synthetic Aperture Radar (InSAR) data from the European Space Agency’s Envisat and ERS‐2 satellites to improve the location and source parameters of the largest event of the sequence (Mw 5.1), which occurred on 22 June 2004. The mainshock caused a small but distinct ∼2.7  cm displacement signal in the InSAR data, which reveals where the earthquake took place and shows that seismic reports mislocated it by 3–16 km. With Bayesian estimation, we modeled the InSAR data using a finite‐fault model in a homogeneous elastic half‐space and found the mainshock activated a normal fault, roughly 70 km southeast of the city of Tabuk. The southwest‐dipping fault has a strike that is roughly parallel to the Red Sea rift, and we estimate the centroid depth of the earthquake to be ∼3.2  km. Projection of the fault model uncertainties to the surface indicates that one of the west‐dipping normal faults located in the area and oriented parallel to the Red Sea is a likely source for the mainshock. The results demonstrate how InSAR can be used to improve locations of moderate‐size earthquakes and thus to identify currently active faults.

  16. Identifying Active Faults by Improving Earthquake Locations with InSAR Data and Bayesian Estimation: The 2004 Tabuk (Saudi Arabia) Earthquake Sequence

    KAUST Repository

    Xu, Wenbin; Dutta, Rishabh; Jonsson, Sigurjon

    2015-01-01

    A sequence of shallow earthquakes of magnitudes ≤5.1 took place in 2004 on the eastern flank of the Red Sea rift, near the city of Tabuk in northwestern Saudi Arabia. The earthquakes could not be well located due to the sparse distribution of seismic stations in the region, making it difficult to associate the activity with one of the many mapped faults in the area and thus to improve the assessment of seismic hazard in the region. We used Interferometric Synthetic Aperture Radar (InSAR) data from the European Space Agency’s Envisat and ERS‐2 satellites to improve the location and source parameters of the largest event of the sequence (Mw 5.1), which occurred on 22 June 2004. The mainshock caused a small but distinct ∼2.7  cm displacement signal in the InSAR data, which reveals where the earthquake took place and shows that seismic reports mislocated it by 3–16 km. With Bayesian estimation, we modeled the InSAR data using a finite‐fault model in a homogeneous elastic half‐space and found the mainshock activated a normal fault, roughly 70 km southeast of the city of Tabuk. The southwest‐dipping fault has a strike that is roughly parallel to the Red Sea rift, and we estimate the centroid depth of the earthquake to be ∼3.2  km. Projection of the fault model uncertainties to the surface indicates that one of the west‐dipping normal faults located in the area and oriented parallel to the Red Sea is a likely source for the mainshock. The results demonstrate how InSAR can be used to improve locations of moderate‐size earthquakes and thus to identify currently active faults.

  17. Tectonic stress regime in the 2003-2004 and 2012-2015 earthquake swarms in the Ubaye Valley, French Alps

    Science.gov (United States)

    Fojtíková, Lucia; Vavryčuk, Václav

    2018-02-01

    We study two earthquake swarms that occurred in the Ubaye Valley, French Alps within the past decade: the 2003-2004 earthquake swarm with the strongest shock of magnitude ML = 2.7, and the 2012-2015 earthquake swarm with the strongest shock of magnitude ML = 4.8. The 2003-2004 seismic activity clustered along a 9-km-long rupture zone at depth between 3 and 8 km. The 2012-2015 activity occurred a few kilometres to the northwest from the previous one. We applied the iterative joint inversion for stress and fault orientations developed by Vavryčuk (2014) to focal mechanisms of 74 events of the 2003-2004 swarm and of 13 strongest events of the 2012-2015 swarm. The retrieved stress regime is consistent for both seismic activities. The σ 3 principal axis is nearly horizontal with azimuth of 103°. The σ 1 and σ 2 principal axes are inclined and their stress magnitudes are similar. The active faults are optimally oriented for shear faulting with respect to tectonic stress and differ from major fault systems known from geological mapping in the region. The estimated low value of friction coefficient at the faults 0.2-0.3 supports an idea of seismic activity triggered or strongly affected by presence of fluids.

  18. 20 cool facts about the New Madrid Seismic Zone-Commemorating the bicentennial of the New Madrid earthquake sequence, December 1811-February 1812 [poster

    Science.gov (United States)

    Williams, R.A.; McCallister, N.S.; Dart, R.L.

    2011-01-01

    This poster summarizes a few of the more significant facts about the series of large earthquakes that struck the New Madrid seismic zone of southeastern Missouri, northeastern Arkansas, and adjacent parts of Tennessee and Kentucky from December 1811 to February 1812. Three earthquakes in this sequence had a magnitude (M) of 7.0 or greater. The first earthquake occurred on December 16, 1811, at 2:15 a.m.; the second on January 23, 1812, at 9 a.m.; and the third on February 7, 1812, at 3:45 a.m. These three earthquakes were among the largest to strike North America since European settlement. The mainshocks were followed by many hundreds of aftershocks that occurred over the next decade. Many of the aftershocks were major earthquakes themselves. The area that was strongly shaken by the three main shocks was 2-3 times as large as the strongly shaken area of the 1964 M9.2 Alaskan earthquake and 10 times as large as that of the 1906 M7.8 San Francisco earthquake. Geologic studies show that the 1811-1812 sequence was not an isolated event in the New Madrid region. The 1811-1812 New Madrid earthquake sequence was preceded by at least two other similar sequences in about A.D. 1450 and A.D. 900. Research also indicates that other large earthquakes have occurred in the region surrounding the main New Madrid seismicity trends in the past 5,000 years or so.

  19. California's restless giant: the Long Valley Caldera

    Science.gov (United States)

    Hill, David P.; Bailey, Roy A.; Hendley, James W.; Stauffer, Peter H.; Marcaida, Mae

    2014-01-01

    Scientists have monitored geologic unrest in the Long Valley, California, area since 1980. In that year, following a swarm of strong earthquakes, they discovered that the central part of the Long Valley Caldera had begun actively rising. Unrest in the area persists today. The U.S. Geological Survey (USGS) continues to provide the public and civil authorities with current information on the volcanic hazard at Long Valley and is prepared to give timely warnings of any impending eruption.

  20. The 2007 Nazko, British Columbia, earthquake sequence: Injection of magma deep in the crust beneath the Anahim volcanic belt

    Science.gov (United States)

    Cassidy, J.F.; Balfour, N.; Hickson, C.; Kao, H.; White, Rickie; Caplan-Auerbach, J.; Mazzotti, S.; Rogers, Gary C.; Al-Khoubbi, I.; Bird, A.L.; Esteban, L.; Kelman, M.; Hutchinson, J.; McCormack, D.

    2011-01-01

    On 9 October 2007, an unusual sequence of earthquakes began in central British Columbia about 20 km west of the Nazko cone, the most recent (circa 7200 yr) volcanic center in the Anahim volcanic belt. Within 25 hr, eight earthquakes of magnitude 2.3-2.9 occurred in a region where no earthquakes had previously been recorded. During the next three weeks, more than 800 microearthquakes were located (and many more detected), most at a depth of 25-31 km and within a radius of about 5 km. After about two months, almost all activity ceased. The clear P- and S-wave arrivals indicated that these were high-frequency (volcanic-tectonic) earthquakes and the b value of 1.9 that we calculated is anomalous for crustal earthquakes but consistent with volcanic-related events. Analysis of receiver functions at a station immediately above the seismicity indicated a Moho near 30 km depth. Precise relocation of the seismicity using a double-difference method suggested a horizontal migration at the rate of about 0:5 km=d, with almost all events within the lowermost crust. Neither harmonic tremor nor long-period events were observed; however, some spasmodic bursts were recorded and determined to be colocated with the earthquake hypocenters. These observations are all very similar to a deep earthquake sequence recorded beneath Lake Tahoe, California, in 2003-2004. Based on these remarkable similarities, we interpret the Nazko sequence as an indication of an injection of magma into the lower crust beneath the Anahim volcanic belt. This magma injection fractures rock, producing high-frequency, volcanic-tectonic earthquakes and spasmodic bursts.

  1. Geologic characterization report for the Paradox Basin Study Region, Utah Study Areas. Volume 6: Salt Valley

    Science.gov (United States)

    1984-12-01

    Surface landforms in the Salt Valley Area are generally a function of the Salt Valley anticline and are characterized by parallel and subparallel cuestaform ridges and hogbacks and flat valley floors. The most prominent structure in the Area is the Salt Valley anticline. Erosion resulting from the Tertiary uplift of the Colorado Plateau led to salt dissolution and subsequent collapse along the crest of the anticline. Continued erosion removed the collapse material, forming an axial valley along the crest of the anticline. Paleozoic rocks beneath the salt bearing Paradox Formation consist of limestone, dolomite, sandstone, siltstone and shale. The salt beds of the Paradox formation occur in distinct cycles separated by an interbed sequence of anhydrite, carbonate, and clastic rocks. The Paradox Formation is overlain by Pennsylvanian limestone; Permian sandstone; and Mesozoic sandstone, mudstone, conglomerate and shale. No earthquakes have been reported in the area during the period of the historic record and contemporary seismicity appears to be diffusely distributed, of low level and small magnitude. The upper unit includes the Permian strata and upper Honaker trail formation.

  2. Analysis of the 2005-2016 Earthquake Sequence in Northern Iran Using the Visibility Graph Method

    Science.gov (United States)

    Khoshnevis, Naeem; Taborda, Ricardo; Azizzadeh-Roodpish, Shima; Telesca, Luciano

    2017-11-01

    We present an analysis of the seismicity of northern Iran in the period between 2005 and 2016 using a recently introduced method based on concepts of graph theory. The method relies on the inter-event visibility defined in terms of a connectivity degree parameter, k, which is correlated with the earthquake magnitude, M. Previous studies show that the slope m of the line fitting the k- M plot by the least squares method also observes a relationship with the b value from the Gutenberg-Richter law, thus rendering the graph analysis useful to examine the seismicity of a region. These correlations seem to hold for the analysis of relatively small sequences of earthquakes, offering the possibility of studying seismicity parameters in time. We apply this approach to the case of the seismicity of northern Iran, using an earthquake catalog for the tectonic seismic regions of Azerbaijan, Alborz, and Kopeh Dagh. We use results drawn for this region with the visibility graph approach in combination with results from other similar studies to further improve the universal relationship between m and b, and show that the visibility graph approach can be considered as a valid alternative for analyzing regional seismicity properties and earthquake sequences.

  3. The Preliminary Study of the 4 March 2010 Mw 6.3 Jiasian, Taiwan Earthquake Sequence

    Directory of Open Access Journals (Sweden)

    Hsin-Hua Huang

    2011-01-01

    Full Text Available On 4 March 2010, an inland Mw 6.3 earthquake occurred near the town of Jiasian in Kaohsiung County, Taiwan causing large ground shaking and extensive damage. In this study, we integrate the records from the Central Weather Bureau Seismic Network (CWBSN and Taiwan Strong Motion Instrumentation Program (TSMIP to obtain the relocated earthquake sequence and its first-motion focal mechanisms. This dataset offers us precise and reliable results which suggest a focal depth of 23 km and a possible fault plane of strike 313¢X, dip 41¢X, and rake 42¢X for the Jiasian earthquake. This fault plane significantly differs from the N-S striking Chaochou Fault (CCF as well as the principal trend of Taiwan orogenic belt, and should be an undiscovered fault in southern Taiwan. The relocated Jiasian earthquake sequence initiating from the 23-km-deep mainshock and terminating at around 10 km in depth also indicates it is a blind fault. Peak ground acceleration (PGA and peak ground velocity (PGV recorded by the TSMIP stations reveal a distinct NW-SE-shape pattern from the epicenter area toward the Chiayi region, likely due to the directivity and site effects. Such phenomena should be considered for future regional hazard assessments.

  4. Site Effects Study In Athens (greece) Using The 7th September 1999 Earthquake Aftershock Sequence

    Science.gov (United States)

    Serpetsidaki, A.; Sokos, E.

    On 7 September 1999 at 11:56:50 GMT, an earthquake of Mw=5.9 occurred at Athens capital of Greece. The epicenter was located in the Northwest area of Parnitha Moun- tain at 18km distance from the city centre. This earthquake was one of the most de- structive in Greece during the modern times. The intensity of the earthquake reached IX in the Northwest territories of the city and caused the death of 143 people and seri- ous structural damage in many buildings. On the 13th of September the Seismological Laboratory of Patras University, installed a seismic network of 30 stations in order to observe the evolution of the aftershock sequence. This temporary seismic network remained in the area of Attika for 50 days and recorded a significant part of the af- tershock sequence. In this paper we use the high quality recordings of this network to investigate the influence of the surface geology to the seismic motion, on sites within the epicentral area, which suffered the most during this earthquake. We applied the horizontal-to-vertical (H/V) spectral ratio method on noise and on earthquake records and the obtained results exhibit very good agreement. Finally we compare the results with the geological conditions of the study area and the damage distribution. Most of the obtained amplification levels were low with an exemption in the site of Ano Liosia were a significant amount of damage was observed and the results indicate that the earthquake motion was amplified four times. Based on the above we conclude that the damages in the city of Athens were due to source effects rather than site effects.

  5. One Basin, One Stress Regime, One Orientation of Seismogenic Basement Faults, Variable Spatio-Temporal Slip Histories: Lessons from Fort Worth Basin Induced Earthquake Sequences

    Science.gov (United States)

    DeShon, H. R.; Brudzinski, M.; Frohlich, C.; Hayward, C.; Jeong, S.; Hornbach, M. J.; Magnani, M. B.; Ogwari, P.; Quinones, L.; Scales, M. M.; Stump, B. W.; Sufri, O.; Walter, J. I.

    2017-12-01

    Since October 2008, the Fort Worth basin in north Texas has experienced over 30 magnitude (M) 3.0+ earthquakes, including one M4.0. Five named earthquake sequences have been recorded by local seismic networks: DFW Airport, Cleburne-Johnson County, Azle, Irving-Dallas, and Venus-Johnson County. Earthquakes have occurred on northeast (NE)-southwest (SW) trending Precambrian basement faults and within the overlying Ellenburger limestone unit used for wastewater disposal. Focal mechanisms indicate primarily normal faulting, and stress inversions indicate maximum regional horizontal stress strikes 20-30° NE. The seismogenic sections of the faults in either the basement or within the Ellenburger appear optimally oriented for failure within the modern stress regime. Stress drop estimates range from 10 to 75 bars, with little variability between and within the named sequences, and the values are consistent with intraplate earthquake stress drops in natural tectonic settings. However, the spatio-temporal history of each sequence relative to wastewater injection data varies. The May 2015 M4.0 Venus earthquake, for example, is only the largest of what is nearly 10 years of earthquake activity on a single fault structure. Here, maximum earthquake size has increased with time and exhibits a log-linear relationship to cumulative injected volume from 5 nearby wells. At the DFW airport, where the causative well was shut-in within a few months of the initial earthquakes and soon after the well began operation, we document migration away from the injector on the same fault for nearly 6 km sporadically over 5 years. The Irving-Dallas and Azle sequences, like DFW airport, appear to have started rather abruptly with just a few small magnitude earthquakes in the weeks or months preceding the significant set of magnitude 3.5+ earthquakes associated with each sequence. There are no nearby (<10 km) injection operations to the Irving-Dallas sequence and the Azle linked wells operated for

  6. The 2008 Wells, Nevada earthquake sequence: Source constraints using calibrated multiple event relocation and InSAR

    Science.gov (United States)

    Nealy, Jennifer; Benz, Harley M.; Hayes, Gavin; Berman, Eric; Barnhart, William

    2017-01-01

    The 2008 Wells, NV earthquake represents the largest domestic event in the conterminous U.S. outside of California since the October 1983 Borah Peak earthquake in southern Idaho. We present an improved catalog, magnitude complete to 1.6, of the foreshock-aftershock sequence, supplementing the current U.S. Geological Survey (USGS) Preliminary Determination of Epicenters (PDE) catalog with 1,928 well-located events. In order to create this catalog, both subspace and kurtosis detectors are used to obtain an initial set of earthquakes and associated locations. The latter are then calibrated through the implementation of the hypocentroidal decomposition method and relocated using the BayesLoc relocation technique. We additionally perform a finite fault slip analysis of the mainshock using InSAR observations. By combining the relocated sequence with the finite fault analysis, we show that the aftershocks occur primarily updip and along the southwestern edge of the zone of maximum slip. The aftershock locations illuminate areas of post-mainshock strain increase; aftershock depths, ranging from 5 to 16 km, are consistent with InSAR imaging, which shows that the Wells earthquake was a buried source with no observable near-surface offset.

  7. Crustal seismic anisotropy beneath Shillong plateau - Assam valley in North East India: Shear-wave splitting analysis using local earthquakes

    Science.gov (United States)

    Sharma, Antara; Baruah, Santanu; Piccinini, Davide; Saikia, Sowrav; Phukan, Manoj K.; Chetia, Monisha; Kayal, J. R.

    2017-10-01

    We present crustal anisotropy estimates constrained by shear wave splitting (SWS) analysis using local earthquakes in the Shillong plateau and Assam valley area, North East India (NE India) region. Splitting parameters are determined using an automated cross-correlation (CC) method. We located 330 earthquakes recorded by 17 broadband seismic stations during 2001-2014 in the study area. Out of these 330 events, seismograms of 163 events are selected for the SWS analysis. Relatively small average delay times (0.039-0.084 s) indicate existence of moderate crack density in the crust below the study area. It is found that fast polarization directions vary from station to station depending on the regional stress system as well as geological conditions. The spatial pattern of crustal anisotropy in the area is controlled mostly by tectonic movement of the Indian plate towards NE. Presence of several E-W and N-S trending active faults in the area also play an important role on the observed pattern of crustal anisotropy.

  8. The 4 January 2016 Manipur earthquake in the Indo-Burmese wedge, an intra-slab event

    Directory of Open Access Journals (Sweden)

    V. K. Gahalaut

    2016-09-01

    Full Text Available Earthquakes in the Indo-Burmese wedge occur due to India-Sunda plate motion. These earthquakes generally occur at depth between 25 and 150 km and define an eastward gently dipping seismicity trend surface that coincides with the Indian slab. Although this feature mimics the subduction zone, the relative motion of Indian plate predominantly towards north, earthquake focal mechanisms suggest that these earthquakes are of intra-slab type which occur on steep plane within the Indian plate. The relative motion between the India and Sunda plates is accommodated at the Churachandpur-Mao fault (CMF and Sagaing Fault. The 4 January 2016 Manipur earthquake (M 6.7 is one such earthquake which occurred 20 km west of the CMF at ∼60 km depth. Fortunately, this earthquake occurred in a very sparse population region with very traditional wooden frame houses and hence, the damage caused by the earthquake in the source region was very minimal. However, in the neighbouring Imphal valley, it caused some damage to the buildings and loss of eight lives. The damage in Imphal valley due to this and historical earthquakes in the region emphasizes the role of local site effect in the Imphal valley.

  9. Seismotectonic framework of the 2010 February 27 Mw 8.8 Maule, Chile earthquake sequence

    Science.gov (United States)

    Hayes, Gavin P.; Bergman, Eric; Johnson, Kendra J.; Benz, Harley M.; Brown, Lucy; Meltzer, Anne S.

    2013-01-01

    After the 2010 Mw 8.8 Maule earthquake, an international collaboration involving teams and instruments from Chile, the US, the UK, France and Germany established the International Maule Aftershock Deployment temporary network over the source region of the event to facilitate detailed, open-access studies of the aftershock sequence. Using data from the first 9-months of this deployment, we have analyzed the detailed spatial distribution of over 2500 well-recorded aftershocks. All earthquakes have been relocated using a hypocentral decomposition algorithm to study the details of and uncertainties in both their relative and absolute locations. We have computed regional moment tensor solutions for the largest of these events to produce a catalogue of 465 mechanisms, and have used all of these data to study the spatial distribution of the aftershock sequence with respect to the Chilean megathrust. We refine models of co-seismic slip distribution of the Maule earthquake, and show how small changes in fault geometries assumed in teleseismic finite fault modelling significantly improve fits to regional GPS data, implying that the accuracy of rapid teleseismic fault models can be substantially improved by consideration of existing fault geometry model databases. We interpret all of these data in an integrated seismotectonic framework for the Maule earthquake rupture and its aftershock sequence, and discuss the relationships between co-seismic rupture and aftershock distributions. While the majority of aftershocks are interplate thrust events located away from regions of maximum co-seismic slip, interesting clusters of aftershocks are identified in the lower plate at both ends of the main shock rupture, implying internal deformation of the slab in response to large slip on the plate boundary interface. We also perform Coulomb stress transfer calculations to compare aftershock locations and mechanisms to static stress changes following the Maule rupture. Without the

  10. Digital Recording and Non-Destructive Techniques for the Understanding of Structural Performance for Rehabilitating Historic Structures at the Kathmandu Valley after Gorkha Earthquake 2015

    Science.gov (United States)

    Shrestha, S.; Reina Ortiz, M.; Gutland, M.; Napolitano, R.; Morris, I. M.; Santana Quintero, M.; Erochko, J.; Kawan, S.; Shrestha, R. G.; Awal, P.; Suwal, S.; Duwal, S.; Maharjan, D. K.

    2017-08-01

    On 25 April 2015, the Gorkha earthquake of magnitude 7.8, severely damaged the cultural heritage sites of Nepal. In particular, the seven monument zones of the Kathmandu Valley World Heritage Site suffered extensive damage. Out of 195 surveyed monuments, 38 have completely collapsed and 157 partially damaged (DoA, 2015). In particular, the world historic city of Bhaktapur was heavily affected by the earthquake. There is, in general, a lack of knowledge regarding the traditional construction technology used in many of the most important temple monuments in Bhaktapur. To address this limitation and to assist in reconstruction and rehabilitation of the area, this study documents the existing condition of different historic structures in the Kathmandu Valley. In particular, the Nyatapola Temple is studied in detail. To record and document the condition of this temple, a combination of laser scanning and terrestrial and aerial photogrammetry are used. By also including evaluation of the temple and its supporting plinth structure using non-destructive evaluation techniques like geo-radar and micro-tremor dynamic analysis, this study will form the basis of a structural analysis study to assess the anticipated future seismic performance of the Nyatapola Temple.

  11. Fault structure and kinematics of the Long Valley Caldera region, California, revealed by high-accuracy earthquake hypocenters and focal mechanism stress inversions

    Science.gov (United States)

    Prejean, Stephanie; Ellsworth, William L.; Zoback, Mark; Waldhauser, Felix

    2002-01-01

    We have determined high-resolution hypocenters for 45,000+ earthquakes that occurred between 1980 and 2000 in the Long Valley caldera area using a double-difference earthquake location algorithm and routinely determined arrival times. The locations reveal numerous discrete fault planes in the southern caldera and adjacent Sierra Nevada block (SNB). Intracaldera faults include a series of east/west-striking right-lateral strike-slip faults beneath the caldera's south moat and a series of more northerly striking strike-slip/normal faults beneath the caldera's resurgent dome. Seismicity in the SNB south of the caldera is confined to a crustal block bounded on the west by an east-dipping oblique normal fault and on the east by the Hilton Creek fault. Two NE-striking left-lateral strike-slip faults are responsible for most seismicity within this block. To understand better the stresses driving seismicity, we performed stress inversions using focal mechanisms with 50 or more first motions. This analysis reveals that the least principal stress direction systematically rotates across the studied region, from NE to SW in the caldera's south moat to WNW-ESE in Round Valley, 25 km to the SE. Because WNW-ESE extension is characteristic of the western boundary of the Basin and Range province, caldera area stresses appear to be locally perturbed. This stress perturbation does not seem to result from magma chamber inflation but may be related to the significant (???20 km) left step in the locus of extension along the Sierra Nevada/Basin and Range province boundary. This implies that regional-scale tectonic processes are driving seismic deformation in the Long Valley caldera.

  12. Detailed observations of California foreshock sequences: Implications for the earthquake initiation process

    Science.gov (United States)

    Dodge, D.A.; Beroza, G.C.; Ellsworth, W.L.

    1996-01-01

    We find that foreshocks provide clear evidence for an extended nucleation process before some earthquakes. In this study, we examine in detail the evolution of six California foreshock sequences, the 1986 Mount Lewis (ML, = 5.5), the 1986 Chalfant (ML = 6.4), the. 1986 Stone Canyon (ML = 4.7), the 1990 Upland (ML = 5.2), the 1992 Joshua Tree (MW= 6.1), and the 1992 Landers (MW = 7.3) sequence. Typically, uncertainties in hypocentral parameters are too large to establish the geometry of foreshock sequences and hence to understand their evolution. However, the similarity of location and focal mechanisms for the events in these sequences leads to similar foreshock waveforms that we cross correlate to obtain extremely accurate relative locations. We use these results to identify small-scale fault zone structures that could influence nucleation and to determine the stress evolution leading up to the mainshock. In general, these foreshock sequences are not compatible with a cascading failure nucleation model in which the foreshocks all occur on a single fault plane and trigger the mainshock by static stress transfer. Instead, the foreshocks seem to concentrate near structural discontinuities in the fault and may themselves be a product of an aseismic nucleation process. Fault zone heterogeneity may also be important in controlling the number of foreshocks, i.e., the stronger the heterogeneity, the greater the number of foreshocks. The size of the nucleation region, as measured by the extent of the foreshock sequence, appears to scale with mainshock moment in the same manner as determined independently by measurements of the seismic nucleation phase. We also find evidence for slip localization as predicted by some models of earthquake nucleation. Copyright 1996 by the American Geophysical Union.

  13. After the Earthquake: Impacts of Seismic Snow and Ice Redistribution in Langtang Valley, Nepal, on Glacier Mass Balances and Hydrological Regimes

    Science.gov (United States)

    Shea, J. M.; Ragettli, S.; Immerzeel, W.; Pellicciotti, F.; Miles, E. S.; Steiner, J. F.; Buri, P.; Kraaijenbrink, P. D. A.

    2015-12-01

    The magnitude 7.8 Gorkha Earthquake that struck Nepal on 25 April 2015 resulted in a catastrophic loss of life and property, and had major impacts in high mountain areas. The earthquake resulted in a number of massive ice avalanches in Langtang Valley that destroyed entire villages and killed over 300 people. We first conduct a remote sensing analysis of the entire catchment, and attempt to quantify the volumes of snow and ice redistributed through high-resolution optical imagery, thermal imagery, and DEM differencing. Where data are available we examine the impact on the surface mass balances of four major glaciers (Lirung, Shalbachaum, Langtang and Langshisha). Finally, we use the physically-based and fully distributed TOPKAPI model to simulate the impacts of the co-seismic snow and ice redistribution on the hydrology of the Langtang River.

  14. Deformation from the 1989 Loma Prieta earthquake near the southwest margin of the Santa Clara Valley, California

    Science.gov (United States)

    Schmidt, Kevin M.; Ellen, Stephen D.; Peterson, David M.

    2014-01-01

    Damage to pavement and near-surface utility pipes, caused by the 17 October 1989, Loma Prieta earthquake, provides evidence for ground deformation in a 663 km2 area near the southwest margin of the Santa Clara Valley, California (USA). A total of 1427 damage sites, collected from more than 30 sources, are concentrated in four zones, three of which lie near previously mapped faults. In one of these zones, the channel lining of Los Gatos Creek, a 2-km-long concrete strip trending perpendicular to regional geologic structure, was broken by thrusts that were concentrated in two belts, each several tens of meters wide, separated by more than 300 m of relatively undeformed concrete.

  15. West Valley Reprocessing Plant. Safety analysis plant, supplement 18

    International Nuclear Information System (INIS)

    1975-01-01

    Supplement 18 contains the following additions to Appendix II--5.0 Geology and Seismology: Section 12 ''Seismic Investigations for Spent Fuel Reprocessing Facility at West Valley, New York,'' October 20, 1975, and Section 13 ''Earthquake Return Period Analysis at West Valley, New York, for Nuclear Fuel Services, Inc.'' November 5, 1975

  16. Static stress transfer during the 2002 Nenana Mountain-Denali Fault, Alaska, earthquake sequence

    Science.gov (United States)

    Anderson, G.; Ji, C.

    2003-01-01

    On 23 October 2002, the Mw 6.7 Nenana Mountain earthquake occurred in central Alaska. It was followed on 3 November 2002 by the Mw 7.9 Denali Fault mainshock, the largest strike-slip earthquake to occur in North America during the past 150 years. We have modeled static Coulomb stress transfer effects during this sequence. We find that the Nenana Mountain foreshock transferred 30-50 kPa of Coulomb stress to the hypocentral region of the Denali Fault mainshock, encouraging its occurrence. We also find that the two main earthquakes together transferred more than 400 kPa of Coulomb stress to the Cross Creek segment of the Totschunda fault system and to the Denali fault southeast of the mainshock rupture, and up to 80 kPa to the Denali fault west of the Nenana Mountain rupture. Other major faults in the region experienced much smaller static Coulomb stress changes.

  17. Fluid-driven normal faulting earthquake sequences in the Taiwan orogen

    Science.gov (United States)

    Wang, Ling-hua; Rau, Ruey-Juin; Lee, En-Jui

    2017-04-01

    Seismicity in the Central Range of Taiwan shows normal faulting mechanisms with T-axes directing NE, subparallel to the strike of the mountain belt. We analyze earthquake sequences occurred within 2012-2015 in the Nanshan area of northern Taiwan which indicating swarm behavior and migration characteristics. We select events larger than 2.0 from Central Weather Bureau catalog and use the double-difference relocation program hypoDD with waveform cross-correlation in the Nanshan area. We obtained a final count of 1406 (95%) relocated earthquakes. Moreover, we compute focal mechanisms using USGS program HASH by P-wave first motion and S/P ratio picking and 114 fault plane solutions with M 3.0-5.87 were determined. To test for fluid diffusion, we model seismicity using the equation of Shapiro et al. (1997) by fitting earthquake diffusing rate D during the migration period. According to the relocation result, seismicity in the Taiwan orogenic belt present mostly N25E orientation parallel to the mountain belt with the same direction of the tension axis. In addition, another seismic fracture depicted by seismicity rotated 35 degree counterclockwise to the NW direction. Nearly all focal mechanisms are normal fault type. In the Nanshan area, events show N10W distribution with a focal depth range from 5-12 km and illustrate fault plane dipping about 45-60 degree to SW. Three months before the M 5.87 mainshock which occurred in March, 2013, there were some foreshock events occurred in the shallow part of the fault plane of the mainshock. Half a year following the mainshock, earthquakes migrated to the north and south, respectively with processes matched the diffusion model at a rate of 0.2-0.6 m2/s. This migration pattern and diffusion rate offer an evidence of 'fluid-driven' process in the fault zone. We also find the upward migration of earthquakes in the mainshock source region. These phenomena are likely caused by the opening of the permeable conduit due to the M 5

  18. Pre-earthquake multiparameter analysis of the 2016 Amatrice-Norcia (Central Italy) seismic sequence: a case study for the application of the SAFE project concepts

    Science.gov (United States)

    De Santis, A.

    2017-12-01

    The SAFE (Swarm for Earthquake study) project (funded by European Space Agency in the framework "STSE Swarm+Innovation", 2014-2016) aimed at applying the new approach of geosystemics to the analysis of Swarm satellite (ESA) electromagnetic data for investigating the preparatory phase of earthquakes. We present in this talk the case study of the most recent seismic sequence in Italy. First a M6 earthquake on 24 August 2016 and then a M6.5 earthquake on 30 October 2016 shocked almost in the same region of Central Italy causing about 300 deaths in total (mostly on 24 August), with a revival of other significant seismicity on January 2017. Analysing both geophysical and climatological satellite and ground data preceding the major earthquakes of the sequence we present results that confirm a complex solid earth-atmosphere coupling in the preparation phase of the whole sequence.

  19. Romanian crustal earthquake sequences: evidence for space and time clustering in correlation with seismic source properties

    International Nuclear Information System (INIS)

    Popescu, E.; Popa, M.; Radulian, M.

    2002-01-01

    The study of seismic sequences is important from both scientific point of view, and its socio-economical impact on human society. In this paper we analyze the crustal earthquake sequences in correlation with the seismogenic zones delimited on the Romanian territory using geological and tectonic information available. We consider on one hand the sequences typical for the Carpathians foreland region (Ramnicu Sarat, Vrancioaia and Sinaia seismic zones), which are associated with the Vrancea subduction process and, on the other hand the sequences typical for the contact between the Pannonian Basin and Carpathians orogen (Banat seismic zone). To analyze the seismicity and source properties, we applied the fractal statistics and relative methods such as spectral ratio and deconvolution with the empirical Green's functions. On the basis of the retrieved source parameters for small and moderate size events the scaling relations for the characteristic properties of the seismic source are estimated. The scaling and earthquake clustering properties are correlated with the geological and rheological properties of the studied seismic areas. (authors)

  20. The induced earthquake sequence related to the St. Gallen deep geothermal project (Switzerland): Fault reactivation and fluid interactions imaged by microseismicity

    Science.gov (United States)

    Diehl, T.; Kraft, T.; Kissling, E.; Wiemer, S.

    2017-09-01

    In July 2013, a sequence of more than 340 earthquakes was induced by reservoir stimulations and well-control procedures following a gas kick at a deep geothermal drilling project close to the city of St. Gallen, Switzerland. The sequence culminated in an ML 3.5 earthquake, which was felt within 10-15 km from the epicenter. High-quality earthquake locations and 3-D reflection seismic data acquired in the St. Gallen project provide a unique data set, which allows high-resolution studies of earthquake triggering related to the injection of fluids into macroscopic fault zones. In this study, we present a high-precision earthquake catalog of the induced sequence. Absolute locations are constrained by a coupled hypocenter-velocity inversion, and subsequent double-difference relocations image the geometry of the ML 3.5 rupture and resolve the spatiotemporal evolution of seismicity. A joint interpretation of earthquake and seismic data shows that the majority of the seismicity occurred in the pre-Mesozoic basement, hundreds of meters below the borehole and the targeted Mesozoic sequence. We propose a hydraulic connectivity between the reactivated fault and the borehole, likely through faults mapped by seismic data. Despite the excellent quality of the seismic data, the association of seismicity with mapped faults remains ambiguous. In summary, our results document that the actual hydraulic properties of a fault system and hydraulic connections between its fault segments are complex and may not be predictable upfront. Incomplete knowledge of fault structures and stress heterogeneities within highly complex fault systems additionally challenge the degree of predictability of induced seismicity related to underground fluid injections.

  1. The 2012 Ferrara seismic sequence: Regional crustal structure, earthquake sources, and seismic hazard

    Science.gov (United States)

    Malagnini, Luca; Herrmann, Robert B.; Munafò, Irene; Buttinelli, Mauro; Anselmi, Mario; Akinci, Aybige; Boschi, E.

    2012-10-01

    Inadequate seismic design codes can be dangerous, particularly when they underestimate the true hazard. In this study we use data from a sequence of moderate-sized earthquakes in northeast Italy to validate and test a regional wave propagation model which, in turn, is used to understand some weaknesses of the current design spectra. Our velocity model, while regionalized and somewhat ad hoc, is consistent with geophysical observations and the local geology. In the 0.02-0.1 Hz band, this model is validated by using it to calculate moment tensor solutions of 20 earthquakes (5.6 ≥ MW ≥ 3.2) in the 2012 Ferrara, Italy, seismic sequence. The seismic spectra observed for the relatively small main shock significantly exceeded the design spectra to be used in the area for critical structures. Observations and synthetics reveal that the ground motions are dominated by long-duration surface waves, which, apparently, the design codes do not adequately anticipate. In light of our results, the present seismic hazard assessment in the entire Pianura Padana, including the city of Milan, needs to be re-evaluated.

  2. Investigation of an Unusually Shallow Earthquake Sequence in Mogul, NV from a Discrimination Perspective

    Science.gov (United States)

    2014-08-31

    the fault area that was active in the foreshock sequence. For this source dimension, a stress drop of 17.5 MPa was estimated, which is about 25% of...described by Anderson et al. (2009). Our relocation of the largest earthquake places the hypocenter 2.7 km below the surface. The foreshocks and...occurred after a sequence of foreshocks initiated on February 29, 56 days before the main shock (Figures 2 and 3). The triangular-shaped bounds for

  3. Strong motions observed by K-NET and KiK-net during the 2016 Kumamoto earthquake sequence

    Science.gov (United States)

    Suzuki, Wataru; Aoi, Shin; Kunugi, Takashi; Kubo, Hisahiko; Morikawa, Nobuyuki; Nakamura, Hiromitsu; Kimura, Takeshi; Fujiwara, Hiroyuki

    2017-01-01

    The nationwide strong-motion seismograph network of K-NET and KiK-net in Japan successfully recorded the strong ground motions of the 2016 Kumamoto earthquake sequence, which show the several notable characteristics. For the first large earthquake with a JMA magnitude of 6.5 (21:26, April 14, 2016, JST), the large strong motions are concentrated near the epicenter and the strong-motion attenuations are well predicted by the empirical relation for crustal earthquakes with a moment magnitude of 6.1. For the largest earthquake of the sequence with a JMA magnitude of 7.3 (01:25, April 16, 2016, JST), the large peak ground accelerations and velocities extend from the epicentral area to the northeast direction. The attenuation feature of peak ground accelerations generally follows the empirical relation, whereas that for velocities deviates from the empirical relation for stations with the epicentral distance of greater than 200 km, which can be attributed to the large Love wave having a dominant period around 10 s. The large accelerations were observed at stations even in Oita region, more than 70 km northeast from the epicenter. They are attributed to the local induced earthquake in Oita region, whose moment magnitude is estimated to be 5.5 by matching the amplitudes of the corresponding phases with the empirical attenuation relation. The real-time strong-motion observation has a potential for contributing to the mitigation of the ongoing earthquake disasters. We test a methodology to forecast the regions to be exposed to the large shaking in real time, which has been developed based on the fact that the neighboring stations are already shaken, for the largest event of the Kumamoto earthquakes, and demonstrate that it is simple but effective to quickly make warning. We also shows that the interpolation of the strong motions in real time is feasible, which will be utilized for the real-time forecast of ground motions based on the observed shakings.[Figure not available

  4. The 2014 Greeley, Colorado Earthquakes: Science, Industry, Regulation, and Media

    Science.gov (United States)

    Yeck, W. L.; Sheehan, A. F.; Weingarten, M.; Nakai, J.; Ge, S.

    2014-12-01

    On June 1, 2014 (UTC) a magnitude 3.2 earthquake occurred east of the town of Greeley, Colorado. The earthquake was widely felt, with reports from Boulder and Golden, over 60 miles away from the epicenter. The location of the earthquake in a region long considered aseismic but now the locus of active oil and gas production prompted the question of whether this was a natural or induced earthquake. Several classic induced seismicity cases hail from Colorado, including the Rocky Mountain Arsenal earthquakes in the 1960s and the Paradox Valley earthquakes in western Colorado. In both cases the earthquakes were linked to wastewater injection. The Greeley earthquake epicenter was close to a Class II well that had been injecting waste fluid into the deepest sedimentary formation of the Denver Basin at rates as high as 350,000 barrels/month for less than a year. The closest seismometers to the June 1 event were more than 100 km away, necessitating deployment of a local seismic network for detailed study. IRIS provided six seismometers to the University of Colorado which were deployed starting within 3 days of the mainshock. Telemetry at one site allowed for real time monitoring of the ongoing seismic sequence. Local media interest was extremely high with speculation that the earthquake was linked to the oil and gas industry. The timetable of media demand for information provided some challenges given the time needed for data collection and analysis. We adopted a policy of open data and open communication with all interested parties, and made proactive attempts to provide information to industry and regulators. After 3 weeks of data collection and analysis, the proximity and timing of the mainshock and aftershocks to the C4A injection well, along with a sharp increase in seismicity culminating in an M 2.6 aftershock, led to a decision by the Colorado Oil and Gas Corporation Commission (COGCC) to recommend a temporary halt to injection at the C4A injection well. This was the

  5. Rupture Speed and Dynamic Frictional Processes for the 1995 ML4.1 Shacheng, Hebei, China, Earthquake Sequence

    Science.gov (United States)

    Liu, B.; Shi, B.

    2010-12-01

    An earthquake with ML4.1 occurred at Shacheng, Hebei, China, on July 20, 1995, followed by 28 aftershocks with 0.9≤ML≤4.0 (Chen et al, 2005). According to ZÚÑIGA (1993), for the 1995 ML4.1 Shacheng earthquake sequence, the main shock is corresponding to undershoot, while aftershocks should match overshoot. With the suggestion that the dynamic rupture processes of the overshoot aftershocks could be related to the crack (sub-fault) extension inside the main fault. After main shock, the local stresses concentration inside the fault may play a dominant role in sustain the crack extending. Therefore, the main energy dissipation mechanism should be the aftershocks fracturing process associated with the crack extending. We derived minimum radiation energy criterion (MREC) following variational principle (Kanamori and Rivera, 2004)(ES/M0')min≧[3M0/(ɛπμR3)](v/β)3, where ES and M0' are radiated energy and seismic moment gained from observation, μ is the modulus of fault rigidity, ɛ is the parameter of ɛ=M0'/M0,M0 is seismic moment and R is rupture size on the fault, v and β are rupture speed and S-wave speed. From II and III crack extending model, we attempt to reconcile a uniform expression for calculate seismic radiation efficiency ηG, which can be used to restrict the upper limit efficiency and avoid the non-physics phenomenon that radiation efficiency is larger than 1. In ML 4.1 Shacheng earthquake sequence, the rupture speed of the main shock was about 0.86 of S-wave speed β according to MREC, closing to the Rayleigh wave speed, while the rupture speeds of the remained 28 aftershocks ranged from 0.05β to 0.55β. The rupture speed was 0.9β, and most of the aftershocks are no more than 0.35β using II and III crack extending model. In addition, the seismic radiation efficiencies for this earthquake sequence were: for the most aftershocks, the radiation efficiencies were less than 10%, inferring a low seismic efficiency, whereas the radiation efficiency

  6. Multiple remote-sensing assessment of the catastrophic collapse in Langtang Valley induced by the 2015 Gorkha earthquake

    Science.gov (United States)

    Nagai, Hiroto; Watanabe, Manabu; Tomii, Naoya; Tadono, Takeo; Suzuki, Shinichi

    2017-11-01

    The main shock of the 2015 Gorkha Earthquake in Nepal induced numerous avalanches, rockfalls, and landslides in Himalayan mountain regions. A major village in the Langtang Valley was destroyed and numerous people were victims of a catastrophic avalanche event, which consisted of snow, ice, rock, and blast wind. Understanding the hazard process mainly depends on limited witness accounts, interviews, and an in situ survey after a monsoon season. To record the immediate situation and to understand the deposition process, we performed an assessment by means of satellite-based observations carried out no later than 2 weeks after the event. The avalanche-induced sediment deposition was delineated with the calculation of decreasing coherence and visual interpretation of amplitude images acquired from the Phased Array-type L-band Synthetic Aperture Radar-2 (PALSAR-2). These outline areas are highly consistent with that delineated from a high-resolution optical image of WorldView-3 (WV-3). The delineated sediment areas were estimated as 0.63 km2 (PALSAR-2 coherence calculation), 0.73 km2 (PALSAR-2 visual interpretation), and 0.88 km2 (WV-3). In the WV-3 image, surface features were classified into 10 groups. Our analysis suggests that the avalanche event contained a sequence of (1) a fast splashing body with an air blast, (2) a huge, flowing muddy mass, (3) less mass flowing from another source, (4) a smaller amount of splashing and flowing mass, and (5) splashing mass without flowing on the east and west sides. By means of satellite-derived pre- and post-event digital surface models, differences in the surface altitudes of the collapse events estimated the total volume of the sediments as 5.51 ± 0.09 × 106 m3, the largest mass of which are distributed along the river floor and a tributary water stream. These findings contribute to detailed numerical simulation of the avalanche sequences and source identification; furthermore, altitude measurements after ice and snow

  7. Urban Landslides Induced by the 2004 Niigata-Chuetsu Earthquake

    Science.gov (United States)

    Kamai, T.; Trandafir, A. C.; Sidle, R. C.

    2005-05-01

    Landslides triggered by the Chuetsu earthquake occurred in artificial slopes of some new developments in suburban Nagaoka, the largest city in the affected area. The landslides occurred in hilly terrain of the eastern part of Nagaoka between the alluvial plain and Tertiary folded mountains of Yamakoshi. Although the extent of landslides in urban Nagaoka was small compared with landslides on natural slopes (especially near Yamakoshi), they represent an important case study for urban landslide disasters. Slope instabilities in urban residential areas were classified as: A) landslides in steep embankments; B) landslides in gently sloping artificial valley fills; C) re-activation of old landslides; and D) liquefaction in deep artificial valley fills. All these failures occurred in relatively uniform suburban landscapes, which were significantly modified from the original landforms. Recent destructive earthquakes in Japan caused similar types of slope failures in urban regions, suggesting that lessons from past earthquakes were not implemented. The greatest damage due to type-A failures occurred in the 25-yr old Takamachi residential area, where about 70 of 522 homes were judged to be uninhabitable. Before development, this area was an isolated hill (90 m elevation) with an adjacent terrace (60 m elevation) consisting of gravel, sand, and silt of the lower to middle Pleistocene deposits. Development earthworks removed the hill crest and created a wide plateau (70 m elevation); excavated soil was placed on the perimeter as an embankment. During the earthquake, the embankment slope collapsed, including retaining walls, perimeter road, and homes. The most serious damage occurred in five places around the margin of the plateau corresponding to shallow valley fills (5 to 8 m thick). Earthquake response analyses using an equivalent linear model indicated the amplification of seismic waves at the surface of embankment slopes, and the peak earthquake acceleration exceeded 1 G

  8. Numerical modeling of block structure dynamics: Application to the Vrancea region and study of earthquakes sequences in the synthetic catalogs

    International Nuclear Information System (INIS)

    Soloviev, A.A.; Vorobieva, I.A.

    1995-08-01

    A seismically active region is represented as a system of absolutely rigid blocks divided by infinitely thin plane faults. The interaction of the blocks along the fault planes and with the underlying medium is viscous-elastic. The system of blocks moves as a consequence of prescribed motion of boundary blocks and the underlying medium. When for some part of a fault plane the stress surpasses a certain strength level a stress-drop (''a failure'') occurs. It can cause a failure for other parts of fault planes. The failures are considered as earthquakes. As a result of the numerical simulation a synthetic earthquake catalogue is produced. This procedure is applied for numerical modeling of dynamics of the block structure approximating the tectonic structure of the Vrancea region. By numerical experiments the values of the model parameters were obtained which supplied the synthetic earthquake catalog with the space distribution of epicenters close to the real distribution of the earthquake epicenters in the Vrancea region. The frequency-magnitude relations (Gutenberg-Richter curves) obtained for the synthetic and real catalogs have some common features. The sequences of earthquakes arising in the model are studied for some artificial structures. It is found that ''foreshocks'', ''main shocks'', and ''aftershocks'' could be detected among earthquakes forming the sequences. The features of aftershocks, foreshocks, and catalogs of main shocks are analysed. (author). 5 refs, 12 figs, 16 tabs

  9. Finding positives after disaster: Insights from nurses following the 2010-2011 Canterbury, NZ earthquake sequence.

    Science.gov (United States)

    Johal, Sarbjit S; Mounsey, Zoe R

    2015-11-01

    This paper identifies positive aspects of nurse experiences during the Canterbury 2010-2011 earthquake sequence and subsequent recovery process. Qualitative semi-structured interviews were undertaken with 11 nurses from the Christchurch area to explore the challenges faced by the nurses during and following the earthquakes. The interviews took place three years after the start of the earthquake experience to enable exploration of the longer term recovery process. The interview transcripts were analysed and coded using a grounded theory approach. The data analysis identified that despite the many challenges faced by the nurses during and following the earthquakes they were able to identify positives from their experience. A number of themes were identified that are related to posttraumatic growth, including; improvement in relationships with others, change in perspective/values, changed views of self and acknowledgement of the value of the experience. The research indicates that nurses were able to identify positive aspects of their experiences of the earthquakes and recovery process, suggesting that both positive and negative impacts on wellbeing can co-exist. These insights have value for employers designing support processes following disasters as focusing on positive elements could enhance nurse wellbeing during stressful times. Copyright © 2015 College of Emergency Nursing Australasia Ltd. Published by Elsevier Ltd. All rights reserved.

  10. The Landers earthquake; preliminary instrumental results

    Science.gov (United States)

    Jones, L.; Mori, J.; Hauksson, E.

    1992-01-01

    Early on the morning of June 28, 1992, millions of people in southern California were awakened by the largest earthquake to occur in the western United States in the past 40 yrs. At 4:58 a.m PDT (local time), faulting associated with the magnitude 7.3 earthquake broke through to earth's surface near the town of Landers, California. the surface rupture then propagated 70km (45 mi) to the north and northwest along a band of faults passing through the middle of the Mojave Desert. Fortunately, the strongest shaking occurred in uninhabited regions of the Mojave Desert. Still one child was killed in Yucca Valley, and about 400 people were injured in the surrounding area. the desert communities of Landers, Yucca Valley, and Joshua Tree in San Bernardino Country suffered considerable damage to buildings and roads. Damage to water and power lines caused problems in many areas. 

  11. The role of INGVterremoti blog in information management during the earthquake sequence in central Italy

    Directory of Open Access Journals (Sweden)

    Maurizio Pignone

    2017-01-01

    Full Text Available In this paper, we describe the role the INGVterremoti blog in information management during the first part of the earthquake sequence in central Italy (August 24 to September 30. In the last four years, we have been working on the INGVterremoti blog in order to provide quick updates on the ongoing seismic activity in Italy and in-depth scientific information. These include articles on specific historical earthquakes, seismic hazard, geological interpretations, source models from different type of data, effects at the surface, and so on. We have delivered information in quasi-real-time also about all the recent magnitude M≥4.0 earthquakes in Italy, the strongest events in the Mediterranean and in the world. During the 2016 central Italy, the INGVterremoti blog has continuously released information about seismic sequences with three types of posts: i updates on the ongoing seismic activity; ii reports on the activities carried out by the INGV teams in the field and any other working groups; iii in-depth scientific articles describing some specific analysis and results. All the blog posts have been shared automatically and in real time on the other social media of the INGVterremoti platform, also to counter the bad information and to fight rumors. These include Facebook, Twitter and INGVterremoti App on IOS and Android. As well, both the main INGV home page (http://www.ingv.it and the INGV earthquake portal (http://terremoti.ingv.it have published the contents of the blog on dedicated pages that were fed automatically. The work done day by day on the INGVterremoti blog has been coordinated with the INGV Press Office that has written several press releases based on the contents of the blog. Since August 24, 53 articles were published on the blog they have had more than 1.9 million views and 1 million visitors. The peak in the number of views, which was more than 800,000 in a single day, was registered on August 24, 2016, following the M 6

  12. Landslides and dam damage resulting from the Jiuzhaigou earthquake (8 August 2017), Sichuan, China

    Science.gov (United States)

    Zhao, Bo; Wang, Yun-sheng; Luo, Yong-hong; Li, Jia; Zhang, Xin; Shen, Tong

    2018-03-01

    At 21.19 on 8 August 2017, an Ms 7.0 earthquake struck the Jiuzhaigou scenic spot in northwestern Sichuan Province, China. The Jiuzhaigou earthquake is a strike-slip earthquake with a focal depth of 20 km at 33.20° N and 103.82° E, and was caused by two concealed faults. According to emergency investigations and remote sensing interpretations, the Jiuzhaigou earthquake triggered 1780 landslides, damaged one dam (Nuorilang Waterfall) and broke one dam (Huohua Lake). The landslides mainly occurred in the Rize Valley and Shuzheng Valley and in Jiuzhai Paradise. The landslides involved hanging wall and back-slope effects, and the slope angle, slope aspect, seismic faults and valley trend were obviously related to the occurrence of the landslides. Specifically, most of the landslides were shallow landslides, rockfalls and rock avalanches and were small in scale. The failure modes of landslides mainly include wedge rock mass failure, residual deposit failure, relaxed rock mass failure and weathered rock mass failure. The initial low stability of the dam coupled with the topographic effect, back-slope effect and excess pore water pressure led to damage to the Nuorilang Waterfall dam.

  13. A methodology for analyzing precursors to earthquake-initiated and fire-initiated accident sequences

    International Nuclear Information System (INIS)

    Budnitz, R.J.; Lambert, H.E.; Apostolakis, G.

    1998-04-01

    This report covers work to develop a methodology for analyzing precursors to both earthquake-initiated and fire-initiated accidents at commercial nuclear power plants. Currently, the U.S. Nuclear Regulatory Commission sponsors a large ongoing project, the Accident Sequence Precursor project, to analyze the safety significance of other types of accident precursors, such as those arising from internally-initiated transients and pipe breaks, but earthquakes and fires are not within the current scope. The results of this project are that: (1) an overall step-by-step methodology has been developed for precursors to both fire-initiated and seismic-initiated potential accidents; (2) some stylized case-study examples are provided to demonstrate how the fully-developed methodology works in practice, and (3) a generic seismic-fragility date base for equipment is provided for use in seismic-precursors analyses. 44 refs., 23 figs., 16 tabs

  14. Prediction of accident sequence probabilities in a nuclear power plant due to earthquake events

    International Nuclear Information System (INIS)

    Hudson, J.M.; Collins, J.D.

    1980-01-01

    This paper presents a methodology to predict accident probabilities in nuclear power plants subject to earthquakes. The resulting computer program accesses response data to compute component failure probabilities using fragility functions. Using logical failure definitions for systems, and the calculated component failure probabilities, initiating event and safety system failure probabilities are synthesized. The incorporation of accident sequence expressions allows the calculation of terminal event probabilities. Accident sequences, with their occurrence probabilities, are finally coupled to a specific release category. A unique aspect of the methodology is an analytical procedure for calculating top event probabilities based on the correlated failure of primary events

  15. Preliminary remote sensing assessment of the catastrophic avalanche in Langtang Valley induced by the 2015 Gorkha earthquake, Nepal

    Science.gov (United States)

    Nagai, Hiroto; Watanabe, Manabu; Tomii, Naoya

    2016-04-01

    A major earthquake, measuring 7.8 Mw, occurred on April 25, 2015, in Lamjung district, central Nepal, causing more than 9,000 deaths and 23,000 injuries. During the event, termed the 2015 Gorkha earthquake, the most catastrophic collapse of the mountain side was reported in the Langtang Valley, located 60 km north of Kathmandu. In this collapse, a huge boulder-rich avalanche and a sudden air pressure wave traveled from a steep south-facing slope to the bottom of a U-shaped valley, resulting in more than 170 deaths. Accurate in-situ surveys are necessary to investigate such events, and to find out ways to avoid similar catastrophic events in the future. Geospatial information obtained from multiple satellite observations is invaluable for such surveys in remote mountain regions. In this study, we (1) identify the collapsed sediment using synthetic aperture radar, (2) conduct detailed mapping using high-resolution optical imagery, and (3) estimate sediment volumes from digital surface models in order to quantify the immediate situation of the avalanched sediment. (1) Visual interpretation and coherence calculations using Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) images give a consistent area of sediment cover. Emergency observation was carried out the day after the earthquake, using the PALSAR-2 onboard the Advanced Land Observing Satellite-2 (ALOS-2, "DAICHI-2"). Visual interpretation of orthorectified backscatter amplitude images revealed completely altered surface features, over which the identifiable sediment cover extended for 0.73 km2 (28°13'N, 85°30'E). Additionally, measuring the decrease in normalized coherence quantifies the similarity between the pre- and post-event surface features, after the removal of numerous noise patches by focal statistics. Calculations within the study area revealed high-value areas corresponding to the visually identified sediment area. Visual interpretation of the amplitude images and the coherence

  16. Long-term earthquake forecasts based on the epidemic-type aftershock sequence (ETAS model for short-term clustering

    Directory of Open Access Journals (Sweden)

    Jiancang Zhuang

    2012-07-01

    Full Text Available Based on the ETAS (epidemic-type aftershock sequence model, which is used for describing the features of short-term clustering of earthquake occurrence, this paper presents some theories and techniques related to evaluating the probability distribution of the maximum magnitude in a given space-time window, where the Gutenberg-Richter law for earthquake magnitude distribution cannot be directly applied. It is seen that the distribution of the maximum magnitude in a given space-time volume is determined in the longterm by the background seismicity rate and the magnitude distribution of the largest events in each earthquake cluster. The techniques introduced were applied to the seismicity in the Japan region in the period from 1926 to 2009. It was found that the regions most likely to have big earthquakes are along the Tohoku (northeastern Japan Arc and the Kuril Arc, both with much higher probabilities than the offshore Nankai and Tokai regions.

  17. Using regional moment tensors to constrain the kinematics and stress evolution of the 2010–2013 Canterbury earthquake sequence, South Island, New Zealand

    Science.gov (United States)

    Herman, Matthew W.; Herrmann, Robert B.; Benz, Harley M.; Furlong, Kevin P.

    2014-01-01

    On September 3, 2010, a MW 7.0 (U.S. Geological Survey moment magnitude) earthquake ruptured across the Canterbury Plains in South Island, New Zealand. Since then, New Zealand GNS Science has recorded over 10,000 aftershocks ML 2.0 and larger, including three destructive ~ MW 6.0 earthquakes near Christchurch. We treat the Canterbury earthquake sequence as an intraplate earthquake sequence, and compare its kinematics to an Andersonian model for fault slip in a uniform stress field. We determined moment magnitudes and double couple solutions for 150 earthquakes having MW 3.7 and larger through the use of a waveform inversion technique using data from broadband seismic stations on South Island, New Zealand. The majority (126) of these double couple solutions have strike-slip focal mechanisms, with right-lateral slip on ENE fault planes or equivalently left-lateral slip on SSE fault planes. The remaining focal mechanisms indicate reverse faulting, except for two normal faulting events. The strike-slip segments have compatible orientations for slip in a stress field with a horizontal σ1 oriented ~ N115°E, and horizontal σ3. The preference for right lateral strike-slip earthquakes suggests that these structures are inherited from previous stages of deformation. Reverse slip is interpreted to have occurred on previously existing structures in regions with an absence of existing structures optimally oriented for strike-slip deformation. Despite the variations in slip direction and faulting style, most aftershocks had nearly the same P-axis orientation, consistent with the regional σ1. There is no evidence for significant changes in these stress orientations throughout the Canterbury earthquake sequence.

  18. Fluid-faulting evolution in high definition: Connecting fault structure and frequency-magnitude variations during the 2014 Long Valley Caldera, California earthquake swarm

    Science.gov (United States)

    Shelly, David R.; Ellsworth, William L.; Hill, David P.

    2016-01-01

    An extended earthquake swarm occurred beneath southeastern Long Valley Caldera between May and November 2014, culminating in three magnitude 3.5 earthquakes and 1145 cataloged events on 26 September alone. The swarm produced the most prolific seismicity in the caldera since a major unrest episode in 1997-1998. To gain insight into the physics controlling swarm evolution, we used large-scale cross-correlation between waveforms of cataloged earthquakes and continuous data, producing precise locations for 8494 events, more than 2.5 times the routine catalog. We also estimated magnitudes for 18,634 events (~5.5 times the routine catalog), using a principal component fit to measure waveform amplitudes relative to cataloged events. This expanded and relocated catalog reveals multiple episodes of pronounced hypocenter expansion and migration on a collection of neighboring faults. Given the rapid migration and alignment of hypocenters on narrow faults, we infer that activity was initiated and sustained by an evolving fluid pressure transient with a low-viscosity fluid, likely composed primarily of water and CO2 exsolved from underlying magma. Although both updip and downdip migration were observed within the swarm, downdip activity ceased shortly after activation, while updip activity persisted for weeks at moderate levels. Strongly migrating, single-fault episodes within the larger swarm exhibited a higher proportion of larger earthquakes (lower Gutenberg-Richter b value), which may have been facilitated by fluid pressure confined in two dimensions within the fault zone. In contrast, the later swarm activity occurred on an increasingly diffuse collection of smaller faults, with a much higher b value.

  19. Reflections on Communicating Science during the Canterbury Earthquake Sequence of 2010-2011, New Zealand

    Science.gov (United States)

    Wein, A. M.; Berryman, K. R.; Jolly, G. E.; Brackley, H. L.; Gledhill, K. R.

    2015-12-01

    The 2010-2011 Canterbury Earthquake Sequence began with the 4th September 2010 Darfield earthquake (Mw 7.1). Perhaps because there were no deaths, the mood of the city and the government was that high standards of earthquake engineering in New Zealand protected us, and there was a confident attitude to response and recovery. The demand for science and engineering information was of interest but not seen as crucial to policy, business or the public. The 22nd February 2011 Christchurch earthquake (Mw 6.2) changed all that; there was a significant death toll and many injuries. There was widespread collapse of older unreinforced and two relatively modern multi-storey buildings, and major disruption to infrastructure. The contrast in the interest and relevance of the science could not have been greater compared to 5 months previously. Magnitude 5+ aftershocks over a 20 month period resulted in confusion, stress, an inability to define a recovery trajectory, major concerns about whether insurers and reinsurers would continue to provide cover, very high levels of media interest from New Zealand and around the world, and high levels of political risk. As the aftershocks continued there was widespread speculation as to what the future held. During the sequence, the science and engineering sector sought to coordinate and offer timely and integrated advice. However, other than GeoNet, the national geophysical monitoring network, there were few resources devoted to communication, with the result that it was almost always reactive. With hindsight we have identified the need to resource information gathering and synthesis, execute strategic assessments of stakeholder needs, undertake proactive communication, and develop specific information packages for the diversity of users. Overall this means substantially increased resources. Planning is now underway for the science sector to adopt the New Zealand standardised CIMS (Coordinated Incident Management System) structure for

  20. New insights on co- and post-seismic deformation and slip behavior associated with the Mw7.8 2016 Pedernales, Ecuador earthquake and its aftershock sequence

    Science.gov (United States)

    Soto-Cordero, L.; Nealy, J. L.; Meltzer, A.; Agurto-Detzel, H.; Alvarado, A. P.; Beck, S. L.; Benz, H.; Bergman, E. A.; Charvis, P.; Font, Y.; Hayes, G. P.; Hernandez, S.; Hoskins, M.; Leon Rios, S.; Lynner, C.; Regnier, M. M.; Rietbrock, A.; Stachnik, J. C.; Yeck, W. L.

    2017-12-01

    On April 16, 2016, a Mw7.8 earthquake, associated with oblique subduction of the Nazca Plate under South America, ruptured a segment approximately 130x100km in the region north of the intersection of the Carnegie ridge with the Ecuador subduction zone. The rupture coincides with the rupture area of the Mw7.8 1942 earthquake. To characterize the aftershock sequence, we analyze seismic data recorded by 30 stations from April 17, 2016 to May 8, 2017; 11 stations belong to Ecuador's national network and 19 are part of a PASSCAL temporary deployment. We apply a kurtosis detector to obtain automatic P- and S-wave picks. Earthquake locations, magnitudes, and regional moment tensors are obtained using the U.S. Geological Survey National Earthquake Information Center (NEIC) processing system. We also determine calibrated relocations using the Hypocentroidal Decomposition approach for a subset of events for which we combine phase readings from local and temporary PASSCAL stations with regional and teleseismic phase readings from the NEIC. In contrast with other earthquake relocation approaches, this method evaluates absolute location uncertainties for each event in the cluster, which allows us to more confidently assess the relationships between mainshock slip and aftershock activity. We find the aftershock sequence is characterized by a series of event clusters that predominantly surround the main rupture patches. However, the aftershocks extend beyond the mainshock rupture area, covering a region approximately 250x100km. Aftershocks north of the 2016 rupture fall in the rupture area of the Mw7.7 1958 earthquake. The southernmost region of elevated seismicity occurs south of a region of low coupling where the Carnegie ridge meets the subduction zone. The characterization of this sequence allows a detailed spatial and temporal analysis of the rupture processes, stress patterns and slip behavior during this earthquake sequence in Ecuador subduction zone.

  1. Collective properties of injection-induced earthquake sequences: 1. Model description and directivity bias

    Science.gov (United States)

    Dempsey, David; Suckale, Jenny

    2016-05-01

    Induced seismicity is of increasing concern for oil and gas, geothermal, and carbon sequestration operations, with several M > 5 events triggered in recent years. Modeling plays an important role in understanding the causes of this seismicity and in constraining seismic hazard. Here we study the collective properties of induced earthquake sequences and the physics underpinning them. In this first paper of a two-part series, we focus on the directivity ratio, which quantifies whether fault rupture is dominated by one (unilateral) or two (bilateral) propagating fronts. In a second paper, we focus on the spatiotemporal and magnitude-frequency distributions of induced seismicity. We develop a model that couples a fracture mechanics description of 1-D fault rupture with fractal stress heterogeneity and the evolving pore pressure distribution around an injection well that triggers earthquakes. The extent of fault rupture is calculated from the equations of motion for two tips of an expanding crack centered at the earthquake hypocenter. Under tectonic loading conditions, our model exhibits a preference for unilateral rupture and a normal distribution of hypocenter locations, two features that are consistent with seismological observations. On the other hand, catalogs of induced events when injection occurs directly onto a fault exhibit a bias toward ruptures that propagate toward the injection well. This bias is due to relatively favorable conditions for rupture that exist within the high-pressure plume. The strength of the directivity bias depends on a number of factors including the style of pressure buildup, the proximity of the fault to failure and event magnitude. For injection off a fault that triggers earthquakes, the modeled directivity bias is small and may be too weak for practical detection. For two hypothetical injection scenarios, we estimate the number of earthquake observations required to detect directivity bias.

  2. Variations of local seismic response in Benevento (Southern Italy) using earthquakes and ambient noise recordings

    Science.gov (United States)

    Improta, Luigi; di Giulio, Giuseppe; Rovelli, Antonio

    The city of Benevento (Southern Italy) has been repeatedly struck by large historical earthquakes. A heterogeneous geologic structure and widespread soft soil conditions make the estimation of site effects crucial for the seismic hazard assessment of the city. From 2000 until 2004, we installed seismic stations to collect earthquake data over zones with different geological conditions. Despite the high level of urban noise, we recorded more than 150 earthquakes at twelve sites. This data set yields the first, well documented experimental evidence for weak to moderate local amplifications. We investigated site effects primarily by the classical spectral ratio technique (CSR) using a rock station placed on the Benevento hill as reference. All sites in the Calore river valley and in the eastern part of the Benevento hill show a moderate high-frequency (f > 4 Hz) amplification peak. Conversely, sites in the Sabato river valley share weak-to-moderate amplification in a wide frequency band (from 1-2 to 7-10 Hz), without evident frequency peaks. Application of no-reference-site techniques to earthquake and noise data confirms the results of the CSRs in the sites of the Calore river valley and of the eastern part of the Benevento hill, but fails in providing indications for site effects in the Sabato river valley, being the H/V ratios nearly flat. One-dimensional modeling indicates that the ground motion amplification can be essentially explained in terms of a vertically varying geologic structure. High-frequency narrow peaks are caused by the strong impedance contrast existing between near-surface soft deposits and stiff cemented conglomerates. Conversely, broad-band amplifications in the Sabato river valley are likely due to a more complex layering with weak impedance contrasts both in the shallow and deep structure of the valley.

  3. Geologic Inheritance and Earthquake Rupture Processes: The 1905 M ≥ 8 Tsetserleg-Bulnay Strike-Slip Earthquake Sequence, Mongolia

    Science.gov (United States)

    Choi, Jin-Hyuck; Klinger, Yann; Ferry, Matthieu; Ritz, Jean-François; Kurtz, Robin; Rizza, Magali; Bollinger, Laurent; Davaasambuu, Battogtokh; Tsend-Ayush, Nyambayar; Demberel, Sodnomsambuu

    2018-02-01

    In 1905, 14 days apart, two M 8 continental strike-slip earthquakes, the Tsetserleg and Bulnay earthquakes, occurred on the Bulnay fault system, in Mongolia. Together, they ruptured four individual faults, with a total length of 676 km. Using submetric optical satellite images "Pleiades" with ground resolution of 0.5 m, complemented by field observation, we mapped in detail the entire surface rupture associated with this earthquake sequence. Surface rupture along the main Bulnay fault is 388 km in length, striking nearly E-W. The rupture is formed by a series of fault segments that are 29 km long on average, separated by geometric discontinuities. Although there is a difference of about 2 m in the average slip between the western and eastern parts of the Bulnay rupture, along-fault slip variations are overall limited, resulting in a smooth slip distribution, except for local slip deficit at segment boundaries. We show that damage, including short branches and secondary faulting, associated with the rupture propagation, occurred significantly more often along the western part of the Bulnay rupture, while the eastern part of the rupture appears more localized and thus possibly structurally simpler. Eventually, the difference of slip between the western and eastern parts of the rupture is attributed to this difference of rupture localization, associated at first order with a lateral change in the local geology. Damage associated to rupture branching appears to be located asymmetrically along the extensional side of the strike-slip rupture and shows a strong dependence on structural geologic inheritance.

  4. The 2010 M w 7.2 El Mayor-Cucapah Earthquake Sequence, Baja California, Mexico and Southernmost California, USA: Active Seismotectonics along the Mexican Pacific Margin

    Science.gov (United States)

    Hauksson, Egill; Stock, Joann; Hutton, Kate; Yang, Wenzheng; Vidal-Villegas, J. Antonio; Kanamori, Hiroo

    2011-08-01

    The El Mayor-Cucapah earthquake sequence started with a few foreshocks in March 2010, and a second sequence of 15 foreshocks of M > 2 (up to M4.4) that occurred during the 24 h preceding the mainshock. The foreshocks occurred along a north-south trend near the mainshock epicenter. The M w 7.2 mainshock on April 4 exhibited complex faulting, possibly starting with a ~M6 normal faulting event, followed ~15 s later by the main event, which included simultaneous normal and right-lateral strike-slip faulting. The aftershock zone extends for 120 km from the south end of the Elsinore fault zone north of the US-Mexico border almost to the northern tip of the Gulf of California. The waveform-relocated aftershocks form two abutting clusters, each about 50 km long, as well as a 10 km north-south aftershock zone just north of the epicenter of the mainshock. Even though the Baja California data are included, the magnitude of completeness and the hypocentral errors increase gradually with distance south of the international border. The spatial distribution of large aftershocks is asymmetric with five M5+ aftershocks located to the south of the mainshock, and only one M5.7 aftershock, but numerous smaller aftershocks to the north. Further, the northwest aftershock cluster exhibits complex faulting on both northwest and northeast planes. Thus, the aftershocks also express a complex pattern of stress release along strike. The overall rate of decay of the aftershocks is similar to the rate of decay of a generic California aftershock sequence. In addition, some triggered seismicity was recorded along the Elsinore and San Jacinto faults to the north, but significant northward migration of aftershocks has not occurred. The synthesis of the El Mayor-Cucapah sequence reveals transtensional regional tectonics, including the westward growth of the Mexicali Valley and the transfer of Pacific-North America plate motion from the Gulf of California in the south into the southernmost San

  5. Holistic Overview of the Contribution of Tectonic, Geomorphic, and Geologic Factors to the Seismic Hazard of the Kathmandu Valley, Nepal

    Science.gov (United States)

    Banda, S.; Chang, A.; Sanquini, A.; Hilley, G. E.

