WorldWideScience

Sample records for valley biomass project

  1. Advanced Biomass Gasification Projects

    Energy Technology Data Exchange (ETDEWEB)

    1997-08-01

    DOE has a major initiative under way to demonstrate two high-efficiency gasification systems for converting biomass into electricity. As this fact sheet explains, the Biomass Power Program is cost-sharing two scale-up projects with industry in Hawaii and Vermont that, if successful, will provide substantial market pull for U.S. biomass technologies, and provide a significant market edge over competing foreign technologies.

  2. Forestry and biomass energy projects

    DEFF Research Database (Denmark)

    Swisher, J.N.

    1994-01-01

    This paper presents a comprehensive and consistent methodology to account for the costs and net carbon flows of different categories of forestry and biomass energy projects and describes the application of the methodology to several sets of projects in Latin America. The results suggest that both...... biomass energy development and forestry measures including reforestation and forest protection can contribute significantly to the reduction of global CO2 emissions, and that local land-use capacity must determine the type of project that is appropriate in specific cases. No single approach alone...... is sufficient as either a national or global strategy for sustainable land use or carbon emission reduction. The methodology allows consistent comparisons of the costs and quantities of carbon stored in different types of projects and/or national programs, facilitating the inclusion of forestry and biomass...

  3. Biomass Energy Generation Project

    Energy Technology Data Exchange (ETDEWEB)

    Olthoff, Edward [Cedar Falls Utilities, Cedar Falls, IA (United States)

    2017-05-15

    The Municipal Electric Utility of the City of Cedar Falls (dba Cedar Fals Utilities or CFU) received a congressionally directed grant funded through DOE-EERE to run three short (4 hour) duration test burns and one long (10 days) duration test burn to test the viability of renewable fuels in Streeter Station Boiler #6, a stoker coal fired electric generation unit. The long test burn was intended to test supply chain assumptions, optimize boiler combustion and assess the effects of a longer duration burn of biomass on the boiler.

  4. CALLA ENERGY BIOMASS COFIRING PROJECT

    International Nuclear Information System (INIS)

    Unknown

    2002-01-01

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1

  5. Fiscalini Farms Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of

  6. West Valley Demonstration Project, West Valley, New York: Annual report

    International Nuclear Information System (INIS)

    1989-01-01

    Under the West Valley Demonstration Project Act, Public Law 96-368, liquid high-level radioactive waste stored at the Western New York Nuclear Services Center, West Valley, New York, that resulted from spent nuclear fuel reprocessing operations conducted between 1966 and 1972, is to be solidified in borosilicate glass and transported to a federal repository for geologic disposal. A major milestone was reached in May 1988 when the Project began reducing the volume of the liquid high-level waste. By the end of 1988, approximately 15 percent of the initial inventory had been processed into two waste streams. The decontaminated low-level liquid waste is being solidified in cement. The high-level waste stream is being stored in an underground tank pending its incorporation into borosilicate glass. Four tests of the waste glass melter system were completed. These tests confirmed equipment operability, control system reliability, and provided samples of waste glass for durability testing. In mid-1988, the Department validated an integrated cost and schedule plan for activities required to complete the production of the waste borosilicate glass. Design of the radioactive Vitrification Facility continued

  7. Driftless Area Initiative Biomass Energy Project

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Angie [Northeast Iowa Resource Conservation & Development, Inc., Postville, IA (United States); Bertjens, Steve [Natural Resources Conservation Service, Madison, WI (United States); Lieurance, Mike [Northeast Iowa Resource Conservation & Development, Inc., Postville, IA (United States); Berguson, Bill [Univ. of Minnesota, Minneapolis, MN (United States). Natural Resources Research Inst.; Buchman, Dan [Univ. of Minnesota, Minneapolis, MN (United States). Natural Resources Research Inst.

    2012-12-31

    The Driftless Area Initiative Biomass Energy Project evaluated the potential for biomass energy production and utilization throughout the Driftless Region of Illinois, Iowa, Minnesota and Wisconsin. The research and demonstration aspect of the project specifically focused on biomass energy feedstock availability and production potential in the region, as well as utilization potential of biomass feedstocks for heat, electrical energy production, or combined heat and power operations. The Driftless Region was evaluated because the topography of the area offers more acres of marginal soils on steep slopes, wooded areas, and riparian corridors than the surrounding “Corn Belt”. These regional land characteristics were identified as potentially providing opportunity for biomass feedstock production that could compete with traditional agriculture commodity crops economically. The project researched establishment methods and costs for growing switchgrass on marginal agricultural lands to determine the economic and quantitative feasibility of switchgrass production for biomass energy purposes. The project was successful in identifying the best management and establishment practices for switchgrass in the Driftless Area, but also demonstrated that simple economic payback versus commodity crops could not be achieved at the time of the research. The project also analyzed the availability of woody biomass and production potential for growing woody biomass for large scale biomass energy production in the Driftless Area. Analysis determined that significant resources exist, but costs to harvest and deliver to the site were roughly 60% greater than that of natural gas at the time of the study. The project contributed significantly to identifying both production potential of biomass energy crops and existing feedstock availability in the Driftless Area. The project also analyzed the economic feasibility of dedicated energy crops in the Driftless Area. High commodity crop prices

  8. Future challenges for woody biomass projections

    NARCIS (Netherlands)

    Schadauer, K.; Barreiro, Susana; Schelhaas, M.; McRoberts, Ronald E.

    2017-01-01

    Many drivers affect woody biomass projections including forest available for wood supply, market behavior, forest ownership, distributions by age and yield classes, forest typologies resulting from different edaphic, climatic conditions, and last but not least, how these factors are incorporated

  9. Biomass furnace: projection and construction

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Fernanda Augusta de Oliveira; Silva, Juarez Sousa e; Silva, Denise de Freitas; Sampaio, Cristiane Pires; Nascimento Junior, Jose Henrique do [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola

    2008-07-01

    Of all the ways to convert biomass into thermal energy, direct combustion is the oldest. The thermal-chemical technologies of biomass conversion such as pyrolysis and gasification, are currently not the most important alternatives; combustion is responsible for 97% of the bio-energy produced in the world (Demirbas, 2003). For this work, a small furnace was designed and constructed to use biomass as its main source of fuel, and the combustion chamber was coupled with a helical transporter which linked to the secondary fuel reservoir to continually feed the combustion chamber with fine particles of agro-industrial residues. The design of the stove proved to be technically viable beginning with the balance of mass and energy for the air heating system. The proposed heat generator was easily constructed as it made use of simple and easily acquired materials, demanding no specialized labor. (author)

  10. Hoopa Valley Small Scale Hydroelectric Feasibility Project

    Energy Technology Data Exchange (ETDEWEB)

    Curtis Miller

    2009-03-22

    This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

  11. Bioenergy Project Development and Biomass Supply

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Modern biomass, and the resulting useful forms of bioenergy produced from it, are anticipated by many advocates to provide a significant contribution to the global primary energy supply of many IEA member countries during the coming decades. For non-member countries, particularly those wishing to achieve economic growth as well as meet the goals for sustainable development, the deployment of modern bioenergy projects and the growing international trade in biomass-based energy carriers offer potential opportunities.

  12. Geologic summary of the Owens Valley drilling project, Owens and Rose Valleys, Inyo County, California

    International Nuclear Information System (INIS)

    Schaer, D.W.

    1981-07-01

    The Owens Valley Drilling Project consists of eight drill holes located in southwest Inyo County, California, having an aggregate depth of 19,205 feet (5853 m). Project holes penetrated the Coso Formation of upper Pliocene or early Pleistocene age and the Owens Lake sand and lakebed units of the same age. The project objective was to improve the reliability of uranium-potential-resource estimates assigned to the Coso Formation in the Owens Valley region. Uranium-potential-resource estimates for this area in $100 per pound U 3 O 8 forward-cost-category material have been estimatd to be 16,954 tons (15,384 metric tons). This estimate is based partly on project drilling results. Within the Owens Valley project area, the Coso Formation was encountered only in the Rose Valley region, and for this reason Rose Valley is considered to be the only portion of the project area favorable for economically sized uranium deposits. The sequence of sediments contained in the Owens Valley basin is considered to be largely equivalent but lithologically dissimilar to the Coso Formation of Haiwee Ridge and Rose Valley. The most important factor in the concentration of significant amounts of uranium in the rock units investigated appears to be the availability of reducing agents. Significant amounts of reductants (pyrite) were found in the Coso Formation. No organic debris was noted. Many small, disconnected uranium occurrences, 100 to 500 ppM U 3 O 8 , were encountered in several of the holes

  13. Tax issues and incentives for biomass projects

    International Nuclear Information System (INIS)

    Martin, K.

    1993-01-01

    The federal government offers a number of tax incentives to developers of biomass projects. This paper describes each tax benefit, explains what conditions must be met before the benefit is available, and offers practical insights gained from working for over 10 years in the field. Understanding what tax benefits are available is important because the more tax benefits a developer can qualify for in connection with his project, the less expensive the project will be to build and operate and the easier it will be to arrange financing because there will be higher returns in the project for potential investors

  14. Vitrification process equipment design for the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Chapman, C.C.; Drosjack, W.P.

    1988-10-01

    The vitrification process and equipment design is nearing completion for the West Valley Project. This report provides the basis and current status for the design of the major vessels and equipment within the West Valley Vitrification Plant. A review of the function and key design features of the equipment is also provided. The major subsystems described include the feed preparation and delivery systems, the melter, the canister handling systems, and the process off-gas system. 11 refs., 33 figs., 4 tabs

  15. Vitrification facility at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    DesCamp, V.A.; McMahon, C.L.

    1996-07-01

    This report is a description of the West Valley Demonstration Project's vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project's background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing

  16. Switchgrass biomass energy storage project. Final report, September 23, 1996--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G.A.; Teel, A.; Brown, S.S. [Iowa State Univ., Ames, IA (United States)

    1996-07-01

    The Chariton Valley Biomass Power Project, sponsored by the Chariton Valley RC&D Inc., a USDA-sponsored rural development organization, the Iowa Department of Natural Resources Energy Bureau (IDNR-EB), and IES Utilities, a major Iowa energy company, is directed at the development of markets for energy crops in southern Iowa. This effort is part of a statewide coalition of public and private interests cooperating to merge Iowa`s agricultural potential and its long-term energy requirements to develop locally sustainable sources of biomass fuel. The four-county Chariton Valley RC&D area (Lucas, Wayne, Appanoose and Monroe counties) is the site of one of eleven NREL/EPRI feasibility studies directed at the potential of biomass power. The focus of renewable energy development in the region has centered around the use of swithgrass (Panicum virgatum, L.). This native Iowa grass is one of the most promising sustainable biomass fuel crops. According to investigations by the U.S. Department of Energy (DOE), switchgrass has the most potential of all the perennial grasses and legumes evaluated for biomass production.

  17. Radiation safety at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Hoffman, R.L.

    1997-01-01

    This is a report on the Radiation Safety Program at the West Valley Demonstration Project (WVDP). This Program covers a number of activities that support high-level waste solidification, stabilization of facilities, and decontamination and decommissioning activities at the Project. The conduct of the Program provides confidence that all occupational radiation exposures received during operational tasks at the Project are within limits, standards, and program requirements, and are as low as reasonably achievable

  18. Cleanup criteria for the West Valley demonstration project

    International Nuclear Information System (INIS)

    Parrott, J.D.

    1999-01-01

    The US Nuclear Regulatory Commission (NRC) is prescribing decontamination and decommissioning (cleanup) criteria for the West Valley Demonstration Project and the West Valley, New York, site. The site is contaminated with various forms of residual radioactive contamination and contains a wide variety of radioactive waste. The NRC is planning to issue cleanup criteria for public comment in Fall 1999. Due to the complexity of the site, and the newness of NRC's cleanup criteria policy, applying NRC's cleanup criteria to this site will be an original regulatory undertaking. (author)

  19. West Valley Demonstration Project site environmental report calendar year 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1998 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  20. West Valley Demonstration Project site environmental report, calendar year 1999

    Energy Technology Data Exchange (ETDEWEB)

    None Available

    2000-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1999 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  1. West Valley Demonstration Project site environmental report, calendar year 1997

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1997 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  2. 78 FR 21414 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2013-04-10

    ... Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The following Water Management Plans are available for review... establish and administer an office on Central Valley Project water conservation best management practices...

  3. 75 FR 70020 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2010-11-16

    ... office on Central Valley Project water conservation best management practices that shall ``* * * develop... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior ACTION: Notice of Availability. SUMMARY: The...

  4. 76 FR 12756 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2011-03-08

    ... office on Central Valley Project water conservation best management practices that shall ``* * * develop... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  5. 76 FR 54251 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2011-08-31

    ... and administer an office on Central Valley Project water conservation best management practices that... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  6. 77 FR 64544 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2012-10-22

    ... Central Valley Project water conservation best management practices that shall ``develop criteria for... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  7. 75 FR 38538 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2010-07-02

    ... to establish and administer an office on Central Valley Project water conservation best management... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  8. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2004

    International Nuclear Information System (INIS)

    2005-01-01

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2004. The report summarizes the environmental protection program at the West Valley Demonstration Project for CY 2004

  9. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

    2005-09-30

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2004. The report summarizes the environmental protection program at the West Valley Demonstration Project for CY 2004.

  10. Rod consolidation at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1986-12-01

    A rod consolidation demonstration with irradiated pressurized water reactor fuel was recently conducted by personnel from Nuclear Assurance Corporation and West Valley Nuclear Services Company at the West Valley Demonstration Project in West Valley, New York. The rod consolidation demonstration involved pulling all of the fuel rods from six fuel Assemblies. In general, the rod pulling proceeded smoothly. The highest compaction ratio attained was 1:8:1. Among the total of 1074 fuel rods were some known degraded rods (they had collapsed cladding, a result of in-reactor fuel densification), but no rods were broken or dropped during the demonstration. One aim was to gather information on the effect of rod consolidation operations on the integrity of the fuel rods during subsequent handling and storage. Another goal was to collect information on the condition and handling of intact, damaged, and failed fuel that has been in storage for an extended period. 9 refs., 8 figs., 1 tab

  11. West Valley Demonstration Project annual report

    International Nuclear Information System (INIS)

    1986-01-01

    In FY 1985 the most challenging goal of the Project to date, the start of verification testing of major subsystems of the Vitrification System, was accomplished. Individual testing of subsystems was completed in FY 1985 allowing for the start of integrated testing of all major portions of the Vitrification System. Other accomplishments during this period included completion of cleanup of the first of several former reprocessing cells, the first phase of testing and operation of the system which will solidify low-level liquid wastes and the beginning of construction to support installation of the Supernatant Treatment System which will be used to remove the radioactive fission products from the supernatant

  12. UMTRA project water sampling and analysis plan, Monument Valley, Arizona

    International Nuclear Information System (INIS)

    1994-04-01

    The Monument Valley Uranium Mill Tailings Remedial Action (UMTRA) Project site in Cane Valley is a former uranium mill that has undergone surface remediation in the form of tailings and contaminated materials removal. Contaminated materials from the Monument Valley (Arizona) UMTRA Project site have been transported to the Mexican Hat (Utah) UMTRA Project site for consolidation with the Mexican Hat tailings. Tailings removal was completed in February 1994. Three geologic units at the site contain water: the unconsolidated eolian and alluvial deposits (alluvial aquifer), the Shinarump Conglomerate (Shinarump Member), and the De Chelly Sandstone. Water quality analyses indicate the contaminant plume has migrated north of the site and is mainly in the alluvial aquifer. An upward hydraulic gradient in the De Chelly Sandstone provides some protection to that aquifer. This water sampling and analysis plan recommends sampling domestic wells, monitor wells, and surface water in April and September 1994. The purpose of sampling is to continue periodic monitoring for the surface program, evaluate changes to water quality for site characterization, and provide data for the baseline risk assessment. Samples taken in April will be representative of high ground water levels and samples taken in September will be representative of low ground water levels. Filtered and nonfiltered samples will be analyzed for plume indicator parameters and baseline risk assessment parameters

  13. Biomass Gasification Research and Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Ahring, Birgitte K. [Washington State Univ., Pullman, WA (United States)

    2014-07-22

    The overall objective of the BioChemCat project was to demonstrate the feasibility of using Advanced Wet Oxidation Steam-Explosion (AWEx) process to open and solubilize lignocellulosic biomass (LBM) coupled to an innovative mixed culture fermentation technology capable of producing a wide range of volatile fatty acids (VFAs) from all sugars present in LBM. The VFAs will then be separated and converted to hydrocarbon biofuel through catalytic upgrading. By continuously removing VFAs as they are produced (extractive fermentation), we were able to recover the VFAs while both eliminating the need for pH adjustment and increasing the fermentation productivity. The recovered VFAs were then esterified and upgraded to hydrocarbon fuels through a parallel series of hydrogenolysis/decarboxylation and dehydration reactions. We also demonstrated that a portion of the residual lignin fraction was solubilized and converted into VFAs, also improving the yields of VFAs. The remaining lignin fraction was then shown to be available (after dewatering and drying) for use as a lignin-enriched fuel pellet or as a feedstock for further processing.

  14. AgraPure Mississippi Biomass Project

    Energy Technology Data Exchange (ETDEWEB)

    Blackwell,D.A; Broadhead, L.W.; Harrell, W.J.

    2006-03-31

    The AgraPure Mississippi Biomass project was a congressionally directed project, initiated to study the utilization of Mississippi agricultural byproducts and waste products in the production of bio-energy and to determine the feasibility of commercialization of these agricultural byproducts and waste products as feedstocks in the production of energy. The final products from this project were two business plans; one for a Thermal plant, and one for a Biodiesel/Ethanol plant. Agricultural waste fired steam and electrical generating plants and biodiesel plants were deemed the best prospects for developing commercially viable industries. Additionally, oil extraction methods were studied, both traditional and two novel techniques, and incorporated into the development plans. Mississippi produced crop and animal waste biomasses were analyzed for use as raw materials for both industries. The relevant factors, availability, costs, transportation, storage, location, and energetic value criteria were considered. Since feedstock accounts for more than 70 percent of the total cost of producing biodiesel, any local advantages are considered extremely important in developing this particular industry. The same factors must be evaluated in assessing the prospects of commercial operation of a steam and electrical generation plant. Additionally, the access to the markets for electricity is more limited, regulated and tightly controlled than the liquid fuel markets. Domestically produced biofuels, both biodiesel and ethanol, are gaining more attention and popularity with the consuming public as prices rise and supplies of foreign crude become less secure. Biodiesel requires no major modifications to existing diesel engines or supply chain and offers significant environmental benefits. Currently the biodiesel industry requires Federal and State incentives to allow the industry to develop and become self-sustaining. Mississippi has available the necessary feedstocks and is

  15. Quinault Indian Nation Comprehensive Biomass Strategic Planning Project

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Jesus [American Community Enrichment, Elma, WA (United States)

    2015-03-31

    The overall purposes of the Quinault Indian Nation’s Comprehensive Biomass Strategic Planning Project were to: (1) Identify and confirm community and tribal energy needs; (2) Conducting an inventory of sustainable biomass feedstock availability; (3) Development of a biomass energy vision statement with goals and objectives; (4) Identification and assessment of biomass options for both demand-side and supply side that are viable to the Quinault Indian Nation (QIN); and (5) Developing a long-term biomass strategy consistent with the long-term overall energy goals of the QIN. This Comprehensive Biomass Strategic Planning Project is consistent with the QIN’s prior two-year DOE Renewable Energy Study from 2004 through 2006. That study revealed that the most viable options to the QIN’s renewable energy options were biomass and energy efficiency best practices. QIN's Biomass Strategic Planning Project is focused on using forest slash in chipped form as feedstock for fuel pellet manufacturing in support of a tribal biomass heating facility. This biomass heating facility has been engineered and designed to heat existing tribal facilities as well as tribal facilities currently being planned including a new K-12 School.

  16. Draft environmental impact statement - BPA/Lower Valley transmission project

    International Nuclear Information System (INIS)

    1997-06-01

    Bonneville Power Administration and Lower Valley Power and Light, Inc., propose to solve a voltage stability problem in the Jackson and Afton, Wyoming areas. For the Agency Proposed Action, BPA and Lower Valley would construct a new 115-kV line from BPA's Swan Valley Substation near Swan Valley in Bonneville County, Idaho about 58 km (36 miles) east to BPA's Teton Substation near Jackson in Teton County, Wyoming. The new line would be next to an existing 115-kV line. Most of the line would be supported by a mix of single-circuit wood pole H-frame structures would be used. The Single-Circuit Line Alternative has all the components of the Agency Proposed Action except that the entire line would be supported by single-circuit structures. The Short Line Alternative has all the components of the Single-Circuit Line Alternative except it would then be removed. For the Static Var Compensation Alternative, BPA would install a Static Var Compensator (SVC) at Teton or Jackson Substation. An SVC is a group of electrical equipment placed at a substation to help control voltage on a transmission system. The No Action Alternative assumes that no new transmission line is built, and no other equipment is added to the transmission system. The USFS (Targhee and Bridger-Teton National Forests) must select al alternative based on their needs and objectives, decide if the project complies with currently approved forest plans, decide if special use permits or easements are needed for construction, operation, and maintenance of project facilities, and decide if they would issue special use permits and letters of consent to grant easements for the project

  17. Update on the status of the West Valley demonstration project

    International Nuclear Information System (INIS)

    Greeves, J.T.; Camper, L.W.; Orlando, D.A.; Glenn, C.J.; Buckley, J.T.; Giardina, P.A.

    2002-01-01

    From 1966 to 1972, under an Atomic Energy Commission (AEC) license, Nuclear Fuel Services (NFS) reprocessed 640 metric tons of spent fuel at its West Valley, New York, facility-, the only commercial spent fuel reprocessing plant in the U.S. The facility shut down in 1972, for modifications to increase its seismic stability and to expand its capacity. In 1976, without restarting the operation, NFS withdrew from the reprocessing business and returned control of the facilities to the site owner, the New York State Energy Research and Development Authority (NYSERDA). The reprocessing activities resulted in about 2.3 million liters (600,000 gallons) of liquid high-level waste (HLW) stored below ground in tanks, other radioactive wastes, and residual radioactive contamination. The West Valley site was licensed by AEC, and then the U.S. Nuclear Regulatory Commission (NRC), until 1981, when the license was suspended to execute the 1980 West Valley Demonstration Project (WVDP) Act. The WVDP Act outlines the responsibilities of the U.S. Department of Energy (DOE), NRC, and NYSERDA at the site, including the NRC's responsibility to develop decommissioning criteria for the site. The Commission published the final policy statement on decommissioning criteria for the WVDP at the West Valley site after considering comments from interested stakeholders. In that regard, the Commission prescribed the License Termination Rule (LTR) criteria for the WVDP at the West Valley site, reflecting the fact that the applicable decommissioning goal for the entire NRC-licensed site is compliance with the requirements of the LTR. This paper will describe the history of the site, provide an update of the status of the decommissioning of the site and an overview of the technical and policy issues facing Federal and State regulators and other stakeholders as they strive to complete the remediation of the site. (author)

  18. White Pine Co. Public School System Biomass Conversion Heating Project

    Energy Technology Data Exchange (ETDEWEB)

    Paul Johnson

    2005-11-01

    The White Pine County School District and the Nevada Division of Forestry agreed to develop a pilot project for Nevada using wood chips to heat the David E. Norman Elementary School in Ely, Nevada. Consideration of the project was triggered by a ''Fuels for Schools'' grant that was brought to the attention of the School District. The biomass project that was part of a district-wide energy retrofit, called for the installation of a biomass heating system for the school, while the current fuel oil system remained as back-up. Woody biomass from forest fuel reduction programs will be the main source of fuel. The heating system as planned and completed consists of a biomass steam boiler, storage facility, and an area for unloading and handling equipment necessary to deliver and load fuel. This was the first project of it's kind in Nevada. The purpose of the DOE funded project was to accomplish the following goals: (1) Fuel Efficiency: Purchase and install a fuel efficient biomass heating system. (2) Demonstration Project: Demonstrate the project and gather data to assist with further research and development of biomass technology; and (3) Education: Educate the White Pine community and others about biomass and other non-fossil fuels.

  19. An overview of the West Valley demonstration project

    International Nuclear Information System (INIS)

    Hannum, W.H.; Boswell, M.B.; De Boer, T.K.; Duckworth, J.P.