    2013-12-01

    Nepal has been a seismically active region since the mid-Eocene collision of the Indian and Eurasian plates. It can be divided into four major tectonostratigraphic units. The Lesser Himalayan Zone, where Kathmandu Valley is located, is bounded to the south by the Main Boundary Thrust (MBT) and to the north by the Main Central Thrust (MCT). These faults, and the Main Frontal Thrust (MFT) traverse the NW-SE length of Nepal and sole into the Main Himalayan Thrust (MHT). Slip along these structures during the Plio-Quaternary has ponded sediment in the interior of the orogen, producing the nearly circular Kathmandu Basin, which hosts a series of radially converging rivers that exit the basin to the south. The sediment that is ponded within the basin consists of alluvial, lacustrine and debris flow deposits that are ~500 m thick. The faults in the vicinity of the Kathmandu Valley currently serve as potential earthquake sources. Sources that might plausibly be generated by these faults are constrained by structural, paleoseismic, and geodetic observations. The continued collision between India and Tibet is reflected in a convergence rate of about 20 mm/yr, as measured by Global Positioning System (GPS) geodetic networks. Strain accumulates on the MHT, and is released during large earthquakes. The epicenter of the 1934 (M8.2) earthquake, about 175 km to the east of Kathmandu, resulted in MMI VIII- IX shaking intensity in the Kathmandu Valley. Seismic waves generated from faults in proximity to Kathmandu may be amplified or attenuated at particular locations due to specific site responses that reflect the geologic framework of the Kathmandu Valley. The ponded sediments within the Kathmandu Basin may contribute to basin effects, trapping seismic waves and prolonging ground motion, as well as increasing the amplitude of the waves as they travel from crystalline outer rocks into the soft lake-bed sediments. A hazard analysis suggests that a M8.0 earthquake originating in the

  6. A new Proposal to Mexico Valley Zonification

    Science.gov (United States)

    Flores-Estrella, H. C.; Yussim, S.; Lomnitz, C.

    2004-12-01

    The effects of the Michoacan earthquake (19th September, 1985, Mw 8.1) in Mexico City caused a significant change in the political, social and scientific history, as it was considered the worst seismic disaster ever lived in Mexico. Since then, numerous efforts have been made to understand and determine the parameters that caused the special features registered. One of these efforts had began on 1960 with the work by Marsal and Masari, who published the Mexico Valley seismological and geotechnical zonification (1969), based on gravimetric and shallow borehole data. In this work, we present a revision of the studies that proposed the zonification, a description of the valley geology, and basing on it we propose a new zonification for Mexico Valley.

  7. The Al Hoceima earthquake sequence of 1994, 2004 and 2016: Stress transfer and poroelasticity in the Rif and Alboran Sea region

    Science.gov (United States)

    Kariche, J.; Meghraoui, M.; Timoulali, Y.; Cetin, E.; Toussaint, R.

    2018-01-01

    The 2016 January 25 earthquake (Mw 6.3) follows in sequence from the1994 May 26 earthquake (Mw 6.0) and the 2004 February 24 earthquake (Mw 6.4) in the Rif Mountains and Alboran Sea. The earlier two seismic events which were destructive took place on inland conjugate faults, and the third event occurred on an offshore fault. These earthquake sequences occurred within a period of 22 yr at ˜25 km distance and 11-16-km depth. The three events have similar strike-slip focal mechanism solutions with NNE-SSW trending left-lateral faulting for the 1994 and 2016 events and NW-SE trending right-lateral faulting for the 2004 event. This shallow seismic sequence offers the possibility (i) to model the change in Coulomb Failure Function (ΔCFF with low μ΄ including the pore pressure change) and understand fault-rupture interaction, and (ii) to analyse the effect of pore fluid on the rupture mechanism, and infer the clock-time advance. The variation of static stress change has a direct impact on the main shock, aftershocks and related positive lobes of the 2004 earthquake rupture with a stress change increase of 0.7-1.1 bar. Similarly, the 2004 main shock and aftershocks indicate loading zones with a stress change (>0.25 bar) that includes the 2016 earthquake rupture. The tectonic loading of 19-24 nanostrain yr-1 obtained from the seismicity catalogue of Morocco is comparable to the 5.0 × 1017 N.m yr-1 seismic strain release in the Rif Mountains. The seismic sequence is apparently controlled by the poroelastic properties of the seismogenic layer that depend on the undrained and drained fluid conditions. The short interseismic period between main shocks and higher rate of aftershocks with relatively large magnitudes (4 stress-rate ranges between 461 and 582 Pa yr-1 with a ΔCFF of 0.2-1.1 bar. The computed clock-time advance reaches 239 ± 22 yr in agreement with the ˜10 yr delay between main shocks. The calculated static stress change of 0.9-1.3 bar, under pore

  8. Comparisons of Source Characteristics between Recent Inland Crustal Earthquake Sequences inside and outside of Niigata-Kobe Tectonic Zone, Japan

    Science.gov (United States)

    Somei, K.; Asano, K.; Iwata, T.; Miyakoshi, K.

    2012-12-01

    After the 1995 Kobe earthquake, many M7-class inland earthquakes occurred in Japan. Some of those events (e.g., the 2004 Chuetsu earthquake) occurred in a tectonic zone which is characterized as a high strain rate zone by the GPS observation (Sagiya et al., 2000) or dense distribution of active faults. That belt-like zone along the coast in Japan Sea side of Tohoku and Chubu districts, and north of Kinki district, is called as the Niigata-Kobe tectonic zone (NKTZ, Sagiya et al, 2000). We investigate seismic scaling relationship for recent inland crustal earthquake sequences in Japan and compare source characteristics between events occurring inside and outside of NKTZ. We used S-wave coda part for estimating source spectra. Source spectral ratio is obtained by S-wave coda spectral ratio between the records of large and small events occurring close to each other from nation-wide strong motion network (K-NET and KiK-net) and broad-band seismic network (F-net) to remove propagation-path and site effects. We carefully examined the commonality of the decay of coda envelopes between event-pair records and modeled the observed spectral ratio by the source spectral ratio function with assuming omega-square source model for large and small events. We estimated the corner frequencies and seismic moment (ratio) from those modeled spectral ratio function. We determined Brune's stress drops of 356 events (Mw: 3.1-6.9) in ten earthquake sequences occurring in NKTZ and six sequences occurring outside of NKTZ. Most of source spectra obey omega-square source spectra. There is no obvious systematic difference between stress drops of events in NKTZ zone and others. We may conclude that the systematic tendency of seismic source scaling of the events occurred inside and outside of NKTZ does not exist and the average source scaling relationship can be effective for inland crustal earthquakes. Acknowledgements: Waveform data were provided from K-NET, KiK-net and F-net operated by

  9. Using structural damage statistics to derive macroseismic intensity within the Kathmandu valley for the 2015 M7.8 Gorkha, Nepal earthquake

    Science.gov (United States)

    McGowan, S. M.; Jaiswal, K. S.; Wald, D. J.

    2017-09-01

    We make and analyze structural damage observations from within the Kathmandu valley following the 2015 M7.8 Gorkha, Nepal earthquake to derive macroseismic intensities at several locations including some located near ground motion recording sites. The macroseismic intensity estimates supplement the limited strong ground motion data in order to characterize the damage statistics. This augmentation allows for direct comparisons between ground motion amplitudes and structural damage characteristics and ultimately produces a more constrained ground shaking hazard map for the Gorkha earthquake. For systematic assessments, we focused on damage to three specific building categories: (a) low/mid-rise reinforced concrete frames with infill brick walls, (b) unreinforced brick masonry bearing walls with reinforced concrete slabs, and (c) unreinforced brick masonry bearing walls with partial timber framing. Evaluating dozens of photos of each construction type, assigning each building in the study sample to a European Macroseismic Scale (EMS)-98 Vulnerability Class based upon its structural characteristics, and then individually assigning an EMS-98 Damage Grade to each building allows a statistically derived estimate of macroseismic intensity for each of nine study areas in and around the Kathmandu valley. This analysis concludes that EMS-98 macroseismic intensities for the study areas from the Gorkha mainshock typically were in the VII-IX range. The intensity assignment process described is more rigorous than the informal approach of assigning intensities based upon anecdotal media or first-person accounts of felt-reports, shaking, and their interpretation of damage. Detailed EMS-98 macroseismic assessments in urban areas are critical for quantifying relations between shaking and damage as well as for calibrating loss estimates. We show that the macroseismic assignments made herein result in fatality estimates consistent with the overall and district-wide reported values.

  10. 3-D Dynamic rupture simulation for the 2016 Kumamoto, Japan, earthquake sequence: Foreshocks and M6 dynamically triggered event

    Science.gov (United States)

    Ando, R.; Aoki, Y.; Uchide, T.; Imanishi, K.; Matsumoto, S.; Nishimura, T.

    2016-12-01

    A couple of interesting earthquake rupture phenomena were observed associated with the sequence of the 2016 Kumamoto, Japan, earthquake sequence. The sequence includes the April 15, 2016, Mw 7.0, mainshock, which was preceded by multiple M6-class foreshock. The mainshock mainly broke the Futagawa fault segment striking NE-SW direction extending over 50km, and it further triggered a M6-class earthquake beyond the distance more than 50km to the northeast (Uchide et al., 2016, submitted), where an active volcano is situated. Compiling the data of seismic analysis and InSAR, we presumed this dynamic triggering event occurred on an active fault known as Yufuin fault (Ando et al., 2016, JPGU general assembly). It is also reported that the coseismic slip was significantly large at a shallow portion of Futagawa Fault near Aso volcano. Since the seismogenic depth becomes significantly shallower in these two areas, we presume the geothermal anomaly play a role as well as the elasto-dynamic processes associated with the coseismic rupture. In this study, we conducted a set of fully dynamic simulations of the earthquake rupture process by assuming the inferred 3D fault geometry and the regional stress field obtained referring the stress tensor inversion. As a result, we showed that the dynamic rupture process was mainly controlled by the irregularity of the fault geometry subjected to the gently varying regional stress field. The foreshocks ruptures have been arrested at the juncture of the branch faults. We also show that the dynamic triggering of M-6 class earthquakes occurred along the Yufuin fault segment (located 50 km NE) because of the strong stress transient up to a few hundreds of kPa due to the rupture directivity effect of the M-7 event. It is also shown that the geothermal condition may lead to the susceptible condition of the dynamic triggering by considering the plastic shear zone on the down dip extension of the Yufuin segment, situated in the vicinity of an

  11. The HayWired Earthquake Scenario—Earthquake Hazards

    Science.gov (United States)

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    The HayWired scenario is a hypothetical earthquake sequence that is being used to better understand hazards for the San Francisco Bay region during and after an earthquake of magnitude 7 on the Hayward Fault. The 2014 Working Group on California Earthquake Probabilities calculated that there is a 33-percent likelihood of a large (magnitude 6.7 or greater) earthquake occurring on the Hayward Fault within three decades. A large Hayward Fault earthquake will produce strong ground shaking, permanent displacement of the Earth’s surface, landslides, liquefaction (soils becoming liquid-like during shaking), and subsequent fault slip, known as afterslip, and earthquakes, known as aftershocks. The most recent large earthquake on the Hayward Fault occurred on October 21, 1868, and it ruptured the southern part of the fault. The 1868 magnitude-6.8 earthquake occurred when the San Francisco Bay region had far fewer people, buildings, and infrastructure (roads, communication lines, and utilities) than it does today, yet the strong ground shaking from the earthquake still caused significant building damage and loss of life. The next large Hayward Fault earthquake is anticipated to affect thousands of structures and disrupt the lives of millions of people. Earthquake risk in the San Francisco Bay region has been greatly reduced as a result of previous concerted efforts; for example, tens of billions of dollars of investment in strengthening infrastructure was motivated in large part by the 1989 magnitude 6.9 Loma Prieta earthquake. To build on efforts to reduce earthquake risk in the San Francisco Bay region, the HayWired earthquake scenario comprehensively examines the earthquake hazards to help provide the crucial scientific information that the San Francisco Bay region can use to prepare for the next large earthquake, The HayWired Earthquake Scenario—Earthquake Hazards volume describes the strong ground shaking modeled in the scenario and the hazardous movements of

  12. The Iquique earthquake sequence of April 2014: Bayesian modeling accounting for prediction uncertainty

    Science.gov (United States)

    Duputel, Zacharie; Jiang, Junle; Jolivet, Romain; Simons, Mark; Rivera, Luis; Ampuero, Jean-Paul; Riel, Bryan; Owen, Susan E; Moore, Angelyn W; Samsonov, Sergey V; Ortega Culaciati, Francisco; Minson, Sarah E.

    2016-01-01

    The subduction zone in northern Chile is a well-identified seismic gap that last ruptured in 1877. On 1 April 2014, this region was struck by a large earthquake following a two week long series of foreshocks. This study combines a wide range of observations, including geodetic, tsunami, and seismic data, to produce a reliable kinematic slip model of the Mw=8.1 main shock and a static slip model of the Mw=7.7 aftershock. We use a novel Bayesian modeling approach that accounts for uncertainty in the Green's functions, both static and dynamic, while avoiding nonphysical regularization. The results reveal a sharp slip zone, more compact than previously thought, located downdip of the foreshock sequence and updip of high-frequency sources inferred by back-projection analysis. Both the main shock and the Mw=7.7 aftershock did not rupture to the trench and left most of the seismic gap unbroken, leaving the possibility of a future large earthquake in the region.

  13. Conditional Probabilities of Large Earthquake Sequences in California from the Physics-based Rupture Simulator RSQSim

    Science.gov (United States)

    Gilchrist, J. J.; Jordan, T. H.; Shaw, B. E.; Milner, K. R.; Richards-Dinger, K. B.; Dieterich, J. H.

    2017-12-01

    Within the SCEC Collaboratory for Interseismic Simulation and Modeling (CISM), we are developing physics-based forecasting models for earthquake ruptures in California. We employ the 3D boundary element code RSQSim (Rate-State Earthquake Simulator of Dieterich & Richards-Dinger, 2010) to generate synthetic catalogs with tens of millions of events that span up to a million years each. This code models rupture nucleation by rate- and state-dependent friction and Coulomb stress transfer in complex, fully interacting fault systems. The Uniform California Earthquake Rupture Forecast Version 3 (UCERF3) fault and deformation models are used to specify the fault geometry and long-term slip rates. We have employed the Blue Waters supercomputer to generate long catalogs of simulated California seismicity from which we calculate the forecasting statistics for large events. We have performed probabilistic seismic hazard analysis with RSQSim catalogs that were calibrated with system-wide parameters and found a remarkably good agreement with UCERF3 (Milner et al., this meeting). We build on this analysis, comparing the conditional probabilities of sequences of large events from RSQSim and UCERF3. In making these comparisons, we consider the epistemic uncertainties associated with the RSQSim parameters (e.g., rate- and state-frictional parameters), as well as the effects of model-tuning (e.g., adjusting the RSQSim parameters to match UCERF3 recurrence rates). The comparisons illustrate how physics-based rupture simulators might assist forecasters in understanding the short-term hazards of large aftershocks and multi-event sequences associated with complex, multi-fault ruptures.

  14. Modeling earthquake sequences along the Manila subduction zone: Effects of three-dimensional fault geometry

    Science.gov (United States)

    Yu, Hongyu; Liu, Yajing; Yang, Hongfeng; Ning, Jieyuan

    2018-05-01

    To assess the potential of catastrophic megathrust earthquakes (MW > 8) along the Manila Trench, the eastern boundary of the South China Sea, we incorporate a 3D non-planar fault geometry in the framework of rate-state friction to simulate earthquake rupture sequences along the fault segment between 15°N-19°N of northern Luzon. Our simulation results demonstrate that the first-order fault geometry heterogeneity, the transitional-segment (possibly related to the subducting Scarborough seamount chain) connecting the steeper south segment and the flatter north segment, controls earthquake rupture behaviors. The strong along-strike curvature at the transitional-segment typically leads to partial ruptures of MW 8.3 and MW 7.8 along the southern and northern segments respectively. The entire fault occasionally ruptures in MW 8.8 events when the cumulative stress in the transitional-segment is sufficiently high to overcome the geometrical inhibition. Fault shear stress evolution, represented by the S-ratio, is clearly modulated by the width of seismogenic zone (W). At a constant plate convergence rate, a larger W indicates on average lower interseismic stress loading rate and longer rupture recurrence period, and could slow down or sometimes stop ruptures that initiated from a narrower portion. Moreover, the modeled interseismic slip rate before whole-fault rupture events is comparable with the coupling state that was inferred from the interplate seismicity distribution, suggesting the Manila trench could potentially rupture in a M8+ earthquake.

  15. The earthquake lights (EQL of the 6 April 2009 Aquila earthquake, in Central Italy

    Directory of Open Access Journals (Sweden)

    C. Fidani

    2010-05-01

    Full Text Available A seven-month collection of testimonials about the 6 April 2009 earthquake in Aquila, Abruzzo region, Italy, was compiled into a catalogue of non-seismic phenomena. Luminous phenomena were often reported starting about nine months before the strong shock and continued until about five months after the shock. A summary and list of the characteristics of these sightings was made according to 20th century classifications and a comparison was made with the Galli outcomes. These sightings were distributed over a large area around the city of Aquila, with a major extension to the north, up to 50 km. Various earthquake lights were correlated with several landscape characteristics and the source and dynamic of the earthquake. Some preliminary considerations on the location of the sightings suggest a correlation between electrical discharges and asperities, while flames were mostly seen along the Aterno Valley.

  16. Characterization of earthquake-induced ground motion from the L'Aquila seismic sequence of 2009, Italy

    Science.gov (United States)

    Malagnini, Luca; Akinci, Aybige; Mayeda, Kevin; Munafo', Irene; Herrmann, Robert B.; Mercuri, Alessia

    2011-01-01

    Based only on weak-motion data, we carried out a combined study on region-specific source scaling and crustal attenuation in the Central Apennines (Italy). Our goal was to obtain a reappraisal of the existing predictive relationships for the ground motion, and to test them against the strong-motion data [peak ground acceleration (PGA), peak ground velocity (PGV) and spectral acceleration (SA)] gathered during the Mw 6.15 L'Aquila earthquake (2009 April 6, 01:32 UTC). The L'Aquila main shock was not part of the predictive study, and the validation test was an extrapolation to one magnitude unit above the largest earthquake of the calibration data set. The regional attenuation was determined through a set of regressions on a data set of 12 777 high-quality, high-gain waveforms with excellent S/N ratios (4259 vertical and 8518 horizontal time histories). Seismograms were selected from the recordings of 170 foreshocks and aftershocks of the sequence (the complete set of all earthquakes with ML≥ 3.0, from 2008 October 1 to 2010 May 10). All waveforms were downloaded from the ISIDe web page (), a web site maintained by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). Weak-motion data were used to obtain a moment tensor solution, as well as a coda-based moment-rate source spectrum, for each one of the 170 events of the L'Aquila sequence (2.8 ≤Mw≤ 6.15). Source spectra were used to verify the good agreement with the source scaling of the Colfiorito seismic sequence of 1997-1998 recently described by Malagnini (2008). Finally, results on source excitation and crustal attenuation were used to produce the absolute site terms for the 23 stations located within ˜80 km of the epicentral area. The complete set of spectral corrections (crustal attenuation and absolute site effects) was used to implement a fast and accurate tool for the automatic computation of moment magnitudes in the Central Apennines.

  17. An improved data integration algorithm to constrain the 3D displacement field induced by fast deformation phenomena tested on the Napa Valley earthquake

    Science.gov (United States)

    Polcari, Marco; Fernández, José; Albano, Matteo; Bignami, Christian; Palano, Mimmo; Stramondo, Salvatore

    2017-12-01

    In this work, we propose an improved algorithm to constrain the 3D ground displacement field induced by fast surface deformations due to earthquakes or landslides. Based on the integration of different data, we estimate the three displacement components by solving a function minimization problem from the Bayes theory. We exploit the outcomes from SAR Interferometry (InSAR), Global Positioning System (GNSS) and Multiple Aperture Interferometry (MAI) to retrieve the 3D surface displacement field. Any other source of information can be added to the processing chain in a simple way, being the algorithm computationally efficient. Furthermore, we use the intensity Pixel Offset Tracking (POT) to locate the discontinuity produced on the surface by a sudden deformation phenomenon and then improve the GNSS data interpolation. This approach allows to be independent from other information such as in-situ investigations, tectonic studies or knowledge of the data covariance matrix. We applied such a method to investigate the ground deformation field related to the 2014 Mw 6.0 Napa Valley earthquake, occurred few kilometers from the San Andreas fault system.

  18. Paleoseismology of the Southern Section of the Black Mountains and Southern Death Valley Fault Zones, Death Valley, United States

    Science.gov (United States)

    Sohn, Marsha S.; Knott, Jeffrey R.; Mahan, Shannon

    2014-01-01

    The Death Valley Fault System (DVFS) is part of the southern Walker Lane–eastern California shear zone. The normal Black Mountains Fault Zone (BMFZ) and the right-lateral Southern Death Valley Fault Zone (SDVFZ) are two components of the DVFS. Estimates of late Pleistocene-Holocene slip rates and recurrence intervals for these two fault zones are uncertain owing to poor relative age control. The BMFZ southernmost section (Section 1W) steps basinward and preserves multiple scarps in the Quaternary alluvial fans. We present optically stimulated luminescence (OSL) dates ranging from 27 to 4 ka of fluvial and eolian sand lenses interbedded with alluvial-fan deposits offset by the BMFZ. By cross-cutting relations, we infer that there were three separate ground-rupturing earthquakes on BMFZ Section 1W with vertical displacement between 5.5 m and 2.75 m. The slip-rate estimate is ∼0.2 to 1.8 mm/yr, with an earthquake recurrence interval of 4,500 to 2,000 years. Slip-per-event measurements indicate Mw 7.0 to 7.2 earthquakes. The 27–4-ka OSL-dated alluvial fans also overlie the putative Cinder Hill tephra layer. Cinder Hill is offset ∼213 m by SDVFZ, which yields a tentative slip rate of 1 to 8 mm/yr for the SDVFZ.

  19. Fixed recurrence and slip models better predict earthquake behavior than the time- and slip-predictable models 1: repeating earthquakes

    Science.gov (United States)

    Rubinstein, Justin L.; Ellsworth, William L.; Chen, Kate Huihsuan; Uchida, Naoki

    2012-01-01

    The behavior of individual events in repeating earthquake sequences in California, Taiwan and Japan is better predicted by a model with fixed inter-event time or fixed slip than it is by the time- and slip-predictable models for earthquake occurrence. Given that repeating earthquakes are highly regular in both inter-event time and seismic moment, the time- and slip-predictable models seem ideally suited to explain their behavior. Taken together with evidence from the companion manuscript that shows similar results for laboratory experiments we conclude that the short-term predictions of the time- and slip-predictable models should be rejected in favor of earthquake models that assume either fixed slip or fixed recurrence interval. This implies that the elastic rebound model underlying the time- and slip-predictable models offers no additional value in describing earthquake behavior in an event-to-event sense, but its value in a long-term sense cannot be determined. These models likely fail because they rely on assumptions that oversimplify the earthquake cycle. We note that the time and slip of these events is predicted quite well by fixed slip and fixed recurrence models, so in some sense they are time- and slip-predictable. While fixed recurrence and slip models better predict repeating earthquake behavior than the time- and slip-predictable models, we observe a correlation between slip and the preceding recurrence time for many repeating earthquake sequences in Parkfield, California. This correlation is not found in other regions, and the sequences with the correlative slip-predictable behavior are not distinguishable from nearby earthquake sequences that do not exhibit this behavior.

  20. Geologic characterization report for the Paradox Basin Study Region, Utah Study Areas. Volume 6. Salt Valley

    International Nuclear Information System (INIS)

    1984-12-01

    Surface landforms in the Salt Valley Area are generally a function of the Salt Valley anticline and are characterized by parallel and subparallel cuestaform ridges and hogbacks and flat valley floors. The most prominent structure in the Area is the Salt Valley anticline. Erosion resulting from the Tertiary uplift of the Colorado Plateau led to salt dissolution and subsequent collapse along the crest of the anticline. Continued erosion removed the collapse material, forming an axial valley along the crest of the anticline. Paleozoic rocks beneath the salt bearing Paradox Formation consist of limestone, dolomite, sandstone, siltstone and shale. The salt beds of the Paradox Formation occur in distinct cycles separated by an interbed sequence of anhydrite, carbonate, and clastic rocks. The Paradox Formation is overlain by Pennsylvanian limestone; Permian sandstone; and Mesozoic sandstone, mudstone, conglomerate and shale. No earthquakes have been reported in the Area during the period of the historic record and contemporary seismicity appears to be diffusely distributed, of low level and small magnitude. The upper unit includes the Permian strata and upper Honaker Trail Formation. The current data base is insufficient to estimate ground-water flow rates and directions in this unit. The middle unit includes the evaporites in the Paradox Formation and no laterally extensive flow systems are apparent. The lower unit consists of the rocks below the Paradox Formation where permeabilities vary widely, and the apparent flow direction is toward the west. 108 refs., 39 figs., 9 tabs

  1. GPS Imaging of Time-Variable Earthquake Hazard: The Hilton Creek Fault, Long Valley California

    Science.gov (United States)

    Hammond, W. C.; Blewitt, G.

    2016-12-01

    The Hilton Creek Fault, in Long Valley, California is a down-to-the-east normal fault that bounds the eastern edge of the Sierra Nevada/Great Valley microplate, and lies half inside and half outside the magmatically active caldera. Despite the dense coverage with GPS networks, the rapid and time-variable surface deformation attributable to sporadic magmatic inflation beneath the resurgent dome makes it difficult to use traditional geodetic methods to estimate the slip rate of the fault. While geologic studies identify cumulative offset, constrain timing of past earthquakes, and constrain a Quaternary slip rate to within 1-5 mm/yr, it is not currently possible to use geologic data to evaluate how the potential for slip correlates with transient caldera inflation. To estimate time-variable seismic hazard of the fault we estimate its instantaneous slip rate from GPS data using a new set of algorithms for robust estimation of velocity and strain rate fields and fault slip rates. From the GPS time series, we use the robust MIDAS algorithm to obtain time series of velocity that are highly insensitive to the effects of seasonality, outliers and steps in the data. We then use robust imaging of the velocity field to estimate a gridded time variable velocity field. Then we estimate fault slip rate at each time using a new technique that forms ad-hoc block representations that honor fault geometries, network complexity, connectivity, but does not require labor-intensive drawing of block boundaries. The results are compared to other slip rate estimates that have implications for hazard over different time scales. Time invariant long term seismic hazard is proportional to the long term slip rate accessible from geologic data. Contemporary time-invariant hazard, however, may differ from the long term rate, and is estimated from the geodetic velocity field that has been corrected for the effects of magmatic inflation in the caldera using a published model of a dipping ellipsoidal

  2. Do earthquakes exhibit self-organized criticality?

    International Nuclear Information System (INIS)

    Yang Xiaosong; Ma Jin; Du Shuming

    2004-01-01

    If earthquakes are phenomena of self-organized criticality (SOC), statistical characteristics of the earthquake time series should be invariant after the sequence of events in an earthquake catalog are randomly rearranged. In this Letter we argue that earthquakes are unlikely phenomena of SOC because our analysis of the Southern California Earthquake Catalog shows that the first-return-time probability P M (T) is apparently changed after the time series is rearranged. This suggests that the SOC theory should not be used to oppose the efforts of earthquake prediction

  3. Earthquake safety program at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Freeland, G.E.

    1985-01-01

    Within three minutes on the morning of January 24, 1980, an earthquake and three aftershocks, with Richter magnitudes of 5.8, 5.1, 4.0, and 4.2, respectively, struck the Livermore Valley. Two days later, a Richter magnitude 5.4 earthquake occurred, which had its epicenter about 4 miles northwest of the Lawrence Livermore National Laboratory (LLNL). Although no one at the Lab was seriously injured, these earthquakes caused considerable damage and disruption. Masonry and concrete structures cracked and broke, trailers shifted and fell off their pedestals, office ceilings and overhead lighting fell, and bookcases overturned. The Laboratory was suddenly immersed in a site-wide program of repairing earthquake-damaged facilities, and protecting our many employees and the surrounding community from future earthquakes. Over the past five years, LLNL has spent approximately $10 million on its earthquake restoration effort for repairs and upgrades. The discussion in this paper centers upon the earthquake damage that occurred, the clean-up and restoration efforts, the seismic review of LLNL facilities, our site-specific seismic design criteria, computer-floor upgrades, ceiling-system upgrades, unique building seismic upgrades, geologic and seismologic studies, and seismic instrumentation. 10 references

  4. The Nile valley of Egypt: A major active graben that magnifies seismic waves

    International Nuclear Information System (INIS)

    EI-Sayed, A.; Vaccari, F.; Panza, G.F.

    2002-08-01

    The Nile valley and the Nile delta are part of the active rift that is probably connected with the Red Sea tectonism. This zone is characterized by small to moderate size earthquakes that have caused extremely severe damage to recent and historical constructions. The most vulnerable area along the Nile valley is the one of Cairo-Faiyoum. Small local and large distant earthquakes could be a source of huge socio-economic damage in this area. The loose soft alluvial sediments of the Nile Canyon are the main factors behind this potential damage because they may greatly amplify the ground motion, as demonstrated by strong ground motion modelling. The largest amplification is generally concentrated along the edges of the graben and occurs at frequencies between 1 Hz and 2 Hz. This may explain the huge damage caused by distant earthquakes during recent and historical times. The distribution of intensity values during the events of 1926 and 1992 is well correlated with the modelled spatial distribution of the spectral amplification. (author)

  5. On to what extent stresses resulting from the earth's surface trigger earthquakes

    Science.gov (United States)

    Klose, C. D.

    2009-12-01

    The debate on static versus dynamic earthquake triggering mainly concentrates on endogenous crustal forces, including fault-fault interactions or seismic wave transients of remote earthquakes. Incomprehensibly, earthquake triggering due to surface processes, however, still receives little scientific attention. This presentation continues a discussion on the hypothesis of how “tiny” stresses stemming from the earth's surface can trigger major earthquakes, such as for example, China's M7.9 Wenchuan earthquake of May 2008. This seismic event is thought to be triggered by up to 1.1 billion metric tons of water (~130m) that accumulated in the Minjiang River Valley at the eastern margin of the Longmen Shan. Specifically, the water level rose by ~80m (static), with additional seasonal water level changes of ~50m (dynamic). Two and a half years prior to mainshock, static and dynamic Coulomb failure stresses were induced on the nearby Beichuan thrust fault system at <17km depth. Triggering stresses were equivalent to levels of daily tides and perturbed a fault area measuring 416+/-96km^2. The mainshock ruptured after 2.5 years when only the static stressing regime was predominant and the transient stressing (seasonal water level) was infinitesimal small. The short triggering delay of about 2 years suggests that the Beichuan fault might have been near the end of its seismic cycle, which may also confirm what previous geological findings have indicated. This presentation shows on to what extend the static and 1-year periodic triggering stress perturbations a) accounted for equivalent tectonic loading, given a 4-10kyr earthquake cycle and b) altered the background seismicity beneath the valley, i.e., daily event rate and earthquake size distribution.

  6. Landslides triggered by the 8 October 2005 Kashmir earthquake

    Science.gov (United States)

    Owen, L.A.; Kamp, U.; Khattak, G.A.; Harp, E.L.; Keefer, D.K.; Bauer, M.A.

    2008-01-01

    The 8 October 2005 Kashmir earthquake triggered several thousand landslides. These were mainly rock falls and debris falls, although translational rock and debris slides also occurred. In addition, a sturzstrom (debris avalanche) comprising ??? 80??million m3 buried four villages and blocked streams to create two lakes. Although landsliding occurred throughout the region, covering an area of > 7500??km2, the failures were highly concentrated, associated with six geomorphic-geologic-anthropogenic settings, including natural failures in (1) highly fractured carbonate rocks comprising the lowest beds in the hanging wall of the likely earthquake fault; (2) Tertiary siliciclastic rocks along antecedent drainages that traverse the Hazara-Kashmir Syntaxis; (3) steep (> 50??) slopes comprising Precambrian and Lower Paleozoic rocks; (4) very steep (?? 50??) lower slopes of fluvially undercut Quaternary valley fills; and (5) ridges and spur crests. The sixth setting was associated with road construction. Extensive fissuring in many of the valley slopes together with the freshly mobilized landslide debris constitutes a potential hazard in the coming snowmelt and monsoon seasons. This study supports the view that earthquake-triggered landslides are highly concentrated in specific zones associated with the lithology, structure, geomorphology, topography, and human presence. ?? 2007 Elsevier B.V. All rights reserved.

  7. Earthquake statistics, spatiotemporal distribution of foci and source mechanisms - a key to understanding of the West Bohemia/Vogtland earthquake swarms

    Science.gov (United States)

    Horálek, Josef; Čermáková, Hana; Fischer, Tomáš

    2016-04-01

    Earthquake swarms are sequences of numerous events closely clustered in space and time and do not have a single dominant mainshock. A few of the largest events in a swarm reach similar magnitudes and usually occur throughout the course of the earthquake sequence. These attributes differentiate earthquake swarms from ordinary mainshock-aftershock sequences. Earthquake swarms occur worldwide, in diverse geological units. The swarms typically accompany volcanic activity at margins of the tectonic plate but also occur in intracontinental areas where strain from tectonic-plate movement is small. The origin of earthquake swarms is still unclear. The swarms typically occur at the plate margins but also in intracontinental areas. West Bohemia-Vogtland represents one of the most active intraplate earthquake-swarm areas in Europe. It is characterised by a frequent reoccurrence of ML 2.8 swarm events are located in a few dense clusters which implies step by step rupturing of one or a few asperities during the individual swarms. The source mechanism patters (moment-tensor description, MT) of the individual swarms indicate several families of the mechanisms, which fit well geometry of respective fault segments. MTs of the most events signify pure shears except for the 1997-swarm events the MTs of which indicates a combine sources including both shear and tensile components. The origin of earthquake swarms is still unclear. Nevertheless, we infer that the individual earthquake swarms in West Bohemia-Vogtland are mixture of the mainshock-aftershock sequences which correspond to step by step rupturing of one or a few asperities. The swarms occur on short fault segments with heterogeneous stress and strength, which may be affected by pressurized crustal fluids reducing normal component of the tectonic stress and lower friction. This way critically loaded faults are brought to failure and the swarm activity is driven by the differential local stress.

  8. Summary of recent research in Long Valley Caldera, California

    Science.gov (United States)

    Sorey, M.L.; McConnell, V.S.; Roeloffs, E.

    2003-01-01

    Since 1978, volcanic unrest in the form of earthquakes and ground deformation has persisted in the Long Valley caldera and adjacent parts of the Sierra Nevada. The papers in this special volume focus on periods of accelerated seismicity and deformation in 1980, 1983, 1989-1990, and 1997-1998 to delineate relations between geologic, tectonic, and hydrologic processes. The results distinguish between earthquake sequences that result from relaxation of existing stress accumulation through brittle failure and those in which brittle failure is driven by active intrusion. They also indicate that in addition to a relatively shallow (7-10-km) source beneath the resurgent dome, there exists a deeper (???15-km) source beneath the south moat. Analysis of microgravimety and deformation data indicates that the composition of the shallower source may involve a combination of silicic magma and hydrothermal fluid. Pressure and temperature fluctuations in wells have accompanied periods of crustal unrest, and additional pressure and temperature changes accompanying ongoing geothermal power production have resulted in land subsidence. The completion in 1998 of a 3000-m-deep drill hole on the resurgent dome has provided useful information on present and past periods of circulation of water at temperatures of 100-200??C within the crystalline basement rocks that underlie the post-caldera volcanics. The well is now being converted to a permanent geophysical monitoring station. ?? 2003 Elsevier B.V. All rights reserved.

  9. Characterizing spatial heterogeneity based on the b-value and fractal analyses of the 2015 Nepal earthquake sequence

    Science.gov (United States)

    Nampally, Subhadra; Padhy, Simanchal; Dimri, Vijay P.

    2018-01-01

    The nature of spatial distribution of heterogeneities in the source area of the 2015 Nepal earthquake is characterized based on the seismic b-value and fractal analysis of its aftershocks. The earthquake size distribution of aftershocks gives a b-value of 1.11 ± 0.08, possibly representing the highly heterogeneous and low stress state of the region. The aftershocks exhibit a fractal structure characterized by a spectrum of generalized dimensions, Dq varying from D2 = 1.66 to D22 = 0.11. The existence of a fractal structure suggests that the spatial distribution of aftershocks is not a random phenomenon, but it self-organizes into a critical state, exhibiting a scale-independent structure governed by a power-law scaling, where a small perturbation in stress is sufficient enough to trigger aftershocks. In order to obtain the bias in fractal dimensions resulting from finite data size, we compared the multifractal spectrum for the real data and random simulations. On comparison, we found that the lower limit of bias in D2 is 0.44. The similarity in their multifractal spectra suggests the lack of long-range correlation in the data, with an only weakly multifractal or a monofractal with a single correlation dimension D2 characterizing the data. The minimum number of events required for a multifractal process with an acceptable error is discussed. We also tested for a possible correlation between changes in D2 and energy released during the earthquakes. The values of D2 rise during the two largest earthquakes (M > 7.0) in the sequence. The b- and D2 values are related by D2 = 1.45 b that corresponds to the intermediate to large earthquakes. Our results provide useful constraints on the spatial distribution of b- and D2-values, which are useful for seismic hazard assessment in the aftershock area of a large earthquake.

  10. Earthquake simulations with time-dependent nucleation and long-range interactions

    Directory of Open Access Journals (Sweden)

    J. H. Dieterich

    1995-01-01

    Full Text Available A model for rapid simulation of earthquake sequences is introduced which incorporates long-range elastic interactions among fault elements and time-dependent earthquake nucleation inferred from experimentally derived rate- and state-dependent fault constitutive properties. The model consists of a planar two-dimensional fault surface which is periodic in both the x- and y-directions. Elastic interactions among fault elements are represented by an array of elastic dislocations. Approximate solutions for earthquake nucleation and dynamics of earthquake slip are introduced which permit computations to proceed in steps that are determined by the transitions from one sliding state to the next. The transition-driven time stepping and avoidance of systems of simultaneous equations permit rapid simulation of large sequences of earthquake events on computers of modest capacity, while preserving characteristics of the nucleation and rupture propagation processes evident in more detailed models. Earthquakes simulated with this model reproduce many of the observed spatial and temporal characteristics of clustering phenomena including foreshock and aftershock sequences. Clustering arises because the time dependence of the nucleation process is highly sensitive to stress perturbations caused by nearby earthquakes. Rate of earthquake activity following a prior earthquake decays according to Omori's aftershock decay law and falls off with distance.

  11. Fault healing and earthquake spectra from stick slip sequences in the laboratory and on active faults

    Science.gov (United States)

    McLaskey, G. C.; Glaser, S. D.; Thomas, A.; Burgmann, R.

    2011-12-01

    Repeating earthquake sequences (RES) are thought to occur on isolated patches of a fault that fail in repeated stick-slip fashion. RES enable researchers to study the effect of variations in earthquake recurrence time and the relationship between fault healing and earthquake generation. Fault healing is thought to be the physical process responsible for the 'state' variable in widely used rate- and state-dependent friction equations. We analyze RES created in laboratory stick slip experiments on a direct shear apparatus instrumented with an array of very high frequency (1KHz - 1MHz) displacement sensors. Tests are conducted on the model material polymethylmethacrylate (PMMA). While frictional properties of this glassy polymer can be characterized with the rate- and state- dependent friction laws, the rate of healing in PMMA is higher than room temperature rock. Our experiments show that in addition to a modest increase in fault strength and stress drop with increasing healing time, there are distinct spectral changes in the recorded laboratory earthquakes. Using the impact of a tiny sphere on the surface of the test specimen as a known source calibration function, we are able to remove the instrument and apparatus response from recorded signals so that the source spectrum of the laboratory earthquakes can be accurately estimated. The rupture of a fault that was allowed to heal produces a laboratory earthquake with increased high frequency content compared to one produced by a fault which has had less time to heal. These laboratory results are supported by observations of RES on the Calaveras and San Andreas faults, which show similar spectral changes when recurrence time is perturbed by a nearby large earthquake. Healing is typically attributed to a creep-like relaxation of the material which causes the true area of contact of interacting asperity populations to increase with time in a quasi-logarithmic way. The increase in high frequency seismicity shown here

  12. What Can Sounds Tell Us About Earthquake Interactions?

    Science.gov (United States)

    Aiken, C.; Peng, Z.

    2012-12-01

    It is important not only for seismologists but also for educators to effectively convey information about earthquakes and the influences earthquakes can have on each other. Recent studies using auditory display [e.g. Kilb et al., 2012; Peng et al. 2012] have depicted catastrophic earthquakes and the effects large earthquakes can have on other parts of the world. Auditory display of earthquakes, which combines static images with time-compressed sound of recorded seismic data, is a new approach to disseminating information to a general audience about earthquakes and earthquake interactions. Earthquake interactions are influential to understanding the underlying physics of earthquakes and other seismic phenomena such as tremors in addition to their source characteristics (e.g. frequency contents, amplitudes). Earthquake interactions can include, for example, a large, shallow earthquake followed by increased seismicity around the mainshock rupture (i.e. aftershocks) or even a large earthquake triggering earthquakes or tremors several hundreds to thousands of kilometers away [Hill and Prejean, 2007; Peng and Gomberg, 2010]. We use standard tools like MATLAB, QuickTime Pro, and Python to produce animations that illustrate earthquake interactions. Our efforts are focused on producing animations that depict cross-section (side) views of tremors triggered along the San Andreas Fault by distant earthquakes, as well as map (bird's eye) views of mainshock-aftershock sequences such as the 2011/08/23 Mw5.8 Virginia earthquake sequence. These examples of earthquake interactions include sonifying earthquake and tremor catalogs as musical notes (e.g. piano keys) as well as audifying seismic data using time-compression. Our overall goal is to use auditory display to invigorate a general interest in earthquake seismology that leads to the understanding of how earthquakes occur, how earthquakes influence one another as well as tremors, and what the musical properties of these

  13. Correlating precursory declines in groundwater radon with earthquake magnitude.

    Science.gov (United States)

    Kuo, T

    2014-01-01

    Both studies at the Antung hot spring in eastern Taiwan and at the Paihe spring in southern Taiwan confirm that groundwater radon can be a consistent tracer for strain changes in the crust preceding an earthquake when observed in a low-porosity fractured aquifer surrounded by a ductile formation. Recurrent anomalous declines in groundwater radon were observed at the Antung D1 monitoring well in eastern Taiwan prior to the five earthquakes of magnitude (Mw ): 6.8, 6.1, 5.9, 5.4, and 5.0 that occurred on December 10, 2003; April 1, 2006; April 15, 2006; February 17, 2008; and July 12, 2011, respectively. For earthquakes occurring on the longitudinal valley fault in eastern Taiwan, the observed radon minima decrease as the earthquake magnitude increases. The above correlation has been proven to be useful for early warning local large earthquakes. In southern Taiwan, radon anomalous declines prior to the 2010 Mw 6.3 Jiasian, 2012 Mw 5.9 Wutai, and 2012 ML 5.4 Kaohsiung earthquakes were also recorded at the Paihe spring. For earthquakes occurring on different faults in southern Taiwan, the correlation between the observed radon minima and the earthquake magnitude is not yet possible. © 2013, National Ground Water Association.

  14. Memory effect in M ≥ 7 earthquakes of Taiwan

    Science.gov (United States)

    Wang, Jeen-Hwa

    2014-07-01

    The M ≥ 7 earthquakes that occurred in the Taiwan region during 1906-2006 are taken to study the possibility of memory effect existing in the sequence of those large earthquakes. Those events are all mainshocks. The fluctuation analysis technique is applied to analyze two sequences in terms of earthquake magnitude and inter-event time represented in the natural time domain. For both magnitude and inter-event time, the calculations are made for three data sets, i.e., the original order data, the reverse-order data, and that of the mean values. Calculated results show that the exponents of scaling law of fluctuation versus window length are less than 0.5 for the sequences of both magnitude and inter-event time data. In addition, the phase portraits of two sequent magnitudes and two sequent inter-event times are also applied to explore if large (or small) earthquakes are followed by large (or small) events. Results lead to a negative answer. Together with all types of information in study, we make a conclusion that the earthquake sequence in study is short-term corrected and thus the short-term memory effect would be operative.

  15. Evaluating spatial and temporal relationships between an earthquake cluster near Entiat, central Washington, and the large December 1872 Entiat earthquake

    Science.gov (United States)

    Brocher, Thomas M.; Blakely, Richard J.; Sherrod, Brian

    2017-01-01

    We investigate spatial and temporal relations between an ongoing and prolific seismicity cluster in central Washington, near Entiat, and the 14 December 1872 Entiat earthquake, the largest historic crustal earthquake in Washington. A fault scarp produced by the 1872 earthquake lies within the Entiat cluster; the locations and areas of both the cluster and the estimated 1872 rupture surface are comparable. Seismic intensities and the 1–2 m of coseismic displacement suggest a magnitude range between 6.5 and 7.0 for the 1872 earthquake. Aftershock forecast models for (1) the first several hours following the 1872 earthquake, (2) the largest felt earthquakes from 1900 to 1974, and (3) the seismicity within the Entiat cluster from 1976 through 2016 are also consistent with this magnitude range. Based on this aftershock modeling, most of the current seismicity in the Entiat cluster could represent aftershocks of the 1872 earthquake. Other earthquakes, especially those with long recurrence intervals, have long‐lived aftershock sequences, including the Mw">MwMw 7.5 1891 Nobi earthquake in Japan, with aftershocks continuing 100 yrs after the mainshock. Although we do not rule out ongoing tectonic deformation in this region, a long‐lived aftershock sequence can account for these observations.

  16. Engineering geological aspect of Gorkha Earthquake 2015, Nepal

    Science.gov (United States)

    Adhikari, Basanta Raj; Andermann, Christoff; Cook, Kristen

    2016-04-01

    the ground especially in the epicenter area. Similarly, liquefaction occurred in the different parts of Kathmandu valley. However, the recording in KATNP and DMG indicate that the ground motions that resulted from the quake were not strong enough to fully weaken liquefiable materials and in most cases incipient or "marginal" liquefaction was observed. Here, we will present a compilation of the different types of mass wasting that have occurred in this region and discuss their location and hazard potential for local communities. References: Adhikari, L.B., Gautam, U.P., Koirala, B.P., Bhattarai, M., Kandel, T., Gupta, R.M., Timsina, C., Maharjan, N., Maharjan, K., Dhahal, T., Hoste-Colomer, R., Cano, Y., Dandine, M., Guhem, A., Merrer, S., Roudil, P., Bollinger, L., 2015, The aftershock sequence of the 2015 April 25 Gorkha-Nepal Earthquake, Geophysical Journal International, v. 203 (3), pp. 2119-2124. Earthquake Without Frontiers, 2015, http://ewf.nerc.ac.uk/2015/05/12/nepal-update-on-landslide-hazard-following-12-may-2015-earthquake/ GEER, 2015: Geotechnical Extreme Event Reconnaissance http://www.geerassociation.org Moss, R.E.S., Thompson, E.M., Kieffer, D.S., Tiwari, B., Hashash, Y.M.A., Acharya, I., Adhikari B.R., Asimaki, D., Clahan, K.B., Collins, B.D., Dahal, S., Jibson, R.W., Khadka, D., Machdonald, A. Madugo C.L., Mason, H.B., Pehlivan., M., Rayamajhi, D. and Upreti. S., 2015, Geotechnical Effects of the 2015 AMgnitude 7.8 Gorkah, Nepal, Earthquake and Aftershocks, seismological Research Letters, v. 86(6), PP. 1514-1523 National Seismoligical Center, 2015, http://www.seismonepal.gov.np/

  17. Earthquake-induced liquefaction in Ferland, Quebec

    International Nuclear Information System (INIS)

    Tuttle, M.; Seeber, L.

    1991-02-01

    Detailed geological investigations are under way at a number of liquefaction sites in the Ferland-Boilleau valley, Quebec, where sand boils, ground cracks and liquefaction-related damages to homes were documented immediately following the Ms=6.0, Mblg=6.5 Saguenay earthquake of November 25, 1988. To date, results obtained from these subsurface investigations of sand boils at two sites in Ferland, located about 26 km from the epicentre, indicate that: the Saguenay earthquake induced liquefaction in late-Pleistocene and Holocene sediments which was recorded as sand dikes, sills and vents in near-surface sediments and soils; earthquake-induced liquefaction and ground failure have occurred in this area at least three times in the past 10,000 years; and, the size and morphology of liquefaction features and the liquefaction susceptibility of source layers of the features may be indicative of the intensity of ground shaking. These preliminary results are very promising and suggest that with continued research liquefaction features will become a useful tool in glaciated terrains, such as northeastern North America, for determining not only the timing and location but also the size of past earthquakes

  18. Moment magnitude, local magnitude and corner frequency of small earthquakes nucleating along a low angle normal fault in the Upper Tiber valley (Italy)

    Science.gov (United States)

    Munafo, I.; Malagnini, L.; Chiaraluce, L.; Valoroso, L.

    2015-12-01

    The relation between moment magnitude (MW) and local magnitude (ML) is still a debated issue (Bath, 1966, 1981; Ristau et al., 2003, 2005). Theoretical considerations and empirical observations show that, in the magnitude range between 3 and 5, MW and ML scale 1∶1. Whilst for smaller magnitudes this 1∶1 scaling breaks down (Bethmann et al. 2011). For accomplishing this task we analyzed the source parameters of about 1500 (30.000 waveforms) well-located small earthquakes occurred in the Upper Tiber Valley (Northern Apennines) in the range of -1.5≤ML≤3.8. In between these earthquakes there are 300 events repeatedly rupturing the same fault patch generally twice within a short time interval (less than 24 hours; Chiaraluce et al., 2007). We use high-resolution short period and broadband recordings acquired between 2010 and 2014 by 50 permanent seismic stations deployed to monitor the activity of a regional low angle normal fault (named Alto Tiberina fault, ATF) in the framework of The Alto Tiberina Near Fault Observatory project (TABOO; Chiaraluce et al., 2014). For this study the direct determination of MW for small earthquakes is essential but unfortunately the computation of MW for small earthquakes (MW < 3) is not a routine procedure in seismology. We apply the contributions of source, site, and crustal attenuation computed for this area in order to obtain precise spectral corrections to be used in the calculation of small earthquakes spectral plateaus. The aim of this analysis is to achieve moment magnitudes of small events through a procedure that uses our previously calibrated crustal attenuation parameters (geometrical spreading g(r), quality factor Q(f), and the residual parameter k) to correct for path effects. We determine the MW-ML relationships in two selected fault zones (on-fault and fault-hanging-wall) of the ATF by an orthogonal regression analysis providing a semi-automatic and robust procedure for moment magnitude determination within a

  19. The East Aegean Sea strong earthquake sequence of October–November 2005: lessons learned for earthquake prediction from foreshocks

    Directory of Open Access Journals (Sweden)

    G. A. Papadopoulos

    2006-01-01

    Full Text Available The seismic sequence of October–November 2005 in the Samos area, East Aegean Sea, was studied with the aim to show how it is possible to establish criteria for (a the rapid recognition of both the ongoing foreshock activity and the mainshock, and (b the rapid discrimination between the foreshock and aftershock phases of activity. It has been shown that before the mainshock of 20 October 2005, foreshock activity is not recognizable in the standard earthquake catalogue. However, a detailed examination of the records in the SMG station, which is the closest to the activated area, revealed that hundreds of small shocks not listed in the standard catalogue were recorded in the time interval from 12 October 2005 up to 21 November 2005. The production of reliable relations between seismic signal duration and duration magnitude for earthquakes included in the standard catalogue, made it possible to use signal durations in SMG records and to determine duration magnitudes for 2054 small shocks not included in the standard catalogue. In this way a new catalogue with magnitude determination for 3027 events was obtained while the standard catalogue contains 1025 events. At least 55 of them occurred from 12 October 2005 up to the occurrence of the two strong foreshocks of 17 October 2005. This implies that foreshock activity developed a few days before the strong shocks of 17 October 2005 but it escaped recognition by the routine procedure of seismic analysis. The onset of the foreshock phase of activity is recognizable by the significant increase of the mean seismicity rate which increased exponentially with time. According to the least-squares approach the b-value of the magnitude-frequency relation dropped significantly during the foreshock activity with respect to the b-value prevailing in the declustered background seismicity. However, the maximum likelihood approach does not indicate such a drop of b. The b-value found for the aftershocks that

  20. Prediction of maximum earthquake intensities for the San Francisco Bay region

    Science.gov (United States)

    Borcherdt, Roger D.; Gibbs, James F.

    1975-01-01

    The intensity data for the California earthquake of April 18, 1906, are strongly dependent on distance from the zone of surface faulting and the geological character of the ground. Considering only those sites (approximately one square city block in size) for which there is good evidence for the degree of ascribed intensity, the empirical relation derived between 1906 intensities and distance perpendicular to the fault for 917 sites underlain by rocks of the Franciscan Formation is: Intensity = 2.69 - 1.90 log (Distance) (km). For sites on other geologic units intensity increments, derived with respect to this empirical relation, correlate strongly with the Average Horizontal Spectral Amplifications (AHSA) determined from 99 three-component recordings of ground motion generated by nuclear explosions in Nevada. The resulting empirical relation is: Intensity Increment = 0.27 +2.70 log (AHSA), and average intensity increments for the various geologic units are -0.29 for granite, 0.19 for Franciscan Formation, 0.64 for the Great Valley Sequence, 0.82 for Santa Clara Formation, 1.34 for alluvium, 2.43 for bay mud. The maximum intensity map predicted from these empirical relations delineates areas in the San Francisco Bay region of potentially high intensity from future earthquakes on either the San Andreas fault or the Hazard fault.

  1. Prediction of maximum earthquake intensities for the San Francisco Bay region

    Energy Technology Data Exchange (ETDEWEB)

    Borcherdt, R.D.; Gibbs, J.F.

    1975-01-01

    The intensity data for the California earthquake of Apr 18, 1906, are strongly dependent on distance from the zone of surface faulting and the geological character of the ground. Considering only those sites (approximately one square city block in size) for which there is good evidence for the degree of ascribed intensity, the empirical relation derived between 1906 intensities and distance perpendicular to the fault for 917 sites underlain by rocks of the Franciscan formation is intensity = 2.69 - 1.90 log (distance) (km). For sites on other geologic units, intensity increments, derived with respect to this empirical relation, correlate strongly with the average horizontal spectral amplifications (AHSA) determined from 99 three-component recordings of ground motion generated by nuclear explosions in Nevada. The resulting empirical relation is intensity increment = 0.27 + 2.70 log (AHSA), and average intensity increments for the various geologic units are -0.29 for granite, 0.19 for Franciscan formation, 0.64 for the Great Valley sequence, 0.82 for Santa Clara formation, 1.34 for alluvium, and 2.43 for bay mud. The maximum intensity map predicted from these empirical relations delineates areas in the San Francisco Bay region of potentially high intensity from future earthquakes on either the San Andreas fault or the Hayward fault.

  2. Post-earthquake building safety inspection: Lessons from the Canterbury, New Zealand, earthquakes

    Science.gov (United States)

    Marshall, J.; Jaiswal, Kishor; Gould, N.; Turner, F.; Lizundia, B.; Barnes, J.

    2013-01-01

    The authors discuss some of the unique aspects and lessons of the New Zealand post-earthquake building safety inspection program that was implemented following the Canterbury earthquake sequence of 2010–2011. The post-event safety assessment program was one of the largest and longest programs undertaken in recent times anywhere in the world. The effort engaged hundreds of engineering professionals throughout the country, and also sought expertise from outside, to perform post-earthquake structural safety inspections of more than 100,000 buildings in the city of Christchurch and the surrounding suburbs. While the building safety inspection procedure implemented was analogous to the ATC 20 program in the United States, many modifications were proposed and implemented in order to assess the large number of buildings that were subjected to strong and variable shaking during a period of two years. This note discusses some of the key aspects of the post-earthquake building safety inspection program and summarizes important lessons that can improve future earthquake response.

  3. Extreme value statistics and thermodynamics of earthquakes. Large earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Lavenda, B. [Camerino Univ., Camerino, MC (Italy); Cipollone, E. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). National Centre for Research on Thermodynamics

    2000-06-01

    A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershocks sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Frechet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions show that self-similar power laws are transformed into non scaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Frechet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same catalogue of Chinese earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Frechet distribution. Earthquake temperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  4. Expectable Earthquakes and their ground motions in the Van Norman Reservoirs Area

    Science.gov (United States)

    Wesson, R.L.; Page, R.A.; Boore, D.M.; Yerkes, R.F.

    1974-01-01

    The upper and lower Van Norman dams, in northwesternmost San Fernando Valley about 20 mi (32 km) northwest of downtown Los Angeles, were severely damaged during the 1971 San Fernando earthquake. An investigation of the geologic-seismologic setting of the Van Norman area indicates that an earthquake of at least M 7.7 may be expected in the Van Norman area. The expectable transitory effects in the Van Norman area of such an earthquake are as follows: peak horizontal acceleration of at least 1.15 g, peak velocity of displacement of 4.43 ft/sec (135 cm/sec), peak displacement of 2.3 ft (70 cm), and duration of shaking at accelerations greater than 0.05 g, 40 sec. A great earthquake (M 8+) on the San Andreas fault, 25 mi distant, also is expectable. Transitory effects in the Van Norman area from such an earthquake are estimated as follows: peak horizontal acceleration of 0.5 g, peak velocity of 1.97 ft/sec (60 cm/sec), displacement of 1.31 ft (40 cm), and duration of shaking at accelerations greater than 0.05 g, 80 sec. The permanent effects of the expectable local earthquake could include simultaneous fault movement at the lower damsite, the upper damsite, and the site proposed for a replacement dam halfway between the upper and lower dams. The maximum differential displacements due to such movements are estimated at 16.4 ft (5 m) at the lower damsite and about 9.6 ft (2.93 m) at the upper and proposed damsites. The 1971 San Fernando earthquake (M 6?) was accompanied by the most intense ground motions ever recorded instrumentally for a natural earthquake. At the lower Van Norman dam, horizontal accelerations exceeded 0.6 g, and shaking greater than 0.25 g lasted for about 13 see; at Pacoima dam, 6 mi (10 km) northeast of the lower dam, high-frequency peak horizontal accelerations of 1.25 g were recorded in two directions, and shaking greater than 0.25 g lasted for about 7 sec. Permanent effects of the earthquake include slope failures in the embankments of the upper

  5. Imaging 2015 Mw 7.8 Gorkha Earthquake and Its Aftershock Sequence Combining Multiple Calibrated Global Seismic Arrays

    Science.gov (United States)

    LI, B.; Ghosh, A.

    2016-12-01

    The 2015 Mw 7.8 Gorkha earthquake provides a good opportunity to study the tectonics and earthquake hazards in the Himalayas, one of the most seismically active plate boundaries. Details of the seismicity patterns and associated structures in the Himalayas are poorly understood mainly due to limited instrumentation. Here, we apply a back-projection method to study the mainshock rupture and the following aftershock sequence using four large aperture global seismic arrays. All the arrays show eastward rupture propagation of about 130 km and reveal similar evolution of seismic energy radiation, with strong high-frequency energy burst about 50 km north of Kathmandu. Each single array, however, is typically limited by large azimuthal gap, low resolution, and artifacts due to unmodeled velocity structures. Therefore, we use a self-consistent empirical calibration method to combine four different arrays to image the Gorkha event. It greatly improves the resolution, can better track rupture and reveal details that cannot be resolved by any individual array. In addition, we also use the same arrays at teleseismic distances and apply a back-projection technique to detect and locate the aftershocks immediately following the Gorkha earthquake. We detect about 2.5 times the aftershocks recorded by the Advance National Seismic System comprehensive earthquake catalog during the 19 days following the mainshock. The aftershocks detected by the arrays show an east-west trend in general, with majority of the aftershocks located at the eastern part of the rupture patch and surrounding the rupture zone of the largest Mw 7.3 aftershock. Overall spatiotemporal aftershock pattern agrees well with global catalog, with our catalog showing more details relative to the standard global catalog. The improved aftershock catalog enables us to better study the aftershock dynamics, stress evolution in this region. Moreover, rapid and better imaging of aftershock distribution may aid rapid response

  6. Foreshocks and aftershocks locations of the 2014 Pisagua, N. Chile earthquake: history of a megathrust earthquake nucleation

    Science.gov (United States)

    Fuenzalida Velasco, Amaya; Rietbrock, Andreas; Tavera, Hernando; Ryder, Isabelle; Ruiz, Sergio; Thomas, Reece; De Angelis, Silvio; Bondoux, Francis

    2015-04-01

    The April 2014 Mw 8.1 Pisagua earthquake occurred in the Northern Chile seismic gap: a region of the South American subduction zone lying between Arica city and the Mejillones Peninsula. It is believed that this part of the subduction zone has not experienced a large earthquake since 1877. Thanks to the identification of this seismic gap, the north of Chile was well instrumented before the Pisagua earthquake, including the Integrated Plate boundary Observatory Chile (IPOC) network and the Chilean local network installed by the Centro Sismologico Nacional (CSN). These instruments were able to record the full foreshock and aftershock sequences, allowing a unique opportunity to study the nucleation process of large megathrust earthquakes. To improve azimuthal coverage of the Pisagua seismic sequence, after the earthquake, in collaboration with the Instituto Geofisico del Peru (IGP) we installed a temporary seismic network in south of Peru. The network comprised 12 short-period stations located in the coastal area between Moquegua and Tacna and they were operative from 1st May 2014. We also installed three stations on the slopes of the Ticsiani volcano to monitor any possible change in volcanic activity following the Pisagua earthquake. In this work we analysed the continuous seismic data recorded by CSN and IPOC networks from 1 March to 30 June to obtain the catalogue of the sequence, including foreshocks and aftershocks. Using an automatic algorithm based in STA/LTA we obtained the picks for P and S waves. Association in time and space defined the events and computed an initial location using Hypo71 and the 1D local velocity model. More than 11,000 events were identified with this method for the whole period, but we selected the best resolved events that include more than 7 observed arrivals with at least 2 S picks of them, to relocate these events using NonLinLoc software. For the main events of the sequence we carefully estimate event locations and we obtained

  7. Survey of strong motion earthquake effects on thermal power plants in California with emphasis on piping systems. Volume 2, Appendices

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1995-11-01

    Volume 2 of the ''Survey of Strong Motion Earthquake Effects on Thermal Power Plants in California with Emphasis on Piping Systems'' contains Appendices which detail the detail design and seismic response of several power plants subjected to strong motion earthquakes. The particular plants considered include the Ormond Beach, Long Beach and Seal Beach, Burbank, El Centro, Glendale, Humboldt Bay, Kem Valley, Pasadena and Valley power plants. Included is a typical power plant piping specification and photographs of typical power plant piping specification and photographs of typical piping and support installations for the plants surveyed. Detailed piping support spacing data are also included

  8. Scope of radon monitoring for earthquake-studies in India

    International Nuclear Information System (INIS)

    Virk, H.S.

    1994-01-01

    In India, there is scope for investigating and exploiting radon as a precursor for earthquakes and for exploration of hydrocarbon deposits. This report mainly deals with the investigations carried out in Kangra and Chamba valleys of Himachal Pradesh under Himalayan Seismicity Project of Department of Science and Technology, Govt. of India. 20 refs., 4 figs., 1 tab

  9. Title: Long Valley Caldera 2003 through 2012: Overview of low level unrest in the last decade Authors: Stuart Wilkinson, David Hill, Michael Lisowski, Deborah Bergfeld, Margaret Mangan

    Science.gov (United States)

    Wilkinson, S. K.; Hill, D. P.; Lisowski, M.; Bergfeld, D.; Mangan, M.

    2012-12-01

    Long Valley Caldera is located in central California along the eastern escarpment of the Sierra Nevada and at the western edge of the Basin and Range. The caldera formed 0.76 Ma ago during the eruption of 600 cubic kilometers the Bishop Tuff that resulted in the collapse of the partially evacuated magma chamber. Since at least late 1978, Long Valley Caldera has experienced recurring earthquake swarms and ground uplift, suggesting future eruptions are possible. Unrest in Long Valley Caldera during the 1980s to early 2000s is well documented in the literature. Episodes of inflation centered on the resurgent dome in the western part of the caldera occurred in 1979-1980, 1983, 1989-1990, 1997-1998, and 2002-2003, accumulating ~ 80 cm of uplift. Earthquakes of M ≥ 3.0 were numerous in the caldera and in the Sierra Nevada block to the south of the caldera from 1980 through 1983 (800 events including four M~ 6 earthquakes in 1980); in the caldera from 1997 through mid-1998 (150 events); and in the Sierra Nevada block from mid-1998 through 1999 (~160 events) and more modestly from 2002 through 2003 (7 events). In this presentation, we summarize the low-levels of caldera unrest during the last decade. The number of earthquakes in Sierra Nevada block and the caldera has gradually diminished over the last decade. Fifty Sierra Nevada earthquakes had magnitudes 3.0≤M≤4.6. In the caldera, only six earthquakes had magnitudes 3.0≤M≤3.8. A three-month swarm of minor earthquakes (235 events with 0.5≤M≤3.8; most below 2.0) occurred in the caldera in mid-2010. Analysis of continuous GPS data over the last year shows an inflationary pattern within the caldera centered on the resurgent dome, with a maximum uplift rate of ~ 2-3 cm/yr. The rate of deformation is comparable to that of 2002-2003, and well below ~ 70 cm/yr rates observed during the peak of inflation in the late 1990s. Steaming ground and diffuse CO2 discharge has long been a feature of Long Valley Caldera

  10. Site Response in Las Vegas Valley, Nevada from NTS Explosions and Earthquake Data

    Science.gov (United States)

    Rodgers, Arthur; Tkalcic, Hrvoje; McCallen, David; Larsen, Shawn; Snelson, Catherine

    2006-01-01

    We report site response in Las Vegas Valley (LVV) from historical recordings of Nevada Test Site (NTS) nuclear explosions and earthquake recordings from permanent and temporary seismic stations. Our data set significantly improves the spatial coverage of LVV over previous studies, especially in the northern, deeper parts of the basin. Site response at stations in LVV was measured for frequencies in the range 0.2 5.0 Hz using Standard Spectral Ratios (SSR) and Horizontal-Vertical Spectral Ratios (HVR). For the SSR measurements we used a reference site (approximately NEHRP B ``rock'' classification) located on Frenchman Mountain outside the basin. Site response at sedimentary sites is variable in LVV with average amplifications approaching a factor of 10 at some frequencies. We observed peaks in the site response curves at frequencies clustered near 0.6, 1.2 and 2.0 Hz, with some sites showing additional lower amplitude peaks at higher frequencies. The spatial pattern of site response is strongly correlated with the reported depth to basement for frequencies between 0.2 and 3.0 Hz, although the frequency of peak amplification does not show a similar correlation. For a few sites where we have geotechnical shear velocities, the amplification shows a correlation with the average upper 30-meter shear velocities, V 30. We performed two-dimensional finite difference simulations and reproduced the observed peak site amplifications at 0.6 and 1.2 Hz with a low velocity near-surface layer with shear velocities 600 750 m/s and a thickness of 100 200 m. These modeling results indicate that the amplitude and frequencies of site response peaks in LVV are strongly controlled by shallow velocity structure.

  11. Napa earthquake: An earthquake in a highly connected world

    Science.gov (United States)

    Bossu, R.; Steed, R.; Mazet-Roux, G.; Roussel, F.

    2014-12-01

    The Napa earthquake recently occurred close to Silicon Valley. This makes it a good candidate to study what social networks, wearable objects and website traffic analysis (flashsourcing) can tell us about the way eyewitnesses react to ground shaking. In the first part, we compare the ratio of people publishing tweets and with the ratio of people visiting EMSC (European Mediterranean Seismological Centre) real time information website in the first minutes following the earthquake occurrence to the results published by Jawbone, which show that the proportion of people waking up depends (naturally) on the epicentral distance. The key question to evaluate is whether the proportions of inhabitants tweeting or visiting the EMSC website are similar to the proportion of people waking up as shown by the Jawbone data. If so, this supports the premise that all methods provide a reliable image of the relative ratio of people waking up. The second part of the study focuses on the reaction time for both Twitter and EMSC website access. We show, similarly to what was demonstrated for the Mineral, Virginia, earthquake (Bossu et al., 2014), that hit times on the EMSC website follow the propagation of the P waves and that 2 minutes of website traffic is sufficient to determine the epicentral location of an earthquake on the other side of the Atlantic. We also compare with the publication time of messages on Twitter. Finally, we check whether the number of tweets and the number of visitors relative to the number of inhabitants is correlated to the local level of shaking. Together these results will tell us whether the reaction of eyewitnesses to ground shaking as observed through Twitter and the EMSC website analysis is tool specific (i.e. specific to Twitter or EMSC website) or whether they do reflect people's actual reactions.

  12. Geomorphic changes induced by the April-May 2015 earthquake sequence in the Pharak-Khumbu area (Nepal): preliminary assessments.

    Science.gov (United States)

    Fort, Monique

    2016-04-01

    Landsliding is a common process shaping mountain slopes. There are various potential landslide triggers (rainfall, bank erosion, earthquakes) and their effectiveness depends on their distribution, frequency and magnitude. In a Himalayan context, the effects of monsoon rainfall can be assessed every year whereas the unpredictability and low frequency of large earthquakes make their role in triggering slope instability more obscure. A 7.8 magnitude earthquake struck central Nepal (Gorkha District) on 25 April 2015 and was followed by many aftershocks exceeding magnitude 5, including another strong 7.3 magnitude earthquake on May 12, 2015 (Dolakha District). This seismic crisis provides an exceptional opportunity to assess the disruptions that earthquakes may cause in "regular" geomorphic systems controlled by rainfall. Here we present field observations carried out in the Pharak-Khumbu area (East Nepal, Dudh Kosi catchment) before and after the April-May 2015 earthquakes. The Pharak, a "middle mountains" (2000-4500 m) area, is affected by monsoon rains (3000 m/yr at 2500 m) and characterised by steep hillslopes, shaped by different geomorphic processes according to slope height and aspect, rock type and strength, inherited landforms, stream connectivity and current land use changes. This study focuses on the south of Lukla (Phakding District), and more specifically on the Khari Khola catchment and its surroundings. The area lies at the transition between the Higher Himalayan crystallines and the Lesser Himalayan meta-sediments. On the basis of our diachronic observations (March and November 2015), we surveyed and mapped new earthquake-induced slope instabilities such as rock falls, rockslides, landslides and debris flows and a combination of several of them. Interviews with local people also helped to assess the exact timing of some events. While the first M 7.8 earthquake produced significant impacts in the northern Khumbu area, the M 7.3 aftershock seems to have

  13. 150 Years of Coulomb Stress History Along the California-Nevada Border, USA.

    Science.gov (United States)

    Carena, S.; Verdecchia, A.