    1984-01-01

    This session is titled ''DOE Special Waste Management Projects.'' West Valley and TMI are indeed special projects, in that they represent today's problems. They may well have been the two most visible symbols as to how nuclear wastes can poison the entire civilian nuclear power program. Each in its own way has been perceived as a major threat to the environment and to public health and safety; in both cases this threat has been perceived to be grossly more severe than it has been in fact. It is the Department of Energy' intent that both of these problems be made to disappear. This paper serves to introduce a series of paper describing the status of the West Valley Project. In the West Valley case substantial progress is being made and we believe we are well on the way toward transforming what has been a skeleton along the road to progress into positive and unmistakable evidence that high-level nuclear wastes such as those resulting from reprocessing can be managed, understood, and prepared for disposal by a straightforward adaptation and application of existing technologies. Further, we now have evidence that the costs of doing this are not exorbitant. Subsequent papers will describe waste characterization; the plans and designs for solidification; and the ancillary and supporting programs for handling effluents and wastes, for D and D to utilize existing facilities, and environmental support. In this paper we describe the history of this plant and the wastes being used in the demonstration; the legislation and intent of the Project; the accomplishments to date; and the projected schedule and costs

  20. The Virtual Museum of the Tiber Valley Project

    Directory of Open Access Journals (Sweden)

    Antonia Arnoldus Huyzendveld

    2012-11-01

    Full Text Available The aim of the Virtual Museum of the Tiber Valley project is the creation of an integrated digital system for the knowledge, valorisation and communication of the cultural landscape, archaeological and naturalistic sites along the Tiber Valley, in the Sabina area between Monte Soratte and the ancient city of Lucus Feroniae (Capena. Virtual reality applications, multimedia contents, together with a web site, are under construction and they will be accessed inside the museums of the territory and in a central museum in Rome. The different stages of work will cover the building of a geo-spatial archaeological database, the reconstruction of the ancient potential landscape and the creation of virtual models of the major archaeological sites. This paper will focus on the methodologies used and on present and future results.

  1. Collins pine/BCI biomass to ethanol project

    International Nuclear Information System (INIS)

    Yancy, M.A.; Hinman, N.D.; Sheehan, J.J.; Tiangco, V.M.

    1999-01-01

    California has abundant biomass resources and a growing transportation fuels market. These two facts have helped to create an opportunity for biomass to ethanol projects within the state. One such project under development is the Collins Pine/BCI Project. Collins Pine Company and BC International (BCI) have teamed up to develop a forest biomass to ethanol facility to be collocated with Collins Pine's 12 MW, biomass-fueled electric generator in Chester, California. The Collins Pine Company (headquartered in Portland, Oregon) is an environmentally progressive lumber company that has owned and operated timberlands near Chester, California since the turn of the century. Collins manages 100,000 acres of timberland in the immediate area of the project. BCI (Dedham, Massachusetts) holds an exclusive license to a new, patented biotechnological process to convert lignocellulosic materials into ethanol and other specially chemicals with significant cost savings and environmental benefits. The project has received a California Energy Commission PIER program award to continue the developmental work done in the Quincy Library Group's Northeastern California Ethanol Manufacturing Feasibility Study (November 1997). This paper provides (1) a brief overview of the biomass and transportation fuels market in California; (2) the current status of the Collins Pine/BCI biomass ethanol project; and (3) future prospects and hurdles for the project to overcome. (author)

  2. Biomass Burning Observation Project Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kleinman, KI [Brookhaven National Laboratory; Sedlacek, AJ [Brookhaven National Laboratory

    2013-09-01

    Aerosols from biomass burning perturb Earth’s climate through the direct radiative effect (both scattering and absorption) and through influences on cloud formation and precipitation and the semi-direct effect. Despite much effort, quantities important to determining radiative forcing such as the mass absorption coefficients (MAC) of light-absorbing carbon, secondary organic aerosol (SOA) formation rates, and cloud condensation nuclei (CCN) activity remain in doubt. Field campaigns in northern temperate latitudes have been overwhelmingly devoted to other aerosol sources in spite of biomass burning producing about one-third of the fine particles (PM2.5) in the U.S.

  3. Final Scientific Report Pecos Valley Biomass Cooperative Project

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Kyle; Stoerrman, Mark

    2013-09-28

    The goal of this study was to identify and select the best manure treatment technology to process manure form the 22 PVBC member dairies. It was determined that combustion of manure solids has potential, but it will be difficult to underwrite as the process has not been commercially proven.

  4. West Valley Demonstration Project annual report to Congress

    International Nuclear Information System (INIS)

    1990-01-01

    By the end of the fiscal year, the West Valley Demonstration Project had processed 757,000 litres of liquid high-level waste, removing most of the radioactive constituents by ion exchange. The radioactive ion exchange material is being stored in an underground tank pending its incorporation, along with sludge still in the tank, into borosilicate glass. The decontaminated salt solution was solidified into a cement low-level waste form which has been reviewed and endorsed by the Nuclear Regulatory Commission. Five tests of the waste glass melter system were completed. A Notice of Intent was published to prepare a joint federal/state Environmental Impact Statement. Design of the Vitrification Facility, a major milestone, was completed and construction of the facility enclosure has begun. A Department of Energy Tiger Team and Technical Safety Appraisal of the Project found no undue risks to worker or public health and safety or the environment

  5. Biomass - Activities and projects in 2002; Biomasse Aktivitaeten und Projekte 2002. Ueberblicksbericht zum Forschungsprogramm 2002

    Energy Technology Data Exchange (ETDEWEB)

    Binggeli, D.; Guggisberg, B.

    2003-07-01

    This annual report made for the Swiss Federal Office of Energy reviews the activities carried out under the Biomass Research Programme in 2002 and describes the various projects that were active during the year. The situation concerning energy supply from biomass is discussed and figures are presented on its share in total Swiss energy consumption. Three categories of biomass use are presented - burning, fermentation of wastes and biofuels. >From each of these categories, several pilot and demonstration projects are described that cover a wide range of technologies and research activities, ranging from the pre-processing of biogenic wastes through to the optimisation of biogas-based combined heat and power installations and the operational economics of compact biogas installations. The report is completed with lists of research and development projects and pilot and demonstration projects.

  6. 76 FR 16818 - Central Valley Project Improvement Act, Standard Criteria for Ag and Urban Water Management Plans

    Science.gov (United States)

    2011-03-25

    ... Valley Project water conservation best management practices (BMPs) that shall develop Criteria for... project contractors using best available cost- effective technology and best management practices.'' The... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Standard...

  7. Technical safety appraisal of the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    1989-09-01

    This report presents the results of one in a series of Technical Safety Appraisals (TSAs) being conducted of DOE nuclear operations by the Assistant Secretary for Environment, Safety, and Health Office of Safety Appraisals TSAs are one of the ititiatives announced by the Secretary of Energy on September 18, 1985, to enhance the DOE environment, safety and health program. This report presents the results of a TSA of the West Valley Demonstration Project (WVDP). The appraisal was conducted by a team of exerts assembled by the DOE Office of Safety Appraisal and was conducted during onsite visits of June 26-30 and July 10-21, 1989. West Valley, about 30 miles south of Buffalo, New York is the location of the only commercial nuclear fuel reprocessing facility operated in the United States. Nuclear Fuels Services, Inc. (NFS) operated the plant from 1966 to 1972 and processed about 640 metric tons of spent reactor fuel. The reprocessing operation generated about 560,000 gallons of high-level radioactive waste, which was transferred into underground tanks for storage. In 1972 NFS closed the plant and subsequently decided not to reopen it

  8. Functional description of the West Valley Demonstration Project Vitrification Facility

    International Nuclear Information System (INIS)

    Borisch, R.R.; McMahon, C.L.

    1990-07-01

    The primary objective of the West Valley Demonstration Project (WVDP) is the solidification of approximately 2.1 million liters (560,000 gallons) of high-level radioactive waste (HLW) which resulted from the operation of a nuclear fuel reprocessing plant. Since the original plant was not built to accommodate the processing of waste beyond storage in underground tanks, HLW solidification by vitrification presented numerous engineering challenges. Existing facilities required redesign and conversion to meet their new purpose. Vitrification technology and systems needed to be created and then tested. Equipment modifications, identified from cold test results, were incorporated into the final equipment configuration to be used for radioactive (hot) operations. Cold operations have defined the correct sequence and optimal functioning of the equipment to be used for vitrification and have verified the process by which waste will be solidified into borosilicate glass

  9. 76 FR 58840 - Central Valley Project Improvement Act; Refuge Water Management Plans

    Science.gov (United States)

    2011-09-22

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act; Refuge Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: To meet the requirements of the Central Valley Project Improvement Act of 1992 (CVPIA) and subsequent...

  10. 77 FR 33240 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2012-06-05

    ... Project water conservation best management practices that shall ``develop criteria for evaluating the... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  11. FINDING SOLUTIONS AT THE WEST VALLEY DEMONSTRATION PROJECT

    International Nuclear Information System (INIS)

    Drake, John L.; Gramling, James M.; Houston, Helene M.

    2003-01-01

    The United States Department of Energy Office of Environmental Management (DOE-EM) faces a number of sizeable challenges as it begins to transform its mission from managing risk to reducing and eliminating risk throughout the DOE Complex. One of the greatest challenges being addressed by DOE-EM as this transformation takes place is accelerating the deactivation and decommissioning of thousands of facilities within the DOE Complex that were once used to support nuclear-related programs and projects. These facilities are now unused and aging. Finding solutions to complete the cleanup of these aging facilities more safely, efficiently, and effectively while reducing costs is critical to successfully meeting DOE-EM's cleanup challenge. The Large-Scale Demonstration and Deployment Project (LSDDP) of Hot Cells at the West Valley Demonstration Project (WVDP) is a near-term project funded through the DOE's National Energy Technology Laboratory (DOE-NETL) for the specific purpose of identifying, evaluating, demonstrating, and deploying commercially available technologies that are capable of streamlining the cleanup of hot cells in unused facilities while improving worker safety. Two DOE project sites are participating in this LSDDP: the WVDP site in West Valley, New York and the Hanford River Corridor Project (RCP) site in Richland, Washington. The WVDP site serves as the host site for the project. Technologies considered for demonstration and potential deployment at both LSDDP sites are targeted for application in hot cells that require the use of remote and semi-remote techniques to conduct various cleanup-related activities because of high radiation or high contamination levels. These hot cells, the type of cleanup activities being conducted, and technologies selected for demonstration are the main topics discussed in this paper. The range of cleanup-related activities addressed include in-situ characterization, size-reduction, contamination control, decontamination, in

  12. High-Precision Land-Cover-Land-Use GIS Mapping and Land Availability and Suitability Analysis for Grass Biomass Production in the Aroostook River Valley, Maine, USA

    Directory of Open Access Journals (Sweden)

    Chunzeng Wang

    2015-03-01

    Full Text Available High-precision land-cover-land-use GIS mapping was performed in four major townships in Maine’s Aroostook River Valley, using on-screen digitization and direct interpretation of very high spatial resolution satellite multispectral imagery (15–60 cm and high spatial resolution LiDAR data (2 m and the field mapping method. The project not only provides the first-ever high-precision land-use maps for northern Maine, but it also yields accurate hectarage estimates of different land-use types, in particular grassland, defined as fallow land, pasture, and hay field. This enables analysis of potential land availability and suitability for grass biomass production and other sustainable land uses. The results show that the total area of fallow land in the four towns is 7594 hectares, which accounts for 25% of total open land, and that fallow plots equal to or over four hectares in size total 4870, or 16% of open land. Union overlay analysis, using the Natural Resources Conservation Service (NRCS soil data, indicates that only a very small percentage of grassland (4.9% is on “poorly-drained” or “very-poorly-drained” soils, and that most grassland (85% falls into the “farmland of state importance” or “prime farmland” categories, as determined by NRCS. It is concluded that Maine’s Aroostook River Valley has an ample base of suitable, underutilized land for producing grass biomass.

  13. Port Graham Community Building Biomass Heating Design Project

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Patrick [Port Graham Village Corporation, Anchorage, AK (United States); Sink, Charles [Chugachmiut, Anchorage, Alaska (United States)

    2015-04-30

    Native Village of Port Graham completed preconstruction activities to prepare for construction and operations of a cord wood biomass heating system to five or more community buildings in Port Graham, Alaska. Project Description Native Village of Port Graham (NVPG) completed preconstruction activities that pave the way towards reduced local energy costs through the construction and operations of a cord wood biomass heating system. NVPG plans include installation of a GARN WHS 3200 Boiler that uses cord wood as fuel source. Implementation of the 700,000 Btu per hour output biomass community building heat utility would heat 5-community buildings in Port Graham, Alaska. Heating system is estimated to displace 85% of the heating fuel oil or 5365 gallons of fuel on an annual basis with an estimated peak output of 600,000 Btu per hour. Estimated savings is $15,112.00 per year. The construction cost estimate made to install the new biomass boiler system is estimated $251,693.47 with an additional Boiler Building expansion cost estimated at $97,828.40. Total installed cost is estimated $349,521.87. The WHS 3200 Boiler would be placed inside a new structure at the old community Water Plant Building site that is controlled by NVPG. Design of the new biomass heat plant and hot water loop system was completed by Richmond Engineering, NVPG contractor for the project. A hot water heat loop system running off the boiler is designed to be placed underground on lands controlled by NVPG and stubbed to feed hot water to existing base board heating system in the following community buildings: 1. Anesia Anahonak Moonin Health and Dental Clinic 2. Native Village of Port Graham offices 3. Port Graham Public Safety Building/Fire Department 4. Port Graham Corporation Office Building which also houses the Port Graham Museum and Head Start Center 5. North Pacific Rim Housing Authority Workshop/Old Fire Hall Existing community buildings fuel oil heating systems are to be retro-fitted to

  14. A visual progression of the Fort Valley Restoration Project treatments using remotely sensed imagery (P-53)

    Science.gov (United States)

    Joseph E. Crouse; Peter Z. Fule

    2008-01-01

    The landscape surrounding the Fort Valley Experimental Forest in northern Arizona has changed dramatically in the past decade due to the Fort Valley Restoration Project, a collaboration between the Greater Flagstaff Forest Partnership, Coconino National Forest, and Rocky Mountain Research Station. Severe wildfires in 1996 sparked community concern to start restoration...

  15. Biomass - Activities and projects in 2004; Biomasse - Aktivitaeten und Projekte 2004

    Energy Technology Data Exchange (ETDEWEB)

    Binggeli, D; Guggisberg, B

    2005-07-01

    This annual report by the Swiss Federal Office of Energy (SFOE) presents an overview of the Swiss research programme on biomass and its efficient use both as a source of heat and electrical power and as a fuel. Work done and results obtained in the year 2004 are looked at. Topics covered include combustion and gasification of wood, the fermentation of biogenic wastes and developments in the bio-fuels area. Several projects in each of these areas are discussed. National co-operation with various universities, private organisations and other federal offices is discussed, as are contributions made to symposia and exhibitions in the biomass area. International co-operation within the framework of International Energy Agency (IEA) tasks is mentioned. Various pilot and demonstration projects in the combustion, gasification and fermentation areas are listed and discussed.

  16. 75 FR 69698 - Central Valley Project Improvement Act, Criteria for Developing Refuge Water Management Plans

    Science.gov (United States)

    2010-11-15

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Criteria for Developing Refuge Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The ``Criteria for Developing Refuge Water Management Plans'' (Refuge...

  17. 75 FR 15453 - Central Valley Project Improvement Act, Westlands Water District Drainage Repayment Contract

    Science.gov (United States)

    2010-03-29

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Westlands Water District Drainage Repayment Contract AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of Proposed Repayment Contract. SUMMARY: The Bureau of Reclamation will be initiating negotiations with the...

  18. New bern biomass to energy project Phase I: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Parson, F.; Bain, R.

    1995-10-01

    Weyerhaeuser, together with Amoco and Carolina Power & Light, performed a detailed evaluation of biomass gasification and enzymatic processing of biomass to ethanol. This evaluation assesses the potential of these technologies for commercial application to determine which technology offers the best opportunity at this time to increase economic productivity of forest resources in an environmentally sustainable manner. The work performed included preparation of site-specific plant designs that integrate with the Weyerhaeuser New Bern, North Carolina pulp mill to meet overall plant energy requirements, cost estimates, resource and product market assessments, and technology evaluations. The Weyerhaeuser team was assisted by Stone & Webster Engineering Corporation and technology vendors in developing the necessary data, designs, and cost information used in this comparative study. Based on the information developed in this study and parallel evaluations performed by Weyerhaeuser and others, biomass gasification for use in power production appears to be technically and economically viable. Options exist at the New Bern mill which would allow commercial scale demonstration of the technology in a manner that would serve the practical energy requirements of the mill. A staged project development plan has been prepared for review. The plan would provide for a low-risk and cost demonstration of a biomass gasifier as an element of a boiler modification program and then allow for timely expansion of power production by the addition of a combined cycle cogeneration plant. Although ethanol technology is at an earlier stage of development, there appears to be a set of realizable site and market conditions which could provide for an economically attractive woody-biomass-based ethanol facility. The market price of ethanol and the cost of both feedstock and enzyme have a dramatic impact on the projected profitability of such a plant.

  19. Biomass Burning Observation Project (BBOP) Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Kleinman, LI [Brookhaven National Lab. (BNL), Upton, NY (United States); Sedlacek, A. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-01-01

    The Biomass Burning Observation Project (BBOP) was conducted to obtain a better understanding of how aerosols generated from biomass fires affect the atmosphere and climate. It is estimated that 40% of carbonaceous aerosol produced originates from biomass burning—enough to affect regional and global climate. Several biomass-burning studies have focused on tropical climates; however, few campaigns have been conducted within the United States, where millions of acres are burned each year, trending to higher values and greater climate impacts because of droughts in the West. Using the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the BBOP deployed the Gulfstream-1 (G-1) aircraft over smoke plumes from active wildfire and agricultural burns to help identify the impact of these events and how impacts evolve with time. BBOP was one of very few studies that targeted the near-field time evolution of aerosols and aimed to obtain a process-level understanding of the large changes that occur within a few hours of atmospheric processing.

  20. BPA/Lower Valley transmission project. Final environmental impact statement

    International Nuclear Information System (INIS)

    1998-06-01

    Bonneville Power Administration and Lower Valley Power and Light, Inc. propose to solve a voltage stability problem in the Jackson and Afton, Wyoming areas. Lower Valley buys electricity from BPA and then supplies it to the residences and businesses of the Jackson and Afton, Wyoming areas. BPA is considering five alternatives. For the Agency Proposed Action, BPA and Lower Valley would construct a new 115-kV line from BPA's Swan Valley Substation near Swan Valley in Bonneville County, Idaho about 58 km (36 miles) east to BPA's Teton Substation near Jackson in Teton County, Wyoming. The new line would be next to an existing 115-kV line. The Single-Circuit Line Alternative has all the components of the Agency Proposed Action except that the entire line would be supported by single-circuit wood pole H-frame structures. the Short Line Alternative has all the components of the Single-Circuit Line Alternative except it would only be half as long. BPA would also construct a new switching station near the existing right-of-way, west or north of Targhee Tap. Targhee Tap would then be removed. For the Static Var Compensation Alternative, BPA would install a Static Var Compensator (SVC) at Teton or Jackson Substation. An SVC is a group of electrical equipment placed at a substation to help control voltage on a transmission system. The No Action Alternative assumes that no new transmission line is built, and no other equipment is added to the transmission system

  1. A lifetime perspective of biomass allocation in Quercus pubescens trees in a dry, alpine valley

    NARCIS (Netherlands)

    Slot, M.; Janse-ten Klooster, S.H.; Sterck, F.J.; Sass-Klaassen, U.; Zweifel, R.

    2012-01-01

    Plasticity of biomass allocation is a key to growth and survival of trees exposed to variable levels of stress in their lifetime. Most of our understanding of dynamic biomass allocation comes from seedling studies, but plasticity may be different in mature trees. We used stem analysis to reconstruct

  2. 78 FR 63491 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2013-10-24

    ... Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The following Water Management Plans are available for review: Westside... project contractors using best available cost-effective technology and best management practices.'' These...

  3. pep-up: a review of the umgeni valley pro.ject evaluation process

    African Journals Online (AJOL)

    The evaluation process at the Umgeni Valle~ Project is.described. Its evolution, background and ... mental Education circles in Southern Africa. The ... t? the percei~ed need for evaluation of the Umgen1 Valley ProJect. ... This group, insisting that they were facilitating .... Phase : An integrated summary of all fielc and working ...

  4. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Vance, R.F. [West Valley Nuclear Services Co., Inc., NY (United States)

    1995-02-01

    The West Valley Demonstration Project was established by Public Law 96-368, the {open_quotes}West Valley Demonstration Project Act, {close_quotes} on October 1, l980. Under this act, Congress directed the Department of Energy to carry out a high level radioactive waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The purpose of this project is to demonstrate solidification techniques which can be used for preparing high level radioactive waste for disposal. In addition to developing this technology, the West Valley Demonstration Project Act directs the Department of Energy to: (1) develop containers suitable for permanent disposal of the high level waste; (2) transport the solidified high level waste to a Federal repository; (3) dispose of low level and transuranic waste produced under the project; and (4) decontaminate and decommission the facilities and materials associated with project activities and the storage tanks originally used to store the liquid high level radioactive waste. The process of vitrification will be used to solidify the high level radioactive liquid wastes into borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems which are used in the vitrification process.

  5. West Valley demonstration project: Implementation of the kerosene mitigation plan

    International Nuclear Information System (INIS)

    Blickwedehl, R.R.; Goodman, J.; Valenti, P.J.

    1987-05-01

    An aggressive program was implemented to mitigate the migration of radioactive kerosene believed to have originated from the West Valley NRC-Licensed Disposal Area (NDA) disposal trenches designated as SH-10 and SH-11 (Special Holes 10 and 11). This report provides a historical background of the events leading to the migration problem, the results of a detailed investigation to determine the location and source of the kerosene migration, the remediation plan to mitigate the migration, and the actions taken to successfully stabilize the kerosene. 7 refs., 19 figs., 1 tab

  6. An aerial radiological survey of the West Valley Demonstration Project and surrounding area, West Valley, New York

    International Nuclear Information System (INIS)

    Berry, H.A.

    1991-09-01

    An aerial radiological survey of the West Valley Demonstration Project and the surrounding area was conducted from mid-August through early September 1984 by EG ampersand G Energy Measurements, Inc. for the United States Department of Energy. The radiological survey was part of the United States Department of Energy Comprehensive Integrated Remote Sensing (CIRS) program, which provides state-of-the-art remote sensing to support the needs of the various DOE facilities. The survey consisted of airborne measurements of both natural and man-made gamma radiation emanating from the terrestrial surface. These measurements allowed an estimate of the distribution of isotopic concentrations in the area surrounding the project site. Results are reported as isopleths superimposed on aerial photographs of the area. Gamma ray energy spectra are also presented for the net man-made radionuclides. 8 refs., 16 figs., 9 tabs

  7. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    West Valley Environmental Services LLC (WVES) and URS - Washington Division

    2008-12-17

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2007. The report summarizes the calendar year (CY) 2007 environmental protection program at the WVDP. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment.

  8. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2006

    International Nuclear Information System (INIS)

    2007-01-01

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2006. The report summarizes calendar year (CY) 2006 environmental monitoring data so as to describe the performance of the WVDP's environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs that protect public health and safety and the environment

  9. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2007

    International Nuclear Information System (INIS)

    2008-01-01

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2007. The report summarizes the calendar year (CY) 2007 environmental protection program at the WVDP. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment

  10. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2005

    International Nuclear Information System (INIS)

    West Valley Nuclear Services Company WVNSCO and URS Group, Inc.

    2006-01-01

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2005. The report summarizes calendar year (CY) 2005 environmental monitoring data so as to describe the performance of the WVDP's environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs

  11. Pep-up: A review of the Umgeni Valley Project evaulation process ...

    African Journals Online (AJOL)

    Pep-up: A review of the Umgeni Valley Project evaulation process. Tim Wright. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · Creative Commons License This work is licensed under a Creative Commons Attribution 3.0 License.

  12. Design of equipment used for high-level waste vitrification at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Vance, R.F.; Brill, B.A.; Carl, D.E.

    1997-06-01

    The equipment as designed, started, and operated for high-level radioactive waste vitrification at the West Valley Demonstration Project in western New York State is described. Equipment for the processes of melter feed make-up, vitrification, canister handling, and off-gas treatment are included. For each item of equipment the functional requirements, process description, and hardware descriptions are presented

  13. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

    2007-09-27

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2006. The report summarizes calendar year (CY) 2006 environmental monitoring data so as to describe the performance of the WVDP’s environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs that protect public health and safety and the environment.

  14. West Valley Demonstration Project Annual Site Environmental Report Calendard Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

    2006-09-21

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2005. The report summarizes calendar year (CY) 2005 environmental monitoring data so as to describe the performance of the WVDP's environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs.

  15. Environmental assessment for the Waste Water Treatment Facility at the West Valley Demonstration Project and finding of no significant impact

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    The possible environmental impacts from the construction and operation of a waste water treatment facility for the West Valley Demonstration Project are presented. The West Valley Project is a demonstration project on the solidification of high-level radioactive wastes. The need for the facility is the result of a rise in the work force needed for the project which rendered the existing sewage treatment plant incapable of meeting the nonradioactive waste water treatment needs.