    2014-12-01

    The temporal and spatial correlation among earthquakes in diffuse plate boundary zones is not well understood yet. The region north of the Garlock fault between the Sierra Nevada and Death Valley is part of a diffuse plate boundary zone, which absorbs a significant fraction of the plate motion between Pacific and North America. This area has experienced at least eight Mw ≥ 6 earthquakes in historical times, beginning with the 1872 Mw 7.5 Owens Valley earthquake. Furthermore, since 1978 Long Valley caldera has been undergoing periods of unrest, with earthquake swarms and resurgence. Our goal is to determine whether the 1872 Owens Valley earthquake has influenced the seismicity and volcanic activity in the area. We model the evolution of coseismic, interseismic and postseismic Coulomb stress (ΔCFS) in the region due to both earthquakes and caldera activity in the last 150 years. Our results show that the 1872 Owens Valley earthquake strongly encourages faulting in northern Owens Valley. In addition, there is a correlation among smaller events, in the form of a west-to-east migration of earthquakes from Long Valley caldera toward the White Mountains immediately following the 1978 caldera inflation event. The last event in this sequence, the 1986 Mw 6.3 Chalfant Valley earthquake, controls the location of over 80% of its own aftershocks, which occur in areas of positive ΔCFS and reach Mw 5.7. We also calculate the cumulative ΔCFS on several major active faults in the region. Stresses up to 30 bars and 10 bars respectively have accumulated on the White Mountains (Central section) and Deep Springs faults, comparable to the expected stress drop in an average earthquake. Because no surface ruptures more recent than 1.8 ka have been identified on these faults [dePolo, 1989; Lee et al., 2001], we consider them as likely candidates for the next major earthquake in the region.

  14. Dynamics of delayed triggering in multi-segmented foreshock sequence: Evidence from the 2016 Kumamoto, Japan, earthquake

    Science.gov (United States)

    Arai, H.; Ando, R.; Aoki, Y.

    2017-12-01

    The 2016 Kumamoto earthquake sequence hit the SW Japan, from April 14th to 16th and its sequence includes two M6-class foreshocks and the main shock (Mw 7.0). Importantly, the detailed surface displacement caused solely by the two foreshocks could be captured by a SAR observation isolated from the mainshock deformation. The foreshocks ruptured the previously mapped Hinagu fault and their hypocentral locations and the aftershock distribution indicates the involvement of two different subparallel faults. Therefore we assumed that the 1st and the 2nd foreshocks respectively ruptured each of the subparallel faults (faults A and B). One of the interesting points of this earthquake is that the two major foreshocks had a temporal gap of 2.5 hours even though the fault A and B are quite close by each other. This suggests that the stress perturbation due to the 1st foreshock is not large enough to trigger the 2nd one right away but that it's large enough to bring about the following earthquake after a delay time.We aim to reproduce the foreshock sequence such as rupture jumping over the subparallel faults by using dynamic rupture simulations. We employed a spatiotemporal-boundary integral equation method accelerated by the Fast Domain Partitioning Method (Ando, 2016, GJI) since this method allows us to construct a complex fault geometry in 3D media. Our model has two faults and a free ground surface. We conducted rupture simulation with various sets of parameters to identify the optimal condition describing the observation.Our simulation results are roughly categorized into 3 cases with regard to the criticality for the rupture jumping. The case 1 (supercritical case) shows the fault A and B ruptured consecutively without any temporal gap. In the case 2 (nearly critical), the rupture on the fault B started with a temporal gap after the fault A finished rupturing, which is what we expected as a reproduction. In the case 3 (subcritical), only the fault A ruptured and its

  15. Accelerating risk reduction in Kathmandu Valley, Nepal: Theory-based mass-media intervention proven to increase knowledge of, belief in, and intent to support earthquake-resistant construction.

    Science.gov (United States)

    Sanquini, A.; Thapaliya, S. M.; Wood, M. M.; Hilley, G. E.

    2015-12-01

    Motivating people in rapidly urbanizing areas to take protective actions against natural disasters faces the challenge that these people often do not know what actions to take, do not believe that such actions are effective, and/or believe that the disaster will not happen to them within their lifetimes. Thus, finding demonstrated ways of motivating people to take protective action likely constitutes a grand challenge for natural disaster risk reduction and resiliency, because it may be one of the largest, lowest-cost sources of potential risk reduction in these situations. We developed a theory-based documentary film (hereafter, intervention) targeted at motivating retrofits of local school buildings, and tested its effectiveness in Kathmandu, Nepal, using a matched-pair clustered randomized controlled trial. The intervention features Nepalese who have strengthened their school buildings as role models to others at schools still in need of seismic work. It was tested at 16 Kathmandu Valley schools from November 2014 through March 2015. Schools were matched into 8 pairs, then randomly assigned to see either the intervention film or an attention placebo control film on an unrelated topic. Testing was completed just five weeks before the M 7.8 Gorkha earthquake struck central Nepal. When compared to the control schools, the schools whose community members saw the retrofit intervention film increased their knowledge of specific actions to take in support of earthquake-resistant construction, belief in the feasibility of making buildings earthquake-resistant, willingness to support seismic strengthening of the local school building, and likelihood to recommend to others that they build earthquake-resistant homes, which have all been shown to be precursors to taking self-protective action. This suggests that employing a mass-media intervention featuring community members who have already taken the desired action increases factors that may accelerate adoption of risk

  16. Surface deformation associated with the November 23, 1977, Caucete, Argentina, earthquake sequence

    Science.gov (United States)

    Kadinsky-Cade, K.; Reilinger, R.; Isacks, B.

    1985-01-01

    The 1977 Caucete (San Juan) earthquake considered in the present paper occurred near the Sierra Pie de Palo in the Sierras Pampeanas tectonic province of western Argentina. In the study reported, coseismic surface deformation is combined with seismic observations (main shock and aftershocks, both teleseismic and local data) to place constraints on the geometry and slip of the main fault responsible for the 1977 earthquake. The implications of the 1977 event for long-term crustal shortening and earthquake recurrence rates in this region are also discussed. It is concluded that the 1977 Caucete earthquake was accompanied by more than 1 m of vertical uplift.

  17. Changes in state of stress on the southern san andreas fault resulting from the california earthquake sequence of april to june 1992.

    Science.gov (United States)

    Jaumé, S C; Sykes, L R

    1992-11-20

    The April to June 1992 Landers earthquake sequence in southern California modified the state of stress along nearby segments of the San Andreas fault, causing a 50-kilometer segment of the fault to move significantly closer to failure where it passes through a compressional bend near San Gorgonio Pass. The decrease in compressive normal stress may also have reduced fluid pressures along that fault segment. As pressures are reequilibrated by diffusion, that fault segment should move closer to failure with time. That fault segment and another to the southeast probably have not ruptured in a great earthquake in about 300 years.

  18. Short- and Long-Term Earthquake Forecasts Based on Statistical Models

    Science.gov (United States)

    Console, Rodolfo; Taroni, Matteo; Murru, Maura; Falcone, Giuseppe; Marzocchi, Warner

    2017-04-01

    The epidemic-type aftershock sequences (ETAS) models have been experimentally used to forecast the space-time earthquake occurrence rate during the sequence that followed the 2009 L'Aquila earthquake and for the 2012 Emilia earthquake sequence. These forecasts represented the two first pioneering attempts to check the feasibility of providing operational earthquake forecasting (OEF) in Italy. After the 2009 L'Aquila earthquake the Italian Department of Civil Protection nominated an International Commission on Earthquake Forecasting (ICEF) for the development of the first official OEF in Italy that was implemented for testing purposes by the newly established "Centro di Pericolosità Sismica" (CPS, the seismic Hazard Center) at the Istituto Nazionale di Geofisica e Vulcanologia (INGV). According to the ICEF guidelines, the system is open, transparent, reproducible and testable. The scientific information delivered by OEF-Italy is shaped in different formats according to the interested stakeholders, such as scientists, national and regional authorities, and the general public. The communication to people is certainly the most challenging issue, and careful pilot tests are necessary to check the effectiveness of the communication strategy, before opening the information to the public. With regard to long-term time-dependent earthquake forecast, the application of a newly developed simulation algorithm to Calabria region provided typical features in time, space and magnitude behaviour of the seismicity, which can be compared with those of the real observations. These features include long-term pseudo-periodicity and clustering of strong earthquakes, and a realistic earthquake magnitude distribution departing from the Gutenberg-Richter distribution in the moderate and higher magnitude range.

  19. Natural Time and Nowcasting Earthquakes: Are Large Global Earthquakes Temporally Clustered?

    Science.gov (United States)

    Luginbuhl, Molly; Rundle, John B.; Turcotte, Donald L.

    2018-02-01

    The objective of this paper is to analyze the temporal clustering of large global earthquakes with respect to natural time, or interevent count, as opposed to regular clock time. To do this, we use two techniques: (1) nowcasting, a new method of statistically classifying seismicity and seismic risk, and (2) time series analysis of interevent counts. We chose the sequences of M_{λ } ≥ 7.0 and M_{λ } ≥ 8.0 earthquakes from the global centroid moment tensor (CMT) catalog from 2004 to 2016 for analysis. A significant number of these earthquakes will be aftershocks of the largest events, but no satisfactory method of declustering the aftershocks in clock time is available. A major advantage of using natural time is that it eliminates the need for declustering aftershocks. The event count we utilize is the number of small earthquakes that occur between large earthquakes. The small earthquake magnitude is chosen to be as small as possible, such that the catalog is still complete based on the Gutenberg-Richter statistics. For the CMT catalog, starting in 2004, we found the completeness magnitude to be M_{σ } ≥ 5.1. For the nowcasting method, the cumulative probability distribution of these interevent counts is obtained. We quantify the distribution using the exponent, β, of the best fitting Weibull distribution; β = 1 for a random (exponential) distribution. We considered 197 earthquakes with M_{λ } ≥ 7.0 and found β = 0.83 ± 0.08. We considered 15 earthquakes with M_{λ } ≥ 8.0, but this number was considered too small to generate a meaningful distribution. For comparison, we generated synthetic catalogs of earthquakes that occur randomly with the Gutenberg-Richter frequency-magnitude statistics. We considered a synthetic catalog of 1.97 × 10^5 M_{λ } ≥ 7.0 earthquakes and found β = 0.99 ± 0.01. The random catalog converted to natural time was also random. We then generated 1.5 × 10^4 synthetic catalogs with 197 M_{λ } ≥ 7.0 in each catalog and

  20. Locations and magnitudes of historical earthquakes in the Sierra of Ecuador (1587-1996)

    Science.gov (United States)

    Beauval, Céline; Yepes, Hugo; Bakun, William H.; Egred, José; Alvarado, Alexandra; Singaucho, Juan-Carlos

    2010-06-01

    The whole territory of Ecuador is exposed to seismic hazard. Great earthquakes can occur in the subduction zone (e.g. Esmeraldas, 1906, Mw 8.8), whereas lower magnitude but shallower and potentially more destructive earthquakes can occur in the highlands. This study focuses on the historical crustal earthquakes of the Andean Cordillera. Several large cities are located in the Interandean Valley, among them Quito, the capital (~2.5 millions inhabitants). A total population of ~6 millions inhabitants currently live in the highlands, raising the seismic risk. At present, precise instrumental data for the Ecuadorian territory is not available for periods earlier than 1990 (beginning date of the revised instrumental Ecuadorian seismic catalogue); therefore historical data are of utmost importance for assessing seismic hazard. In this study, the Bakun & Wentworth method is applied in order to determine magnitudes, locations, and associated uncertainties for historical earthquakes of the Sierra over the period 1587-1976. An intensity-magnitude equation is derived from the four most reliable instrumental earthquakes (Mw between 5.3 and 7.1). Intensity data available per historical earthquake vary between 10 (Quito, 1587, Intensity >=VI) and 117 (Riobamba, 1797, Intensity >=III). The bootstrap resampling technique is coupled to the B&W method for deriving geographical confidence contours for the intensity centre depending on the data set of each earthquake, as well as confidence intervals for the magnitude. The extension of the area delineating the intensity centre location at the 67 per cent confidence level (+/-1σ) depends on the amount of intensity data, on their internal coherence, on the number of intensity degrees available, and on their spatial distribution. Special attention is dedicated to the few earthquakes described by intensities reaching IX, X and XI degrees. Twenty-five events are studied, and nineteen new epicentral locations are obtained, yielding

  1. The 2016 Kumamoto Earthquakes: Cascading Geological Hazards and Compounding Risks

    Directory of Open Access Journals (Sweden)

    Katsuichiro Goda

    2016-08-01

    Full Text Available A sequence of two strike-slip earthquakes occurred on 14 and 16 April 2016 in the intraplate region of Kyushu Island, Japan, apart from subduction zones, and caused significant damage and disruption to the Kumamoto region. The analyses of regional seismic catalog and available strong motion recordings reveal striking characteristics of the events, such as migrating seismicity, earthquake surface rupture, and major foreshock-mainshock earthquake sequences. To gain valuable lessons from the events, a UK Earthquake Engineering Field Investigation Team (EEFIT was dispatched to Kumamoto, and earthquake damage surveys were conducted to relate observed earthquake characteristics to building and infrastructure damage caused by the earthquakes. The lessons learnt from the reconnaissance mission have important implications on current seismic design practice regarding the required seismic resistance of structures under multiple shocks and the seismic design of infrastructure subject to large ground deformation. The observations also highlight the consequences of cascading geological hazards on community resilience. To share the gathered damage data widely, geo-tagged photos are organized using Google Earth and the kmz file is made publicly available.

  2. Seismo-Lineament Analysis Method (SLAM) Applied to the South Napa Earthquake

    Science.gov (United States)

    Worrell, V. E.; Cronin, V. S.

    2014-12-01

    We used the seismo-lineament analysis method (SLAM; http://bearspace.baylor.edu/Vince_Cronin/www/SLAM/) to "predict" the location of the fault that produced the M 6.0 South Napa earthquake of 24 August 2014, using hypocenter and focal mechanism data from NCEDC (http://www.ncedc.org/ncedc/catalog-search.html) and a digital elevation model from the USGS National Elevation Dataset (http://viewer.nationalmap.gov/viewer/). The ground-surface trace of the causative fault (i.e., the Browns Valley strand of the West Napa fault zone; Bryant, 2000, 1982) and virtually all of the ground-rupture sites reported by the USGS and California Geological Survey (http://www.eqclearinghouse.org/2014-08-24-south-napa/) were located within the north-striking seismo-lineament. We also used moment tensors published online by the USGS and GCMT (http://comcat.cr.usgs.gov/earthquakes/eventpage/nc72282711#scientific_moment-tensor) as inputs to SLAM and found that their northwest-striking seismo-lineaments correlated spatially with the causative fault. We concluded that SLAM could have been used as soon as these mechanism solutions were available to help direct the search for the trace of the causative fault and possible rupture-related damage. We then considered whether the seismogenic fault could have been identified using SLAM prior to the 24 August event, based on the focal mechanisms of smaller prior earthquakes reported by the NCEDC or ISC (http://www.isc.ac.uk). Seismo-lineaments from three M~3.5 events from 1990 and 2012, located in the Vallejo-Crockett area, correlate spatially with the Napa County Airport strand of the West Napa fault and extend along strike toward the Browns Valley strand (Bryant, 2000, 1982). Hence, we might have used focal mechanisms from smaller earthquakes to establish that the West Napa fault is likely seismogenic prior to the South Napa earthquake. Early recognition that a fault with a mapped ground-surface trace is seismogenic, based on smaller earthquakes

  3. The Manchester earthquake swarm of October 2002

    Science.gov (United States)

    Baptie, B.; Ottemoeller, L.

    2003-04-01

    An earthquake sequence started in the Greater Manchester area of the United Kingdom on October 19, 2002. This has continued to the time of writing and has consisted of more than 100 discrete earthquakes. Three temporary seismograph stations were installed to supplement existing permanent stations and to better understand the relationship between the seismicity and local geology. Due to the urban location, these were experienced by a large number of people. The largest event on October 21 had a magnitude ML 3.9. The activity appears to be an earthquake swarm, since there is no clear distinction between a main shock and aftershocks. However, most of the energy during the sequence was actually released in two earthquakes separated by a few seconds in time, on October 21 at 11:42. Other examples of swarm activity in the UK include Comrie (1788-1801, 1839-46), Glenalmond (1970-72), Doune (1997) and Blackford (1997-98, 2000-01) in central Scotland, Constantine (1981, 1986, 1992-4) in Cornwall, and Johnstonbridge (mid1980s) and Dumfries (1991,1999). The clustering of these events in time and space does suggest that there is a causal relationship between the events of the sequence. Joint hypocenter determination was used to simultaneously locate the swarm earthquakes, determine station corrections and improve the relative locations. It seems likely that all events in the sequence originate from a relatively small source volume. This is supported by the similarities in source mechanism and waveform signals between the various events. Focal depths were found to be very shallow and of the order of about 2-3 km. Source mechanisms determined for the largest of the events show strike-slip solutions along either northeast-southwest or northwest-southeast striking fault planes. The surface expression of faults in the epicentral area is generally northwest-southeast, suggesting that this is the more likely fault plane.

  4. Using SLAM to Look For the Dog Valley Fault, Truckee Area, California

    Science.gov (United States)

    Cronin, V. S.; Ashburn, J. A.; Sverdrup, K. A.

    2014-12-01

    The Truckee earthquake (9/12/1966, ML6.0) was a left-lateral event on a previously unrecognized NW-trending fault. The Prosser Creek and Boca Dams sustained damage, and the trace of the suspected causative fault passes near or through the site of the then-incomplete Stampede Dam. Another M6 earthquake occurred along the same general trend in 1948 with an epicenter in Dog Valley ~14 km to the NW of the 1966 epicenter. This trend is called the Dog Valley Fault (DVF), and its location on the ground surface is suggested by a prominent but broad zone of geomorphic lineaments near the cloud of aftershock epicenters determined for the 1966 event. Various ground effects of the 1966 event described by Kachadoorian et al. (1967) were located within this broad zone. The upper shoreface of reservoirs in the Truckee-Prosser-Martis basin are now exposed due to persistent drought. We have examined fault strands in a roadcut and exposed upper shoreface adjacent to the NE abutment of Stampede Dam. These are interpreted to be small-displacement splays associated with the DVF -- perhaps elements of the DVF damage zone. We have used the Seismo-Lineament Analysis Method (SLAM) to help us constrain the location of the DVF, based on earthquake focal mechanisms. Seismo-lineaments were computed, using recent revisions in the SLAM code (bearspace.baylor.edu/Vince_Cronin/www/SLAM/), for the 1966 main earthquake and for the better-recorded earthquakes of 7/3/1983 (M4) and 8/30/1992 (M3.2) that are inferred to have occurred along the DVF. Associated geomorphic analysis and some field reconnaissance identified a trend that might be associated with a fault, extending from the NW end of Prosser Creek Reservoir ~32° toward the Stampede Dam area. Triangle-strain analysis using horizontal velocities of local Plate Boundary Observatory GPS sites P146, P149, P150 and SLID indicates that the area rotates clockwise ~1-2°/Myr relative to the stable craton, as might be expected because the study area is

  5. Locations and magnitudes of historical earthquakes in the Sierra of Ecuador (1587–1996)

    Science.gov (United States)

    Beauval, Celine; Yepes, Hugo; Bakun, William H.; Egred, Jose; Alvarado, Alexandra; Singaucho, Juan-Carlos

    2010-01-01

    The whole territory of Ecuador is exposed to seismic hazard. Great earthquakes can occur in the subduction zone (e.g. Esmeraldas, 1906, Mw8.8), whereas lower magnitude but shallower and potentially more destructive earthquakes can occur in the highlands. This study focuses on the historical crustal earthquakes of the Andean Cordillera. Several large cities are located in the Interandean Valley, among them Quito, the capital (∼2.5 millions inhabitants). A total population of ∼6 millions inhabitants currently live in the highlands, raising the seismic risk. At present, precise instrumental data for the Ecuadorian territory is not available for periods earlier than 1990 (beginning date of the revised instrumental Ecuadorian seismic catalogue); therefore historical data are of utmost importance for assessing seismic hazard. In this study, the Bakun & Wentworth method is applied in order to determine magnitudes, locations, and associated uncertainties for historical earthquakes of the Sierra over the period 1587–1976. An intensity-magnitude equation is derived from the four most reliable instrumental earthquakes (Mwbetween 5.3 and 7.1). Intensity data available per historical earthquake vary between 10 (Quito, 1587, Intensity ≥VI) and 117 (Riobamba, 1797, Intensity ≥III). The bootstrap resampling technique is coupled to the B&W method for deriving geographical confidence contours for the intensity centre depending on the data set of each earthquake, as well as confidence intervals for the magnitude. The extension of the area delineating the intensity centre location at the 67 per cent confidence level (±1σ) depends on the amount of intensity data, on their internal coherence, on the number of intensity degrees available, and on their spatial distribution. Special attention is dedicated to the few earthquakes described by intensities reaching IX, X and XI degrees. Twenty-five events are studied, and nineteen new epicentral locations are obtained, yielding

  6. Spine surgery in Nepal: the 2015 earthquake.

    Science.gov (United States)

    Sutterlin, Chester E

    2015-12-01

    At noon on Saturday, 25 April 2015, a 7.8 magnitude earthquake struck Nepal. It was centered in the Himalaya northwest of Kathmandu, the capital of over 1 million people. The violent tremors were felt as far away as New Delhi, India 1,000 km from the epicenter, but the worst of its destructive force was experienced in the heavily populated Kathmandu valley and in the remote mountainous villages of the Himalaya. Ancient temples crumbled; poorly constructed buildings collapsed; men, women, and children were trapped and injured, sometimes fatally. Avalanches killed mountain climbers, Sherpa guides, and porters at Everest base camp (EBC). The death toll to date exceeds 8,600 with as many as 20,000 injured. Spinal Health International (SHI), a nonprofit volunteer organization, has been active in Nepal in past years and responded to requests by Nepali spine surgeons for assistance with traumatic spine injury victims following the earthquake. SHI volunteers were present during the 2(nd) major earthquake of magnitude 7.3 on 12 May 2015. Past and current experiences in Nepal will be presented.

  7. Sequence stratigraphic analysis and the origins of Tertiary brown coal lithotypes, Latrobe Valley, Gippsland Basin, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Holdgate, G R; Kershaw, A P; Sluiter, I R.K. [Monash University, Clayton, Vic. (Australia). Dept. of Earth Sciences

    1995-11-01

    Sequence analysis methods have been applied to the onshore Gippsland Basin and to the Latrobe Valley Group coal measures. In the east of the Latrobe Valley evidence for marine transgressions into the coal measures are recorded in most of the interseam sediment splits by the presence of contained foraminifer and dinoflagellates. To the west these splits pinch out into continuous coal. However, they can be followed westwards as enhanced organic sulphur levels along sharply defined boundaries between light coal lithotypes below and dark coal lithotypes above. The dark lithotype immediately overlying each of these boundaries contains the highest sulphur value and warmer climate pollen assemblages. Colorimeter and lithotype logging supports an upwards lightening cyclicity to coal colour at 12-20 m intervals through the approx. 100 m thick seams, with cycle boundaries defined at sharp planar to undulating surfaces. The lightening upward lithotype cycles together with their unique boundary conditions are interpreted as parasequences and parasequence boundaries respectively. Each major coal seam can comprise up to five parasequences and is interpreted to represent deposition during an outbuilding high stand systems tract at one of several maximum periods of Tertiary coastal onlap. Stratigraphic correlation of the sequence boundaries identified in the coal measures to the internationally dated marine Seaspray Group, provides a basis for chronostratigraphic correlation of the coal successions to the coastal onlap charts of Haq et al (1989). It appears that each major seam is confined to high standards of third order eustatic cycles. It follows that the lithotype cycles that comprise each seam are related to fourth order eustatic cycles. 49 refs., 11 figs., 1 tab.

  8. The 2013 Crete (Hellenic Arc) Earthquake Sequence

    Science.gov (United States)

    Karakostas, V. G.; Papadimitriou, E. E.; Vallianatos, F.

    2014-12-01

    The western Hellenic Arc is a well known place of active interplate deformation, where the convergence motion vector is perpendicular to the subduction front. On 12 October 2013 this area was hit by a strong (Mw=6.7) earthquake, occurred on a thrust fault onto the coupled part of the overriding and descending plates, with the compression axis being oriented in the direction of plate convergence. This was the first strong (M>6.0) event to have occurred onto this segment of the descending slab, which has accommodated the largest (M8.3) known earthquake in the Mediterranean area, and to be recorded by the Hellenic Unified Seismological Network (HUSN) that has been considerably improved in the last five years. The first 2-days relocated seismicity shows activation of the upper part of the descending slab, downdip of the plate interface and forming a relatively narrow aftershock area on map view. The less densely visited by aftershocks area, where the main shock is also encompassed, is considered as the high-slip area along the downdip portion of the subducting plane. Dense concentration of the intraslab aftershocks are probably due to the increase of static stress generated by the main shock. A spectacular feature of the aftershock activity concerns the lateral extension of the slipped area, which appears very sharply defined. This provides evidence on localized coupling and aseismically creeping areas, explaining the low coupling ratio in the Hellenic Arc, as it derives from comparison between relative plate motion and seismic energy release. Elucidating the issue of how far the associated large-slip zone might be extended along the plate interface during the main rupture is crucial in assessing future earthquake hazards from subduction events in the study area. This research has been co-funded by the European Union (European Social Fund) and Greek national resources under the framework of the "THALES Program: SEISMO FEAR HELLARC" project.

  9. Sun, Moon and Earthquakes

    Science.gov (United States)

    Kolvankar, V. G.

    2013-12-01

    During a study conducted to find the effect of Earth tides on the occurrence of earthquakes, for small areas [typically 1000km X1000km] of high-seismicity regions, it was noticed that the Sun's position in terms of universal time [GMT] shows links to the sum of EMD [longitude of earthquake location - longitude of Moon's foot print on earth] and SEM [Sun-Earth-Moon angle]. This paper provides the details of this relationship after studying earthquake data for over forty high-seismicity regions of the world. It was found that over 98% of the earthquakes for these different regions, examined for the period 1973-2008, show a direct relationship between the Sun's position [GMT] and [EMD+SEM]. As the time changes from 00-24 hours, the factor [EMD+SEM] changes through 360 degree, and plotting these two variables for earthquakes from different small regions reveals a simple 45 degree straight-line relationship between them. This relationship was tested for all earthquakes and earthquake sequences for magnitude 2.0 and above. This study conclusively proves how Sun and the Moon govern all earthquakes. Fig. 12 [A+B]. The left-hand figure provides a 24-hour plot for forty consecutive days including the main event (00:58:23 on 26.12.2004, Lat.+3.30, Long+95.980, Mb 9.0, EQ count 376). The right-hand figure provides an earthquake plot for (EMD+SEM) vs GMT timings for the same data. All the 376 events including the main event faithfully follow the straight-line curve.

  10. Historical intensity VIII earthquakes along the Rhone valley (Valais, Switzerland): primary and secondary effects

    Energy Technology Data Exchange (ETDEWEB)

    Fritsche, S.; Faeh, D.; Schwarz-Zanetti, G.

    2012-06-15

    In recent years the upper Rhone Valley has been one of the most intensively investigated regions by the Swiss Seismological Service. The high seismicity in the region encourages research in the seismological field and one main focus has been historical seismology. This report presents the state of the art of our historical investigations by giving an overview of the effects of four damaging earthquakes with intensity larger than VII, for which a fairly large number of documents could be found and analyzed. The overview includes the events of 1584 (Aigle, epicentral intensity VIII), 1755 (Brig, epicentral intensity VIII), 1855 (Visp, epicentral intensity VIII), and 1946 (Sierre, epicentral intensity VIII for the main shock and intensity VII for the largest aftershock). The paper focuses mainly on primary and secondary effects in the epicentral region, providing the key data and a general characterization of the event. Generally, primary effects such as the reaction of the population and impact on buildings took more focus in the past. Thus building damage is more frequently described in historic documents. However, we also found a number of sources describing secondary effects such as landslides, snow avalanches, and liquefaction. Since the sources may be useful, we include citations of these documents. The 1584 Aigle event, for example, produced exceptional movements in the Lake of Geneva, which can be explained by an expanded sub aquatic slide with resultant tsunami and seiche. The strongest of the aftershocks of the 1584 event triggered a destructive landslide covering the villages Corbeyrier and Yvorne, Vaud. All macroseismic data on the discussed events are accessible through the web page of the Swiss Seismological Service (http://www.seismo.ethz.ch). (authors)

  11. Possibility of the real-time dynamic strain field monitoring deduced from GNSS data: case study of the 2016 Kumamoto earthquake sequence

    Science.gov (United States)

    Ohta, Y.; Ohzono, M.; Takahashi, H.; Kawamoto, S.; Hino, R.

    2017-12-01

    A large and destructive earthquake (Mjma 7.3) occurred on April 15, 2016 in Kumamoto region, southwestern Japan. This earthquake was accompanied approximately 32 s later by an M 6 earthquake in central Oita region, which hypocenter located 80 km northeast from the hypocenter of the mainshock of the Kumamoto earthquake. This triggered earthquake also had the many aftershocks in and around the Oita region. It is important to understand how to occur such chain-reacted earthquake sequences. We used the 1Hz dual-frequency phase and range data from GEONET in Kyushu island. The data were processed using GIPSY-OASIS (version 6.4). We adopoted kinematic PPP strategy for the coordinate estimation. The reference GPS satellite orbit and 5 s clock information were obtained using the CODE product. We also applied simple sidereal filter technique for the estimated time series. Based on the obtained 1Hz GNSS time series, we estimated the areal strain and principle strain field using the method of the Shen et al. (1996). For the assessment of the dynamic strain, firstly we calculated the averaged absolute value of areal strain field between 60-85s after the origin time of the mainshock of the Kumamoto earthquake which was used as the "reference" static strain field. Secondly, we estimated the absolute value of areal strain in each time step. Finally, we calculated the strain ratio in each time step relative to the "reference". Based on this procedure, we can extract the spatial and temporal characteristic of the dynamic strain in each time step. Extracted strain ratio clearly shows the spatial and temporal dynamic strain characteristic. When an attention is paid to a region of triggered Oita earthquake, the timing of maximum dynamic strain ratio in the epicenter just corresponds to the origin time of the triggered event. It strongly suggested that the large dynamic strain may trigger the Oita event. The epicenter of the triggered earthquake located within the geothermal region. In

  12. Aburra Valley: Quo vadis?

    International Nuclear Information System (INIS)

    Hermelin, Michel

    2008-01-01

    These paper intents a brief description of the evolution that characterised natural risk prevention in the area surrounding the city of Medellin, Colombia, called the Aburra Valley. Both the lithological and structural composition of the Valle and its topographic and climatic conditions contribute to the abundance of destructive natural phenomena as earthquakes, slope movements, flash floods and, in a lower proportion, to floods. The population increase, which reaches now 3.5 millions inhabitants and the frequent occupation of sites exposed to natural hazards have resulted in numerous disasters. At present two entities called SIMPAD and DAPARD work on risk prevention, on city and department scale respectively. The amount of knowledge about physical environment is considered to be insufficient, together with regulations which should direct land use in accordance to restrictions related to natural hazards. Several seminars on this topic have already been carried out and the organisers of the present one, destined to commemorate the twentieth anniversary of the Villatina disaster, should make the decision to meet each two years. Furthermore, the creation of a permanent commission dedicated to study past events, to foster information broadcasting and to seek a better knowledge of the Aburra Valley, should be considered

  13. A luminescence dating study of the sediment stratigraphy of the Lajia Ruins in the upper Yellow River valley, China

    Science.gov (United States)

    Zhang, Yuzhu; Huang, Chun Chang; Pang, Jiangli; Zhou, Yali; Zha, Xiaochun; Wang, Longsheng; Zhou, Liang; Guo, Yongqiang; Wang, Leibin

    2014-06-01

    Pedo-sedimentological fieldwork were carried out in the Lajia Ruins within the Guanting Basin along the upper Yellow River valley. In the eolian loess-soil sections on the second river terrace in the Lajia Ruins, we find that the land of the Qijia Culture (4.20-3.95 ka BP) are fractured by several sets of earthquake fissures. A conglomerated red clay covers the ground of the Qijia Culture and also fills in the earthquake fissures. The clay was deposited by enormous mudflows in association with catastrophic earthquakes and rainstorms. The aim of this study is to provide a luminescence chronology of the sediment stratigraphy of the Lajia Ruins. Eight samples were taken from an eolian loess-soil section (Xialajia section) in the ruins for optically stimulated luminescence (OSL) dating. The OSL ages are in stratigraphic order and range from (31.94 ± 1.99) ka to (0.76 ± 0.02) ka. Combined OSL and 14C ages with additional stratigraphic correlations, a chronological framework is established. We conclude that: (1) the second terrace of the upper part of Yellow River formed 35.00 ka ago, which was followed by the accumulation of the eolian loess-soil section; and (2) the eolian loess-soil section is composed of the Malan Loess of the late last glacial (MIS-2) and Holocene loess-soil sequences.

  14. Mountain rivers may need centuries to adjust to earthquake-triggered sediment pulses, Pokhara, Nepal

    Science.gov (United States)

    Stolle, Amelie; Korup, Oliver; Schwanghart, Wolfgang; Bernhardt, Anne; Adhikari, Basanta Raj; Andermann, Christoff; Wittmann, Hella; Merchel, Silke

    2017-04-01

    Mountain rivers respond to strong earthquakes by not only adjusting to changes in local base level, but also by rapidly aggrading to accommodate excess sediment delivered by co- and post-seismic landslides. A growing number of detailed sediment budgets suggests that it takes rivers several years to decades to recover from such seismic disturbances, depending on how recovery is defined. We test this notion and study how rivers adjusted to catastrophic sedimentation triggered by at least three medieval earthquakes in the central Nepal Himalaya. In the vicinity of Pokhara, the nation's second largest city, rapid aggradation formed a large fan covering 150 km2 of mountainous terrain over a length of some 70 km. The fan prograded into several tributary valleys, rapidly infilling their lower reaches with several tens of meters of sediment from a major point source tens of kilometers away. A robust radiocarbon chronology of these valley fills provides an ideal framework for gauging average rates of fluvial incision and adjustment. We use high-resolution digital elevation data, geodetic field surveys, aerial photos documenting historic channel changes, and several re-exhumed tree trunks in growth position to define dated geomorphic marker surfaces. We compare various methods of computing the volumes lost from these surfaces to arrive at net sediment yields averaged over decades to centuries. We find that contemporary rates of river incision into the medieval earthquake debris are between 160 and 220 mm yr-1, with corresponding sediment yields of 103 to 105 t km-2 yr-1, several hundred years after the last traceable seismic disturbance. These rates greatly exceed the density-adjusted background rates of catchment-wide denudation inferred from concentrations of cosmogenic 10Be in river sands sampled in different tributaries. The lithological composition of active channel-bed load differs largely from local bedrock and confirms that rivers are still busy with excavating

  15. Permanently enhanced dynamic triggering probabilities as evidenced by two M ≥ 7.5 earthquakes

    Science.gov (United States)

    Gomberg, Joan S.

    2013-01-01

    The 2012 M7.7 Haida Gwaii earthquake radiated waves that likely dynamically triggered the 2013M7.5 Craig earthquake, setting two precedents. First, the triggered earthquake is the largest dynamically triggered shear failure event documented to date. Second, the events highlight a connection between geologic structure, sedimentary troughs that act as waveguides, and triggering probability. The Haida Gwaii earthquake excited extraordinarily large waves within and beyond the Queen Charlotte Trough, which propagated well into mainland Alaska and likely triggering the Craig earthquake along the way. Previously, focusing and associated dynamic triggering have been attributed to unpredictable source effects. This case suggests that elevated dynamic triggering probabilities may exist along the many structures where sedimentary troughs overlie major faults, such as subduction zones’ accretionary prisms and transform faults’ axial valleys. Although data are sparse, I find no evidence of accelerating seismic activity in the vicinity of the Craig rupture between it and the Haida Gwaii earthquake.

  16. Periodic, chaotic, and doubled earthquake recurrence intervals on the deep San Andreas fault.

    Science.gov (United States)

    Shelly, David R

    2010-06-11

    Earthquake recurrence histories may provide clues to the timing of future events, but long intervals between large events obscure full recurrence variability. In contrast, small earthquakes occur frequently, and recurrence intervals are quantifiable on a much shorter time scale. In this work, I examine an 8.5-year sequence of more than 900 recurring low-frequency earthquake bursts composing tremor beneath the San Andreas fault near Parkfield, California. These events exhibit tightly clustered recurrence intervals that, at times, oscillate between approximately 3 and approximately 6 days, but the patterns sometimes change abruptly. Although the environments of large and low-frequency earthquakes are different, these observations suggest that similar complexity might underlie sequences of large earthquakes.

  17. Periodic, chaotic, and doubled earthquake recurrence intervals on the deep San Andreas Fault

    Science.gov (United States)

    Shelly, David R.

    2010-01-01

    Earthquake recurrence histories may provide clues to the timing of future events, but long intervals between large events obscure full recurrence variability. In contrast, small earthquakes occur frequently, and recurrence intervals are quantifiable on a much shorter time scale. In this work, I examine an 8.5-year sequence of more than 900 recurring low-frequency earthquake bursts composing tremor beneath the San Andreas fault near Parkfield, California. These events exhibit tightly clustered recurrence intervals that, at times, oscillate between ~3 and ~6 days, but the patterns sometimes change abruptly. Although the environments of large and low-frequency earthquakes are different, these observations suggest that similar complexity might underlie sequences of large earthquakes.

  18. Centrality in earthquake multiplex networks

    Science.gov (United States)

    Lotfi, Nastaran; Darooneh, Amir Hossein; Rodrigues, Francisco A.

    2018-06-01

    Seismic time series has been mapped as a complex network, where a geographical region is divided into square cells that represent the nodes and connections are defined according to the sequence of earthquakes. In this paper, we map a seismic time series to a temporal network, described by a multiplex network, and characterize the evolution of the network structure in terms of the eigenvector centrality measure. We generalize previous works that considered the single layer representation of earthquake networks. Our results suggest that the multiplex representation captures better earthquake activity than methods based on single layer networks. We also verify that the regions with highest seismological activities in Iran and California can be identified from the network centrality analysis. The temporal modeling of seismic data provided here may open new possibilities for a better comprehension of the physics of earthquakes.

  19. Spatiotemporal Analysis of the Foreshock-Mainshock-Aftershock Sequence of the 6 July 2017 M5.8 Lincoln, Montana Earthquake

    Science.gov (United States)

    McMahon, N. D.; Stickney, M.; Aster, R. C.; Yeck, W.; Martens, H. R.; Benz, H.

    2017-12-01

    On 6 July 2017, a Mw 5.8 earthquake occurred 11 km southeast of Lincoln, Montana. The event was widely-felt from Edmonton, Alberta, Canada (750 km north), Seattle, Washington (800 km west), the Idaho/Utah and Idaho/Nevada borders (550 km south), and Rapid City, South Dakota (750 km east). This is the largest earthquake to occur in the state since the 1959 M 7.3 Hebgen Lake event 250 km to the southeast. In the three weeks following the 6 July 2017 Mw 5.8 main shock, the U.S. Geological Survey and Montana Bureau of Mines and Geology located more than 300 aftershocks. Preliminary observations show most of these aftershocks form a short NNE zone that suggests that the main shock may have slipped on a NNE left-lateral fault. A smaller number of aftershocks extend along a longer WNW-trending zone. These faults are part of the Lewis and Clark line, a prominent zone of Middle Proterozoic to Holocene age strike-slip, dip slip, and oblique slip faulting trending 400 km east-southeast from northern Idaho to east of Helena, Montana, and terminating southeast of this earthquake. We use identified aftershock waveforms as templates to examine the data from 1 June 2017 through 27 July 2017 with cross-correlation techniques on nearby permanent and temporary seismic stations deployed shortly after the mainshock to identify foreshocks and additional small aftershocks. Locating these events allows us to study subsurface geology, map fault structures, and provide insight on the spatial and temporal evolution of the earthquake sequence, which may continue to produce aftershocks for years. Other notable earthquakes in the region include a damaging M 6.6 earthquake 100 km to the south in June 1925, M 6.2 and M 6.0 earthquakes near Helena, Montana in October 1935 that caused significant damage and four fatalities, and a M 5.6 earthquake 170 km to the south in July 2005 that caused minor damage in Dillon and the surrounding region. We hope this work not only allows us to map the involved

  20. Extreme value statistics and thermodynamics of earthquakes: large earthquakes

    Directory of Open Access Journals (Sweden)

    B. H. Lavenda

    2000-06-01

    Full Text Available A compound Poisson process is used to derive a new shape parameter which can be used to discriminate between large earthquakes and aftershock sequences. Sample exceedance distributions of large earthquakes are fitted to the Pareto tail and the actual distribution of the maximum to the Fréchet distribution, while the sample distribution of aftershocks are fitted to a Beta distribution and the distribution of the minimum to the Weibull distribution for the smallest value. The transition between initial sample distributions and asymptotic extreme value distributions shows that self-similar power laws are transformed into nonscaling exponential distributions so that neither self-similarity nor the Gutenberg-Richter law can be considered universal. The energy-magnitude transformation converts the Fréchet distribution into the Gumbel distribution, originally proposed by Epstein and Lomnitz, and not the Gompertz distribution as in the Lomnitz-Adler and Lomnitz generalization of the Gutenberg-Richter law. Numerical comparison is made with the Lomnitz-Adler and Lomnitz analysis using the same Catalogue of Chinese Earthquakes. An analogy is drawn between large earthquakes and high energy particle physics. A generalized equation of state is used to transform the Gamma density into the order-statistic Fréchet distribution. Earthquaketemperature and volume are determined as functions of the energy. Large insurance claims based on the Pareto distribution, which does not have a right endpoint, show why there cannot be a maximum earthquake energy.

  1. Factors Contributing to the Catastrophe in Mexico City During the Earthquake of September 19, 1985

    OpenAIRE

    Beck, James L.; Hall, John F.

    1986-01-01

    The extensive damage to high‐rise buildings in Mexico City during the September 19, 1985 earthquake is primarily due to the intensity of the ground shaking exceeding what was previously considered credible for the city by Mexican engineers. There were two major factors contributing to the catastrophe, resonance in the sediments of an ancient lake that once existed in the Valley of Mexico, and the long duration of shaking compared with other coastal earthquakes in the last 50 years. Both of th...

  2. The 2012 Strike-slip Earthquake Sequence in Black Sea and its Link to the Caucasus Collision Zone

    Science.gov (United States)

    Tseng, T. L.; Hsu, C. H.; Legendre, C. P.; Jian, P. R.; Huang, B. S.; Karakhanian, A.; Chen, C. W.

    2016-12-01

    The Black Sea formed as a back-arc basin in Late Cretaceous to Paleogene with lots of extensional features. However, the Black Sea is now tectonically stable and absent of notable earthquakes except for the coastal region. In this study we invert regional waveforms of a new seismic array to constrain the focal mechanisms and depths of the 2012/12/23 earthquake sequence occurred in northeastern Black Sea basin that can provide unique estimates on the stress field in the region. The results show that the focal mechanisms for the main shock and 5 larger aftershocks are all strike-slip faulting and resembling with each other. The main rupture fall along the vertical dipping, NW-SE trending sinistral fault indicated by the lineation of most aftershocks. The fault strike and aftershock distribution are both consistent with the Shatsky Ridge, which is continental in nature but large normal faults was created by previous subsidence. The occurrence of 2012 earthquakes can be re-activated, as strike-slip, on one of the pre-existing normal fault cutting at depth nearly 20-30 km in the extended crust. Some of the aftershocks, including a larger one occurred 5 days later, are distributed toward NE direction 20 km away from main fault zone. Those events might be triggered by the main shock along a conjugate fault, which is surprisingly at the extension of proposed transform fault perpendicular to the rift axis of eastern Black Sea Basin. The focal mechanisms also indicate that the maximum compression in northeast Black Sea is at E-W direction, completely different from the N-S compression in the Caucasus and East Turkey controlled by Arabia-Eurasia collision. The origin of E-W maximum compression is probably the same as the secondary stress inferred from earthquakes in Racha region of the Greater Caucasus.

  3. Cryostratigraphy and sedimentology of high-Arctic fjord-valleys

    OpenAIRE

    Gilbert, Graham Lewis

    2018-01-01

    Fjord-valleys, as sediment-filled palaeofjords, are characteristic of formerly glaciated mountainous coastal areas. High-Arctic fjord-valleys commonly host permafrost, but are poorly accessible and hence have drawn relatively little research. The research presented in this thesis combines the methods of cryostratigraphy, clastic sedimentology, sequence stratigraphy, geomorphology and geochronology to investigate the sedimentary infilling, permafrost formation and late Quaternary landscape dev...

  4. Seismic quiescence before the 2016 Mw 6.0 Amatrice earthquake, central Italy

    Science.gov (United States)

    Di Giovambattista, R.; Gentili, S.; Peresan, A.

    2017-12-01

    Seismic quiescence before major worldwide earthquakes has been reported by many authors. We have analyzed the seismicity preceding the last damaging 2016-2017 seismic sequence occurred in central Italy, and we have characterized the temporal and spatial extension of the foregoing seismic quiescence. The multiple mainshock sequence (24/08/2016, Mw 6.0; 26/10/2016 Mw 5.4 and 5.9; 30/10/2016, Mw 6.5), which occurred in central Italy, caused the death of nearly 300 people and widespread destruction of entire villages. The Mw 6.5 earthquake was the most powerful recorded in Italy since the 1980 M 6.9 Irpinia earthquake. The Region-Time-Length (RTL) method has been used to quantitatively analyze the seismic quiescence preceding the first Mw 6.0 Amatrice mainshock. This analysis was performed using the earthquake catalogue maintained by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) declustered using a novel statistical approach, which is based on the "nearest-neighbor" distances between pairs of earthquakes in the space-time-energy domain. A well-evident quiescence that preceded the sequence was detected. The quiescence extended throughout a broad region north of the epicenter. The largest event of the sequence and its aftershocks covered most of the quiescence region, except for a small area to the west. The quiescence started from the beginning of September 2015 and lasted for approximately 1 year, up to the Amatrice mainshock. The results obtained have been compared with those of previous seismic sequences occurred in Italy. A similar analysis applied to the 1997-1998, Mw 5.7 Umbria-Marche earthquakes located at the northern termination of the Amatrice sequence, showed a decrease in RTL corresponding to a seismic quiescence, followed by a foreshock activation in the epicentral area before the occurrence of the mainshock.

  5. Ionospheric Anomaly before Kyushu|Japan Earthquake

    Directory of Open Access Journals (Sweden)

    YANG Li

    2017-05-01

    Full Text Available GIM data released by IGS is used in the article and a new method of combining the Sliding Time Window Method and the Ionospheric TEC correlation analysis method of adjacent grid points is proposed to study the relationship between pre-earthquake ionospheric anomalies and earthquake. By analyzing the abnormal change of TEC in the 5 grid points around the seismic region, the abnormal change of ionospheric TEC is found before the earthquake and the correlation between the TEC sequences of lattice points is significantly affected by earthquake. Based on the analysis of the spatial distribution of TEC anomaly, anomalies of 6 h, 12 h and 6 h were found near the epicenter three days before the earthquake. Finally, ionospheric tomographic technology is used to do tomographic inversion on electron density. And the distribution of the electron density in the ionospheric anomaly is further analyzed.

  6. Simultaneous estimation of earthquake source parameters and ...

    Indian Academy of Sciences (India)

    moderate-size aftershocks (Mw 2.1–5.1) of the Mw 7.7 2001 Bhuj earthquake. The horizontal- ... claimed a death toll of 20,000 people. This earth- .... quake occurred west of Kachchh, with an epicenter at 24. ◦. N, 68 ..... for dominance of body waves for R ≤ 100 km ...... Bhuj earthquake sequence; J. Asian Earth Sci. 40.

  7. Investigating the Local Three-dimensional Velocity Structure of the 2008 Taoyuan Earthquake Sequence of Kaohsiung, Taiwan

    Science.gov (United States)

    Shih, M. H.; Huang, B. S.

    2016-12-01

    March 4, 2008, a moderate earthquake (ML 5.2) occurred in Taoyuan district of Kaohsiung County in the southern Taiwan. It was followed by numerous aftershocks in the following 48 hours, including three events with magnitude larger than 4. The Taoyuan earthquake sequence occurred during the TAIGER (Taiwan Integrated Geodynamic Research) project which is to image lithospheric structure of Taiwan orogeny. The high-resolution waveform data of this sequence were well-recorded by a large number of recording stations belong to several different permanent and TAIGER networks all around Taiwan. We had collected the waveform data and archived to a mega database. Then, we had identified 2,340 events from database in the preliminary locating process by using 1-D velocity model. In this study, we applied the double-difference tomography to investigate not only the fault geometry of the main shock but also the detailed 3-D velocity structure in this area. A total of 3,034 events were selected from preliminary locating result and CWBSN catalog in the vicinity. The resulting aftershocks are extended along the NE-SW direction and located on a 45° SE-dipping plane which agrees to one of the nodal planes of Global CMT solution (strike = 45°, dip = 40° and rake = 119°). We can identify a clear low-velocity area which is enclosed by events next to the main shock in the final 3D velocity model. We also recognized a 45°-dipping zone which is extended to the ground surface with low-velocity; meanwhile, velocity structure variation in study area correspond with major geologic units in Taiwan.

  8. Geologic summary of the Owens Valley drilling project, Owens and Rose Valleys, Inyo County, California

    International Nuclear Information System (INIS)

    Schaer, D.W.

    1981-07-01

    The Owens Valley Drilling Project consists of eight drill holes located in southwest Inyo County, California, having an aggregate depth of 19,205 feet (5853 m). Project holes penetrated the Coso Formation of upper Pliocene or early Pleistocene age and the Owens Lake sand and lakebed units of the same age. The project objective was to improve the reliability of uranium-potential-resource estimates assigned to the Coso Formation in the Owens Valley region. Uranium-potential-resource estimates for this area in $100 per pound U 3 O 8 forward-cost-category material have been estimatd to be 16,954 tons (15,384 metric tons). This estimate is based partly on project drilling results. Within the Owens Valley project area, the Coso Formation was encountered only in the Rose Valley region, and for this reason Rose Valley is considered to be the only portion of the project area favorable for economically sized uranium deposits. The sequence of sediments contained in the Owens Valley basin is considered to be largely equivalent but lithologically dissimilar to the Coso Formation of Haiwee Ridge and Rose Valley. The most important factor in the concentration of significant amounts of uranium in the rock units investigated appears to be the availability of reducing agents. Significant amounts of reductants (pyrite) were found in the Coso Formation. No organic debris was noted. Many small, disconnected uranium occurrences, 100 to 500 ppM U 3 O 8 , were encountered in several of the holes

  9. Susceptibility assessment of debris flows using the analytic hierarchy process method − A case study in Subao river valley, China

    Directory of Open Access Journals (Sweden)

    Xingzhang Chen

    2015-08-01

    Full Text Available Many debris flows have occurred in the areas surrounding the epicenter of the Wenchuan earthquake. Susceptibility assessment of debris flows in this area is especially important for disaster prevention and mitigation. This paper studies one of the worst hit areas, the Subao river valley, and the susceptibility assessment of debris flows is performed based on field surveys and remote sensing interpretation. By investigating the formation conditions of debris flows in the valley, the following assessment factors are selected: mixture density of landslides and rock avalanches, distance to the seismogenic fault, stratum lithology, ground roughness, and hillside angle. The weights of the assessment factors are determined by the analytic hierarchy process (AHP method. Each of the assessment factors is further divided into five grades. Then, the assessment model is built using the multifactor superposition method to assess the debris flow susceptibility. Based on the assessment results, the Subao river valley is divided into three areas: high susceptibility areas, medium susceptibility areas, and low susceptibility areas. The high susceptibility areas are concentrated in the middle of the valley, accounting for 17.6% of the valley area. The medium susceptibility areas are in the middle and lower reaches, most of which are located on both sides of the high susceptibility areas and account for 45.3% of the valley area. The remainders are classified as low susceptibility areas. The results of the model are in accordance with the actual debris flow events that occurred after the earthquake in the valley, confirming that the proposed model is capable of assessing the debris flow susceptibility. The results can also provide guidance for reconstruction planning and debris flow prevention in the Subao river valley.

  10. Paleo erosion rates and climate shifts recorded by Quaternary cut-and-fill sequences in the Pisco valley, central Peru

    Science.gov (United States)

    Bekaddour, Toufik; Schlunegger, Fritz; Vogel, Hendrik; Delunel, Romain; Norton, Kevin P.; Akçar, Naki; Kubik, Peter

    2014-03-01

    Fluvial cut-and-fill sequences have frequently been reported from various sites on Earth. Nevertheless, the information about the past erosional regime and hydrological conditions have not yet been adequately deciphered from these archives. The Quaternary terrace sequences in the Pisco valley, located at ca. 13°S, offer a manifestation of an orbitally-driven cyclicity in terrace construction where phases of sediment accumulation have been related to the Minchin (48-36 ka) and Tauca (26-15 ka) lake level highstands on the Altiplano. Here, we present a 10Be-based sediment budget for the cut-and-fill terrace sequences in this valley to quantify the orbitally forced changes in precipitation and erosion. We find that the Minchin period was characterized by an erosional pulse along the Pacific coast where denudation rates reached values as high as 600±80 mm/ka for a relatively short time span lasting a few thousands of years. This contrasts to the younger pluvial periods and the modern situation when 10Be-based sediment budgets register nearly zero erosion at the Pacific coast. We relate these contrasts to different erosional conditions between the modern and the Minchin time. First, the sediment budget infers a precipitation pattern that matches with the modern climate ca. 1000 km farther north, where highly erratic and extreme El Niño-related precipitation results in fast erosion and flooding along the coast. Second, the formation of a thick terrace sequence requires sufficient material on catchment hillslopes to be stripped off by erosion. This was most likely the case immediately before the start of the Minchin period, because this erosional epoch was preceded by a >50 ka-long time span with poorly erosive climate conditions, allowing for sufficient regolith to build up on the hillslopes. Finally, this study suggests a strong control of orbitally and ice sheet forced latitudinal shifts of the ITCZ on the erosional gradients and sediment production on the western

  11. Fault failure with moderate earthquakes

    Science.gov (United States)

    Johnston, M. J. S.; Linde, A. T.; Gladwin, M. T.; Borcherdt, R. D.

    1987-12-01

    High resolution strain and tilt recordings were made in the near-field of, and prior to, the May 1983 Coalinga earthquake ( ML = 6.7, Δ = 51 km), the August 4, 1985, Kettleman Hills earthquake ( ML = 5.5, Δ = 34 km), the April 1984 Morgan Hill earthquake ( ML = 6.1, Δ = 55 km), the November 1984 Round Valley earthquake ( ML = 5.8, Δ = 54 km), the January 14, 1978, Izu, Japan earthquake ( ML = 7.0, Δ = 28 km), and several other smaller magnitude earthquakes. These recordings were made with near-surface instruments (resolution 10 -8), with borehole dilatometers (resolution 10 -10) and a 3-component borehole strainmeter (resolution 10 -9). While observed coseismic offsets are generally in good agreement with expectations from elastic dislocation theory, and while post-seismic deformation continued, in some cases, with a moment comparable to that of the main shock, preseismic strain or tilt perturbations from hours to seconds (or less) before the main shock are not apparent above the present resolution. Precursory slip for these events, if any occurred, must have had a moment less than a few percent of that of the main event. To the extent that these records reflect general fault behavior, the strong constraint on the size and amount of slip triggering major rupture makes prediction of the onset times and final magnitudes of the rupture zones a difficult task unless the instruments are fortuitously installed near the rupture initiation point. These data are best explained by an inhomogeneous failure model for which various areas of the fault plane have either different stress-slip constitutive laws or spatially varying constitutive parameters. Other work on seismic waveform analysis and synthetic waveforms indicates that the rupturing process is inhomogeneous and controlled by points of higher strength. These models indicate that rupture initiation occurs at smaller regions of higher strength which, when broken, allow runaway catastrophic failure.

  12. Distinguishing megathrust from intraplate earthquakes using lacustrine turbidites (Laguna Lo Encañado, Central Chile)

    Science.gov (United States)

    Van Daele, Maarten; Araya-Cornejo, Cristian; Pille, Thomas; Meyer, Inka; Kempf, Philipp; Moernaut, Jasper; Cisternas, Marco

    2017-04-01

    triggered by megathrust earthquakes. These findings are an important step forward in the interpretation of lacustrine turbidites in subduction settings, and will eventually improve hazard assessments based on such paleoseismic records in the study area, and in other subduction zones. References Howarth et al., 2014. Lake sediments record high intensity shaking that provides insight into the location and rupture length of large earthquakes on the Alpine Fault, New Zealand. Earth and Planetary Science Letters 403, 340-351. Lomnitz, 1960. A study of the Maipo Valley earthquakes of September 4, 1958, Second World Conference on Earthquake Engineering, Tokyo and Kyoto, Japan, pp. 501-520. Sepulveda et al., 2008. New Findings on the 1958 Las Melosas Earthquake Sequence, Central Chile: Implications for Seismic Hazard Related to Shallow Crustal Earthquakes in Subduction Zones. Journal of Earthquake Engineering 12, 432-455. Van Daele et al., 2015. A comparison of the sedimentary records of the 1960 and 2010 great Chilean earthquakes in 17 lakes: Implications for quantitative lacustrine palaeoseismology. Sedimentology 62, 1466-1496.

  13. Late quaternary faulting along the Death Valley-Furnace Creek fault system, California and Nevada

    International Nuclear Information System (INIS)

    Brogan, G.E.; Kellogg, K.S.; Terhune, C.L.; Slemmons, D.B.

    1991-01-01

    The Death Valley-Furnace Creek fault system, in California and Nevada, has a variety of impressive late Quaternary neotectonic features that record a long history of recurrent earthquake-induced faulting. Although no neotectonic features of unequivocal historical age are known, paleoseismic features from multiple late Quaternary events of surface faulting are well developed throughout the length of the system. Comparison of scarp heights to amount of horizontal offset of stream channels and the relationships of both scarps and channels to the ages of different geomorphic surfaces demonstrate that Quaternary faulting along the northwest-trending Furnace Creek fault zone is predominantly right lateral, whereas that along the north-trending Death Valley fault zone is predominantly normal. These observations are compatible with tectonic models of Death Valley as a northwest- trending pull-apart basin

  14. Landform Evolution of the Zanskar Valley, Ladakh Himalaya.

    Science.gov (United States)

    Chahal, P.; Kumar, A.; Sharma, P.; Sundriyal, Y.; Srivastava, P.

    2017-12-01

    Zanskar River flow from south-west to north-east, perpendicularly through Higher Himalayan crystalline sequences, Tethyan sedimentary sequences, and Indus Molasses; and finally merge with the Indus River at Nimu. Geologically, the Indus valley is bounded by Ladakh Batholith in the north and highly folded and thrusted Zanskar mountain ranges in the south. Sedimentary sequences of Zanskar ranges are largely of continental origin, which were uplifted and deformed via several north verging thrusts, where Zanskar counter thrust, Choksti and Indus-Bazgo thrusts are important thrust zone, and there is atleast 36 km of crustal shortening in the Zanskar section which continued from middle Miocene to the late Pleistocene. This shortening is accommodated mainly by north or north-east directed Zanskar backthrusts. Two major tributaries of Zanskar: Tsrapchu and Doda, flow in the headwaters, along the strike of South Tibetan Detachment System (STDs), an east-west trending regional fault. The present study incorporate field sedimentology, geomorphology and chronology of landform associated with Zanskar valley. In the upper Zanskar, alluvial fan, valley fill and strath terraces configured the major landforms with paleo-lake deposits­­­ in the area between the fans. The lower catchment, at the confluence of Zanskar and Indus rivers, exhibit mainly valley fill terraces and strath terraces. Chronology suggests diachronous aggradation in the upper and lower Zanskar catchments. In the upper Zanskar large scale valley aggradation took place with simultaneously fan progradation and flooding events from 45-15 ka. Luminescence chronology of the lower Zanskar indicates aggradation from 145-55 ka and 18-12 ka. The two aggradation basins are separated by a deep V-shaped gorge which is approximately 60 km long. The longitudinal profile of the Zanskar River shows several local convexities marking knick point zone, which suggests tectonically controlled topography.

  15. Testing for the 'predictability' of dynamically triggered earthquakes in The Geysers geothermal field

    Science.gov (United States)

    Aiken, Chastity; Meng, Xiaofeng; Hardebeck, Jeanne

    2018-03-01

    The Geysers geothermal field is well known for being susceptible to dynamic triggering of earthquakes by large distant earthquakes, owing to the introduction of fluids for energy production. Yet, it is unknown if dynamic triggering of earthquakes is 'predictable' or whether dynamic triggering could lead to a potential hazard for energy production. In this paper, our goal is to investigate the characteristics of triggering and the physical conditions that promote triggering to determine whether or not triggering is in anyway foreseeable. We find that, at present, triggering in The Geysers is not easily 'predictable' in terms of when and where based on observable physical conditions. However, triggered earthquake magnitude positively correlates with peak imparted dynamic stress, and larger dynamic stresses tend to trigger sequences similar to mainshock-aftershock sequences. Thus, we may be able to 'predict' what size earthquakes to expect at The Geysers following a large distant earthquake.

  16. 1/f and the Earthquake Problem: Scaling constraints that facilitate operational earthquake forecasting

    Science.gov (United States)

    yoder, M. R.; Rundle, J. B.; Turcotte, D. L.

    2012-12-01

    The difficulty of forecasting earthquakes can fundamentally be attributed to the self-similar, or "1/f", nature of seismic sequences. Specifically, the rate of occurrence of earthquakes is inversely proportional to their magnitude m, or more accurately to their scalar moment M. With respect to this "1/f problem," it can be argued that catalog selection (or equivalently, determining catalog constraints) constitutes the most significant challenge to seismicity based earthquake forecasting. Here, we address and introduce a potential solution to this most daunting problem. Specifically, we introduce a framework to constrain, or partition, an earthquake catalog (a study region) in order to resolve local seismicity. In particular, we combine Gutenberg-Richter (GR), rupture length, and Omori scaling with various empirical measurements to relate the size (spatial and temporal extents) of a study area (or bins within a study area) to the local earthquake magnitude potential - the magnitude of earthquake the region is expected to experience. From this, we introduce a new type of time dependent hazard map for which the tuning parameter space is nearly fully constrained. In a similar fashion, by combining various scaling relations and also by incorporating finite extents (rupture length, area, and duration) as constraints, we develop a method to estimate the Omori (temporal) and spatial aftershock decay parameters as a function of the parent earthquake's magnitude m. From this formulation, we develop an ETAS type model that overcomes many point-source limitations of contemporary ETAS. These models demonstrate promise with respect to earthquake forecasting applications. Moreover, the methods employed suggest a general framework whereby earthquake and other complex-system, 1/f type, problems can be constrained from scaling relations and finite extents.; Record-breaking hazard map of southern California, 2012-08-06. "Warm" colors indicate local acceleration (elevated hazard

  17. Listening to the 2011 magnitude 9.0 Tohoku-Oki, Japan, earthquake

    Science.gov (United States)

    Peng, Zhigang; Aiken, Chastity; Kilb, Debi; Shelly, David R.; Enescu, Bogdan

    2012-01-01

    The magnitude 9.0 Tohoku-Oki, Japan, earthquake on 11 March 2011 is the largest earthquake to date in Japan’s modern history and is ranked as the fourth largest earthquake in the world since 1900. This earthquake occurred within the northeast Japan subduction zone (Figure 1), where the Pacific plate is subducting beneath the Okhotsk plate at rate of ∼8–9 cm/yr (DeMets et al. 2010). This type of extremely large earthquake within a subduction zone is generally termed a “megathrust” earthquake. Strong shaking from this magnitude 9 earthquake engulfed the entire Japanese Islands, reaching a maximum acceleration ∼3 times that of gravity (3 g). Two days prior to the main event, a foreshock sequence occurred, including one earthquake of magnitude 7.2. Following the main event, numerous aftershocks occurred around the main slip region; the largest of these was magnitude 7.9. The entire foreshocks-mainshock-aftershocks sequence was well recorded by thousands of sensitive seismometers and geodetic instruments across Japan, resulting in the best-recorded megathrust earthquake in history. This devastating earthquake resulted in significant damage and high death tolls caused primarily by the associated large tsunami. This tsunami reached heights of more than 30 m, and inundation propagated inland more than 5 km from the Pacific coast, which also caused a nuclear crisis that is still affecting people’s lives in certain regions of Japan.

  18. IDENTIFICATION OF EARTHQUAKE AFTERSHOCK AND SWARM SEQUENCES IN THE BAIKAL RIFT ZONE

    Directory of Open Access Journals (Sweden)

    N. A. Radziminovich

    2013-01-01

    Full Text Available The catalog of earthquakes (КR³6.6 which occurred in the Baikal rift zone (BRZ was declastered, and the results are presented in the article. Aftershocks of seismic events (КR³12.5 were determined by the software developed by V.B. Smirnov (Lomonosov Moscow State University with application of the algorithm co-authored by G.M. Molchan and O.E. Dmitrieva. To ensure proper control of the software application, aftershocks were also selected manually. The results of declustering show that aftershocks of the earthquakes (КR³12.5 account for about 25 per cent of all seismic events in the regional catalog. Aftershocks accompanied 90 per cent of all the earthquakes considered as main shocks. Besides, earthquake swarms, including events with КR³11, were identified. The results of this study show that, in the BRZ, the swarms and strong events with aftershocks are not spatially separated, and this conclusion differs from the views of the previous studies that reviewed data from a shorter observation period. Moreover, it is noted that the swarms may consist of several main shocks accompanied by aftershocks. The data accumulated over the last fifty years of instrumental observations support the conclusion made earlier that the swarms in BRZ occur mainly in the north-eastward direction from Lake Baikal and also confirm the trend of a small number of aftershocks accompanying earthquakes in the south-western part of the Baikal rift zone.

  19. Uranium concentrations and 234U/238U activity ratios in fault-associated groundwater as possible earthquake precursors

    International Nuclear Information System (INIS)

    Finkel, R.C.

    1981-01-01

    In order to assess the utility of uranium isotopes as fluid phase earthquake precursors, uranium concentrations and 234 U/ 238 U activity ratios have been monitored on a monthly or bimonthly basis in water from 24 wells and springs associated with Southern California fault zones. Uranium concentrations vary from 0.002 ppb at Indian Canyon Springs on the San Jacinto fault to 8.3 ppb at Lake Hughes well on the San Andreas fault in the Palmdale area. 234 U/ 238 U activity ratios vary from 0.88 at Agua Caliente Springs on the Elsinore fault to 5.4 at Niland Slab well on the San Andreas fault in the Imperial Valley. There was one large earthquake in the study area during 1979, the 15 October 1979 M = 6.6 Imperial Valley earthquake. Correlated with this event, uranium concentrations varied by a factor of more than 60 and activity ratios by a factor of 3 at the Niland Slab site, about 70 km from the epicenter. At the other sites monitored, uranium concentrations varied in time, but with no apparent pattern, while uranium activity ratios remained essentially constant throughout the monitoring period

  20. Implication of conjugate faulting in the earthquake brewing and originating process

    Energy Technology Data Exchange (ETDEWEB)

    Jones, L.M. (Massachusetts Inst. of Tech., Cambridge); Deng, Q.; Jiang, P.

    1980-03-01

    The earthquake sequence, precursory and geologo-structural background of the Haicheng, Tangshan, Songpan-Pingwu earthquakes are discussed in this article. All of these earthquakes occurred in a seismic zone controlled by the main boundary faults of an intraplate fault block. However, the fault plane of a main earthquake does not consist of the same faults, but is rather a related secondary fault. They formed altogether a conjugate shearing rupture zone under the action of a regional tectonic stress field. As to the earthquake sequence, the foreshocks and aftershocks might occur on the conjugate fault planes within an epicentral region rather than be limited to the fault plane of a main earthquake, such as the distribution of foreshocks and aftershocks of the Haicheng earthquake. The characteristics of the long-, medium-, and imminent-term earthquake precursory anomalies of the three mentioned earthquakes, especially the character of well-studies anomaly phenomena in electrical resistivity, radon emission, groundwater and animal behavior, have been investigated. The studies of these earthquake precursors show that they were distributed in an area rather more extensive than the epicentral region. Some fault zones in the conjugate fault network usually appeared as distributed belts or concentrated zones of earthquake precursory anomalies, and can be traced in the medium-long term precursory field, but seem more distinct in the short-imminent term precursory anomalous field. These characteristics can be explained by the rupture and sliding originating along the conjugate shear network and the concentration of stress in the regional stress field.

  1. Reactivation of slow-moving landslides by earthquakes, kinematics measurements and mechanical implications

    Science.gov (United States)

    Lacroix, Pascal; Perfettini, Hugo; Berthier, Etienne; Taipe, Edu; Guillier, Bertrand

    2015-04-01

    Major earthquakes in mountainous areas often trigger landslides. The impact of earthquakes on slow-moving landslides is however not well constrained due to few co-seismic measurements of landslide motion. We document the first time-series of a landslide reactivation by an earthquake (Mw6.0, distance 20 km), using continuous GPS measurements over the Maca landslide (Peru). Our survey shows a coseismic response of the landslide of about 2 cm, followed by a relaxation period of 5 weeks during which postseismic slip is three times greater than the coseismic displacement itself. Our results confirm the coseismic activation of landslides and provide the first observation of a post seismic displacement. Finally, a multi-temporal survey using images from the very high resolution Pléiades optical satellite, allowed us to detect 9 active slow-moving landslides over the whole valley. Their pattern of motion show they have been reactivated by the same earthquake. We analyze this small but comprehensive database of landslides reactivated by the earthquake. We find that the landslide motion due to the earthquake is function of the shaking intensity, suggesting a friction at the basal interface dependent on the earthquake solicitation. These various observations are consistent with a mechanical model where slip on the landslide basal interface is governed by rate and state friction, analogous to the mechanics of creeping tectonic faults.

  2. Memory effect in M ≥ 6 earthquakes of South-North Seismic Belt, Mainland China

    Science.gov (United States)

    Wang, Jeen-Hwa

    2013-07-01

    The M ≥ 6 earthquakes occurred in the South-North Seismic Belt, Mainland China, during 1901-2008 are taken to study the possible existence of memory effect in large earthquakes. The fluctuation analysis technique is applied to analyze the sequences of earthquake magnitude and inter-event time represented in the natural time domain. Calculated results show that the exponents of scaling law of fluctuation versus window length are less than 0.5 for the sequences of earthquake magnitude and inter-event time. The migration of earthquakes in study is taken to discuss the possible correlation between events. The phase portraits of two sequent magnitudes and two sequent inter-event times are also applied to explore if large (or small) earthquakes are followed by large (or small) events. Together with all kinds of given information, we conclude that the earthquakes in study is short-term correlated and thus the short-term memory effect would be operative.

  3. Shallow Sedimentary Structure of the Brahmaputra Valley Constraint from Receiver Functions Analysis

    Science.gov (United States)

    Saikia, Sowrav; Chopra, Sumer; Baruah, Santanu; Singh, Upendra K.