  16. Environmental assessment for the Waste Water Treatment Facility at the West Valley Demonstration Project and finding of no significant impact

    International Nuclear Information System (INIS)

    1992-01-01

    The possible environmental impacts from the construction and operation of a waste water treatment facility for the West Valley Demonstration Project are presented. The West Valley Project is a demonstration project on the solidification of high-level radioactive wastes. The need for the facility is the result of a rise in the work force needed for the project which rendered the existing sewage treatment plant incapable of meeting the nonradioactive waste water treatment needs

  17. Fraser Valley System Reinforcement Project: Environmental planning and assessment report

    International Nuclear Information System (INIS)

    1991-06-01

    Transmission facilities in the south central Fraser Valley, British Columbia, need reinforcement in order to meet anticipated growth in power demand. This objective could be met by reinforcing substation facilities (adding 500-kV equipment and connection to transmission line 5L41) at the McLellan Substation in Surrey, at the Clayburn Substation in Matsqui, or at the Atchelitz Substation in Chilliwack. An assessment is provided of the environmental evaluation criteria applied to these potential sites for substation reinforcement and the rationale for selection of the Clayburn site as the environmentally most effective alternative. The Clayburn site is already cleared and managed for a 230-kV substation; environmental, land use, and socioeconomic impacts are considered manageable. The existing right-of-way for the 500-kV loop in to the substation can be utilized. In addition, the results of an environmental assessment and mitigation plan for the Clayburn substation reinforcement are described. The most significant factors that will require possible mitigative measures include fisheries, water quality, floodplain management, visual and recreational aspects, and heritage resources. 16 figs., 5 tabs

  18. 77 FR 31037 - Notice of Segregation of Public Lands for the Proposed Hyder Valley Solar Energy Project in...

    Science.gov (United States)

    2012-05-24

    ...; AZA34425] Notice of Segregation of Public Lands for the Proposed Hyder Valley Solar Energy Project in... of up to 2 years. This is for the purpose of processing one solar energy right-of-way (ROW) application submitted by Pacific Solar Investments, LLC, to construct and operate the Hyder Valley Solar...

  19. Bottom-up comparisons of CO2 storage and costs in forestry and biomass energy projects

    International Nuclear Information System (INIS)

    Swisher, J.N.

    1993-01-01

    In order to include forestry and biomass energy projects in a possible CO 2 emission reduction regime, and to compare the costs of individual projects or national programs, it is necessary to determine the rate of equivalency between carbon in fossil fuel emissions and carbon stored in different types of forestry, biomass and renewable energy projects. This paper presents a comprehensive and consistent methodology to account for the costs and carbon flows of different categories of forestry and biomass energy projects and describes the application of the methodology to several sets of projects in Latin America. The results suggest that both biomass energy development and forestry measures including reforestation and forest protection can contribute significantly to the reduction of global CO 2 emissions, and that local land-use capacity must determine the type of project that is appropriate in specific cases. No single approach alone is sufficient as either a national or global strategy for sustainable land use or carbon emission reduction

  20. Biomass

    Science.gov (United States)

    Bernard R. Parresol

    2001-01-01

    Biomass, the contraction for biological mass, is the amount of living material provided by a given area or volume of the earth's surface, whether terrestrial or aquatic. Biomass is important for commercial uses (e.g., fuel and fiber) and for national development planning, as well as for scientific studies of ecosystem productivity, energy and nutrient flows, and...

  1. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    West Valley Environmental Services LLC (WVES) and URS Corporation

    2010-09-17

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2009. The report, prepared by the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2009. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program by the DOE ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2009 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  2. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-09-27

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2011. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2011. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2011 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  3. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    Rendall, John D. [CH2M HILL • B& amp; W West Valley, LLC (CHBWV); Steiner, Alison F. [URS Professional Solutions (URSPS); Klenk, David P. [CH2M HILL • B& amp; W West Valley, LLC (CHBWV)

    2013-09-19

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2012. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2012. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2012 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  4. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-09-28

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2010. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2010. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations and directives, evaluation of data collected in 2010 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  5. West Valley Demonstration Project Annual Site Environmental Report (ASER) Calendar Year (2016)

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Alison F. [CH2M Hill BWXT West Valley, LLC, NY (United States); Pendl, Michael P. [CH2M Hill BWXT West Valley, LLC, NY (United States); Steiner, II, Robert E. [CH2M Hill BWXT West Valley, LLC, NY (United States); Fox, James R. [CH2M Hill BWXT West Valley, LLC, NY (United States); Hoch, Jerald J. [CH2M Hill BWXT West Valley, LLC, NY (United States); Williams, Janice D. [CH2M Hill BWXT West Valley, LLC, NY (United States); Wrotniak, Chester M. [CH2M Hill BWXT West Valley, LLC, NY (United States); Werchowski, Rebecca L. [CH2M Hill BWXT West Valley, LLC, NY (United States)

    2017-09-12

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2016. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2016. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2016 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  6. West Valley Demonstration Project Annual Site Environmental Report (ASER) for Calendar Year 2015

    International Nuclear Information System (INIS)

    Rendall, John D.; Steiner, Alison F.; Pendl, Michael P.; Biedermann, Charles A.; Steiner II, Robert E.; Fox, James R.; Hoch, Jerald J.; Wrotniak, Chester M.; Werchowski, Rebecca L.

    2016-01-01

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2015. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2015. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2015 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  7. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2010

    International Nuclear Information System (INIS)

    2011-01-01

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2010. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2010. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations and directives, evaluation of data collected in 2010 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  8. West Valley Demonstration Project Annual Site Environmental Report (ASER) for Calendar Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Rendall, John D. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Steiner, Alison F. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Pendl, Michael P. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Biedermann, Charles A. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Steiner, II, Robert E. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Fox, James R. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Hoch, Jerald J. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Werchowski, Rebecca L. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States)

    2015-09-15

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2014. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2014. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2014 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  9. West Valley Demonstration Project Annual Site Environmental Report (ASER) for Calendar Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Rendall, John D. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Steiner, Alison F. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Pendl, Michael P. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Biedermann, Charles A. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Steiner, II, Robert E. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Fox, James R. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Hoch, Jerald J. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Wrotniak, Chester M. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Werchowski, Rebecca L. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States)

    2016-09-15

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2015. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2015. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2015 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  10. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2009

    International Nuclear Information System (INIS)

    2010-01-01

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2009. The report, prepared by the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2009. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program by the DOE ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2009 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  11. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Rendall, John D. [CH2MHILL • B& W West Valley, LLC (CHBWV); Steiner, Alison F. [CH2MHILL • B& W West Valley, LLC (CHBWV); Pendl, Michael P. [CH2MHILL • B& W West Valley, LLC (CHBWV)

    2014-09-16

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2013. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2013. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2013 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  12. Waterbird communities and seed biomass in managed and reference-restored wetlands in the Mississippi Alluvial Valley

    Science.gov (United States)

    Tapp, Jessica L.; Weegman, Matthew M.; Webb, Elisabeth B.; Kaminski, Richard M.; Davis, J. Brian

    2018-01-01

    The Natural Resources Conservation Service (NRCS) commenced the Migratory Bird Habitat Initiative (MBHI) in summer 2010 after the April 2010 Deepwater Horizon oil spill in the Gulf of Mexico. The MBHI enrolled in the program 193,000 ha of private wet- and cropland inland from potential oil-impaired wetlands. We evaluated waterfowl and other waterbird use and potential seed/tuber food resources in NRCS Wetland Reserve Program easement wetlands managed via MBHI funding and associated reference wetlands in the Mississippi Alluvial Valley of Arkansas, Louisiana, Mississippi, and Missouri. In Louisiana and Mississippi, nearly three times more dabbling ducks and all ducks combined were observed on managed than reference wetlands. Shorebirds and waterbirds other than waterfowl were nearly twice as abundant on managed than referenced wetlands. In Arkansas and Missouri, managed wetlands had over twice more dabbling ducks and nearly twice as many duck species than reference wetlands. Wetlands managed via MBHI in Mississippi and Louisiana contained ≥1.3 times more seed and tuber biomass known to be consumed by waterfowl than reference wetlands. Seed and tuber resources did not differ between wetlands in Arkansas and Missouri. While other studies have documented greater waterbird densities on actively than nonmanaged wetlands, our results highlighted the potential for initiatives focused on managing conservation easements to increase waterbird use and energetic carrying capacity of restored wetlands for waterbirds.

  13. Processing the THOREX waste at the West Valley demonstration project

    International Nuclear Information System (INIS)

    Barnes, S.M.; Schiffhauer, M.A.

    1994-01-01

    This paper focuses on several options for neutralizing the THOREX and combining it with the PUREX wastes. Neutralization testing with simulated wastes (nonradioactive chemicals) was performed to evaluate the neutralization reactions and the reaction product generation. Various methods for neutralizing the THOREX solution were examined to determine their advantages and disadvantages relative to the overall project objectives and compatibility with the existing process. The primary neutralization process selection criteria were safety and minimizing the potential delays prior to vitrification. The THOREX neutralization method selected was direct addition to the high pH PUREX wastes within Tank 8D-2. Laboratory testing with simulated waste has demonstrated rapid neutralization of the THOREX waste acid. Test results for various direct addition scenarios has established the optimum process operating conditions which provide the largest safety margins

  14. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Vance, R.F.

    1991-12-01

    The West Valley Demonstration project was established by an act of Congress in 1980 to solidify the high level radioactive liquid wastes produced from operation of the Western New York Nuclear Services Center from 1966 to 1972. The waste will be solidified as borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems

  15. Introduction to biomass energy project financing, funding sources and government strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nordlinger, D E [Skadden, Arps, Slate, Meagher and Flom, London (United Kingdom); Shaw, F C [Skadden, Arps, Slate, Meagher and Flom, Washington, D.C. (United States)

    1995-12-01

    Biomass projects can help developing countries to protect their environment as well as to build a modem infrastructure. However, such projects present, in addition to the more typical risks associated with fossil-fuel projects, certain risks relating to the unique technologies and fuels used in such projects. Further, their location in developing countries regularly creates enhanced political and credit risk as well. Biomass power projects, like any other power project, must be financed. To be financeable, a power project should allocate risk in the most efficient way, so as to maximize return on investment. This paper examines the way in which various project documents can be structured to allocate most efficiently the technology and fuel risks unique to biomass projects, as well as the more typical risks, such as construction risk, permitting risk, expropriation risk, currency risk, country risk, sovereign risks, operating risks and credit risk. In addition, this paper summarizes the public financing sources and support that are available to assist in meeting the unique risk profiles of biomass projects. Specifically, it examines some of the principal multilateral and export credit agencies having involvement in this area. Finally, it examines potential strategies available to the developer of a biomass project for soliciting the involvement of, and negotiating with, local governments and public financing agencies. (author)

  16. Introduction to biomass energy project financing, funding sources and government strategies

    International Nuclear Information System (INIS)

    Nordlinger, D.E.; Shaw, F.C.

    1995-01-01

    Biomass projects can help developing countries to protect their environment as well as to build a modem infrastructure. However, such projects present, in addition to the more typical risks associated with fossil-fuel projects, certain risks relating to the unique technologies and fuels used in such projects. Further, their location in developing countries regularly creates enhanced political and credit risk as well. Biomass power projects, like any other power project, must be financed. To be financeable, a power project should allocate risk in the most efficient way, so as to maximize return on investment. This paper examines the way in which various project documents can be structured to allocate most efficiently the technology and fuel risks unique to biomass projects, as well as the more typical risks, such as construction risk, permitting risk, expropriation risk, currency risk, country risk, sovereign risks, operating risks and credit risk. In addition, this paper summarizes the public financing sources and support that are available to assist in meeting the unique risk profiles of biomass projects. Specifically, it examines some of the principal multilateral and export credit agencies having involvement in this area. Finally, it examines potential strategies available to the developer of a biomass project for soliciting the involvement of, and negotiating with, local governments and public financing agencies. (author)

  17. An overview of waste management systems at the West Valley demonstration project

    International Nuclear Information System (INIS)

    McIntosh, T.W.; Bixby, W.W.; Krauss, J.E.; Leap, D.R.

    1988-01-01

    In 1980, the United States Congress passed into law the West Valley Demonstration Project Act authorizing the Department of Energy (DOE) to conduct a nuclear waste management project at a former commercial nuclear fuel reprocessing facility located in West Valley, New York. The Project's main objective is to solidify approximately two million litres of high-level radioactive liquid waste into a form suitable for transport to a federal repository for final disposal. The majority of the liquid waste was produced as a by-product of the PUREX extraction process and is stored in an underground steel tank. A waste characterization program has shown that the neutralized waste has settled into two distinct layers: a clear alkaline liquid (supernatant) layer and a dense precipitate (sludge) layer. The principle radioactive elements in the waste are cesium 137 (supernatant) and strontium 90 (sludge). This paper describes the overall project strategy, the waste management systems, the present project engineering and construction status and the project schedule leading to radioactive operation

  18. Lower Yakima Valley Wetlands and Riparian Restoration Project. Final environmental assessment

    International Nuclear Information System (INIS)

    1994-01-01

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Mitigation Agreement pertaining to the Lower Yakima Valley Wetlands and Riparian Restoration Project (Project) in a cooperative effort with the Yakama Indian Nation and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities for the Project within the boundaries of the Yakama Indian Reservation. This Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large 20, 340 hectare (50, 308 acre) project area. As individual properties are secured for the Project, three site-specific activities (habitat enhancement, operation and maintenance, and monitoring and evaluation) may be subject to further site-specific environmental review. All required Federal/Tribal coordination, permits and/or approvals would be obtained prior to ground disturbing activities

  19. Lower Yakima Valley Wetlands and Riparian Restoration Project. Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration

    1994-10-01

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Mitigation Agreement pertaining to the Lower Yakima Valley Wetlands and Riparian Restoration Project (Project) in a cooperative effort with the Yakama Indian Nation and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities for the Project within the boundaries of the Yakama Indian Reservation. This Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large 20, 340 hectare (50, 308 acre) project area. As individual properties are secured for the Project, three site-specific activities (habitat enhancement, operation and maintenance, and monitoring and evaluation) may be subject to further site-specific environmental review. All required Federal/Tribal coordination, permits and/or approvals would be obtained prior to ground disturbing activities.

  20. 1982 environmental-monitoring program report for the West Valley Demonstration Project site

    International Nuclear Information System (INIS)

    1983-05-01

    This report is prepared and submitted in accordance with the requirements of DOE Order 5484.1 and presents environmental monitoring program data collected at the West Valley Demonstration Project (WVDP) site from February 26, 1982, through December 31, 1982. The WVDP objective is to solidify approximately 600,000 gallons of high-level liquid radioactive waste stored at the former Nuclear Fuel Services reprocessing facility at West Valley, New York. Nuclear Fuel Services conducted an environmental monitoring program in accordance with Nuclear Regulatory Commission requirements which were appropriate for shutdown maintenance operations conducted at the site. That program was embraced by West Valley Nuclear Services Company (WVNS) at the time of transition (February 26, 1982) and will be modified to provide a comprehensive monitoring program in preparation for waste solidification operations scheduled for startup in June 1988. As such, the data presented in this report is considered preoperational in nature in accordance with DOE Order 5484.1, Chapter III, Paragraph 1. The environmental monitoring program planned for the operating phase of the project will be fully implemented by fiscal year 1985 and will provide at least two years of preoperational data prior to startup

  1. Snake River Sockeye Salmon Sawtooth Valley Project Conservation and Rebuilding Program : Supplemental Fnal Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-03-01

    This document announces Bonneville Power Administration`s (BPA) proposal to fund three separate but interrelated actions which are integral components of the overall Sawtooth Valley Project to conserve and rebuild the Snake River Sockeye salmon run in the Sawtooth Valley of south-central Idaho. The three actions are as follows: (1) removing a rough fish barrier dam on Pettit Lake Creek and constructing a weir and trapping facilities to monitor future sockeye salmon adult and smolt migration into and out of Pettit Lake; (2) artificially fertilizing Readfish Lake to enhance the food supply for Snake River sockeye salmon juveniles released into the lake; and (3) trapping kokanee fry and adults to monitor the fry population and to reduce the population of kokanee in Redfish Lake. BPA has prepared a supplemental EA (included) which builds on an EA compled in 1994 on the Sawtooth Valley Project. Based on the analysis in this Supplemental EA, BPA has determined that the proposed actions are not major Federal actions significantly affecting the quality of the human environment. Therefore an Environmental Impact Statement is not required.

  2. Low-Level Legacy Waste Processing Experience at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Valenti, P.J.; Rowell, L.E.; Kurasch, D.H.; Moore, H.R.

    2006-01-01

    This paper presents detailed results and lessons learned from the very challenging and highly successful 2005 low level radioactive waste sorting, packaging, and shipping campaign that removed over 95% of the available inventory of 350,000 ft 3 of legacy low level waste at the West Valley Demonstration Project near West Valley, New York. First some programmatic perspective and site history is provided to provide pertinent context for DOE's waste disposal mandates at the site. This is followed by a detailed description of the waste types, the storage locations, the containers, and the varied sorting and packaging facilities used to accomplish the campaign. The overall sorting and packaging protocols for this inventory of wastes are defined. This is followed by detailed sorting data and results concluding with lessons learned. (authors)

  3. Private capital requirements for international biomass energy projects

    Energy Technology Data Exchange (ETDEWEB)

    Goldemberg, J [University of Sao Paulo, Sao Paulo (Brazil)

    1995-12-01

    In developing countries, the use of biomass for energy production faces two contradictory pressures. On the one hand, biomass costs very little and it is used inefficiently for fuel or charcoal production, leading to widespread destruction of forested areas and environmental degradation; this problem is being attenuated by the promotion, through aid programmes, of more efficient cook stoves for poor people. On the other hand, the conversion of biomass into high-grade fuel such as ethanol from sugar cane or burning urban refuse or gasifying it to produce electricity is not economically competitive at this time and requires subsidies of approximately 30% to make it as attractive as conventional fuels. Only electricity production using residues from sawmills, crops and other biomass by-products is competitive, and a number of plants are in operation in some countries, particularly the United States. For such plants, the usual rates of return and long-term contract purchases that characterize investments of this kind are applied. Although technologies are available for the widespread efficient use of biomass, the financial hurdle of high initial costs has impeded their market penetration, which in turn precludes any decline in costs that might otherwise have come from production increases. Intervention by governments or by GEF, justified on grounds of environmental protection, is needed to accelerate the introduction of the new technologies. The only private flows that are taking place at the moment are those from enlightened investors wishing to guarantee themselves a strong position in the area for the future or to preempt command and control regulations, such as carbon taxes, imposed by governments. The joint implementation of biomass technologies between industrialized and developing countries might be one method of accelerating this flow. (author) 9 refs, 4 figs, 3 tabs

  4. Private capital requirements for international biomass energy projects

    International Nuclear Information System (INIS)

    Goldemberg, J.

    1995-01-01

    In developing countries, the use of biomass for energy production faces two contradictory pressures. On the one hand, biomass costs very little and it is used inefficiently for fuel or charcoal production, leading to widespread destruction of forested areas and environmental degradation; this problem is being attenuated by the promotion, through aid programmes, of more efficient cook stoves for poor people. On the other hand, the conversion of biomass into high-grade fuel such as ethanol from sugar cane or burning urban refuse or gasifying it to produce electricity is not economically competitive at this time and requires subsidies of approximately 30% to make it as attractive as conventional fuels. Only electricity production using residues from sawmills, crops and other biomass by-products is competitive, and a number of plants are in operation in some countries, particularly the United States. For such plants, the usual rates of return and long-term contract purchases that characterize investments of this kind are applied. Although technologies are available for the widespread efficient use of biomass, the financial hurdle of high initial costs has impeded their market penetration, which in turn precludes any decline in costs that might otherwise have come from production increases. Intervention by governments or by GEF, justified on grounds of environmental protection, is needed to accelerate the introduction of the new technologies. The only private flows that are taking place at the moment are those from enlightened investors wishing to guarantee themselves a strong position in the area for the future or to preempt command and control regulations, such as carbon taxes, imposed by governments. The joint implementation of biomass technologies between industrialized and developing countries might be one method of accelerating this flow. (author)

  5. Biomass energy projects in Central and Eastern Europe. General information, favorable concepts and financing possibilities

    International Nuclear Information System (INIS)

    Ellenbroek, R.; Ballard-Tremeer, G.; Koeks, R.; Venendaal, R.

    2000-08-01

    The purpose of this guide is to provide information on the possibilities to invest and carry out biomass energy projects in Central and Eastern Europe. In the first part of the guide background information is given on countries in Central and Eastern Europe, focusing on bio-energy. A few cases are presented to illustrate different biomass energy concepts. Based on economic calculations an indication is given of the feasibility of those concepts. Also the most relevant sources of information are listed. In the second part an overview is given of Dutch, European and international financial tools that can be used in biomass energy projects in Central and Eastern Europe

  6. Site observational work plan for the UMTRA Project site at Monument Valley, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The site observational work plan (SOWP) for the Monument Valley, Arizona, US Department of Energy (DOE) Uranium Mill Tailings Remedial Action(UMTRA) Project site is one of the first site-specific documents developed to achieve ground water compliance at the site. This SOWP applies information about the Monument Valley site to a regulatory compliance framework that identifies strategies that could be used to meet ground water compliance. The compliance framework was developed in the UMTRA Ground Water programmatic environmental impact statement (DOE, 1996). The DOE`s goal is to implement a cost-effective site strategy that complies with the US Environmental Protection Agency (EPA) ground water standards and protects human health and the environment. The compliance strategy that emerges in the final version of the SOWP will be evaluated in the site-specific environmental assessment to determine potential environmental impacts and provide stakeholders a forum for review and comment. When the compliance strategy is acceptable, it will be detailed in a remedial action plan that will be subject to review by the state and/or tribe and concurrence by the US Nuclear Regulatory Commission (NRC). Information for the preparation of this SOWP indicates active remediation is the most likely compliance strategy for the Monument Valley site. Additional data are needed to determine the most effective remediation technology.

  7. Site observational work plan for the UMTRA Project site at Monument Valley, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The site observational work plan (SOWP) for the Monument Valley, Arizona, US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site is one of the first site-specific documents developed to achieve ground water compliance at the site. This SOWP applies information about the Monument Valley site to a regulatory compliance framework that identifies strategies that could be used to meet ground water compliance. The compliance framework was developed in the UMTRA Ground Water programmatic environmental impact statement (DOE, 1995). The DOE`s goal is to implement a cost-effective site strategy that complies with the US Environmental Protection Agency (EPA) ground water standards and protects human health and the environment. The compliance strategy that emerges in the final version of the SOWP will assess potential environmental impacts and provide stakeholder a forum for review and comment. When the compliance strategy is acceptable, it will be detailed in a remedial action plan that will be subject to review by the state and/or tribe and concurrence by the US Nuclear Regulatory Commission (NRC). Information available for the preparation of this SOWP indicates active remediation is the most likely compliance strategy for the Monument Valley site. Additional data are needed to determine the most effective remediation technology.

  8. Site observational work plan for the UMTRA Project site at Monument Valley, Arizona

    International Nuclear Information System (INIS)

    1996-03-01

    The site observational work plan (SOWP) for the Monument Valley, Arizona, US Department of Energy (DOE) Uranium Mill Tailings Remedial Action(UMTRA) Project site is one of the first site-specific documents developed to achieve ground water compliance at the site. This SOWP applies information about the Monument Valley site to a regulatory compliance framework that identifies strategies that could be used to meet ground water compliance. The compliance framework was developed in the UMTRA Ground Water programmatic environmental impact statement (DOE, 1996). The DOE's goal is to implement a cost-effective site strategy that complies with the US Environmental Protection Agency (EPA) ground water standards and protects human health and the environment. The compliance strategy that emerges in the final version of the SOWP will be evaluated in the site-specific environmental assessment to determine potential environmental impacts and provide stakeholders a forum for review and comment. When the compliance strategy is acceptable, it will be detailed in a remedial action plan that will be subject to review by the state and/or tribe and concurrence by the US Nuclear Regulatory Commission (NRC). Information for the preparation of this SOWP indicates active remediation is the most likely compliance strategy for the Monument Valley site. Additional data are needed to determine the most effective remediation technology

  9. Site observational work plan for the UMTRA Project site at Monument Valley, Arizona

    International Nuclear Information System (INIS)

    1995-09-01

    The site observational work plan (SOWP) for the Monument Valley, Arizona, US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site is one of the first site-specific documents developed to achieve ground water compliance at the site. This SOWP applies information about the Monument Valley site to a regulatory compliance framework that identifies strategies that could be used to meet ground water compliance. The compliance framework was developed in the UMTRA Ground Water programmatic environmental impact statement (DOE, 1995). The DOE's goal is to implement a cost-effective site strategy that complies with the US Environmental Protection Agency (EPA) ground water standards and protects human health and the environment. The compliance strategy that emerges in the final version of the SOWP will assess potential environmental impacts and provide stakeholder a forum for review and comment. When the compliance strategy is acceptable, it will be detailed in a remedial action plan that will be subject to review by the state and/or tribe and concurrence by the US Nuclear Regulatory Commission (NRC). Information available for the preparation of this SOWP indicates active remediation is the most likely compliance strategy for the Monument Valley site. Additional data are needed to determine the most effective remediation technology

  10. Biomass gasification as project for the rural development; A gaseificacao da biomassa como projeto para o desenvolvimento rural

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Marcelo Cortes; Sanchez, Caio Glauco; Angulo, Mario Barriga; Parodi, Fernando Aurelio [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica]. E-mails: mcortes@fem.unicamp.br; caio@fem.unicamp.br; mariobarriga@hotmail.com; jambock@rocketmail.com

    2002-07-01

    This paper presents a study on the gasification of the biomass as a project for the rural development. Consider the biomass gasification as an sustainable alternative for energy generation, with low pollutant emission.

  11. The Yosemite Extreme Panoramic Imaging Project: Monitoring Rockfall in Yosemite Valley with High-Resolution, Three-Dimensional Imagery

    Science.gov (United States)

    Stock, G. M.; Hansen, E.; Downing, G.

    2008-12-01

    Yosemite Valley experiences numerous rockfalls each year, with over 600 rockfall events documented since 1850. However, monitoring rockfall activity has proved challenging without high-resolution "basemap" imagery of the Valley walls. The Yosemite Extreme Panoramic Imaging Project, a partnership between the National Park Service and xRez Studio, has created an unprecedented image of Yosemite Valley's walls by utilizing gigapixel panoramic photography, LiDAR-based digital terrain modeling, and three-dimensional computer rendering. Photographic capture was accomplished by 20 separate teams shooting from key overlapping locations throughout Yosemite Valley. The shots were taken simultaneously in order to ensure uniform lighting, with each team taking over 500 overlapping shots from each vantage point. Each team's shots were then assembled into 20 gigapixel panoramas. In addition, all 20 gigapixel panoramas were projected onto a 1 meter resolution digital terrain model in three-dimensional rendering software, unifying Yosemite Valley's walls into a vertical orthographic view. The resulting image reveals the geologic complexity of Yosemite Valley in high resolution and represents one of the world's largest photographic captures of a single area. Several rockfalls have already occurred since image capture, and repeat photography of these areas clearly delineates rockfall source areas and failure dynamics. Thus, the imagery has already proven to be a valuable tool for monitoring and understanding rockfall in Yosemite Valley. It also sets a new benchmark for the quality of information a photographic image, enabled with powerful new imaging technology, can provide for the earth sciences.

  12. Combustion Properties of Biomass Flash Pyrolysis Oils: Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    C. R. Shaddix; D. R. Hardesty

    1999-04-01

    Thermochemical pyrolysis of solid biomass feedstocks, with subsequent condensation of the pyrolysis vapors, has been investigated in the U.S. and internationally as a means of producing a liquid fuel for power production from biomass. This process produces a fuel with significantly different physical and chemical properties from traditional petroleum-based fuel oils. In addition to storage and handling difficulties with pyrolysis oils, concern exists over the ability to use this fuel effectively in different combustors. The report endeavors to place the results and conclusions from Sandia's research into the context of international efforts to utilize pyrolysis oils. As a special supplement to this report, Dr. Steven Gust, of Finland's Neste Oy, has provided a brief assessment of pyrolysis oil combustion research efforts and commercialization prospects in Europe.

  13. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2009-01-07

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site

  14. Design, construction, and operation of the contact size reduction facility at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Frank, D.E.; Reeves, S.R.; Valenti, P.J.

    1988-05-01

    This paper describes the design, construction and initial operation of the Contact-Handled Size Reduction Facility (CSRF) at the West Valley Demonstration Project. The facility was constructed to size reduce contaminated tanks, piping, and other metallic scrap and package the scrap for disposal. In addition, the CSRF has the capability to decontaminate scrap prior to disposal. The anticipated result of decontaminating the scrap is to reduce waste classified as transuranic or low-level Class B and C to Class A or release for unrestricted use as nonradioactive equipment. 10 figs., 1 tab

  15. West Valley demonstration project: alternative processes for solidifying the high-level wastes

    International Nuclear Information System (INIS)

    Holton, L.K.; Larson, D.E.; Partain, W.L.; Treat, R.L.

    1981-10-01

    In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied. The terminal waste form processes considered were: borosilicate glass, low-alkali glass, marbles-in-lead matrix, and crystallinolecular potential and molecular dynamics calculations of the effect are yet to be completed. Cous oxide was also investigated. The reaction is first order in nitrite ion, second order in hydrogen ion, and between zero and first order in hydroxylamine monosulfonate, depending on the concentration

  16. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Newes, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aden, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Uriarte, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Inman, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpkins, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Argo, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  17. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  18. Sustainable model for financial viability of decentralized biomass gasifier based power projects

    NARCIS (Netherlands)

    Palit, D.; Malhotra, R.; Kumar, Atul

    2011-01-01

    This paper made a modest attempt for designing a sustainable model for financial viability of biomass gasifier power projects for enhancing electricity access in India and other developing countries. For long term sustainability of distributed generation projects in remote rural areas, viability

  19. Pilot project concerning the establishment of a collective biomass conversion plant on the island of Mors

    International Nuclear Information System (INIS)

    1993-06-01

    This pilot project comprises a feasibility study in connection with plans to establish a biomass conversion plant, on the Danish island of Mors, which would provide methane to be used as fuel, in combination with natural gas, for a cogeneration plant serving six villages. The subjects of location, organization, the transportation of biomass, the design of the biomass conversion plant, economical aspects and conditions of the use of the methane are discussed as a basis for decisions in this respect. Environmental considerations are also dealt with. (AB)

  20. West Valley Demonstration Project site environmental report for calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The West Valley Demonstration Project (WVDP), the site of a US Department of Energy environmental cleanup activity operated by West Valley Nuclear Services Co., Inc., (WVNS), is in the process of solidifying liquid high-level radioactive waste remaining at the site after commercial nuclear fuel reprocessing was discontinued. The Project is located in Western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1996 by environmental monitoring personnel. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. Appendix A is a summary of the site environmental monitoring schedule. Appendix B lists the environmental permits and regulations pertaining to the WVDP. Appendices C through F contain summaries of data obtained during 1996 and are intended for those interested in more detail than is provided in the main body of the report.

  1. WEST VALLEY DEMONSTRATION PROJECT ANNUAL SITE ENVIRONMENTAL REPORT CALENDAR YEAR 2002

    International Nuclear Information System (INIS)

    2003-01-01

    This annual environmental monitoring report for the West Valley Demonstration Project (WVDP or Project) is published to inform those with interest about environmental conditions at the WVDP. In accordance with U.S. Department of Energy (DOE) Order 231.1, Environment, Safety, and Health Reporting, the report summarizes calendar year (CY) 2002 environmental monitoring data so as to describe the performance of the WVDP's environmental management system, confirm compliance with standards and regulations, and highlight important programs. In 2002, the West Valley Demonstration Project, the site of a DOE environmental cleanup activity operated by West Valley Nuclear Services Co. (WVNSCO), was in the final stages of stabilizing high-level radioactive waste (HLW) that remained at the site after commercial nuclear fuel reprocessing had been discontinued in the early 1970s. The Project is located in western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). The WVDP is being conducted in cooperation with the New York State Energy Research and Development Authority (NYSERDA). Ongoing work activities at the WVDP during 2002 included: (1) completing HLW solidification and melter shutdown; (2) shipping low-level radioactive waste off-site for disposal; (3) constructing a facility where large high-activity components can be safely packaged for disposal; (4) packaging and removing spent materials from the vitrification facility; (5) preparing environmental impact statements for future activities; (6) removing as much of the waste left behind in waste tanks 8D-1 and 8D-2 as was reasonably possible; (7) removing storage racks, canisters, and debris from the fuel receiving and storage pool, decontaminating pool walls, and beginning shipment of debris for disposal; (8) ongoing decontamination in the general purpose cell and the process mechanical cell (also referred to as the head end cells); (9) planning

  2. WEST VALLEY DEMONSTRATION PROJECT ANNUAL SITE ENVIRONMENTAL REPORT CALENDAR YEAR 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-09-12

    This annual environmental monitoring report for the West Valley Demonstration Project (WVDP or Project) is published to inform those with interest about environmental conditions at the WVDP. In accordance with U.S. Department of Energy (DOE) Order 231.1, Environment, Safety, and Health Reporting, the report summarizes calendar year (CY) 2002 environmental monitoring data so as to describe the performance of the WVDP's environmental management system, confirm compliance with standards and regulations, and highlight important programs. In 2002, the West Valley Demonstration Project, the site of a DOE environmental cleanup activity operated by West Valley Nuclear Services Co. (WVNSCO), was in the final stages of stabilizing high-level radioactive waste (HLW) that remained at the site after commercial nuclear fuel reprocessing had been discontinued in the early 1970s. The Project is located in western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). The WVDP is being conducted in cooperation with the New York State Energy Research and Development Authority (NYSERDA). Ongoing work activities at the WVDP during 2002 included: (1) completing HLW solidification and melter shutdown; (2) shipping low-level radioactive waste off-site for disposal; (3) constructing a facility where large high-activity components can be safely packaged for disposal; (4) packaging and removing spent materials from the vitrification facility; (5) preparing environmental impact statements for future activities; (6) removing as much of the waste left behind in waste tanks 8D-1 and 8D-2 as was reasonably possible; (7) removing storage racks, canisters, and debris from the fuel receiving and storage pool, decontaminating pool walls, and beginning shipment of debris for disposal; (8) ongoing decontamination in the general purpose cell and the process mechanical cell (also referred to as the head end cells); (9

  3. Supplement analysis 2 of environmental impacts resulting from modifications in the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    1998-01-01

    The West Valley Demonstration Project, located in western New York, has approximately 600,000 gallons of liquid high-level radioactive waste (HLW) in storage in underground tanks. While corrosion analysis has revealed that only limited tank degradation has taken place, the failure of these tanks could release HLW to the environment. Congress requires DOE to demonstrate the technology for removal and solidification of HLW. DOE issued the Final Environmental Impact Statement (FEIS) in 1982. The purpose of this second supplement analysis is to re-assess the 1982 Final Environmental Impact Statement's continued adequacy. This report provides the necessary and appropriate data for DOE to determine whether the environmental impacts presented by the ongoing refinements in the design, process, and operations of the Project are considered sufficiently bounded within the envelope of impacts presented in the FEIS and supporting documentation

  4. The public visits a nuclear waste site: Survey results from the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Hoffman, W.D.

    1987-01-01

    This paper discusses the results of the 1986 survey taken at the West Valley Demonstration Project Open House where a major nuclear waste cleanup is in progress. Over 1400 people were polled on what they think is most effective in educating the public on nuclear waste. A demographic analysis describes the population attending the event and their major interests in the project. Responses to attitudinal questions are examined to evaluate the importance of radioactive waste cleanup as an environmental issue and a fiscal responsibility. Additionally, nuclear power is evaluated on its public perception as an energy resource. The purpose of the study is to find out who visits a nuclear waste site and why, and to measure their attitudes on nuclear issues

  5. Technical and administrative approach for the West Valley Demonstration Project Safety Program

    International Nuclear Information System (INIS)

    Newsom, P.C.; Roberts, C.J.; Yuchien Yuan; Marchetti, S.

    1987-06-01

    The principal objective of the West Valley Demonstration Project (WVDP) is to vitrify the 2.2 million liters of high-level radioactive waste (HLW) stored at the Western New York Nuclear Service Center (WNYNSC). This simple statement of purpose, however, does not convey a sense of the complexity of the undertaking. The vitrification task is not only complex in and of itself, but requires a myriad of other activities to be accomplished on an intricate and fast paced schedule in order to support it. The West Valley Demonstration Project Act (P.L 96-368), U.S. Department of Energy Order DOE-5481.1A, Idaho Operations Office Order ID-5481.1 and standard nuclear industry practice all require that proposed systems and operations involving hazards not routinely encountered by the general public be analyzed to identify potential hazards and consequences, and to assure that reasonable measures are taken to eliminate, control, or mitigate these potential consequences. Virtually every substantive aspect of the WVDP involves hazards beyond those routinely encountered and accepted by the general public. In order to assure the safety of the public and the workers at the WVDP, a system of hazard identification, categorization, analysis and review has been established. In parallel with this system, a procedure for developing the minimum design specifications and quality assurance requirements has been developed for Project systems, components, and structures which play a role in the safety of a specific major facility or the overall Project. 29 refs., 3 figs., 6 tabs

  6. Stakeholder preferences towards the sustainable development of CDM projects: Lessons from biomass (rice husk) CDM project in Thailand

    International Nuclear Information System (INIS)

    Parnphumeesup, Piya; Kerr, Sandy A.

    2011-01-01

    This research applies both quantitative and qualitative methods to investigate stakeholder preferences towards sustainable development (SD) priorities in Clean Development Mechanism (CDM) projects. The CDM's contribution to SD is explored in the context of a biomass (rice husk) case study conducted in Thailand. Quantitative analysis ranks increasing the usage of renewable energy as the highest priority, followed by employment and technology transfer. Air pollution (dust) is ranked as the most important problem. Preference weights expressed by experts and local resident are statistically different in the cases of: employment generation; emission reductions; dust; waste disposal; and noise. Qualitative results, suggest that rice husk CDM projects contribute significantly to SD in terms of employment generation, an increase in usage of renewable energy, and transfer of knowledge. However, rice husk biomass projects create a potential negative impact on air quality. In order to ensure the environmental sustainability of CDM projects, stakeholders suggest that Thailand should cancel an Environmental Impact Assessment (EIA) exemption for CDM projects with an installed capacity below 10 MW and apply it to all CDM projects. - Highlights: → Stakeholders rank increasing the usage of renewable energy as the highest priority. → Biomass (rice husk) CDM projects create a potential negative impact on air quality. → Rice husk CDM projects cannot give an extra income to farmers. → Preference weights expressed by experts and local residents are statistically different.

  7. Ethanol Production from Biomass: Large Scale Facility Design Project

    Energy Technology Data Exchange (ETDEWEB)

    Berson, R. Eric [Univ. of Louisville, KY (United States)

    2009-10-29

    High solids processing of biomass slurries provides the following benefits: maximized product concentration in the fermentable sugar stream, reduced water usage, and reduced reactor size. However, high solids processing poses mixing and heat transfer problems above about 15% for pretreated corn stover solids due to their high viscosities. Also, highly viscous slurries require high power consumption in conventional stirred tanks since they must be run at high rotational speeds to maintain proper mixing. An 8 liter scraped surface bio-reactor (SSBR) is employed here that is designed to efficiently handle high solids loadings for enzymatic saccharification of pretreated corn stover (PCS) while maintaining power requirements on the order of low viscous liquids in conventional stirred tanks. Saccharification of biomass exhibit slow reaction rates and incomplete conversion, which may be attributed to enzyme deactivation and loss of activity due to a variety of mechanisms. Enzyme deactivation is classified into two categories here: one, deactivation due to enzyme-substrate interactions and two, deactivation due to all other factors that are grouped together and termed “non-specific” deactivation. A study was conducted to investigate the relative extents of “non-specific” deactivation and deactivation due to “enzyme-substrate interactions” and a model was developed that describes the kinetics of cellulose hydrolysis by considering the observed deactivation effects. Enzyme substrate interactions had a much more significant effect on overall deactivation with a deactivation rate constant about 20X higher than the non-specific deactivation rate constant (0.35 h-1 vs 0.018 h-1). The model is well validated by the experimental data and predicts complete conversion of cellulose within 30 hours in the absence of enzyme substrate interactions.

  8. Implementation of the biomass gasification project for community empowerment at Melani village, Eastern Cape, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Mamphweli, Ntshengedzeni S.; Meyer, Edson L. [University of Fort Hare, Institute of Technology, Private Bag X1314, Alice 5700 (South Africa)

    2009-12-15

    Eskom and the University of Fort Hare are engaged in a biomass gasification project using the System Johansson Biomass gasifier (SJBG). The SJBG installed at Melani village in the Eastern Cape province of South Africa is used to assess the viability and affordability of biomass gasification in South Africa. A community needs assessment study was undertaken at the village before the installation of the plant. The study revealed the need for low-cost electricity for small businesses including growing of crops, chicken broilers, manufacturing of windows and door frames, sewing of clothing, bakery etc. It was also found that the community had a problem with the socio-environmental aspects of burning biomass waste from the sawmill furnace as a means of waste management. The SJBG uses the excess biomass materials (waste) to generate low-cost electricity to drive community economic development initiatives. A study on the properties and suitability of the biomass materials resulting from sawmill operation and their suitability for gasification using the SJBG was undertaken. The study established that the biomass materials meet the requirements for the SJBG. A 300 Nm{sup 3}/h SJBG was then manufactured and installed at the village. (author)

  9. Commercialization of biomass energy projects: Outline for maximizing use of valuable tax credits and incentives

    International Nuclear Information System (INIS)

    Sanderson, G.A.

    1994-01-01

    The Federal Government offers a number of incentives designed specifically to promote biomass energy. These incentives include various tax credits, deductions and exemptions, as well as direct subsidy payments and grants. Additionally, equipment manufacturers and project developers may find several other tax provisions useful, including tax incentives for exporting U.S. good and engineering services, as well as incentives for the development of new technologies. This paper outlines the available incentives, and also addresses ways to coordinate the use of tax breaks with government grants and tax-free bond financing in order to maximize benefits for biomass energy projects

  10. Final audit report of remedial action construction at the UMTRA Project Mexican Hat, Utah -- Monument Valley, Arizona, sites

    International Nuclear Information System (INIS)

    1995-10-01

    The final audit report for remedial action at the Mexican Hat, Utah, Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC); on-site construction reviews (OSCR) performed by the US Nuclear Regulatory Commission (NRC); and a surveillance performed by the Navajo Nation. This report refers to remedial action activities performed at the Mexican Hat, Utah--Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites

  11. Coming on stream: Financing biomass and alternative-fuel projects in the 1990s

    International Nuclear Information System (INIS)

    Mumford, E.B. Jr.

    1993-01-01

    Biomass-energy and alternative-fuels projects make environmental sense, but do they make economic sense? In the current project-finance environment, moving ideas off the drawing board and transforming them into reality takes more than vision and commitment; it takes the ability to understand and address the financial markets' perception of risk. This paper examines the state of the project-finance market, both as it pertains to biomass and alternative-fuels projects and in more general terms, focusing on what project sponsors and developers need to dot to obtain both early-state and construction/term financing, and the role a financial adviser can play in helping ensure access to funds at all stages

  12. A West Valley Demonstration Project Milestone - Achieving Certification to Ship Waste to the Nevada Test Site

    International Nuclear Information System (INIS)

    Jackson, J. P.; Pastor, R. S.

    2002-01-01

    The West Valley Demonstration Project (WVDP) has successfully pretreated and vitrified nearly all of the 600,000 gallons of liquid high-level radioactive waste that was generated at the site of the only commercial nuclear fuel reprocessing plant to have operated in the United States. Low-level waste (LLW) generated during the course of the cleanup effort now requires disposal. Currently the WVDP only ships Class A LLW for off-site disposal. It has been shipping Class A wastes to Envirocare of Utah, Inc. since 1997. However, the WVDP may also have a future need to ship Class B and Class C waste, which Envirocare is not currently authorized to accept. The Nevada Test Site (NTS), a U.S. Department of Energy (DOE) facility, can accept all three waste classifications. The WVDP set a goal to receive certification to begin shipping Class A wastes to NTS by 2001. Formal certification/approval was granted by the DOE Nevada Operations Office on July 12, 2001. This paper discusses how the WVDP contractor, West Valley Nuclear Services Company (WVNSCO), completed the activities required to achieve NTS certification in 2001 to ship waste to its facility. The information and lessons learned provided are significant because the WVDP is the only new generator receiving certification based on an NTS audit in January 2001 that resulted in no findings and only two observations--a rating that is unparalleled in the DOE Complex

  13. Economic sustainability of a biomass energy project located at a dairy in California, USA

    International Nuclear Information System (INIS)

    Camarillo, Mary Kay; Stringfellow, William T.; Jue, Michael B.; Hanlon, Jeremy S.

    2012-01-01

    Previous experience has demonstrated the tenuous nature of biomass energy projects located at livestock facilities in the U.S. In response, the economic sustainability of a 710 kW combined heat and power biomass energy system located on a dairy farm in California was evaluated. This biomass energy facility is unique in that a complete-mix anaerobic digester was used for treatment of manure collected in a flush-water system, co-digestates were used as additional digester feedstocks (whey, waste feed, and plant biomass), and the power plant is operating under strict regulatory requirements for stack gas emissions. Electricity was produced and sold wholesale, and cost savings resulted from the use of waste heat to offset propane demand. The impact of various operational factors was considered in the economic analysis, indicating that the system is economically viable as constructed but could benefit from introduction of additional substrates to increase methane and electricity production, additional utilization of waste heat, sale of digested solids, and possibly pursuing greenhouse gas credits. Use of technology for nitrogen oxide (NO x ) removal had a minimal effect on economic sustainability. - Highlights: ► We evaluated the economic sustainability of a dairy biomass energy project. ► The project is economically sustainable as currently operated. ► The simple payback period could be reduced if the system is operated near capacity. ► Co-digestion of off-site waste streams is recommended to improve profitability.

  14. Decontamination of the Scrap Removal Room at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Bridenbaker, W.A.; Clemons, L.

    1987-02-01

    This report describes the decontamination and decommissioning (D and D) of the Scrap Removal Room (SRR) at the West Valley Demonstration Project (WVDP). The SRR is an area in the former reprocessing plant that is required for use in support of D and D for other plant areas. The SRR contained a 6.8 Mg (7.5-ton) crane for loading waste material into a shielded truck cask. It became radioactively contaminated during fuel reprocessing from 1966 to 1972. This report describes the work performed to accomplish the D and D objectives of removing existing piping and equipment and of reducing radiation and contamination levels, to As-Low-As-Reasonably-Achievable (ALARA) levels for the installation of new equipment. Also reported are pre- and post-radiological conditions, personnel exposure, radioactive waste volume collected, cost and schedule data, and lessons learned

  15. Decontamination of the extraction sample aisle at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Vance, R.F.

    1986-09-01

    This report describes the decontamination and decommissioning (D and D) of the Extraction Sample Aisle (XSA) at the West Valley Demonstration Project. The XSA is one of several areas in the former reprocessing plant required for use in support of the solidification of high-level waste. The XSA contained three glove boxes which housed sample stations. It became radioactively contaminated during fuel reprocessing from 1966 to 1972. This report describes the work performed to accomplish the D and D objectives of removing existing piping and equipment and of reducing radiation and contamination levels, to As-Low-As-Reasonably-Achievable (ALARA) levels for the installation of new equipment. Also reported are pre- and post-radiological conditions, personnel exposure, radioactive waste volume collected, cost and schedule data, and lessons learned

  16. West Valley Demonstration Project low-level and transuranic waste assay and methodology

    International Nuclear Information System (INIS)

    McVay, C.W.

    1987-03-01

    In the decontamination and decommissioning of the West Valley Nuclear Facility, waste materials are being removed and packaged in a variety of waste containers which require classification in accordance with USNRC 10 CFR 61 and DOE 5820.2 criteria. Low-Level and Transuranic waste assay systems have been developed to efficiently assay and classify the waste packages. The waste is assayed by segmented gamma scanning, passive neutron techniques, dose rate conversion, and/or radiochemical laboratory analysis. The systems are capable of handling all the waste forms currently packaged as part of the Project. The above systems produce a list of nuclides present with their concentrations and determines the classification of the waste packages based on criteria outlined in DOE Order 5820.2 and USNRC 10 CFR 61.55. 9 refs., 12 figs., 8 tabs

  17. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    West Valley Environmental Services LLC (WVES) and URS - Washington Division

    2009-09-24

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2008. The report summarizes the calendar year (CY) 2008 environmental monitoring program data at the WVDP so as to describe the performance of the WVDP’s environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of the environment, continual improvement, prevention and/or minimization of pollution, public outreach, and stakeholder involvement. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2008 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  18. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2008

    International Nuclear Information System (INIS)

    2009-01-01

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2008. The report summarizes the calendar year (CY) 2008 environmental monitoring program data at the WVDP so as to describe the performance of the WVDP's environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of the environment, continual improvement, prevention and/or minimization of pollution, public outreach, and stakeholder involvement. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2008 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  19. West Valley Demonstration Project community relations plan FY 1990/91

    International Nuclear Information System (INIS)

    Damerow, M.W.

    1989-09-01

    The purpose of the Community Relations Plan is to fully inform the community about the West Valley Demonstration Project (WVDP) and provide opportunities for public input. A sound approach to community relations is essential to the creation and maintenance of public awareness and community support. The WVDP is a matter of considerable public interest because it deals with nuclear waste. The mission of the WVDP is to solve an existing environmental concern by solidifying high-level radioactive waste and transporting the solidified waste to a federal repository for permanent disposal. The public requires evidence of the continued commitment and demonstrated progress of the industry and government in carrying out the mission in order to sustain confidence that the WVDP is being managed well and will be discussed successfully completed. For this reason, a comprehensive communication plan is essential for the successful completion of the WVDP

  20. Operating experience during high-level waste vitrification at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Valenti, P.J.; Elliott, D.I.