    2017-01-01

    In this study, receiver functions from ten Broadband seismograph stations on Cenozoic sediment formations of Brahmaputra valley and its neighboring region in northeastern part of India are determined. Receiver function traces from this region show delay in peak by 1-2.5 s and associated minor peaks with the direct P-phase peak. Based on such observation, we try to image sedimentary structure of the Brahmaputra valley plain, adjacent Shillong plateau and Himalayan foredeep region. An adapted hybrid global waveform inversion technique has been applied to extract sedimentary basin structure beneath each site. The sedimentary cover of the basin is about 0.5-6.5 km thick across the valley, 0.5-1.0 km on Shillong plateau and 2.0-5.0 km in nearby foredeep region. We have found that sedimentary thickness increases from SW to NE along the Brahmaputra valley and towards the Eastern Himalayan syntaxes. The estimated sediment thickness and S wave velocity structure agree well with the results of previous active source, gravity, and deep borehole studies carried out in this region. The thick crustal low velocity sediment cover in Brahmaputra valley is expected to amplify ground motions during earthquakes and therefore important for seismic hazard assessment of the region.

  4. Bayesian inference and interpretation of centroid moment tensors of the 2016 Kumamoto earthquake sequence, Kyushu, Japan

    Science.gov (United States)

    Hallo, Miroslav; Asano, Kimiyuki; Gallovič, František

    2017-09-01

    On April 16, 2016, Kumamoto prefecture in Kyushu region, Japan, was devastated by a shallow M JMA7.3 earthquake. The series of foreshocks started by M JMA6.5 foreshock 28 h before the mainshock. They have originated in Hinagu fault zone intersecting the mainshock Futagawa fault zone; hence, the tectonic background for this earthquake sequence is rather complex. Here we infer centroid moment tensors (CMTs) for 11 events with M JMA between 4.8 and 6.5, using strong motion records of the K-NET, KiK-net and F-net networks. We use upgraded Bayesian full-waveform inversion code ISOLA-ObsPy, which takes into account uncertainty of the velocity model. Such an approach allows us to reliably assess uncertainty of the CMT parameters including the centroid position. The solutions show significant systematic spatial and temporal variations throughout the sequence. Foreshocks are right-lateral steeply dipping strike-slip events connected to the NE-SW shear zone. Those located close to the intersection of the Hinagu and Futagawa fault zones are dipping slightly to ESE, while those in the southern area are dipping to WNW. Contrarily, aftershocks are mostly normal dip-slip events, being related to the N-S extensional tectonic regime. Most of the deviatoric moment tensors contain only minor CLVD component, which can be attributed to the velocity model uncertainty. Nevertheless, two of the CMTs involve a significant CLVD component, which may reflect complex rupture process. Decomposition of those moment tensors into two pure shear moment tensors suggests combined right-lateral strike-slip and normal dip-slip mechanisms, consistent with the tectonic settings of the intersection of the Hinagu and Futagawa fault zones.[Figure not available: see fulltext.

  5. Long aftershock sequences in North China and Central US: implications for hazard assessment in mid-continents

    Science.gov (United States)

    Liu, Mian; Luo, Gang; Wang, Hui; Stein, Seth

    2014-02-01

    Because seismic activity within mid-continents is usually much lower than that along plate boundary zones, even small earthquakes can cause widespread concerns, especially when these events occur in the source regions of previous large earthquakes. However, these small earthquakes may be just aftershocks that continue for decades or even longer. The recent seismicity in the Tangshan region in North China is likely aftershocks of the 1976 Great Tangshan earthquake. The current earthquake sequence in the New Madrid seismic zone in central United States, which includes a cluster of M ~ 7.0 events in 1811-1812 and a number of similar events in the past millennium, is believed to result from recent fault reactivation that releases pre-stored strain energy in the crust. If so, this earthquake sequence is similar to aftershocks in that the rates of energy release should decay with time and the sequence of earthquakes will eventually end. We use simple physical analysis and numerical simulations to show that the current sequence of large earthquakes in the New Madrid fault zone is likely ending or has ended. Recognizing that mid-continental earthquakes have long aftershock sequences and complex spatiotemporal occurrences are critical to improve hazard assessments.

  6. Rapid earthquake characterization using MEMS accelerometers and volunteer hosts following the M 7.2 Darfield, New Zealand, Earthquake

    Science.gov (United States)

    Lawrence, J. F.; Cochran, E.S.; Chung, A.; Kaiser, A.; Christensen, C. M.; Allen, R.; Baker, J.W.; Fry, B.; Heaton, T.; Kilb, Debi; Kohler, M.D.; Taufer, M.

    2014-01-01

    We test the feasibility of rapidly detecting and characterizing earthquakes with the Quake‐Catcher Network (QCN) that connects low‐cost microelectromechanical systems accelerometers to a network of volunteer‐owned, Internet‐connected computers. Following the 3 September 2010 M 7.2 Darfield, New Zealand, earthquake we installed over 180 QCN sensors in the Christchurch region to record the aftershock sequence. The sensors are monitored continuously by the host computer and send trigger reports to the central server. The central server correlates incoming triggers to detect when an earthquake has occurred. The location and magnitude are then rapidly estimated from a minimal set of received ground‐motion parameters. Full seismic time series are typically not retrieved for tens of minutes or even hours after an event. We benchmark the QCN real‐time detection performance against the GNS Science GeoNet earthquake catalog. Under normal network operations, QCN detects and characterizes earthquakes within 9.1 s of the earthquake rupture and determines the magnitude within 1 magnitude unit of that reported in the GNS catalog for 90% of the detections.

  7. Study of temporal sequences of LANSAT images to detect the accumulation of stress prior of strong earthquakes in Chile.

    Science.gov (United States)

    Arellano-Baeza, A. A.

    2016-12-01

    We studied the temporal evolution of the lineaments obtained from the LANSAT-8 associated to the accumulation of stress patterns related to the seismic activity. A lineament is generally defined as a straight or a somewhat curved feature in the landscape visible in a satellite image as an aligned sequence of pixels of a contrasting intensity compared to the background. The system of lineaments extracted from the satellite images is not identical to the geological lineaments; nevertheless, it generally reflects the structure of the faults and fractures in the Earth's crust. The satellite images were processed by the ADALGEO software developed by us. We selected two areas of study with different characteristics. The first area is located near to the Diego de Almagro town in the Copiapo region, Chile. This area did not show any strong seismic activity between 2010 and 2015. However, two strong earthquakes took place later on April 16, 2016 (Mw=5.3) and July 25, 2016 (Mw=6.1). The second area located near the Illapel town in Coquimbo region shows lack of strong earthquakes between 2010 and 2012 and strong seismic activity between 2012 and 2015, culminating by the September 16, 2015 earthquake (Mw=8.3). The distance between two areas is nearly 600 km. In case of the Diego de Almagro area, very few lineaments have been observed between 2010 and 2015, showing a significant increase during the 2016. In case of the Illapel region, the number of lineaments was always much higher, showing an explosive increase at the end of 2015. For both areas the lineaments changed its orientation before strong earthquakes.

  8. Testing for the ‘predictability’ of dynamically triggered earthquakes in Geysers Geothermal Field

    Science.gov (United States)

    Aiken, Chastity; Meng, Xiaofeng; Hardebeck, Jeanne L.

    2018-01-01

    The Geysers geothermal field is well known for being susceptible to dynamic triggering of earthquakes by large distant earthquakes, owing to the introduction of fluids for energy production. Yet, it is unknown if dynamic triggering of earthquakes is ‘predictable’ or whether dynamic triggering could lead to a potential hazard for energy production. In this paper, our goal is to investigate the characteristics of triggering and the physical conditions that promote triggering to determine whether or not triggering is in anyway foreseeable. We find that, at present, triggering in The Geysers is not easily ‘predictable’ in terms of when and where based on observable physical conditions. However, triggered earthquake magnitude positively correlates with peak imparted dynamic stress, and larger dynamic stresses tend to trigger sequences similar to mainshock–aftershock sequences. Thus, we may be able to ‘predict’ what size earthquakes to expect at The Geysers following a large distant earthquake.

  9. Valley-chiral quantum Hall state in graphene superlattice structure

    Science.gov (United States)

    Tian, H. Y.; Tao, W. W.; Wang, J.; Cui, Y. H.; Xu, N.; Huang, B. B.; Luo, G. X.; Hao, Y. H.

    2016-05-01

    We theoretically investigate the quantum Hall effect in a graphene superlattice (GS) system, in which the two valleys of graphene are coupled together. In the presence of a perpendicular magnetic field, an ordinary quantum Hall effect is found with the sequence σxy=ν e^2/h(ν=0,+/-1,+/-2,\\cdots) . At the zeroth Hall platform, a valley-chiral Hall state stemming from the single K or K' valley is found and it is localized only on one sample boundary contributing to the longitudinal conductance but not to the Hall conductivity. Our findings may shed light on the graphene-based valleytronics applications.

  10. Sediment gravity flows triggered by remotely generated earthquake waves

    Science.gov (United States)

    Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan L.; Salmi, Marie S.

    2017-06-01

    Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011-2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.

  11. Rapid characterization of the 2015 Mw 7.8 Gorkha, Nepal, earthquake sequence and its seismotectonic context

    Science.gov (United States)

    Hayes, Gavin; Briggs, Richard; Barnhart, William D.; Yeck, William; McNamara, Daniel E.; Wald, David J.; Nealy, Jennifer; Benz, Harley M.; Gold, Ryan D.; Jaiswal, Kishor S.; Marano, Kristin; Earle, Paul S.; Hearne, Mike; Smoczyk, Gregory M.; Wald, Lisa A.; Samsonov, Sergey

    2015-01-01

    Earthquake response and related information products are important for placing recent seismic events into context and particularly for understanding the impact earthquakes can have on the regional community and its infrastructure. These tools are even more useful if they are available quickly, ahead of detailed information from the areas affected by such earthquakes. Here we provide an overview of the response activities and related information products generated and provided by the U.S. Geological Survey National Earthquake Information Center in association with the 2015 M 7.8 Gorkha, Nepal, earthquake. This group monitors global earthquakes 24  hrs/day and 7  days/week to provide rapid information on the location and size of recent events and to characterize the source properties, tectonic setting, and potential fatalities and economic losses associated with significant earthquakes. We present the timeline over which these products became available, discuss what they tell us about the seismotectonics of the Gorkha earthquake and its aftershocks, and examine how their information is used today, and might be used in the future, to help mitigate the impact of such natural disasters.

  12. The role of complex site and basin response in Wellington city, New Zealand, during the 2016 Mw 7.8 Kaikōura earthquake and other recent earthquake sequences.

    Science.gov (United States)

    Kaiser, A. E.; McVerry, G.; Wotherspoon, L.; Bradley, B.; Gerstenberger, M.; Benites, R. A.; Bruce, Z.; Bourguignon, S.; Giallini, S.; Hill, M.

    2017-12-01

    We present analysis of ground motion and complex amplification characteristics in Wellington during recent earthquake sequences and an overview of the 3D basin characterization and ongoing work to update site parameters for seismic design. Significant damage was observed in central Wellington, New Zealand's capital city, following the 2016 Mw7.8 Kaikōura earthquake. Damage was concentrated in mid-rise structures (5 - 15 storeys) and was clearly exacerbated by the particular characteristics of ground motion and the presence of basin effects. Due to the distance of the source (50 - 60km) from the central city, peak ground accelerations were moderate (up to 0.28g) and well within ultimate limit state (ULS) design levels. However, spectral accelerations within the 1 -2 s period range, exceeded 1 in 500 year design level spectra (ULS) in deeper parts of the basin. Amplification with respect to rock at these locations reached factors of up to 7, and was also observed with factors up to at least three across all central city soil recording sites. The ground motions in Wellington were the strongest recorded in the modern era of instrumentation. While similar amplification was observed during the 2013 Mw 6.6 Cook Strait and Grassmere earthquakes, which struck close to the termination of the Kaikōura earthquake rupture, these sources were not sufficiently large to excite significant long-period motions. However, other M7.2+ sources in the region that dominate the seismic hazard, e.g. Wellington Fault, Hikurangi subduction interface and other large proximal crustal faults, are also potentially capable of exciting significant long-period basin response in Wellington. These observations and the expectation of ongoing heightened seismicity have prompted re-evaluation of the current seismic demand levels. Additional field campaigns have also been undertaken to update geotechnical properties and the 3D basin model, in order to inform ongoing research and seismic design practice.

  13. Spatial Evaluation and Verification of Earthquake Simulators

    Science.gov (United States)

    Wilson, John Max; Yoder, Mark R.; Rundle, John B.; Turcotte, Donald L.; Schultz, Kasey W.

    2017-06-01

    In this paper, we address the problem of verifying earthquake simulators with observed data. Earthquake simulators are a class of computational simulations which attempt to mirror the topological complexity of fault systems on which earthquakes occur. In addition, the physics of friction and elastic interactions between fault elements are included in these simulations. Simulation parameters are adjusted so that natural earthquake sequences are matched in their scaling properties. Physically based earthquake simulators can generate many thousands of years of simulated seismicity, allowing for a robust capture of the statistical properties of large, damaging earthquakes that have long recurrence time scales. Verification of simulations against current observed earthquake seismicity is necessary, and following past simulator and forecast model verification methods, we approach the challenges in spatial forecast verification to simulators; namely, that simulator outputs are confined to the modeled faults, while observed earthquake epicenters often occur off of known faults. We present two methods for addressing this discrepancy: a simplistic approach whereby observed earthquakes are shifted to the nearest fault element and a smoothing method based on the power laws of the epidemic-type aftershock (ETAS) model, which distributes the seismicity of each simulated earthquake over the entire test region at a decaying rate with epicentral distance. To test these methods, a receiver operating characteristic plot was produced by comparing the rate maps to observed m>6.0 earthquakes in California since 1980. We found that the nearest-neighbor mapping produced poor forecasts, while the ETAS power-law method produced rate maps that agreed reasonably well with observations.

  14. Links Between Earthquake Characteristics and Subducting Plate Heterogeneity in the 2016 Pedernales Ecuador Earthquake Rupture Zone

    Science.gov (United States)

    Bai, L.; Mori, J. J.

    2016-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  15. Real-Time Science on Social Media: The Example of Twitter in the Minutes, Hours, Days after the 2015 M7.8 Nepal Earthquake

    Science.gov (United States)

    Lomax, A.; Bossu, R.; Mazet-Roux, G.

    2015-12-01

    Scientific information on disasters such as earthquakes typically comes firstly from official organizations, news reports and interviews with experts, and later from scientific presentations and peer-reviewed articles. With the advent of the Internet and social media, this information is available in real-time from automated systems and within a dynamic, collaborative interaction between scientific experts, responders and the public. After the 2015 M7.8 Nepal earthquake, Twitter Tweets from earth scientists* included information, analysis, commentary and discussion on earthquake parameters (location, size, mechanism, rupture extent, high-frequency radiation, …), earthquake effects (distribution of felt shaking and damage, triggered seismicity, landslides, …), earthquake rumors (e.g. the imminence of a larger event) and other earthquake information and observations (aftershock forecasts, statistics and maps, source and regional tectonics, seismograms, GPS, InSAR, photos/videos, …).In the future (while taking into account security, false or erroneous information and identity verification), collaborative, real-time science on social media after a disaster will give earlier and better scientific understanding and dissemination of public information, and enable improved emergency response and disaster management.* A sample of scientific Tweets after the 2015 Nepal earthquake: In the first minutes: "mb5.9 Mwp7.4 earthquake Nepal 2015.04.25-06:11:25UTC", "Major earthquake shakes Nepal 8 min ago", "Epicenter between Pokhara and Kathmandu", "Major earthquake shakes Nepal 18 min ago. Effects derived from witnesses' reports". In the first hour: "shallow thrust faulting to North under Himalayas", "a very large and shallow event ... Mw7.6-7.7", "aftershocks extend east and south of Kathmandu, so likely ruptured beneath city", "Valley-blocking landslides must be a very real worry". In the first day: "M7.8 earthquake in Nepal 2hr ago: destructive in Kathmandu Valley and

  16. [Engineering aspects of seismic behavior of health-care facilities: lessons from California earthquakes].

    Science.gov (United States)

    Rutenberg, A

    1995-03-15

    The construction of health-care facilities is similar to that of other buildings. Yet the need to function immediately after an earthquake, the helplessness of the many patients and the high and continuous occupancy of these buildings, require that special attention be paid to their seismic performance. Here the lessons from the California experience are invaluable. In this paper the behavior of California hospitals during destructive earthquakes is briefly described. Adequate structural design and execution, and securing of nonstructural elements are required to ensure both safety of occupants, and practically uninterrupted functioning of equipment, mechanical and electrical services and other vital systems. Criteria for post-earthquake functioning are listed. In view of the hazards to Israeli hospitals, in particular those located along the Jordan Valley and the Arava, a program for the seismic evaluation of medical facilities should be initiated. This evaluation should consider the hazards from nonstructural elements, the safety of equipment and systems, and their ability to function after a severe earthquake. It should not merely concentrate on safety-related structural behavior.

  17. 2014 mainshock-aftershock activity versus earthquake swarms in West\

    Czech Academy of Sciences Publication Activity Database

    Jakoubková, Hana; Horálek, Josef; Fischer, T.

    2018-01-01

    Roč. 175, č. 1 (2018), s. 109-131 ISSN 0033-4553 R&D Projects: GA ČR GAP210/12/2336; GA MŠk(CZ) LM2015079 Institutional support: RVO:67985530 Keywords : West Bohemia/Vogtland * earthquake swarms * mainshock-aftershock sequence * total seismic moment * statistical characteristics of earthquake activities Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.591, year: 2016

  18. Earthquake cycle deformation and the Moho: Implications for the rheology of continental lithosphere

    OpenAIRE

    Wright, TJ; Elliott, JR; Wang, H; Ryder, I

    2013-01-01

    The last 20. years has seen a dramatic improvement in the quantity and quality of geodetic measurements of the earthquake loading cycle. In this paper we compile and review these observations and test whether crustal thickness exerts any control. We found 78 earthquake source mechanisms for continental earthquakes derived from satellite geodesy, 187 estimates of interseismic "locking depth", and 23 earthquakes (or sequences) for which postseismic deformation has been observed. Globally we est...

  19. Search for Anisotropy Changes Associated with Two Large Earthquakes in Japan and New Zealand

    Science.gov (United States)

    Savage, M. K.; Graham, K.; Aoki, Y.; Arnold, R.

    2017-12-01

    Seismic anisotropy is often considered to be an indicator of stress in the crust, because the closure of cracks due to differential stress leads to waves polarized parallel to the cracks travelling faster than the orthogonal direction. Changes in shear wave splitting have been suggested to result from stress changes at volcanoes and earthquakes. However, the effects of mineral or structural alignment, and the difficulty of distinguishing between changes in anisotropy along an earthquake-station path from distinguishing changes in the path itself, have made such findings controversial. Two large earthquakes in 2016 provide unique datasets to test the use of shear wave splitting for measuring variations in stress because clusters of closely-spaced earthquakes occurred both before and after a mainshock. We use the automatic, objective splitting analysis code MFAST to speed process and minimize unwitting observer bias when determining time variations. The sequence of earthquakes related to the M=7.2 Japanese Kumamoto earthquake of 14 April 2016 includes both foreshocks, mainshocks and aftershocks. The sequence was recorded by the NIED permanent network, which already contributed background seismic anisotropy measurements in a previous study of anisotropy and stress in Kyushu. Preliminary measurements of shear wave splitting from earthquakes that occurred in 2016 show results at some stations that clearly differ from those of the earlier study. They also change between earthquakes recorded before and after the mainshock. Further work is under way to determine whether the changes are more likely due to changes in stress during the observation time, or due to spatial changes in anisotropy combined with changes in earthquake locations. Likewise, background seismicity and also foreshocks and aftershocks in the 2013 Cook Strait earthquake sequence including two M=6.5 earthquakes in 2013 in New Zealand were in the same general region as aftershocks of the M=7.8 Kaikoura

  20. Role of Shape and Numbers of Ridges and Valleys in the Insulating Effects of Topography on the Rayleigh Wave Characteristics

    Science.gov (United States)

    Narayan, J. P.; Kumar, Neeraj; Chauhan, Ranu

    2018-03-01

    This research work is inspired by the recently accepted concept that high frequency Rayleigh waves are generated in the epicentral zone of shallow earthquakes. Such high frequency Rayleigh waves with large amplitude may develop much of spatial variability in ground motion which in turn may cause unexpected damage to long-span structures like bridges, underground pipelines, dams, etc., in the hilly regions. Further, it has been reported that topography acts as an insulator for the Rayleigh waves (Ma et al. BSSA 97:2066-2079, 2007). The above mentioned scientific developments stimulated to quantify the role of shape and number of ridges and valleys falling in the path of Rayleigh wave in the insulating effect of topography on the Rayleigh waves. The simulated results reveals very large amplification of the horizontal component of Rayleigh wave near the top of a triangular ridge which may cause intensive landslides under favorable condition. The computed snapshots of the wave-field of Rayleigh wave reveals that the interaction of Rayleigh wave with the topography causes reflection, splitting, and diffraction of Rayleigh wave in the form of body waves which in turn provides the insulating capacity to the topography. Insulating effects of single valley is more than that of single ridge. Further this effect was more in case of elliptical ridge/valley than triangular ridge/valley. The insulating effect of topography was proportional to the frequency of Rayleigh wave and the number of ridges and valleys in the string. The obtained level of insulation effects of topography on the Rayleigh wave (energy of Rayleigh wave reduced to less than 4% after crossing a topography of span 4.5 km) calls for the consideration of role of hills and valleys in seismic hazard prediction, particularly in case of shallow earthquakes.

  1. The 2008 Wenchuan Earthquake and the Rise and Fall of Earthquake Prediction in China

    Science.gov (United States)

    Chen, Q.; Wang, K.

    2009-12-01

    Regardless of the future potential of earthquake prediction, it is presently impractical to rely on it to mitigate earthquake disasters. The practical approach is to strengthen the resilience of our built environment to earthquakes based on hazard assessment. But this was not common understanding in China when the M 7.9 Wenchuan earthquake struck the Sichuan Province on 12 May 2008, claiming over 80,000 lives. In China, earthquake prediction is a government-sanctioned and law-regulated measure of disaster prevention. A sudden boom of the earthquake prediction program in 1966-1976 coincided with a succession of nine M > 7 damaging earthquakes in the densely populated region of the country and the political chaos of the Cultural Revolution. It climaxed with the prediction of the 1975 Haicheng earthquake, which was due mainly to an unusually pronounced foreshock sequence and the extraordinary readiness of some local officials to issue imminent warning and evacuation order. The Haicheng prediction was a success in practice and yielded useful lessons, but the experience cannot be applied to most other earthquakes and cultural environments. Since the disastrous Tangshan earthquake in 1976 that killed over 240,000 people, there have been two opposite trends in China: decreasing confidence in prediction and increasing emphasis on regulating construction design for earthquake resilience. In 1976, most of the seismic intensity XI areas of Tangshan were literally razed to the ground, but in 2008, many buildings in the intensity XI areas of Wenchuan did not collapse. Prediction did not save life in either of these events; the difference was made by construction standards. For regular buildings, there was no seismic design in Tangshan to resist any earthquake shaking in 1976, but limited seismic design was required for the Wenchuan area in 2008. Although the construction standards were later recognized to be too low, those buildings that met the standards suffered much less

  2. Aftershocks of the 13 May 1993 Shumagin Alaska earthquake

    Science.gov (United States)

    Lu, Zhong; Wyss, Max; Tytgat, Guy; McNutt, Steve; Stihler, Scott

    1994-01-01

    The 13 May 1993 Ms 6.9 Shumagin earthquake had an aftershock sequence of 247 earthquakes with magnitudes greater than or equal to 1.5 by 1 June 1993. Of these aftershocks, 79 were located by using S-P travel times at the only two stations within 570 km of the mainshock epicenter. The rupture area inferred from the aftershocks is about 600 km2 and we estimate for the mainshock a mean fault displacement of 1.0 m and a 28 bar stress drop. The magnitude-frequency plots give a b-value for the aftershock sequence of about 0.4, which is low compared to the background value of approximately 0.8. The decay of the aftershock sequence followed the modified Omori law with a p-value of 0.79, which is also lower than the typical values of about 1.1 observed in Alaska. Both of these facts can be interpreted as indicating relatively high ambient stress in the Shumagin seismic gap and the possibility that the 13 May earthquake was a foreshock to a larger gap-filling event to occur within the next few years.

  3. Interaction of the san jacinto and san andreas fault zones, southern california: triggered earthquake migration and coupled recurrence intervals.

    Science.gov (United States)

    Sanders, C O

    1993-05-14

    Two lines of evidence suggest that large earthquakes that occur on either the San Jacinto fault zone (SJFZ) or the San Andreas fault zone (SAFZ) may be triggered by large earthquakes that occur on the other. First, the great 1857 Fort Tejon earthquake in the SAFZ seems to have triggered a progressive sequence of earthquakes in the SJFZ. These earthquakes occurred at times and locations that are consistent with triggering by a strain pulse that propagated southeastward at a rate of 1.7 kilometers per year along the SJFZ after the 1857 earthquake. Second, the similarity in average recurrence intervals in the SJFZ (about 150 years) and in the Mojave segment of the SAFZ (132 years) suggests that large earthquakes in the northern SJFZ may stimulate the relatively frequent major earthquakes on the Mojave segment. Analysis of historic earthquake occurrence in the SJFZ suggests little likelihood of extended quiescence between earthquake sequences.

  4. Landslides triggered by the 1946 Ancash earthquake, Peru

    Science.gov (United States)

    Kampherm, T. S.; Evans, S. G.; Valderrama Murillo, P.

    2009-04-01

    The 1946 M7.3 Ancash Earthquake triggered a large number of landslides in an epicentral area that straddled the Continental Divide of South America in the Andes of Peru. A small number of landslides were described in reconnaissance reports by E. Silgado and Arnold Heim published shortly after the earthquake, but further details of the landslides triggered by the earthquake have not been reported since. Utilising field traverses, aerial photograph interpretation and GIS, our study mapped 45 landslides inferred to have been triggered by the event. 83% were rock avalanches involving Cretaceous limestones interbedded with shales. The five largest rock/debris avalanches occurred at Rio Llama (est. vol. 37 M m3), Suytucocha (est. vol., 13.5 Mm3), Quiches (est. vol. 10.5 Mm3 ), Pelagatos (est. vol. 8 Mm3), and Shundoy (est. vol. 8 Mm3). The Suytucocha, Quiches, and Pelagatos landslides were reported by Silgado and Heim. Rock slope failure was most common on slopes with a southwest aspect, an orientation corresponding to the regional dip direction of major planar structures in the Andean foreland belt (bedding planes and thrust faults). In valleys oriented transverse to the NW-SE structural grain of the epicentral area, south-westerly dipping bedding planes combined with orthogonal joint sets to form numerous wedge failures. Many initial rock slope failures were transformed into rock/debris avalanches by the entrainment of colluvium in their path. At Acobamba, a rock avalanche that transformed into a debris avalanche (est. vol. 4.3 Mm3) overwhelmed a village resulting in the deaths of 217 people. The cumulative volume-frequency plot shows a strong power law relation below a marked rollover, similar in form to that derived for landslides triggered by the 1994 Northridge Earthquake. The total volume of the 45 landslides is approximately 93 Mm3. The data point for the Ancash Earthquake plots near the regression line calculated by Keefer (1994), and modified by Malamud et al

  5. Artificial earthquake generation for nuclear power plant design

    International Nuclear Information System (INIS)

    King, A.C.Y.; Chen, C.

    1977-01-01

    The time history method has been one of the analytical tools applied in the seismic resistant design of nuclear power plants. The time histories used are required to be consistent with the specified design Spectra. Since the spectra of recorded strong motion earthquake or conventionally generated artificial time history have local peaks and valleys, iteration procedures must be applied to generate the artificial time history with desired spectra. The paper describes a detailed method for generating a time history which is consistent with a specified design spectra. There are several advantages of this method described herein. First of all, frequency content of the time history is well under control. Secondly, if one wishes to generate the three components of an earthquake at one site, the inherent nature of this method will make the correlations among these three components to simulate closely the actual recorded time histories. Thirdly, a single time history can be generated to match a spectra for different damping values. (auth.)

  6. Accounting for orphaned aftershocks in the earthquake background rate

    Science.gov (United States)

    Van Der Elst, Nicholas

    2017-01-01

    Aftershocks often occur within cascades of triggered seismicity in which each generation of aftershocks triggers an additional generation, and so on. The rate of earthquakes in any particular generation follows Omori's law, going approximately as 1/t. This function decays rapidly, but is heavy-tailed, and aftershock sequences may persist for long times at a rate that is difficult to discriminate from background. It is likely that some apparently spontaneous earthquakes in the observational catalogue are orphaned aftershocks of long-past main shocks. To assess the relative proportion of orphaned aftershocks in the apparent background rate, I develop an extension of the ETAS model that explicitly includes the expected contribution of orphaned aftershocks to the apparent background rate. Applying this model to California, I find that the apparent background rate can be almost entirely attributed to orphaned aftershocks, depending on the assumed duration of an aftershock sequence. This implies an earthquake cascade with a branching ratio (the average number of directly triggered aftershocks per main shock) of nearly unity. In physical terms, this implies that very few earthquakes are completely isolated from the perturbing effects of other earthquakes within the fault system. Accounting for orphaned aftershocks in the ETAS model gives more accurate estimates of the true background rate, and more realistic expectations for long-term seismicity patterns.

  7. Roaming earthquakes in China highlight midcontinental hazards

    Science.gov (United States)

    Liu, Mian; Wang, Hui

    2012-11-01

    Before dawn on 28 July 1976, a magnitude (M) 7.8 earthquake struck Tangshan, a Chinese industrial city only 150 kilometers from Beijing (Figure 1a). In a brief moment, the earthquake destroyed the entire city and killed more than 242,000 people [Chen et al., 1988]. More than 30 years have passed, and upon the ruins a new Tangshan city has been built. However, the memory of devastation remains fresh. For this reason, a sequence of recent small earthquakes in the Tangshan region, including an M 4.8 event on 28 May and an M 4.0 event on 18 June 2012, has caused widespread concerns and heated debate in China. In the science community, the debate is whether the recent Tangshan earthquakes are the aftershocks of the 1976 earthquake despite the long gap in time since the main shock or harbingers of a new period of active seismicity in Tangshan and the rest of North China, where seismic activity seems to fluctuate between highs and lows over periods of a few decades [Ma, 1989].

  8. Connecting slow earthquakes to huge earthquakes.

    Science.gov (United States)

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes. Copyright © 2016, American Association for the Advancement of Science.

  9. Assessment of earthquake-induced landslides hazard in El Salvador after the 2001 earthquakes using macroseismic analysis

    Science.gov (United States)

    Esposito, Eliana; Violante, Crescenzo; Giunta, Giuseppe; Ángel Hernández, Miguel

    2016-04-01

    Two strong earthquakes and a number of smaller aftershocks struck El Salvador in the year 2001. The January 13 2001 earthquake, Mw 7.7, occurred along the Cocos plate, 40 km off El Salvador southern coast. It resulted in about 1300 deaths and widespread damage, mainly due to massive landsliding. Two of the largest earthquake-induced landslides, Las Barioleras and Las Colinas (about 2x105 m3) produced major damage to buildings and infrastructures and 500 fatalities. A neighborhood in Santa Tecla, west of San Salvador, was destroyed. The February 13 2001 earthquake, Mw 6.5, occurred 40 km east-southeast of San Salvador. This earthquake caused over 300 fatalities and triggered several landslides over an area of 2,500 km2 mostly in poorly consolidated volcaniclastic deposits. The La Leona landslide (5-7x105 m3) caused 12 fatalities and extensive damage to the Panamerican Highway. Two very large landslides of 1.5 km3 and 12 km3 produced hazardous barrier lakes at Rio El Desague and Rio Jiboa, respectively. More than 16.000 landslides occurred throughout the country after both quakes; most of them occurred in pyroclastic deposits, with a volume less than 1x103m3. The present work aims to define the relationship between the above described earthquake intensity, size and areal distribution of induced landslides, as well as to refine the earthquake intensity in sparsely populated zones by using landslide effects. Landslides triggered by the 2001 seismic sequences provided useful indication for a realistic seismic hazard assessment, providing a basis for understanding, evaluating, and mapping the hazard and risk associated with earthquake-induced landslides.

  10. A non-accelerating foreshock sequence followed by a short period of quiescence for a large inland earthquake

    Science.gov (United States)

    Doi, I.; Kawakata, H.

    2012-12-01

    Laboratory experiments [e.g. Scholz, 1968; Lockner et al., 1992] and field observations [e.g. Dodge et al., 1996; Helmstetter and Sornette, 2003; Bouchon et al., 2011] have elucidated part of foreshock behavior and mechanism, but we cannot identify foreshocks while they are occurring. Recently, in Japan, a dense seismic network, Hi-net (High Sensitivity Seismograph Network), provides continuous waveform records for regional seismic events. The data from this network enable us to analyze small foreshocks which occur on long period time scales prior to a major event. We have an opportunity to grasp the more detailed pattern of foreshock generation. Using continuous waveforms recorded at a seismic station located in close proximity to the epicenter of the 2008 Iwate-Miyagi inland earthquake, we conducted a detailed investigation of its foreshocks. In addition to the two officially recognized foreshocks, calculation of cross-correlation coefficients between the continuous waveform record and one of the previously recognized foreshocks revealed that 20 micro foreshocks occurred within the same general area. Our analysis also shows that all of these foreshocks occurred within the same general area relative to the main event. Over the two week period leading up to the Iwate-Miyagi earthquake, such foreshocks only occurred during the last 45 minutes, specifically over a 35 minute period followed by a 10 minute period of quiescence just before the mainshock. We found no evidence of acceleration of this foreshock sequence. Rock fracturing experiments using a constant loading rate or creep tests have consistently shown that the occurrence rate of small fracturing events (acoustic emissions; AEs) increases before the main rupture [Scholz, 1968]. This accelerative pattern of preceding events was recognized in case of the 1999 Izmit earthquake [Bouchon et al., 2011]. Large earthquakes however need not be accompanied by acceleration of foreshocks if a given fault's host rock

  11. Earthquake geology and paleoseismology of major strands of the San Andreas fault system: Chapter 38

    Science.gov (United States)

    Rockwell, Thomas; Scharer, Katherine M.; Dawson, Timothy E.

    2016-01-01

    The San Andreas fault system in California is one of the best-studied faults in the world, both in terms of the long-term geologic history and paleoseismic study of past surface ruptures. In this paper, we focus on the Quaternary to historic data that have been collected from the major strands of the San Andreas fault system, both on the San Andreas Fault itself, and the major subparallel strands that comprise the plate boundary, including the Calaveras-Hayward- Rogers Creek-Maacama fault zone and the Concord-Green Valley-Bartlett Springs fault zone in northern California, and the San Jacinto and Elsinore faults in southern California. The majority of the relative motion between the Pacific and North American lithospheric plates is accommodated by these faults, with the San Andreas slipping at about 34 mm/yr in central California, decreasing to about 20 mm/yr in northern California north of its juncture with the Calaveras and Concord faults. The Calaveras-Hayward-Rogers Creek-Maacama fault zone exhibits a slip rate of 10-15 mm/yr, whereas the rate along the Concord-Green Valley-Bartlett Springs fault zone is lower at about 5 mm/yr. In southern California, the San Andreas exhibits a slip rate of about 35 mm/yr along the Mojave section, decreasing to as low as 10-15 mm/yr along its juncture with the San Jacinto fault, and about 20 mm/yr in the Coachella Valley. The San Jacinto and Elsinore fault zones exhibit rates of about 15 and 5 mm/yr, respectively. The average recurrence interval for surface-rupturing earthquakes along individual elements of the San Andreas fault system range from 100-500 years and is consistent with slip rate at those sites: higher slip rates produce more frequent or larger earthquakes. There is also evidence of short-term variations in strain release (slip rate) along various fault sections, as expressed as “flurries” or clusters of earthquakes as well as periods of relatively fewer surface ruptures in these relatively short records. This

  12. Preliminary report on aftershock sequence for earthquake of January 31, 1986, near Painesville, Ohio (time period: 2/1/86-2/10/86)

    Science.gov (United States)

    Borcherdt, R.D.

    1986-01-01

    A ten-station array of broad-band digital instrumentation (GEOS) was deployed by the U. S. Geological Survey with partial support provided by Electric Power Research Institute to record the aftershock sequence of the moderate (mb ~ 4.9) earthquake that occurred on January 31, 1986 (16:46:43 UTC) near Painesville, Ohio. The occurrence of the event has raised questions concerning possible contributory factors to the occurrence of the event and questions concerning the character of earthquake-induced high-frequency ground motions in the area. To aid in the timely resolution of the implications of some of these questions, this preliminary report provides copies of the ground motion time-histories and corresponding spectra for the six identified aftershocks and two events, thought to be quarry blasts, recorded as of February 10, 1986. Recording station locations and epicenter locations based on two preliminary estimates of local seismic velocity structure are provided.

  13. Dynamics of Domestic Water Consumption in the Urban Area of the Kathmandu Valley: Situation Analysis Pre and Post 2015 Gorkha Earthquake

    Directory of Open Access Journals (Sweden)

    Sadhana Shrestha

    2017-03-01

    Full Text Available Information regarding domestic water consumption is vital, as the Kathmandu Valley will soon be implementing the Melamchi Water Supply Project; however, updated information on the current situation after the 2015 Gorkha Earthquake (GEQ is still lacking. We investigated the dynamics of domestic water consumption pre- and post-GEQ. The piped water supply was short, and consumption varied widely across the Kathmandu Upatyaka Khanepani Limited (KUKL branches and altitude. The reduction in piped, ground, and jar water consumption and the increase in tanker water consumption post-GEQ appeared to be due to the impact of the GEQ. However, the impact did not appear to be prominent on per capita water consumption, although it was reduced from 117 to 99 L post-GEQ. Piped, ground, and tanker water use were associated with an increase and jar water use was associated with a decrease in water consumption. Despite improvements in quantity, inequality in water consumption and inequity in affordability across wealth status was well established. This study suggests to KUKL the areas of priority where improvements to supply are required, and recommends an emphasis on resuming performance. Policy planners should consider the existing inequity in affordability, which is a major issue in the United Nations Sustainable Development Goals.

  14. Connecting slow earthquakes to huge earthquakes

    OpenAIRE

    Obara, Kazushige; Kato, Aitaro

    2016-01-01

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of th...

  15. Establishing a reference rock site for the site effect study in and around the Kathmandu valley, Nepal

    Science.gov (United States)

    Bhattarai, Mukunda; Adhikari, Lok Bijaya; Gautam, Umesh Prasad; Bollinger, Laurent; Hernandez, Bruno; Yokoi, Toshiaki; Hayashida, Takumi

    2016-05-01

    We propose a reference site for the site effect study in and around the Kathmandu valley, Nepal. The used data were the accelerograms recorded at two stations, DMG and KKA, and velocity seismograms co-recorded at the PKIN station during nine shallow local and regional earthquakes of local magnitude equal to or greater than 5.0. The DMG station is located on the thick sediments of the Kathmandu valley, whereas the others are rock sites. The KKA station is located on the granite and gneisses of the Shivapuri Lekh about 10 km northwest of the capital, and the PKIN station is in the tunnel of an old iron mine on the southern slope of the Phulchauki Hill about 15 km southeast. The spectral ratios of the ground motion records of the DMG station compared to those of the PKIN station, for all considered earthquakes, confirm that the DMG station has amplification ranging from 1 to 10 in the frequency range of 0.5-10 Hz, and spectral ratios of the KKA station referenced by the PKIN station show that the KKA station has significant amplification in the frequency range of 4-10 Hz and the peak value of the spectral ratio is at most over 25. Therefore, the site amplification in and around Kathmandu valley would be significantly underestimated in the frequency range from 4 to 10 Hz if the records of the KKA station were used as a proxy for input seismic motions to the sediment. Based on the above analysis, we propose that the PKIN station should be considered as a reliable reference site for the assessment of seismic hazards in and around the Kathmandu valley.

  16. Occurrence and Distribution of Citrus tristeza virus (CTV in the Jordan Valley

    Directory of Open Access Journals (Sweden)

    G. Anfoka

    2005-04-01

    Full Text Available In a survey conducted in 2002 and 2003, Citrus tristeza virus (CTV was detected in the Jordan Valley. The direct tissue blot immunoassay (DTBIA indicated that 12.7 and 15.2% of samples tested in the central and northern Jordan Valley respectively were infected with CTV. Similar results showed that all citrus species grown in the Jordan Valley were susceptible to CTV. DAS-ELISA analysis of samples from a citrus orchard in the Dir Alla area with severe CTV symptoms indicated that 49% of samples were infected with CTV. Using a CTV specific primer pair (CTV1/CTV10, the coat protein gene of the virus was successfully amplified from leaf extracts obtained from CTVinfected trees by IC-RT-PCR. After cloning and sequencing the coat protein gene, the sequence of the amplified product was deposited in the GenBank.

  17. Full-Wave Ambient Noise Tomography of the Long Valley Volcanic Region (California)

    Science.gov (United States)

    Flinders, A. F.; Shelly, D. R.; Dawson, P. B.; Hill, D. P.; Shen, Y.

    2017-12-01

    In the late 1970s, and throughout the 1990s, Long Valley Caldera (California) experienced intense periods of unrest characterized by uplift of the resurgent dome, earthquake swarms, and CO2 emissions around Mammoth Mountain. While modeling of the uplift and gravity changes support the possibility of new magmatic intrusions beneath the caldera, geologic interpretations conclude that the magmatic system underlying the caldera is moribund. Geophysical studies yield diverse versions of a sizable but poorly resolved low-velocity zone at depth (> 6km), yet whether this zone is indicative of a significant volume of crystal mush, smaller isolated pockets of partial melt, or magmatic fluids, is inconclusive. The nature of this low-velocity zone, and the state of volcano's magmatic system, carry important implications for the significance of resurgent-dome inflation and the nature of associated hazards. To better characterize this low-velocity zone we present preliminary results from a 3D full-waveform ambient-noise seismic tomography model derived from the past 25 years of vertical component broadband and short-period seismic data. This new study uses fully numerical solutions of the wave equation to account for the complex wave propagation in a heterogeneous, 3D earth model, including wave interaction with topography. The method ensures that wave propagation is modeled accurately in 3D, enabling the full use of seismic records. By using empirical Green's functions, derived from ambient noise and modeled as Rayleigh surface waves, we are able to extend model resolution to depths beyond the limits of previous local earthquake studies. The model encompasses not only the Long Valley Caldera, but the entire Long Valley Volcanic Region, including Mammoth Mountain and the Mono Crater/Inyo Domes volcanic chain.

  18. Earthquake Swarm Along the San Andreas Fault near Palmdale, Southern California, 1976 to 1977.

    Science.gov (United States)

    McNally, K C; Kanamori, H; Pechmann, J C; Fuis, G

    1978-09-01

    Between November 1976 and November 1977 a swarm of small earthquakes (local magnitude foreshock sequences, such as tight clustering of hypocenters and time-dependent rotations of stress axes inferred from focal mechanisms. However, because of our present lack of understanding of the processes that precede earthquake faulting, the implications of the swarm for future large earthquakes on the San Andreas fault are unknown.

  19. A rare moderate‐sized (Mw 4.9) earthquake in Kansas: Rupture process of the Milan, Kansas, earthquake of 12 November 2014 and its relationship to fluid injection

    Science.gov (United States)

    Choy, George; Rubinstein, Justin L.; Yeck, William; McNamara, Daniel E.; Mueller, Charles; Boyd, Oliver

    2016-01-01

    The largest recorded earthquake in Kansas occurred northeast of Milan on 12 November 2014 (Mw 4.9) in a region previously devoid of significant seismic activity. Applying multistation processing to data from local stations, we are able to detail the rupture process and rupture geometry of the mainshock, identify the causative fault plane, and delineate the expansion and extent of the subsequent seismic activity. The earthquake followed rapid increases of fluid injection by multiple wastewater injection wells in the vicinity of the fault. The source parameters and behavior of the Milan earthquake and foreshock–aftershock sequence are similar to characteristics of other earthquakes induced by wastewater injection into permeable formations overlying crystalline basement. This earthquake also provides an opportunity to test the empirical relation that uses felt area to estimate moment magnitude for historical earthquakes for Kansas.

  20. Constraining the magnitude of the largest event in a foreshock-main shock-aftershock sequence

    Science.gov (United States)

    Shcherbakov, Robert; Zhuang, Jiancang; Ogata, Yosihiko

    2018-01-01

    Extreme value statistics and Bayesian methods are used to constrain the magnitudes of the largest expected earthquakes in a sequence governed by the parametric time-dependent occurrence rate and frequency-magnitude statistics. The Bayesian predictive distribution for the magnitude of the largest event in a sequence is derived. Two types of sequences are considered, that is, the classical aftershock sequences generated by large main shocks and the aftershocks generated by large foreshocks preceding a main shock. For the former sequences, the early aftershocks during a training time interval are used to constrain the magnitude of the future extreme event during the forecasting time interval. For the latter sequences, the earthquakes preceding the main shock are used to constrain the magnitudes of the subsequent extreme events including the main shock. The analysis is applied retrospectively to past prominent earthquake sequences.

  1. Sediment Thickness and a WEST-EAST Geologic Cross Section in the Caracas Valley

    OpenAIRE

    KANTAK, PETER; SCHMITZ, MICHAEL; AUDEMARD, FRANCK

    2005-01-01

    Caracas is located at the Caribbean - South America plate boundary zone, with an associated strike slip fault system, which accommodates the relative movement of both plates and is responsible for the seismic hazard in the region. The damage pattern of the 1967 Caracas earthquake emphasized the existence of important site effects due to the sedimentary basin fill of the Caracas valley. A revised map of the sedimentary thickness was developed during this study, based on drill holes (mostly fro...

  2. Earthquake activity along the Himalayan orogenic belt

    Science.gov (United States)

    Bai, L.; Mori, J. J.

    2017-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  3. The smart cluster method. Adaptive earthquake cluster identification and analysis in strong seismic regions

    Science.gov (United States)

    Schaefer, Andreas M.; Daniell, James E.; Wenzel, Friedemann

    2017-07-01

    Earthquake clustering is an essential part of almost any statistical analysis of spatial and temporal properties of seismic activity. The nature of earthquake clusters and subsequent declustering of earthquake catalogues plays a crucial role in determining the magnitude-dependent earthquake return period and its respective spatial variation for probabilistic seismic hazard assessment. This study introduces the Smart Cluster Method (SCM), a new methodology to identify earthquake clusters, which uses an adaptive point process for spatio-temporal cluster identification. It utilises the magnitude-dependent spatio-temporal earthquake density to adjust the search properties, subsequently analyses the identified clusters to determine directional variation and adjusts its search space with respect to directional properties. In the case of rapid subsequent ruptures like the 1992 Landers sequence or the 2010-2011 Darfield-Christchurch sequence, a reclassification procedure is applied to disassemble subsequent ruptures using near-field searches, nearest neighbour classification and temporal splitting. The method is capable of identifying and classifying earthquake clusters in space and time. It has been tested and validated using earthquake data from California and New Zealand. A total of more than 1500 clusters have been found in both regions since 1980 with M m i n = 2.0. Utilising the knowledge of cluster classification, the method has been adjusted to provide an earthquake declustering algorithm, which has been compared to existing methods. Its performance is comparable to established methodologies. The analysis of earthquake clustering statistics lead to various new and updated correlation functions, e.g. for ratios between mainshock and strongest aftershock and general aftershock activity metrics.

  4. Long-Delayed Aftershocks in New Zealand and the 2016 M7.8 Kaikoura Earthquake

    Science.gov (United States)

    Shebalin, P.; Baranov, S.

    2017-10-01

    We study aftershock sequences of six major earthquakes in New Zealand, including the 2016 M7.8 Kaikaoura and 2016 M7.1 North Island earthquakes. For Kaikaoura earthquake, we assess the expected number of long-delayed large aftershocks of M5+ and M5.5+ in two periods, 0.5 and 3 years after the main shocks, using 75 days of available data. We compare results with obtained for other sequences using same 75-days period. We estimate the errors by considering a set of magnitude thresholds and corresponding periods of data completeness and consistency. To avoid overestimation of the expected rates of large aftershocks, we presume a break of slope of the magnitude-frequency relation in the aftershock sequences, and compare two models, with and without the break of slope. Comparing estimations to the actual number of long-delayed large aftershocks, we observe, in general, a significant underestimation of their expected number. We can suppose that the long-delayed aftershocks may reflect larger-scale processes, including interaction of faults, that complement an isolated relaxation process. In the spirit of this hypothesis, we search for symptoms of the capacity of the aftershock zone to generate large events months after the major earthquake. We adapt an algorithm EAST, studying statistics of early aftershocks, to the case of secondary aftershocks within aftershock sequences of major earthquakes. In retrospective application to the considered cases, the algorithm demonstrates an ability to detect in advance long-delayed aftershocks both in time and space domains. Application of the EAST algorithm to the 2016 M7.8 Kaikoura earthquake zone indicates that the most likely area for a delayed aftershock of M5.5+ or M6+ is at the northern end of the zone in Cook Strait.

  5. Performance of Earthquake Early Warning Systems during the Major Events of the 2016-2017 Central Italy Seismic Sequence.

    Science.gov (United States)

    Festa, G.; Picozzi, M.; Alessandro, C.; Colombelli, S.; Cattaneo, M.; Chiaraluce, L.; Elia, L.; Martino, C.; Marzorati, S.; Supino, M.; Zollo, A.

    2017-12-01

    Earthquake early warning systems (EEWS) are systems nowadays contributing to the seismic risk mitigation actions, both in terms of losses and societal resilience, by issuing an alert promptly after the earthquake origin and before the ground shaking impacts the targets to be protected. EEWS systems can be grouped in two main classes: network based and stand-alone systems. Network based EEWS make use of dense seismic networks surrounding the fault (e.g. Near Fault Observatory; NFO) generating the event. The rapid processing of the P-wave early portion allows for the location and magnitude estimation of the event then used to predict the shaking through ground motion prediction equations. Stand-alone systems instead analyze the early P-wave signal to predict the ground shaking carried by the late S or surface waves, through empirically calibrated scaling relationships, at the recording site itself. We compared the network-based (PRESTo, PRobabilistic and Evolutionary early warning SysTem, www.prestoews.org, Satriano et al., 2011) and the stand-alone (SAVE, on-Site-Alert-leVEl, Caruso et al., 2017) systems, by analyzing their performance during the 2016-2017 Central Italy sequence. We analyzed 9 earthquakes having magnitude 5.0 security actions. PRESTo also evaluated the accuracy of location and magnitude. Both systems well predict the ground shaking nearby the event source, with a success rate around 90% within the potential damage zone. The lead-time is significantly larger for the network based system, increasing to more than 10s at 40 km from the event epicentre. The stand-alone system better performs in the near-source region showing a positive albeit small lead-time (operational in Italy, based on the available acceleration networks, by improving the capability of reducing the lead-time related to data telemetry.

  6. Time Separation Between Events in a Sequence: a Regional Property?

    Science.gov (United States)

    Muirwood, R.; Fitzenz, D. D.

    2013-12-01

    Earthquake sequences are loosely defined as events occurring too closely in time and space to appear unrelated. Depending on the declustering method, several, all, or no event(s) after the first large event might be recognized as independent mainshocks. It can therefore be argued that a probabilistic seismic hazard assessment (PSHA, traditionally dealing with mainshocks only) might already include the ground shaking effects of such sequences. Alternatively all but the largest event could be classified as an ';aftershock' and removed from the earthquake catalog. While in PSHA the question is only whether to keep or remove the events from the catalog, for Risk Management purposes, the community response to the earthquakes, as well as insurance risk transfer mechanisms, can be profoundly affected by the actual timing of events in such a sequence. In particular the repetition of damaging earthquakes over a period of weeks to months can lead to businesses closing and families evacuating from the region (as happened in Christchurch, New Zealand in 2011). Buildings that are damaged in the first earthquake may go on to be damaged again, even while they are being repaired. Insurance also functions around a set of critical timeframes - including the definition of a single 'event loss' for reinsurance recoveries within the 192 hour ';hours clause', the 6-18 month pace at which insurance claims are settled, and the annual renewal of insurance and reinsurance contracts. We show how temporal aspects of earthquake sequences need to be taken into account within models for Risk Management, and what time separation between events are most sensitive, both in terms of the modeled disruptions to lifelines and business activity as well as in the losses to different parties (such as insureds, insurers and reinsurers). We also explore the time separation between all events and between loss causing events for a collection of sequences from across the world and we point to the need to

  7. From Multi-Sensors Observations Towards Cross-Disciplinary Study of Pre-Earthquake Signals. What have We Learned from the Tohoku Earthquake?

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S.; Papadopoulos, G.; Kunitsyn, V.; Nesterov, I.; Hayakawa, M.; Mogi, K.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    The lessons we have learned from the Great Tohoku EQ (Japan, 2011) how this knowledge will affect our future observation and analysis is the main focus of this presentation.We present multi-sensors observations and multidisciplinary research in our investigation of phenomena preceding major earthquakes. These observations revealed the existence of atmospheric and ionospheric phenomena occurring prior to theM9.0 Tohoku earthquake of March 11, 2011, which indicates s new evidence of a distinct coupling between the lithosphere and atmosphere/ionosphere, as related to underlying tectonic activity. Similar results have been reported before the catastrophic events in Chile (M8.8, 2010), Italy (M6.3, 2009) and Sumatra (M9.3, 2004). For the Tohoku earthquake, our analysis shows a synergy between several independent observations characterizing the state of the lithosphere /atmosphere coupling several days before the onset of the earthquakes, namely: (i) Foreshock sequence change (rate, space and time); (ii) Outgoing Long wave Radiation (OLR) measured at the top of the atmosphere; and (iii) Anomalous variations of ionospheric parameters revealed by multi-sensors observations. We are presenting a cross-disciplinary analysis of the observed pre-earthquake anomalies and will discuss current research in the detection of these signals in Japan. We expect that our analysis will shed light on the underlying physics of pre-earthquake signals associated with some of the largest earthquake events

  8. Along-strike Variations in the Himalayas Illuminated by the Aftershock Sequence of the 2015 Mw 7.8 Gorkha Earthquake Using the NAMASTE Local Seismic Network

    Science.gov (United States)

    Mendoza, M.; Ghosh, A.; Karplus, M. S.; Nabelek, J.; Sapkota, S. N.; Adhikari, L. B.; Klemperer, S. L.; Velasco, A. A.

    2016-12-01

    As a result of the 2015 Mw 7.8 Gorkha earthquake, more than 8,000 people were killed from a combination of infrastructure failure and triggered landslides. This earthquake produced 4 m of peak co-seismic slip as the fault ruptured 130 km east under densely populated cities, such as Kathmandu. To understand earthquake dynamics in this part of the Himalayas and help mitigate similar future calamities by the next destructive event, it is imperative to study earthquake activities in detail and improve our understanding of the source and structural complexities. In response to the Gorkha event, multiple institutions developed and deployed a 10-month long dense seismic network called NAMASTE. It blanketed a 27,650 km2 area, mainly covering the rupture area of the Gorkha earthquake, in order to capture the dynamic sequence of aftershock behavior. The network consisted of a mix of 45 broadband, short-period, and strong motion sensors, with an average spacing of 20 km. From the first 6 months of data, starting approximately 1.5 after the mainshock, we develop a robust catalog containing over 3,000 precise earthquake locations, and local magnitudes that range between 0.3 and 4.9. The catalog has a magnitude of completeness of 1.5, and an overall low b-value of 0.78. Using the HypoDD algorithm, we relocate earthquake hypocenters with high precision, and thus illustrate the fault geometry down to depths of 25 km where we infer the location of the gently-dipping Main Frontal Thrust (MFT). Above the MFT, the aftershocks illuminate complex structure produced by relatively steeply dipping faults. Interestingly, we observe sharp along-strike change in the seismicity pattern. The eastern part of the aftershock area is significantly more active than the western part. The change in seismicity may reflect structural and/or frictional lateral heterogeneity in this part of the Himalayan fault system. Such along-strike variations play an important role in rupture complexities and

  9. Space-time behavior of continental intraplate earthquakes and implications for hazard assessment in China and the Central U.S.

    Science.gov (United States)

    Stein, Seth; Liu, Mian; Luo, Gang; Wang, Hui

    2014-05-01

    Earthquakes in midcontinents and those at plate boundaries behave quite differently in space and time, owing to the geometry of faults and the rate at which they are loaded. Faults at plate boundaries are loaded at constant rates by steady relative plate motion. Consequently, earthquakes concentrate along the plate boundary faults, and show quasi-periodic occurrences, although the actual temporal patterns are often complicated. However, in midcontinents, the tectonic loading is shared by a complex system of interacting faults spread over a large region, such that a large earthquake on one fault could increase the loading rates on remote faults in the system. Because the low tectonic loading rate is shared by many faults in midcontinents, individual faults may remain dormant for a long time and then become active for a short period. The resulting earthquakes are therefore episodic and spatially migrating. These effects can be seen in many areas, with a prime example being a 2000-year record from North China, which shows migration of large earthquakes between fault systems spread over a large region such that no large earthquakes rupture the same fault segment twice. Because seismic activity within mid-continents is usually much lower than that along plate boundary zones, even small earthquakes can cause widespread concerns, especially when these events occur in the source regions of previous large earthquakes. However, these small earthquakes may be aftershocks that continue for decades or even longer, because aftershock sequences often last much longer in midcontinents where tectonic loading is slow, than at plate boundaries. The recent seismicity in the Tangshan region in North China is likely aftershocks of the 1976 M7.8 Tangshan earthquake. Similarly, current seismicity in the New Madrid seismic zone in central U.S. appears to be aftershocks of a cluster of M ~7.0 events in 1811-1812. These large events and similar events in the past millennium release strain

  10. Earthquake Tests of Reinforced Concrete Frames

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Nielsen, Søren R.K.; Kirkegaard, Poul Henning

    1997-01-01

    the equilibrium state. Afterwards the test structure is subjected to the three strong ground motion oscillations where the two first sequences are followed by a free decay test. No free decay test was performed after the third earthquake due to collapse of the test structure during the third strong motion...

  11. Earthquake Tests of Reinforced Concrete Frames

    DEFF Research Database (Denmark)

    Skjærbæk, P. S.; Nielsen, Søren R.K.; Kirkegaard, Poul Henning

    1996-01-01

    the equilibrium state. Afterwards the test structure is subjected to the three strong ground motion oscillations where the two first sequences are followed by a free decay test. No free decay test was performed after the third earthquake due to collapse of the test structure during the third strong motion...

  12. [Comment on “Should Memphis build for California's earthquakes?”] from S.E. Hough

    Science.gov (United States)

    Hough, Susan E.

    The recent article by Seth Stein, Joseph Tomasello, and Andrew Newman raised thought-provoking questions about one of the most vexing open issues in hazard assessment in the United States: the hazard posed by ostensibly infrequent, large, mid-continental earthquakes. Many of the technical issues raised by this article are addressed by A. D. Frankel in the accompanying comment. I concur with this, and will only address and/or elaborate on a few additional issues here: (1) Detailed paleoseismic investigations have shown that the New Madrid region experienced sequences of large earthquakes around 900 and 1450 A.D.in addition to the historic events in 1811-1812. With a repeat time on the order of 400-500 years, these cannot be considered infrequent events. Paleoseismic investigations also reveal evidence that the prehistoric “events” were also sequences of two to three large earthquakes with a similar overall distribution of liquefaction in the greater New Madrid region as produced by the 1811-1812 sequence [Tuttle et al., 2002]. And if, as evidence suggests, the zone produces characteristic earthquakes, one will not see a commensurate rate of moderate events, as would be the case if seismicity followed the Gutenburg-Richter distribution.

  13. 1964 Great Alaska Earthquake: a photographic tour of Anchorage, Alaska

    Science.gov (United States)

    Thoms, Evan E.; Haeussler, Peter J.; Anderson, Rebecca D.; McGimsey, Robert G.

    2014-01-01

    On March 27, 1964, at 5:36 p.m., a magnitude 9.2 earthquake, the largest recorded earthquake in U.S. history, struck southcentral Alaska (fig. 1). The Great Alaska Earthquake (also known as the Good Friday Earthquake) occurred at a pivotal time in the history of earth science, and helped lead to the acceptance of plate tectonic theory (Cox, 1973; Brocher and others, 2014). All large subduction zone earthquakes are understood through insights learned from the 1964 event, and observations and interpretations of the earthquake have influenced the design of infrastructure and seismic monitoring systems now in place. The earthquake caused extensive damage across the State, and triggered local tsunamis that devastated the Alaskan towns of Whittier, Valdez, and Seward. In Anchorage, the main cause of damage was ground shaking, which lasted approximately 4.5 minutes. Many buildings could not withstand this motion and were damaged or collapsed even though their foundations remained intact. More significantly, ground shaking triggered a number of landslides along coastal and drainage valley bluffs underlain by the Bootlegger Cove Formation, a composite of facies containing variably mixed gravel, sand, silt, and clay which were deposited over much of upper Cook Inlet during the Late Pleistocene (Ulery and others, 1983). Cyclic (or strain) softening of the more sensitive clay facies caused overlying blocks of soil to slide sideways along surfaces dipping by only a few degrees. This guide is the document version of an interactive web map that was created as part of the commemoration events for the 50th anniversary of the 1964 Great Alaska Earthquake. It is accessible at the U.S. Geological Survey (USGS) Alaska Science Center website: http://alaska.usgs.gov/announcements/news/1964Earthquake/. The website features a map display with suggested tour stops in Anchorage, historical photographs taken shortly after the earthquake, repeat photography of selected sites, scanned documents

  14. Implications of fault constitutive properties for earthquake prediction.

    Science.gov (United States)

    Dieterich, J H; Kilgore, B

    1996-04-30

    The rate- and state-dependent constitutive formulation for fault slip characterizes an exceptional variety of materials over a wide range of sliding conditions. This formulation provides a unified representation of diverse sliding phenomena including slip weakening over a characteristic sliding distance Dc, apparent fracture energy at a rupture front, time-dependent healing after rapid slip, and various other transient and slip rate effects. Laboratory observations and theoretical models both indicate that earthquake nucleation is accompanied by long intervals of accelerating slip. Strains from the nucleation process on buried faults generally could not be detected if laboratory values of Dc apply to faults in nature. However, scaling of Dc is presently an open question and the possibility exists that measurable premonitory creep may precede some earthquakes. Earthquake activity is modeled as a sequence of earthquake nucleation events. In this model, earthquake clustering arises from sensitivity of nucleation times to the stress changes induced by prior earthquakes. The model gives the characteristic Omori aftershock decay law and assigns physical interpretation to aftershock parameters. The seismicity formulation predicts large changes of earthquake probabilities result from stress changes. Two mechanisms for foreshocks are proposed that describe observed frequency of occurrence of foreshock-mainshock pairs by time and magnitude. With the first mechanism, foreshocks represent a manifestation of earthquake clustering in which the stress change at the time of the foreshock increases the probability of earthquakes at all magnitudes including the eventual mainshock. With the second model, accelerating fault slip on the mainshock nucleation zone triggers foreshocks.

  15. Some comments on the Shiva spaceframe earthquake damage

    International Nuclear Information System (INIS)

    Hurley, C.A.

    1980-01-01

    On January 24, 1980, at 11:00 a.m., an earthquake, measuring 5.5 on the Richter scale, shook the Livermore Valley. There were three very pronounced shocks, the first at 5.5 followed by two, one at 5.2 and the other at 4.8, on the Richter scale. The Shiva spaceframe was shaken out of alignment. Shiva consists of two frames, a laser frame and a target frame. Components on each frame stayed within alignment with respect to each other, but the target frame moved with respect to the laser frame. Shearing of the seismic anchor bolts on the target frame was responsible for this misalignment. This was the third in a series of earthquakes for Shiva, the first occurring on June 20, 1977 at a magnitude of 4.7 on the Richter scale and an epicenter 2 miles away. The second quake was on August 6, 1979, with a magnitude of 5.9 and the epicenter 60 miles away. There was no damage or misalignment due to these first two earthquakes. The third however, severely tested the Shiva system and will be the subject of this report. Accelerometers were not in operation on the system so we do not know what the acceleration forces were. Our subsequent investigation, however, gives us some indication of these forces

  16. Overview of the critical disaster management challenges faced during Van 2011 earthquakes.

    Science.gov (United States)

    Tolon, Mert; Yazgan, Ufuk; Ural, Derin N; Goss, Kay C

    2014-01-01

    On October 23, 2011, a M7.2 earthquake caused damage in a widespread area in the Van province located in eastern Turkey. This strong earthquake was followed by a M5.7 earthquake on November 9, 2011. This sequence of damaging earthquakes led to 644 fatalities. The management during and after these earthquake disaster imposed many critical challenges. In this article, an overview of these challenges is presented based on the observations by the authors in the aftermath of this disaster. This article presents the characteristics of 2011 Van earthquakes. Afterward, the key information related to the four main phases (ie, preparedness, mitigation, response, and recovery) of the disaster in Van is presented. The potential strategies that can be taken to improve the disaster management practice are identified, and a set of recommendations are proposed to improve the existing situation.

  17. Effects of realistic topography on the ground motion of the Colombian Andes - A case study at the Aburrá Valley, Antioquia

    Science.gov (United States)

    Restrepo, Doriam; Bielak, Jacobo; Serrano, Ricardo; Gómez, Juan; Jaramillo, Juan

    2016-03-01

    This paper presents a set of deterministic 3-D ground motion simulations for the greater metropolitan area of Medellín in the Aburrá Valley, an earthquake-prone region of the Colombian Andes that exhibits moderate-to-strong topographic irregularities. We created the velocity model of the Aburrá Valley region (version 1) using the geological structures as a basis for determining the shear wave velocity. The irregular surficial topography is considered by means of a fictitious domain strategy. The simulations cover a 50 × 50 × 25 km3 volume, and four Mw = 5 rupture scenarios along a segment of the Romeral fault, a significant source of seismic activity in Colombia. In order to examine the sensitivity of ground motion to the irregular topography and the 3-D effects of the valley, each earthquake scenario was simulated with three different models: (i) realistic 3-D velocity structure plus realistic topography, (ii) realistic 3-D velocity structure without topography, and (iii) homogeneous half-space with realistic topography. Our results show how surface topography affects the ground response. In particular, our findings highlight the importance of the combined interaction between source-effects, source-directivity, focusing, soft-soil conditions, and 3-D topography. We provide quantitative evidence of this interaction and show that topographic amplification factors can be as high as 500 per cent at some locations. In other areas within the valley, the topographic effects result in relative reductions, but these lie in the 0-150 per cent range.

  18. Statistical properties of earthquakes clustering

    Directory of Open Access Journals (Sweden)

    A. Vecchio

    2008-04-01

    Full Text Available Often in nature the temporal distribution of inhomogeneous stochastic point processes can be modeled as a realization of renewal Poisson processes with a variable rate. Here we investigate one of the classical examples, namely, the temporal distribution of earthquakes. We show that this process strongly departs from a Poisson statistics for both catalogue and sequence data sets. This indicate the presence of correlations in the system probably related to the stressing perturbation characterizing the seismicity in the area under analysis. As shown by this analysis, the catalogues, at variance with sequences, show common statistical properties.

  19. Ground motions estimates for a cascadia earthquake from liquefaction evidence

    Science.gov (United States)

    Dickenson, S.E.; Obermeier, S.F.

    1998-01-01

    Paleoseismic studies conducted in the coastal regions of the Pacific Northwest in the past decade have revealed evidence of crustal downdropping and subsequent tsunami inundation, attributable to a large earthquake along the Cascadia subduction zone which occurred approximately 300 years ago, and most likely in 1700 AD. In order to characterize the severity of ground motions from this earthquake, we report on results of a field search for seismically induced liquefaction features. The search was made chiefly along the coastal portions of several river valleys in Washington, rivers along the central Oregon coast, as well as on islands in the Columbia River of Oregon and Washington. In this paper we focus only on the results of the Columbia River investigation. Numerous liquefaction features were found in some regions, but not in others. The regional distribution of liquefaction features is evaluated as a function of geologic and geotechnical factors at each site in order to estimate the intensity of ground shaking.

  20. Global risk of big earthquakes has not recently increased.

    Science.gov (United States)

    Shearer, Peter M; Stark, Philip B

    2012-01-17

    The recent elevated rate of large earthquakes has fueled concern that the underlying global rate of earthquake activity has increased, which would have important implications for assessments of seismic hazard and our understanding of how faults interact. We examine the timing of large (magnitude M≥7) earthquakes from 1900 to the present, after removing local clustering related to aftershocks. The global rate of M≥8 earthquakes has been at a record high roughly since 2004, but rates have been almost as high before, and the rate of smaller earthquakes is close to its historical average. Some features of the global catalog are improbable in retrospect, but so are some features of most random sequences--if the features are selected after looking at the data. For a variety of magnitude cutoffs and three statistical tests, the global catalog, with local clusters removed, is not distinguishable from a homogeneous Poisson process. Moreover, no plausible physical mechanism predicts real changes in the underlying global rate of large events. Together these facts suggest that the global risk of large earthquakes is no higher today than it has been in the past.

  1. Numerical Benchmark of 3D Ground Motion Simulation in the Alpine valley of Grenoble, France.

    Science.gov (United States)

    Tsuno, S.; Chaljub, E.; Cornou, C.; Bard, P.

    2006-12-01

    Thank to the use of sophisticated numerical methods and to the access to increasing computational resources, our predictions of strong ground motion become more and more realistic and need to be carefully compared. We report our effort of benchmarking numerical methods of ground motion simulation in the case of the valley of Grenoble in the French Alps. The Grenoble valley is typical of a moderate seismicity area where strong site effects occur. The benchmark consisted in computing the seismic response of the `Y'-shaped Grenoble valley to (i) two local earthquakes (Mlhandle surface topography, the other half comprises predictions based upon 1D (2 contributions), 2D (4 contributions) and empirical Green's function (EGF) (3 contributions) methods. Maximal frequency analysed ranged between 2.5 Hz for 3D calculations and 40 Hz for EGF predictions. We present a detailed comparison of the different predictions using raw indicators (e.g. peak values of ground velocity and acceleration, Fourier spectra, site over reference spectral ratios, ...) as well as sophisticated misfit criteria based upon previous works [2,3]. We further discuss the variability in estimating the importance of particular effects such as non-linear rheology, or surface topography. References: [1] Thouvenot F. et al., The Belledonne Border Fault: identification of an active seismic strike-slip fault in the western Alps, Geophys. J. Int., 155 (1), p. 174-192, 2003. [2] Anderson J., Quantitative measure of the goodness-of-fit of synthetic seismograms, proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, paper #243, 2004. [3] Kristekova M. et al., Misfit Criteria for Quantitative Comparison of Seismograms, Bull. Seism. Soc. Am., in press, 2006.

  2. Permeability, storage and hydraulic diffusivity controlled by earthquakes

    Science.gov (United States)

    Brodsky, E. E.; Fulton, P. M.; Xue, L.

    2016-12-01

    Earthquakes can increase permeability in fractured rocks. In the farfield, such permeability increases are attributed to seismic waves and can last for months after the initial earthquake. Laboratory studies suggest that unclogging of fractures by the transient flow driven by seismic waves is a viable mechanism. These dynamic permeability increases may contribute to permeability enhancement in the seismic clouds accompanying hydraulic fracking. Permeability enhancement by seismic waves could potentially be engineered and the experiments suggest the process will be most effective at a preferred frequency. We have recently observed similar processes inside active fault zones after major earthquakes. A borehole observatory in the fault that generated the M9.0 2011 Tohoku earthquake reveals a sequence of temperature pulses during the secondary aftershock sequence of an M7.3 aftershock. The pulses are attributed to fluid advection by a flow through a zone of transiently increased permeability. Directly after the M7.3 earthquake, the newly damaged fault zone is highly susceptible to further permeability enhancement, but ultimately heals within a month and becomes no longer as sensitive. The observation suggests that the newly damaged fault zone is more prone to fluid pulsing than would be expected based on the long-term permeability structure. Even longer term healing is seen inside the fault zone of the 2008 M7.9 Wenchuan earthquake. The competition between damage and healing (or clogging and unclogging) results in dynamically controlled permeability, storage and hydraulic diffusivity. Recent measurements of in situ fault zone architecture at the 1-10 meter scale suggest that active fault zones often have hydraulic diffusivities near 10-2 m2/s. This uniformity is true even within the damage zone of the San Andreas fault where permeability and storage increases balance each other to achieve this value of diffusivity over a 400 m wide region. We speculate that fault zones

  3. Lessons learned from the 2016 Kumamoto earthquake: Building damages and behavior of seismically isolated buildings

    Science.gov (United States)

    Morita, Keiko; Takayama, Mineo

    2017-10-01

    Powerful earthquakes stuck Kumamoto and Oita Prefectures in Kyushu, Japan. It began with the Magnitude 6.5 foreshock at 21:26 JST 14 April, followed by the Magnitude 7.3 mainshock at 1:25 JST 16 April, 2016. The sequence earthquakes also involved more than 1700 perceptible earthquakes as of 13 June. The entire sequence was named the 2016 Kumamoto earthquake by the Japan Meteorological Agency. Thousands of buildings and many roads were damaged, and landslides occurred. The Japanese building standard law is revised in 1981. Structural damages were concentrated on buildings constructed prior to 1981. The area of Mashiki and Southern Aso were most badly affected, especially wooden houses extremely damaged. In Japan, Prof. Hideyuki Tada (title at the time) undertook research on laminated rubber bearings in 1978, and put it into practical use in 1981. The single family house at Yachiyodai, Chiba Prefecture is completed in 1983, it's the first seismically isolated building which is installed laminated rubber bearings in Japan. Afterward, this system is gradually adopted to mainly office buildings, like a research laboratory, a hospital, a computer center and other offices. In the 1994 Northridge earthquake, the 1995 Kobe earthquake and 2011 Tohoku earthquake, seismically isolated buildings improve these good performances, and recently number of the buildings have increased, mainly high risk area of earthquakes. Many people believed that Kumamoto was a low risk area. But there were 24 seismically isolated buildings in Kumamoto Prefecture at the time. The seismically isolated buildings indicated excellent performances during the earthquakes. They protected people, buildings and other important facilities from damages caused by the earthquake. The purpose of this paper is to discuss lessons learned from the 2016 Kumamoto earthquake and behavior of seismically isolated buildings in the earthquake.

  4. Do I Really Sound Like That? Communicating Earthquake Science Following Significant Earthquakes at the NEIC

    Science.gov (United States)

    Hayes, G. P.; Earle, P. S.; Benz, H.; Wald, D. J.; Yeck, W. L.

    2017-12-01

    The U.S. Geological Survey's National Earthquake Information Center (NEIC) responds to about 160 magnitude 6.0 and larger earthquakes every year and is regularly inundated with information requests following earthquakes that cause significant impact. These requests often start within minutes after the shaking occurs and come from a wide user base including the general public, media, emergency managers, and government officials. Over the past several years, the NEIC's earthquake response has evolved its communications strategy to meet the changing needs of users and the evolving media landscape. The NEIC produces a cascade of products starting with basic hypocentral parameters and culminating with estimates of fatalities and economic loss. We speed the delivery of content by prepositioning and automatically generating products such as, aftershock plots, regional tectonic summaries, maps of historical seismicity, and event summary posters. Our goal is to have information immediately available so we can quickly address the response needs of a particular event or sequence. This information is distributed to hundreds of thousands of users through social media, email alerts, programmatic data feeds, and webpages. Many of our products are included in event summary posters that can be downloaded and printed for local display. After significant earthquakes, keeping up with direct inquiries and interview requests from TV, radio, and print reports is always challenging. The NEIC works with the USGS Office of Communications and the USGS Science Information Services to organize and respond to these requests. Written executive summaries reports are produced and distributed to USGS personnel and collaborators throughout the country. These reports are updated during the response to keep our message consistent and information up to date. This presentation will focus on communications during NEIC's rapid earthquake response but will also touch on the broader USGS traditional and

  5. Seismic investigation of the Nuclear Fuel Services, Inc., Reprocessing Plant at West Valley, New York

    International Nuclear Information System (INIS)

    Endebrock, E.G.; Bartholomew, R.J.; Bennett, J.G.; Brasier, R.I.; Corcoran, W.F.

    1978-03-01

    An investigation was undertaken to determine the earthquake level at which the Nuclear Fuel Service, Inc., Reprocessing Plant at West Valley, New York, could first experience a predefined structural failure. The effort was divided into tasks of evaluating soil-structure interaction, determining overall facility motion, and analyzing the substructures. The analysis included using two- and three-dimensional finite element computer codes. Shear wall failure, cell flexural failure (beam action), and foundation (pile) failure were identified as possible structural failure types. The cells that contain radioactive materials and that are required to confine such materials during an earthquake should remain intact up to 0.20 g's. At the same loading, the piles supporting the confinement cells could undergo displacements sufficient to cause fracture of piping between nonmonolithically connected cells

  6. The HayWired Earthquake Scenario

    Science.gov (United States)

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    interconnectedness of infrastructure, society, and our economy. How would this earthquake scenario, striking close to Silicon Valley, impact our interconnected world in ways and at a scale we have not experienced in any previous domestic earthquake?The area of present-day Contra Costa, Alameda, and Santa Clara Counties contended with a magnitude-6.8 earthquake in 1868 on the Hayward Fault. Although sparsely populated then, about 30 people were killed and extensive property damage resulted. The question of what an earthquake like that would do today has been examined before and is now revisited in the HayWired scenario. Scientists have documented a series of prehistoric earthquakes on the Hayward Fault and are confident that the threat of a future earthquake, like that modeled in the HayWired scenario, is real and could happen at any time. The team assembled to build this scenario has brought innovative new approaches to examining the natural hazards, impacts, and consequences of such an event. Such an earthquake would also be accompanied by widespread liquefaction and landslides, which are treated in greater detail than ever before. The team also considers how the now-prototype ShakeAlert earthquake early warning system could provide useful public alerts and automatic actions.Scientific Investigations Report 2017–5013 and accompanying data releases are the products of an effort led by the USGS, but this body of work was created through the combined efforts of a large team including partners who have come together to form the HayWired Coalition (see chapter A). Use of the HayWired scenario has already begun. More than a full year of intensive partner engagement, beginning in April 2017, is being directed toward producing the most in-depth look ever at the impacts and consequences of a large earthquake on the Hayward Fault. With the HayWired scenario, our hope is to encourage and support the active ongoing engagement of the entire community of the San Francisco Bay region by

  7. Foreshocks and aftershocks of the Great 1857 California earthquake

    Science.gov (United States)

    Meltzner, A.J.; Wald, D.J.

    1999-01-01

    The San Andreas fault is the longest fault in California and one of the longest strike-slip faults anywhere in the world, yet we know little about many aspects of its behavior before, during, and after large earthquakes. We conducted a study to locate and to estimate magnitudes for the largest foreshocks and aftershocks of the 1857 M 7.9 Fort Tejon earthquake on the central and southern segments of the fault. We began by searching archived first-hand accounts from 1857 through 1862, by grouping felt reports temporally, and by assigning modified Mercalli intensities to each site. We then used a modified form of the grid-search algorithm of Bakum and Wentworth, derived from empirical analysis of modern earthquakes, to find the location and magnitude most consistent with the assigned intensities for each of the largest events. The result confirms a conclusion of Sieh that at least two foreshocks ('dawn' and 'sunrise') located on or near the Parkfield segment of the San Andreas fault preceded the mainshock. We estimate their magnitudes to be M ~ 6.1 and M ~ 5.6, respectively. The aftershock rate was below average but within one standard deviation of the number of aftershocks expected based on statistics of modern southern California mainshock-aftershock sequences. The aftershocks included two significant events during the first eight days of the sequence, with magnitudes M ~ 6.25 and M ~ 6.7, near the southern half of the rupture; later aftershocks included a M ~ 6 event near San Bernardino in December 1858 and a M ~ 6.3 event near the Parkfield segment in April 1860. From earthquake logs at Fort Tejon, we conclude that the aftershock sequence lasted a minimum of 3.75 years.

  8. Searching for the seafloor signature of the 21 May 2003 Boumerdès earthquake offshore central Algeria

    Directory of Open Access Journals (Sweden)

    A. Cattaneo

    2012-07-01

    Full Text Available Shaking by moderate to large earthquakes in the Mediterranean Sea has proved in the past to potentially trigger catastrophic sediment collapse and flow. On 21 May 2003, a magnitude 6.8 earthquake located near Boumerdès (central Algerian coast triggered large turbidity currents responsible for 29 submarine cable breaks at the foot of the continental slope over ~150 km from west to east. Seafloor bathymetry and backscatter imagery show the potential imprints of the 2003 event and of previous events. Large slope scarps resulting from active deformation may locally enhance sediment instabilities, although faults are not directly visible at the seafloor. Erosion is evident at the foot of the margin and along the paths of the numerous canyons and valleys. Cable breaks are located at the outlets of submarine valleys and in areas of turbiditic levee overspilling and demonstrate the multi-source and multi-path character of the 2003 turbiditic event. Rough estimates of turbidity flow velocity are not straightforward because of the multiple breaks along the same cable, but seem compatible with those measured in other submarine cable break studies elsewhere.

    While the signature of the turbidity currents is mostly erosional on the continental slope, turbidite beds alternating with hemipelagites accumulate in the distal reaches of sediment dispersal systems. In perspective, more chronological work on distal turbidite successions offshore Algeria offers promising perspectives for paleoseismology reconstructions based on turbidite dating, if synchronous turbidites along independent sedimentary dispersal systems are found to support triggering by major earthquakes. Preliminary results on sediment core PSM-KS23 off Boumerdès typically show a 800-yr interval between turbidites during the Holocene, in accordance with the estimated mean seismic cycle on land, even if at this stage it is not yet possible to prove the earthquake origin of all the turbidites.

  9. Using Earthquake Analysis to Expand the Oklahoma Fault Database

    Science.gov (United States)

    Chang, J. C.; Evans, S. C.; Walter, J. I.

    2017-12-01

    The Oklahoma Geological Survey (OGS) is compiling a comprehensive Oklahoma Fault Database (OFD), which includes faults mapped in OGS publications, university thesis maps, and industry-contributed shapefiles. The OFD includes nearly 20,000 fault segments, but the work is far from complete. The OGS plans on incorporating other sources of data into the OFD, such as new faults from earthquake sequence analyses, geologic field mapping, active-source seismic surveys, and potential fields modeling. A comparison of Oklahoma seismicity and the OFD reveals that earthquakes in the state appear to nucleate on mostly unmapped or unknown faults. Here, we present faults derived from earthquake sequence analyses. From 2015 to present, there has been a five-fold increase in realtime seismic stations in Oklahoma, which has greatly expanded and densified the state's seismic network. The current seismic network not only improves our threshold for locating weaker earthquakes, but also allows us to better constrain focal plane solutions (FPS) from first motion analyses. Using nodal planes from the FPS, HypoDD relocation, and historic seismic data, we can elucidate these previously unmapped seismogenic faults. As the OFD is a primary resource for various scientific investigations, the inclusion of seismogenic faults improves further derivative studies, particularly with respect to seismic hazards. Our primal focus is on four areas of interest, which have had M5+ earthquakes in recent Oklahoma history: Pawnee (M5.8), Prague (M5.7), Fairview (M5.1), and Cushing (M5.0). Subsequent areas of interest will include seismically active data-rich areas, such as the central and northcentral parts of the state.

  10. Correlations between solid tides and worldwide earthquakes MS ≥ 7.0 since 1900

    Directory of Open Access Journals (Sweden)

    Q. H. Xu

    2012-03-01

    Full Text Available Most studies on the correlations between earthquakes and solid tides mainly concluded the syzygies (i.e. new or full moons of each lunar cycle have more earthquakes than other days in the month. We show a correlation between the aftershock sequence of the ML = 6.3 Christchurch, New Zealand, earthquake and the diurnal solid tide. Ms ≥ 7 earthquakes worldwide since 1900 are more likely to occur during the 0°, 90°, 180° or 270° phases (i.e. earthquake-prone phases of the semidiurnal solid earth tidal curve (M2. Thus, the semidiurnal solid tides triggers earthquakes. However, the long-term triggering effect of the lunar periodicity is uncertain. This proposal is helpful in defining possible origin times of aftershocks several days after a mainshock and can be used for warning of subsequent larger shocks.

  11. Observations of static Coulomb stress triggering of the November 2011 M5.7 Oklahoma earthquake sequence

    Science.gov (United States)

    Sumy, Danielle F.; Cochran, Elizabeth S.; Keranen, Katie M.; Wei, Maya; Abers, Geoffrey A.

    2014-01-01

    In November 2011, a M5.0 earthquake occurred less than a day before a M5.7 earthquake near Prague, Oklahoma, which may have promoted failure of the mainshock and thousands of aftershocks along the Wilzetta fault, including a M5.0 aftershock. The M5.0 foreshock occurred in close proximity to active fluid injection wells; fluid injection can cause a buildup of pore fluid pressure, decrease the fault strength, and may induce earthquakes. Keranen et al. [2013] links the M5.0 foreshock with fluid injection, but the relationship between the foreshock and successive events has not been investigated. Here we examine the role of coseismic Coulomb stress transfer on earthquakes that follow the M5.0 foreshock, including the M5.7 mainshock. We resolve the static Coulomb stress change onto the focal mechanism nodal plane that is most consistent with the rupture geometry of the three M ≥ 5.0 earthquakes, as well as specified receiver fault planes that reflect the regional stress orientation. We find that Coulomb stress is increased, e.g., fault failure is promoted, on the nodal planes of ~60% of the events that have focal mechanism solutions, and more specifically, that the M5.0 foreshock promoted failure on the rupture plane of the M5.7 mainshock. We test our results over a range of effective coefficient of friction values. Hence, we argue that the M5.0 foreshock, induced by fluid injection, potentially triggered a cascading failure of earthquakes along the complex Wilzetta fault system.

  12. Seismic micro-zoning in the alpine valleys and local application in urban planning regulations

    Directory of Open Access Journals (Sweden)

    Stéphane Cartier

    2009-03-01

    Full Text Available Confrontées au risque sismique, les vallées sédimentaires alpines testent différentes solutions politiques pour transcrire en règles d’urbanisme les connaissances apportées par les micro-zonages. France, Italie, Slovénie et Suisse composent avec leur tradition politique et l’adoption de codes européens pour améliorer la sécurité selon la vulnérabilité et la géologie locales.Management of earthquake risks in the sedimentary valleys of the Alps depends on the ability to transcribe scientific knowledge obtained from micro-zoning into urban planning regulations. France, Italy, Slovenia and Switzerland are working with new European codes, and within their respective political contexts, to improve earthquake safety on the basis of enhanced input on local geological conditions and vulnerability levels.

  13. Simulation of channel sandstone architecture in an incised valley

    Energy Technology Data Exchange (ETDEWEB)

    Frykman, P.; Johannessen, P.; Andsbjerg, J.

    1998-12-31

    The present report describes a geostatistical modelling study that is aimed at reflecting the architecture of the channel sandstones in an incised valley fill. The example used for this study is a part of the Middle Jurassic sandy succession of the Bryne Formation in the Danish central Graben. The succession consists mainly of fluvial sediments in the lower part, overlain by tidal influenced sediments, which again is overlain by shallow marine sediments. The modelling study has been performed on a sequence of incised valley sediments in the upper part of the Bryne Formation overlying fluvial sediments. (au) EFP-96. 19 refs.

  14. Streamflow responses in Chile to megathrust earthquakes in the 20th and 21st centuries

    Science.gov (United States)

    Mohr, Christian; Manga, Michael; Wang, Chi-yuen; Korup, Oliver

    2016-04-01

    Both coseismic static stress and dynamic stresses associated with seismic waves may cause responses in hydrological systems. Such responses include changes in the water level, hydrochemistry and streamflow discharge. Earthquake effects on hydrological systems provide a means to study the interaction between stress changes and regional hydrology, which is otherwise rarely possible. Chile is a country of frequent and large earthquakes and thus provides abundant opportunities to study such interactions and processes. We analyze streamflow responses in Chile to several megathrust earthquakes, including the 1943 Mw 8.1 Coquimbo, 1950 Mw 8.2 Antofagasta, 1960 Mw 9.5 Valdivia, 1985 Mw 8.0 Valparaiso, 1995 Mw 8.0 Antofagasta, 2010 Mw 8.8 Maule, and the 2014 Mw 8.2 Iquique earthquakes. We use data from 716 stream gauges distributed from the Altiplano in the North to Tierra del Fuego in the South. This network covers the Andes mountain ranges, the central valley, the Coastal Mountain ranges and (mainly in the more southern parts) the Coastal flats. We combine empirical magnitude-distance relationships, machine learning tools, and process-based modeling to characterize responses. We first assess the streamflow anomalies and relate these to topographical, hydro-climatic, geological and earthquake-related (volumetric and dynamic strain) factors using various classifiers. We then apply 1D-groundwater flow modeling to selected catchments in order to test competing hypotheses for the origin of streamflow changes. We show that the co-seismic responses of streamflow mostly involved increasing discharges. We conclude that enhanced vertical permeability can explain most streamflow responses at the regional scale. The total excess water released by a single earthquake, i.e. the Maule earthquake, yielded up to 1 km3. Against the background of megathrust earthquakes frequently hitting Chile, the amount of water released by earthquakes is substantial, particularly for the arid northern

  15. The January 2014 Northern Cuba Earthquake Sequence - Unusual Location and Unexpected Source Mechanism Variability

    Science.gov (United States)

    Braunmiller, J.; Thompson, G.; McNutt, S. R.

    2017-12-01

    On 9 January 2014, a magnitude Mw=5.1 earthquake occurred along the Bahamas-Cuba suture at the northern coast of Cuba revealing a surprising seismic hazard source for both Cuba and southern Florida where it was widely felt. Due to its location, the event and its aftershocks (M>3.5) were recorded only at far distances (300+ km) resulting in high-detection thresholds, low location accuracy, and limited source parameter resolution. We use three-component regional seismic data to study the sequence. High-pass filtered seismograms at the closest site in southern Florida are similar in character suggesting a relatively tight event cluster and revealing additional, smaller aftershocks not included in the ANSS or ISC catalogs. Aligning on the P arrival and low-pass filtering (T>10 s) uncovers a surprise polarity flip of the large amplitude surface waves on vertical seismograms for some aftershocks relative to the main shock. We performed regional moment tensor inversions of the main shock and its largest aftershocks using complete three-component seismograms from stations distributed throughout the region to confirm the mechanism changes. Consistent with the GCMT solution, we find an E-W trending normal faulting mechanism for the main event and for one immediate aftershock. Two aftershocks indicate E-W trending reverse faulting with essentially flipped P- and T-axes relative to the normal faulting events (and the same B-axes). Within uncertainties, depths of the two event families are indistinguishable and indicate shallow faulting (<10 km). One intriguing possible interpretation is that both families ruptured the same fault with reverse mechanisms compensating for overshooting. However, activity could also be spatially separated either vertically (with reverse mechanisms possibly below extension) or laterally. The shallow source depth and the 200-km long uplifted chain of islands indicate that larger, shallow and thus potentially tsunamigenic earthquakes could occur just

  16. Earthquake and nuclear explosion location using the global seismic network

    International Nuclear Information System (INIS)

    Lopez, L.M.

    1983-01-01

    The relocation of nuclear explosions, aftershock sequence and regional seismicity is addressed by using joint hypocenter determination, Lomnitz' distance domain location, and origin time and earthquake depth determination with local observations. Distance domain and joint hypocenter location are used for a stepwise relocation of nuclear explosions in the USSR. The resulting origin times are 2.5 seconds earlier than those obtained by ISC. Local travel times from the relocated explosions are compared to Jeffreys-Bullen tables. P times are found to be faster at 9-30 0 distances, the largest deviation being around 10 seconds at 13-18 0 . At these distances S travel times also are faster by approximately 20 seconds. The 1977 Sumba earthquake sequence is relocated by iterative joint hypocenter determination of events with most station reports. Simultaneously determined station corrections are utilized for the relocation of smaller aftershocks. The relocated hypocenters indicate that the aftershocks were initially concentrated along the deep trench. Origin times and depths are recalculated for intermediate depth and deep earthquakes using local observations in and around the Japanese Islands. It is found that origin time and depth differ systematically from ISC values for intermediate depth events. Origin times obtained for events below the crust down to 100 km depth are earlier, whereas no general bias seem to exist for origin times of events in the 100-400 km depth range. The recalculated depths for earthquakes shallower than 100 km are shallower than ISC depths. The depth estimates for earthquakes deeper than 100 km were increased by the recalculations

  17. Earthquake and nuclear explosion location using the global seismic network

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, L.M.

    1983-01-01

    The relocation of nuclear explosions, aftershock sequence and regional seismicity is addressed by using joint hypocenter determination, Lomnitz' distance domain location, and origin time and earthquake depth determination with local observations. Distance domain and joint hypocenter location are used for a stepwise relocation of nuclear explosions in the USSR. The resulting origin times are 2.5 seconds earlier than those obtained by ISC. Local travel times from the relocated explosions are compared to Jeffreys-Bullen tables. P times are found to be faster at 9-30/sup 0/ distances, the largest deviation being around 10 seconds at 13-18/sup 0/. At these distances S travel times also are faster by approximately 20 seconds. The 1977 Sumba earthquake sequence is relocated by iterative joint hypocenter determination of events with most station reports. Simultaneously determined station corrections are utilized for the relocation of smaller aftershocks. The relocated hypocenters indicate that the aftershocks were initially concentrated along the deep trench. Origin times and depths are recalculated for intermediate depth and deep earthquakes using local observations in and around the Japanese Islands. It is found that origin time and depth differ systematically from ISC values for intermediate depth events. Origin times obtained for events below the crust down to 100 km depth are earlier, whereas no general bias seem to exist for origin times of events in the 100-400 km depth range. The recalculated depths for earthquakes shallower than 100 km are shallower than ISC depths. The depth estimates for earthquakes deeper than 100 km were increased by the recalculations.

  18. Surface-seismic imaging for nehrp soil profile classifications and earthquake hazards in urban areas

    Science.gov (United States)

    Williams, R.A.; Stephenson, W.J.; Odum, J.K.

    1998-01-01

    We acquired high-resolution seismic-refraction data on the ground surface in selected areas of the San Fernando Valley (SFV) to help explain the earthquake damage patterns and the variation in ground motion caused by the 17 January 1994 magnitude 6.7 Northridge earthquake. We used these data to determine the compressional- and shear-wave velocities (Vp and Vs) at 20 aftershock recording sites to 30-m depth ( V??s30, and V??p30). Two other sites, located next to boreholes with downhole Vp and Vs data, show that we imaged very similar seismic-vefocity structures in the upper 40 m. Overall, high site response appears to be associated with tow Vs in the near surface, but there can be a wide rangepf site amplifications for a given NEHRP soil type. The data suggest that for the SFV, if the V??s30 is known, we can determine whether the earthquake ground motion will be amplified above a factor of 2 relative to a local rock site.

  19. Extensional Structures on the Po Valley Side of the Northern Apennines

    Science.gov (United States)

    Bettelli, G.; Vannucchi, P.; Capitani, M.

    2001-12-01

    The present-day tectonics of the Northern Apennines is characterized by extension in the inner Tyrrhenian side and compression in the outer Po Valley-Adriatic side. The boundary separating the two domains, extensional and compressional, is still largely undetermined and mainly based on geophysical data (focal mechanisms of earthquakes). Map-scale extensional structures have been studied only along the Tyrrhenian side of the Northern Apennines (Tuscany), while along the Po Valley-Adriatic area the field studies concentrated on compressional features. A new, detailed field mapping of the Po Valley side of the Northern Apennines carried out in the last ten years within the Emilia Romagna Geological Mapping Program has shown the presence of a large extensional fault crossing the high Bologna-Modena-Reggio Emilia provinces, from the Sillaro to the Val Secchia valleys. This Sillaro-Val Secchia Normal Fault (SVSNF) is NW-SE trending, NE dipping and about 80 km long. The age, based on the younger displaced deposits, is post-Miocene. The SVSNF is a primary regional structure separating the Tuscan foredeep units from the Ligurian Units in the south-east sector of the Northern Apennines, and it is responsible for the exhumation of the Tuscan foredeep units along the Apennine water divide. The sub-vertical, SW-NE trending faults, formerly interpreted as strike slip, are transfer faults associated to the extensional structure. A geological cross-section across the SVSNF testifies a former thickness reduction and lamination of the Ligurian Units, as documented in the field, in the innermost areas of the Bologna-Modena-Reggio Emilia hills, implying the occurrence of a former extensional fault. These data indicate that the NE side of the water divide has already gone under extension reducing the compressional domain to the Po Valley foothills and plain. They can also help in interpreting the complex Apennines kinematics.

  20. Correlation between Earthquakes and AE Monitoring of Historical Buildings in Seismic Areas

    Directory of Open Access Journals (Sweden)

    Giuseppe Lacidogna

    2015-12-01

    Full Text Available In this contribution a new method for evaluating seismic risk in regional areas based on the acoustic emission (AE technique is proposed. Most earthquakes have precursors, i.e., phenomena of changes in the Earth’s physical-chemical properties that take place prior to an earthquake. Acoustic emissions in materials and earthquakes in the Earth’s crust, despite the fact that they take place on very different scales, are very similar phenomena; both are caused by a release of elastic energy from a source located in a medium. For the AE monitoring, two important constructions of Italian cultural heritage are considered: the chapel of the “Sacred Mountain of Varallo” and the “Asinelli Tower” of Bologna. They were monitored during earthquake sequences in their relative areas. By using the Grassberger-Procaccia algorithm, a statistical method of analysis was developed that detects AEs as earthquake precursors or aftershocks. Under certain conditions it was observed that AEs precede earthquakes. These considerations reinforce the idea that the AE monitoring can be considered an effective tool for earthquake risk evaluation.

  1. Statistics and Analysis of the Relations between Rainstorm Floods and Earthquakes

    Directory of Open Access Journals (Sweden)

    Baodeng Hou

    2016-01-01

    Full Text Available The frequent occurrence of geophysical disasters under climate change has drawn Chinese scholars to pay their attention to disaster relations. If the occurrence sequence of disasters could be identified, long-term disaster forecast could be realized. Based on the Earth Degassing Effect (EDE which is valid, this paper took the magnitude, epicenter, and occurrence time of the earthquake, as well as the epicenter and occurrence time of the rainstorm floods as basic factors to establish an integrated model to study the correlation between rainstorm floods and earthquakes. 2461 severe earthquakes occurred in China or within 3000 km from China and the 169 heavy rainstorm floods occurred in China over the past 200+ years as the input data of the model. The computational results showed that although most of the rainstorm floods have nothing to do with the severe earthquakes from a statistical perspective, some floods might relate to earthquakes. This is especially true when the earthquakes happen in the vapor transmission zone where rainstorms lead to abundant water vapors. In this regard, earthquakes are more likely to cause big rainstorm floods. However, many cases of rainstorm floods could be found after severe earthquakes with a large extent of uncertainty.

  2. Evaluation of positive Rift Valley fever virus formalin-fixed paraffin embedded samples as a source of sequence data for retrospective phylogenetic analysis.

    Science.gov (United States)

    Mubemba, B; Thompson, P N; Odendaal, L; Coetzee, P; Venter, E H

    2017-05-01

    Rift Valley fever (RVF), caused by an arthropod borne Phlebovirus in the family Bunyaviridae, is a haemorrhagic disease that affects ruminants and humans. Due to the zoonotic nature of the virus, a biosafety level 3 laboratory is required for isolation of the virus. Fresh and frozen samples are the preferred sample type for isolation and acquisition of sequence data. However, these samples are scarce in addition to posing a health risk to laboratory personnel. Archived formalin-fixed, paraffin-embedded (FFPE) tissue samples are safe and readily available, however FFPE derived RNA is in most cases degraded and cross-linked in peptide bonds and it is unknown whether the sample type would be suitable as reference material for retrospective phylogenetic studies. A RT-PCR assay targeting a 490 nt portion of the structural G N glycoprotein encoding gene of the RVFV M-segment was applied to total RNA extracted from archived RVFV positive FFPE samples. Several attempts to obtain target amplicons were unsuccessful. FFPE samples were then analysed using next generation sequencing (NGS), i.e. Truseq ® (Illumina) and sequenced on the Miseq ® genome analyser (Illumina). Using reference mapping, gapped virus sequence data of varying degrees of shallow depth was aligned to a reference sequence. However, the NGS did not yield long enough contigs that consistently covered the same genome regions in all samples to allow phylogenetic analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Coastal evidence for Holocene subduction-zone earthquakes and tsunamis in central Chile

    Science.gov (United States)

    Dure, Tina; Cisternas, Marco; Horton, Benjamin; Ely, Lisa; Nelson, Alan R.; Wesson, Robert L.; Pilarczyk, Jessica

    2015-01-01

    The ∼500-year historical record of seismicity along the central Chile coast (30–34°S) is characterized by a series of ∼M 8.0–8.5 earthquakes followed by low tsunamis (tsunami (>10 m), but the frequency of such large events is unknown. We extend the seismic history of central Chile through a study of a lowland stratigraphic sequence along the metropolitan coast north of Valparaíso (33°S). At this site, higher relative sea level during the mid Holocene created a tidal marsh and the accommodation space necessary for sediment that preserves earthquake and tsunami evidence. Within this 2600-yr-long sequence, we traced six laterally continuous sand beds probably deposited by high tsunamis. Plant remains that underlie the sand beds were radiocarbon dated to 6200, 5600, 5000, 4400, 3800, and 3700 cal yr BP. Sediment properties and diatom assemblages of the sand beds—for example, anomalous marine planktonic diatoms and upward fining of silt-sized diatom valves—point to a marine sediment source and high-energy deposition. Grain-size analysis shows a strong similarity between inferred tsunami deposits and modern coastal sediment. Upward fining sequences characteristic of suspension deposition are present in five of the six sand beds. Despite the lack of significant lithologic changes between the sedimentary units under- and overlying tsunami deposits, we infer that the increase in freshwater siliceous microfossils in overlying units records coseismic uplift concurrent with the deposition of five of the sand beds. During our mid-Holocene window of evidence preservation, the mean recurrence interval of earthquakes and tsunamis is ∼500 years. Our findings imply that the frequency of historical earthquakes in central Chile is not representative of the greatest earthquakes and tsunamis that the central Chilean subduction zone has produced.

  4. Coastal evidence for Holocene subduction-zone earthquakes and tsunamis in central Chile

    Science.gov (United States)

    Dure, Tina; Cisternas, Marco; Horton, Benjamin; Ely, Lisa; Nelson, Alan R.; Wesson, Robert L.; Pilarczyk, Jessica

    2015-01-01

    The ∼500-year historical record of seismicity along the central Chile coast (30–34°S) is characterized by a series of ∼M 8.0–8.5 earthquakes followed by low tsunamis (10 m), but the frequency of such large events is unknown. We extend the seismic history of central Chile through a study of a lowland stratigraphic sequence along the metropolitan coast north of Valparaíso (33°S). At this site, higher relative sea level during the mid Holocene created a tidal marsh and the accommodation space necessary for sediment that preserves earthquake and tsunami evidence. Within this 2600-yr-long sequence, we traced six laterally continuous sand beds probably deposited by high tsunamis. Plant remains that underlie the sand beds were radiocarbon dated to 6200, 5600, 5000, 4400, 3800, and 3700 cal yr BP. Sediment properties and diatom assemblages of the sand beds—for example, anomalous marine planktonic diatoms and upward fining of silt-sized diatom valves—point to a marine sediment source and high-energy deposition. Grain-size analysis shows a strong similarity between inferred tsunami deposits and modern coastal sediment. Upward fining sequences characteristic of suspension deposition are present in five of the six sand beds. Despite the lack of significant lithologic changes between the sedimentary units under- and overlying tsunami deposits, we infer that the increase in freshwater siliceous microfossils in overlying units records coseismic uplift concurrent with the deposition of five of the sand beds. During our mid-Holocene window of evidence preservation, the mean recurrence interval of earthquakes and tsunamis is ∼500 years. Our findings imply that the frequency of historical earthquakes in central Chile is not representative of the greatest earthquakes and tsunamis that the central Chilean subduction zone has produced.

  5. Frictional properties and slip stability of active faults within carbonate-evaporite sequences: The role of dolomite and anhydrite

    NARCIS (Netherlands)

    Scuderi, M.M.; Niemeijer, A.R.; Collettini, C.; Marone, C.

    2013-01-01

    Seismological observations show that many destructive earthquakes nucleate within, or propagate through, thick sequences of carbonates and evaporites. For example, along the Apennines range (Italy) carbonate and evaporite sequences are present at hypocentral depths for recent major earthquakes

  6. Scale-free networks of earthquakes and aftershocks

    International Nuclear Information System (INIS)

    Baiesi, Marco; Paczuski, Maya

    2004-01-01

    We propose a metric to quantify correlations between earthquakes. The metric consists of a product involving the time interval and spatial distance between two events, as well as the magnitude of the first one. According to this metric, events typically are strongly correlated to only one or a few preceding ones. Thus a classification of events as foreshocks, main shocks, or aftershocks emerges automatically without imposing predetermined space-time windows. In the simplest network construction, each earthquake receives an incoming link from its most correlated predecessor. The number of aftershocks for any event, identified by its outgoing links, is found to be scale free with exponent γ=2.0(1). The original Omori law with p=1 emerges as a robust feature of seismicity, holding up to years even for aftershock sequences initiated by intermediate magnitude events. The broad distribution of distances between earthquakes and their linked aftershocks suggests that aftershock collection with fixed space windows is not appropriate

  7. Earthquakes

    Science.gov (United States)

    An earthquake happens when two blocks of the earth suddenly slip past one another. Earthquakes strike suddenly, violently, and without warning at any time of the day or night. If an earthquake occurs in a populated area, it may cause ...

  8. The 1996-2009 borehole dilatometer installations, operation, and maintenance at sites in Long Valley Caldera, CA

    Science.gov (United States)

    Myren, Glenn; Johnston, Malcolm; Mueller, Robert

    2011-01-01

    High seismicity levels with accelerating uplift (under the resurgent dome) in Long Valley caldera in the eastern Sierra Nevada from 1989 to 1997, triggered upgrades to dilational strainmeters and other instrumentation installed in the early 1980's following a series of magnitude 6 earthquakes. This included two additional high-resolution borehole strainmeters and replacement of the failed strainmeter at Devil's Postpile. The purpose of the borehole-monitoring network is to monitor crustal deformation and other geophysical parameters associated with volcanic intrusions and earthquakes in the Long Valley Caldera. Additional instrumentation was added at these sites to improve the capability of providing continuous monitoring of the magma source under the resurgent dome. Sites were selected in regions of hard crystalline rock, where the expected signals from magmatic activity were calculated to be a maximum and the probability of an earthquake of magnitude 4 or greater is large. For the most part, the dilatometers were installed near existing arrays of surface tiltmeters, seismometers, level line, and GPS arrays. At each site, attempts are made to separate tectonic and volcanic signals from known noise sources in each instrument type. Each of these sites was planned to be a multi-parameter monitoring site, which included measurements of 3-component seismic velocity and acceleration, borehole strain, tilt, pore pressure and magnetic field. Using seismicity, geophysical knowledge, geologic and topographic maps, and geologists recommendations, lists of preliminary sites were chosen. Additional requirements were access, and telemetry constraints. When the final site choice was made, a permit was obtained from the U.S. Forest Service. Following this selection process, two new borehole sites were installed on the north and south side of the Long Valley Caldera in June of 1999. One site was located near Big Spring Campground to the east of Crestview. The second site was

  9. Relocation of the 2010-2013 near the north coast of Papua earthquake sequence using Modified Joint Hypocenter Determination (MJHD) method

    International Nuclear Information System (INIS)

    Salomo, Dimas; Daryono,; Subakti, Hendri

    2015-01-01

    The accuracy of earthquake hypocenter position is necessary to analyze the tectonic conditions. This study aims to: (1) relocate the mainshock and aftershocks of the large earthquakes in Papua region i.e. June 16, 2010, April 21, 2012 and April 06, 2013 earthquake (2) determine the true fault plane, (3) estimate the area of the fracture, and (4) analyze the advantages and disadvantages of relocation with MJHD method in benefits for tectonic studies. This study used Modified Joint Hypocenter Determination (MJHD) method. Using P arrival phase data reported by the BMKG and openly available from website repogempa.bmkg.go.id, we relocated the mainshock of this large significant earthquake and its aftershocks. Then we identified the prefered fault planes from the candidate fault planes provided by the global CMT catalogue. The position of earthquakes was successfully relocated. The earthquakes mostly were clustered around the mainshock. Earthquakes that not clustered around mainshock are considered to be different mechanism from the mainshock. Relocation results indicate that the mainshock fault plane of June 16, 2010 earthquake is a field with strike 332o, dip 80o and −172o slip, the mainshock fault plane of April 21, 2012 earthquake is a field with strike 82o, dip 84o and 2o slip, the mainshock fault plane of April 06, 2013 earthquake is a field with strike 339o, dip 56o and −137o slip. Fault plane area estimated by cross section graphical method is an area of 2816.0 km2 (June 16, 2010), 906.2 km2 (April 21, 2012) and 1984.3 km2 (April 06, 2013). MJHD method has the advantage that it can calculate a lot of earthquakes simultaneously and has a station correction to account for lateral heterogeneity of the earth. This method successfully provides significant changes to improve the position of the depth of earthquakes that most of the hypocenter depth manually specified as a fixed depth (± 10 km). But this method cannot be sure that the hypocenters derived from the

  10. Complex rupture process of the Mw 7.8, 2016, Kaikoura earthquake, New Zealand, and its aftershock sequence

    Science.gov (United States)

    Cesca, S.; Zhang, Y.; Mouslopoulou, V.; Wang, R.; Saul, J.; Savage, M.; Heimann, S.; Kufner, S.-K.; Oncken, O.; Dahm, T.

    2017-11-01

    The M7.8 Kaikoura Earthquake that struck the northeastern South Island, New Zealand, on November 14, 2016 (local time), is one of the largest ever instrumentally recorded earthquakes in New Zealand. It occurred at the southern termination of the Hikurangi subduction margin, where the subducting Pacific Plate transitions into the dextral Alpine transform fault. The earthquake produced significant distributed uplift along the north-eastern part of the South Island, reaching a peak amplitude of ∼8 m, which was accompanied by large (≥10 m) horizontal coseismic displacements at the ground surface along discrete active faults. The seismic waveforms' expression of the main shock indicate a complex rupture process. Early automated centroid moment tensor solutions indicated a strong non-double-couple term, which supports a complex rupture involving multiple faults. The hypocentral distribution of aftershocks, which appears diffuse over a broad region, clusters spatially along lineaments with different orientations. A key question of global interest is to shed light on the mechanism with which such a complex rupture occurred, and whether the underlying plate-interface was involved in the rupture. The consequences for seismic hazard of such a distributed, shallow faulting is important to be assessed. We perform a broad seismological analysis, combining regional and teleseismic seismograms, GPS and InSAR, to determine the rupture process of the main shock and moment tensors of 118 aftershocks down to Mw 4.2. The joint interpretation of the main rupture and aftershock sequence allow reconstruction of the geometry, and suggests sequential activation and slip distribution on at least three major active fault domains. We find that the rupture nucleated as a weak strike-slip event along the Humps Fault, which progressively propagated northward onto a shallow reverse fault, where most of the seismic moment was released, before it triggered slip on a second set of strike

  11. The Challenge of Centennial Earthquakes to Improve Modern Earthquake Engineering

    International Nuclear Information System (INIS)

    Saragoni, G. Rodolfo

    2008-01-01

    The recent commemoration of the centennial of the San Francisco and Valparaiso 1906 earthquakes has given the opportunity to reanalyze their damages from modern earthquake engineering perspective. These two earthquakes plus Messina Reggio Calabria 1908 had a strong impact in the birth and developing of earthquake engineering. The study of the seismic performance of some up today existing buildings, that survive centennial earthquakes, represent a challenge to better understand the limitations of our in use earthquake design methods. Only Valparaiso 1906 earthquake, of the three considered centennial earthquakes, has been repeated again as the Central Chile, 1985, Ms = 7.8 earthquake. In this paper a comparative study of the damage produced by 1906 and 1985 Valparaiso earthquakes is done in the neighborhood of Valparaiso harbor. In this study the only three centennial buildings of 3 stories that survived both earthquakes almost undamaged were identified. Since for 1985 earthquake accelerogram at El Almendral soil conditions as well as in rock were recoded, the vulnerability analysis of these building is done considering instrumental measurements of the demand. The study concludes that good performance of these buildings in the epicentral zone of large earthquakes can not be well explained by modern earthquake engineering methods. Therefore, it is recommended to use in the future of more suitable instrumental parameters, such as the destructiveness potential factor, to describe earthquake demand

  12. Latest Pleistocene and Holocene surficial deposits and landforms of Yosemite Valley, California

    Science.gov (United States)

    Haddon, E. K.; Stock, G. M.; Booth, D. B.

    2016-12-01

    Field studies on the surficial geology and geomorphology of Yosemite Valley since the 1870's formed an early basis for our understanding of Quaternary landscape evolution in the central Sierra Nevada. These landmark studies described the erosional origin of Yosemite's iconic scenery, but left details of the latest Pleistocene and Holocene sedimentary record for later investigation. We combined mapping of deposits and landforms with geochronology to reconstruct the geomorphic evolution of Yosemite Valley since the 15 ka retreat of the Last Glacial Maximum (LGM) valley glacier. We document a sustained period of relative landscape stability, characterized by valley-bottom aggradation of glacial till, fluvial sediments, and lacustrine silts, as well as valley-margin accumulation of talus and fan alluvium. Recessional moraines, episodically emplaced rock avalanches, and alluvial fans impeded surface flow and controlled the local base level. This predominantly aggradational regime then shifted to incision in the earliest Holocene, likely due to a diminishing supply of glacial sediment, and created a flight of fluvial terraces inset by up to 9 m. The volume of fringing talus and fan alluvium in comparison with fluvial terrace sequences emphasizes the importance of valley-wall erosion as a sediment source. Cosmogenic 10Be exposure ages from rock avalanche boulders and 14C charcoal ages from deltaic sequences and inset fluvial gravels suggest variable rates of Holocene river incision. Although some incision events likely record local base level changes at the El Capitan LGM recessional moraine, the presence of perched, well-developed outwash terraces downstream indicates a more regional climatic forcing. These findings, including the depositional record of land-use disturbances over the past two centuries, help illuminate the geologic evolution of this celebrated landscape and inform ongoing river-restoration work.

  13. Temporal characteristics of some aftershock sequences in Bulgaria

    Directory of Open Access Journals (Sweden)

    D. Solakov

    1999-06-01

    Full Text Available We apply statistical analysis to study the temporal distribution of aftershocks in aftershock sequences of five earthquakes which occurred in Bulgaria. We use the maximum likelihood method to estimate the parameters of the modified Omori formula for aftershock sequences which is directly based on a time series. We find that: the maximum likelihood estimates of the parameter p show a regional variation, with lower values of the decay rate in North Bulgaria; the modified Omori formula provides an appropriate representation of temporal variation of the aftershock activity in North Bulgaria; the aftershock sequences in South Bulgaria are best modeled by the combination of an ordinary aftershock sequence with secondary aftershock activity. A plot of the cumulative number of events versus the frequency-linearized time t clearly demonstrates a transition from aftershock to foreshock activity prior to the second 1986 Strazhitsa (North Bulgaria earthquake.

  14. Proposal of methodology of tsunami accident sequence analysis induced by earthquake using DQFM methodology

    International Nuclear Information System (INIS)

    Muta, Hitoshi; Muramatsu, Ken

    2017-01-01

    Since the Fukushima-Daiichi nuclear power station accident, the Japanese regulatory body has improved and upgraded the regulation of nuclear power plants, and continuous effort is required to enhance risk management in the mid- to long term. Earthquakes and tsunamis are considered as the most important risks, and the establishment of probabilistic risk assessment (PRA) methodologies for these events is a major issue of current PRA. The Nuclear Regulation Authority (NRA) addressed the PRA methodology for tsunamis induced by earthquakes, which is one of the methodologies that should be enhanced step by step for the improvement and maturity of PRA techniques. The AESJ standard for the procedure of seismic PRA for nuclear power plants in 2015 provides the basic concept of the methodology; however, details of the application to the actual plant PRA model have not been sufficiently provided. This study proposes a detailed PRA methodology for tsunamis induced by earthquakes using the DQFM methodology, which contributes to improving the safety of nuclear power plants. Furthermore, this study also states the issues which need more research. (author)

  15. Potential impact on water resources from future volcanic eruptions at Long Valley, Mono County, California, U.S.A

    International Nuclear Information System (INIS)

    Hopson, R.F.

    1991-01-01

    Earthquakes, ground deformation, and increased geothermal activity at Long Valley caldera after mid-1980 suggest the possibility of a volcanic eruption in the near future. An eruption there could have serious consequences for the City of Los Angeles, depending on the magnitude and volume of materials ejected because surface water in Mono Basin plus surface and groundwater in Owens Valley accounts for about 80% of its water supply. Eruptions of moderate to very large magnitude could impede the supply of water from this area for several days, weeks, or even years by discharging small to large volumes of volcanic ash and causing lahars. Soon after an eruption, water quality would likely be affected by the accumulation of organic debris and microorganisms in surface waters

  16. GPS measurements of crustal deformation across the southern Arava Valley section of the Dead Sea Fault and implications to regional seismic hazard assessment

    Science.gov (United States)

    Hamiel, Yariv; Masson, Frederic; Piatibratova, Oksana; Mizrahi, Yaakov

    2018-01-01

    Detailed analysis of crustal deformation along the southern Arava Valley section of the Dead Sea Fault is presented. Using dense GPS measurements we obtain the velocities of new near- and far-field campaign stations across the fault. We find that this section is locked with a locking depth of 19.9 ± 7.7 km and a slip rate of 5.0 ± 0.8 mm/yr. The geodetically determined locking depth is found to be highly consistent with the thickness of the seismogenic zone in this region. Analysis of instrumental seismic record suggests that only 1% of the total seismic moment accumulated since the last large event occurred about 800 years ago, was released by small to moderate earthquakes. Historical and paleo-seismic catalogs of this region together with instrumental seismic data and calculations of Coulomb stress changes induced by the 1995 Mw 7.2 Nuweiba earthquake suggest that the southern Arava Valley section of the Dead Sea Fault is in the late stage of the current interseismic period.

  17. Spatiotemporal Co-existence of Two Mycobacterium ulcerans Clonal Complexes in the Offin River Valley of Ghana.

    Directory of Open Access Journals (Sweden)

    Araceli Lamelas

    2016-07-01

    Full Text Available In recent years, comparative genome sequence analysis of African Mycobacterium ulcerans strains isolated from Buruli ulcer (BU lesion specimen has revealed a very limited genetic diversity of closely related isolates and a striking association between genotype and geographical origin of the patients. Here, we compared whole genome sequences of five M. ulcerans strains isolated in 2004 or 2013 from BU lesions of four residents of the Offin river valley with 48 strains isolated between 2002 and 2005 from BU lesions of individuals residing in the Densu river valley of Ghana. While all M. ulcerans isolates from the Densu river valley belonged to the same clonal complex, members of two distinct clonal complexes were found in the Offin river valley over space and time. The Offin strains were closely related to genotypes from either the Densu region or from the Asante Akim North district of Ghana. These results point towards an occasional involvement of a mobile reservoir in the transmission of M. ulcerans, enabling the spread of bacteria across different regions.

  18. On a report that the 2012 M 6.0 earthquake in Italy was predicted after seeing an unusual cloud formation

    Science.gov (United States)

    Thomas, J.N.; Masci, F; Love, Jeffrey J.

    2015-01-01

    Several recently published reports have suggested that semi-stationary linear-cloud formations might be causally precursory to earthquakes. We examine the report of Guangmeng and Jie (2013), who claim to have predicted the 2012 M 6.0 earthquake in the Po Valley of northern Italy after seeing a satellite photograph (a digital image) showing a linear-cloud formation over the eastern Apennine Mountains of central Italy. From inspection of 4 years of satellite images we find numerous examples of linear-cloud formations over Italy. A simple test shows no obvious statistical relationship between the occurrence of these cloud formations and earthquakes that occurred in and around Italy. All of the linear-cloud formations we have identified in satellite images, including that which Guangmeng and Jie (2013) claim to have used to predict the 2012 earthquake, appear to be orographic – formed by the interaction of moisture-laden wind flowing over mountains. Guangmeng and Jie (2013) have not clearly stated how linear-cloud formations can be used to predict the size, location, and time of an earthquake, and they have not published an account of all of their predictions (including any unsuccessful predictions). We are skeptical of the validity of the claim by Guangmeng and Jie (2013) that they have managed to predict any earthquakes.

  19. Next-generation sequencing identification of pathogenic bacterial genes and their relationship with fecal indicator bacteria in different water sources in the Kathmandu Valley, Nepal.

    Science.gov (United States)

    Ghaju Shrestha, Rajani; Tanaka, Yasuhiro; Malla, Bikash; Bhandari, Dinesh; Tandukar, Sarmila; Inoue, Daisuke; Sei, Kazunari; Sherchand, Jeevan B; Haramoto, Eiji

    2017-12-01

    Bacteriological analysis of drinking water leads to detection of only conventional fecal indicator bacteria. This study aimed to explore and characterize bacterial diversity, to understand the extent of pathogenic bacterial contamination, and to examine the relationship between pathogenic bacteria and fecal indicator bacteria in different water sources in the Kathmandu Valley, Nepal. Sixteen water samples were collected from shallow dug wells (n=12), a deep tube well (n=1), a spring (n=1), and rivers (n=2) in September 2014 for 16S rRNA gene next-generation sequencing. A total of 525 genera were identified, of which 81 genera were classified as possible pathogenic bacteria. Acinetobacter, Arcobacter, and Clostridium were detected with a relatively higher abundance (>0.1% of total bacterial genes) in 16, 13, and 5 of the 16 samples, respectively, and the highest abundance ratio of Acinetobacter (85.14%) was obtained in the deep tube well sample. Furthermore, the bla OXA23-like genes of Acinetobacter were detected using SYBR Green-based quantitative PCR in 13 (35%) of 37 water samples, including the 16 samples that were analyzed for next-generation sequencing, with concentrations ranging 5.3-7.5logcopies/100mL. There was no sufficient correlation found between fecal indicator bacteria, such as Escherichia coli and total coliforms, and potential pathogenic bacteria, as well as the bla OXA23-like gene of Acinetobacter. These results suggest the limitation of using conventional fecal indicator bacteria in evaluating the pathogenic bacteria contamination of different water sources in the Kathmandu Valley. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Expanding the Delivery of Rapid Earthquake Information and Warnings for Response and Recovery

    Science.gov (United States)

    Blanpied, M. L.; McBride, S.; Hardebeck, J.; Michael, A. J.; van der Elst, N.

    2017-12-01

    Scientific organizations like the United States Geological Survey (USGS) release information to support effective responses during an earthquake crisis. Information is delivered to the White House, the National Command Center, the Departments of Defense, Homeland Security (including FEMA), Transportation, Energy, and Interior. Other crucial stakeholders include state officials and decision makers, emergency responders, numerous public and private infrastructure management centers (e.g., highways, railroads and pipelines), the media, and the public. To meet the diverse information requirements of these users, rapid earthquake notifications have been developed to be delivered by e-mail and text message, as well as a suite of earthquake information resources such as ShakeMaps, Did You Feel It?, PAGER impact estimates, and data are delivered via the web. The ShakeAlert earthquake early warning system being developed for the U.S. West Coast will identify and characterize an earthquake a few seconds after it begins, estimate the likely intensity of ground shaking, and deliver brief but critically important warnings to people and infrastructure in harm's way. Currently the USGS is also developing a capability to deliver Operational Earthquake Forecasts (OEF). These provide estimates of potential seismic behavior after large earthquakes and during evolving aftershock sequences. Similar work is underway in New Zealand, Japan, and Italy. In the development of OEF forecasts, social science research conducted during these sequences indicates that aftershock forecasts are valued for a variety of reasons, from informing critical response and recovery decisions to psychologically preparing for more earthquakes. New tools will allow users to customize map-based, spatiotemporal forecasts to their specific needs. Hazard curves and other advanced information will also be available. For such authoritative information to be understood and used during the pressures of an earthquake

  1. Earthquake prediction

    International Nuclear Information System (INIS)

    Ward, P.L.

    1978-01-01

    The state of the art of earthquake prediction is summarized, the possible responses to such prediction are examined, and some needs in the present prediction program and in research related to use of this new technology are reviewed. Three basic aspects of earthquake prediction are discussed: location of the areas where large earthquakes are most likely to occur, observation within these areas of measurable changes (earthquake precursors) and determination of the area and time over which the earthquake will occur, and development of models of the earthquake source in order to interpret the precursors reliably. 6 figures

  2. Far-field triggering of foreshocks near the nucleation zone of the 5 September 2012 (MW 7.6) Nicoya Peninsula, Costa Rica earthquake

    Science.gov (United States)

    Walter, Jacob I.; Meng, Xiaofeng; Peng, Zhigang; Schwartz, Susan Y.; Newman, Andrew V.; Protti, Marino

    2015-12-01

    On 5 September 2012, a moment magnitude (MW) 7.6 earthquake occurred directly beneath the Nicoya Peninsula, an area with dense seismic and geodetic network coverage. The mainshock ruptured a portion of a previously identified locked patch that was recognized due to a decade-long effort to delineate the megathrust seismic and aseismic processes in this area. Here we conduct a comprehensive study of the seismicity prior to this event utilizing a matched-filter analysis that allows us to decrease the magnitude of catalog completeness by 1 unit. We observe a statistically significant increase in seismicity rate below the Nicoya Peninsula following the 27 August 2012 (MW 7.3) El Salvador earthquake (about 450 km to the northwest and 9 days prior to the Nicoya earthquake). Additionally, we identify a cluster of small-magnitude (earthquakes preceding the mainshock by about 35 min and within 15 km of its hypocenter. The immediate foreshock sequence occurred in the same area as those earthquakes triggered shortly after the El Salvador event; though it is not clear whether the effect of triggering from the El Salvador event persisted until the foreshock sequence given the uncertainties in seismicity rates from a relatively small number of earthquakes. If megathrust earthquakes at such distances can induce significant increases in seismicity during the days before another larger event, this sequence strengthens the need for real-time seismicity monitoring for large earthquake forecasting.

  3. Valley-dependent band structure and valley polarization in periodically modulated graphene

    Science.gov (United States)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  4. Earthquake Complex Network Analysis Before and After the Mw 8.2 Earthquake in Iquique, Chile

    Science.gov (United States)

    Pasten, D.

    2017-12-01

    The earthquake complex networks have shown that they are abble to find specific features in seismic data set. In space, this networkshave shown a scale-free behavior for the probability distribution of connectivity, in directed networks and theyhave shown a small-world behavior, for the undirected networks.In this work, we present an earthquake complex network analysis for the large earthquake Mw 8.2 in the north ofChile (near to Iquique) in April, 2014. An earthquake complex network is made dividing the three dimensional space intocubic cells, if one of this cells contain an hypocenter, we name this cell like a node. The connections between nodes aregenerated in time. We follow the time sequence of seismic events and we are making the connections betweennodes. Now, we have two different networks: a directed and an undirected network. Thedirected network takes in consideration the time-direction of the connections, that is very important for the connectivityof the network: we are considering the connectivity, ki of the i-th node, like the number of connections going out ofthe node i plus the self-connections (if two seismic events occurred successive in time in the same cubic cell, we havea self-connection). The undirected network is made removing the direction of the connections and the self-connectionsfrom the directed network. For undirected networks, we are considering only if two nodes are or not connected.We have built a directed complex network and an undirected complex network, before and after the large earthquake in Iquique. We have used magnitudes greater than Mw = 1.0 and Mw = 3.0. We found that this method can recognize the influence of thissmall seismic events in the behavior of the network and we found that the size of the cell used to build the network isanother important factor to recognize the influence of the large earthquake in this complex system. This method alsoshows a difference in the values of the critical exponent γ (for the probability

  5. Earthquake clustering in modern seismicity and its relationship with strong historical earthquakes around Beijing, China

    Science.gov (United States)

    Wang, Jian; Main, Ian G.; Musson, Roger M. W.

    2017-11-01

    Beijing, China's capital city, is located in a typical intraplate seismic belt, with relatively high-quality instrumental catalogue data available since 1970. The Chinese historical earthquake catalogue contains six strong historical earthquakes of Ms ≥ 6 around Beijing, the earliest in 294 AD. This poses a significant potential hazard to one of the most densely populated and economically active parts of China. In some intraplate areas, persistent clusters of events associated with historical events can occur over centuries, for example, the ongoing sequence in the New Madrid zone of the eastern US. Here we will examine the evidence for such persistent clusters around Beijing. We introduce a metric known as the `seismic density index' that quantifies the degree of clustering of seismic energy release. For a given map location, this multi-dimensional index depends on the number of events, their magnitudes, and the distances to the locations of the surrounding population of earthquakes. We apply the index to modern instrumental catalogue data between 1970 and 2014, and identify six clear candidate zones. We then compare these locations to earthquake epicentre and seismic intensity data for the six largest historical earthquakes. Each candidate zone contains one of the six historical events, and the location of peak intensity is within 5 km or so of the reported epicentre in five of these cases. In one case—the great Ms 8 earthquake of 1679—the peak is closer to the area of strongest shaking (Intensity XI or more) than the reported epicentre. The present-day event rates are similar to those predicted by the modified Omori law but there is no evidence of ongoing decay in event rates. Accordingly, the index is more likely to be picking out the location of persistent weaknesses in the lithosphere. Our results imply zones of high seismic density index could be used in principle to indicate the location of unrecorded historical of palaeoseismic events, in China and

  6. Earthquake sequence simulations of a fault in a viscoelastic material with a spectral boundary integral equation method: The effect of interseismic stress relaxation on a behavior of a rate-weakening patch

    Science.gov (United States)

    Miyake, Y.; Noda, H.

    2017-12-01

    Earthquake sequences involve many processes in a wide range of time scales, from quasistatic loading to dynamic rupture. At a depth of brittle-plastic transitional and deeper, rock behaves as a viscous fluid in a long timescale, but as an elastic material in a short timescale. Viscoelastic stress relaxation may be important in the interseismic periods at the depth, near the deeper limit of the seismogenic layer or the region of slow slip events (SSEs) [Namiki et al., 2014 and references therein]. In the present study, we implemented the viscoelastic effect (Maxwell material) in fully-dynamic earthquake sequence simulations using a spectral boundary integral equation method (SBIEM) [e.g., Lapusta et al., 2000]. SBIEM is efficient in calculation of convolutional terms for dynamic stress transfer, and the problem size is limited by the amount of memory available. Linear viscoelasticity could be implemented by convolution of slip rate history and Green's function, but this method requires additional memory and thus not suitable for the implementation to the present code. Instead, we integrated the evolution of "effective slip" distribution, which gives static stress distribution when convolved with static elastic Green's function. This method works only for simple viscoelastic property distributions, but such models are suitable for numerical experiments aiming basic understanding of the system behavior because of the virtue of SBIEM, the ability of fine on-fault spatial resolution and efficient computation utilizing the fast Fourier transformation. In the present study, we examined the effect of viscoelasticity on earthquake sequences of a fault with a rate-weakening patch. A series of simulations with various relaxation time tc revealed that as decreasing tc, recurrence intervals of earthquakes increases and seismicity ultimately disappears. As long as studied, this transition to aseismic behavior is NOT associated with SSEs. In a case where the rate-weakening patch

  7. About swarms of long-period earthquakes at volcano Nyamuragira of the Virunga region, Western Rift Valley of Africa (D.R. Congo

    Directory of Open Access Journals (Sweden)

    Rusangiza B.K.

    2012-01-01

    Full Text Available Swarms of Long Period earthquakes generated by the Nyamuragira volcano for the period from January 2000 to November 2006 before 21 January 2000, 5 February 2001, 25 July 2002, 8 May 2004 and 27 November 2006 Nyamuragira eruptions have been analyzed. Interest is focused on the frequency distribution of these earthquakes and on the variation of the m-value of observed earthquake swarms. It is found that m-values which generally vary between 0.9 and 1.6, and shifts towards larger values of 1.7 to 3.23 two to four months prior to eruptions of the volcano.

  8. One hundred and fifty years of Coulomb stress history along the California-Nevada border, USA

    Science.gov (United States)

    Verdecchia, Alessandro; Carena, Sara

    2015-02-01

    The region north of the Garlock Fault between the Sierra Nevada and Death Valley has experienced at least eight Mw ≥ 6 earthquakes in historical times, beginning with the 1872, Mw 7.5, Owens Valley earthquake. Furthermore, since 1978, the Long Valley Caldera has been undergoing periods of unrest, with earthquake swarms and resurgence. Our goal is to determine whether the 1872 Owens Valley earthquake and the caldera unrest have influenced the evolution of seismicity in the area. We model the evolution of coseismic, postseismic, and interseismic Coulomb stress change (Coulomb failure stress (ΔCFS)) in the region due to both Mw ≥ 6 earthquakes and caldera inflation in the last 150 years. Our results show that the 1872 Owens Valley earthquake has an important influence on subsequent events, strongly encouraging faulting in northern Owens Valley while inhibiting it elsewhere. There is also a correlation between caldera inflation and seismicity in northern Owens Valley, evidenced by the west-to-east migration of earthquakes from the Long Valley Caldera toward the White Mountains immediately following the 1978 caldera inflation event. Finally, we show that a total ΔCFS increase of up to 30 bars in the last 150 years has occurred on part of the White Mountains fault, making it a possible candidate for the next major earthquake in this region.

  9. THE PALYNOLOGY AND PALAEONVIRONMENT OF THE UPPER TRIASSIC DOLOMITIC-MARLY SEQUENCE OF DOGNA VALLEY (UDINE, FRIULI-VENEZIA GIULIA, NE ITALY WITH REPTILE TRACKWAYS

    Directory of Open Access Journals (Sweden)

    GUIDO ROGHI

    1997-07-01

    Full Text Available New data and considerations about the biostratigraphy and the palaeoenvironment of a section in the Late Triassic dolomitic-marly sequence which crops out in the Dogna valley (Udine, Friuli, NE Italy are reported. In particular a unit with a surface bearing tracks of archosauromorph terrestrial reptiles has been investigated. In the layer immediately overlaying the track-bearing one, a rich palynological assemblage with Enzonalasporites vigens; Vallasporites ignacii, Patinasporites densus, Zonalasporites cinctus, Pseudoenzonalasporites summus, Samaropollenites speciosus, Camerosporites secatus and Partitisporites spp. was found, indicating a Tuvalian age (Late Carnian . Microfloral and sedimentological evidence indicate a dry climate and a coastal depositional environment subject to repeated emersions.   

  10. AIR POLLUTION FEATURES OF THE VALLEY-BASED TOWNS IN HUNGARY

    Directory of Open Access Journals (Sweden)

    Z. UTASI

    2016-03-01

    Full Text Available There are 30 valley-based towns with >10,000 inhabitants in Hungary, filled by 1.023 million people i.e. 10 % of the population. Two criteria are used to define the valley-based town. They are: (i Vertical difference between the lowest point in the town and the highest one around it should be >100 m. At the same time, (ii the same difference on the opposite side should be >50 m. Air pollution data by the National Air Pollution Observation Network are used. Five contaminants were selected and analysed for 2007, 2010 and 2013. Due to a sharp reduction in the network, we could find data for a small part of the valley-based towns. Control towns with equal air-quality observations and similar cumulative number of inhabitants were also selected. The contaminants and the number of the settlements are: NO2 manual (14 valley-based vs. 2x14 control, NO2 automatic (8 vs. 8, SO2 automatic (7 vs. 2x6, PM10 automatic (8 vs. 2x7 and PM10 deposition manual (6 vs. 8. Average values, as well as high concentration episodes (>98%thresholds are equally analysed and evaluated. The main conclusion is that there are so big differences between the years both in absolute values and relative sequence of valley-based and control groups that the analysed there years is not enough to make any final conclusion. For step-over frequencies, however valley-based towns have some advantage, possibly due to the valley-hill wind system.

  11. The geology and mineral deposits of Tantalite Valley, Warmbad district, South West Africa

    International Nuclear Information System (INIS)

    Von Backstroem, J.W.

    1976-04-01

    The Tantalite Valley Complex, a poorly mineralised (Cu and Ni sulphides) body of roughly concentric peridotite-gabbroid intrusions was emplaced along a major zone of dislocation (the Tantallite Valley Lineament) into a metasedimentary sequence of migmatites and gneisses which, together with the complex, have experienced a complex metamorphic and tectonic history. A number of large mineralised pegmatites (producers of minerals of Nb, Ta, Bi, Li and Be over the past two decades), was intruded about 1000 Ma ago [af

  12. Strategic crisis and risk communication during a prolonged natural hazard event: lessons learned from the Canterbury earthquake sequence

    Science.gov (United States)

    Wein, A. M.; Potter, S.; Becker, J.; Doyle, E. E.; Jones, J. L.

    2015-12-01

    While communication products are developed for monitoring and forecasting hazard events, less thought may have been given to crisis and risk communication plans. During larger (and rarer) events responsible science agencies may find themselves facing new and intensified demands for information and unprepared for effectively resourcing communications. In a study of the communication of aftershock information during the 2010-12 Canterbury Earthquake Sequence (New Zealand), issues are identified and implications for communication strategy noted. Communication issues during the responses included reliability and timeliness of communication channels for immediate and short decision time frames; access to scientists by those who needed information; unfamiliar emergency management frameworks; information needs of multiple audiences, audience readiness to use the information; and how best to convey empathy during traumatic events and refer to other information sources about what to do and how to cope. Other science communication challenges included meeting an increased demand for earthquake education, getting attention on aftershock forecasts; responding to rumor management; supporting uptake of information by critical infrastructure and government and for the application of scientific information in complex societal decisions; dealing with repetitive information requests; addressing diverse needs of multiple audiences for scientific information; and coordinating communications within and outside the science domain. For a science agency, a communication strategy would consider training scientists in communication, establishing relationships with university scientists and other disaster communication roles, coordinating messages, prioritizing audiences, deliberating forecasts with community leaders, identifying user needs and familiarizing them with the products ahead of time, and practicing the delivery and use of information via scenario planning and exercises.

  13. Long-term predictability of regions and dates of strong earthquakes

    Science.gov (United States)

    Kubyshen, Alexander; Doda, Leonid; Shopin, Sergey

    2016-04-01

    Results on the long-term predictability of strong earthquakes are discussed. It is shown that dates of earthquakes with M>5.5 could be determined in advance of several months before the event. The magnitude and the region of approaching earthquake could be specified in the time-frame of a month before the event. Determination of number of M6+ earthquakes, which are expected to occur during the analyzed year, is performed using the special sequence diagram of seismic activity for the century time frame. Date analysis could be performed with advance of 15-20 years. Data is verified by a monthly sequence diagram of seismic activity. The number of strong earthquakes expected to occur in the analyzed month is determined by several methods having a different prediction horizon. Determination of days of potential earthquakes with M5.5+ is performed using astronomical data. Earthquakes occur on days of oppositions of Solar System planets (arranged in a single line). At that, the strongest earthquakes occur under the location of vector "Sun-Solar System barycenter" in the ecliptic plane. Details of this astronomical multivariate indicator still require further research, but it's practical significant is confirmed by practice. Another one empirical indicator of approaching earthquake M6+ is a synchronous variation of meteorological parameters: abrupt decreasing of minimal daily temperature, increasing of relative humidity, abrupt change of atmospheric pressure (RAMES method). Time difference of predicted and actual date is no more than one day. This indicator is registered 104 days before the earthquake, so it was called as Harmonic 104 or H-104. This fact looks paradoxical, but the works of A. Sytinskiy and V. Bokov on the correlation of global atmospheric circulation and seismic events give a physical basis for this empirical fact. Also, 104 days is a quarter of a Chandler period so this fact gives insight on the correlation between the anomalies of Earth orientation

  14. Using Dynamic Fourier Analysis to Discriminate Between Seismic Signals from Natural Earthquakes and Mining Explosions

    Directory of Open Access Journals (Sweden)

    Maria C. Mariani

    2017-08-01

    Full Text Available A sequence of intraplate earthquakes occurred in Arizona at the same location where miningexplosions were carried out in previous years. The explosions and some of the earthquakes generatedvery similar seismic signals. In this study Dynamic Fourier Analysis is used for discriminating signalsoriginating from natural earthquakes and mining explosions. Frequency analysis of seismogramsrecorded at regional distances shows that compared with the mining explosions the earthquake signalshave larger amplitudes in the frequency interval ~ 6 to 8 Hz and significantly smaller amplitudes inthe frequency interval ~ 2 to 4 Hz. This type of analysis permits identifying characteristics in theseismograms frequency yielding to detect potentially risky seismic events.

  15. High resolution measurement of earthquake impacts on rock slope stability and damage using pre- and post-earthquake terrestrial laser scans

    Science.gov (United States)

    Hutchinson, Lauren; Stead, Doug; Rosser, Nick

    2017-04-01

    Understanding the behaviour of rock slopes in response to earthquake shaking is instrumental in response and relief efforts following large earthquakes as well as to ongoing risk management in earthquake affected areas. Assessment of the effects of seismic shaking on rock slope kinematics requires detailed surveys of the pre- and post-earthquake condition of the slope; however, at present, there is a lack of high resolution monitoring data from pre- and post-earthquake to facilitate characterization of seismically induced slope damage and validate models used to back-analyze rock slope behaviour during and following earthquake shaking. Therefore, there is a need for additional research where pre- and post- earthquake monitoring data is available. This paper presents the results of a direct comparison between terrestrial laser scans (TLS) collected in 2014, the year prior to the 2015 earthquake sequence, with that collected 18 months after the earthquakes and two monsoon cycles. The two datasets were collected using Riegl VZ-1000 and VZ-4000 full waveform laser scanners with high resolution (c. 0.1 m point spacing as a minimum). The scans cover the full landslide affected slope from the toe to the crest. The slope is located in Sindhupalchok District, Central Nepal which experienced some of the highest co-seismic and post-seismic landslide intensities across Nepal due to the proximity to the epicenters (<20 km) of both of the main aftershocks on April 26, 2015 (M 6.7) and May 12, 2015 (M7.3). During the 2015 earthquakes and subsequent 2015 and 2016 monsoons, the slope experienced rockfall and debris flows which are evident in satellite imagery and field photographs. Fracturing of the rock mass associated with the seismic shaking is also evident at scales not accessible through satellite and field observations. The results of change detection between the TLS datasets with an emphasis on quantification of seismically-induced slope damage is presented. Patterns in the

  16. Near-fault earthquake ground motion prediction by a high-performance spectral element numerical code

    International Nuclear Information System (INIS)

    Paolucci, Roberto; Stupazzini, Marco

    2008-01-01

    Near-fault effects have been widely recognised to produce specific features of earthquake ground motion, that cannot be reliably predicted by 1D seismic wave propagation modelling, used as a standard in engineering applications. These features may have a relevant impact on the structural response, especially in the nonlinear range, that is hard to predict and to be put in a design format, due to the scarcity of significant earthquake records and of reliable numerical simulations. In this contribution a pilot study is presented for the evaluation of seismic ground-motions in the near-fault region, based on a high-performance numerical code for 3D seismic wave propagation analyses, including the seismic fault, the wave propagation path and the near-surface geological or topographical irregularity. For this purpose, the software package GeoELSE is adopted, based on the spectral element method. The set-up of the numerical benchmark of 3D ground motion simulation in the valley of Grenoble (French Alps) is chosen to study the effect of the complex interaction between basin geometry and radiation mechanism on the variability of earthquake ground motion

  17. Scaling Relations of Local Magnitude versus Moment Magnitude for Sequences of Similar Earthquakes in Switzerland

    KAUST Repository

    Bethmann, F.