    1999-01-01

    This report provides a summary of operational experiences, component and system performance, and lessons learned associated with the operation of the Vitrification Facility (VF) at the West Valley Demonstration Project (WVDP). The VF was designed to convert stored high-level radioactive waste (HLW) into a stable waste form (borosilicate glass) suitable for disposal in a federal repository. Following successful completion on nonradioactive test, HLW processing began in July 1995. Completion of Phase 1 of HLW processing was reached on 10 June 1998 and represented the processing of 9.32 million curies of cesium-137 (Cs-137) and strontium-90 (Sr-90) to fill 211 canisters with over 436,000 kilograms of glass. With approximately 85% of the total estimated curie content removed from underground waste storage tanks during Phase 1, subsequent operations will focus on removal of tank heel wastes

  1. Analysis of projected water availability with current basin management plan, Pajaro Valley, California

    Science.gov (United States)

    Hanson, R. T.; Lockwood, B.; Schmid, Wolfgang

    2014-11-01

    The projection and analysis of the Pajaro Valley Hydrologic Model (PVHM) 34 years into the future using MODFLOW with the Farm Process (MF-FMP) facilitates assessment of potential future water availability. The projection is facilitated by the integrated hydrologic model, MF-FMP that fully couples the simulation of the use and movement of water from precipitation, streamflow, runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. MF-FMP allows for more complete analysis of conjunctive-use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface-water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within ;water-balance subregions; (WBS) comprised of one or more model cells that can represent a single farm, a group of farms, watersheds, or other hydrologic or geopolitical entities. Analysis of conjunctive use would be difficult without embedding the fully coupled supply-and-demand into a fully coupled simulation, and are difficult to estimate a priori. The analysis of projected supply and demand for the Pajaro Valley indicate that the current water supply facilities constructed to provide alternative local sources of supplemental water to replace coastal groundwater pumpage, but may not completely eliminate additional overdraft. The simulation of the coastal distribution system (CDS) replicates: 20 miles of conveyance pipeline, managed aquifer recharge and recovery (MARR) system that captures local runoff, and recycled-water treatment facility (RWF) from urban wastewater, along with the use of other blend water supplies, provide partial relief and substitution for coastal pumpage (aka in-lieu recharge). The effects of these Basin Management Plan (BMP) projects were analyzed subject to historical climate variations and

  2. Projected Changes in Seasonal Mean Temperature and Rainfall (2011-2040) in Cagayan Valley, Philippines

    Science.gov (United States)

    Basconcillo, J. Q.; Lucero, A. J. R.; Solis, A. S.; Kanamaru, H.; Sandoval, R. S.; Bautista, E. U.

    2014-12-01

    Among Filipinos, a meal is most often considered incomplete without rice. There is a high regard for rice in the entire archipelago that in 2012, the country's rice production was accounted to more than 18 million tons with an equivalent harvested area of 4.7 million hectares. This means that from the 5.4 million hectares of arable land in the Philippines, 11 percent are found and being utilized for rice production in Cagayan Valley (CV). In the same year, more than 13 percent of the country's total annual rice production was produced in CV. Rice production also provides employment to 844,000 persons (out of 1.4 million persons) which suggest that occupation and livelihood in Cagayan Valley are strongly anchored in rice production. These figures outline the imaginable vulnerability of rice production in CV amidst varying issues such as land conversion, urbanization, increase in population, retention of farming households, and climate change. While all these issues are of equal importance, this paper is directed towards the understanding the projected changes in seasonal rainfall and mean temperature (2011-2040). It is envisioned by this study that a successful climate change adaptation starts with the provision of climate projections hence this paper's objective to investigate on the changes in climate patterns and extreme events. Projected changes are zonally limited to the Provinces of Cagayan, Isabela, Nueva Vizcaya, and Quirino based on the statistical downscaling of three global climate models (BCM2, CNCM3, and MPEH5) and two emission scenarios (A1B and A2). With the idea that rainfall and temperature varies with topography, the AURELHY technique was utilized in interpolating climate projections. Results obtained from the statistical downscaling showed that there will be significant climate changes from 2011-2040 in terms of rainfall and mean temperature. There are also indications of increasing frequency of extreme 24-hour rainfall and number of dry days

  3. ARSENIC REMOVAL FROM DRINKING WATER BY ADSORPTIVE MEDIA USEPA DEMONSTRATION PROJECT AT VALLEY VISTA, AZ SIX-MONTH EVALUATION REPORT

    Science.gov (United States)

    This report documents the activities performed and the results obtained from the first six months of the EPA arsenic removal technology demonstration project at the Arizona Water Company (AWC) facility in Sedona, AZ, commonly referred to as Valley Vista. The main objective of the...

  4. Design and results of the Mariano Lake-Lake Valley drilling project, Northwestern New Mexico

    International Nuclear Information System (INIS)

    Kirk, A.R.; Huffman, A.C. Jr.; Zech, R.S.

    1986-01-01

    This drilling project included 12 holes along a north-south-trending line from Mariano Lake to Lake Valley, New Mexico, near the southern margin of the San Juan basin. Of a total 33,075 ft (10,088m) drilled, 4,550 ft (1,388m) were cored in the stratigraphic interval that included the basal part of the Dakota Sandstone, the Brushy Basin and Westwater Canyon Members of the Morrison Formation, and the upper part of the Recapture Member of the Morrison Formation. The project objectives were (1) to provide cores and geophysical logs for study of the sedimentology, petrography, geochemistry, and mineralization in the uranium-bearing Westwater Canyon Member; (2) to provide control for a detailed seismic study of Morrison stratigraphy and basement structures; (3) to define and correlate the stratigraphy of Cretaceous coal-bearing units; (4) to supply background data for studies of ground-water flow pattern and ground-water quality; and (5) to provide data to aid resource assessment or uranium and coal. The project design included selection of (1) drill-hole locations to cross known ore and depositional trends in the Morrison Formation; (2) a coring interval to include the uranium-bearing unit and adjacent units; geophysical logs for lithologic correlations, quantitative evaluation of uranium mineralization, qualitative detection of coal beds, preparation of synthetic seismograms, and magnetic susceptibility studies of alteration in the Morrison; and (3) a high-salinity mud program to enhance core recovery

  5. TARZAN: A REMOTE TOOL DEPLOYMENT SYSTEM FOR THE WEST VALLEY DEVELOPMENT PROJECT

    International Nuclear Information System (INIS)

    Thompson, Bruce R.; Veri, James

    1999-01-01

    RedZone Robotics, Inc. undertook a development project to build Tarzan, a Remote Tool Delivery system to work inside nuclear waste storage tanks 8D-1 and 8D-2 at the West Valley Demonstration Project (WVDP). The removal of waste deposits from large storage tanks poses significant challenges during tank operations and closure. Limited access, the presence of chemical, radiological, and /or explosive hazards, and the need to deliver retrieval equipment to all regions of the tank exceed the capabilities of most conventional methods and equipment. Remotely operated devices for mobilizing and retrieving waste materials are needed. Some recent developments have been made in this area. However, none of these developments completely and cost-effectively address tanks that are congested with internal structures (e.g., support columns, cooling coils, fixed piping, etc.). The Tarzan system consists of the following parts: Locomotor which is deployed in the tank for inspection and cleanup; Hydraulic power unit providing system power for the locomotor and deployment unit; and Control system providing the man machine interface to control, coordinate and monitor the system. This document presents the final report on the Tarzan project

  6. Process, cost modeling and simulations for integrated project development of biomass for fuel and protein

    International Nuclear Information System (INIS)

    Pannir Selvam, P.V.; Wolff, D.M.B.; Souza Melo, H.N.

    1998-01-01

    The construction of the models for biomass project development are described. These models, first constructed using QPRO electronic spread sheet for Windows, are now being developed with the aid of visual and object oriented program as tools using DELPHI V.1 for windows and process simulator SUPERPRO, V.2.7 Intelligent Inc. These models render the process development problems with economic objectives to be solved very rapidly. The preliminary analysis of cost and investments of biomass utilisation projects which are included for this study are: steam, ammonia, carbon dioxide and alkali pretreatment process, methane gas production using anaerobic digestion process, aerobic composting, ethanol fermentation and distillation, effluent treatments using high rate algae production as well as cogeneration of energy for drying. The main project under developments are the biomass valuation projects with the elephant (Napier) grass, sugar cane bagasse and microalgae, using models for mass balance, equipment and production cost. The sensibility analyses are carried out to account for stochastic variation of the process yield, production volume, price variations, using Monte Carlo method. These models allow the identification of economical and scale up problems of the technology. The results obtained with few preliminary project development with few case studies are reported for integrated project development for fuel and protein using process and cost simulation models. (author)

  7. 76 FR 56905 - The Central Valley Project, the California-Oregon Transmission Project, the Pacific Alternating...

    Science.gov (United States)

    2011-09-14

    ... Redding Electric Utility, California. Project Description A. History and Description of the CVP, PACI, and... Dams were also included in the authorization, along with high-voltage transmission lines designed to... three components: Component 1: [GRAPHIC] [TIFF OMITTED] TN14SE11.006 Where: FP Customer Load = An FP...

  8. Biomass gasification to heat, electricity and biofuels. HighBio project publication

    Energy Technology Data Exchange (ETDEWEB)

    Lassi, U.; Wikman, B. (eds.)

    2011-07-01

    Renewable energy and the use of biomass in energy production promotes sustainable development and decreases the use of fossil fuels. Biomass, e.g. wood chips can be used in the production of heat and electricity, as well as being used as a biofuel component and novel product for the chemical industry. Efficient utilisation of biomass requires a high level of knowledge and the development of new processes to create a new way of thinking. In this process, international co-operation plays a significant role. The aim of the HighBio project was to produce new information on biomass gasification and the utilisation opportunities of product gas in biofuel and biochemicals production. The project was also aimed at studying utilisation properties of biogasification ashes in distributed energy production. Small-scaled CHP plants can be used for simultaneous heat and power production by gasifying wood chips and by burning energy intensive product gas. Compared with thermal combustion, particulate emissions from gasification are lower, which also contributes to the EU's ever tightening emission legislation. Several small and middle scale companies in the Northern part of Finland and Sweden have worked with biomass gasification, and during the project, the birth of new ones has been seen. In this development stage, researchers of the HighBio project have also been strongly involved. Increased use of renewable energy opens up new possibilities for entrepreneurship and the birth of new companies, especially in rural areas. In order to enable these opportunities, we need research data from the universities, novel innovations, and especially their successful commercialisation. The HighBio project has also contributed to tackling those challenges by arranging research seminars and meetings to companies and other interest groups, as well as by establishing research activities and collaborations. Regional collaboration combined with national and international research networks

  9. Circumpolar arctic tundra biomass and productivity dynamics in response to projected climate change and herbivory.

    Science.gov (United States)

    Yu, Qin; Epstein, Howard; Engstrom, Ryan; Walker, Donald

    2017-09-01

    Satellite remote sensing data have indicated a general 'greening' trend in the arctic tundra biome. However, the observed changes based on remote sensing are the result of multiple environmental drivers, and the effects of individual controls such as warming, herbivory, and other disturbances on changes in vegetation biomass, community structure, and ecosystem function remain unclear. We apply ArcVeg, an arctic tundra vegetation dynamics model, to estimate potential changes in vegetation biomass and net primary production (NPP) at the plant community and functional type levels. ArcVeg is driven by soil nitrogen output from the Terrestrial Ecosystem Model, existing densities of Rangifer populations, and projected summer temperature changes by the NCAR CCSM4.0 general circulation model across the Arctic. We quantified the changes in aboveground biomass and NPP resulting from (i) observed herbivory only; (ii) projected climate change only; and (iii) coupled effects of projected climate change and herbivory. We evaluated model outputs of the absolute and relative differences in biomass and NPP by country, bioclimate subzone, and floristic province. Estimated potential biomass increases resulting from temperature increase only are approximately 5% greater than the biomass modeled due to coupled warming and herbivory. Such potential increases are greater in areas currently occupied by large or dense Rangifer herds such as the Nenets-occupied regions in Russia (27% greater vegetation increase without herbivores). In addition, herbivory modulates shifts in plant community structure caused by warming. Plant functional types such as shrubs and mosses were affected to a greater degree than other functional types by either warming or herbivory or coupled effects of the two. © 2017 John Wiley & Sons Ltd.

  10. Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-01-01

    The Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (Y/ER-301) was prepared (1) to safely, cost-effectively, and efficiently evaluate the environmental impact of solid material in the two debris areas in the context of industrial land uses (as defined in the Bear Creek Valley Feasibility Study) to support the Engineering Evaluation/Cost Assessment and (2) to evaluate, define, and implement the actions to mitigate these impacts. This work was performed under Work Breakdown Structure 1.x.01.20.01.08

  11. Environmental change and Rift Valley fever in eastern Africa: projecting beyond HEALTHY FUTURES

    Directory of Open Access Journals (Sweden)

    David Taylor

    2016-03-01

    Full Text Available Outbreaks of Rift Valley fever (RVF, a relatively recently emerged zoonosis endemic to large parts of sub-Saharan Africa that has the potential to spread beyond the continent, have profound health and socio-economic impacts, particularly in communities where resilience is already low. Here output from a new, dynamic disease model [the Liverpool RVF (LRVF model], driven by downscaled, bias-corrected climate change data from an ensemble of global circulation models from the Inter-Sectoral Impact Model Intercomparison Project run according to two radiative forcing scenarios [representative concentration pathway (RCP4.5 and RCP8.5], is combined with results of a spatial assessment of social vulnerability to the disease in eastern Africa. The combined approach allowed for analyses of spatial and temporal variations in the risk of RVF to the end of the current century. Results for both scenarios highlight the high-risk of future RVF outbreaks, including in parts of eastern Africa to date unaffected by the disease. The results also highlight the risk of spread from/to countries adjacent to the study area, and possibly farther afield, and the value of considering the geography of future projections of disease risk. Based on the results, there is a clear need to remain vigilant and to invest not only in surveillance and early warning systems, but also in addressing the socio-economic factors that underpin social vulnerability in order to mitigate, effectively, future impacts.

  12. Characterization of the Process Mechanical Cell at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Drake, John; Schneider, Ken; Choroser, Jeff; Hughes, Karl

    2003-01-01

    The West Valley Demonstration Project has initiated decontamination and dismantlement (D and D) of the most highly radioactive and contaminated cells in a former spent nuclear fuel reprocessing plant. The goals of the D and D project are to remove loose debris in the cells and estimate the residual radioactivity level of legacy plant equipment. To support accomplishment of these goals, a unique characterization approach was developed to gather the information to meet anticipated Waste Isolation Pilot Plant (WIPP) acceptance criteria for remote-handled transuranic waste, and to facilitate segregation and packaging operations. Implementation of the characterization approach included the development and use of innovative, remote technology for measuring gamma radiation within the hot cell. The technology was used to identify and quantify radiation from individual debris items in radiation fields up to 2,000 R/hr (20 sieverts/hr). Sampling and analysis of the debris were also performed via remote handling means. Significant challenges associated with characterizing the highly radioactive and highly contaminated hot cells were encountered. The innovative solutions for meeting these challenges are applicable throughout the Department of Energy Complex and help support the goal of targeting D and D efforts toward reducing risks to public health and the environment

  13. Development of derived investigation levels for use in internal dosimetry at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Johnson, P.

    1991-01-01

    The objective was to determine if the routine intemal dosimetry program at the West Valley Demonstration Project is capable of meeting the performance objective of 1 mSv annual effective dose equivalent due to internal contamination. With the use of the computer code REMedy the annual effective dose equivalent is calculated. Some of the radionuclides of concern result in an annual effective dose equivalent that exceeds the performance objective. Although the results exceed the performance objective, in all but two cases they do not exceed the US DOE regulatory limits. In these instances the Th-232 and Am-241 were determined to exceed the committed dose equivalent limit to their limiting tissue. In order to document the potential missed dose for regulatory compliance, Sr-90 is used as an indicator for Th-232. For Am-241 an investigation as to whether or not the minimum detectable amount can be lowered is performed. The derived investigation levels as a result of this project are 4.9E3 Bq/lung count for Co-60, 2.2E4 Bq/lung count for Cs-137, 1.9 Bq/1 for Sr-90 and for radionuclides other than Sr-90 any value greater than or equal to three standard deviations above their net count is considered to require further investigation

  14. Analysis of projected water availability with current basin management plan, Pajaro Valley, California

    Science.gov (United States)

    Hanson, Randall T.; Lockwood, Brian; Schmid, Wolfgang

    2014-01-01

    The projection and analysis of the Pajaro Valley Hydrologic Model (PVHM) 34 years into the future using MODFLOW with the Farm Process (MF-FMP) facilitates assessment of potential future water availability. The projection is facilitated by the integrated hydrologic model, MF-FMP that fully couples the simulation of the use and movement of water from precipitation, streamflow, runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. MF-FMP allows for more complete analysis of conjunctive-use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface-water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within “water-balance subregions” (WBS) comprised of one or more model cells that can represent a single farm, a group of farms, watersheds, or other hydrologic or geopolitical entities. Analysis of conjunctive use would be difficult without embedding the fully coupled supply-and-demand into a fully coupled simulation, and are difficult to estimate a priori.

  15. Sustainable model for financial viability of decentralized biomass gasifier based power projects

    International Nuclear Information System (INIS)

    Palit, Debajit; Malhotra, Ramit; Kumar, Atul

    2011-01-01

    This paper made a modest attempt for designing a sustainable model for financial viability of biomass gasifier power projects for enhancing electricity access in India and other developing countries. For long term sustainability of distributed generation projects in remote rural areas, viability from both project implementing agency (PIA) and the end-users need to be ensured. The minimum required prices of electricity from both PIA and end-user perspective have been estimated. While for PIA the cost recovery is the key for viability, the affordability to pay the electricity cost is crucial for the end users. Analysis carried out in this paper on the basis of data obtained from operational projects implemented in India reveal that it is essential to operate the system at a higher capacity utilization factor. While this can be achieved though creating convergence with locally relevant economic activity, it is also observed that micro-enterprises cannot pay beyond a certain price of electricity to keep it sustainable. This paper sets forth a case for developing a regulatory mechanism to extend the tariff fixation for the projects and providing cross-subsidies to ensure long term sustainability of off-grid project. - Highlights: → We design sustainable financial model for viability of biomass gasifier projects. → Analysis based on field data obtained from operational projects in India. Estimated electricity pricing from both implementing agency and end-users perspective. → A regulatory mechanism for tariff fixation and cross subsidization is recommended.

  16. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2003

    International Nuclear Information System (INIS)

    2004-01-01

    This Annual Site Environmental Report for the West Valley Demonstration Project (WVDP or Project) is published to inform those with interest about environmental conditions at the WVDP. In accordance with U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting, the report summarizes calendar year (CY) 2003 environmental monitoring data so as to describe the performance of the WVDP's environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs. During 2003, cleanup of radioactive waste from the former nuclear fuels reprocessing plant that shut down operations in the 1970s was continued at the WVDP. The Project is located in western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). The WVDP is being conducted in cooperation with the New York State Energy Research and Development Authority. Work activities at the WVDP during 2003 included: (1) maintaining canisters of vitrified high-level waste in a shielded facility; (2) shipping low-level radioactive waste offsite for disposal; (3) shipping packaged spent nuclear fuel assemblies to Idaho National Engineering and Environmental Laboratory; (4) constructing a facility where large high-activity components can be safely size-reduced and packaged for disposal; (5) decontaminating the fuel storage pool and the cask unloading pool; (6) decontaminating the general purpose cell and the process mechanical cell (also referred to as the head end cells); (7) cleanup of waste in the plutonium purification cell (south) and extraction cell number 2 in the main plant; (8) planning for decontamination and dismantlement of the vitrification facility; (9) continuing preparation of the Decommissioning and/or Long-Term Stewardship Environmental Impact Statement; and (10) monitoring the environment and managing contaminated areas within the Project facility premises

  17. Biomass energy projects for joint implementation of the UN FCCC [Framework Convention on Climate Change

    International Nuclear Information System (INIS)

    Swisher, Joel N.; Renner, Frederick P.

    1998-01-01

    The UN Framework Convention on Climate Change (FCCC) allows for the joint implementation (JI) of measures to mitigate the emissions of greenhouse gases. The concept of JI refers to the implementation of such measures in one country with partial or full financial and/or technical support from another country, potentially fulfilling some of the supporting country's emission-reduction commitment under the FCCC. This paper addresses some key issues related to JI under the FCCC as they relate to the development of biomass energy projects for carbon offsets in developing countries. Issues include the reference case or baseline, carbon accounting and net carbon storage, potential project implementation barriers and risks, monitoring and verification, local agreements and host-country approval. All of these issues are important in project design and evaluation. We discuss briefly several case studies, which consist of a biomass-fueled co-generation projects under development at large sugar mills in the Philippines, India and Brazil, as potential JI projects. The case studies illustrate the benefits of bioenergy for reducing carbon emissions and some of the important barriers and difficulties in developing and crediting such projects. Results to date illustrate both the achievements and the difficulties of this type of project. (author)

  18. Coal/Biomass-to-Liquids Demonstration Testing for DLA Energy: Report on Project Tests, Evaluations, and Recommendations

    Science.gov (United States)

    2015-08-20

    Report January 2010-August 2015 Coal/ Biomass -to-Liquids Demonstration Testing for DLA Energy Report on Project Tests, Evaluations, and...produced commercially from coal and biomass mixtures while meeting the requirements of Section 526, which requires that GHG emissions from...gasification equipment, coals, and biomass used, and reports and analyzes the test results. Additionally, the team worked with DOE NETL to conduct

  19. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    O. P. Mendiratta; D. K. Ploetz

    2000-02-29

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

  20. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Mendiratta, O.P.; Ploetz, D.K.

    2000-01-01

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste processing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999

  1. Collaboration, Participation and Technology: The San Joaquin Valley Cumulative Health Impacts Project

    Directory of Open Access Journals (Sweden)

    Jonathan K. London

    2011-11-01

    Full Text Available Community-university partnerships have been shown to produce significant value for both sets of partners by providing reciprocal learning opportunities, (rebuilding bonds of trust, and creating unique venues to formulate and apply research that responds to community interests and informs collaborative solutions to community problems. For such partnerships to be mutually empowering, certain design characteristics are necessary. These include mutual respect for different modes and expressions of knowledge, capacity-building for all parties, and an environment that promotes honest and constructive dialogue about the inevitable tensions associated with the interplay of power/knowledge. This article explores an innovative case of community-university partnerships through participatory action research involving a coalition of environmental justice and health advocates, the San Joaquin Valley Cumulative Health Impacts Project, and researchers affiliated with the University of California, Davis. In particular, we examine how participatory GIS and community mapping can promote co-learning and interdependent science. Keywords Community-based participatory research, environmental justice, Public Participation Geographic Information System

  2. Bioenergy guide. Projecting, operation and economic efficiency of biomass power plants; Leitfaden Bioenergie. Planung, Betrieb und Wirtschaftlichkeit von Bioenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Deimling, S. [Stuttgart Univ. (DE). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER); Kaltschmitt, M; Schneider, B. [and others

    2000-07-01

    This guide gives an survey over planning, operation and economics of biomass conversion plants. Main topics are: production and supply of biomass fuels, combustion properties, licensing, cost and financing. It shows planning and management of projects and the legal background for Germany and the European Union.

  3. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California's Central Valley.

    Directory of Open Access Journals (Sweden)

    Elliott L Matchett

    Full Text Available The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006-2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the "existing" landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration

  4. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California's Central Valley.

    Science.gov (United States)

    Matchett, Elliott L; Fleskes, Joseph P

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006-2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the "existing" landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  5. Projected impacts of climate, urbanization, water management, and wetland restoration on waterbird habitat in California’s Central Valley

    Science.gov (United States)

    Matchett, Elliott L.; Fleskes, Joseph

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006–2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the “existing” landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  6. Community outreach and education: key components of the Salix consortium's willow biomass project

    International Nuclear Information System (INIS)

    Volk, T.A.; Edick, S.; Brown, S.; Downing, M.