    2011-03-22

    Theoretical considerations and empirical regressions show that, in the magnitude range between 3 and 5, local magnitude, ML, and moment magnitude, Mw, scale 1:1. Previous studies suggest that for smaller magnitudes this 1:1 scaling breaks down. However, the scatter between ML and Mw at small magnitudes is usually large and the resulting scaling relations are therefore uncertain. In an attempt to reduce these uncertainties, we first analyze the ML versus Mw relation based on 195 events, induced by the stimulation of a geothermal reservoir below the city of Basel, Switzerland. Values of ML range from 0.7 to 3.4. From these data we derive a scaling of ML ~ 1:5Mw over the given magnitude range. We then compare peak Wood-Anderson amplitudes to the low-frequency plateau of the displacement spectra for six sequences of similar earthquakes in Switzerland in the range of 0:5 ≤ ML ≤ 4:1. Because effects due to the radiation pattern and to the propagation path between source and receiver are nearly identical at a particular station for all events in a given sequence, the scatter in the data is substantially reduced. Again we obtain a scaling equivalent to ML ~ 1:5Mw. Based on simulations using synthetic source time functions for different magnitudes and Q values estimated from spectral ratios between downhole and surface recordings, we conclude that the observed scaling can be explained by attenuation and scattering along the path. Other effects that could explain the observed magnitude scaling, such as a possible systematic increase of stress drop or rupture velocity with moment magnitude, are masked by attenuation along the path.

  18. It's Our Fault: better defining earthquake risk in Wellington, New Zealand

    Science.gov (United States)

    Van Dissen, R.; Brackley, H. L.; Francois-Holden, C.

    2012-12-01

    The Wellington region, home of New Zealand's capital city, is cut by a number of major right-lateral strike slip faults, and is underlain by the currently locked west-dipping subduction interface between the down going Pacific Plate, and the over-riding Australian Plate. In its short historic period (ca. 160 years), the region has been impacted by large earthquakes on the strike-slip faults, but has yet to bear the brunt of a subduction interface rupture directly beneath the capital city. It's Our Fault is a comprehensive study of Wellington's earthquake risk. Its objective is to position the capital city of New Zealand to become more resilient through an encompassing study of the likelihood of large earthquakes, and the effects and impacts of these earthquakes on humans and the built environment. It's Our Fault is jointly funded by New Zealand's Earthquake Commission, Accident Compensation Corporation, Wellington City Council, Wellington Region Emergency Management Group, Greater Wellington Regional Council, and Natural Hazards Research Platform. The programme has been running for six years, and key results to date include better definition and constraints on: 1) location, size, timing, and likelihood of large earthquakes on the active faults closest to Wellington; 2) earthquake size and ground shaking characterization of a representative suite of subduction interface rupture scenarios under Wellington; 3) stress interactions between these faults; 4) geological, geotechnical, and geophysical parameterisation of the near-surface sediments and basin geometry in Wellington City and the Hutt Valley; and 5) characterisation of earthquake ground shaking behaviour in these two urban areas in terms of subsoil classes specified in the NZ Structural Design Standard. The above investigations are already supporting measures aimed at risk reduction, and collectively they will facilitate identification of additional actions that will have the greatest benefit towards further

  19. Effects of the earthquake of March 27, 1964, at Seward, Alaska: Chapter E in The Alaska earthquake, March 27, 1964: effects on communities

    Science.gov (United States)

    Lemke, Richard W.

    1967-01-01

    Seward, in south-central Alaska, was one of the towns most devastated by the Alaska earthquake of March 27, 1964. The greater part of Seward is built on an alluvial fan-delta near the head of Resurrection Bay on the southeast coast of the Kenai Peninsula. It is one of the few ports in south-central Alaska that is ice free all year, and the town’s economy is almost entirely dependent upon its port facilities. The Alaska earthquake of March 27, 1964, magnitude approximately 8.3–8.4, began at 6:36 p.m. Its epicenter was in the northern part of the Prince William Sound area; focal depth was 20–50 km. Strong ground motion at Seward lasted 3–4 minutes. During the shaking, a strip of land 50–400 feet wide along the Seward waterfront, together with docks and other harbor facilities, slid into Resurrection Bay as a result of large-scale submarine landsliding. Fractures ruptured the ground for'severa1 hundred feet back from the landslide scarps. Additional ground was fractured in the Forest Acres subdivision and on the alluvial floor of the Resurrection River valley; fountaining and sand boils accompanied the ground fracturing. Slide-generated wares, possibly seiche waves, and seismic sea waves crashed onto shore; ware runup was as much as 30 feet above mean lower low water and caused tremendous damage; fire from burning oil tanks added to the destruction. Damage from strong ground motion itself was comparatively minor. Tectonic subsidence of about 3.6 feet resulted in low areas being inundated at high tide. Thirteen people were killed and five were injured as a result of the earthquake. Eighty-six houses were totally destroyed and 260 were heavily damaged. The harbor facilities were almost completely destroyed, and the entire economic base of the town was wiped out. The total cost to replace the destroyed public and private facilities was estimated at $22 million. Seward lies on the axis of the Chugach Mountains geosyncline. The main structural trend in the mapped

  20. Short-term and long-term earthquake occurrence models for Italy: ETES, ERS and LTST

    Directory of Open Access Journals (Sweden)

    Maura Murru

    2010-11-01

    Full Text Available This study describes three earthquake occurrence models as applied to the whole Italian territory, to assess the occurrence probabilities of future (M ≥5.0 earthquakes: two as short-term (24 hour models, and one as long-term (5 and 10 years. The first model for short-term forecasts is a purely stochastic epidemic type earthquake sequence (ETES model. The second short-term model is an epidemic rate-state (ERS forecast based on a model that is physically constrained by the application to the earthquake clustering of the Dieterich rate-state constitutive law. The third forecast is based on a long-term stress transfer (LTST model that considers the perturbations of earthquake probability for interacting faults by static Coulomb stress changes. These models have been submitted to the Collaboratory for the Study of Earthquake Predictability (CSEP for forecast testing for Italy (ETH-Zurich, and they were locked down to test their validity on real data in a future setting starting from August 1, 2009.

  1. The 2016-2017 Central Italy Seismic Sequence: Source Complexity Inferred from Rupture Models.

    Science.gov (United States)

    Scognamiglio, L.; Tinti, E.; Casarotti, E.; Pucci, S.; Villani, F.; Cocco, M.; Magnoni, F.; Michelini, A.

    2017-12-01

    The Apennines have been struck by several seismic sequences in recent years, showing evidence of the activation of multiple segments of normal fault systems in a variable and, relatively short, time span, as in the case of the 1980 Irpinia earthquake (three shocks in 40 s), the 1997 Umbria-Marche sequence (four main shocks in 18 days) and the 2009 L'Aquila earthquake having three segments activated within a few weeks. The 2016-2017 central Apennines seismic sequence begin on August 24th with a MW 6.0 earthquake, which strike the region between Amatrice and Accumoli causing 299 fatalities. This earthquake ruptures a nearly 20 km long normal fault and shows a quite heterogeneous slip distribution. On October 26th, another main shock (MW 5.9) occurs near Visso extending the activated seismogenic area toward the NW. It is a double event rupturing contiguous patches on the fault segment of the normal fault system. Four days after the second main shock, on October 30th, a third earthquake (MW 6.5) occurs near Norcia, roughly midway between Accumoli and Visso. In this work we have inverted strong motion waveforms and GPS data to retrieve the source model of the MW 6.5 event with the aim of interpreting the rupture process in the framework of this complex sequence of moderate magnitude earthquakes. We noted that some preliminary attempts to model the slip distribution of the October 30th main shock using a single fault plane oriented along the Apennines did not provide convincing fits to the observed waveforms. In addition, the deformation pattern inferred from satellite observations suggested the activation of a multi-fault structure, that is coherent to the complexity and the extension of the geological surface deformation. We investigated the role of multi-fault ruptures and we found that this event revealed an extraordinary complexity of the rupture geometry and evolution: the coseismic rupture propagated almost simultaneously on a normal fault and on a blind fault

  2. Dynamic Earthquake Triggering on Seismogenic Faults in Oklahoma

    Science.gov (United States)

    Qin, Y.; Chen, X.; Peng, Z.; Aiken, C.

    2016-12-01

    Regions with high pore pressure are generally more susceptible to dynamic triggering from transient stress change caused by surface wave of distant earthquakes. The stress threshold from triggering studies can help understand the stress state of seismogenic faults. The recent dramatic seismicity increase in central US provides a rich database for assessing dynamic triggering phenomena. We begin our study by conducting a systematic analysis of dynamic triggering for the continental U.S using ANSS catalog (with magnitude of completeness Mc=3) from 49 global mainshocks (Ms>6.5, depth1kPa). We calculate β value for each 1° by 1° bins in 30 days before and 10 days after the mainshock. To identify regions that experience triggering from a distant mainshock, we generate a stacked map using β≥2 - which represents significant seismicity rate increase. As expected, the geothermal and volcanic fields in California show clear response to distant earthquakes. We also note areas in Oklahoma and north Texas show enhanced triggering, where wastewater-injection induced seismicity are occurring. Next we focus on Oklahoma and use a local catalog from Oklahoma Geological Survey with lower completeness threshold Mc to calculate the beta map in 0.2° by 0.2° bins for each selected mainshock to obtain finer spatial resolutions of the triggering behavior. For those grids with β larger than 2.0, we use waveforms from nearby stations to search for triggered events. The April 2015 M7.8 Nepal earthquake causes a statistically significant increase of local seismicity (β=3.5) in the Woodward area (west Oklahoma) during an on-going earthquake sequence. By visually examining the surface wave from the nearest station, we identify 3 larger local events, and 10 additional smaller events with weaker but discernable amplitude. Preliminary analysis shows that the triggering is related to Rayleigh wave, which would cause dilatational or shear stress changes along the strike direction of

  3. Seismic site characterization of an urban dedimentary basin, Livermore Valley, California: Site tesponse, basin-edge-induced surface waves, and 3D simulations

    Science.gov (United States)

    Hartzell, Stephen; Leeds, Alena L.; Ramirez-Guzman, Leonardo; Allen, James P.; Schmitt, Robert G.

    2016-01-01

    Thirty‐two accelerometers were deployed in the Livermore Valley, California, for approximately one year to study sedimentary basin effects. Many local and near‐regional earthquakes were recorded, including the 24 August 2014 Mw 6.0 Napa, California, earthquake. The resulting ground‐motion data set is used to quantify the seismic response of the Livermore basin, a major structural depression in the California Coast Range Province bounded by active faults. Site response is calculated by two methods: the reference‐site spectral ratio method and a source‐site spectral inversion method. Longer‐period (≥1  s) amplification factors follow the same general pattern as Bouguer gravity anomaly contours. Site response spectra are inverted for shallow shear‐wave velocity profiles, which are consistent with independent information. Frequency–wavenumber analysis is used to analyze plane‐wave propagation across the Livermore Valley and to identify basin‐edge‐induced surface waves with back azimuths different from the source back azimuth. Finite‐element simulations in a 3D velocity model of the region illustrate the generation of basin‐edge‐induced surface waves and point out strips of elevated ground velocities along the margins of the basin.

  4. Sensitivity of Induced Seismic Sequences to Rate-and-State Frictional Processes

    Science.gov (United States)

    Kroll, Kayla A.; Richards-Dinger, Keith B.; Dieterich, James H.

    2017-12-01

    It is well established that subsurface injection of fluids increases pore fluid pressures that may lead to shear failure along a preexisting fault surface. Concern among oil and gas, geothermal, and carbon storage operators has risen dramatically over the past decade due to the increase in the number and magnitude of induced earthquakes. Efforts to mitigate the risk associated with injection-induced earthquakes include modeling of the interaction between fluids and earthquake faults. Here we investigate this relationship with simulations that couple a geomechanical reservoir model and RSQSim, a physics-based earthquake simulator. RSQSim employs rate- and state-dependent friction (RSF) that enables the investigation of the time-dependent nature of earthquake sequences. We explore the effect of two RSF parameters and normal stress on the spatiotemporal characteristics of injection-induced seismicity. We perform >200 simulations to systematically investigate the effect of these model components on the evolution of induced seismicity sequences and compare the spatiotemporal characteristics of our synthetic catalogs to observations of induced earthquakes. We find that the RSF parameters control the ability of seismicity to migrate away from the injection well, the total number and maximum magnitude of induced events. Additionally, the RSF parameters control the occurrence/absence of premonitory events. Lastly, we find that earthquake stress drops can be modulated by the normal stress and/or the RSF parameters. Insight gained from this study can aid in further development of models that address best practice protocols for injection operations, site-specific models of injection-induced earthquakes, and probabilistic hazard and risk assessments.

  5. Sources of Increased Spring and Streamflow Caused by the 2014 South Napa Earthquake

    Science.gov (United States)

    Rytuba, J. J.; Holzer, T. L.

    2014-12-01

    Seasonally dry springs and creeks began flowing over a broad region in the hills around Napa following the M6.0 South Napa earthquake on August 24, 2014. Flows in hillside creek beds, which were dry before the earthquake, were reported from 19 km west, to 6 km east, and 18 km north of Napa and the epicenter, an area that shook at MMI≥VI. The exact timing of the increased flow is unknown because the earthquake occurred at 3:20 AM PDT. A gaging station on the Napa River, which is downstream from several tributaries that began flowing after the earthquake, showed a sudden increase of flow rate within 45 minutes following the earthquake. The sudden increase at the gaging station suggests flows initiated either contemporaneously with or very soon after the strong shaking. This timing is consistent with eyewitness accounts of other streams and springs at daylight, a few hours after the earthquake. One of the largest increases of streamflow was in Green Valley, where a streamflow rate of about 100 cubic hectometers per day was measured in Wild Horse Creek. Two types of waters are being discharged in the Wild Horse Creek drainage: 1) water with low iron concentration that has exchanged with rhyolitic flows and tuffs in the upper part of the drainage; and 2) high iron concentration water that has exchanged with basaltic andesite in the middle part of drainage (vertical interval of about 75 meters). The high iron waters are depositing FeOOH other iron phases. Mixing of the two water types results in water with pH 6.9 and conductivity of 0.197 mS. This water is used by the Vallejo Water District for domestic purposes after it is mixed with recent surface water runoff stored in Lake Frey reservoir in order to improve its quality. Other drainages that have increased flow since the earthquake have water chemistry consistent with exchange with rhyolitic flows and tuffs that are the dominant rock type in these drainages.

  6. Latest Quaternary paleoseismology and evidence of distributed dextral shear along the Mohawk Valley fault zone, northern Walker Lane, California

    Science.gov (United States)

    Gold, Ryan D.; Briggs, Richard; Personius, Stephen; Crone, Anthony J.; Mahan, Shannon; Angster, Stephen

    2014-01-01

    The dextral-slip Mohawk Valley fault zone (MVFZ) strikes northwestward along the eastern margin of the Sierra Nevada in the northern Walker Lane. Geodetic block modeling indicates that the MVFZ may accommodate ~3 mm/yr of regional dextral strain, implying that it is the highest slip-rate strike-slip fault in the region; however, only limited geologic data are available to constrain the system’s slip rate and earthquake history. We mapped the MVFZ using airborne lidar data and field observations and identified a site near Sulphur Creek for paleoseismic investigation. At this site, oblique dextral-normal faulting on the steep valley margin has created a closed depression that floods annually during spring snowmelt to form an ephemeral pond. We excavated three fault-perpendicular trenches at the site and exposed pond sediment that interfingers with multiple colluvial packages eroded from the scarp that bounds the eastern side of the pond. We documented evidence for four surface-rupturing earthquakes on this strand of the MVFZ. OxCal modeling of radiocarbon and luminescence ages indicates that these earthquakes occurred at 14.0 ka, 12.8 ka, 5.7 ka, and 1.9 ka. The mean ~4 kyr recurrence interval is inconsistent with slip rates of ~3 mm/yr; these rates imply surface ruptures of more than 10 m per event, which is geologically implausible for the subdued geomorphic expression and 60 km length of the MVFZ. We propose that unidentified structures not yet incorporated into geodetic models may accommodate significant dextral shear across the northern Walker Lane, highlighting the role of distributed deformation in this region.

  7. How Long Is Long Enough? Estimation of Slip-Rate and Earthquake Recurrence Interval on a Simple Plate-Boundary Fault Using 3D Paleoseismic Trenching

    Science.gov (United States)

    Wechsler, N.; Rockwell, T. K.; Klinger, Y.; Agnon, A.; Marco, S.

    2012-12-01

    preceding 1200 years or so experienced a spate of earthquake activity, with large events along the Jordan Valley segment alone in 31 BCE, 363, 749, and 1033 CE. Thus, the return period appears to vary by a factor of two to four during the historical period in the Jordan Valley as well as at our site. The Beteiha site seems to be affected by both its southern and northern neighboring segments, and there is tentative evidence that earthquakes nucleating in the Jordan Valley (e.g. 749 CE) can rupture through the Galilee step-over to the south of Beteiha, or trigger a smaller event on the Jordan Gorge segment, in which case the historical record will tend to amalgamate any evidence for it into one large event. We offer a model of earthquake slip for this segment, in which the overall slip rate remains constant, yet differing earthquake sizes can occur, depending on the segment from which they originated and the time since the last large event. The rate of earthquake production in this model does not produce a time predictable pattern over a period of 2kyr, and the slip rate varies between the 1st and 2nd millennia CE, as a result of the interplay between coalescing fault segments to the north.

  8. Earthquake Culture: A Significant Element in Earthquake Disaster Risk Assessment and Earthquake Disaster Risk Management

    OpenAIRE

    Ibrion, Mihaela

    2018-01-01

    This book chapter brings to attention the dramatic impact of large earthquake disasters on local communities and society and highlights the necessity of building and enhancing the earthquake culture. Iran was considered as a research case study and fifteen large earthquake disasters in Iran were investigated and analyzed over more than a century-time period. It was found that the earthquake culture in Iran was and is still conditioned by many factors or parameters which are not integrated and...

  9. Landslides triggered by the 3 August 2014 Ludian earthquake in China: geological properties, geomorphologic characteristics and spatial distribution analysis

    Directory of Open Access Journals (Sweden)

    Jia-Wen Zhou

    2016-07-01

    Full Text Available On 3 August 2014, an earthquake of Mw 6.5 happened in Ludian County, Yunnan Province, China. This earthquake triggered hundreds of landslides of various types, dominated by shallow slides, deep-seated slides, rock falls, debris flow and unstable slopes. Using field investigations and remote sensing images, 413 landslides triggered by the Ludian earthquake were statistically analyzed. Statistical analyses show that most of the landslides are shallow slides with a small volume. Most of these landslides are concentrated near the epicentre with distances ranging from 6–12 km, especially at the upper slope along the river valley. The number of landslides increased with increasing distance from the epicentre (0–9 km and then decreased with increasing distance from the epicentre (>9 km. The landslides decreased in density with increasing distance from the fault rupture. More than 70% of the landslides occurred on the right side of the Xiyuhe-Zhaotong fault, when viewed from Southwest (SW to Northeast (NE. Slope aspect and gradient had a substantial influence on the landslide distribution and landslide density increased with increasing slope gradient. Approximately, 65% of the landslides happened at the back slope with respect to the earthquake epicentre.

  10. Segmented seismicity of the Mw 6.2 Baladeh earthquake sequence (Alborz mountains, Iran) revealed from regional moment tensors

    DEFF Research Database (Denmark)

    Donner, Stefanie; Rössler, Dirk; Krüger, Frank

    2013-01-01

    The M w 6.2 Baladeh earthquake occurred on 28 May 2004 in the Alborz Mountains, northern Iran. This earthquake was the first strong shock in this intracontinental orogen for which digital regional broadband data are available. The Baladeh event provides a rare opportunity to study fault geometry...... model, regional waveform data of the mainshock and larger aftershocks (M w  ≥3.3) were inverted for moment tensors. For the Baladeh mainshock, this included inversion for kinematic parameters. All analysed earthquakes show dominant thrust mechanisms at depths between 14 and 26 km, with NW–SE striking...

  11. Understanding Animal Detection of Precursor Earthquake Sounds.

    Science.gov (United States)

    Garstang, Michael; Kelley, Michael C

    2017-08-31

    We use recent research to provide an explanation of how animals might detect earthquakes before they occur. While the intrinsic value of such warnings is immense, we show that the complexity of the process may result in inconsistent responses of animals to the possible precursor signal. Using the results of our research, we describe a logical but complex sequence of geophysical events triggered by precursor earthquake crustal movements that ultimately result in a sound signal detectable by animals. The sound heard by animals occurs only when metal or other surfaces (glass) respond to vibrations produced by electric currents induced by distortions of the earth's electric fields caused by the crustal movements. A combination of existing measurement systems combined with more careful monitoring of animal response could nevertheless be of value, particularly in remote locations.

  12. Earthquakes and Earthquake Engineering. LC Science Tracer Bullet.

    Science.gov (United States)

    Buydos, John F., Comp.

    An earthquake is a shaking of the ground resulting from a disturbance in the earth's interior. Seismology is the (1) study of earthquakes; (2) origin, propagation, and energy of seismic phenomena; (3) prediction of these phenomena; and (4) investigation of the structure of the earth. Earthquake engineering or engineering seismology includes the…

  13. The evolution of hillslope strength following large earthquakes

    Science.gov (United States)

    Brain, Matthew; Rosser, Nick; Tunstall, Neil

    2017-04-01

    Earthquake-induced landslides play an important role in the evolution of mountain landscapes. Earthquake ground shaking triggers near-instantaneous landsliding, but has also been shown to weaken hillslopes, preconditioning them for failure during subsequent seismicity and/or precipitation events. The temporal evolution of hillslope strength during and following primary seismicity, and if and how this ultimately results in failure, is poorly constrained due to the rarity of high-magnitude earthquakes and limited availability of suitable field datasets. We present results obtained from novel geotechnical laboratory tests to better constrain the mechanisms that control strength evolution in Earth materials of differing rheology. We consider how the strength of hillslope materials responds to ground-shaking events of different magnitude and if and how this persists to influence landslide activity during interseismic periods. We demonstrate the role of stress path and stress history, strain rate and foreshock and aftershock sequences in controlling the evolution of hillslope strength and stability. Critically, we show how hillslopes can be strengthened rather than weakened in some settings, challenging conventional assumptions. On the basis of our laboratory data, we consider the implications for earthquake-induced geomorphic perturbations in mountain landscapes over multiple timescales and in different seismogenic settings.

  14. Middle Pleistocene infill of Hinkley Valley by Mojave River sediment and associated lake sediment: Depositional architecture and deformation by strike-slip faults

    Science.gov (United States)

    Miller, David; Haddon, Elizabeth; Langenheim, Victoria; Cyr, Andrew J.; Wan, Elmira; Walkup, Laura; Starratt, Scott W.

    2018-01-01

    Hinkley Valley in the Mojave Desert, near Barstow about 140 km northeast of Los Angeles and midway between Victorville Valley and the Lake Manix basin, contains a thick sedimentary sequence delivered by the Mojave River. Our study of sediment cores drilled in the valley indicates that Hinkley Valley was probably a closed playa basin with stream inflow from four directions prior to Mojave River inflow. The Mojave River deposited thick and laterally extensive clastic wedges originating from the southern valley that rapidly filled much of Hinkley Valley. Sedimentary facies representing braided stream, wetland, delta, and lacustrine depositional environments all are found in the basin fill; in some places, the sequence is greater than 74 m (245 ft) thick. The sediment is dated in part by the presence of the ~631 ka Lava Creek B ash bed low in the section, and thus represents sediment deposition after Victorville basin was overtopped by sediment and before the Manix basin began to be filled. Evidently, upstream Victorville basin filled with sediment by about 650 ka, causing the ancestral Mojave River to spill to the Harper and Hinkley basins, and later to Manix basin.Initial river sediment overran wetland deposits in many places in southern Hinkley Valley, indicating a rapidly encroaching river system. These sediments were succeeded by a widespread lake (“blue” clay) that includes the Lava Creek B ash bed. Above the lake sediment lies a thick section of interlayered stream sediment, delta and nearshore lake sediment, mudflat and/or playa sediment, and minor lake sediment. This stratigraphic architecture is found throughout the valley, and positions of lake sediment layers indicate a successive northward progression in the closed basin. A thin overlapping sequence at the north end of the valley contains evidence for a younger late Pleistocene lake episode. This late lake episode, and bracketing braided stream deposits of the Mojave River, indicate that the river

  15. Holocene slip rates along the San Andreas Fault System in the San Gorgonio Pass and implications for large earthquakes in southern California

    Science.gov (United States)

    Heermance, Richard V.; Yule, Doug

    2017-06-01

    The San Gorgonio Pass (SGP) in southern California contains a 40 km long region of structural complexity where the San Andreas Fault (SAF) bifurcates into a series of oblique-slip faults with unknown slip history. We combine new 10Be exposure ages (Qt4: 8600 (+2100, -2200) and Qt3: 5700 (+1400, -1900) years B.P.) and a radiocarbon age (1260 ± 60 years B.P.) from late Holocene terraces with scarp displacement of these surfaces to document a Holocene slip rate of 5.7 (+2.7, -1.5) mm/yr combined across two faults. Our preferred slip rate is 37-49% of the average slip rates along the SAF outside the SGP (i.e., Coachella Valley and San Bernardino sections) and implies that strain is transferred off the SAF in this area. Earthquakes here most likely occur in very large, throughgoing SAF events at a lower recurrence than elsewhere on the SAF, so that only approximately one third of SAF ruptures penetrate or originate in the pass.Plain Language SummaryHow large are earthquakes on the southern San Andreas Fault? The answer to this question depends on whether or not the earthquake is contained only along individual fault sections, such as the Coachella Valley section north of Palm Springs, or the rupture crosses multiple sections including the area through the San Gorgonio Pass. We have determined the age and offset of faulted stream deposits within the San Gorgonio Pass to document slip rates of these faults over the last 10,000 years. Our results indicate a long-term slip rate of 6 mm/yr, which is almost 1/2 of the rates east and west of this area. These new rates, combined with faulted geomorphic surfaces, imply that large magnitude earthquakes must occasionally rupture a 300 km length of the San Andreas Fault from the Salton Sea to the Mojave Desert. Although many ( 65%) earthquakes along the southern San Andreas Fault likely do not rupture through the pass, our new results suggest that large >Mw 7.5 earthquakes are possible on the southern San Andreas Fault and likely

  16. 77 FR 33237 - Saline Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National...

    Science.gov (United States)

    2012-06-05

    ... Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National Park, Inyo... an Environmental Impact Statement for the Saline Valley Warm Springs Management Plan, Death Valley... analysis process for the Saline Valley Warm Springs Management Plan for Death Valley [[Page 33238...

  17. Aspect of the 2011 off the Pacific coast Tohoku Earthquake, Japan

    International Nuclear Information System (INIS)

    Kato, Aitaro

    2012-01-01

    The 2011 off the Pacific coast of Tohoku Earthquake (Tohoku-Oki), Japan, was the first magnitude (M) 9 subduction megathrust event to be recorded by a dense network of seismic, geodetic, and tsunami observations. I here review the Tohoku-Oki earthquake in terms of, 1) asperity model, 2) earthquake source observations, 3) precedent processes, 4) postseismic slip (afetrslip). Based on finite source models of the Tohoku-Oki mainshock, the coseismic fault slip exceeded 30 m at shallow part of the subduction zone off-shore of Miyagi. The rupture reached the trench axis, producing a large uplift therein, which was likely an important factor generating devastating tsunami waves. The mainshock was preceded by slow-slip transients propagating toward the initial rupture point, which may have caused substantial stress loading, prompting the unstable dynamic rupture of the mainshock. Furthermore, a sequence of M 7-class interplate earthquakes and subsequent large afterslip events, those occurred before the mainshock rupture, might be interpreted as preparation stage of the earthquake generation. Most of slip released by the postseismic deformation following the Tohoku-Oki mainshock is located in the region peripheral to the large coseismic slip area. (author)

  18. Analog earthquakes

    International Nuclear Information System (INIS)

    Hofmann, R.B.

    1995-01-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed. A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository

  19. Nucleation process and dynamic inversion of the Mw 6.9 Valparaíso 2017 earthquake in Central Chile

    Science.gov (United States)

    Ruiz, S.; Aden-Antoniow, F.; Baez, J. C., Sr.; Otarola, C., Sr.; Potin, B.; DelCampo, F., Sr.; Poli, P.; Flores, C.; Satriano, C.; Felipe, L., Sr.; Madariaga, R. I.

    2017-12-01

    The Valparaiso 2017 sequence occurred in mega-thrust Central Chile, an active zone where the last mega-earthquake occurred in 1730. An intense seismicity occurred 2 days before of the Mw 6.9 main-shock. A slow trench ward movement observed in the coastal GPS antennas accompanied the foreshock seismicity. Following the Mw 6.9 earthquake the seismicity migrated 30 Km to South-East. This sequence was well recorded by multi-parametric stations composed by GPS, Broad-Band and Strong Motion instruments. We built a seismic catalogue with 2329 events associated to Valparaiso sequence, with a magnitude completeness of Ml 2.8. We located all the seismicity considering a new 3D velocity model obtained for the Valparaiso zone, and compute the moment tensor for events with magnitude larger than Ml 3.5, and finally studied the presence of repeating earthquakes. The main-shock is studied by performing a dynamic inversion using the strong motion records and an elliptical patch approach to characterize the rupture process. During the two days nucleation stage, we observe a compact zone of repeater events. In the meantime a westward GPS movement was recorded in the coastal GPS stations. The aseismic moment estimated from GPS is larger than the foreshocks cumulative moment, suggesting the presence of a slow slip event, which potentially triggered the 6.9 mainshock. The Mw 6.9 earthquake is associated to rupture of an elliptical asperity of semi-axis of 10 km and 5 km, with a sub-shear rupture, stress drop of 11.71 MPa, yield stress of 17.21 MPa, slip weakening of 0.65 m and kappa value of 1.70. This sequence occurs close to, and with some similar characteristics that 1985 Valparaíso Mw 8.0 earthquake. The rupture of this asperity could stress more the highly locked Central Chile zone where a mega-thrust earthquake like 1730 is expected.

  20. Nonstructural NSs protein of rift valley fever virus interacts with pericentromeric DNA sequences of the host cell, inducing chromosome cohesion and segregation defects.

    Science.gov (United States)

    Mansuroglu, Z; Josse, T; Gilleron, J; Billecocq, A; Leger, P; Bouloy, M; Bonnefoy, E

    2010-01-01

    Rift Valley fever virus (RVFV) is an emerging, highly pathogenic virus; RVFV infection can lead to encephalitis, retinitis, or fatal hepatitis associated with hemorrhagic fever in humans, as well as death, abortions, and fetal deformities in animals. RVFV nonstructural NSs protein, a major factor of the virulence, forms filamentous structures in the nuclei of infected cells. In order to further understand RVFV pathology, we investigated, by chromatin immunoprecipitation, immunofluorescence, fluorescence in situ hybridization, and confocal microscopy, the capacity of NSs to interact with the host genome. Our results demonstrate that even though cellular DNA is predominantly excluded from NSs filaments, NSs interacts with some specific DNA regions of the host genome such as clusters of pericentromeric gamma-satellite sequence. Targeting of these sequences by NSs was correlated with the induction of chromosome cohesion and segregation defects in RVFV-infected murine, as well as sheep cells. Using recombinant nonpathogenic virus rZHDeltaNSs210-230, expressing a NSs protein deleted of its region of interaction with cellular factor SAP30, we showed that the NSs-SAP30 interaction was essential for NSs to target pericentromeric sequences, as well as for induction of chromosome segregation defects. The effect of RVFV upon the inheritance of genetic information is discussed with respect to the pathology associated with fetal deformities and abortions, highlighting the main role played by cellular cofactor SAP30 on the establishment of NSs interactions with host DNA sequences and RVFV pathogenesis.

  1. Geologic map of the Lower Valley quadrangle, Caribou County, Idaho

    Science.gov (United States)

    Oberlindacher, H. Peter; Hovland, R. David; Miller, Susan T.; Evans, James G.; Miller, Robert J.

    2018-04-05

    The Lower Valley 7.5-minute quadrangle, located in the core of the Southeast Idaho Phosphate Resource Area, includes Mississippian to Triassic marine sedimentary rocks, Pliocene to Pleistocene basalt, and Tertiary to Holocene surficial deposits. The Mississippian to Triassic marine sedimentary sequence was deposited on a shallow shelf between an emergent craton to the east and the Antler orogenic belt to the west. The Meade Peak Phosphatic Shale Member of the Permian Phosphoria Formation hosts high-grade deposits of phosphate that were the subject of geologic studies through much of the 20th century. Open-pit mining of the phosphate has been underway within and near the Lower Valley quadrangle for several decades.

  2. Self-organization of spatio-temporal earthquake clusters

    Directory of Open Access Journals (Sweden)

    S. Hainzl

    2000-01-01

    Full Text Available Cellular automaton versions of the Burridge-Knopoff model have been shown to reproduce the power law distribution of event sizes; that is, the Gutenberg-Richter law. However, they have failed to reproduce the occurrence of foreshock and aftershock sequences correlated with large earthquakes. We show that in the case of partial stress recovery due to transient creep occurring subsequently to earthquakes in the crust, such spring-block systems self-organize into a statistically stationary state characterized by a power law distribution of fracture sizes as well as by foreshocks and aftershocks accompanying large events. In particular, the increase of foreshock and the decrease of aftershock activity can be described by, aside from a prefactor, the same Omori law. The exponent of the Omori law depends on the relaxation time and on the spatial scale of transient creep. Further investigations concerning the number of aftershocks, the temporal variation of aftershock magnitudes, and the waiting time distribution support the conclusion that this model, even "more realistic" physics in missed, captures in some ways the origin of the size distribution as well as spatio-temporal clustering of earthquakes.

  3. Succession of earthquakes in the Ebro Delta. A sequence to research pupils’ ideas and the prac tice of using evidence

    Directory of Open Access Journals (Sweden)

    Blanca Puig Mauriz

    2015-01-01

    Full Text Available A “socially live” issue related to Geology is dealt with: the controversy surrounding the succession of earthquakes in the Ebro Delta (Spain. This article examines both students’ ideas about earthquakes and the practice of using evidence in the context of choosing a causal explanation of Delta’s earthquakes. The study is part of the researches on reasoning about socioscientific issues in Geology. Three groups are involved: one belonging to CSE 4th grade (students aged from 16 to 17 and two to baccalaureate 1st grade (aged from 17 to 18. The results indicate that most of students understand an earthquake as a common phenomenon, and relate it exclusively to the tectonics plates. Regarding the controversy of Ebro Delta most choose as the cause of earthquakes the combination of natural causes and human activity, and focus on building an explanation, rather than justify their choice based on evidence.

  4. Fault healing promotes high-frequency earthquakes in laboratory experiments and on natural faults

    Science.gov (United States)

    McLaskey, Gregory C.; Thomas, Amanda M.; Glaser, Steven D.; Nadeau, Robert M.

    2012-01-01

    Faults strengthen or heal with time in stationary contact and this healing may be an essential ingredient for the generation of earthquakes. In the laboratory, healing is thought to be the result of thermally activated mechanisms that weld together micrometre-sized asperity contacts on the fault surface, but the relationship between laboratory measures of fault healing and the seismically observable properties of earthquakes is at present not well defined. Here we report on laboratory experiments and seismological observations that show how the spectral properties of earthquakes vary as a function of fault healing time. In the laboratory, we find that increased healing causes a disproportionately large amount of high-frequency seismic radiation to be produced during fault rupture. We observe a similar connection between earthquake spectra and recurrence time for repeating earthquake sequences on natural faults. Healing rates depend on pressure, temperature and mineralogy, so the connection between seismicity and healing may help to explain recent observations of large megathrust earthquakes which indicate that energetic, high-frequency seismic radiation originates from locations that are distinct from the geodetically inferred locations of large-amplitude fault slip

  5. Coherence of Mach fronts during heterogeneous supershear earthquake rupture propagation: Simulations and comparison with observations

    Science.gov (United States)

    Bizzarri, A.; Dunham, Eric M.; Spudich, P.

    2010-01-01

    of 5%-damped absolute response spectral accelerations (SA) in the period band 0.05–0.4 s observed at stations that presumably experienced Mach pulses during the 1979 Imperial Valley, 1999 Kocaeli, and 2002 Denali Fault earthquakes compared to SA observed at non-Mach pulse stations in the same earthquakes. A 20% amplification of short period SA is seen only at a few of the Imperial Valley stations closest to the fault. This lack of elevated SA suggests that either Mach pulses in real earthquakes are even more incoherent that in our simulations or that Mach pulses are vulnerable to attenuation through nonlinear soil response. In any case, this result might imply that current engineering models of high frequency earthquake ground motions do not need to be modified by more than 20% close to the fault to account for Mach pulses, provided that the existing data are adequately representative of ground motions from supershear earthquakes.

  6. Seismic dynamics in advance and after the recent strong earthquakes in Italy and New Zealand

    Science.gov (United States)

    Nekrasova, A.; Kossobokov, V. G.

    2017-12-01

    We consider seismic events as a sequence of avalanches in self-organized system of blocks-and-faults of the Earth lithosphere and characterize earthquake series with the distribution of the control parameter, η = τ × 10B × (5-M) × L C of the Unified Scaling Law for Earthquakes, USLE (where τ is inter-event time, B is analogous to the Gutenberg-Richter b-value, and C is fractal dimension of seismic locus). A systematic analysis of earthquake series in Central Italy and New Zealand, 1993-2017, suggests the existence, in a long-term, of different rather steady levels of seismic activity characterized with near constant values of η, which, in mid-term, intermittently switch at times of transitions associated with the strong catastrophic events. On such a transition, seismic activity, in short-term, may follow different scenarios with inter-event time scaling of different kind, including constant, logarithmic, power law, exponential rise/decay or a mixture of those. The results do not support the presence of universality in seismic energy release. The observed variability of seismic activity in advance and after strong (M6.0+) earthquakes in Italy and significant (M7.0+) earthquakes in New Zealand provides important constraints on modelling realistic earthquake sequences by geophysicists and can be used to improve local seismic hazard assessments including earthquake forecast/prediction methodologies. The transitions of seismic regime in Central Italy and New Zealand started in 2016 are still in progress and require special attention and geotechnical monitoring. It would be premature to make any kind of definitive conclusions on the level of seismic hazard which is evidently high at this particular moment of time in both regions. The study supported by the Russian Science Foundation Grant No.16-17-00093.

  7. Turkish Compulsory Earthquake Insurance and "Istanbul Earthquake

    Science.gov (United States)

    Durukal, E.; Sesetyan, K.; Erdik, M.

    2009-04-01

    The city of Istanbul will likely experience substantial direct and indirect losses as a result of a future large (M=7+) earthquake with an annual probability of occurrence of about 2%. This paper dwells on the expected building losses in terms of probable maximum and average annualized losses and discusses the results from the perspective of the compulsory earthquake insurance scheme operational in the country. The TCIP system is essentially designed to operate in Turkey with sufficient penetration to enable the accumulation of funds in the pool. Today, with only 20% national penetration, and about approximately one-half of all policies in highly earthquake prone areas (one-third in Istanbul) the system exhibits signs of adverse selection, inadequate premium structure and insufficient funding. Our findings indicate that the national compulsory earthquake insurance pool in Turkey will face difficulties in covering incurring building losses in Istanbul in the occurrence of a large earthquake. The annualized earthquake losses in Istanbul are between 140-300 million. Even if we assume that the deductible is raised to 15%, the earthquake losses that need to be paid after a large earthquake in Istanbul will be at about 2.5 Billion, somewhat above the current capacity of the TCIP. Thus, a modification to the system for the insured in Istanbul (or Marmara region) is necessary. This may mean an increase in the premia and deductible rates, purchase of larger re-insurance covers and development of a claim processing system. Also, to avoid adverse selection, the penetration rates elsewhere in Turkey need to be increased substantially. A better model would be introduction of parametric insurance for Istanbul. By such a model the losses will not be indemnified, however will be directly calculated on the basis of indexed ground motion levels and damages. The immediate improvement of a parametric insurance model over the existing one will be the elimination of the claim processing

  8. The Gabbs Valley, Nevada, geothermal prospect: Exploring for a potential blind geothermal resource

    Science.gov (United States)

    Payne, J.; Bell, J. W.; Calvin, W. M.

    2012-12-01

    The Gabbs Valley prospect in west-central Nevada is a potential blind geothermal resource system. Possible structural controls on this system were investigated using high-resolution LiDAR, low sun-angle aerial (LSA) photography, exploratory fault trenching and a shallow temperature survey. Active Holocene faults have previously been identified at 37 geothermal systems with indication of temperatures greater than 100° C in the western Nevada region. Active fault controls in Gabbs Valley include both Holocene and historical structures. Two historical earthquakes occurring in 1932 and 1954 have overlapping surface rupture patterns in Gabbs Valley. Three active fault systems identified through LSA and LiDAR mapping have characteristics of Basin and Range normal faulting and Walker Lane oblique dextral faulting. The East Monte Cristo Mountains fault zone is an 8.5 km long continuous NNE striking, discrete fault with roughly 0.5 m right-normal historic motion and 3 m vertical Quaternary separation. The Phillips Wash fault zone is an 8.2 km long distributed fault system striking NE to N, with Quaternary fault scarps of 1-3 m vertical separation and a 500 m wide graben adjacent to the Cobble Cuesta anticline. This fault displays ponded drainages, an offset terrace riser and right stepping en echelon fault patterns suggestive of left lateral offset, and fault trenching exposed non-matching stratigraphy typical of a significant component of lateral offset. The unnamed faults of Gabbs Valley are a 10.6 km long system of normal faults striking NNE and Quaternary scarps are up to 4 m high. These normal faults largely do not have historic surface rupture, but a small segment of 1932 rupture has been identified. A shallow (2 m deep) temperature survey of 80 points covering roughly 65 square kilometers was completed. Data were collected over approximately 2 months, and continual base station temperature measurements were used to seasonally correct temperature measurements. A 2

  9. Earthquake potential revealed by tidal influence on earthquake size-frequency statistics

    Science.gov (United States)

    Ide, Satoshi; Yabe, Suguru; Tanaka, Yoshiyuki

    2016-11-01

    The possibility that tidal stress can trigger earthquakes is long debated. In particular, a clear causal relationship between small earthquakes and the phase of tidal stress is elusive. However, tectonic tremors deep within subduction zones are highly sensitive to tidal stress levels, with tremor rate increasing at an exponential rate with rising tidal stress. Thus, slow deformation and the possibility of earthquakes at subduction plate boundaries may be enhanced during periods of large tidal stress. Here we calculate the tidal stress history, and specifically the amplitude of tidal stress, on a fault plane in the two weeks before large earthquakes globally, based on data from the global, Japanese, and Californian earthquake catalogues. We find that very large earthquakes, including the 2004 Sumatran, 2010 Maule earthquake in Chile and the 2011 Tohoku-Oki earthquake in Japan, tend to occur near the time of maximum tidal stress amplitude. This tendency is not obvious for small earthquakes. However, we also find that the fraction of large earthquakes increases (the b-value of the Gutenberg-Richter relation decreases) as the amplitude of tidal shear stress increases. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. This suggests that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. We conclude that large earthquakes are more probable during periods of high tidal stress.

  10. Characterize the hydrogeological properties and probe the stress field in Salt Lake Valley, Utah using SAR imagery

    Science.gov (United States)

    Hu, X.; Lu, Z.; Barbot, S.; Wang, T.

    2017-12-01

    Aquifer skeletons deform actively in response to the groundwater redistribution and hydraulic head changes with varied time scales of delay and sensitivity, that can also, in some instances, trigger earthquakes. However, determining the key hydrogeological properties and understanding the interactions between aquifer and seismicity generally requires the analysis of dense water level data combined with expensive drilling data (borehole breakouts). Here we investigate the spatiotemporal correlation among ground motions, hydrological changes, earthquakes, and faults in Salt Lake Valley, Utah, based on InSAR observations from ENVISAT ASAR (2004-2010) and Sentinel-1A (2015-2016). InSAR results show a clear seasonal and long-term correlation between surface uplift/subsidence and groundwater recharge/discharge, with evidence for an average net uplift of 15 mm/yr for a period of 7 years. The long-term uplift, remarkably bounded by faults, reflects a net increase in pore pressure associated with prolonged water recharge probably decades ago. InSAR-derived ground deformation and its correlation with head variations allow us to quantify hydrogeological properties - decay coefficient, storage coefficient, and bulk compressibility. We also model the long-term deformation using a shallow vertical shearing reservoir to constrain its thickness and strain rate. InSAR-derived deformation help reveal the coupled hydrological and tectonic processes in Salt Lake Valley: the embedded faults disrupt the groundwater flow and partition the hydrological units, and the pore pressure changes rearrange the aquifer skeleton and modulate the stress field, which may affect the basin-wide seismicity.

  11. Microbial terroir in Chilean valleys: Diversity of non-conventional yeast

    Directory of Open Access Journals (Sweden)

    Carla eJara

    2016-05-01

    Full Text Available In this study, the presence of non-conventional yeast associated with vineyards located between latitudes 30ºS and 36ºS was examined, including the valleys of Limarí, Casablanca, Maipo, Colchagua, Maule and Itata. The microbial fingerprinting in each valley was examined based on the specific quantification of yeast of enological interest. Grape berries were sampled to evaluate the presence and load of non-conventional yeast with enological potential, such as Metschnikowia, Hanseniaspora, Torulaspora, Debaryomyces, Meyerozyma and Rhodotorula. These yeasts were present in all vineyards studied but with varying loads depending on the valley sampled. No identical fingerprints were observed; however, similarities and differences could be observed among the microbial profiles of each valley. A co-variation in the loads of Metschnikowia and Hanseniaspora with latitude was observed, showing high loads in the Casablanca and Itata valleys, which was coincident with the higher relative humidity or rainfall of those areas. Non-conventional yeasts were also isolated and identified after sequencing molecular markers. Potentially good aromatic properties were also screened among the isolates, resulting in the selection of mostly Metschnikowia and Hanseniaspora isolates. Finally, our results suggest that microbial terroir might be affected by climatic conditions such as relative humidity and rainfall, especially impacting the load of non-conventional yeast. In this study, the microbial fingerprint for yeast in Chilean vineyards is reported for the first time revealing an opportunity to study the contribution of this assembly of microorganisms to the final product.

  12. Local magnitude, duration magnitude and seismic moment of Dahshour 1992 earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Dessokey, M.M.; Abdelwahed, M.F. [National research Institute of Astronomy and Geophysics, Cairo (Egypt). Dept. of Seismology; Hussein, H.M.; Abdelrahman, El. M. [Cairo Univ., Cairo (Egypt). Dept. of Geophysics

    2000-02-01

    Local magnitude M{sub L} have been calculated for 56 earthquakes of the Dahshour 1992 sequence using simulated records of the KEG broadband station and estimated calibration function of the area. The measurements, derived by the simulated Wood Anderson seismograms, are analysed and discussed.

  13. The Macroseismic Intensity Distribution of the 30 October 2016 Earthquake in Central Italy (Mw 6.6): Seismotectonic Implications

    Science.gov (United States)

    Galli, Paolo; Castenetto, Sergio; Peronace, Edoardo

    2017-10-01

    The central Italy Apennines were rocket in 2016 by the strongest earthquakes of the past 35 years. Two main shocks (Mw 6.2 and Mw 6.6) between the end of August and October caused the death of almost 300 people, and the destruction of 50 villages and small towns scattered along 40 km in the hanging wall of the N165° striking Mount Vettore fault system, that is, the structure responsible for the earthquakes. The 24 August southern earthquake, besides causing all the casualties, razed to the ground the small medieval town of Amatrice and dozens of hamlets around it. The 30 October main shock crushed definitely all the villages of the whole epicentral area (up to 11 intensity degree), extending northward the level of destruction and inducing heavy damage even to the 30 km far Camerino town. The survey of the macroseismic effects started the same day of the first main shock and continued during the whole seismic sequence, even during and after the strong earthquakes at the end of October, allowing the definition of a detailed picture of the damage distribution, day by day. Here we present the results of the final survey in terms of Mercalli-Cancani-Sieberg intensity, which account for the cumulative effects of the whole 2016 sequence (465 intensity data points, besides 435 related to the 24 August and 54 to the 26 October events, respectively). The distribution of the highest intensity data points evidenced the lack of any possible overlap between the 2016 earthquakes and the strongest earthquakes of the region, making this sequence a unique case in the seismic history of Italy. In turn, the cross matching with published paleoseismic data provided some interesting insights concerning the seismogenic behavior of the Mount Vettore fault in comparison with other active normal faults of the region.

  14. Integrated geophysical characteristics of the 2015 Illapel, Chile, earthquake

    NARCIS (Netherlands)

    Herman, Matthew W.; Nealy, Jennifer L.; Yeck, William L.; Barnhart, William D.; Hayes, Gavin P.; Furlong, Kevin P.; Benz, Harley M.

    2017-01-01

    On 16 September 2015, a Mw 8.3 earthquake ruptured the subduction zone offshore of Illapel, Chile, generating an aftershock sequence with 14 Mw 6.0–7.0 events. A double source W phase moment tensor inversion consists of a Mw 7.2 subevent and the main Mw 8.2 phase. We determine two slip models for

  15. Stress-based aftershock forecasts made within 24h post mainshock: Expected north San Francisco Bay area seismicity changes after the 2014M=6.0 West Napa earthquake

    Science.gov (United States)

    Parsons, Thomas E.; Segou, Margaret; Sevilgen, Volkan; Milner, Kevin; Field, Edward; Toda, Shinji; Stein, Ross S.

    2014-01-01

    We calculate stress changes resulting from the M= 6.0 West Napa earthquake on north San Francisco Bay area faults. The earthquake ruptured within a series of long faults that pose significant hazard to the Bay area, and we are thus concerned with potential increases in the probability of a large earthquake through stress transfer. We conduct this exercise as a prospective test because the skill of stress-based aftershock forecasting methodology is inconclusive. We apply three methods: (1) generalized mapping of regional Coulomb stress change, (2) stress changes resolved on Uniform California Earthquake Rupture Forecast faults, and (3) a mapped rate/state aftershock forecast. All calculations were completed within 24 h after the main shock and were made without benefit of known aftershocks, which will be used to evaluative the prospective forecast. All methods suggest that we should expect heightened seismicity on parts of the southern Rodgers Creek, northern Hayward, and Green Valley faults.

  16. Earthquake, GIS and multimedia. The 1883 Casamicciola earthquake

    Directory of Open Access Journals (Sweden)

    M. Rebuffat

    1995-06-01

    Full Text Available A series of multimedia monographs concerning the main seismic events that have affected the Italian territory are in the process of being produced for the Documental Integrated Multimedia Project (DIMP started by the Italian National Seismic Survey (NSS. The purpose of the project is to reconstruct the historical record of earthquakes and promote an earthquake public education. Producing the monographs. developed in ARC INFO and working in UNIX. involved designing a special filing and management methodology to integrate heterogeneous information (images, papers, cartographies, etc.. This paper describes the possibilities of a GIS (Geographic Information System in the filing and management of documental information. As an example we present the first monograph on the 1883 Casamicciola earthquake. on the island of Ischia (Campania, Italy. This earthquake is particularly interesting for the following reasons: I historical-cultural context (first destructive seismic event after the unification of Italy; 2 its features (volcanic earthquake; 3 the socioeconomic consequences caused at such an important seaside resort.

  17. First Complete Genome Sequence of a Watermelon Mosaic Virus Isolated from Watermelon in the United States

    OpenAIRE

    Rajbanshi, Naveen; Ali, Akhtar

    2016-01-01

    Watermelon mosaic virus was first reported in 1965 from the Rio Grande Valley, TX. We report here the first complete genome sequence of a watermelon mosaic virus isolate from watermelon collected from the Rio Grande Valley of Texas.

  18. OMG Earthquake! Can Twitter improve earthquake response?

    Science.gov (United States)

    Earle, P. S.; Guy, M.; Ostrum, C.; Horvath, S.; Buckmaster, R. A.

    2009-12-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public, text messages, can augment its earthquake response products and the delivery of hazard information. The goal is to gather near real-time, earthquake-related messages (tweets) and provide geo-located earthquake detections and rough maps of the corresponding felt areas. Twitter and other social Internet technologies are providing the general public with anecdotal earthquake hazard information before scientific information has been published from authoritative sources. People local to an event often publish information within seconds via these technologies. In contrast, depending on the location of the earthquake, scientific alerts take between 2 to 20 minutes. Examining the tweets following the March 30, 2009, M4.3 Morgan Hill earthquake shows it is possible (in some cases) to rapidly detect and map the felt area of an earthquake using Twitter responses. Within a minute of the earthquake, the frequency of “earthquake” tweets rose above the background level of less than 1 per hour to about 150 per minute. Using the tweets submitted in the first minute, a rough map of the felt area can be obtained by plotting the tweet locations. Mapping the tweets from the first six minutes shows observations extending from Monterey to Sacramento, similar to the perceived shaking region mapped by the USGS “Did You Feel It” system. The tweets submitted after the earthquake also provided (very) short first-impression narratives from people who experienced the shaking. Accurately assessing the potential and robustness of a Twitter-based system is difficult because only tweets spanning the previous seven days can be searched, making a historical study impossible. We have, however, been archiving tweets for several months, and it is clear that significant limitations do exist. The main drawback is the lack of quantitative information

  19. Geochemical features and effects on deep-seated fluids during the May-June 2012 southern Po Valley seismic sequence

    Directory of Open Access Journals (Sweden)

    Francesco Italiano

    2012-10-01

    Full Text Available A periodic sampling of the groundwaters and dissolved and free gases in selected deep wells located in the area affected by the May-June 2012 southern Po Valley seismic sequence has provided insight into seismogenic-induced changes of the local aquifer systems. The results obtained show progressive changes in the fluid geochemistry, allowing it to be established that deep-seated fluids were mobilized during the seismic sequence and reached surface layers along faults and fractures, which generated significant geochemical anomalies. The May-June 2012 seismic swarm (mainshock on May 29, 2012, M 5.8; 7 shocks M >5, about 200 events 3 > M > 5 induced several modifications in the circulating fluids. This study reports the preliminary results obtained for the geochemical features of the waters and gases collected over the epicentral area from boreholes drilled at different depths, thus intercepting water and gases with different origins and circulation. The aim of the investigations was to improve our knowledge of the fluids circulating over the seismic area (e.g. origin, provenance, interactions, mixing of different components, temporal changes. This was achieved by collecting samples from both shallow and deep-drilled boreholes, and then, after the selection of the relevant sites, we looked for temporal changes with mid-to-long-term monitoring activity following a constant sampling rate. This allowed us to gain better insight into the relationships between the fluid circulation and the faulting activity. The sampling sites are listed in Table 1, along with the analytical results of the gas phase. […

  20. Seismicity Controlled by a Frictional Afterslip During a Small-Magnitude Seismic Sequence (ML Taiwan

    Science.gov (United States)

    Canitano, Alexandre; Godano, Maxime; Hsu, Ya-Ju; Lee, Hsin-Ming; Linde, Alan T.; Sacks, Selwyn

    2018-02-01

    We report evidence for frictional afterslip at shallow depths (about 5 to 7 km) during a small-magnitude seismic sequence (with MLTaiwan. The afterslip, which was recorded by a nearby borehole dilatometer, lasted about a month with a cumulative geodetic moment magnitude of 4.8 ± 0.2. The afterslip comprised two stages and controlled the aftershock sequence. The first postseismic stage, which followed a ML 4.6 earthquake, lasted about 6 h and mostly controlled the ruptures of neighboring asperities (e.g., multiplets) near the hypocenter. Then, a 4 week duration large afterslip event following a ML 4.9 earthquake controlled the rate of aftershocks during its first 2 days through brittle creep. The study presents a rare case of simultaneous seismological and geodetic observations for afterslip following earthquakes with magnitude lower than 5. Furthermore, the geodetic moment of the postseismic phase is at least equivalent to the coseismic moment of the sequence.

  1. Earthquake Early Warning Systems

    OpenAIRE

    Pei-Yang Lin

    2011-01-01

    Because of Taiwan’s unique geographical environment, earthquake disasters occur frequently in Taiwan. The Central Weather Bureau collated earthquake data from between 1901 and 2006 (Central Weather Bureau, 2007) and found that 97 earthquakes had occurred, of which, 52 resulted in casualties. The 921 Chichi Earthquake had the most profound impact. Because earthquakes have instant destructive power and current scientific technologies cannot provide precise early warnings in advance, earthquake ...

  2. Earthquake Hazard in the New Madrid Seismic Zone Remains a Concern

    Science.gov (United States)

    Frankel, A.D.; Applegate, D.; Tuttle, M.P.; Williams, R.A.

    2009-01-01

    There is broad agreement in the scientific community that a continuing concern exists for a major destructive earthquake in the New Madrid seismic zone. Many structures in Memphis, Tenn., St. Louis, Mo., and other communities in the central Mississippi River Valley region are vulnerable and at risk from severe ground shaking. This assessment is based on decades of research on New Madrid earthquakes and related phenomena by dozens of Federal, university, State, and consulting earth scientists. Considerable interest has developed recently from media reports that the New Madrid seismic zone may be shutting down. These reports stem from published research using global positioning system (GPS) instruments with results of geodetic measurements of strain in the Earth's crust. Because of a lack of measurable strain at the surface in some areas of the seismic zone over the past 14 years, arguments have been advanced that there is no buildup of stress at depth within the New Madrid seismic zone and that the zone may no longer pose a significant hazard. As part of the consensus-building process used to develop the national seismic hazard maps, the U.S. Geological Survey (USGS) convened a workshop of experts in 2006 to evaluate the latest findings in earthquake hazards in the Eastern United States. These experts considered the GPS data from New Madrid available at that time that also showed little to no ground movement at the surface. The experts did not find the GPS data to be a convincing reason to lower the assessment of earthquake hazard in the New Madrid region, especially in light of the many other types of data that are used to construct the hazard assessment, several of which are described here.

  3. Sequence of deep-focus earthquakes beneath the Bonin Islands identified by the NIED nationwide dense seismic networks Hi-net and F-net

    Science.gov (United States)

    Takemura, Shunsuke; Saito, Tatsuhiko; Shiomi, Katsuhiko

    2017-03-01

    An M 6.8 ( Mw 6.5) deep-focus earthquake occurred beneath the Bonin Islands at 21:18 (JST) on June 23, 2015. Observed high-frequency (>1 Hz) seismograms across Japan, which contain several sets of P- and S-wave arrivals for the 10 min after the origin time, indicate that moderate-to-large earthquakes occurred sequentially around Japan. Snapshots of the seismic energy propagation illustrate that after one deep-focus earthquake occurred beneath the Sea of Japan, two deep-focus earthquakes occurred sequentially after the first ( Mw 6.5) event beneath the Bonin Islands in the next 4 min. The United States Geological Survey catalog includes three Bonin deep-focus earthquakes with similar hypocenter locations, but their estimated magnitudes are inconsistent with seismograms from across Japan. The maximum-amplitude patterns of the latter two earthquakes were similar to that of the first Bonin earthquake, which indicates similar locations and mechanisms. Furthermore, based on the ratios of the S-wave amplitudes to that of the first event, the magnitudes of the latter events are estimated as M 6.5 ± 0.02 and M 5.8 ± 0.02, respectively. Three magnitude-6-class earthquakes occurred sequentially within 4 min in the Pacific slab at 480 km depth, where complex heterogeneities exist within the slab.[Figure not available: see fulltext.

  4. Twitter earthquake detection: Earthquake monitoring in a social world

    Science.gov (United States)

    Earle, Paul S.; Bowden, Daniel C.; Guy, Michelle R.

    2011-01-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets) with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word "earthquake" clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  5. Impact of earthquakes on agriculture during the Roman-Byzantine period from pollen records of the Dead Sea laminated sediment

    Science.gov (United States)

    Leroy, Suzanne A. G.; Marco, Shmuel; Bookman, Revital; Miller, Charlotte S.

    2010-03-01

    The Dead Sea region holds the archives of a complex relationship between an ever-changing nature and ancient civilisations. Regional pollen diagrams show a Roman-Byzantine period standing out in the recent millennia by its wetter climate that allowed intensive arboriculture. During that period, the Dead Sea formed laminites that display mostly a seasonal character. A multidisciplinary study focused on two earthquakes, 31 BC and AD 363, recorded as seismites in the Ze'elim gully A unit III which has been well dated by radiocarbon in a previous study. The sampling of the sediment was done at an annual resolution starting from a few years before and finishing a decade after each earthquake. A clear drop in agricultural indicators (especially Olea and cereals) is shown. These pollen indicators mostly reflect human activities in the Judean Hills and coastal oases. Agriculture was disturbed in large part of the rift valley where earthquake damage affected irrigation and access to the fields. It took 4 to 5 yr to resume agriculture to previous conditions. Earthquakes must be seen as contributors to factors damaging societies. If combined with other factors such as climatic aridification, disease epidemics and political upheaval, they may lead to civilisation collapse.

  6. Ground water and earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Ts' ai, T H

    1977-11-01

    Chinese folk wisdom has long seen a relationship between ground water and earthquakes. Before an earthquake there is often an unusual change in the ground water level and volume of flow. Changes in the amount of particulate matter in ground water as well as changes in color, bubbling, gas emission, and noises and geysers are also often observed before earthquakes. Analysis of these features can help predict earthquakes. Other factors unrelated to earthquakes can cause some of these changes, too. As a first step it is necessary to find sites which are sensitive to changes in ground stress to be used as sensor points for predicting earthquakes. The necessary features are described. Recording of seismic waves of earthquake aftershocks is also an important part of earthquake predictions.

  7. Overview of the geologic effects of the November 14, 2016, Mw 7.8 Kaikoura, New Zealand, earthquake

    Science.gov (United States)

    Jibson, Randall W.; Allstadt, Kate E.; Rengers, Francis K.; Godt, Jonathan W.

    2018-03-30

    The November 14, 2016, Kaikoura, New Zealand, earthquake (moment magnitude [Mw] 7.8) triggered more than 10,000 landslides over an area of about 12,000 square kilometers in the northeastern part of the South Island of New Zealand. In collaboration with GNS Science (the Institute of Geological and Nuclear Science Limited), we conducted ground and helicopter reconnaissance of the affected areas and assisted in rapid hazard evaluation. The majority of the triggered landslides were shallow- to moderate-depth (1–10 meters), highly disrupted falls and slides in rock and debris from Lower Cretaceous graywacke sandstone in the Seaward Kaikoura Range. Deeper, more coherent landslides in weak Upper Cretaceous to Neogene sedimentary rock also were numerous in the gentler topography south and inland (west) of the Seaward Kaikoura Range. The principal ground-failure hazards from the earthquake were the hundreds of valley-blocking landslides, many of which impounded lakes and ponds that posed potential downstream flooding hazards. Both large and small landslides also blocked road and rail corridors in many locations, including the main north-south highway (State Highway 1), which was still closed in October 2017. As part of our investigation, we compared post-earthquake field observations to the output of models used to estimate near-real-time landslide probabilities following earthquakes. The models generally over-predicted landslide occurrence and thus need further refinement.

  8. Groundwater budgets for Detrital, Hualapai, and Sacramento Valleys, Mohave County, Arizona, 2007-08

    Science.gov (United States)

    Garner, Bradley D.; Truini, Margot

    2011-01-01

    The United States Geological Survey, in cooperation with the Arizona Department of Water Resources, initiated an investigation of the hydrogeology and water resources of Detrital, Hualapai, and Sacramento Valleys in northwestern Arizona in 2005, and this report is part of that investigation. Water budgets were developed for Detrital, Hualapai, and Sacramento Valleys to provide a generalized understanding of the groundwater systems in this rural area that has shown some evidence of human-induced water-level declines. The valleys are within the Basin and Range physiographic province and consist of thick sequences of permeable alluvial sediment deposited into basins bounded by relatively less permeable igneous and metamorphic rocks. Long-term natural recharge rates (1940-2008) for the alluvial aquifers were estimated to be 1,400 acre-feet per year (acre-ft/yr) for Detrital Valley, 5,700 acre-ft/yr for Hualapai Valley, and 6,000 acre-ft/yr for Sacramento Valley. Natural discharge rates were assumed to be equal to natural recharge rates, on the basis of the assumption that all groundwater withdrawals to date have obtained water from groundwater storage. Groundwater withdrawals (2007-08) for the alluvial aquifers were less than 300 acre-ft/yr for Detrital Valley, about 9,800 acre-ft/yr for Hualapai Valley, and about 4,500 acre-ft/yr for Sacramento Valley. Incidental recharge from leaking water-supply pipes, septic systems, and wastewater-treatment plants accounted for about 35 percent of total recharge (2007-08) across the study area. Natural recharge and discharge values in this study were 24-50 percent higher than values in most previously published studies. Water budgets present a spatially and temporally "lumped" view of water resources and incorporate many sources of uncertainty in this study area where only limited data presently are available.

  9. Reassessment of source parameters for three major earthquakes in the East African rift system from historical seismograms and bulletins

    OpenAIRE

    Ayele, A.; Kulhánek, O.

    2000-01-01

    Source parameters for three majo earthquakes in the East African rift are re-computed from historical seismograms and bulletins. The main shock and the largest foreshock of the August 25, 1906 earthquake sequence in the main Ethiopian rift are re-located on the eastern shoulder of the rift segment.The magnitude of the main shock is estimated to be 6.5 (Mw) from spectral analysis. The December 13, 1910 earthquake in the Rukwa rift (Western Tanzania) indicated a significant strike-slip componen...

  10. Transient postseismic mantle relaxation following 2004 Sumatra earthquake: implications of seismic vulnerability in the Andaman-Nicobar region

    Directory of Open Access Journals (Sweden)

    C. D. Reddy

    2012-02-01

    Full Text Available Throughout the world, the tsunami generation potential of some large under-sea earthquakes significantly contributes to regional seismic hazard, which gives rise to significant risk in the near-shore provinces where human settlements are in sizeable population, often referred to as coastal seismic risk. In this context, we show from the pertinent GPS data that the transient stresses generated by the viscoelastic relaxation process taking place in the mantle is capable of rupturing major faults by stress transfer from the mantle through the lower crust including triggering additional rupture on the other major faults. We also infer that postseismic relaxation at relatively large depths can push some of the fault segments to reactivation causing failure sequences. As an illustration to these effects, we consider in detail the earthquake sequence comprising six events, starting from the main event of Mw = 7.5, on 10 August 2009 and tapering off to a small earthquake of Mw = 4.5 on 2 February 2011 over a period of eighteen months in the intensely seismic Andaman Islands between India and Myanmar. The persisting transient stresses, spatio-temporal seismic pattern, modeled Coulomb stress changes, and the southward migration of earthquake activity has increased the probability of moderate earthquakes recurring in the northern Andaman region, particularly closer to or somewhat south of Diglipur.

  11. Southern California Earthquake Center/Undergraduate Studies in Earthquake Information Technology (SCEC/UseIT): Towards the Next Generation of Internship

    Science.gov (United States)

    Perry, S.; Benthien, M.; Jordan, T. H.

    2005-12-01

    The SCEC/UseIT internship program is training the next generation of earthquake scientist, with methods that can be adapted to other disciplines. UseIT interns work collaboratively, in multi-disciplinary teams, conducting computer science research that is needed by earthquake scientists. Since 2002, the UseIT program has welcomed 64 students, in some two dozen majors, at all class levels, from schools around the nation. Each summer''s work is posed as a ``Grand Challenge.'' The students then organize themselves into project teams, decide how to proceed, and pool their diverse talents and backgrounds. They have traditional mentors, who provide advice and encouragement, but they also mentor one another, and this has proved to be a powerful relationship. Most begin with fear that their Grand Challenge is impossible, and end with excitement and pride about what they have accomplished. The 22 UseIT interns in summer, 2005, were primarily computer science and engineering majors, with others in geology, mathematics, English, digital media design, physics, history, and cinema. The 2005 Grand Challenge was to "build an earthquake monitoring system" to aid scientists who must visualize rapidly evolving earthquake sequences and convey information to emergency personnel and the public. Most UseIT interns were engaged in software engineering, bringing new datasets and functionality to SCEC-VDO (Virtual Display of Objects), a 3D visualization software that was prototyped by interns last year, using Java3D and an extensible, plug-in architecture based on the Eclipse Integrated Development Environment. Other UseIT interns used SCEC-VDO to make animated movies, and experimented with imagery in order to communicate concepts and events in earthquake science. One movie-making project included the creation of an assessment to test the effectiveness of the movie''s educational message. Finally, one intern created an interactive, multimedia presentation of the UseIT program.

  12. Valley polarization in bismuth

    Science.gov (United States)

    Fauque, Benoit

    2013-03-01

    The electronic structure of certain crystal lattices can contain multiple degenerate valleys for their charge carriers to occupy. The principal challenge in the development of valleytronics is to lift the valley degeneracy of charge carriers in a controlled way. In bulk semi-metallic bismuth, the Fermi surface includes three cigar-shaped electron valleys lying almost perpendicular to the high symmetry axis known as the trigonal axis. The in-plane mass anisotropy of each valley exceeds 200 as a consequence of Dirac dispersion, which drastically reduces the effective mass along two out of the three orientations. According to our recent study of angle-dependent magnetoresistance in bismuth, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. As a consequence of a unique combination of high mobility and extreme mass anisotropy in bismuth, the effect is visible even at room temperature in a magnetic field of 1 T. Thus, a modest magnetic field can be used as a valley valve in bismuth. The results of our recent investigation of angle-dependent magnetoresistance in other semi-metals and doped semiconductors suggest that a rotating magnetic field can behave as a valley valve in a multi-valley system with sizeable mass anisotropy.

  13. Aftershock Duration of the 1976 Ms 7.8 Tangshan Earthquake: Implication for the Seismic Hazard Model with a Sensitivity Analysis

    Science.gov (United States)

    Zhong, Q.; Shi, B.