    1999-01-01

    This project facilitates the commercialization of willow biomass crops as a locally grown source of renewable energy. The challenge is to simultaneously optimize production and utilization technology, develop farmer interest and crop acreage, and establish stable and reliable markets. The participation of farmers and landowners, businesses, and local and regional governments in the process is essential for success. A three-phased approach elicits this participation: focused outreach and education, active involvement of potential producers of willow biomass crops, and the development of a user-friendly economic and business model that can be used by a variety of stakeholders. Barriers to commercialization have been identified, such as misconceptions about the production system and crop, assurances of a stable and reliable market for the material, and indications that the equipment and infrastructure to grow and process willow biomass crops are in place. Outreach efforts have specifically addressed these issues. As a result target audiences' responses have changed from passive observation to inquiries and suggestions for active participation. This shift represents a significant step towards the goal of making willow biomass crops a viable source of locally produced fuel. (author)

  7. Solar-assisted biomass-district heating: projects in Austria and operational data; Solarunterstuetzte Biomasse-Fernwaermeversorgung: Projekte in Oesterreich und Betriebsdaten

    Energy Technology Data Exchange (ETDEWEB)

    Faninger, G. [Institut fuer Interdisziplinaere Forschung und Fortbildung der Universitaeten Klagenfurt, Innsbruck und Wien (IFF), Klagenfurt (Austria)

    1998-12-31

    In recent years small-volume biomass district heating systems (district heat grids) have attracted increasing interest in Austria. By the end of 1997 some 359 biomass-district heating systems with an overall capacity of approximately 483 MW were in operation. If a biomass-district heating plant and a solar plant are combined the solar plant can supply most of the heat required outside the heating season. At present Austria runs 12 solar-assisted biomass-district heating grids with collector areas between 225 square metres and 1,250 square metres. In order to run these biomass-district heating systems in an economically and technically efficient way it is necessary to assure high quality in terms of planning, construction and operation. A list of criteria is set up on the basis of first operational data in order to evaluate energy efficiency and economic performance. These criteria should be applied in order to ensure that energy, environment and economy are equally considered in the planning and construction of solar-assisted biomass-district heating plants. They should also be helpful for the approval procedures of projects. (orig.) [Deutsch] Kleinraeumige Biomasse-Fernwaermeanlagen (Nahwaermenetze) fanden in den letzten Jahren zunehmendes Interesse in Oesterreich. So waren Ende 1997 insgesamt 359 Biomasse-Fernwaermeanlagen mit einer installierten Gesamtleistung von etwa 483 MW in Betrieb. Die Kombination einer Biomasse-Fernwaermeanlage mit einer Solaranlage bringt den Vorteil, dass die Waermebereitstellung ausserhalb der Heizsaison zu einem hohen Anteil ueber die Solaranlage vorgenommen werden kann. Derzeit werden in Oesterreich 12 solarunterstuetzte Biomasse-Nahwaermenetze mit Kollektorflaechen von 225 m{sup 2} bis 1.250 m{sup 2} betrieben. Um einen moeglichst effizienten und damit auch wirtschaftlichen Betrieb von solarunterstuetzten Biomasse-Fernwaermeanlagen zu gewaehrleisten, werden hohe Anforderungen an Planung, Ausfuehrung und Betrieb gestellt. Auf der

  8. Development of analytical cell support for vitrification at the West Valley Demonstration Project. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Barber, F.H.; Borek, T.T.; Christopher, J.Z. [and others

    1997-12-01

    Analytical and Process Chemistry (A&PC) support is essential to the high-level waste vitrification campaign at the West Valley Demonstration Project (WVDP). A&PC characterizes the waste, providing information necessary to formulate the recipe for the target radioactive glass product. High-level waste (HLW) samples are prepared and analyzed in the analytical cells (ACs) and Sample Storage Cell (SSC) on the third floor of the main plant. The high levels of radioactivity in the samples require handling them in the shielded cells with remote manipulators. The analytical hot cells and third floor laboratories were refurbished to ensure optimal uninterrupted operation during the vitrification campaign. New and modified instrumentation, tools, sample preparation and analysis techniques, and equipment and training were required for A&PC to support vitrification. Analytical Cell Mockup Units (ACMUs) were designed to facilitate method development, scientist and technician training, and planning for analytical process flow. The ACMUs were fabricated and installed to simulate the analytical cell environment and dimensions. New techniques, equipment, and tools could be evaluated m in the ACMUs without the consequences of generating or handling radioactive waste. Tools were fabricated, handling and disposal of wastes was addressed, and spatial arrangements for equipment were refined. As a result of the work at the ACMUs the remote preparation and analysis methods and the equipment and tools were ready for installation into the ACs and SSC m in July 1995. Before use m in the hot cells, all remote methods had been validated and four to eight technicians were trained on each. Fine tuning of the procedures has been ongoing at the ACs based on input from A&PC technicians. Working at the ACs presents greater challenges than had development at the ACMUs. The ACMU work and further refinements m in the ACs have resulted m in a reduction m in analysis turnaround time (TAT).

  9. Development of analytical cell support for vitrification at the West Valley Demonstration Project. Topical report

    International Nuclear Information System (INIS)

    Barber, F.H.; Borek, T.T.; Christopher, J.Z.

    1997-12-01

    Analytical and Process Chemistry (A ampersand PC) support is essential to the high-level waste vitrification campaign at the West Valley Demonstration Project (WVDP). A ampersand PC characterizes the waste, providing information necessary to formulate the recipe for the target radioactive glass product. High-level waste (HLW) samples are prepared and analyzed in the analytical cells (ACs) and Sample Storage Cell (SSC) on the third floor of the main plant. The high levels of radioactivity in the samples require handling them in the shielded cells with remote manipulators. The analytical hot cells and third floor laboratories were refurbished to ensure optimal uninterrupted operation during the vitrification campaign. New and modified instrumentation, tools, sample preparation and analysis techniques, and equipment and training were required for A ampersand PC to support vitrification. Analytical Cell Mockup Units (ACMUs) were designed to facilitate method development, scientist and technician training, and planning for analytical process flow. The ACMUs were fabricated and installed to simulate the analytical cell environment and dimensions. New techniques, equipment, and tools could be evaluated m in the ACMUs without the consequences of generating or handling radioactive waste. Tools were fabricated, handling and disposal of wastes was addressed, and spatial arrangements for equipment were refined. As a result of the work at the ACMUs the remote preparation and analysis methods and the equipment and tools were ready for installation into the ACs and SSC m in July 1995. Before use m in the hot cells, all remote methods had been validated and four to eight technicians were trained on each. Fine tuning of the procedures has been ongoing at the ACs based on input from A ampersand PC technicians. Working at the ACs presents greater challenges than had development at the ACMUs. The ACMU work and further refinements m in the ACs have resulted m in a reduction m in

  10. Phase 1 Characterization sampling and analysis plan West Valley demonstration project.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R. L. (Environmental Science Division)

    2011-06-30

    The Phase 1 Characterization Sampling and Analysis Plan (CSAP) provides details about environmental data collection that will be taking place to support Phase 1 decommissioning activities described in the Phase 1 Decommissioning Plan for the West Valley Demonstration Project, Revision 2 (Phase I DP; DOE 2009). The four primary purposes of CSAP data collection are: (1) pre-design data collection, (2) remedial support, (3) post-remediation status documentation, and (4) Phase 2 decision-making support. Data collection to support these four main objectives is organized into two distinct data collection efforts. The first is data collection that will take place prior to the initiation of significant Phase 1 decommissioning activities (e.g., the Waste Management Area [WMA] 1 and WMA 2 excavations). The second is data collection that will occur during and immediately after environmental remediation in support of remediation activities. Both data collection efforts have a set of well-defined objectives that encompass the data needs of the four main CSAP data collection purposes detailed in the CSAP. The main body of the CSAP describes the overall data collection strategies that will be used to satisfy data collection objectives. The details of pre-remediation data collection are organized by WMA. The CSAP contains an appendix for each WMA that describes the details of WMA-specific pre-remediation data collection activities. The CSAP is intended to expand upon the data collection requirements identified in the Phase 1 Decommissioning Plan. The CSAP is intended to tightly integrate with the Phase 1 Final Status Survey Plan (FSSP). Data collection described by the CSAP is consistent with the FSSP where appropriate and to the extent possible.

  11. West Valley Demonstration Project, Waste Management Area #3 -- Closure Alternative I

    Energy Technology Data Exchange (ETDEWEB)

    Marschke, Stephen F. [Environmental Measurements Laboratory (EML), New York, NY (United States)

    2000-06-30

    The Draft Environmental Impact Statement for the completion of the West Valley Demonstration Project and closure and/or long-term management of facilities at the Western New York Nuclear Service Center divided the site into Waste Management Areas (WMAs), and for each WMA, presented the impacts associated with five potential closure alternatives. This report focuses on WMA 3 (the High-Level Waste (HLW) Storage Area (Tanks 8D-1 and 8D-2), the Vitrification Facility and other facilities) and closure Alternative I (the complete removal of all structures, systems and components and the release of the area for unrestricted use), and reestimates the impacts associated with the complete removal of the HLW tanks, and surrounding facilities. A 32-step approach was developed for the complete removal of Tanks 8D-1 and 8D-2, the Supernatant Treatment System Support Building, and the Transfer Trench. First, a shielded Confinement Structure would be constructed to reduce the shine dose rate and to control radioactivity releases. Similarly, the tank heels would be stabilized to reduce potential radiation exposures. Next, the tank removal methodology would include: 1) excavation of the vault cover soil, 2) removal of the vault roof, 3) cutting off the tank’s top, 4) removal of the stabilized heel remaining inside the tank, 5) cutting up the tank’s walls and floor, 6) removal of the vault’s walls, the perlite blocks, and vault floor, and 7) radiation surveying and backfilling the resulting hole. After the tanks are removed, the Confinement Structure would be decontaminated and dismantled, and the site backfilled and landscaped. The impacts (including waste disposal quantities, emissions, work-effort, radiation exposures, injuries and fatalities, consumable materials used, and costs) were estimated based on this 32 step removal methodology, and added to the previously estimated impacts for closure of the other facilities within WMA 3 to obtain the total impacts from

  12. West Valley Demonstration Project vitrification process equipment Functional and Checkout Testing of Systems (FACTS)

    International Nuclear Information System (INIS)

    Carl, D.E.; Paul, J.; Foran, J.M.; Brooks, R.

    1990-01-01

    The Vitrification Facility (VF) at the West Valley Demonstration Project was designed to convert stored radioactive waste into a stable glass for disposal in a federal repository. The Functional and Checkout Testing of Systems (FACTS) program was conducted from 1984 to 1989. During this time new equipment and processes were developed, installed, and implemented. Thirty-seven FACTS tests were conducted, and approximately 150,000 kg of glass were made by using nonradioactive materials to simulate the radioactive waste. By contrast, the planned radioactive operation is expected to produce approximately 500,000 kg of glass. The FACTS program demonstrated the effectiveness of equipment and procedures in the vitrification system, and the ability of the VF to produce quality glass on schedule. FACTS testing also provided data to validate the WVNS waste glass qualification method and verify that the product glass would meet federal repository acceptance requirements. The system was built and performed to standards which would have enabled it to be used in radioactive service. As a result, much of the VF tested, such as the civil construction, feed mixing and holding vessels, and the off-gas scrubber, will be converted for radioactive operation. The melter was still in good condition after being at temperature for fifty-eight of the sixty months of FACTS. However, the melter exceeded its recommended design life and will be replaced with a similar melter. Components that were not designed for remote operation and maintenance will be replaced with remote-use items. The FACTS testing was accomplished with no significant worker injury or environmental releases. During the last FACTS run, the VF processes approximated the remote-handling system that will be used in radioactive operations. Following this run the VF was disassembled for conversion to a radioactive process. Functional and checkout testing of new components will be performed prior to radioactive operation

  13. Environmental problem analysis of the proposed Sage Creek Coal Project in the Flathead Valley of British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The proposed Sage Creek Coal Project is analysed with respect to environmental impacts, international concerns and public concerns. Although information available to date is insufficient to pursue an analysis enabling a determination of the full social and environmental cost of the project, basic concerns and issues have been elucidated. Emphasis is given to the potential adverse effects on existing fish species and on wildlife species, particularly grizzly bear, moose and mountain goat. Because the area affected by the project includes both Canadian and U.S. territory, environmental objectives of the U.S. government for the Upper Flathead Valley ecosystem must also be considered in any future B.C. government decisions. Public opposition to the project from an environmental standpoint is documented. The report concludes the preferred option for a Ministry of Environment position is to recommend the project not proceed.

  14. Assessment of the feasibility of studying the potential health effects of the West Valley Solidification Project. Phase II

    International Nuclear Information System (INIS)

    Matanoski, G.M.

    The activities at West Valley involve potential exposure to ionizing radiation. The health effects from radiation are well known and the projected levels of exposure in this situation are so low as to pose no known health hazard in the community. In such a situation it is not reasonable to propose an expensive, comprehensive and physically invasive screening program for the public unless one could justify the benefits. This report describes a feasible population-based surveillance or disease monitoring system which could be implemented in the West Valley area in order to assess the relevance of any changes in incidence of disease which might be attributable to radiation. The proposed plan is both practical and inexpensive. It would anticipate any potential changes in the health status of the population and provide a means to objectively interpret such changes before major concerns develop

  15. Occupational Safety and Health Program at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    L. M. Calderon

    1999-01-01

    The West Valley Nuclear Services Co. LLC (WVNS) is committed to provide a safe, clean, working environment for employees, and to implement U.S. Department of Energy (DOE) requirements affecting worker safety. The West Valley Demonstration Project (WVDP) Occupational Safety and Health Program is designed to protect the safety, health, and well-being of WVDP employees by identifying, evaluating, and controlling biological, chemical, and physical hazards in the work place. Hazards are controlled within the requirements set forth in the reference section at the end of this report. It is the intent of the WVDP Occupational Safety and Health Program to assure that each employee is provided with a safe and healthy work environment. This report shows the logical path toward ensuring employee safety in planning work at the WVDP. In general, planning work to be performed safely includes: combining requirements from specific programs such as occupational safety, industrial hygiene, radiological control, nuclear safety, fire safety, environmental protection, etc.; including WVDP employees in the safety decision-making processes; pre-planning using safety support re-sources; and integrating the safety processes into the work instructions. Safety management principles help to define the path forward for the WVDP Occupational Safety and Health Program. Roles, responsibilities, and authority of personnel stem from these ideals. WVNS and its subcontractors are guided by the following fundamental safety management principles: ''Protection of the environment, workers, and the public is the highest priority. The safety and well-being of our employees, the public, and the environment must never be compromised in the aggressive pursuit of results and accomplishment of work product. A graded approach to environment, safety, and health in design, construction, operation, maintenance, and deactivation is incorporated to ensure the protection of the workers, the public, and the environment

  16. Final Verification Success Story Using the Triad Approach at the Oak Ridge National Laboratory's Melton Valley Soils and Sediment Project

    International Nuclear Information System (INIS)

    King, D.A.; Haas, D.A.; Cange, J.B.

    2006-01-01

    The United States Environmental Protection Agency recently published guidance on the Triad approach, which supports the use of smarter, faster, and better technologies and work strategies during environmental site assessment, characterization, and cleanup. The Melton Valley Soils and Sediment Project (Project) at the Oak Ridge National Laboratory embraced this three-pronged approach to characterize contaminants in soil/sediment across the 1000-acre Melton Valley Watershed. Systematic Project Planning is the first of three prongs in the Triad approach. Management initiated Project activities by identifying key technical personnel, included regulators early in the planning phase, researched technologies, and identified available resources necessary to meet Project objectives. Dynamic Work Strategies is the second prong of the Triad approach. Core Team members, including State and Federal regulators, helped develop a Sampling and Analysis Plan that allowed experienced field managers to make real-time, in-the-field decisions and, thus, to adjust to conditions unanticipated during the planning phase. Real-time Measurement Technologies is the third and last prong of the Triad approach. To expedite decision-making, the Project incorporated multiple in-field technologies, including global positioning system equipment integrated with field screening instrumentation, magnetometers for utility clearance, and an on-site gamma spectrometer (spec) for rapid contaminant speciation and quantification. As a result of a relatively complex but highly efficient program, a Project field staff of eight collected approximately 1900 soil samples for on-site gamma spec analysis (twenty percent were also shipped for off-site analyses), 4.7 million gamma radiation measurements, 1000 systematic beta radiation measurements, and 3600 systematic dose rate measurements between July 1, 2004, and October 31, 2005. The site database previously contained results for less than 500 soil samples dating

  17. Outlook for Mississippi Alluvial Valley forests: a subregional report from the Southern Forest Futures Project

    Science.gov (United States)

    Emile S. Gardiner

    2015-01-01

    The Mississippi Alluvial Valley, which can be broadly subdivided into the Holocene Deposits section and the Deltaic Plain section, is a 24.9-million-acre area generally approximating the alluvial floodplain and delta of the lower Mississippi River. Its robust agricultural economy is maintained by a largely rural population, and recreational resources draw high...

  18. Decontamination of the Warm Aisles at the West Valley Demonstration Project. Final topical report, January 1985-February 1986

    International Nuclear Information System (INIS)

    Allen, J.C.

    1986-06-01

    The West Valley Demonstration Project is a DOE project to solidify in a glass form the 2,120 m 3 (560,000 gallons) of liquid high-level waste stored in two underground steel tanks at the site of the world's first commercial nuclear fuel reprocessing plant, West Valley, New York. One project objective is to utilize as much of the existing plant areas as practical for the installation of solidification support systems. Previously, Extraction Cell Three (XC3) and the Product Purification Cell (PPC) had been chosen as the location of the Liquid Waste Treatment System (LWTS). Subsequently, it was decided that areas of the Upper Warm Aisle (UWA) and the Lower Warm Aisle (LWA) which are located adjacent to the south wall of XC3 and PPC would also be needed for the installation of LWTS equipment. Shielded concrete niches which contained pumps and valve manifolds are located in the warm aisles. One pump niche and one valve manifold niche in the UWA and one pump niche in the LWA were identified as needed for the LWTS. Also, it was necessary to remove some equipment which was located outside the niches. Subsequently, decontamination plans were made and carried out to prepare these areas for modification and installation activities. Predecontamination survey activities began in January 1985, and decontamination operations were completed in February 1986. Decontamination efforts, results, and lessons learned are reported

  19. Groundwater quality in the Western San Joaquin Valley study unit, 2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Fram, Miranda S.

    2017-06-09

    Water quality in groundwater resources used for public drinking-water supply in the Western San Joaquin Valley (WSJV) was investigated by the USGS in cooperation with the California State Water Resources Control Board (SWRCB) as part of its Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. The WSJV includes two study areas: the Delta–Mendota and Westside subbasins of the San Joaquin Valley groundwater basin. Study objectives for the WSJV study unit included two assessment types: (1) a status assessment yielding quantitative estimates of the current (2010) status of groundwater quality in the groundwater resources used for public drinking water, and (2) an evaluation of natural and anthropogenic factors that could be affecting the groundwater quality. The assessments characterized the quality of untreated groundwater, not the quality of treated drinking water delivered to consumers by water distributors.The status assessment was based on data collected from 43 wells sampled by the U.S. Geological Survey for the GAMA Priority Basin Project (USGS-GAMA) in 2010 and data compiled in the SWRCB Division of Drinking Water (SWRCB-DDW) database for 74 additional public-supply wells sampled for regulatory compliance purposes between 2007 and 2010. To provide context, concentrations of constituents measured in groundwater were compared to U.S. Environmental Protection Agency (EPA) and SWRCB-DDW regulatory and non-regulatory benchmarks for drinking-water quality. The status assessment used a spatially weighted, grid-based method to estimate the proportion of the groundwater resources used for public drinking water that has concentrations for particular constituents or class of constituents approaching or above benchmark concentrations. This method provides statistically unbiased results at the study-area scale within the WSJV study unit, and permits comparison of the two study areas to other areas assessed by the GAMA Priority Basin Project

  20. Seismic calibration shots conducted in 2009 in the Imperial Valley, southern California, for the Salton Seismic Imaging Project (SSIP)

    Science.gov (United States)

    Murphy, Janice; Goldman, Mark; Fuis, Gary; Rymer, Michael; Sickler, Robert; Miller, Summer; Butcher, Lesley; Ricketts, Jason; Criley, Coyn; Stock, Joann; Hole, John; Chavez, Greg

    2011-01-01

    Rupture of the southern section of the San Andreas Fault, from the Coachella Valley to the Mojave Desert, is believed to be the greatest natural hazard facing California in the near future. With an estimated magnitude between 7.2 and 8.1, such an event would result in violent shaking, loss of life, and disruption of lifelines (freeways, aqueducts, power, petroleum, and communication lines) that would bring much of southern California to a standstill. As part of the Nation's efforts to prevent a catastrophe of this magnitude, a number of projects are underway to increase our knowledge of Earth processes in the area and to mitigate the effects of such an event. One such project is the Salton Seismic Imaging Project (SSIP), which is a collaborative venture between the United States Geological Survey (USGS), California Institute of Technology (Caltech), and Virginia Polytechnic Institute and State University (Virginia Tech). This project will generate and record seismic waves that travel through the crust and upper mantle of the Salton Trough. With these data, we will construct seismic images of the subsurface, both reflection and tomographic images. These images will contribute to the earthquake-hazard assessment in southern California by helping to constrain fault locations, sedimentary basin thickness and geometry, and sedimentary seismic velocity distributions. Data acquisition is currently scheduled for winter and spring of 2011. The design and goals of SSIP resemble those of the Los Angeles Region Seismic Experiment (LARSE) of the 1990's. LARSE focused on examining the San Andreas Fault system and associated thrust-fault systems of the Transverse Ranges. LARSE was successful in constraining the geometry of the San Andreas Fault at depth and in relating this geometry to mid-crustal, flower-structure-like decollements in the Transverse Ranges that splay upward into the network of hazardous thrust faults that caused the 1971 M 6.7 San Fernando and 1987 M 5

  1. Sustainable biomass products development and evaluation, Hamakua project. Final draft report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The PICHTR Sustainable Biomass Energy Program was developed to evaluate the potential to cultivate crops for energy production as an alternative use of lands made available by the closing of large sugar plantations. In particular, the closing of the Hamakua Sugar Company on the island of Hawaii brought a great deal of attention to the future of agriculture in this region and in the state. Many options were proposed. Several promising alternatives had been proposed for cane lands. These included dedicated feedstock supply systems (DFSS) for electrical energy production, cultivation of sugarcane to produce ethanol and related by-products, and the production of feed and crops to support animal agriculture. Implementation of some of the options might require preservation of large tracts of land and maintenance of the sugar mills and sugar infrastructure. An analysis of the technical, financial, and other issues necessary to reach conclusions regarding the optimal use of these lands was required. At the request of the Office of State Planning and Senator Akaka`s office, the Pacific International Center for High Technology Research (PICHTR) established and coordinated a working group composed of state, county, federal, and private sector representatives to identify sustainable energy options for the use of idle sugar lands on the island of Hawaii. The Sustainable Biomass Energy Program`s Hamakua Project was established to complete a comprehensive evaluation of the most viable alternatives and assess the options to grow crops as a source of raw materials for the production of transportation fuel and/or electricity on the island of Hawaii. The motivation for evaluating biomass to energy conversion embraced the considerations that Hawaii`s energy security would be improved by diversifying the fuels used for transportation and reducing dependency on imported fossil fuels. The use of waste products as feedstocks could divert wastes from landfills.

  2. BPA/Lower Valley transmission project. Final environmental impact statement. Appendix C

    International Nuclear Information System (INIS)

    1998-06-01

    Bonneville Power Administration is investigating the feasibility of constructing an additional transmission line, which for the most part will be adjacent to the existing transmission line. This would require the construction or acquisition of additional access roads, used for routine and emergency maintenance and construction activities. A survey was conducted to map any occurrences of threatened, endangered and sensitivity plant species and weed species along the Swan Valley-Teton Line. This report contains Appendix C

  3. BPA/Lower Valley transmission project. Final environmental impact statement. Appendix F

    International Nuclear Information System (INIS)

    1998-06-01

    Bonneville Power Administration is investigating the feasibility of constructing an additional transmission line, which for the most part will be adjacent to the existing transmission line. This would require the construction or acquisition of additional access roads, used for routine and emergency maintenance and construction activities. A survey was conducted to map any occurrences of threatened, endangered and sensitivity plant species and weed species along the Swan Valley-Teton Line. This report contains Appendix F

  4. Preliminary mapping of surficial geology of Midway Valley Yucca Mountain Project, Nye County, Nevada

    International Nuclear Information System (INIS)

    Wesling, J.R.; Bullard, T.F.; Swan, F.H.; Perman, R.C.; Angell, M.M.; Gibson, J.D.

    1992-04-01

    The tectonics program for the proposed high-level nuclear waste repository at Yucca Mountain in southwestern Nevada must evaluate the potential for surface faulting beneath the prospective surface facilities. To help meet this goal, Quaternary surficial mapping studies and photolineament analyses were conducted to provide data for evaluating the location, recency, and style of faulting with Midway Valley at the eastern base of Yucca Mountain, the preferred location of these surface facilities. This interim report presents the preliminary results of this work

  5. The greenGain project - Biomass from landscape conservation and maintenance work for renewable energy production in the EU

    Science.gov (United States)

    Clalüna, Aline; Baumgarten, Wibke; García Galindo, Daniel; Lenz, Klaus; Doležal, Jan; De Filippi, Federico; Lorenzo, Joaquín; Montagnoli, Louis

    2017-04-01

    The project greenGain is looking for solutions to increase the energy production with regional and local biomass from landscape conservation and maintenance work, which is performed in the public interest. The relevant resources analysed in the greenGain model regions are, among others, biomass residues from clearing invasive vegetation in marginal agricultural lands in Spain, and residues from abandoned vineyards and olive groves in landscape protected areas in Italy. The main target groups are regional and local players who are responsible for maintenance and conservation work and for the biomass residue management in their regions. Moreover, the focus will be on service providers - including farmers and forest owners, their associations, NGOs, energy providers and consumers. Local companies, municipalities and public authorities are collaborating to identify the still underutilised non-food biomass resources and to discuss the way to integrate them into the local and regional biomass markets. Since the start of the three year project in January 2015, the partners from Italy, Spain, Czech Republic and Germany analysed, among other, the biomass feedstock potential coming from landscape maintenance work, and assessed various technological options to utilise this type of biomass. Further, political, legal and environmental aspects as well as awareness raising and public acceptance actions regarding the energetic use of biomass from public areas were assessed. greenGain also facilitates the exchange between model regions and other similar relevant players in the EU and shares examples of good practice. General guidelines will be prepared to guarantee a wide dissemination to other regions in the EU. Thus, the project shows how to build-up reliable knowledge on local availability of this feedstock and provides know-how concerning planning, harvesting, pre-treatment, storage and sustainable conversion pathways to a wide range of stakeholders in the EU.

  6. West Valley Demonstration Project facilities utilization plan for the existing facilities at the Western New York Nuclear Service Center

    International Nuclear Information System (INIS)

    Skillern, C.G.

    1986-05-01

    In 1980, Congress passed Public Law 96-368, the West Valley Demonstration Project (WVDP) Act. As a primary objective, the Act authorized the US Department of Energy (DOE) to solidify the high-level waste (HLW) stored at the Western New York Nuclear Service Center (WNYNSC) into a form suitable for transportation and disposal in a federal repository. This report will describe how WVDP proposes to use the existing WNYNSC Facilities in an efficient and technically effective manner to comply with Public Law 96-368. In support of the above cited law, the DOE has entered into a ''Cooperative agreement between the United States Department of Energy and the New York State Energy Research and Development Authority on the Western New York Nuclear Service Center at West Valley, New York.'' The state-owned areas turned over to the DOE for use are as follows: Process Plant, Waste Storage, Low-Level Waste Treatment Facility, Service Facilities, Plant Security, and Additional Facilities. The Facilities Utilization Plan (FUP) describes how the state-owned facilities will be utilized to complete the Project; it is divided into five sections as follows: Executive Summary - an overview; Introduction - the WVDP approach to utilizing the WNYNSC Facilities; WVDP Systems - a brief functional description of the system, list of equipment and components to be used and decontamination and decommissioning (D and D) support; WVDP Support Facilities; and Caveats that could effect or change the potential usage of a particular area

  7. Experiences of the BIOMAS-CUBA Project. Energy alternatives from biomass in Cuban rural areas

    International Nuclear Information System (INIS)

    Suárez, J.; Martín, G. J.; Cepero, L.; Funes-Monzote, F.; Blanco, D.; Machado, R.; Sotolongo, J. A.; Rodríguez, E.; Savran, Valentina; Rivero, J. L.; Martín, C.; García, A.

    2011-01-01

    This paper provides experiences of the international project BIOMAS-CUBA in the implementation of energy supply alternatives from biomass in rural areas, which are compatible to food security and environmental sustainability. These experiences are comprised between 2009 and 2011, within the agroenergetic farm concept, and are related to research and technological innovation processes associated to: the morphological, productive and chemical evaluation of germplasm of non-edible oil plants with potential to produce biodiesel, ethanol and other products; the planting and agricultural management of associations of Jatropha curcas and 21 food crops; the cleaning and oil extraction of Jatropha seeds; the physical-chemical characterization of such oil; the production of biodiesel and its co-products; the biogas production from excreta and bioproducts and biofertilizers, with the effluents of biodigesters; the gasification of ligneous biomass to generate electricity; the characterization and classification of integrated food and energy production systems. Likewise, the socioeconomic and environmental studies allowed appreciating adequate economic-financial feasibility, remarkable increases in food production, the formation of human capital and the improvement of the people's quality of life, a positive environmental impact and a substitution of energy porters and conventional fertilizers. (author)

  8. Mapping the above and belowground biomass in three landscapes in Cameroon, Rwanda and DRC: pilot cases in REDD+ pilot project.

    Science.gov (United States)

    Sufo Kankeu, R.

    2017-12-01

    A number of biomass/carbon maps have been recently produced using different approaches and despite their comparison there is still a gap. To fill this gap there is a need to provide accurate maps based on the field data on all types of land use and land cover. Based on the field data from plots established in three pilot projects around Virunga National park in Rwanda, Tri-national Sangha landscape in Cameroon and lac Télé-Lac Tumba landscape in DRC, this paper intend to analyse the relationship between land use change and biomass and present the variability through biomass/carbon maps. The above and belowground biomass was calculated from 95 nested plots of 20 meters radius. The value of biomass/carbon per plot were thus used to elaborate carbon maps of each study site. In the same the way the correlation between the land use and underground and above ground carbon stock were analysed using geographically weighted regression. These data have been joint with classified Spot 5 image and aggregated to come out will acceptable result. Results show that there is a strong relationship between land use in various project sites and the carbon stock related, the change of a forest cover directly impact on carbon stock/biomass.in the same way carbon map realized base on field data and IDW, Kriging or spline module show an idea on the carbon distribution but the maps are not accurate giving the distance between plots,

  9. Socioeconomic effects of power marketing alternatives for the Central Valley and Washoe Projects: 2005 regional econmic impact analysis using IMPLAN

    International Nuclear Information System (INIS)

    Anderson, D.M.; Godoy-Kain, P.; Gu, A.Y.; Ulibarri, C.A.

    1996-11-01

    The Western Area Power Administration (Western) was founded by the Department of Energy Organization Act of 1977 to market and transmit federal hydroelectric power in 15 western states outside the Pacific Northwest, which is served by the Bonneville Power Administration. Western is divided into four independent Customer Service Regions including the Sierra Nevada Region (Sierra Nevada), the focus of this report. The Central Valley Project (CVP) and the Washoe Project provide the primary power resources marketed by Sierra Nevada. Sierra Nevada also purchases and markets power generated by the Bonneville Power Administration, Pacific Gas and Electric (PG ampersand E), and various power pools. Sierra Nevada currently markets approximately 1,480 megawatts of power to 77 customers in northern and central California. These customers include investor-owned utilities, public utilities, government agencies, military bases, and irrigation districts. Methods and conclusions from an economic analysis are summarized concerning distributional effects of alternative actions that Sierra Nevada could take with it's new marketing plan

  10. Biomass burning studies and the International Global Atmospheric Chemistry (IGAC) Project

    International Nuclear Information System (INIS)

    Prinn, R.G.

    1991-01-01

    The perturbations to local and regional atmospheric chemistry caused by biomass burning also have global significance. The International Global Atmospheric Chemistry (IGAC) Project was created by scientists from over twenty countries in response to the growing interest concern about atmospheric chemical changes and their potential impact on mankind. The goal of the IGAC is to develop a fundamental understanding of the natural and anthropogenic processes that determine the chemical composition of the atmosphere and the interactions between atmospheric composition and biospheric and climatic processes. A specific objective is to accurately predict changes over the next century in the composition and chemistry of the global atmosphere. Current activities, leaders and scientists involved are presented in this chapter

  11. Integrated biomass utilization system developments (Kyoto-Bio-Cycle Project) and the effects of greenhouse gas reduction

    International Nuclear Information System (INIS)

    Nakamura, Kazuo; Hori, Hiroaki; Deguchi, Shinguo; Yano, Junya; Sakai, Shinichi

    2010-01-01

    Full text: The biomass available in Kyoto City located in urban area of Japan was estimated to be 2.02x10 6 t-wet/ yr (0.14x10 6 k liter/ yr oil equivalent), of which waste paper, waste timber, waste food, unused forest wood from the surrounding mountains and sewage sludge account for the largest amounts on an energy basis. These types of biomass can contribute to utilize for the reduction of fossil fuel consumption and for the reduction of greenhouse gas (GHG) emission. Therefore we started the Kyoto-Bio-Cycle Project (FY 2007-2009), which is the demonstration of renewable energy conversion technologies from the biomass. Specifically, we aimed for the greening of necessary materials such as methanol and the cyclic use of byproducts, with the bio diesel fuel production from used cooking oil (5 k liter-methyl ester/ day) as the core activity. Two technologies are being developed as part of the project. One is gasification and methanol synthesis to synthesize methanol with the pyrolytic gas generated from woody biomass. The other is high efficiency bio gasification that treats waste food, waste paper, and waste glycerin. This technology can improve the production rate of biogas and reduce the residue through the introduction of 80 degree Celsius-hyper-thermophilic hydrolysis in the 55 degree Celsius-thermophilic anaerobic fermentation process. These systems can produce 4 types of renewable energy such as bio diesel fuel, biogas, electricity and heat. And we conducted the life-cycle system analysis of GHG reduction effect for the demonstrating technologies, additionally we examined an optimum method of biomass utilization in the future low-carbon-society. As a result, the method that produces the liquid fuel (methanol, Ft oil) from dry biomass (waste timber, etc.) and the biogas from wet biomass (waste food, etc.) can reduce GHG emission highly at present and in the future, compared with the current direct combustion of biomass for the power generation. (author)

  12. Advanced system demonstration for utilization of biomass as an energy source. Volume I. Scope and design criteria and project summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    The information in this document is the result of an intensive engineering effort to demonstrate the feasibility of biomass-fueled boilers in cogeneration applications. This design package is based upon a specific site in the State of Maine. However, the design is generic in nature and could serve as a model for other biomass conversion facilities located anywhere biomass is abundant. The project's purpose and summary information are presented: the plant, its concept of operation; and other overall information are described. The capital cost estimate for the plant, and the basis upon which it was obtained are given; a schedule of key milestones and activities required to construct the plant and put it into operation is presented; and the general findings in areas that affect the viability of the project are discussed. The technical design, biomass study, environmental impact, commercialization, and economic factors are addressed. Each major plant area and the equipment and facilities that each includes are discussed in depth. Some overall plant requirements, including noise control, reliability, maintainability, and safety, are detailed. The results of each study relating to alternatives considered for optimizing plant operation parameters and specific system process schemes are briefly presented. All economic factors that affect the feasibility and viability of the biomass project are defined and evaluated.

  13. Functions and Requirements for West Valley Demonstration Project Tank Lay-up

    International Nuclear Information System (INIS)

    Elmore, Monte R.; Henderson, Colin

    2002-01-01

    Documents completion of Milestone A.1-1, ''Issue Functions and Requirements for WVDP Tank Lay-Up,'' in Technical Task Plan TTP RL3-WT21A - ''Post-Retrieval and Pre-Closure HLW Tank Lay-Up.'' This task is a collaborative effort among Pacific Northwest National Laboratory, Jacobs Engineering Group Inc., and West Valley Nuclear Services (WVNS). Because of the site-specific nature of this task, the involvement of WVNS personnel is critical to the success of this task

  14. A project of reuse of reclaimed wastewater in the Po Valley, Italy: Polishing sequence and cost benefit analysis

    Science.gov (United States)

    Verlicchi, P.; Al Aukidy, M.; Galletti, A.; Zambello, E.; Zanni, G.; Masotti, L.

    2012-04-01

    SummaryThe paper presents a study carried out in the environmentally sensitive area of the Po Valley in northern Italy, with the aim of evaluating, from technical and economic perspectives, a project to reuse part of the final effluent from the Ferrara wastewater treatment plant for irrigation and to develop the site for recreational purposes. Although this area features plentiful supplies of surface water, the Ministry of the Environment has declared it to be at risk of environmental crises due to eutrophication and the drought recurring over the last decade. Thus the availability of fresh water, particularly for agricultural purposes, is threatened, and prompt water saving and protection measures are required. Hence, the possibility of reusing reclaimed wastewater from this plant was investigated, with the aim of exploiting the space around the WWTP, situated within a large urban park, to install natural polishing treatment systems and create green spaces for recreational use. Based on experimental investigation on a pilot plant (featuring both natural and conventional treatments), the study outlines the rationale behind the treatment train selected for the project, details the initial and ongoing costs involved, evaluates the benefits deriving from the project, and assesses public acceptance of the project by the contingent valuation method. A cost-benefit analysis completes the study, and various economic indicators (net present value, benefit-cost ratio, pay-back period, and internal rate of return) revealed that the proposed project was financially feasible.

  15. Introduction to the Biomass Project: An Illustration of Evidence-Centered Assessment Design and Delivery Capability. CSE Report.

    Science.gov (United States)

    Steinberg, Linda S.; Mislevy, Robert J.; Almond, Russell G.; Baird, Andrew B.; Cahallan, Cara; Dibello, Louis V.; Senturk, Deniz; Yan, Duanli; Chernick, Howard; Kindfield, Ann C. H.

    This paper describes the design rationale for a prototype of an innovative assessment product, and the process that led to the design. The goals of the Biomass project were to demonstrate: (1) an assessment product designed to serve two new purposes in the transition from high school to college; and (2) the capability needed to produce this kind…

  16. Wood Pellet-Fired Biomass Boiler Project at the Ketchikan Federal Building

    Energy Technology Data Exchange (ETDEWEB)

    Tomberlin, Gregg [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-06-01

    Biomass boiler systems have existed for many years, but the technology has advanced in recent decades and can now provide automated and efficient operation for a relatively modest investment. Key advances in system monitoring and control allow for lower operating costs, since the control systems run all aspects of the boiler, including feed, load reduction and even tube cleaning. These advances have made such systems economical on a small scale in situations where inexpensive fuels like natural gas are not available. This creates an opportunity for building operators in remote, cold-climate locations to reduce the use of expensive fuels for heating buildings. GSA Region 10 installed the system at the federal building in Ketchikan, Alaska and submitted the project to the Green Proving Ground (GPG) program. GSA's GPG program contracted with the National Renewable Energy Laboratory (NREL) to assess the installation and the technology. The system serves as a demonstration to assess actual system efficiencies, as well as operating characteristics and financial benefits. In addition to installation and operational issues, the project team/researchers examined other issues, including fuel transportation costs, building energy savings, and overall economics.

  17. Rift Valley fever dynamics in Senegal: a project for pro-active adaptation and improvement of livestock raising management

    Directory of Open Access Journals (Sweden)

    Murielle Lafaye

    2013-11-01

    Full Text Available The multi-disciplinary French project “Adaptation à la Fièvre de la Vallée du Rift” (AdaptFVR has concluded a 10-year constructive interaction between many scientists/partners involved with the Rift Valley fever (RVF dynamics in Senegal. The three targeted objectives reached were (i to produce - in near real-time - validated risk maps for parked livestock exposed to RVF mosquitoes/vectors bites; (ii to assess the impacts on RVF vectors from climate variability at different time-scales including climate change; and (iii to isolate processes improving local livestock management and animal health. Based on these results, concrete, pro-active adaptive actions were taken on site, which led to the establishment of a RVF early warning system (RVFews. Bulletins were released in a timely fashion during the project, tested and validated in close collaboration with the local populations, i.e. the primary users. Among the strategic, adaptive methods developed, conducted and evaluated in terms of cost/benefit analyses are the larvicide campaigns and the coupled bio-mathematical (hydrological and entomological model technologies, which are being transferred to the staff of the “Centre de Suivi Ecologique” (CSE in Dakar during 2013. Based on the results from the AdaptFVR project, other projects with similar conceptual and modelling approaches are currently being implemented, e.g. for urban and rural malaria and dengue in the French Antilles.

  18. Increasing the biomass production level of dedicated or semi-dedicated woody crops. Mains lessons learned from the SYLVABIOM project

    International Nuclear Information System (INIS)

    Bastien, Jean-Charles; Bodineau, Guillaume; Gauvin, Jean; Berthelot, Alain; Maine, Patrice; Brignolas, Franck; Maury, Stephane; Le Jan, Isabelle; Delaunay, Alain; Charnet, Francois; Merzeau, Dominique; Marron, Nicolas; Dalle, Erwin; Toillon, Julien

    2015-01-01

    For three species (poplar, black locust and willow) cultivated as short or very short rotation coppices (SRC/ VSRC), the project relied on monitoring growth and efficiency with which trees use water and nitrogen in a network of four experimental sites, located in contrasting stations. The relevance of DNA methylation levels as an early marker of the level of productivity was also evaluated. For short-rotation plantations (SRP), the project was based on the collection of growth and biomass data in experimental networks, to build compartmented biomass yield tables (trunk, bark, branches and leaves) for forest species for which the literature is scarce. Significant differences appear, both in SRC and VSRC, between the three species, and between intraspecific genotypes for biomass production, its phenology, architecture, leaf structure, and resource use efficiency. The pedo-climatic conditions and the planting density modulated the complex relationships between these traits. Measurement of apex or leaf DNA methylation rate may be a good predictor for the growth potential in poplar. Mean annual biomass production ranging from 7 to 13 dry tons/ha can be expected at age 20 years with fast-growing conifers grown in SRP on site types other than those used for SRC and VSRC. Moreover, very significant genetic gains on biomass production in SRP are also offered by selection of efficient genotypes. (authors)

  19. Effectiveness of the Solar Panels in the Castro Valley Unified School District Based on Projected Amount of Energy to be Produced

    Science.gov (United States)

    Sparks, J. R.; Palmer, T. C.; Siegel, A. P.

    2014-12-01

    In recent years Americans have warmed to the idea of installing solar panels to their homes and businesses. These panels help reduce the cost of receiving energy from power plants that lose a lot of energy in transportation. These power plants provide energy by burning gas or coal producing emissions that add to the growing problem of pollution and global warming. In 2010 the Castro Valley Unified School District decided to add solar panels to Canyon Middle School, Castro Valley High School, and Castro Valley Adult School. We researched whether the solar panels reached their projected amount of energy (74%) for the sites where the panels were placed. The solar panels at all three sites were found to exceed these projected amounts. The solar panels at each site produce a little over 74% for the each school.

  20. Melton Valley Storage Tanks Capacity Increase Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-04-01

    The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for the facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities

  1. THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

    2003-08-01

    This report describes the geologic setting for the Deep Saline Reservoirs and Coal Seams in the Ohio River Valley CO{sub 2} Storage Project area. The object of the current project is to site and design a CO{sub 2} injection facility. A location near New Haven, WV, has been selected for the project. To assess geologic storage reservoirs at the site, regional and site-specific geology were reviewed. Geologic reports, deep well logs, hydraulic tests, and geologic maps were reviewed for the area. Only one well within 25 miles of the site penetrates the deeper sedimentary rocks, so there is a large amount of uncertainty regarding the deep geology at the site. New Haven is located along the Ohio River on the border of West Virginia and Ohio. Topography in the area is flat in the river valley but rugged away from the Ohio River floodplain. The Ohio River Valley incises 50-100 ft into bedrock in the area. The area of interest lies within the Appalachian Plateau, on the western edge of the Appalachian Mountain chain. Within the Appalachian Basin, sedimentary rocks are 3,000 to 20,000 ft deep and slope toward the southeast. The rock formations consist of alternating layers of shale, limestone, dolomite, and sandstone overlying dense metamorphic continental shield rocks. The Rome Trough is the major structural feature in the area, and there may be some faults associated with the trough in the Ohio-West Virginia Hinge Zone. The area has a low earthquake hazard with few historical earthquakes. Target injection reservoirs include the basal sandstone/Lower Maryville and the Rose Run Sandstone. The basal sandstone is an informal name for sandstones that overlie metamorphic shield rock. Regional geology indicates that the unit is at a depth of approximately 9,100 ft below the surface at the project site and associated with the Maryville Formation. Overall thickness appears to be 50-100 ft. The Rose Run Sandstone is another potential reservoir. The unit is located approximately 1

  2. Evaluation of low-level radioactive waste characterization and classification programs of the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Taie, K.R.

    1994-01-01

    The West Valley Demonstration Project (WVDP) is preparing to upgrade their low-level radioactive waste (LLW) characterization and classification program. This thesis describes a survey study of three other DOE sites conducted in support of this effort. The LLW characterization/classification programs of Oak Ridge National Laboratory, Savannah River Site, and Idaho National Engineering Laboratory were critically evaluated. The evaluation was accomplished through tours of each site facility and personnel interviews. Comparative evaluation of the individual characterization/classification programs suggests the WVDP should purchase a real-time radiography unit and a passive/active neutron detection system, make additional mechanical modifications to the segmented gamma spectroscopy assay system, provide a separate building to house characterization equipment and perform assays away from waste storage, develop and document a new LLW characterization/classification methodology, and make use of the supercompactor owned by WVDP

  3. Contractors' Perception of factors Contributing to Project Delay: Case Studies of Commercial Projects in Klang Valley, Malaysia

    Directory of Open Access Journals (Sweden)

    Azlan Shah Ali

    2010-12-01

    Full Text Available Delay in construction projects is a situation where the project cannot be completed under the planned time. It is a common issue faced in the construction industry all over the world especially in developing countries. In the Malaysian construction industry, 17.3% of construction projects experience more than 3 months delay and some of them are abandoned. Hence, the study of factors contributing to delay is very important in order to reduce the number of projects that experience delay in project delivery. Three objectives of the research have been formulated, namely (1 to identify factors that contribute to delay in construction projects; (2 to analyse and rank the causes of delay rated by contractors; and (3 to study the effects of delay in construction projects. One hundred questionnaires were distributed during data collection stage and only 36 responses received. The respondents only consist of contractors and sub-contractors because the scope of the research focuses on contractors' perception. The data collected was analysed using SPSS software. Seven factors that contribute to delay were identified through literature review, namely contractors' financial difficulties, construction mistakes and defective work, labour shortage, coordination problems, shortage of tools and equipment, material shortage and poor site management. Of those factors, the three most important factors were found to be labour shortage, contractors' financial difficulties and construction mistakes and defective works. Besides project delay, the research shows that cost overrun and extension of time (EOT are the most common effects of delay in construction projects.

  4. Status and understanding of groundwater quality in the Santa Clara River Valley, 2007-California GAMA Priority Basin Project

    Science.gov (United States)

    Burton, Carmen A.; Montrella, Joseph; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the approximately 460-square-mile Santa Clara River Valley study unit was investigated from April through June 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. The Santa Clara River Valley study unit contains eight groundwater basins located in Ventura and Los Angeles Counties and is within the Transverse and Selected Peninsular Ranges hydrogeologic province. The Santa Clara River Valley study unit was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected in 2007 by the USGS from 42 wells on a spatially distributed grid, and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined as that part of the aquifer system corresponding to the perforation intervals of wells listed in the CDPH database for the Santa Clara River Valley study unit. The quality of groundwater in the primary aquifer system may differ from that in shallow or deep water-bearing zones; for example, shallow groundwater may be more vulnerable to surficial contamination. Eleven additional wells were sampled by the USGS to improve understanding of factors affecting water quality.The status assessment of the quality of the groundwater used data from samples analyzed for anthropogenic constituents, such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents, such as major ions and trace elements. The status assessment is intended to characterize the quality of untreated groundwater resources in the primary aquifers of the Santa Clara River Valley study unit

  5. Biomass gasifier projects for decentralized power supply in India: A financial evaluation

    International Nuclear Information System (INIS)

    Nouni, M.R.; Mullick, S.C.; Kandpal, T.C.

    2007-01-01

    Results of a techno-economic evaluation of biomass gasifier based projects for decentralized power supply for remote locations in India are presented. Contributions of different components of diesel engine generator (DG) sets, dual fuel (DF) engine generator sets and 100% producer gas (HPG) engine generator sets to their capital costs as well as to the levelized unit cost of electricity (LUCE) delivered by the same have been analyzed. LUCE delivered to the consumers has been estimated to be varying in the range of Rs. 13.14-24.49/kWh (US$ 0.30-0.55/kWh) for DF BGPP. LUCE increases significantly if BGPP is operated at part loads. Presently available 40kW capacity HPG systems in India are expected to be financially competitive with a DG set of equivalent capacity beyond a break-even diesel price of Rs. 34.70/l. It is expected to be financially more attractive than an equivalent capacity DF BGPP for diesel prices of more than Rs. 44.29/l. In certain specific conditions operating two smaller capacity systems has been found to be attractive as against a single larger capacity system

  6. Preconceptual design study for solidifying high-level waste: West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Hill, O.F.