    2011-12-01

    The disaster of the Ms 7.8 earthquake occurred in Tangshan, China, on July 28th 1976 caused at least 240,000 deaths. The mainshock was followed by two largest aftershocks, the Ms 7.1 occurred after 15 hr later of the mainshock, and the Ms 6.9 occurred on 15 November. The aftershock sequence is lasting to date, making the regional seismic activity rate around the Tangshan main fault much higher than that of before the main event. If these aftershocks are involved in the local main event catalog for the PSHA calculation purpose, the resultant seismic hazard calculation will be overestimated in this region and underestimated in other place. However, it is always difficult to accurately determine the time duration of aftershock sequences and identifies the aftershocks from main event catalog for seismologist. In this study, by using theoretical inference and empirical relation given by Dieterich, we intended to derive the plausible time length of aftershock sequences of the Ms 7.8 Tangshan earthquake. The aftershock duration from log-log regression approach gives us about 120 years according to the empirical Omori's relation. Based on Dietrich approach, it has been claimed that the aftershock duration is a function of remote shear stressing rate, normal stress acting on the fault plane, and fault frictional constitutive parameters. In general, shear stressing rate could be estimated in three ways: 1. Shear stressing rate could be written as a function of static stress drop and a mean earthquake recurrence time. In this case, the time length of aftershock sequences is about 70-100 years. However, since the recurrence time inherits a great deal of uncertainty. 2. Ziv and Rubin derived a general function between shear stressing rate, fault slip speed and fault width with a consideration that aftershock duration does not scale with mainshock magnitude. Therefore, from Ziv's consideration, the aftershock duration is about 80 years. 3. Shear stressing rate is also can be

  14. Seismic soil structure interaction analysis for asymmetrical buildings supported on piled raft for the 2015 Nepal earthquake

    Science.gov (United States)

    Badry, Pallavi; Satyam, Neelima

    2017-01-01

    Seismic damage surveys and analyses conducted on modes of failure of structures during past earthquakes observed that the asymmetrical buildings show the most vulnerable effect throughout the course of failures (Wegner et al., 2009). Thus, all asymmetrical buildings significantly fails during the shaking events and it is really needed to focus on the accurate analysis of the building, including all possible accuracy in the analysis. Apart from superstructure geometry, the soil behavior during earthquake shaking plays a pivotal role in the building collapse (Chopra, 2012). Fixed base analysis where the soil is considered to be infinitely rigid cannot simulate the actual scenario of wave propagation during earthquakes and wave transfer mechanism in the superstructure (Wolf, 1985). This can be well explained in the soil structure interaction analysis, where the ground movement and structural movement can be considered with the equal rigor. In the present study the object oriented program has been developed in C++ to model the SSI system using the finite element methodology. In this attempt the seismic soil structure interaction analysis has been carried out for T, L and C types piled raft supported buildings in the recent 25th April 2015 Nepal earthquake (M = 7.8). The soil properties have been considered with the appropriate soil data from the Katmandu valley region. The effect of asymmetry of the building on the responses of the superstructure is compared with the author's research work. It has been studied/observed that the shape or geometry of the superstructure governs the response of the superstructure subjected to the same earthquake load.

  15. Constraining the Long-Term Average of Earthquake Recurrence Intervals From Paleo- and Historic Earthquakes by Assimilating Information From Instrumental Seismicity

    Science.gov (United States)

    Zoeller, G.

    2017-12-01

    Paleo- and historic earthquakes are the most important source of information for the estimationof long-term recurrence intervals in fault zones, because sequences of paleoearthquakes cover more than one seismic cycle. On the other hand, these events are often rare, dating uncertainties are enormous and the problem of missing or misinterpreted events leads to additional problems. Taking these shortcomings into account, long-term recurrence intervals are usually unstable as long as no additional information are included. In the present study, we assume that the time to the next major earthquake depends on the rate of small and intermediate events between the large ones in terms of a ``clock-change'' model that leads to a Brownian Passage Time distribution for recurrence intervals. We take advantage of an earlier finding that the aperiodicity of this distribution can be related to the Gutenberg-Richter-b-value, which is usually around one and can be estimated easily from instrumental seismicity in the region under consideration. This allows to reduce the uncertainties in the estimation of the mean recurrence interval significantly, especially for short paleoearthquake sequences and high dating uncertainties. We present illustrative case studies from Southern California and compare the method with the commonly used approach of exponentially distributed recurrence times assuming a stationary Poisson process.

  16. Foreshocks, aftershocks, and earthquake probabilities: Accounting for the landers earthquake

    Science.gov (United States)

    Jones, Lucile M.

    1994-01-01

    The equation to determine the probability that an earthquake occurring near a major fault will be a foreshock to a mainshock on that fault is modified to include the case of aftershocks to a previous earthquake occurring near the fault. The addition of aftershocks to the background seismicity makes its less probable that an earthquake will be a foreshock, because nonforeshocks have become more common. As the aftershocks decay with time, the probability that an earthquake will be a foreshock increases. However, fault interactions between the first mainshock and the major fault can increase the long-term probability of a characteristic earthquake on that fault, which will, in turn, increase the probability that an event is a foreshock, compensating for the decrease caused by the aftershocks.

  17. Earthquake-induced soft-sediment deformations and seismically amplified erosion rates recorded in varved sediments of Köyceğiz Lake (SW Turkey)

    KAUST Repository

    Avsar, Ulas; Jonsson, Sigurjon; Avşar, Ö zgü r; Schmidt, Sabine

    2016-01-01

    sequence of Köyceğiz Lake (SW Turkey) that we compare with estimated peak ground acceleration (PGA) values of several nearby earthquakes. We find that earthquakes exceeding estimated PGA values of ca. 20 cm/s2 can induce soft-sediment deformations (SSD

  18. Greening Turner Valley

    International Nuclear Information System (INIS)

    Byfield, M.

    2010-01-01

    This article discussed remedial activities undertaken in the Turner Valley. Remedial action in the valley must satisfy the financial concerns of engineers and investors as well as the environmental concerns of residents and regulators. Natural gas production in the Turner Valley began in 1914. The production practices were harmful and wasteful. Soil and water pollution was not considered a problem until recently. The impacts of cumulative effects and other pollution hazards are now being considered as part of many oil and gas environmental management programs. Companies know it is cheaper and safer to prevent pollutants from being released, and more efficient to clean them up quickly. Oil and gas companies are also committed to remediating historical problems. Several factors have simplified remediation plans in the Turner Valley. Area real estate values are now among the highest in Alberta. While the valley residents are generally friendly to the petroleum industry, strong communication with all stakeholders in the region is needed. 1 fig.

  19. Earthquake forecasting and warning

    Energy Technology Data Exchange (ETDEWEB)

    Rikitake, T.

    1983-01-01

    This review briefly describes two other books on the same subject either written or partially written by Rikitake. In this book, the status of earthquake prediction efforts in Japan, China, the Soviet Union, and the United States are updated. An overview of some of the organizational, legal, and societal aspects of earthquake prediction in these countries is presented, and scientific findings of precursory phenomena are included. A summary of circumstances surrounding the 1975 Haicheng earthquake, the 1978 Tangshan earthquake, and the 1976 Songpan-Pingwu earthquake (all magnitudes = 7.0) in China and the 1978 Izu-Oshima earthquake in Japan is presented. This book fails to comprehensively summarize recent advances in earthquake prediction research.

  20. Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake.

    Science.gov (United States)

    Schurr, Bernd; Asch, Günter; Hainzl, Sebastian; Bedford, Jonathan; Hoechner, Andreas; Palo, Mauro; Wang, Rongjiang; Moreno, Marcos; Bartsch, Mitja; Zhang, Yong; Oncken, Onno; Tilmann, Frederik; Dahm, Torsten; Victor, Pia; Barrientos, Sergio; Vilotte, Jean-Pierre

    2014-08-21

    On 1 April 2014, Northern Chile was struck by a magnitude 8.1 earthquake following a protracted series of foreshocks. The Integrated Plate Boundary Observatory Chile monitored the entire sequence of events, providing unprecedented resolution of the build-up to the main event and its rupture evolution. Here we show that the Iquique earthquake broke a central fraction of the so-called northern Chile seismic gap, the last major segment of the South American plate boundary that had not ruptured in the past century. Since July 2013 three seismic clusters, each lasting a few weeks, hit this part of the plate boundary with earthquakes of increasing peak magnitudes. Starting with the second cluster, geodetic observations show surface displacements that can be associated with slip on the plate interface. These seismic clusters and their slip transients occupied a part of the plate interface that was transitional between a fully locked and a creeping portion. Leading up to this earthquake, the b value of the foreshocks gradually decreased during the years before the earthquake, reversing its trend a few days before the Iquique earthquake. The mainshock finally nucleated at the northern end of the foreshock area, which skirted a locked patch, and ruptured mainly downdip towards higher locking. Peak slip was attained immediately downdip of the foreshock region and at the margin of the locked patch. We conclude that gradual weakening of the central part of the seismic gap accentuated by the foreshock activity in a zone of intermediate seismic coupling was instrumental in causing final failure, distinguishing the Iquique earthquake from most great earthquakes. Finally, only one-third of the gap was broken and the remaining locked segments now pose a significant, increased seismic hazard with the potential to host an earthquake with a magnitude of >8.5.

  1. Imaging different components of a tectonic tremor sequence in southwestern Japan using an automatic statistical detection and location method

    Science.gov (United States)

    Poiata, Natalia; Vilotte, Jean-Pierre; Bernard, Pascal; Satriano, Claudio; Obara, Kazushige

    2018-06-01

    In this study, we demonstrate the capability of an automatic network-based detection and location method to extract and analyse different components of tectonic tremor activity by analysing a 9-day energetic tectonic tremor sequence occurring at the downdip extension of the subducting slab in southwestern Japan. The applied method exploits the coherency of multiscale, frequency-selective characteristics of non-stationary signals recorded across the seismic network. Use of different characteristic functions, in the signal processing step of the method, allows to extract and locate the sources of short-duration impulsive signal transients associated with low-frequency earthquakes and of longer-duration energy transients during the tectonic tremor sequence. Frequency-dependent characteristic functions, based on higher-order statistics' properties of the seismic signals, are used for the detection and location of low-frequency earthquakes. This allows extracting a more complete (˜6.5 times more events) and time-resolved catalogue of low-frequency earthquakes than the routine catalogue provided by the Japan Meteorological Agency. As such, this catalogue allows resolving the space-time evolution of the low-frequency earthquakes activity in great detail, unravelling spatial and temporal clustering, modulation in response to tide, and different scales of space-time migration patterns. In the second part of the study, the detection and source location of longer-duration signal energy transients within the tectonic tremor sequence is performed using characteristic functions built from smoothed frequency-dependent energy envelopes. This leads to a catalogue of longer-duration energy sources during the tectonic tremor sequence, characterized by their durations and 3-D spatial likelihood maps of the energy-release source regions. The summary 3-D likelihood map for the 9-day tectonic tremor sequence, built from this catalogue, exhibits an along-strike spatial segmentation of

  2. Imaging different components of a tectonic tremor sequence in southwestern Japan using an automatic statistical detection and location method

    Science.gov (United States)

    Poiata, Natalia; Vilotte, Jean-Pierre; Bernard, Pascal; Satriano, Claudio; Obara, Kazushige

    2018-02-01

    In this study, we demonstrate the capability of an automatic network-based detection and location method to extract and analyse different components of tectonic tremor activity by analysing a 9-day energetic tectonic tremor sequence occurring at the down-dip extension of the subducting slab in southwestern Japan. The applied method exploits the coherency of multi-scale, frequency-selective characteristics of non-stationary signals recorded across the seismic network. Use of different characteristic functions, in the signal processing step of the method, allows to extract and locate the sources of short-duration impulsive signal transients associated with low-frequency earthquakes and of longer-duration energy transients during the tectonic tremor sequence. Frequency-dependent characteristic functions, based on higher-order statistics' properties of the seismic signals, are used for the detection and location of low-frequency earthquakes. This allows extracting a more complete (˜6.5 times more events) and time-resolved catalogue of low-frequency earthquakes than the routine catalogue provided by the Japan Meteorological Agency. As such, this catalogue allows resolving the space-time evolution of the low-frequency earthquakes activity in great detail, unravelling spatial and temporal clustering, modulation in response to tide, and different scales of space-time migration patterns. In the second part of the study, the detection and source location of longer-duration signal energy transients within the tectonic tremor sequence is performed using characteristic functions built from smoothed frequency-dependent energy envelopes. This leads to a catalogue of longer-duration energy sources during the tectonic tremor sequence, characterized by their durations and 3-D spatial likelihood maps of the energy-release source regions. The summary 3-D likelihood map for the 9-day tectonic tremor sequence, built from this catalogue, exhibits an along-strike spatial segmentation of

  3. Radon/helium survey of thermal springs of Parbati, Beas and Sutlej valleys in Himachal Himalaya

    International Nuclear Information System (INIS)

    Virk, H.S.; Sharma, Anand K.; Naresh Kumar

    1998-01-01

    India has more than 300 thermal springs spread over the entire geographical area of the subcontinent. Some of these springs have linkage with Indian mythology and are famous pilgrimage centres since historical times. The temperature of water recorded in these springs varies from 40 degC to that of steam. Some of them are being exploited as a source for geothermal energy. The purpose of this study is to measure radon and helium activity in the thermal springs of Himachal Himalaya. Radon is estimated in the soil and thermal waters using alpha spectrometry and scintillometry, respectively. The radon activity is maximum ( 716.3 Bq/l ) in thermal spring at Kasol and minimum ( 15.9 Bq/l ) in a natural spring ( bauli ) at Takrer. Radon concentration is highly variable in the Parbati valley with minimum value of 2230±430 Bq/m 3 recorded at Chhinjra on the banks of river Parbati and a maximum value of 57700±2050 Bq/m 3 at Dharmaur, the site of uranium ore exploitation by the AMD (DAE). Helium is estimated in the thermal springs by using a Helium Leak Detector (sniffing technique). The radon and helium contents of Kasol thermal springs are correlatable with high radioactivity in the soil of the area as revealed by Alpha Guard survey in the environs of Parbati valley. The helium content recorded in thermal springs is found to vary between 15-90 ppm. Radon and helium are well established as geochemical precursors for earthquake prediction studies. Helium/radon ratio seems to be a better predictive tool for earthquakes in comparison to individual radon and helium precursors. (author)

  4. Ionospheric earthquake precursors

    International Nuclear Information System (INIS)

    Bulachenko, A.L.; Oraevskij, V.N.; Pokhotelov, O.A.; Sorokin, V.N.; Strakhov, V.N.; Chmyrev, V.M.

    1996-01-01

    Results of experimental study on ionospheric earthquake precursors, program development on processes in the earthquake focus and physical mechanisms of formation of various type precursors are considered. Composition of experimental cosmic system for earthquake precursors monitoring is determined. 36 refs., 5 figs

  5. THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

    2003-08-01

    This report describes the geologic setting for the Deep Saline Reservoirs and Coal Seams in the Ohio River Valley CO{sub 2} Storage Project area. The object of the current project is to site and design a CO{sub 2} injection facility. A location near New Haven, WV, has been selected for the project. To assess geologic storage reservoirs at the site, regional and site-specific geology were reviewed. Geologic reports, deep well logs, hydraulic tests, and geologic maps were reviewed for the area. Only one well within 25 miles of the site penetrates the deeper sedimentary rocks, so there is a large amount of uncertainty regarding the deep geology at the site. New Haven is located along the Ohio River on the border of West Virginia and Ohio. Topography in the area is flat in the river valley but rugged away from the Ohio River floodplain. The Ohio River Valley incises 50-100 ft into bedrock in the area. The area of interest lies within the Appalachian Plateau, on the western edge of the Appalachian Mountain chain. Within the Appalachian Basin, sedimentary rocks are 3,000 to 20,000 ft deep and slope toward the southeast. The rock formations consist of alternating layers of shale, limestone, dolomite, and sandstone overlying dense metamorphic continental shield rocks. The Rome Trough is the major structural feature in the area, and there may be some faults associated with the trough in the Ohio-West Virginia Hinge Zone. The area has a low earthquake hazard with few historical earthquakes. Target injection reservoirs include the basal sandstone/Lower Maryville and the Rose Run Sandstone. The basal sandstone is an informal name for sandstones that overlie metamorphic shield rock. Regional geology indicates that the unit is at a depth of approximately 9,100 ft below the surface at the project site and associated with the Maryville Formation. Overall thickness appears to be 50-100 ft. The Rose Run Sandstone is another potential reservoir. The unit is located approximately 1

  6. Transgressive systems tract development and incised-valley fills within a quaternary estuary-shelf system: Virginia inner shelf, USA

    Science.gov (United States)

    Foyle, A.M.; Oertel, G.F.

    1997-01-01

    High-frequency Quaternary glacioeustasy resulted in the incision of six moderate- to high-relief fluvial erosion surfaces beneath the Virginia inner shelf and coastal zone along the updip edges of the Atlantic continental margin. Fluvial valleys up to 5 km wide, with up to 37 m of relief and thalweg depths of up to 72 m below modern mean sea level, cut through underlying Pleistocene and Mio-Pliocene strata in response to drops in baselevel on the order of 100 m. Fluvially incised valleys were significantly modified during subsequent marine transgressions as fluvial drainage basins evolved into estuarine embayments (ancestral generations of the Chesapeake Bay). Complex incised-valley fill successions are bounded by, or contain, up to four stacked erosional surfaces (basal fluvial erosion surface, bay ravinement, tidal ravinement, and ebb-flood channel-base diastem) in vertical succession. These surfaces, combined with the transgressive oceanic ravinement that generally caps incised-valley fills, control the lateral and vertical development of intervening seismic facies (depositional systems). Transgressive stratigraphy characterizes the Quaternary section beneath the Virginia inner shelf where six depositional sequences (Sequences I-VI) are identified. Depositional sequences consist primarily of estuarine depositional systems (subjacent to the transgressive oceanic ravinement) and shoreface-shelf depositional systems; highstand systems tract coastal systems are thinly developed. The Quaternary section can be broadly subdivided into two parts. The upper part contains sequences consisting predominantly of inner shelf facies, whereas sequences in the lower part of the section consist predominantly of estuarine facies. Three styles of sequence preservation are identified. Style 1, represented by Sequences VI and V, is characterized by large estuarine systems (ancestral generations of the Chesapeake Bay) that are up to 40 m thick, have hemicylindrical wedge geometries

  7. Holocene surface-rupturing earthquakes along the Yadong Cross Structure (Himalaya)

    Science.gov (United States)

    Ferry, M. A.; Roth, T.; Jean-Francois, R.; Cattin, R.

    2017-12-01

    The Himalayan Arc accommodates 2 cm/yr of shortening from the India-Eurasia collision, mostly along the Main Himalayan Thust. Perpendicularly to the main structures, regional cross structures formed by en échelon grabens and half-grabens mark Quaternary extension from central Tibet to the Himalayas. The Yadong-Gulu Rift system is the most striking one with a total length of 500 km. Its southernmost segment -the 100-km-long Yadong half-graben- entrenches through the Himalayas and forms a 500-to-1500-m-deep asymmetric basin. The average basin surface elevation of 4500 m contrasts with high reliefs of the Jomolhari range that reach 7326 m. They are separated by the N15 Yadong normal fault (also called Jomolhari Fault System, JFS) that forms spectacular triangular facets and affects glacial landforms. Though observed as early as the 1980s, offset moraines were never studied in detail in terms of measured displacement or age determination. Recent efforts from paleoclimate studies yielded a high-resolution framework to identify the various stages of Holocene glacial advances and associated moraine formation. These landforms display specific geomorphometric features recognized regionally (ELA, rugosity, crest freshness) that allow correlating across the various glacial valleys within the Yadong Rift and across similar settings in western Bhutan and eastern Nepal. This serves as a robust basis to place our moraine sequence within the Holocene paleoclimatic record and propose formation ages. By combining satellite images from Sentinel-2 (10 m, visible and NIR), Pléiades (0.5 m, visible) and a Pléiades-derived tri-stereo photogrammetric DEM (1 m), we map the fault trace and affected landforms in details and extract topographic profiles to measure vertical offsets. Paleoclimatic age constraints yield age-vs-displacement measurements along the whole 100-km-long JFS and define a chronology of Holocene deformation events. Within the limits of our observations, we conclude

  8. Evaluation of earthquake vibration on aseismic design of nuclear power plant judging from recent earthquakes

    International Nuclear Information System (INIS)

    Dan, Kazuo

    2006-01-01

    The Regulatory Guide for Aseismic Design of Nuclear Reactor Facilities was revised on 19 th September, 2006. Six factors for evaluation of earthquake vibration are considered on the basis of the recent earthquakes. They are 1) evaluation of earthquake vibration by method using fault model, 2) investigation and approval of active fault, 3) direct hit earthquake, 4) assumption of the short active fault as the hypocentral fault, 5) locality of the earthquake and the earthquake vibration and 6) remaining risk. A guiding principle of revision required new evaluation method of earthquake vibration using fault model, and evaluation of probability of earthquake vibration. The remaining risk means the facilities and people get into danger when stronger earthquake than the design occurred, accordingly, the scattering has to be considered at evaluation of earthquake vibration. The earthquake belt of Hyogo-Nanbu earthquake and strong vibration pulse in 1995, relation between length of surface earthquake fault and hypocentral fault, and distribution of seismic intensity of off Kushiro in 1993 are shown. (S.Y.)

  9. Comparison of two large earthquakes: the 2008 Sichuan Earthquake and the 2011 East Japan Earthquake.

    Science.gov (United States)

    Otani, Yuki; Ando, Takayuki; Atobe, Kaori; Haiden, Akina; Kao, Sheng-Yuan; Saito, Kohei; Shimanuki, Marie; Yoshimoto, Norifumi; Fukunaga, Koichi

    2012-01-01

    Between August 15th and 19th, 2011, eight 5th-year medical students from the Keio University School of Medicine had the opportunity to visit the Peking University School of Medicine and hold a discussion session titled "What is the most effective way to educate people for survival in an acute disaster situation (before the mental health care stage)?" During the session, we discussed the following six points: basic information regarding the Sichuan Earthquake and the East Japan Earthquake, differences in preparedness for earthquakes, government actions, acceptance of medical rescue teams, earthquake-induced secondary effects, and media restrictions. Although comparison of the two earthquakes was not simple, we concluded that three major points should be emphasized to facilitate the most effective course of disaster planning and action. First, all relevant agencies should formulate emergency plans and should supply information regarding the emergency to the general public and health professionals on a normal basis. Second, each citizen should be educated and trained in how to minimize the risks from earthquake-induced secondary effects. Finally, the central government should establish a single headquarters responsible for command, control, and coordination during a natural disaster emergency and should centralize all powers in this single authority. We hope this discussion may be of some use in future natural disasters in China, Japan, and worldwide.

  10. Rupture complexity of the Mw 8.3 sea of okhotsk earthquake: Rapid triggering of complementary earthquakes?

    Science.gov (United States)

    Wei, Shengji; Helmberger, Don; Zhan, Zhongwen; Graves, Robert

    2013-01-01

    We derive a finite slip model for the 2013 Mw 8.3 Sea of Okhotsk Earthquake (Z = 610 km) by inverting calibrated teleseismic P waveforms. The inversion shows that the earthquake ruptured on a 10° dipping rectangular fault zone (140 km × 50 km) and evolved into a sequence of four large sub-events (E1–E4) with an average rupture speed of 4.0 km/s. The rupture process can be divided into two main stages. The first propagated south, rupturing sub-events E1, E2, and E4. The second stage (E3) originated near E2 with a delay of 12 s and ruptured northward, filling the slip gap between E1 and E2. This kinematic process produces an overall slip pattern similar to that observed in shallow swarms, except it occurs over a compressed time span of about 30 s and without many aftershocks, suggesting that sub-event triggering for deep events is significantly more efficient than for shallow events.

  11. The effects of spatially varying earthquake impacts on mood and anxiety symptom treatments among long-term Christchurch residents following the 2010/11 Canterbury earthquakes, New Zealand.

    Science.gov (United States)

    Hogg, Daniel; Kingham, Simon; Wilson, Thomas M; Ardagh, Michael

    2016-09-01

    This study investigates the effects of disruptions to different community environments, community resilience and cumulated felt earthquake intensities on yearly mood and anxiety symptom treatments from the New Zealand Ministry of Health's administrative databases between September 2009 and August 2012. The sample includes 172,284 long-term residents from different Christchurch communities. Living in a better physical environment was associated with lower mood and anxiety treatment rates after the beginning of the Canterbury earthquake sequence whereas an inverse effect could be found for social community environment and community resilience. These results may be confounded by pre-existing patterns, as well as intensified treatment-seeking behaviour and intervention programmes in severely affected areas. Nevertheless, the findings indicate that adverse mental health outcomes can be found in communities with worse physical but stronger social environments or community resilience post-disaster. Also, they do not necessarily follow felt intensities since cumulative earthquake intensity did not show a significant effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Modeling Seismic Cycles of Great Megathrust Earthquakes Across the Scales With Focus at Postseismic Phase

    Science.gov (United States)

    Sobolev, Stephan V.; Muldashev, Iskander A.

    2017-12-01

    Subduction is substantially multiscale process where the stresses are built by long-term tectonic motions, modified by sudden jerky deformations during earthquakes, and then restored by following multiple relaxation processes. Here we develop a cross-scale thermomechanical model aimed to simulate the subduction process from 1 min to million years' time scale. The model employs elasticity, nonlinear transient viscous rheology, and rate-and-state friction. It generates spontaneous earthquake sequences and by using an adaptive time step algorithm, recreates the deformation process as observed naturally during the seismic cycle and multiple seismic cycles. The model predicts that viscosity in the mantle wedge drops by more than three orders of magnitude during the great earthquake with a magnitude above 9. As a result, the surface velocities just an hour or day after the earthquake are controlled by viscoelastic relaxation in the several hundred km of mantle landward of the trench and not by the afterslip localized at the fault as is currently believed. Our model replicates centuries-long seismic cycles exhibited by the greatest earthquakes and is consistent with the postseismic surface displacements recorded after the Great Tohoku Earthquake. We demonstrate that there is no contradiction between extremely low mechanical coupling at the subduction megathrust in South Chile inferred from long-term geodynamic models and appearance of the largest earthquakes, like the Great Chile 1960 Earthquake.

  13. Predicting earthquakes by analyzing accelerating precursory seismic activity

    Science.gov (United States)

    Varnes, D.J.

    1989-01-01

    During 11 sequences of earthquakes that in retrospect can be classed as foreshocks, the accelerating rate at which seismic moment is released follows, at least in part, a simple equation. This equation (1) is {Mathematical expression},where {Mathematical expression} is the cumulative sum until time, t, of the square roots of seismic moments of individual foreshocks computed from reported magnitudes;C and n are constants; and tfis a limiting time at which the rate of seismic moment accumulation becomes infinite. The possible time of a major foreshock or main shock, tf,is found by the best fit of equation (1), or its integral, to step-like plots of {Mathematical expression} versus time using successive estimates of tfin linearized regressions until the maximum coefficient of determination, r2,is obtained. Analyzed examples include sequences preceding earthquakes at Cremasta, Greece, 2/5/66; Haicheng, China 2/4/75; Oaxaca, Mexico, 11/29/78; Petatlan, Mexico, 3/14/79; and Central Chile, 3/3/85. In 29 estimates of main-shock time, made as the sequences developed, the errors in 20 were less than one-half and in 9 less than one tenth the time remaining between the time of the last data used and the main shock. Some precursory sequences, or parts of them, yield no solution. Two sequences appear to include in their first parts the aftershocks of a previous event; plots using the integral of equation (1) show that the sequences are easily separable into aftershock and foreshock segments. Synthetic seismic sequences of shocks at equal time intervals were constructed to follow equation (1), using four values of n. In each series the resulting distributions of magnitudes closely follow the linear Gutenberg-Richter relation log N=a-bM, and the product n times b for each series is the same constant. In various forms and for decades, equation (1) has been used successfully to predict failure times of stressed metals and ceramics, landslides in soil and rock slopes, and volcanic

  14. The 2009 Samoa-Tonga great earthquake triggered doublet

    Science.gov (United States)

    Lay, T.; Ammon, C.J.; Kanamori, H.; Rivera, L.; Koper, K.D.; Hutko, Alexander R.

    2010-01-01

    Great earthquakes (having seismic magnitudes of at least 8) usually involve abrupt sliding of rock masses at a boundary between tectonic plates. Such interplate ruptures produce dynamic and static stress changes that can activate nearby intraplate aftershocks, as is commonly observed in the trench-slope region seaward of a great subduction zone thrust event1-4. The earthquake sequence addressed here involves a rare instance in which a great trench-slope intraplate earthquake triggered extensive interplate faulting, reversing the typical pattern and broadly expanding the seismic and tsunami hazard. On 29 September 2009, within two minutes of the initiation of a normal faulting event with moment magnitude 8.1 in the outer trench-slope at the northern end of the Tonga subduction zone, two major interplate underthrusting subevents (both with moment magnitude 7.8), with total moment equal to a second great earthquake of moment magnitude 8.0, ruptured the nearby subduction zone megathrust. The collective faulting produced tsunami waves with localized regions of about 12metres run-up that claimed 192 lives in Samoa, American Samoa and Tonga. Overlap of the seismic signals obscured the fact that distinct faults separated by more than 50km had ruptured with different geometries, with the triggered thrust faulting only being revealed by detailed seismic wave analyses. Extensive interplate and intraplate aftershock activity was activated over a large region of the northern Tonga subduction zone. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  15. Seismic calibration shots conducted in 2009 in the Imperial Valley, southern California, for the Salton Seismic Imaging Project (SSIP)

    Science.gov (United States)

    Murphy, Janice; Goldman, Mark; Fuis, Gary; Rymer, Michael; Sickler, Robert; Miller, Summer; Butcher, Lesley; Ricketts, Jason; Criley, Coyn; Stock, Joann; Hole, John; Chavez, Greg

    2011-01-01

    Rupture of the southern section of the San Andreas Fault, from the Coachella Valley to the Mojave Desert, is believed to be the greatest natural hazard facing California in the near future. With an estimated magnitude between 7.2 and 8.1, such an event would result in violent shaking, loss of life, and disruption of lifelines (freeways, aqueducts, power, petroleum, and communication lines) that would bring much of southern California to a standstill. As part of the Nation's efforts to prevent a catastrophe of this magnitude, a number of projects are underway to increase our knowledge of Earth processes in the area and to mitigate the effects of such an event. One such project is the Salton Seismic Imaging Project (SSIP), which is a collaborative venture between the United States Geological Survey (USGS), California Institute of Technology (Caltech), and Virginia Polytechnic Institute and State University (Virginia Tech). This project will generate and record seismic waves that travel through the crust and upper mantle of the Salton Trough. With these data, we will construct seismic images of the subsurface, both reflection and tomographic images. These images will contribute to the earthquake-hazard assessment in southern California by helping to constrain fault locations, sedimentary basin thickness and geometry, and sedimentary seismic velocity distributions. Data acquisition is currently scheduled for winter and spring of 2011. The design and goals of SSIP resemble those of the Los Angeles Region Seismic Experiment (LARSE) of the 1990's. LARSE focused on examining the San Andreas Fault system and associated thrust-fault systems of the Transverse Ranges. LARSE was successful in constraining the geometry of the San Andreas Fault at depth and in relating this geometry to mid-crustal, flower-structure-like decollements in the Transverse Ranges that splay upward into the network of hazardous thrust faults that caused the 1971 M 6.7 San Fernando and 1987 M 5

  16. Twitter earthquake detection: earthquake monitoring in a social world

    Directory of Open Access Journals (Sweden)

    Daniel C. Bowden

    2011-06-01

    Full Text Available The U.S. Geological Survey (USGS is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word “earthquake” clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  17. Results of the Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California.

    Science.gov (United States)

    Lee, Ya-Ting; Turcotte, Donald L; Holliday, James R; Sachs, Michael K; Rundle, John B; Chen, Chien-Chih; Tiampo, Kristy F

    2011-10-04

    The Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California was the first competitive evaluation of forecasts of future earthquake occurrence. Participants submitted expected probabilities of occurrence of M ≥ 4.95 earthquakes in 0.1° × 0.1° cells for the period 1 January 1, 2006, to December 31, 2010. Probabilities were submitted for 7,682 cells in California and adjacent regions. During this period, 31 M ≥ 4.95 earthquakes occurred in the test region. These earthquakes occurred in 22 test cells. This seismic activity was dominated by earthquakes associated with the M = 7.2, April 4, 2010, El Mayor-Cucapah earthquake in northern Mexico. This earthquake occurred in the test region, and 16 of the other 30 earthquakes in the test region could be associated with it. Nine complete forecasts were submitted by six participants. In this paper, we present the forecasts in a way that allows the reader to evaluate which forecast is the most "successful" in terms of the locations of future earthquakes. We conclude that the RELM test was a success and suggest ways in which the results can be used to improve future forecasts.

  18. P-T-t-d History of the Lahul Valley, NW Indian Himalaya

    Science.gov (United States)

    Nieblas, A.; Leech, M. L.

    2015-12-01

    The Lahul Valley of NW India is located between the Zanskar Shear zone to the northwest and the Sangla detachment to the southeast. This region contains three east-trending, laterally-continuous tectonostratigraphic units separated by two major fault zones. To the south, low-grade metasediments of the Lesser Himalayan Sequence (LHS) are separated from high-grade crystalline rocks of the Greater Himalayan Sequence (GHS) by the north dipping Main Central Thrust (MCT). The northern extent of the GHS is separated from overlying low-grade sedimentary rocks of the Tethyan Himalayan Sequence (THS) along the north dipping South Tibetan Detachment System (STDS). There is controversy over the location and type of shear motion for the STDS in the ~50 km strip running through Lahul Valley where the STD is interpreted as a discrete fault, a dextral shear zone, and is unidentified in some areas along the trend of the STDS. This study focuses on understanding the pressure-temperature-time-deformation (P-T-t-d) evolution of THS and GHS rocks in Lahul Valley to better understand regional Cenozoic deformation and the location and role of the STDS in the extrusion of the GHS. Deformed granitics, migmatites, and leucogranites from the GHS contain a dominant mineralogy of Qz + Kfs + Pl + Bt + Ms ± Grt ± Ky ± St. Schists and phyllites from the THS contain a dominant mineralogy of Qz + Kfs + Pl + Bt + Ms ± Grt. Isochemical phase equilibria diagrams (pseudosections) are calculated in Perple_X using whole-rock chemistry data with solution models based on these mineral assemblages. Ti-in-quartz thermometry and the Fe-Mg exchange thermometry from garnet-biotite pairs used with mineral growth relationships constrain conditions during deformation and to establish P-T paths. U-Pb SHRIMP dating of zircon constrains peak metamorphic conditions and 40Ar/39Ar thermochronology of micas provide the cooling history along the valley and across the STDS. This multi-component approach to understand

  19. Earthquakes, September-October 1986

    Science.gov (United States)

    Person, W.J.

    1987-01-01

    There was one great earthquake (8.0 and above) during this reporting period in the South Pacific in the Kermadec Islands. There were no major earthquakes (7.0-7.9) but earthquake-related deaths were reported in Greece and in El Salvador. There were no destrcutive earthquakes in the United States.

  20. EARTHQUAKE-INDUCED DEFORMATION STRUCTURES AND RELATED TO EARTHQUAKE MAGNITUDES

    Directory of Open Access Journals (Sweden)

    Savaş TOPAL

    2003-02-01

    Full Text Available Earthquake-induced deformation structures which are called seismites may helpful to clasify the paleoseismic history of a location and to estimate the magnitudes of the potention earthquakes in the future. In this paper, seismites were investigated according to the types formed in deep and shallow lake sediments. Seismites are observed forms of sand dikes, introduced and fractured gravels and pillow structures in shallow lakes and pseudonodules, mushroom-like silts protruding laminites, mixed layers, disturbed varved lamination and loop bedding in deep lake sediments. Earthquake-induced deformation structures, by benefiting from previous studies, were ordered according to their formations and earthquake magnitudes. In this order, the lowest eartquake's record is loop bedding and the highest one is introduced and fractured gravels in lacustrine deposits.

  1. Three-dimensional magnetotelluric imaging of the 1997 Kagoshima earthquake doublet, Southwest Japan

    Science.gov (United States)

    Asamori, K.; Makuuchi, A.; Umeda, K.

    2013-12-01

    The 1997 Kagoshima earthquake doublet struck on unrecognized active faults lacking clear surface expression where very few large earthquakes have occurred. Two shallow moderate earthquakes occurred in the northwestern part of Kagoshima province, on March 26 (Mw 6.1) and May 13 (Mw 6.0) in 1997, both followed by intensive aftershock sequences. Aftershock distribution of the 1997 earthquake doublet reflects complicated rupture process attributed to the geological (rheological) conditions and coupling of hydraulic pressure as well as tectonic shear stress. For advanced understanding of dynamic interactions between fluids and faulting, it is imperative to obtain three-dimensional (3-D) images of the electrical resistivity structure around the seismogenic faults. In this study, we conduct magnetotelluric (MT) soundings in and around the source region of the 1997 Kagoshima earthquake sequence and perform a 3-D inversion of wideband MT data above a depth of 30 km. MT stations were deployed around the aftershock area of the 1997 Kagoshima earthquake. All of 42 MT sites were set up in the land area. The data were collected using five component (three magnetic and two telluric components) wide-band MT instruments (Phoenix MTU-5 system) in February, 2013. The data were acquired in the frequency range from 0.000343 to 320 Hz. The recording duration ranged from 2 to 8 days. As the cultural noises severely affect the measurements, the time series analysis focused on the nocturnal data when there were fewer noise. A simultaneous remote reference measurement was carried out at the Sawauchi site (1300 km northeast of the study area). Using the remote reference technique (Gamble et al., 1979), we were able to reduce the unfavorable cultural noises. The observed apparent resistivity and phase data were inverted simultaneously using the 3-D inversion code of Sasaki (2004). In this inversion, the 3-D blocks were set up in the crust and upper mantle. These block size in the horizontal

  2. The 2016 Central Italy Earthquake: an Overview

    Science.gov (United States)

    Amato, A.

    2016-12-01

    The M6 central Italy earthquake occurred on the seismic backbone of the Italy, just in the middle of the highest hazard belt. The shock hit suddenly during the night of August 24, when people were asleep; no foreshocks occurred before the main event. The earthquake ruptured from 10 km to the surface, and produced a more than 17,000 aftershocks (Oct. 19) spread on a 40x20 km2 area elongated NW-SE. It is geologically very similar to previous recent events of the Apennines. Both the 2009 L'Aquila earthquake to the south and the 1997 Colfiorito to the north, were characterized by the activation of adjacent fault segments. Despite its magnitude and the well known seismic hazard of the region, the earthquake produced extensive damage and 297 fatalities. The town of Amatrice, that paid the highest toll, was classified in zone 1 (the highest) since 1915, but the buildings in this and other villages revealed highly vulnerable. In contrast, in the town of Norcia, that also experienced strong ground shaking, no collapses occurred, most likely due to the retrofitting carried out after an earthquake in 1979. Soon after the quake, the INGV Crisis Unit convened at night in the Rome headquarters, in order to coordinate the activities. The first field teams reached the epicentral area at 7 am with the portable seismic stations installed to monitor the aftershocks; other teams followed to map surface faults, damage, to measure GPS sites, to install instruments for site response studies, and so on. The INGV Crisis Unit includes the Press office and the INGVterremoti team, in order to manage and coordinate the communication towards the Civil Protection Dept. (DPC), the media and the web. Several tens of reports and updates have been delivered in the first month of the sequence to DPC. Also due to the controversial situation arisen from the L'Aquila earthquake and trials, particular attention was given to the communication: continuous and timely information has been released to

  3. The 2012 Pianura Padana Emiliana seimic sequence: locations, moment tensors and magnitudes

    Directory of Open Access Journals (Sweden)

    Laura Scognamiglio

    2012-10-01

    Full Text Available On May 20, 2012 (02:03:53 UTC, an Mw 5.86 (Ml 5.9 earthquake struck the Pianura Padana Emiliana region (northern Italy, causing five deaths and damage to several villages and to the towns of Ferrara and Modena. The mainshock was preceded, three hours earlier, by a Mw 3.98 (Ml 4.1 foreshock, which almost co-located with the main event. After the main event, the seismic sequence included six earthquakes with magnitudes >5.0. The biggest aftershock was located about 12 km west of the first mainshock, and was a Mw 5.66 (Ml 5.8 earthquake that occurred on May 29, 2012 (07:00:03 UTC; this can be considered as a second mainshock. After this event, the official death toll of the seismic sequence was 17 people. Moreover, there had been severe damage to the economy of the region and there were 13,000 homeless. [...]    

  4. Megathrust earthquakes in Central Chile: What is next after the Maule 2010 earthquake?

    Science.gov (United States)

    Madariaga, R.

    2013-05-01

    The 27 February 2010 Maule earthquake occurred in a well identified gap in the Chilean subduction zone. The event has now been studied in detail using both far-field, near field seismic and geodetic data, we will review this information gathered so far. The event broke a region that was much longer along strike than the gap left over from the 1835 Concepcion earthquake, sometimes called the Darwin earthquake because he was in the area when the earthquake occurred and made many observations. Recent studies of contemporary documents by Udias et al indicate that the area broken by the Maule earthquake in 2010 had previously broken by a similar earthquake in 1751, but several events in the magnitude 8 range occurred in the area principally in 1835 already mentioned and, more recently on 1 December 1928 to the North and on 21 May 1960 (1 1/2 days before the big Chilean earthquake of 1960). Currently the area of the 2010 earthquake and the region immediately to the North is undergoing a very large increase in seismicity with numerous clusters of seismicity that move along the plate interface. Examination of the seismicity of Chile of the 18th and 19th century show that the region immediately to the North of the 2010 earthquake broke in a very large megathrust event in July 1730. this is the largest known earthquake in central Chile. The region where this event occurred has broken in many occasions with M 8 range earthquakes in 1822, 1880, 1906, 1971 and 1985. Is it preparing for a new very large megathrust event? The 1906 earthquake of Mw 8.3 filled the central part of the gap but it has broken again on several occasions in 1971, 1973 and 1985. The main question is whether the 1906 earthquake relieved enough stresses from the 1730 rupture zone. Geodetic data shows that most of the region that broke in 1730 is currently almost fully locked from the northern end of the Maule earthquake at 34.5°S to 30°S, near the southern end of the of the Mw 8.5 Atacama earthquake of 11

  5. Rapid Estimates of Rupture Extent for Large Earthquakes Using Aftershocks

    Science.gov (United States)

    Polet, J.; Thio, H. K.; Kremer, M.

    2009-12-01

    The spatial distribution of aftershocks is closely linked to the rupture extent of the mainshock that preceded them and a rapid analysis of aftershock patterns therefore has potential for use in near real-time estimates of earthquake impact. The correlation between aftershocks and slip distribution has frequently been used to estimate the fault dimensions of large historic earthquakes for which no, or insufficient, waveform data is available. With the advent of earthquake inversions that use seismic waveforms and geodetic data to constrain the slip distribution, the study of aftershocks has recently been largely focused on enhancing our understanding of the underlying mechanisms in a broader earthquake mechanics/dynamics framework. However, in a near real-time earthquake monitoring environment, in which aftershocks of large earthquakes are routinely detected and located, these data may also be effective in determining a fast estimate of the mainshock rupture area, which would aid in the rapid assessment of the impact of the earthquake. We have analyzed a considerable number of large recent earthquakes and their aftershock sequences and have developed an effective algorithm that determines the rupture extent of a mainshock from its aftershock distribution, in a fully automatic manner. The algorithm automatically removes outliers by spatial binning, and subsequently determines the best fitting “strike” of the rupture and its length by projecting the aftershock epicenters onto a set of lines that cross the mainshock epicenter with incremental azimuths. For strike-slip or large dip-slip events, for which the surface projection of the rupture is recti-linear, the calculated strike correlates well with the strike of the fault and the corresponding length, determined from the distribution of aftershocks projected onto the line, agrees well with the rupture length. In the case of a smaller dip-slip rupture with an aspect ratio closer to 1, the procedure gives a measure

  6. Preliminary confirmation of a surface faulting based on geological and earthquake data in the Puspiptek Serpong area

    International Nuclear Information System (INIS)

    Hadi Suntoko; Supartoyo

    2016-01-01

    BAPETEN regulation No. 8/2013 present the requirement that the site of the nuclear industry should not be a fault capable in a radius of 5 km. It is known that the RDE site composed of sandstones, clay stone, conglomerates and pumice rework the age of Pliocene, there straightness river valley hypothesized as a fault. Potential faults are identified using morphological observation, remote sensing using DEM rock outcrops, and seismic interpretation results that aims to confirm capable faults in a radius of 5 km. Traces defence surface is focused on the observation of the appearance of the terrain (land form), in the form of straightness morphology or valleys, fault scarp (fault scarp), shift or offset (river or hill), depression formed along fault zones, saddle, pressure ridge, and the shape of the river as well as earthquake monitoring. The results showed that there was no fault capable also a surface faulting that prove the presence in the RDE site radius of 5 km. (author)

  7. Molecular identification of Armillaria gallica from the Niobrara Valley Preserve in Nebraska

    Science.gov (United States)

    Mee-Sook Kim; Ned B. Klopfenstein

    2011-01-01

    Armillaria isolates were collected from a unique forest ecosystem in the Niobrara Valley Preserve in Nebraska, USA, which comprises a glacial and early postglacial refugium in the central plains of North America. The isolates were collected from diverse forest trees representing a unique mixture of forest types. Combined methods of rDNA sequencing and flow cytometric...

  8. The GIS and analysis of earthquake damage distribution of the 1303 Hongtong M=8 earthquake

    Science.gov (United States)

    Gao, Meng-Tan; Jin, Xue-Shen; An, Wei-Ping; Lü, Xiao-Jian

    2004-07-01

    The geography information system of the 1303 Hongton M=8 earthquake has been established. Using the spatial analysis function of GIS, the spatial distribution characteristics of damage and isoseismal of the earthquake are studies. By comparing with the standard earthquake intensity attenuation relationship, the abnormal damage distribution of the earthquake is found, so the relationship of the abnormal distribution with tectonics, site condition and basin are analyzed. In this paper, the influence on the ground motion generated by earthquake source and the underground structures near source also are studied. The influence on seismic zonation, anti-earthquake design, earthquake prediction and earthquake emergency responding produced by the abnormal density distribution are discussed.

  9. Earthquakes, November-December 1977

    Science.gov (United States)

    Person, W.J.

    1978-01-01

    Two major earthquakes occurred in the last 2 months of the year. A magnitude 7.0 earthquake struck San Juan Province, Argentina, on November 23, causing fatalities and damage. The second major earthquake was a magnitude 7.0 in the Bonin Islands region, an unpopulated area. On December 19, Iran experienced a destructive earthquake, which killed over 500.

  10. Protecting your family from earthquakes: The seven steps to earthquake safety

    Science.gov (United States)

    Developed by American Red Cross, Asian Pacific Fund

    2007-01-01

    This book is provided here because of the importance of preparing for earthquakes before they happen. Experts say it is very likely there will be a damaging San Francisco Bay Area earthquake in the next 30 years and that it will strike without warning. It may be hard to find the supplies and services we need after this earthquake. For example, hospitals may have more patients than they can treat, and grocery stores may be closed for weeks. You will need to provide for your family until help arrives. To keep our loved ones and our community safe, we must prepare now. Some of us come from places where earthquakes are also common. However, the dangers of earthquakes in our homelands may be very different than in the Bay Area. For example, many people in Asian countries die in major earthquakes when buildings collapse or from big sea waves called tsunami. In the Bay Area, the main danger is from objects inside buildings falling on people. Take action now to make sure your family will be safe in an earthquake. The first step is to read this book carefully and follow its advice. By making your home safer, you help make our community safer. Preparing for earthquakes is important, and together we can make sure our families and community are ready. English version p. 3-13 Chinese version p. 14-24 Vietnamese version p. 25-36 Korean version p. 37-48

  11. Some anomalous behaviour of vertebrates and insects preceding M5+ earthquakes in the North Western Apennines (Italy)

    Science.gov (United States)

    Straser, Valentino

    2013-04-01

    longissimus) was found lying in snow beside a road. A few months later, in the Emilian Po Valley Plain, around 70-80km from the area under investigation, a long seismic sequence featuring seven earthquakes with a magnitude between M5.0 and M6.0, afforded a further opportunity to check for other anomalies. In the area struck by one of the most powerful seisms, local beekeepers noted the sudden disappearance of bees (Apis mellifera) from their hives, especially near San Carlo (Ferrara - Italy), where a deep crack had formed in the ground near the village which, in certain stretches, had raised the ground by as much as half a metre and ejected considerable quantities of mud due to the liquefaction of the sand, in some areas and near the dwellings.

  12. Valley-filtered edge states and quantum valley Hall effect in gated bilayer graphene.

    Science.gov (United States)

    Zhang, Xu-Long; Xu, Lei; Zhang, Jun

    2017-05-10

    Electron edge states in gated bilayer graphene in the quantum valley Hall (QVH) effect regime can carry both charge and valley currents. We show that an interlayer potential splits the zero-energy level and opens a bulk gap, yielding counter-propagating edge modes with different valleys. A rich variety of valley current states can be obtained by tuning the applied boundary potential and lead to the QVH effect, as well as to the unbalanced QVH effect. A method to individually manipulate the edge states by the boundary potentials is proposed.

  13. Emergency feature. Great east Japan earthquake disaster Fukushima Daiichi accident

    International Nuclear Information System (INIS)

    Kawata, Tomio; Tsujikura, Yonezo; Kitamura, Toshiro

    2011-01-01

    The Tohoku Pacific Ocean earthquake occurred in March 11, 2011. The disastrous tsunami attacked Fukushima Daiichi nuclear power plants after automatically shutdown by the earthquake and all motor operated pumps became inoperable due to station black out. Despite the strenuous efforts of operators, if caused serious accident such as loss of cooling function, hydrogen explosion and release of large amount of radioactive materials into the environment, leading to nuclear power emergency that ordered resident to evacuate or remain indoors. This emergency feature consisted of four articles. The first was the interview with the president of JAIF (Japan Atomic Industrial Forum) on how to identify the cause of the accident completely, intensify safety assurance measures and promote discussions on a role of nuclear power in the nation's entire energy policy toward the reconstruction. Others were reactor states and events sequence after the accident with trend data of radiation in the reactor site, statement of president of AESJ (Atomic Energy Society of Japan) on nuclear crisis following Tohoku Pacific Ocean earthquake our response and my experience in evacuation life. (T. Tanaka)

  14. Spectra of the earthquake sequence February-March, 1981, in south-central Sweden

    OpenAIRE

    O. Kulhánek; T. van Eck; N. John; K. Meyer; Rutger Wahlström

    1983-01-01

    On February 13, 1981, a relatively strong earthquake occurred in the Lake Vanern region in south-central Sweden. The shock had a magnitude of M"SUB L" = 3.3 and was followed within three weeks by three aftershocks, with magnitudes 0.5 = or < M"SUB L" = or < 1.0. The focal mechanism solution of the main shock indicates reverse faulting with a strike in the N-S or NE-SW direction and a nearly horizontal compressional stress. The aftershocks were too small to yield data for a full mechanism solu...

  15. Operational Earthquake Forecasting: Proposed Guidelines for Implementation (Invited)

    Science.gov (United States)

    Jordan, T. H.

    2010-12-01

    The goal of operational earthquake forecasting (OEF) is to provide the public with authoritative information about how seismic hazards are changing with time. During periods of high seismic activity, short-term earthquake forecasts based on empirical statistical models can attain nominal probability gains in excess of 100 relative to the long-term forecasts used in probabilistic seismic hazard analysis (PSHA). Prospective experiments are underway by the Collaboratory for the Study of Earthquake Predictability (CSEP) to evaluate the reliability and skill of these seismicity-based forecasts in a variety of tectonic environments. How such information should be used for civil protection is by no means clear, because even with hundredfold increases, the probabilities of large earthquakes typically remain small, rarely exceeding a few percent over forecasting intervals of days or weeks. Civil protection agencies have been understandably cautious in implementing formal procedures for OEF in this sort of “low-probability environment.” Nevertheless, the need to move more quickly towards OEF has been underscored by recent experiences, such as the 2009 L’Aquila earthquake sequence and other seismic crises in which an anxious public has been confused by informal, inconsistent earthquake forecasts. Whether scientists like it or not, rising public expectations for real-time information, accelerated by the use of social media, will require civil protection agencies to develop sources of authoritative information about the short-term earthquake probabilities. In this presentation, I will discuss guidelines for the implementation of OEF informed by my experience on the California Earthquake Prediction Evaluation Council, convened by CalEMA, and the International Commission on Earthquake Forecasting, convened by the Italian government following the L’Aquila disaster. (a) Public sources of information on short-term probabilities should be authoritative, scientific, open, and

  16. Late Pleistocene and Holocene paleoseismology of an intraplate seismic zone in a large alluvial valley, the New Madrid seismic zone, Central USA

    Science.gov (United States)

    Guccione, Margaret J.

    2005-10-01

    The New Madrid seismic zone (NMSZ) is an intraplate right-lateral strike-slip and thrust fault system contained mostly within the Mississippi Alluvial Valley. The most recent earthquake sequence in the zone occurred in 1811 1812 and had estimated moment magnitudes of 7 8 (e.g., [Johnston, A.C., 1996. Seismic moment assessment of stable continental earthquakes, Part 3: 1811 1812 New Madrid, 1886 Charleston, and 1755 Lisbon. Geophysical Journal International 126, 314 344; Johnston, A.C., Schweig III, E.S, 1996. The enigma of the New Madrid earthquakes of 1811 1812. Annual Reviews of Earth and Planetary Sciences 24, 339 384; Hough, S.E., Armbruster, J.G., Seeber, L., Hough, J.F., 2000. On the modified Mercalli intensities and magnitudes of the New Madrid earthquakes. Journal of Geophysical Research 105 (B10), 23,839 23,864; Tuttle, M.P., 2001. The use of liquefaction features in paleoseismology: Lessons learned in the New Madrid seismic zone, central United States. Journal of Seismology 5, 361 380]). Four earlier prehistoric earthquakes or earthquake sequences have been dated A.D. 1450 ± 150, 900 ± 100, 300 ± 200, and 2350 B.C. ± 200 years using paleoliquefaction features, particularly those associated with native American artifacts, and in some cases surface deformation ([Craven, J. A. 1995. Paleoseismology study in the New Madrid seismic zone using geological and archeological features to constrain ages of liquefaction deposits. M.S thesis, University of Memphis, Memphis, TN, U.S.A.; Tuttle, M.P., Lafferty III, R.H., Guccione, M.J., Schweig III, E.S., Lopinot, N., Cande, R., Dyer-Williams, K., Haynes, M., 1996. Use of archaeology to date liquefaction features and seismic events in the New Madrid seismic zone, central United States. Geoarchaeology 11, 451 480; Guccione, M.J., Mueller, K., Champion, J., Shepherd, S., Odhiambo, B., 2002b. Stream response to repeated co-seismic folding, Tiptonville dome, western Tennessee. Geomorphology 43(2002), 313 349; Tuttle, M

  17. Holocene landscape evolution of the Havelock and Upper Rangitata valleys, South Canterbury, New Zealand

    International Nuclear Information System (INIS)

    Forsyth, P.J.; Barrell, D.J.A.; Basher, L.R.; Berryman, K.R.

    2003-01-01

    Erosion in the Havelock Valley and upper Rangitata River is dominated by fluvial and mass movement processes. Active floodplains, alluvial fans and debris cones are prominent features of the landscape. Several rock avalanche deposits also occur in the area. A search for dateable deposits yielded materials and surfaces whose ages were estimated by several methods. Weathering rind ages ranged from 10,000 to 297 ± 75 years, and calibrated radiocarbon ages from 14,941 ± 712 to 151 ± 146 years BP. Rhizocarpon species lichen measurements yielded various ages depending on which lichen growth curve was used, but are probably useful only for surfaces up to about 250 years old. Buried and surface soil characteristics, though not giving a numerical age, were generally consistent with ages derived by other methods. The dated deposits record periods of stability separated by episodes of aggradation. However, the hypothesis that Alpine Fault earthquakes may create visible signals in the landscape was not confirmed. Rock avalanche deposits, alluvial fans and debris cones were examined, and yielded various types of age data, but none were related with certainty to known earthquake events. (author). 32 refs., 21 figs., 4 tabs

  18. Internal tectonic structure of the Central American Wadati-Benioff zone based on analysis of aftershock sequences

    Science.gov (United States)

    Špičák, Aleš; Hanuš, Václav; Vaněk, Jiří; Běhounková, Marie

    2007-09-01

    Relocated Engdahl et al. (1998) global seismological data for 10 aftershock sequences were used to analyze the internal tectonic structure of the Central American subduction zone; the main shocks of several of these were the most destructive and often referenced earthquakes in the region (e.g., the 1970 Chiapas, 1983 Osa, 1992 Nicaragua, 1999 Quepos, 2001 El Salvador earthquakes). The spatial analysis of aftershock foci distribution was performed in a rotated Cartesian coordinate system (x, y, z) related to the Wadati-Benioff zone, and not in a standard coordinate system ($\\varphi$, λ, h are latitude, longitude, focal depth, respectively). Available fault plane solutions were also transformed into the plane approximating the Wadati-Benioff zone. The spatial distribution of earthquakes in each aftershock sequence was modeled as either a plane fit using a least squares approximation or a volume fit with a minimum thickness rectangular box. The analysis points to a quasi-planar distribution of earthquake foci in all aftershock sequences, manifesting the appurtenance of aftershocks to fracture zones. Geometrical parameters of fracture zones (strike, dip, and dimensions) hosting individual sequences were calculated and compared with the seafloor morphology of the Cocos Plate. The smooth character of the seafloor correlates with the aftershock fracture zones oriented parallel to the trench and commonly subparallel to the subducting slab, whereas subduction of the Cocos Ridge and seamounts around the Quepos Plateau coincides with steeply dipping fracture zones. Transformed focal mechanisms are almost exclusively (>90%) of normal character.

  19. The 1985 central chile earthquake: a repeat of previous great earthquakes in the region?

    Science.gov (United States)

    Comte, D; Eisenberg, A; Lorca, E; Pardo, M; Ponce, L; Saragoni, R; Singh, S K; Suárez, G

    1986-07-25

    A great earthquake (surface-wave magnitude, 7.8) occurred along the coast of central Chile on 3 March 1985, causing heavy damage to coastal towns. Intense foreshock activity near the epicenter of the main shock occurred for 11 days before the earthquake. The aftershocks of the 1985 earthquake define a rupture area of 170 by 110 square kilometers. The earthquake was forecast on the basis of the nearly constant repeat time (83 +/- 9 years) of great earthquakes in this region. An analysis of previous earthquakes suggests that the rupture lengths of great shocks in the region vary by a factor of about 3. The nearly constant repeat time and variable rupture lengths cannot be reconciled with time- or slip-predictable models of earthquake recurrence. The great earthquakes in the region seem to involve a variable rupture mode and yet, for unknown reasons, remain periodic. Historical data suggest that the region south of the 1985 rupture zone should now be considered a gap of high seismic potential that may rupture in a great earthquake in the next few tens of years.

  20. Foreshock and aftershocks in simple earthquake models.

    Science.gov (United States)

    Kazemian, J; Tiampo, K F; Klein, W; Dominguez, R

    2015-02-27

    Many models of earthquake faults have been introduced that connect Gutenberg-Richter (GR) scaling to triggering processes. However, natural earthquake fault systems are composed of a variety of different geometries and materials and the associated heterogeneity in physical properties can cause a variety of spatial and temporal behaviors. This raises the question of how the triggering process and the structure interact to produce the observed phenomena. Here we present a simple earthquake fault model based on the Olami-Feder-Christensen and Rundle-Jackson-Brown cellular automata models with long-range interactions that incorporates a fixed percentage of stronger sites, or asperity cells, into the lattice. These asperity cells are significantly stronger than the surrounding lattice sites but eventually rupture when the applied stress reaches their higher threshold stress. The introduction of these spatial heterogeneities results in temporal clustering in the model that mimics that seen in natural fault systems along with GR scaling. In addition, we observe sequences of activity that start with a gradually accelerating number of larger events (foreshocks) prior to a main shock that is followed by a tail of decreasing activity (aftershocks). This work provides further evidence that the spatial and temporal patterns observed in natural seismicity are strongly influenced by the underlying physical properties and are not solely the result of a simple cascade mechanism.

  1. Regional seismic-wave propagation from the M5.8 23 August 2011, Mineral, Virginia, earthquake

    Science.gov (United States)

    Pollitz, Fred; Mooney, Walter D.

    2015-01-01

    The M5.8 23 August 2011 Mineral, Virginia, earthquake was felt over nearly the entire eastern United States and was recorded by a wide array of seismic broadband instruments. The earthquake occurred ~200 km southeast of the boundary between two distinct geologic belts, the Piedmont and Blue Ridge terranes to the southeast and the Valley and Ridge Province to the northwest. At a dominant period of 3 s, coherent postcritical P-wave (i.e., direct longitudinal waves trapped in the crustal waveguide) arrivals persist to a much greater distance for propagation paths toward the northwest quadrant than toward other directions; this is probably related to the relatively high crustal thickness beneath and west of the Appalachian Mountains. The seismic surface-wave arrivals comprise two distinct classes: those with weakly dispersed Rayleigh waves and those with strongly dispersed Rayleigh waves. We attribute the character of Rayleigh wave arrivals in the first class to wave propagation through a predominantly crystalline crust (Blue Ridge Mountains and Piedmont terranes) with a relatively thin veneer of sedimentary rock, whereas the temporal extent of the Rayleigh wave arrivals in the second class are well explained as the effect of the thick sedimentary cover of the Valley and Ridge Province and adjacent Appalachian Plateau province to its northwest. Broadband surface-wave ground velocity is amplified along both north-northwest and northeast azimuths from the Mineral, Virginia, source. The former may arise from lateral focusing effects arising from locally thick sedimentary cover in the Appalachian Basin, and the latter may result from directivity effects due to a northeast rupture propagation along the finite fault plane.

  2. The Swiss-Army-Knife Approach to the Nearly Automatic Analysis for Microearthquake Sequences.

    Science.gov (United States)

    Kraft, T.; Simon, V.; Tormann, T.; Diehl, T.; Herrmann, M.

    2017-12-01

    Many Swiss earthquake sequence have been studied using relative location techniques, which often allowed to constrain the active fault planes and shed light on the tectonic processes that drove the seismicity. Yet, in the majority of cases the number of located earthquakes was too small to infer the details of the space-time evolution of the sequences, or their statistical properties. Therefore, it has mostly been impossible to resolve clear patterns in the seismicity of individual sequences, which are needed to improve our understanding of the mechanisms behind them. Here we present a nearly automatic workflow that combines well-established seismological analysis techniques and allows to significantly improve the completeness of detected and located earthquakes of a sequence. We start from the manually timed routine catalog of the Swiss Seismological Service (SED), which contains the larger events of a sequence. From these well-analyzed earthquakes we dynamically assemble a template set and perform a matched filter analysis on the station with: the best SNR for the sequence; and a recording history of at least 10-15 years, our typical analysis period. This usually allows us to detect events several orders of magnitude below the SED catalog detection threshold. The waveform similarity of the events is then further exploited to derive accurate and consistent magnitudes. The enhanced catalog is then analyzed statistically to derive high-resolution time-lines of the a- and b-value and consequently the occurrence probability of larger events. Many of the detected events are strong enough to be located using double-differences. No further manual interaction is needed; we simply time-shift the arrival-time pattern of the detecting template to the associated detection. Waveform similarity assures a good approximation of the expected arrival-times, which we use to calculate event-pair arrival-time differences by cross correlation. After a SNR and cycle-skipping quality

  3. The relationship between earthquake exposure and posttraumatic stress disorder in 2013 Lushan earthquake

    Science.gov (United States)

    Wang, Yan; Lu, Yi

    2018-01-01

    The objective of this study is to explore the relationship between earthquake exposure and the incidence of PTSD. A stratification random sample survey was conducted to collect data in the Longmenshan thrust fault after Lushan earthquake three years. We used the Children's Revised Impact of Event Scale (CRIES-13) and the Earthquake Experience Scale. Subjects in this study included 3944 school student survivors in local eleven schools. The prevalence of probable PTSD is relatively higher, when the people was trapped in the earthquake, was injured in the earthquake or have relatives who died in the earthquake. It concluded that researchers need to pay more attention to the children and adolescents. The government should pay more attention to these people and provide more economic support.

  4. Crowdsourced earthquake early warning

    Science.gov (United States)

    Minson, Sarah E.; Brooks, Benjamin A.; Glennie, Craig L.; Murray, Jessica R.; Langbein, John O.; Owen, Susan E.; Heaton, Thomas H.; Iannucci, Robert A.; Hauser, Darren L.

    2015-01-01

    Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an Mw (moment magnitude) 7 earthquake on California’s Hayward fault, and real data from the Mw 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing.

  5. Coastal subsidence in Oregon, USA during the giant Cascadia earthquake of AD 1700

    Science.gov (United States)

    Hawkes, A.D.; Horton, B.P.; Nelson, A.R.; Vane, C.H.; Sawai, Y.

    2011-01-01

    Quantitative estimates of land-level change during the giant AD 1700 Cascadia earthquake along the Oregon coast are inferred from relative sea-level changes reconstructed from fossil foraminiferal assemblages preserved within the stratigraphic record. A transfer function, based upon a regional training set of modern sediment samples from Oregon estuaries, is calibrated to fossil assemblages in sequences of samples across buried peat-mud and peat-sand contacts marking the AD 1700 earthquake. Reconstructions of sample elevations with sample-specific errors estimate the amount of coastal subsidence during the earthquake at six sites along 400 km of coast. The elevation estimates are supported by lithological, carbon isotope, and faunal tidal zonation data. Coseismic subsidence at Nehalem River, Nestucca River, Salmon River, Alsea Bay, Siuslaw River and South Slough varies between 0.18 m and 0.85 m with errors between 0.18 m and 0.32 m. These subsidence estimates are more precise, consistent, and generally lower than previous semi-quantitative estimates. Following earlier comparisons of semi-quantitative subsidence estimates with elastic dislocation models of megathrust rupture during great earthquakes, our lower estimates for central and northern Oregon are consistent with modeled rates of strain accumulation and amounts of slip on the subduction megathrust, and thus, with a magnitude of 9 for the AD 1700 earthquake.

  6. Monitoring of the Syrian rift valley using radon technique

    International Nuclear Information System (INIS)

    Al-Hilal, M.; Al-Ali, A.; Jubeli, Y.

    1997-02-01

    Groundwater radon data were recorded once every two months from six monitoring sites of the Syrian rift valley during the year 1996. Radon samples were measured from deep artesian wells and from continuously-flowing springs that are distributed along this most active seismic zone in Syria. The available data were integrated with previously measured groundwater radon data from the same stations in order to estimate the range of normal radon fluctuations in the region. The estimation of such range may enable the separation between usual groundwater radon variations from other outliers which may indicate possible tectonic activities or earthquake hazards in the study area. Periodical radon measurements based on two months intervals and long distance between sampling stations does not enable us to trust with high level of confidence the connection between radon values and any possible earth dynamics. Therefore, shorter measuring time with closer monitoring sites are highly recommended to achieve the optimum advantage of such application. (Author). 8 Figs., 2 Tabs., 10 Refs

  7. Tidal triggering of earthquakes in the Ning'er area of Yunnan Province, China

    Science.gov (United States)

    Xie, Chaodi; Lei, Xinglin; Zhao, Xiaoyan; Ma, Qingbo; Yang, Simeng; Wang, Yingnan

    2017-05-01

    To investigate the potential effect of tidal modulation on the seismicity in the Ning'er area, a seismically and geothermally active zone in Yunnan Province, China, we studied the correlation between Earth tides and the occurrence of M ≥ 6.0 earthquakes dating back to 1970, as well as their aftershock sequences, using theoretically calculated tidal stresses and a statistical test. The results show a significant correlation between Earth tides and the occurrence of earthquakes. Six of seven main events occurred when the Earth tide increased the Coulomb failure stress on the source fault. Four main events occurred in a narrow range of phase angle corresponding to the maximum loading rate of tidal stress. Furthermore, the histories of the aftershock sequence as a function of the tidal phases demonstrate clear tidal modulation with a high significance. Thus, we conclude that Earth tides have a clear role in triggering (or modulating) the rupture of the fault systems in the Ning'er area.

  8. Encyclopedia of earthquake engineering

    CERN Document Server

    Kougioumtzoglou, Ioannis; Patelli, Edoardo; Au, Siu-Kui

    2015-01-01

    The Encyclopedia of Earthquake Engineering is designed to be the authoritative and comprehensive reference covering all major aspects of the science of earthquake engineering, specifically focusing on the interaction between earthquakes and infrastructure. The encyclopedia comprises approximately 265 contributions. Since earthquake engineering deals with the interaction between earthquake disturbances and the built infrastructure, the emphasis is on basic design processes important to both non-specialists and engineers so that readers become suitably well-informed without needing to deal with the details of specialist understanding. The content of this encyclopedia provides technically inclined and informed readers about the ways in which earthquakes can affect our infrastructure and how engineers would go about designing against, mitigating and remediating these effects. The coverage ranges from buildings, foundations, underground construction, lifelines and bridges, roads, embankments and slopes. The encycl...

  9. Reevaluation of the Piermont-Frontenac allochthon in the Upper Connecticut Valley: Restoration of a coherent Boundary Mountains–Bronson Hill stratigraphic sequence

    Science.gov (United States)

    Rankin, Douglas W.; Tucker, Robert D.; Amelin, Yuri

    2013-01-01

    The regional extent and mode and time of emplacement of the Piermont-Frontenac allochthon in the Boundary Mountains–Bronson Hill anticlinorium of the Upper Connecticut Valley, New Hampshire–Vermont, are controversial. Moench and coworkers beginning in the 1980s proposed that much of the autochthonous pre–Middle Ordovician section of the anticlinorium was a large allochthon of Silurian to Early Devonian rocks correlated to those near Rangeley, Maine. This ∼200-km-long allochthon was postulated to have been transported westward in the latest Silurian to Early Devonian as a soft-sediment gravity slide on a hypothesized Foster Hill fault. New mapping and U-Pb geochronology do not support this interpretation. The undisputed Rangeley sequence in the Bean Brook slice is different from the disputed sequence in the proposed larger Piermont-Frontenac allochthon, and field evidence for the Foster Hill fault is lacking. At the type locality on Foster Hill, the postulated “fault” is a stratigraphic contact within the Ordovician Ammonoosuc Volcanics. The proposed Foster Hill fault would place the Piermont-Frontenac allochthon over the inverted limb of the Cornish(?) nappe, which includes the Emsian Littleton Formation, thus limiting the alleged submarine slide to post-Emsian time. Mafic dikes of the 419 Ma Comerford Intrusive Complex intrude previously folded strata attributed to the larger Piermont-Frontenac allochthon as well as the autochthonous Albee Formation and Ammonoosuc Volcanics. The Lost Nation pluton intruded and produced hornfels in previously deformed Albee strata. Zircons from an apophysis of the pluton in the hornfels have a thermal ionization mass spectrometry 207Pb/206Pb age of 444.1 ± 2.1 Ma. Tonalite near Bath, New Hampshire, has a zircon sensitive high-resolution ion microprobe 206Pb/238U age of 492.5 ± 7.8 Ma. The tonalite intrudes the Albee Formation, formerly interpreted as the Silurian Perry Mountain Formation of the proposed allochthon

  10. Earthquake hazard evaluation for Switzerland

    International Nuclear Information System (INIS)

    Ruettener, E.

    1995-01-01

    Earthquake hazard analysis is of considerable importance for Switzerland, a country with moderate seismic activity but high economic values at risk. The evaluation of earthquake hazard, i.e. the determination of return periods versus ground motion parameters, requires a description of earthquake occurrences in space and time. In this study the seismic hazard for major cities in Switzerland is determined. The seismic hazard analysis is based on historic earthquake records as well as instrumental data. The historic earthquake data show considerable uncertainties concerning epicenter location and epicentral intensity. A specific concept is required, therefore, which permits the description of the uncertainties of each individual earthquake. This is achieved by probability distributions for earthquake size and location. Historical considerations, which indicate changes in public earthquake awareness at various times (mainly due to large historical earthquakes), as well as statistical tests have been used to identify time periods of complete earthquake reporting as a function of intensity. As a result, the catalog is judged to be complete since 1878 for all earthquakes with epicentral intensities greater than IV, since 1750 for intensities greater than VI, since 1600 for intensities greater than VIII, and since 1300 for intensities greater than IX. Instrumental data provide accurate information about the depth distribution of earthquakes in Switzerland. In the Alps, focal depths are restricted to the uppermost 15 km of the crust, whereas below the northern Alpine foreland earthquakes are distributed throughout the entire crust (30 km). This depth distribution is considered in the final hazard analysis by probability distributions. (author) figs., tabs., refs

  11. Earthquake Clusters and Spatio-temporal Migration of earthquakes in Northeastern Tibetan Plateau: a Finite Element Modeling

    Science.gov (United States)

    Sun, Y.; Luo, G.

    2017-12-01

    Seismicity in a region is usually characterized by earthquake clusters and earthquake migration along its major fault zones. However, we do not fully understand why and how earthquake clusters and spatio-temporal migration of earthquakes occur. The northeastern Tibetan Plateau is a good example for us to investigate these problems. In this study, we construct and use a three-dimensional viscoelastoplastic finite-element model to simulate earthquake cycles and spatio-temporal migration of earthquakes along major fault zones in northeastern Tibetan Plateau. We calculate stress evolution and fault interactions, and explore effects of topographic loading and viscosity of middle-lower crust and upper mantle on model results. Model results show that earthquakes and fault interactions increase Coulomb stress on the neighboring faults or segments, accelerating the future earthquakes in this region. Thus, earthquakes occur sequentially in a short time, leading to regional earthquake clusters. Through long-term evolution, stresses on some seismogenic faults, which are far apart, may almost simultaneously reach the critical state of fault failure, probably also leading to regional earthquake clusters and earthquake migration. Based on our model synthetic seismic catalog and paleoseismic data, we analyze probability of earthquake migration between major faults in northeastern Tibetan Plateau. We find that following the 1920 M 8.5 Haiyuan earthquake and the 1927 M 8.0 Gulang earthquake, the next big event (M≥7) in northeastern Tibetan Plateau would be most likely to occur on the Haiyuan fault.

  12. Towards a Logical Distinction Between Swarms and Aftershock Sequences

    Science.gov (United States)

    Gardine, M.; Burris, L.; McNutt, S.

    2007-12-01

    The distinction between swarms and aftershock sequences has, up to this point, been fairly arbitrary and non- uniform. Typically 0.5 to 1 order of magnitude difference between the mainshock and largest aftershock has been a traditional choice, but there are many exceptions. Seismologists have generally assumed that the mainshock carries most of the energy, but this is only true if it is sufficiently large compared to the size and numbers of aftershocks. Here we present a systematic division based on energy of the aftershock sequence compared to the energy of the largest event of the sequence. It is possible to calculate the amount of aftershock energy assumed to be in the sequence using the b-value of the frequency-magnitude relation with a fixed choice of magnitude separation (M-mainshock minus M-largest aftershock). Assuming that the energy of an aftershock sequence is less than the energy of the mainshock, the b-value at which the aftershock energy exceeds that of the mainshock energy determines the boundary between aftershock sequences and swarms. The amount of energy for various choices of b-value is also calculated using different values of magnitude separation. When the minimum b-value at which the sequence energy exceeds that of the largest event/mainshock is plotted against the magnitude separation, a linear trend emerges. Values plotting above this line represent swarms and values plotting below it represent aftershock sequences. This scheme has the advantage that it represents a physical quantity - energy - rather than only statistical features of earthquake distributions. As such it may be useful to help distinguish swarms from mainshock/aftershock sequences and to better determine the underlying causes of earthquake swarms.

  13. 2014 Mainshock-Aftershock Activity Versus Earthquake Swarms in West Bohemia, Czech Republic

    Science.gov (United States)

    Jakoubková, Hana; Horálek, Josef; Fischer, Tomáš

    2018-01-01

    A singular sequence of three episodes of ML3.5, 4.4 and 3.6 mainshock-aftershock occurred in the West Bohemia/Vogtland earthquake-swarm region during 2014. We analysed this activity using the WEBNET data and compared it with the swarms of 1997, 2000, 2008 and 2011 from the perspective of cumulative seismic moment, statistical characteristics, space-time distribution of events, and prevailing focal mechanisms. For this purpose, we improved the scaling relation between seismic moment M0 and local magnitude ML by WEBNET. The total seismic moment released during 2014 episodes (M_{0tot}≈ 1.58× 10^{15} Nm) corresponded to a single ML4.6+ event and was comparable to M_{0tot} of the swarms of 2000, 2008 and 2011. We inferred that the ML4.8 earthquake is the maximum expected event in Nový Kostel (NK), the main focal zone. Despite the different character of the 2014 sequence and the earthquake swarms, the magnitude-frequency distributions (MFDs) show the b-values ≈ 1 and probability density functions (PDFs) of the interevent times indicate the similar event rate of the individual swarms and 2014 activity. Only the a-value (event-productivity) in the MFD of the 2014 sequence is significantly lower than those of the swarms. A notable finding is a significant acceleration of the seismic moment release in each subsequent activity starting from the 2000 swarm to the 2014 sequence, which may indicate an alteration from the swarm-like to the mainshocks-aftershock character of the seismicity. The three mainshocks are located on a newly activated fault segment/asperity (D in out notation) of the NK zone situated in the transition area among fault segments A, B, C, which hosted the 2000, 2008 and 2011 swarms. The segment D appears to be predisposed to an oblique-thrust faulting while strike-slip faulting is typical of segments A, B and C. In conclusion, we propose a basic segment scheme of the NK zone which should be improved gradually.

  14. Perception of earthquake risk in Taiwan: effects of gender and past earthquake experience.

    Science.gov (United States)

    Kung, Yi-Wen; Chen, Sue-Huei

    2012-09-01

    This study explored how individuals in Taiwan perceive the risk of earthquake and the relationship of past earthquake experience and gender to risk perception. Participants (n= 1,405), including earthquake survivors and those in the general population without prior direct earthquake exposure, were selected and interviewed through a computer-assisted telephone interviewing procedure using a random sampling and stratification method covering all 24 regions of Taiwan. A factor analysis of the interview data yielded a two-factor structure of risk perception in regard to earthquake. The first factor, "personal impact," encompassed perception of threat and fear related to earthquakes. The second factor, "controllability," encompassed a sense of efficacy of self-protection in regard to earthquakes. The findings indicated prior earthquake survivors and females reported higher scores on the personal impact factor than males and those with no prior direct earthquake experience, although there were no group differences on the controllability factor. The findings support that risk perception has multiple components, and suggest that past experience (survivor status) and gender (female) affect the perception of risk. Exploration of potential contributions of other demographic factors such as age, education, and marital status to personal impact, especially for females and survivors, is discussed. Future research on and intervention program with regard to risk perception are suggested accordingly. © 2012 Society for Risk Analysis.

  15. Proximity of the Seismogenic Dog Valley Fault to Stampede and Prosser Creek Dams Near Truckee, California

    Science.gov (United States)

    Cronin, V. S.; Strasser, M. P.

    2017-12-01

    The M 6.0 Truckee earthquake of 12 September 1966 caused a variety of surface effects observed over a large area, but the rupture plane of the causative fault did not displace the ground surface. The fault that generated the earthquake was named the Dog Valley fault [DVF], and its ground trace was assumed to be within a zone of subparallel drainage lineaments. The plunge and trend of the dip vector for the best fault-plane solution is 80° 134° with 0° rake, corresponding to a steep NE striking left-lateral strike-slip fault (Tsai and Aki, 1970). The Stampede Dam was completed along the trend of the Dog Valley fault in 1970, just four years after the Truckee earthquake, and impounds almost a quarter-million acre-feet of water. Failure of Stampede Dam would compromise Boca Dam downstream and pose a catastrophic threat to people along the Truckee River floodplain to Reno and beyond. Two 30 m long trenches excavated across a suspected DVF trend by the US Bureau of Reclamation in the 1980s did not find evidence of faulting (Hawkins et al., 1986). The surface trace of the DVF has remained unknown. We used the Seismo-Lineament Analysis Method [SLAM] augmented with a total least squares analysis of the focal locations of known or suspected aftershocks, along with focal mechanism data from well located events since 1966, to constrain the search for the DVF ground trace. Geomorphic analysis of recently collected aerial lidar data along this composite seismo-lineament has lead to a preliminary interpretation that the DVF might extend from the Prosser Creek Reservoir near 39.396°N 120.168°W through or immediately adjacent to the Stampede Dam structure. A second compound geomorphic lineament is sub-parallel to this line 1.6 km to the northwest, and might represent another strand of the DVF. As noted by Hawkins et al. (1986), human modification of the land surface complicates structural-geomorphic analysis. Fieldwork in 2016 took advantage of drought conditions to examine

  16. Soil of the lower valley of the Dragonja river (Slovenia)

    OpenAIRE

    Tomaž PRUS; Nina ZUPANČIČ; Helena GRČMAN

    2015-01-01

    Soil of the lower valley of the river Dragonja developed under specific soil-forming factors. Soil development in the area was influenced by alluvial sediments originating from surrounding hills, mostly of flysch sequence rocks, as a parent material, Sub-Mediterranean climate and the vicinity of the sea. Different soil classification units (Gleysol and Fluvisol) were proposed for that soil in previous researches. The aim of our study was the evaluation of morphological, chemical and mineralog...

  17. Leveraging geodetic data to reduce losses from earthquakes

    Science.gov (United States)

    Murray, Jessica R.; Roeloffs, Evelyn A.; Brooks, Benjamin A.; Langbein, John O.; Leith, William S.; Minson, Sarah E.; Svarc, Jerry L.; Thatcher, Wayne R.

    2018-04-23

    event response products and by expanded use of geodetic imaging data to assess fault rupture and source parameters.Uncertainties in the NSHM, and in regional earthquake models, are reduced by fully incorporating geodetic data into earthquake probability calculations.Geodetic networks and data are integrated into the operations and earthquake information products of the Advanced National Seismic System (ANSS).Earthquake early warnings are improved by more rapidly assessing ground displacement and the dynamic faulting process for the largest earthquakes using real-time geodetic data.Methodology for probabilistic earthquake forecasting is refined by including geodetic data when calculating evolving moment release during aftershock sequences and by better understanding the implications of transient deformation for earthquake likelihood.A geodesy program that encompasses a balanced mix of activities to sustain missioncritical capabilities, grows new competencies through the continuum of fundamental to applied research, and ensures sufficient resources for these endeavors provides a foundation by which the EHP can be a leader in the application of geodesy to earthquake science. With this in mind the following objectives provide a framework to guide EHP efforts:Fully utilize geodetic information to improve key products, such as the NSHM and EEW, and to address new ventures like the USGS Subduction Zone Science Plan.Expand the variety, accuracy, and timeliness of post-earthquake information products, such as PAGER (Prompt Assessment of Global Earthquakes for Response), through incorporation of geodetic observations.Determine if geodetic measurements of transient deformation can significantly improve estimates of earthquake probability.Maintain an observational strategy aligned with the target outcomes of this document that includes continuous monitoring, recording of ephemeral observations, focused data collection for use in research, and application-driven data processing and

  18. Valley development on Hawaiian volcanoes

    International Nuclear Information System (INIS)

    Baker, V.R.; Gulick, V.C.

    1987-01-01

    Work in progress on Hawaiian drainage evolution indicates an important potential for understanding drainage development on Mars. Similar to Mars, the Hawaiian valleys were initiated by surface runoff, subsequently enlarged by groundwater sapping, and eventually stabilized as aquifers were depleted. Quantitative geomorphic measurements were used to evaluate the following factors in Hawaiian drainage evolution: climate, stream processes, and time. In comparing regions of similar climate, drainage density shows a general increase with the age of the volcani island. With age and climate held constant, sapping dominated valleys, in contrast to runoff-dominated valleys, display the following: lower drainage densities, higher ratios of valley floor width to valley height, and more positive profile concavities. Studies of stream junction angles indicate increasing junction angles with time on the drier leeward sides of the major islands. The quantitative geomorphic studies and earlier field work yielded important insights for Martian geomorphology. The importance of ash mantling in controlling infiltration on Hawaii also seems to apply to Mars. The Hawaiian valley also have implications for the valley networks of Martian heavily cratered terrains

  19. New insights into fault activation and stress transfer between en echelon thrusts: The 2012 Emilia, Northern Italy, earthquake sequence

    Science.gov (United States)

    Cheloni, D.; Giuliani, R.; D'Agostino, N.; Mattone, M.; Bonano, M.; Fornaro, G.; Lanari, R.; Reale, D.; Atzori, S.

    2016-06-01

    Here we present the results of the inversion of a new geodetic data set covering the 2012 Emilia seismic sequence and the following 1 year of postseismic deformation. Modeling of the geodetic data together with the use of a catalog of 3-D relocated aftershocks allows us to constrain the rupture geometries and the coseismic and postseismic slip distributions for the two main events (Mw 6.1 and 6.0) of the sequence and to explore how these thrust events have interacted with each other. Dislocation modeling reveals that the first event ruptured a slip patch located in the center of the Middle Ferrara thrust with up to 1 m of reverse slip. The modeling of the second event, located about 15 km to the southwest, indicates a main patch with up to 60 cm of slip initiated in the deeper and flatter portion of the Mirandola thrust and progressively propagated postseismically toward the top section of the rupture plane, where most of the aftershocks and afterslip occurred. Our results also indicate that between the two main events, a third thrust segment was activated releasing a pulse of aseismic slip equivalent to a Mw 5.8 event. Coulomb stress changes suggest that the aseismic event was likely triggered by the preceding main shock and that the aseismic slip event probably brought the second fault closer to failure. Our findings show significant correlations between static stress changes and seismicity and suggest that stress interaction between earthquakes plays a significant role among continental en echelon thrusts.

  20. The results of the Seismic Alert System of Mexico SASMEX, during the earthquakes of 7 and 19 of September 2017

    Science.gov (United States)

    Espinosa Aranda, J. M., Sr.; Cuellar Martinez, A.

    2017-12-01

    The Seismic Alert System of Mexico, SASMEX began in 1991, is integrated by the seismic alert system of Mexico City and the seismic alert system of Oaxaca. SASMEX has 97 seismic sensors which are distributed in the seismic regions of the Pacific coast and the South of the Trans-Mexican Volcanic Belt of states of Jalisco, Colima, Michoacán, Guerrero, Oaxaca and Puebla. The alert dissemination covers the cities of: Acapulco, Chilpancingo, Morelia, Puebla, Oaxaca, Toluca and Mexico City, reaching the earthquake warnings to more than 25 millions of people. SASMEX has detected correctly more than 5600 earthquakes and warned 156. Mexico City has different alert dissemination systems like several Radio and Tv commercial broadcasters, dedicated radio receivers, EAS-SAME-SARMEX radio receivers and more tha 6700 public loud speakers. The other cities have only some of those systems. The Mw 8.2 Chiapas earthquake on September 7, despite the epicentral distance far of the first seismic detections (more than 180 km) and the low amplitudes of the P waves, the earthquake warning time gave more than 90 seconds to Mexico City before the arrivals of S waves with minor damages to the city in contrast with high damages in towns in the coast. This earthquake offered an opportunity to show the developments and lacks to reduce the risk, such as the need to increase the seismic detection coverage and the earthquake warning dissemination in towns with high seismic vulnerability. The Mw 7.1 Morelos earthquake on September 19 caused thousands of damages and hundreds of deaths and injuries in Mexico City, this earthquake is the second with the most damages after the Mw 8.1 Michoacán earthquake of September 19 on 1985. The earthquake early warning gave 11 seconds after the arrivals of S waves, however the activation occurred few seconds after the P waves arrives to Mexico City, and due to the seismic focus was near to the city, the P waves were felt for the people. The Accelerographic Network

  1. Geophysical Well-Log Measurements in Three Drill Holes at Salt Valley, Utah

    OpenAIRE

    Daniels, Jeffrey J.; Hite, Robert J.; Scott, James H.; U.S. Geological Survey

    1980-01-01

    Three exploratory drill holes were drilled at Salt Valley, Utah, to study the geologic, physical, geochemical, and hydrologic properties of the evaporite sequence in the Permian Paradox Member of the Hermosa Formation. The results of these studies will be used to help to determine the suitability of salt deposits in the Paradox basin as a storage medium for radioactive waste material.

  2. Contributions to the Chile’s Seismic History: the Case of the Great Earthquake of 1730

    Directory of Open Access Journals (Sweden)

    María X. Urbina Carrasco

    2016-12-01

    Full Text Available According to the new and previously known documents it is concluded the earthquake of Chile in 1730 was composed by two independent earthquakes, each associated to a tsunami. Considering the latitudinal extension of the damage and the size of the tsunamis, it can be taken as the largest seismic event occurred in the history of Metropolitan or Central Chile. These conclusions allow to know better the seismic sequence of Central Chile, the Seismic History of the country, and contribute to the knowledge of the colonial history of the kingdom of Chile.

  3. Lithospheric rheology constrained from twenty-five years of postseismic deformation following the 1989 Mw 6.9 Loma Prieta earthquake

    Science.gov (United States)

    Huang, Mong-Han; Burgmann, Roland; Pollitz, Fred

    2016-01-01

    The October 17, 1989 Mw 6.9 Loma Prieta earthquake provides the first opportunity of probing the crustal and upper mantle rheology in the San Francisco Bay Area since the 1906 Mw 7.9 San Francisco earthquake. Here we use geodetic observations including GPS and InSAR to characterize the Loma Prieta earthquake postseismic displacements from 1989 to 2013. Pre-earthquake deformation rates are constrained by nearly 20 yr of USGS trilateration measurements and removed from the postseismic measurements prior to the analysis. We observe GPS horizontal displacements at mean rates of 1–4 mm/yr toward Loma Prieta Mountain until 2000, and ∼2 mm/yr surface subsidence of the northern Santa Cruz Mountains between 1992 and 2002 shown by InSAR, which is not associated with the seasonal and longer-term hydrological deformation in the adjoining Santa Clara Valley. Previous work indicates afterslip dominated in the early (1989–1994) postseismic period, so we focus on modeling the postseismic viscoelastic relaxation constrained by the geodetic observations after 1994. The best fitting model shows an elastic 19-km-thick upper crust above an 11-km-thick viscoelastic lower crust with viscosity of ∼6 × 1018 Pas, underlain by a viscous upper mantle with viscosity between 3 × 1018 and 2 × 1019 Pas. The millimeter-scale postseismic deformation does not resolve the viscosity in the different layers very well, and the lower-crustal relaxation may be localized in a narrow shear zone. However, the inferred lithospheric rheology is consistent with previous estimates based on post-1906 San Francisco earthquake measurements along the San Andreas fault system. The viscoelastic relaxation may also contribute to the enduring increase of aseismic slip and repeating earthquake activity on the San Andreas fault near San Juan Bautista, which continued for at least a decade after the Loma Prieta event.

  4. Field reconnaissance of the effects of the earthquake of April 13, 1973, near Laguna de Arenal, Costa Rica

    Science.gov (United States)

    Plafker, George

    1973-01-01

    At about 3:34 a.m. on April 13, 1973, a moderate-sized, but widely-felt, earthquake caused extensive damage with loss of 23 lives in a rural area of about 150 km2 centered just south of Laguna de Arenal in northwestern Costa Rica (fig. 1). This report summarizes the results of the writer's reconnaissance investigation of the area that was affected by the earthquake of April 13, 1973. A 4-day field study of the meizoseismal area was carried out during the period from April 28 through May 1 under the auspices of the U.S. Geological Survey. The primary objective of this study was to evaluate geologic factors that contributed to the damage and loss of life. The earthquake was also of special interest because of the possibility that it was accompanied by surface faulting comparable to that which occurred at Managua, Nicaragua, during the disastrous earthquake of December 23, 1972 (Brown, Ward, and Plafker, 1973). Such earthquake-related surface faulting can provide scientifically valuable information on active tectonic processes at shallow depths within the Middle America arc. Also, identification of active faults in this area is of considerable practical importance because of the planned construction of a major hydroelectrical facility within the meizoseismal area by the Instituto Costarricense de Electricidad (I.C.E.). The project would involve creation of a storage reservoir within the Laguna de Arenal basin and part of the Río Arenal valley with a 75 m-high earthfill dam across Río Arenal at a point about 10 km east of the outlet of Laguna de Arenal.

  5. The earthquake problem in engineering design: generating earthquake design basis information

    International Nuclear Information System (INIS)

    Sharma, R.D.

    1987-01-01

    Designing earthquake resistant structures requires certain design inputs specific to the seismotectonic status of the region, in which a critical facility is to be located. Generating these inputs requires collection of earthquake related information using present day techniques in seismology and geology, and processing the collected information to integrate it to arrive at a consolidated picture of the seismotectonics of the region. The earthquake problem in engineering design has been outlined in the context of a seismic design of nuclear power plants vis a vis current state of the art techniques. The extent to which the accepted procedures of assessing seismic risk in the region and generating the design inputs have been adherred to determine to a great extent the safety of the structures against future earthquakes. The document is a step towards developing an aproach for generating these inputs, which form the earthquake design basis. (author)

  6. The Global Earthquake Model and Disaster Risk Reduction

    Science.gov (United States)

    Smolka, A. J.

    2015-12-01

    Advanced, reliable and transparent tools and data to assess earthquake risk are inaccessible to most, especially in less developed regions of the world while few, if any, globally accepted standards currently allow a meaningful comparison of risk between places. The Global Earthquake Model (GEM) is a collaborative effort that aims to provide models, datasets and state-of-the-art tools for transparent assessment of earthquake hazard and risk. As part of this goal, GEM and its global network of collaborators have developed the OpenQuake engine (an open-source software for hazard and risk calculations), the OpenQuake platform (a web-based portal making GEM's resources and datasets freely available to all potential users), and a suite of tools to support modelers and other experts in the development of hazard, exposure and vulnerability models. These resources are being used extensively across the world in hazard and risk assessment, from individual practitioners to local and national institutions, and in regional projects to inform disaster risk reduction. Practical examples for how GEM is bridging the gap between science and disaster risk reduction are: - Several countries including Switzerland, Turkey, Italy, Ecuador, Papua-New Guinea and Taiwan (with more to follow) are computing national seismic hazard using the OpenQuake-engine. In some cases these results are used for the definition of actions in building codes. - Technical support, tools and data for the development of hazard, exposure, vulnerability and risk models for regional projects in South America and Sub-Saharan Africa. - Going beyond physical risk, GEM's scorecard approach evaluates local resilience by bringing together neighborhood/community leaders and the risk reduction community as a basis for designing risk reduction programs at various levels of geography. Actual case studies are Lalitpur in the Kathmandu Valley in Nepal and Quito/Ecuador. In agreement with GEM's collaborative approach, all

  7. Accelerations from the September 5, 2012 (Mw=7.6) Nicoya, Costa Rica Earthquake

    Science.gov (United States)

    Simila, G. W.; Quintero, R.; Burgoa, B.; Mohammadebrahim, E.; Segura, J.

    2013-05-01

    Since 1984, the Seismic Network of the Volcanological and Seismological Observatory of Costa Rica, Universidad Nacional (OVSICORI-UNA) has been recording and registering the seismicity in Costa Rica. Before September 2012, the earthquakes registered by this seismic network in northwestern Costa Rica were moderate to small, except the Cóbano earthquake of March 25, 1990, 13:23, Mw 7.3, lat. 9.648, long. 84.913, depth 20 km; a subduction quake at the entrance of the Gulf of Nicoya and generated peak intensities in the range of MM = VIII near the epicentral area and VI-VII in the Central Valley of Costa Rica. Six years before the installation of the seismic network, OVSICORI-UNA registered two subduction earthquakes in northwestern Costa Rica, specifically on August 23, 1978, at 00:38:32 and 00:50:29 with magnitudes Mw 7.0 (HRVD), Ms 7.0 (ISC) and depths of 58 and 69 km, respectively (EHB Bulletin). On September 5, 2012, at 14:42:02.8 UTC, the seismic network OVSICORI-UNA registered another large subduction earthquake in Nicoya peninsula, northwestern Costa Rica, located 29 km south of Samara, with a depth of 21 km and magnitude Mw 7.6, lat. 9.6392, long. 85.6167. This earthquake was caused by the subduction of the Cocos plate under the Caribbean plate in northwestern Costa Rica. This earthquake was felt throughout the country and also in much of Nicaragua. The instrumental intensity map for the Nicoya earthquake indicates that the earthquake was felt with an intensity of VII-VIII in the Puntarenas and Nicoya Peninsulas, in an area between Liberia, Cañas, Puntarenas, Cabo Blanco, Carrillo, Garza, Sardinal, and Tamarindo in Guanacaste; Nicoya city being the place where the maximum reported intensity of VIII is most notable. An intensity of VIII indicates that damage estimates are moderate to severe, and intensity VII indicates that damage estimates are moderate. According to the National Emergency Commission of Costa Rica, 371 affected communities were reported; most

  8. Shake Table Study on the Effect of Mainshock-Aftershock Sequences on Structures with SFSI

    Directory of Open Access Journals (Sweden)

    Xiaoyang Qin

    2017-01-01

    Full Text Available Observations from recent earthquakes have emphasised the need for a better understanding of the effects of structure-footing-soil interaction on the response of structures. In order to incorporate the influences of soil, a laminar box can be used to contain the soil during experiments. The laminar box simulates field boundary conditions by allowing the soil to shear during shake table tests. A holistic response of a structure and supporting soil can thus be obtained by placing a model structure on the surface of the soil in the laminar box. This work reveals the response of structure with SFSI under mainshock and aftershock earthquake sequences. A large (2 m by 2 m laminar box, capable of simulating the behaviour of both dry and saturated soils, was constructed. A model structure was placed on dry sand in the laminar box. The setup was excited by a sequence of earthquake excitations. The first excitation was used to obtain the response of the model on sand under the mainshock of an earthquake. The second and third excitations represented the first and second aftershocks, respectively.

  9. Lessons of L'Aquila for Operational Earthquake Forecasting

    Science.gov (United States)

    Jordan, T. H.

    2012-12-01

    The L'Aquila earthquake of 6 Apr 2009 (magnitude 6.3) killed 309 people and left tens of thousands homeless. The mainshock was preceded by a vigorous seismic sequence that prompted informal earthquake predictions and evacuations. In an attempt to calm the population, the Italian Department of Civil Protection (DPC) convened its Commission on the Forecasting and Prevention of Major Risk (MRC) in L'Aquila on 31 March 2009 and issued statements about the hazard that were widely received as an "anti-alarm"; i.e., a deterministic prediction that there would not be a major earthquake. On October 23, 2012, a court in L'Aquila convicted the vice-director of DPC and six scientists and engineers who attended the MRC meeting on charges of criminal manslaughter, and it sentenced each to six years in prison. A few weeks after the L'Aquila disaster, the Italian government convened an International Commission on Earthquake Forecasting for Civil Protection (ICEF) with the mandate to assess the status of short-term forecasting methods and to recommend how they should be used in civil protection. The ICEF, which I chaired, issued its findings and recommendations on 2 Oct 2009 and published its final report, "Operational Earthquake Forecasting: Status of Knowledge and Guidelines for Implementation," in Aug 2011 (www.annalsofgeophysics.eu/index.php/annals/article/view/5350). As defined by the Commission, operational earthquake forecasting (OEF) involves two key activities: the continual updating of authoritative information about the future occurrence of potentially damaging earthquakes, and the officially sanctioned dissemination of this information to enhance earthquake preparedness in threatened communities. Among the main lessons of L'Aquila is the need to separate the role of science advisors, whose job is to provide objective information about natural hazards, from that of civil decision-makers who must weigh the benefits of protective actions against the costs of false alarms

  10. Quick regional centroid moment tensor solutions for the Emilia 2012 (northern Italy seismic sequence

    Directory of Open Access Journals (Sweden)

    Silvia Pondrelli

    2012-10-01

    Full Text Available In May 2012, a seismic sequence struck the Emilia region (northern Italy. The mainshock, of Ml 5.9, occurred on May 20, 2012, at 02:03 UTC. This was preceded by a smaller Ml 4.1 foreshock some hours before (23:13 UTC on May 19, 2012 and followed by more than 2,500 earthquakes in the magnitude range from Ml 0.7 to 5.2. In addition, on May 29, 2012, three further strong earthquakes occurred, all with magnitude Ml ≥5.2: a Ml 5.8 earthquake in the morning (07:00 UTC, followed by two events within just 5 min of each other, one at 10:55 UTC (Ml 5.3 and the second at 11:00 UTC (Ml 5.2. For all of the Ml ≥4.0 earthquakes in Italy and for all of the Ml ≥4.5 in the Mediterranean area, an automatic procedure for the computation of a regional centroid moment tensor (RCMT is triggered by an email alert. Within 1 h of the event, a manually revised quick RCMT (QRCMT can be published on the website if the solution is considered stable. In particular, for the Emilia seismic sequence, 13 QRCMTs were determined and for three of them, those with M >5.5, the automatically computed QRCMTs fitted the criteria for publication without manual revision. Using this seismic sequence as a test, we can then identify the magnitude threshold for automatic publication of our QRCMTs.

  11. Stress Interactions Between the 1976 Magnitude 7.8 Tangshan Earthquake and Adjacent Fault Systems in Northern China

    Science.gov (United States)

    Zhang, Z.; Lin, J.; Chen, Y. J.

    2004-12-01

    The 28 July 1976 ML = 7.8 Tangshan earthquake struck a highly populated metropolitan center in northern China and was one of the most devastating earthquakes in modern history. Its occurrence has significantly changed the Coulomb stresses on a complex network of strike-slip, normal, and thrust faults in the region, potentially heightened the odds of future earthquakes on some of these fault segments. We have conducted a detailed analysis of the 3D stress effects of the Tangshan earthquake on its neighboring faults, the relationship between stress transfer and aftershock locations, and the implications for future seismic hazard in the region. Available seismic and geodetic data, although limited, indicate that the Tangshan main shock sequence is composed of complex rupture on 2-3 fault segments. The dominant rupture mode is right-lateral strike-slip on two adjoining sub-segments that strike N5¡aE and N35¡aE, respectively. We calculated that the Tangshan main shock sequence has increased the Coulomb failure stress by more than 1 bar in the vicinity of the Lunanxian district to the east, where the largest aftershock (ML = 7.1) occurred 15 hours after the Tangshan main event. The second largest aftershock (ML = 6.8) occurred on the Ninghe fault to the southwest of the main rupture, in a transitional region between the calculated Coulomb stress increase and decrease. The majority of the ML > 5.0 aftershocks also occurred in areas of calculated Coulomb stress increase. Our analyses further indicate that the Coulomb stress on portions of other fault segments, including the Leting and Lulong fault to the east and Yejito fault to the north, may also have been increased. Thus it is critical to obtain estimates of earthquake repeat times on these and other tectonic faults and to acquire continuous GPS and space geodetic measurements. Investigation of stress interaction and earthquake triggering in northern China is not only highly societal relevant but also important for

  12. Understanding earthquakes: The key role of radar images

    International Nuclear Information System (INIS)

    Atzori, Simone

    2013-01-01

    The investigation of the fault rupture underlying earthquakes greatly improved thanks to the spread of radar images. Following pioneer applications in the eighties, Interferometry from Synthetic Aperture Radar (InSAR) gained a prominent role in geodesy. Its capability to measure millimetric deformations for wide areas and the increased data availability from the early nineties, made InSAR a diffused and accepted analysis tool in tectonics, though several factors contribute to reduce the data quality. With the introduction of analytical or numerical modeling, InSAR maps are used to infer the source of an earthquake by means of data inversion. Newly developed algorithms, known as InSAR time-series, allowed to further improve the data accuracy and completeness, strengthening the InSAR contribution even in the study of the inter- and post-seismic phases. In this work we describe the rationale at the base of the whole processing, showing its application to the New Zealand 2010–2011 seismic sequence

  13. Understanding earthquakes: The key role of radar images

    Energy Technology Data Exchange (ETDEWEB)

    Atzori, Simone, E-mail: simone.atzori@ingv.it [Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy)

    2013-08-21

    The investigation of the fault rupture underlying earthquakes greatly improved thanks to the spread of radar images. Following pioneer applications in the eighties, Interferometry from Synthetic Aperture Radar (InSAR) gained a prominent role in geodesy. Its capability to measure millimetric deformations for wide areas and the increased data availability from the early nineties, made InSAR a diffused and accepted analysis tool in tectonics, though several factors contribute to reduce the data quality. With the introduction of analytical or numerical modeling, InSAR maps are used to infer the source of an earthquake by means of data inversion. Newly developed algorithms, known as InSAR time-series, allowed to further improve the data accuracy and completeness, strengthening the InSAR contribution even in the study of the inter- and post-seismic phases. In this work we describe the rationale at the base of the whole processing, showing its application to the New Zealand 2010–2011 seismic sequence.

  14. Limitation of the Predominant-Period Estimator for Earthquake Early Warning and the Initial Rupture of Earthquakes

    Science.gov (United States)

    Yamada, T.; Ide, S.

    2007-12-01

    Earthquake early warning is an important and challenging issue for the reduction of the seismic damage, especially for the mitigation of human suffering. One of the most important problems in earthquake early warning systems is how immediately we can estimate the final size of an earthquake after we observe the ground motion. It is relevant to the problem whether the initial rupture of an earthquake has some information associated with its final size. Nakamura (1988) developed the Urgent Earthquake Detection and Alarm System (UrEDAS). It calculates the predominant period of the P wave (τp) and estimates the magnitude of an earthquake immediately after the P wave arrival from the value of τpmax, or the maximum value of τp. The similar approach has been adapted by other earthquake alarm systems (e.g., Allen and Kanamori (2003)). To investigate the characteristic of the parameter τp and the effect of the length of the time window (TW) in the τpmax calculation, we analyze the high-frequency recordings of earthquakes at very close distances in the Mponeng mine in South Africa. We find that values of τpmax have upper and lower limits. For larger earthquakes whose source durations are longer than TW, the values of τpmax have an upper limit which depends on TW. On the other hand, the values for smaller earthquakes have a lower limit which is proportional to the sampling interval. For intermediate earthquakes, the values of τpmax are close to their typical source durations. These two limits and the slope for intermediate earthquakes yield an artificial final size dependence of τpmax in a wide size range. The parameter τpmax is useful for detecting large earthquakes and broadcasting earthquake early warnings. However, its dependence on the final size of earthquakes does not suggest that the earthquake rupture is deterministic. This is because τpmax does not always have a direct relation to the physical quantities of an earthquake.

  15. Correlation of pre-earthquake electromagnetic signals with laboratory and field rock experiments

    Directory of Open Access Journals (Sweden)

    T. Bleier

    2010-09-01

    Full Text Available Analysis of the 2007 M5.4 Alum Rock earthquake near San José California showed that magnetic pulsations were present in large numbers and with significant amplitudes during the 2 week period leading up the event. These pulsations were 1–30 s in duration, had unusual polarities (many with only positive or only negative polarities versus both polarities, and were different than other pulsations observed over 2 years of data in that the pulse sequence was sustained over a 2 week period prior to the quake, and then disappeared shortly after the quake. A search for the underlying physics process that might explain these pulses was was undertaken, and one theory (Freund, 2002 demonstrated that charge carriers were released when various types of rocks were stressed in a laboratory environment. It was also significant that the observed charge carrier generation was transient, and resulted in pulsating current patterns. In an attempt to determine if this phenomenon occurred outside of the laboratory environment, the authors scaled up the physics experiment from a relatively small rock sample in a dry laboratory setting, to a large 7 metric tonne boulder comprised of Yosemite granite. This boulder was located in a natural, humid (above ground setting at Bass Lake, Ca. The boulder was instrumented with two Zonge Engineering, Model ANT4 induction type magnetometers, two Trifield Air Ion Counters, a surface charge detector, a geophone, a Bruker Model EM27 Fourier Transform Infra Red (FTIR spectrometer with Sterling cycle cooler, and various temperature sensors. The boulder was stressed over about 8 h using expanding concrete (Bustartm, until it fractured into three major pieces. The recorded data showed surface charge build up, magnetic pulsations, impulsive air conductivity changes, and acoustical cues starting about 5 h before the boulder actually broke. These magnetic and air conductivity pulse signatures resembled both the laboratory

  16. Multi-Sensors Observations of Pre-Earthquake Signals. What We Learned from the Great Tohoku Earthquake?

    Science.gov (United States)

    Ouzonounov, D.; Pulinets, S.; Papadopoulos, G.; Kunitsyn, V.; Nesterov, I.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    The lessons learned from the Great Tohoku EQ (Japan, 2011) will affect our future observations and an analysis is the main focus of this presentation. Multi-sensors observations and multidisciplinary research is presented in our study of the phenomena preceding major earthquakes Our approach is based on a systematic analysis of several physical and environmental parameters, which been reported by others in connections with earthquake processes: thermal infrared radiation; temperature; concentration of electrons in the ionosphere; radon/ion activities; and atmospheric temperature/humidity [Ouzounov et al, 2011]. We used the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model, one of several possible paradigms [Pulinets and Ouzounov, 2011] to interpret our observations. We retrospectively analyzed the temporal and spatial variations of three different physical parameters characterizing the state of the atmosphere, ionosphere the ground surface several days before the March 11, 2011 M9 Tohoku earthquake Namely: (i) Outgoing Long wave Radiation (OLR) measured at the top of the atmosphere; (ii) Anomalous variations of ionospheric parameters revealed by multi-sensors observations; and (iii) The change in the foreshock sequence (rate, space and time); Our results show that on March 8th, 2011 a rapid increase of emitted infrared radiation was observed and an anomaly developed near the epicenter with largest value occurring on March 11 at 07.30 LT. The GPS/TEC data indicate an increase and variation in electron density reaching a maximum value on March 8. Starting from this day in the lower ionosphere there was also observed an abnormal TEC variation over the epicenter. From March 3 to 11 a large increase in electron concentration was recorded at all four Japanese ground-based ionosondes, which returned to normal after the main earthquake. We use the Japanese GPS network stations and method of Radio Tomography to study the spatiotemporal structure of ionospheric

  17. Analysis of Mining-induced Valley Closure Movements

    Science.gov (United States)

    Zhang, C.; Mitra, R.; Oh, J.; Hebblewhite, B.

    2016-05-01

    Valley closure movements have been observed for decades in Australia and overseas when underground mining occurred beneath or in close proximity to valleys and other forms of irregular topographies. Valley closure is defined as the inward movements of the valley sides towards the valley centreline. Due to the complexity of the local geology and the interplay between several geological, topographical and mining factors, the underlying mechanisms that actually cause this behaviour are not completely understood. A comprehensive programme of numerical modelling investigations has been carried out to further evaluate and quantify the influence of a number of these mining and geological factors and their inter-relationships. The factors investigated in this paper include longwall positional factors, horizontal stress, panel width, depth of cover and geological structures around the valley. It is found that mining in a series passing beneath the valley dramatically increases valley closure, and mining parallel to valley induces much more closure than other mining orientations. The redistribution of horizontal stress and influence of mining activity have also been recognised as important factors promoting valley closure, and the effect of geological structure around the valley is found to be relatively small. This paper provides further insight into both the valley closure mechanisms and how these mechanisms should be considered in valley closure prediction models.

  18. Preliminary Results on Earthquake Recurrence Intervals, Rupture Segmentation, and Potential Earthquake Moment Magnitudes along the Tahoe-Sierra Frontal Fault Zone, Lake Tahoe, California

    Science.gov (United States)

    Howle, J.; Bawden, G. W.; Schweickert, R. A.; Hunter, L. E.; Rose, R.

    2012-12-01

    Utilizing high-resolution bare-earth LiDAR topography, field observations, and earlier results of Howle et al. (2012), we estimate latest Pleistocene/Holocene earthquake-recurrence intervals, propose scenarios for earthquake-rupture segmentation, and estimate potential earthquake moment magnitudes for the Tahoe-Sierra frontal fault zone (TSFFZ), west of Lake Tahoe, California. We have developed a new technique to estimate the vertical separation for the most recent and the previous ground-rupturing earthquakes at five sites along the Echo Peak and Mt. Tallac segments of the TSFFZ. At these sites are fault scarps with two bevels separated by an inflection point (compound fault scarps), indicating that the cumulative vertical separation (VS) across the scarp resulted from two events. This technique, modified from the modeling methods of Howle et al. (2012), uses the far-field plunge of the best-fit footwall vector and the fault-scarp morphology from high-resolution LiDAR profiles to estimate the per-event VS. From this data, we conclude that the adjacent and overlapping Echo Peak and Mt. Tallac segments have ruptured coseismically twice during the Holocene. The right-stepping, en echelon range-front segments of the TSFFZ show progressively greater VS rates and shorter earthquake-recurrence intervals from southeast to northwest. Our preliminary estimates suggest latest Pleistocene/ Holocene earthquake-recurrence intervals of 4.8±0.9x103 years for a coseismic rupture of the Echo Peak and Mt. Tallac segments, located at the southeastern end of the TSFFZ. For the Rubicon Peak segment, northwest of the Echo Peak and Mt. Tallac segments, our preliminary estimate of the maximum earthquake-recurrence interval is 2.8±1.0x103 years, based on data from two sites. The correspondence between high VS rates and short recurrence intervals suggests that earthquake sequences along the TSFFZ may initiate in the northwest part of the zone and then occur to the southeast with a lower

  19. Earthquake engineering development before and after the March 4, 1977, Vrancea, Romania earthquake

    International Nuclear Information System (INIS)

    Georgescu, E.-S.

    2002-01-01

    At 25 years since the of the Vrancea earthquake of March, 4th 1977, we can analyze in an open and critical way its impact on the evolution of earthquake engineering codes and protection policies in Romania. The earthquake (M G-R = 7.2; M w = 7.5), produced 1,570 casualties and more than 11,300 injured persons (90% of the victims in Bucharest), seismic losses were estimated at more then USD 2 billions. The 1977 earthquake represented a significant episode of XXth century in seismic zones of Romania and neighboring countries. The INCERC seismic record of March 4, 1977 put, for the first time, in evidence the spectral content of long period seismic motions of Vrancea earthquakes, the duration, the number of cycles and values of actual accelerations, with important effects of overloading upon flexible structures. The seismic coefficients k s , the spectral curve (the dynamic coefficient β r ) and the seismic zonation map, the requirements in the antiseismic design norms were drastically, changed while the microzonation maps of the time ceased to be used, and the specific Vrancea earthquake recurrence was reconsidered based on hazard studies Thus, the paper emphasises: - the existing engineering knowledge, earthquake code and zoning maps requirements until 1977 as well as seismology and structural lessons since 1977; - recent aspects of implementing of the Earthquake Code P.100/1992 and harmonization with Eurocodes, in conjunction with the specific of urban and rural seismic risk and enforcing policies on strengthening of existing buildings; - a strategic view of disaster prevention, using earthquake scenarios and loss assessments, insurance, earthquake education and training; - the need of a closer transfer of knowledge between seismologists, engineers and officials in charge with disaster prevention public policies. (author)

  20. A seismological overview of the induced earthquakes in the Duvernay play near Fox Creek, Alberta

    Science.gov (United States)

    Schultz, Ryan; Wang, Ruijia; Gu, Yu Jeffrey; Haug, Kristine; Atkinson, Gail

    2017-01-01

    This paper summarizes the current state of understanding regarding the induced seismicity in connection with hydraulic fracturing operations targeting the Duvernay Formation in central Alberta, near the town of Fox Creek. We demonstrate that earthquakes in this region cluster into distinct sequences in time, space, and focal mechanism using (i) cross-correlation detection methods to delineate transient temporal relationships, (ii) double-difference relocations to confirm spatial clustering, and (iii) moment tensor solutions to assess fault motion consistency. The spatiotemporal clustering of the earthquake sequences is strongly related to the nearby hydraulic fracturing operations. In addition, we identify a preference for strike-slip motions on subvertical faults with an approximate 45° P axis orientation, consistent with expectation from the ambient stress field. The hypocentral geometries for two of the largest-magnitude (M 4) sequences that are robustly constrained by local array data provide compelling evidence for planar features starting at Duvernay Formation depths and extending into the shallow Precambrian basement. We interpret these lineaments as subvertical faults orientated approximately north-south, consistent with the regional moment tensor solutions. Finally, we conclude that the sequences were triggered by pore pressure increases in response to hydraulic fracturing stimulations along previously existing faults.

  1. The music of earthquakes and Earthquake Quartet #1

    Science.gov (United States)

    Michael, Andrew J.

    2013-01-01

    Earthquake Quartet #1, my composition for voice, trombone, cello, and seismograms, is the intersection of listening to earthquakes as a seismologist and performing music as a trombonist. Along the way, I realized there is a close relationship between what I do as a scientist and what I do as a musician. A musician controls the source of the sound and the path it travels through their instrument in order to make sound waves that we hear as music. An earthquake is the source of waves that travel along a path through the earth until reaching us as shaking. It is almost as if the earth is a musician and people, including seismologists, are metaphorically listening and trying to understand what the music means.

  2. Proglacial vs postglacial depostional environments, the opposing processes that filled the southern North Sea tunnel valleys

    DEFF Research Database (Denmark)

    Moreau, Julien; Huuse, Mads

    ­belt fashion. The formation of the 'backsets' would have been enhanced by supercooling due to the pressure drop during the upward flow of the water from the deepest part of the valleys towards the ice margin, freezing and thus capturing the sediments on the adverse slope. Recently this model has been...... river of Europe facing ice sheets and their proglacial depositional system generates a very intricate stratigraphy with multiple cross­cutting 'basins' in the form of valleys (c. 7 generations) which themselves contain up to 8 complete seismic sequences. Although the task to uild up a complete...

  3. A Case Study of the Activity Gravitational Deformation Slate Slope on One Newly Rebuild Highway Bridge in Taitung Longitudinal Valley of Taiwan

    Science.gov (United States)

    Hsieh, Pei-Chen; Weng, Cheng-Hsueh; Lu, An; Lin, Ming-Lang

    2017-04-01

    There are many landslide hazards induced by typhoon and earthquake in Taiwan because Taiwan is located in active orogen zone, where the Taitung Longitudinal Valley is the plate boundary, and also many typhoons hit Taiwan and bring much precipitation. In Japan, where also is located in orogen zone, the 2016 Kumamoto Earthquake caused a large landslide which destroyed the Great Aso Bridge. It shows that landslides might have huge influence on the safety of bridges. In Sep. 2016, Typhoon No.14 (Meranti) hit Taiwan and caused a slate slope failure which located in Taitung Longitudinal Valley. It cut the approach road of a highway bridge called Songfeng Bridge and the maximum displacement is about 2 meters. The landslide body might include the bridge, and if this landslide continued move the bridge structure might be destroyed. The attitude of cleavage and joints measured in site investigation are complex and confused, it imply that this landslide event is not only controlled by gravitational deformation, but also affected by release joint and river erosion because the site is located on confluence of two river. The target of site investigation in this research includes finding the border of failure surface and the measurement of cleavage and joints. In this research, we compare the result of site investigation and numerical model to find the mechanism of failure, and try to analysis the possible influence on the bridge structure.

  4. Earthquake-induced soft-sediment deformations and seismically amplified erosion rates recorded in varved sediments of Köyceğiz Lake (SW Turkey)

    KAUST Repository

    Avsar, Ulas

    2016-06-06

    Earthquake-triggered landslides amplify erosion rates in catchments, i.e. catchment response to seismic shocks (CR). In addition to historical eyewitness accounts of muddy rivers implying CRs after large earthquakes, several studies have quantitatively reported increased sediment concentrations in rivers after earthquakes. However, only a few paleolimnological studies could detect CRs within lacustrine sedimentary sequences as siliciclastic-enriched intercalations within background sedimentation. Since siliciclastic-enriched intercalations can easily be of non-seismic origin, their temporal correlation with nearby earthquakes is crucial to assign a seismic triggering mechanism. In most cases, either uncertainties in dating methods or the lack of recent seismic activity has prevented reliable temporal correlations, making the seismic origin of observed sedimentary events questionable. Here, we attempt to remove this question mark by presenting sedimentary traces of CRs in the 370-year-long varved sequence of Köyceğiz Lake (SW Turkey) that we compare with estimated peak ground acceleration (PGA) values of several nearby earthquakes. We find that earthquakes exceeding estimated PGA values of ca. 20 cm/s2 can induce soft-sediment deformations (SSD), while CRs seem only to be triggered by PGA levels higher than 70 cm/s2. In Köyceğiz Lake, CRs produce Cr- and Ni-enriched sedimentation due to the seismically mobilized soils derived from ultramafic rocks in the catchment. Given the varve chronology, the residence time of the seismically mobilized material in the catchment is determined to be 5 to 10 years.

  5. Toward real-time regional earthquake simulation of Taiwan earthquakes

    Science.gov (United States)

    Lee, S.; Liu, Q.; Tromp, J.; Komatitsch, D.; Liang, W.; Huang, B.

    2013-12-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 minutes after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 minutes for a 70 sec ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  6. Geophysical Anomalies and Earthquake Prediction

    Science.gov (United States)

    Jackson, D. D.

    2008-12-01

    Finding anomalies is easy. Predicting earthquakes convincingly from such anomalies is far from easy. Why? Why have so many beautiful geophysical abnormalities not led to successful prediction strategies? What is earthquake prediction? By my definition it is convincing information that an earthquake of specified size is temporarily much more likely than usual in a specific region for a specified time interval. We know a lot about normal earthquake behavior, including locations where earthquake rates are higher than elsewhere, with estimable rates and size distributions. We know that earthquakes have power law size distributions over large areas, that they cluster in time and space, and that aftershocks follow with power-law dependence on time. These relationships justify prudent protective measures and scientific investigation. Earthquake prediction would justify exceptional temporary measures well beyond those normal prudent actions. Convincing earthquake prediction would result from methods that have demonstrated many successes with few false alarms. Predicting earthquakes convincingly is difficult for several profound reasons. First, earthquakes start in tiny volumes at inaccessible depth. The power law size dependence means that tiny unobservable ones are frequent almost everywhere and occasionally grow to larger size. Thus prediction of important earthquakes is not about nucleation, but about identifying the conditions for growth. Second, earthquakes are complex. They derive their energy from stress, which is perniciously hard to estimate or model because it is nearly singular at the margins of cracks and faults. Physical properties vary from place to place, so the preparatory processes certainly vary as well. Thus establishing the needed track record for validation is very difficult, especially for large events with immense interval times in any one location. Third, the anomalies are generally complex as well. Electromagnetic anomalies in particular require

  7. Historical earthquake research in Austria

    Science.gov (United States)

    Hammerl, Christa

    2017-12-01

    Austria has a moderate seismicity, and on average the population feels 40 earthquakes per year or approximately three earthquakes per month. A severe earthquake with light building damage is expected roughly every 2 to 3 years in Austria. Severe damage to buildings ( I 0 > 8° EMS) occurs significantly less frequently, the average period of recurrence is about 75 years. For this reason the historical earthquake research has been of special importance in Austria. The interest in historical earthquakes in the past in the Austro-Hungarian Empire is outlined, beginning with an initiative of the Austrian Academy of Sciences and the development of historical earthquake research as an independent research field after the 1978 "Zwentendorf plebiscite" on whether the nuclear power plant will start up. The applied methods are introduced briefly along with the most important studies and last but not least as an example of a recently carried out case study, one of the strongest past earthquakes in Austria, the earthquake of 17 July 1670, is presented. The research into historical earthquakes in Austria concentrates on seismic events of the pre-instrumental period. The investigations are not only of historical interest, but also contribute to the completeness and correctness of the Austrian earthquake catalogue, which is the basis for seismic hazard analysis and as such benefits the public, communities, civil engineers, architects, civil protection, and many others.

  8. Potential of future seismogenesis in Hebei Province (NE China) due to stress interactions between strong earthquakes

    Science.gov (United States)

    Karakostas, Vassilios; Papadimitriou, Eleftheria; Jin, Xueshen; Liu, Zhihui; Paradisopoulou, Parthena; He, Zhang

    2013-10-01

    Northeast China, a densely populated area, is affected by intense seismic activity, which includes large events that caused extensive disaster and tremendous loss of life. For contributing to the continuous efforts for seismic hazard assessment, the earthquake potential from the active faults near the cities of Zhangjiakou and Langfang in Hebei Province is examined. We estimate the effect of the coseismic stress changes of strong (M ⩾ 5.0) earthquakes on the major regional active faults, and mapped Coulomb stress change onto these target faults. More importantly our calculations reveal that positive stress changes caused by the largest events of the 1976 Tangshan sequence make the Xiadian and part of Daxing fault, thus considered the most likely sites of the next strong earthquake in the study area. The accumulated static stress changes that reached a value of up to 0.4 bar onto these faults, were subsequently incorporated in earthquake probability estimates for the next 30 years.

  9. Research into Surface Wave Phenomena in Sedimentary Basins.

    Science.gov (United States)

    1981-12-31

    Z 1.0 A (Eocene) - .9 and A (Post-Eocene) - .8 2.4 Golden Seismograms The Pocatello Valley earthquake sequence included a mL - 4.2 foreshock , a 6.0...4.2 foreshock and the 4.7 aftershock as well. The first arrival, at ia30s after the origin time of 1 6h15m6s March 28, is the Pn phase. This is a low

  10. Predictability of Landslide Timing From Quasi-Periodic Precursory Earthquakes

    Science.gov (United States)

    Bell, Andrew F.

    2018-02-01

    Accelerating rates of geophysical signals are observed before a range of material failure phenomena. They provide insights into the physical processes controlling failure and the basis for failure forecasts. However, examples of accelerating seismicity before landslides are rare, and their behavior and forecasting potential are largely unknown. Here I use a Bayesian methodology to apply a novel gamma point process model to investigate a sequence of quasiperiodic repeating earthquakes preceding a large landslide at Nuugaatsiaq in Greenland in June 2017. The evolution in earthquake rate is best explained by an inverse power law increase with time toward failure, as predicted by material failure theory. However, the commonly accepted power law exponent value of 1.0 is inconsistent with the data. Instead, the mean posterior value of 0.71 indicates a particularly rapid acceleration toward failure and suggests that only relatively short warning times may be possible for similar landslides in future.

  11. Sediment storage and transport in Pancho Rico Valley during and after the Pleistocene-Holocene transition, Coast Ranges of central California (Monterey County)

    Science.gov (United States)

    Garcia, A.F.; Mahan, S.A.

    2009-01-01

    Factors influencing sediment transport and storage within the 156??6 km2 drainage basin of Pancho Rico Creek (PRC), and sediment transport from the PRC drainage basin to its c. 11000 km2 mainstem drainage (Salinas River) are investigated. Numeric age estimates are determined by optically stimulated luminescence (OSL) dating on quartz grains from three sediment samples collected from a 'quaternary terrace a (Qta)' PRC terrace/PRC-tributary fan sequence, which consists dominantly of debris flow deposits overlying fluvial sediments. OSL dating results, morphometric analyses of topography, and field results indicate that the stormy climate of the Pleistocene-Holocene transition caused intense debris-flow erosion of PRC- tributary valleys. However, during that time, the PRC channel was backfilled by Qta sediment, which indicates that there was insufficient discharge in PRC to transport the sediment load produced by tributary-valley denudation. Locally, Salinas Valley alluvial stratigraphy lacks any record of hillslope erosion occurring during the Pleistocene-Holocene transition, in that the alluvial fan formed where PRC enters the Salinas Valley lacks lobes correlative to Qta. This indicates that sediment stripped from PRC tributaries was mostly trapped in Pancho Rico Valley despite the relatively moist climate of the Pleistocene-Holocene transition. Incision into Qta did not occur until PRC enlarged its drainage basin by c. 50% through capture of the upper part of San Lorenzo Creek, which occurred some time after the Pleistocene-Holocene transition. During the relatively dry Holocene, PRC incision through Qta and into bedrock, as well as delivery of sediment to the San Ardo Fan, were facilitated by the discharge increase associated with stream-capture. The influence of multiple mechanisms on sediment storage and transport in the Pancho Rico Valley-Salinas Valley system exemplifies the complexity that (in some instances) must be recognized in order to correctly

  12. Where was the 1898 Mare Island Earthquake? Insights from the 2014 South Napa Earthquake

    Science.gov (United States)

    Hough, S. E.

    2014-12-01

    The 2014 South Napa earthquake provides an opportunity to reconsider the Mare Island earthquake of 31 March 1898, which caused severe damage to buildings at a Navy yard on the island. Revising archival accounts of the 1898 earthquake, I estimate a lower intensity magnitude, 5.8, than the value in the current Uniform California Earthquake Rupture Forecast (UCERF) catalog (6.4). However, I note that intensity magnitude can differ from Mw by upwards of half a unit depending on stress drop, which for a historical earthquake is unknowable. In the aftermath of the 2014 earthquake, there has been speculation that apparently severe effects on Mare Island in 1898 were due to the vulnerability of local structures. No surface rupture has ever been identified from the 1898 event, which is commonly associated with the Hayward-Rodgers Creek fault system, some 10 km west of Mare Island (e.g., Parsons et al., 2003). Reconsideration of detailed archival accounts of the 1898 earthquake, together with a comparison of the intensity distributions for the two earthquakes, points to genuinely severe, likely near-field ground motions on Mare Island. The 2014 earthquake did cause significant damage to older brick buildings on Mare Island, but the level of damage does not match the severity of documented damage in 1898. The high intensity files for the two earthquakes are more over spatially shifted, with the centroid of the 2014 distribution near the town of Napa and that of the 1898 distribution near Mare Island, east of the Hayward-Rodgers Creek system. I conclude that the 1898 Mare Island earthquake was centered on or near Mare Island, possibly involving rupture of one or both strands of the Franklin fault, a low-slip-rate fault sub-parallel to the Rodgers Creek fault to the west and the West Napa fault to the east. I estimate Mw5.8 assuming an average stress drop; data are also consistent with Mw6.4 if stress drop was a factor of ≈3 lower than average for California earthquakes. I

  13. Earthquakes, May-June 1991

    Science.gov (United States)

    Person, W.J.

    1992-01-01

    One major earthquake occurred during this reporting period. This was a magntidue 7.1 in Indonesia (Minahassa Peninsula) on June 20. Earthquake-related deaths were reported in the Western Caucasus (Georgia, USSR) on May 3 and June 15. One earthquake-related death was also reported El Salvador on June 21. 

  14. Modeling, Forecasting and Mitigating Extreme Earthquakes

    Science.gov (United States)

    Ismail-Zadeh, A.; Le Mouel, J.; Soloviev, A.

    2012-12-01

    Recent earthquake disasters highlighted the importance of multi- and trans-disciplinary studies of earthquake risk. A major component of earthquake disaster risk analysis is hazards research, which should cover not only a traditional assessment of ground shaking, but also studies of geodetic, paleoseismic, geomagnetic, hydrological, deep drilling and other geophysical and geological observations together with comprehensive modeling of earthquakes and forecasting extreme events. Extreme earthquakes (large magnitude and rare events) are manifestations of complex behavior of the lithosphere structured as a hierarchical system of blocks of different sizes. Understanding of physics and dynamics of the extreme events comes from observations, measurements and modeling. A quantitative approach to simulate earthquakes in models of fault dynamics will be presented. The models reproduce basic features of the observed seismicity (e.g., the frequency-magnitude relationship, clustering of earthquakes, occurrence of extreme seismic events). They provide a link between geodynamic processes and seismicity, allow studying extreme events, influence of fault network properties on seismic patterns and seismic cycles, and assist, in a broader sense, in earthquake forecast modeling. Some aspects of predictability of large earthquakes (how well can large earthquakes be predicted today?) will be also discussed along with possibilities in mitigation of earthquake disasters (e.g., on 'inverse' forensic investigations of earthquake disasters).

  15. The Implications of Strike-Slip Earthquake Source Properties on the Transform Boundary Development Process

    Science.gov (United States)

    Neely, J. S.; Huang, Y.; Furlong, K.

    2017-12-01

    Subduction-Transform Edge Propagator (STEP) faults, produced by the tearing of a subducting plate, allow us to study the development of a transform plate boundary and improve our understanding of both long-term geologic processes and short-term seismic hazards. The 280 km long San Cristobal Trough (SCT), formed by the tearing of the Australia plate as it subducts under the Pacific plate near the Solomon and Vanuatu subduction zones, shows along-strike variations in earthquake behaviors. The segment of the SCT closest to the tear rarely hosts earthquakes > Mw 6, whereas the SCT sections more than 80 - 100 km from the tear experience Mw7 earthquakes with repeated rupture along the same segments. To understand the effect of cumulative displacement on SCT seismicity, we analyze b-values, centroid-time delays and corner frequencies of the SCT earthquakes. We use the spectral ratio method based on Empirical Green's Functions (eGfs) to isolate source effects from propagation and site effects. We find high b-values along the SCT closest to the tear with values decreasing with distance before finally increasing again towards the far end of the SCT. Centroid time-delays for the Mw 7 strike-slip earthquakes increase with distance from the tear, but corner frequency estimates for a recent sequence of Mw 7 earthquakes are approximately equal, indicating a growing complexity in earthquake behavior with distance from the tear due to a displacement-driven transform boundary development process (see figure). The increasing complexity possibly stems from the earthquakes along the eastern SCT rupturing through multiple asperities resulting in multiple moment pulses. If not for the bounding Vanuatu subduction zone at the far end of the SCT, the eastern SCT section, which has experienced the most displacement, might be capable of hosting larger earthquakes. When assessing the seismic hazard of other STEP faults, cumulative fault displacement should be considered a key input in

  16. Earthquake Catalogue of the Caucasus

    Science.gov (United States)

    Godoladze, T.; Gok, R.; Tvaradze, N.; Tumanova, N.; Gunia, I.; Onur, T.

    2016-12-01

    The Caucasus has a documented historical catalog stretching back to the beginning of the Christian era. Most of the largest historical earthquakes prior to the 19th century are assumed to have occurred on active faults of the Greater Caucasus. Important earthquakes include the Samtskhe earthquake of 1283 (Ms˜7.0, Io=9); Lechkhumi-Svaneti earthquake of 1350 (Ms˜7.0, Io=9); and the Alaverdi earthquake of 1742 (Ms˜6.8, Io=9). Two significant historical earthquakes that may have occurred within the Javakheti plateau in the Lesser Caucasus are the Tmogvi earthquake of 1088 (Ms˜6.5, Io=9) and the Akhalkalaki earthquake of 1899 (Ms˜6.3, Io =8-9). Large earthquakes that occurred in the Caucasus within the period of instrumental observation are: Gori 1920; Tabatskuri 1940; Chkhalta 1963; Racha earthquake of 1991 (Ms=7.0), is the largest event ever recorded in the region; Barisakho earthquake of 1992 (M=6.5); Spitak earthquake of 1988 (Ms=6.9, 100 km south of Tbilisi), which killed over 50,000 people in Armenia. Recently, permanent broadband stations have been deployed across the region as part of the various national networks (Georgia (˜25 stations), Azerbaijan (˜35 stations), Armenia (˜14 stations)). The data from the last 10 years of observation provides an opportunity to perform modern, fundamental scientific investigations. In order to improve seismic data quality a catalog of all instrumentally recorded earthquakes has been compiled by the IES (Institute of Earth Sciences/NSMC, Ilia State University) in the framework of regional joint project (Armenia, Azerbaijan, Georgia, Turkey, USA) "Probabilistic Seismic Hazard Assessment (PSHA) in the Caucasus. The catalogue consists of more then 80,000 events. First arrivals of each earthquake of Mw>=4.0 have been carefully examined. To reduce calculation errors, we corrected arrivals from the seismic records. We improved locations of the events and recalculate Moment magnitudes in order to obtain unified magnitude

  17. Genotypic Characterization of Human Immunodeficiency Virus Type 1 Derived from Antiretroviral Drug-Treated Individuals Residing in Earthquake-Affected Areas in Nepal.

    Science.gov (United States)

    Negi, Bharat Singh; Kotaki, Tomohiro; Joshi, Sunil Kumar; Bastola, Anup; Nakazawa, Minato; Kameoka, Masanori

    2017-09-01

    Molecular epidemiological data on human immunodeficiency virus type 1 (HIV-1) are limited in Nepal and have not been available in areas affected by the April 2015 earthquake. Therefore, we conducted a genotypic study on HIV-1 genes derived from individuals on antiretroviral therapy residing in 14 districts in Nepal highly affected by the earthquake. HIV-1 genomic fragments were amplified from 40 blood samples of HIV treatment-failure individuals, and a sequencing analysis was performed on these genes. In the 40 samples, 29 protease, 32 reverse transcriptase, 25 gag, and 21 env genes were sequenced. HIV-1 subtyping revealed that subtype C (84.2%, 32/38) was the major subtype prevalent in the region, while CRF01_AE (7.9%, 3/38) and other recombinant forms (7.9%, 3/38) were also detected. In addition, major drug resistance mutations were identified in 21.9% (7/32) of samples, indicating the possible emergence of HIV-1 drug resistance in earthquake-affected areas in Nepal.

  18. Atmospheric processes in reaction of Northern Sumatra Earthquake sequence Dec 2004-Apr 2005

    Science.gov (United States)

    Ouzounov, D.; Pulinets, S.; Cervone, G.; Singh, R.; Taylor, P.

    2005-05-01

    This work describes our first results in analyzing data from different and independent sources ûemitted long-wavelength radiation (OLR), surface latent heat flux (SHLF) and GPS Total Electron Content (TEC) collected from ground based (GPS) and satellite TIR (thermal infra-red) data sources (NOAA/AVHRR, MODIS). We found atmosphere and ionosphere anomalies one week prior to both the Sumatra-Andaman Islands earthquake (Dec 26, 2004) and M 8.7 - Northern Sumatra, March 28, 2005. We analyzed 118 days of data from December 1, 2004 through April 1, 2005 for the area (0°-10°,north latitude and 90°-100° east longitude) which included 125 earthquakes with M>5.5. Recent analysis of the continuous OLR from the Earth surface indicates anomalous variations (on top of the atmosphere) prior to a number of medium to large earthquakes. In the case of M 9.0 - Sumatra-Andaman Islands event, compared to the reference fields for the months of December between 2001 and 2004, we found strongly OLR anomalous +80 W/m2 signals (two sigma) along the epicentral area on Dec 21, 2004 five days before the event. In the case of M8.7 March 28, 2005 anomalues signatures over the epicenter appears on March 26 is much weaker (only +20W/m2) and have a different topology. Anomalous values of SHLF associated with M9.0 - Sumatra-Andaman Islands were found on Dec 22, 2005 (SLHF +280Wm2) and less intensity on Mar 23, 2005 (SLHF +180Wm2). Ionospheric variations (GPS/TEC) associated with the Northern Sumatra events were determine by five Regional GPS network stations (COCO, BAKO, NTUS, HYDE and BAST2). For every station time series of the vertical TEC (VTEC) were computed together with correlation with the Dst index. On December 22, four days prior to the M9.0 quake GPS/TEC data reach the monthly maximum for COCO with minor DST activity. For the M 8.7-March 28 event, the increased values of GPS/TEC were observed during four days (March 22-25) in quiet geomagnetic background. Our results need additional

  19. Earthquake swarm in the non-volcanic area north of Harrat Lunayyir, western Saudi Arabia: observations and imaging

    Science.gov (United States)

    Youssof, M.; Mai, P. M.; Parisi, L.; Tang, Z.; Zahran, H. M.; El-Hadidy, S. Y.; Al-Raddadi, W.; Sami, M.; El-Hadidy, M. S. Y.

    2017-12-01

    We report on an unusual earthquake swarm in a non-volcanic area of western Saudi Arabia. Since March 2017, hundreds of earthquakes were recorded, reaching magnitude Ml 3.7, which occurred within a very narrowly defined rock volume. The seismicity is shallow, mostly between 4 to 8 km depths, with some events reaching as deep as 16 km. One set of events aligns into a well-defined horizontal tube of 2 km height, 1 km width, and 4-5 km E-W extent. Other event clusters exist, but are less well-defined. The focal mechanism solutions of the largest earthquakes indicate normal faulting, which agree with the regional stress field. The earthquake swarm occurs 75 km NW of Harrat Lunayyir. However, the area of interest doesn't seem to be associated with the well-known volcanic area of Harrat Lunayyir, which experienced a magmatic dike intrusion in 2009 with intense seismic activity (including a surface rupturing Mw 5.7 earthquake). Furthermore, the study area is characterized by a complex shear system, which host gold mineralization. Therefore, the exact origin of the swarm sequence is enigmatic as it's the first of its kind in this region. By using continuous seismological data recorded by the Saudi Geological Survey (SGS) that operates three permanent seismic stations and a temporary network of 11 broadband sensors, we analyze the seismic patterns in space and time. For the verified detected events, we assemble the body wave arrival times that are inverted for the velocity structures along with events hypocenters to investigate possible causes of this swarm sequence, that is, whether the activity is of tectonic- or hydro-thermal origin.

  20. Earthquake hazard assessment and small earthquakes

    International Nuclear Information System (INIS)

    Reiter, L.

    1987-01-01

    The significance of small earthquakes and their treatment in nuclear power plant seismic hazard assessment is an issue which has received increased attention over the past few years. In probabilistic studies, sensitivity studies showed that the choice of the lower bound magnitude used in hazard calculations can have a larger than expected effect on the calculated hazard. Of particular interest is the fact that some of the difference in seismic hazard calculations between the Lawrence Livermore National Laboratory (LLNL) and Electric Power Research Institute (EPRI) studies can be attributed to this choice. The LLNL study assumed a lower bound magnitude of 3.75 while the EPRI study assumed a lower bound magnitude of 5.0. The magnitudes used were assumed to be body wave magnitudes or their equivalents. In deterministic studies recent ground motion recordings of small to moderate earthquakes at or near nuclear power plants have shown that the high frequencies of design response spectra may be exceeded. These exceedances became important issues in the licensing of the Summer and Perry nuclear power plants. At various times in the past particular concerns have been raised with respect to the hazard and damage potential of small to moderate earthquakes occurring at very shallow depths. In this paper a closer look is taken at these issues. Emphasis is given to the impact of lower bound magnitude on probabilistic hazard calculations and the historical record of damage from small to moderate earthquakes. Limited recommendations are made as to how these issues should be viewed