    1981-04-01

    This report presents a preconceptual design study for processing radioactive high-level liquid waste presently stored in underground tanks at Western New York Nuclear Service Center (WNYNSC) near West Valley, New York, and for incorporating the radionculides in that waste into a solid. The high-level liquid waste accumulated from the operation of a chemical reprocessing plant by the Nuclear Fuel Services, Inc. from 1966 to 1972. The high-level liquid waste consists of approximately 560,000 gallons of alkaline waste from Purex process operations and 12,000 gallons of acidic (nitric acid) waste from one campaign of processing thoria fuels by a modified Thorex process (during this campaign thorium was left in the waste). The alkaline waste contains approximately 30 million curies and the acidic waste contains approximately 2.5 million curies. The reference process described in this report is concerned only with chemically processing the high-level liquid waste to remove radionuclides from the alkaline supernate and converting the radionuclide-containing nonsalt components in the waste into a borosilicate glass

  7. EVALUATION OF A PROCESS TO CONVERT BIOMASS TO METHANOL FUEL - PROJECT SUMMARY

    Science.gov (United States)

    The report gives results of a review of the design of a reactor capable of gasifying approximately 50 lb/hr of biomass for a pilot-scale facility to develop, demonstrate, and evaluate the Hynol Process, a high-temperature, high-pressure method for converting biomass into methanol...

  8. Aboveground biomass subdivisions in woody species of the savanna ecosystem project study area, Nylsvley

    CSIR Research Space (South Africa)

    Rutherford, MC

    1979-01-01

    Full Text Available Aboveground peak season biomass is given for 11 woody species in each of five belt transects under study. Mean aerial biomass for all species was 16 273 kg ha, made up of 14 937 kg ha wood, 236 kg ha current season's twigs and 1 100 kg ha leaves...

  9. Plant Biomass Leaching for Nutrient Recovery in Closed Loop Systems Project

    Science.gov (United States)

    Zeitlin, Nancy P.; Wheeler, Raymond (Compiler); Lunn, Griffin

    2015-01-01

    Plants will be important for food and O2 production during long term human habitation in space. Recycling of nutrients (e.g., from waste materials) could reduce the resupply costs of fertilizers for growing these plants. Work at NASA's Kennedy Space Center has shown that ion exchange resins can extract fertilizer (plant essential nutrients) from human waste water, after which the residual brine could be treated with electrodialysis to recover more water and produce high value chemicals (e.g., acids and bases). In habitats with significant plant production, inedible biomass becomes a major source of solid waste. To "close the loop" we also need to recover useful nutrients and fertilizer from inedible biomass. We are investigating different approaches to retrieve nutrients from inedible plant biomass, including physical leaching with water, processing the biomass in bioreactors, changing the pH of leaching processing, and/or conducting multiple leaches of biomass residues.

  10. Snake River sockeye salmon Sawtooth Valley project: 1992 Juvenile and Adult Trapping Program

    International Nuclear Information System (INIS)

    1992-04-01

    Sockeye salmon (Oncorhynchus nerka) runs in the Snake River Basin have severely declined. Redfish Lake near Stanley, Idaho is the only lake in the drainage known to still support a run. In 1989, two adults were observed returning to this lake and in 1990, none returned. In the summer of 1991, only four adults returned. If no action is taken, the Snake River sockeye salmon will probably cease to exist. On November 20, 1991, the National Marine Fisheries Service (NMFS) declared the Snake River sockeye salmon ''endangered'' (effective December 20, 1991), pursuant to the Endangered Species Act (ESA) of 1973. In 1991, in response to a request from the Idaho Department of Fish and Game and the Shoshone-Bannock Tribes, the Bonneville Power Administration (BPA) funded efforts to conserve and begin rebuilding the Snake River sockeye salmon run. The initial efforts were focused on Redfish Lake in the Sawtooth Valley of southcentral Idaho. The 1991 measures involved: trapping some of the juvenile outmigrants (O. nerka) from Redfish Lake and rearing them in the Eagle Fish Health Facility (Idaho Department of Fish and Game) near Boise, Idaho; Upgrading of the Eagle Facility where the outmigrants are being reared; and trapping adult Snake River sockeye salmon returning to Redfish Lake and holding and spawning them at the Sawtooth Hatchery near Stanley, Idaho. This Environmental Assessment (EA) evaluates the potential environmental effects of the proposed actions for 1992. It has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) of 1969 and section 7 of the ESA of 1973

  11. Water transfer and major environmental provisions of the Central Valley Project Improvement Act: A preliminary economic evaluation

    Science.gov (United States)

    Loomis, John B.

    1994-06-01

    Increasing block water pricing, water transfer, and wildlife refuge water supply provisions of the Central Valley Project (CVP) Improvement Act are analyzed in terms of likely farmer response and economic efficiency of these provisions. Based on a simplified partial equilibrium analysis, we estimate small, but significant water conservation savings due to pricing reform, the potential for substantial water transfers to non-CVP customers in severe drought years when the water price exceeds 110 per acre foot (1 acre foot equals 1.234 × 103 m3) and positive net benefits for implementation of the wildlife refuge water supply provisions. The high threshold water price is partly a result of requiring farmers to pay full cost on transferred water plus a surcharge of 25 per acre foot if the water is transferred to a non-CVP user. The act also sets an important precedent for water pricing reform, water transfer provisions, and environmental surcharges on water users that may find their way to other Bureau of Reclamation projects.

  12. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, J.W. [Zurn/NEPCO, South Portland, MA (United States); Paisley, M. [Battelle Laboratories, Columbus, OH (United States)

    1995-12-31

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  13. Evaluating a biomass resource: The TVA region-wide biomass resource assessment model

    International Nuclear Information System (INIS)

    Downing, M.; Graham, R.L.

    1993-01-01

    Wood is an alterative fuel for electric power generation at coal-fired plants in the Tennessee Valley Authority (TVA) region. Short rotation wood energy crops (SRWC) could provide a source of this woody biomass. However, the economic and supply structures of SRWC markets have not been established. Establishing the likely price and supply of SRWC biomass in a region is a complex task because biomass is not an established commodity as are oil, natural gas and coal. In this study we project the cost and supply of short-rotation woody biomass for the TVA region -- a 276 county area that includes all of Tennessee and portions of 10 contiguous states in the southeastern United States. Projected prices and quantities of SRWC are assumed to be a function of the amount and quality of crop and pasture land available in a region. expected SRWC yields and production costs on differing soils and land types, and the profit that could be obtained from current conventional crop production on these same lands. Results include the supply curve of SRWC biomass that is projected to be available from the entire region, the amount and location of crop and pasture land that would be used, and the conventional agricultural crops that would be displaced as a function of SRWC production. Finally, we show the results of sensitivity analysis on the projected cost and supply of SRWC biomass. In particular, we examine the separate impacts of varying SRWC production yields

  14. Fy00 Treasure Valley ITS Deployment Project : advanced traffic management system (ATMS) software procurement and implementation process

    Science.gov (United States)

    2006-08-02

    In 2000, the Treasure Valley area of the State of Idaho received a federal earmark of $390,000 to develop an Advanced Transportation Management System (ATMS) for the Treasure Valley region of Idaho. The Ada County Highway District (ACHD), located in ...

  15. Supplement to the UMTRA Project water sampling and analysis plan, Monument Valley, Arizona

    International Nuclear Information System (INIS)

    1995-09-01

    This water sampling and analysis plan (WSAP) supplement supports the regulatory and technical basis for water sampling at the Riverton, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project site, as defined in the 1994 WSAP document for Riverton (DOE, 1994). Further, the supplement serves to confirm the Project's present understanding of the site relative to the hydrogeology and contaminant distribution as well as the intent to continue to use the sampling strategy as presented in the 1994 WSAP document for Riverton. Ground water and surface water monitoring activities are derived from the US Environmental Protection Agency regulations in 40 CFR Part 192 and 60 FR 2854. Sampling procedures are guided by the UMTRA Project standard operating procedures (JEG, n.d.), the Technical Approach Document (DOE, 1989), and the most effective technical approach for the site. Additional site-specific documents relevant to the Riverton site are the Riverton Baseline Risk Assessment (BLRA) (DOE, 1995a) and the Riverton Site Observational Work Plan (SOWP) (DOE, 1995b)

  16. Sampling and analysis plan for the Bear Creek Valley Boneyard/Burnyard Accelerated Action Project, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-03-01

    In the Bear Creek Valley Watershed Remedial Investigation, the Boneyard/Burnyard was identified as the source of the largest releases of uranium into groundwater and surface water in Bear Creek Valley. The proposed action for remediation of this site is selective excavation and removal of source material and capping of the remainder of the site. The schedule for this action has been accelerated so that this is the first remedial action planned to be implemented in the Bear Creek Valley Record of Decision. Additional data needs to support design of the remedial action were identified at a data quality objectives meeting held for this project. Sampling at the Boneyard/Burnyard will be conducted through the use of a phased approach. Initial or primary samples will be used to make in-the-field decisions about where to locate follow-up or secondary samples. On the basis of the results of surface water, soil, and groundwater analysis, up to six test pits will be dug. The test pits will be used to provide detailed descriptions of source materials and bulk samples. This document sets forth the requirements and procedures to protect the personnel involved in this project. This document also contains the health and safety plan, quality assurance project plan, waste management plan, data management plan, implementation plan, and best management practices plan for this project as appendices

  17. Sampling and analysis plan for the Bear Creek Valley Boneyard/Burnyard Accelerated Action Project, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In the Bear Creek Valley Watershed Remedial Investigation, the Boneyard/Burnyard was identified as the source of the largest releases of uranium into groundwater and surface water in Bear Creek Valley. The proposed action for remediation of this site is selective excavation and removal of source material and capping of the remainder of the site. The schedule for this action has been accelerated so that this is the first remedial action planned to be implemented in the Bear Creek Valley Record of Decision. Additional data needs to support design of the remedial action were identified at a data quality objectives meeting held for this project. Sampling at the Boneyard/Burnyard will be conducted through the use of a phased approach. Initial or primary samples will be used to make in-the-field decisions about where to locate follow-up or secondary samples. On the basis of the results of surface water, soil, and groundwater analysis, up to six test pits will be dug. The test pits will be used to provide detailed descriptions of source materials and bulk samples. This document sets forth the requirements and procedures to protect the personnel involved in this project. This document also contains the health and safety plan, quality assurance project plan, waste management plan, data management plan, implementation plan, and best management practices plan for this project as appendices.

  18. Decontamination and decommissioning of Extraction Cell 3 at the West Valley Demonstration Project. Topical report, January 1982-April 1985

    International Nuclear Information System (INIS)

    Jones, E.D.

    1985-12-01

    This report describes the decontamination and decommissioning (D and D) of Extraction Cell 3 (XC-3) at the West Valley Demonstration Project. XC-3 is one of several cells in the former reprocessing plant required for use in support of the solidification of high-level waste. It became radioactively contaminated during nuclear fuel reprocessing from 1966 to 1972. XC-3 contained systems used in the final uranium extraction cycle. Several pump niche and sample box drains were routed into the cell. The report describes the work performed to accomplish the D and D objectives of removing existing piping and equipment from XC-3 and to reducing radiation and contamination levels, to allow installation of equipment for the Liquid-Waste Treatment System (LWTS). Contaminated debris and equipment inside the cell were removed, packaged and stored for future disposition. Interior surfaces (walls, floor, and ceiling) of the cell were then decontaminated to a radiation level that allowed entry without the use of protective clothing or respiratory protection

  19. Analysis of geophysical well logs from the Mariano Lake-Lake Valley drilling project, San Juan Basin, Northwestern New Mexico

    International Nuclear Information System (INIS)

    Scott, J.H.

    1986-01-01

    Geophysical well logs were obtained in eight deep holes drilled and cored by the U.S. Geological Survey to examine the geology of the Mariano Lake-Lake Valley area in the southern part of the San Juan basin, New Mexico. The logs were made to determine the petrophysical properties of the rocks penetrated by the holes, to aid in making stratigraphic correlations between the holes, and to estimate the grade of uranium enrichment in mineralized zones. The logs can be divided into six categories-nuclear, electric, sonic, magnetic, dipmeter, and borehole conditions. Examples of these logs are presented and related to lithological and petrophysical properties of the cores recovered. Gamma-ray and prompt fission neutron logs were used to estimate uranium grade in mineralized zones. Resistivity and spontaneous potential logs were used to make stratigraphic correlations between drill holes and to determine the variability of the sandstone:mudstone ratios of the major sedimentary units. In one drill hole a dipmeter log was used to estimate the direction of sediment transport of the fluvial host rock. Magnetic susceptibility logs provided supportive information for a laboratory study of magnetic mineral alteration in drill cores. This study was used to infer the geochemical and hydrologic environment associated with uranium deposition in the project area

  20. Scaled Vitrification System III (SVS III) Process Development and Laboratory Tests at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Jain, V.; Barnes, S.M.; Bindi, B.G.; Palmer, R.A.

    2000-01-01

    At the West Valley Demonstration Project (WVDP),the Vitrification Facility (VF)is designed to convert the high-level radioactive waste (HLW)stored on the site to a stable glass for disposal at a Department of Energy (DOE)-specified federal repository. The Scaled Vitrification System III (SVS-III)verification tests were conducted between February 1995 and August 1995 as a supplemental means to support the vitrification process flowsheet, but at only one seventh the scale.During these tests,the process flowsheet was refined and optimized. The SVS-III test series was conducted with a focus on confirming the applicability of the Redox Forecasting Model, which was based on the Index of Feed Oxidation (IFO)developed during the Functional and Checkout Testing of Systems (FACTS)and SVS-I tests. Additional goals were to investigate the prototypical feed preparation cycle and test the new target glass composition. Included in this report are the basis and current designs of the major components of the Scale Vitrification System and the results of the SVS-III tests.The major subsystems described are the feed preparation and delivery, melter, and off-gas treatment systems. In addition,the correlation between the melter's operation and its various parameters;which included feed rate,cold cap coverage,oxygen reduction (redox)state of the glass,melter power,plenum temperature,and airlift analysis;were developed

  1. Biomass cogeneration: A business assessment

    Science.gov (United States)

    Skelton, J. C.

    1981-11-01

    The biomass cogeneration was reviewed. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  2. FY 1999 report on the model project on the effective utilization of waste-base biomass fuels. Basic survey for the feasibility; 1999 nendo haikibutsukei biomass nenryo yuko riyo model jigyo jisshi kanosei kiso chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Survey on the waste biomass was conducted for Thailand, Malaysia, Indonesia, Vietnam, Laos, Nepal, Butan, Myanmar and Cambodia to study feasibility of the project for the concrete utilization of biomass resources. In Thailand, it is expected to construct large-scale model plants for biomass resources such as rice hulls, bagasse, wood waste and oil palm. In Malaysia, expected are the cogeneration at 5MW class palm oil plant, large-scale power plant using wood waste, plant using the biomass from waste palm oil, etc. In Indonesia, there is a great potentiality, but it is necessary to handle it carefully in consideration of the unstable situation of the society. In Vietnam, the detailed survey of feasibility is needed on the project for efficiency heightening at state-run plants, the assumed national plants (recommended by the government), etc. In Laos, small-scale power generation using the forestry waste such as sawdust is expected. (NEDO)

  3. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plant, West Virginia Numerical Simulation and Risk Assessment Report

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2008-03-31

    A series of numerical simulations of carbon dioxide (CO{sub 2}) injection were conducted as part of a program to assess the potential for geologic sequestration in deep geologic reservoirs (the Rose Run and Copper Ridge formations), at the American Electric Power (AEP) Mountaineer Power Plant outside of New Haven, West Virginia. The simulations were executed using the H{sub 2}O-CO{sub 2}-NaCl operational mode of the Subsurface Transport Over Multiple Phases (STOMP) simulator (White and Oostrom, 2006). The objective of the Rose Run formation modeling was to predict CO{sub 2} injection rates using data from the core analysis conducted on the samples. A systematic screening procedure was applied to the Ohio River Valley CO{sub 2} storage site utilizing the Features, Elements, and Processes (FEP) database for geological storage of CO{sub 2} (Savage et al., 2004). The objective of the screening was to identify potential risk categories for the long-term geological storage of CO{sub 2} at the Mountaineer Power Plant in New Haven, West Virginia. Over 130 FEPs in seven main classes were assessed for the project based on site characterization information gathered in a geological background study, testing in a deep well drilled on the site, and general site conditions. In evaluating the database, it was apparent that many of the items were not applicable to the Mountaineer site based its geologic framework and environmental setting. Nine FEPs were identified for further consideration for the site. These FEPs generally fell into categories related to variations in subsurface geology, well completion materials, and the behavior of CO{sub 2} in the subsurface. Results from the screening were used to provide guidance on injection system design, developing a monitoring program, performing reservoir simulations, and other risk assessment efforts. Initial work indicates that the significant FEPs may be accounted for by focusing the storage program on these potential issues. The

  4. 3-D Velocity Model of the Coachella Valley, Southern California Based on Explosive Shots from the Salton Seismic Imaging Project

    Science.gov (United States)

    Persaud, P.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.; Scheirer, D. S.

    2014-12-01

    We have analyzed explosive shot data from the 2011 Salton Seismic Imaging Project (SSIP) across a 2-D seismic array and 5 profiles in the Coachella Valley to produce a 3-D P-wave velocity model that will be used in calculations of strong ground shaking. Accurate maps of seismicity and active faults rely both on detailed geological field mapping and a suitable velocity model to accurately locate earthquakes. Adjoint tomography of an older version of the SCEC 3-D velocity model shows that crustal heterogeneities strongly influence seismic wave propagation from moderate earthquakes (Tape et al., 2010). These authors improve the crustal model and subsequently simulate the details of ground motion at periods of 2 s and longer for hundreds of ray paths. Even with improvements such as the above, the current SCEC velocity model for the Salton Trough does not provide a match of the timing or waveforms of the horizontal S-wave motions, which Wei et al. (2013) interpret as caused by inaccuracies in the shallow velocity structure. They effectively demonstrate that the inclusion of shallow basin structure improves the fit in both travel times and waveforms. Our velocity model benefits from the inclusion of known location and times of a subset of 126 shots detonated over a 3-week period during the SSIP. This results in an improved velocity model particularly in the shallow crust. In addition, one of the main challenges in developing 3-D velocity models is an uneven stations-source distribution. To better overcome this challenge, we also include the first arrival times of the SSIP shots at the more widely spaced Southern California Seismic Network (SCSN) in our inversion, since the layout of the SSIP is complementary to the SCSN. References: Tape, C., et al., 2010, Seismic tomography of the Southern California crust based on spectral-element and adjoint methods: Geophysical Journal International, v. 180, no. 1, p. 433-462. Wei, S., et al., 2013, Complementary slip distributions

  5. Understanding surface-water availability in the Central Valley as a means to projecting future groundwater storage with climate variability

    Science.gov (United States)

    Goodrich, J. P.; Cayan, D. R.

    2017-12-01

    California's Central Valley (CV) relies heavily on diverted surface water and groundwater pumping to supply irrigated agriculture. However, understanding the spatiotemporal character of water availability in the CV is difficult because of the number of individual farms and local, state, and federal agencies involved in using and managing water. Here we use the Central Valley Hydrologic Model (CVHM), developed by the USGS, to understand the relationships between climatic variability, surface water inputs, and resulting groundwater use over the historical period 1970-2013. We analyzed monthly surface water diversion data from >500 CV locations. Principle components analyses were applied to drivers constructed from meteorological data, surface reservoir storage, ET, land use cover, and upstream inflows, to feed multiple regressions and identify factors most important in predicting surface water diversions. Two thirds of the diversion locations ( 80% of total diverted water) can be predicted to within 15%. Along with monthly inputs, representations of cumulative precipitation over the previous 3 to 36 months can explain an additional 10% of variance, depending on location, compared to results that excluded this information. Diversions in the southern CV are highly sensitive to inter-annual variability in precipitation (R2 = 0.8), whereby more surface water is used during wet years. Until recently, this was not the case in the northern and mid-CV, where diversions were relatively constant annually, suggesting relative insensitivity to drought. In contrast, this has important implications for drought response in southern regions (eg. Tulare Basin) where extended dry conditions can severely limit surface water supplies and lead to excess groundwater pumping, storage loss, and subsidence. In addition to fueling our understanding of spatiotemporal variability in diversions, our ability to predict these water balance components allows us to update CVHM predictions before

  6. LIFAC Demonstration at Richmond Power and Light Whitewater Valley Unit No. 2 Volume II: Project Performance and Economics

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1998-04-01

    The C1ean Coal Technology (CCT) Program has been recognized in the National Energy Strategy as a major initiative whereby coal will be able to reach its full potential as a source of energy for the nation and the international marketplace. Attainment of this goal depends upon the development of highly efficient, environmentally sound, competitive coal utilization technologies responsive to diverse energy markets and varied consumer needs. The CCT Program is an effort jointly funded by government and industry whereby the most promising of the advanced coal-based technologies are being moved into the marketplace through demonstration. The CCT Program is being implemented through a total of five competitive solicitations. LIFAC North America, a joint venture partnership of ICF Kaiser Engineers, Inc., and Tampella Power Corporation, is currently demonstrating the LIFAC flue gas desulfurization technology developed by Tampella Power. This technology provides sulfur dioxide emission control for power plants, especially existing facilities with tight space limitations. Sulfur dioxide emissions are expected to be reduced by up to 85% by using limestone as a sorbent. The LIFAC technology is being demonstrated at Whitewater Valley Unit No. 2, a 60-MW coal-fired power plant owned and operated by Richmond Power and Light (RP&L) and located in Richmond, Indiana. The Whitewater plant consumes high-sulfur coals, with sulfur contents ranging from 2.0-2.9 $ZO. The project, co-funded by LIFAC North America and DOE, is being conducted with the participation of Richmond Power and Light, the State of Indiana, the Electric Power Research Institute (EPRI), and the Black Beauty Coal Company. The project has a total cost of $21.4 million and a duration of 48 months from the preliminary design phase through the testing program.

  7. Cowichan Valley energy mapping and modelling. Report 5 - Energy density mapping projections. Final report. [Vancouver Island, Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    The driving force behind the Integrated Energy Mapping and Analysis project was the identification and analysis of a suite of pathways that the Cowichan Valley Regional District (CVRD) can utilise to increase its energy resilience, as well as reduce energy consumption and GHG emissions, with a primary focus on the residential sector. Mapping and analysis undertaken will support provincial energy and GHG reduction targets, and the suite of pathways outlined will address a CVRD internal target that calls for 75% of the region's energy within the residential sector to come from locally sourced renewables by 2050. The target has been developed as a mechanism to meet resilience and climate action target. The maps and findings produced are to be integrated as part of a regional policy framework currently under development. Task 5 focused on energy projection mapping to estimate and visualise the energy consumption density and GHG emissions under different scenarios. The scenarios from task 4 were built around the energy consumption density of the residential sector under future land use patterns and rely on different energy source combinations (the suite of pathways). In task 5 the energy usage under the different scenarios were fed back into GIS, thereby giving a visual representation of forecasted residential energy consumption per unit area. The methodology is identical to that used in task 2 where current usage was mapped, whereas the mapping in this task is for future forecasts. These results are documented in this report. In addition, GHG mapping under the various scenarios was also undertaken. (LN)

  8. People's perception on impacts of hydro-power projects in Bhagirathi river valley, India.

    Science.gov (United States)

    Negi, G C S; Punetha, Disha

    2017-04-01

    The people's perception on environmental and socio-economic impacts due to three hydro-electric projects (HEPs; commissioned and under construction) were studied in the north-west Indian Himalaya. Surveys among 140 project-affected people (PAPs) using a checklist of impacts indicate that among the negative impacts, decrease in flora/fauna, agriculture, flow of river, aesthetic beauty; and increase in water pollution, river bed quarrying for sand/stone, human settlement on river banks and social evils; and among the positive impacts, increase in standard of living, road connectivity, means of transport, public amenities, tourism and environmental awareness were related with HEPs. The PAPs tend to forget the negative impacts with the age of the HEPs after it becomes functional, and the positive impacts seem to outweigh the negative impacts. Study concludes that it is difficult to separate the compounding impacts due to HEP construction and other anthropogenic and natural factors, and in the absence of cause-and-effect analyses, it is hard to dispel the prevailing notion that HEPs are undesirable in the study area that led to agitations by the environmentalists and stopped construction of one of these HEPs. To overcome the situation, multi-disciplinary scientific studies involving the PAPs need to be carried out in planning and decision-making to make HEPs environment friendly and sustainable in this region. There is also a need to adopt low carbon electric power technologies and promote a decentralized energy strategy through joint ventures between public and private companies utilizing locally available renewable energy resources.

  9. NEDO hydrogen, alcohol, and biomass technology subcommittee. 18th project report meeting; NEDO suiso alcohol biomass gijutsu bunkakai. Dai 18 kai jigyo hokokukai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    A report is delivered by Morio Murase, a NEDO (New Energy and Industrial Technology Development Organization) director, in which the general situation of hydrogen, alcohol, and biomass technology development is explained. Concerning the research and development of international clean energy system of hydrogen, the WE-NET (World Energy Network) project is described, in which a total system concept design and cryogenic structural materials that are the fruits of the 1st phase are mentioned. Concerning the 2nd phase, research and development to be conducted are discussed, and reports are delivered thereon. Reported concerning the development of high-efficiency refuse-fueled power generation technology are a demonstration test using a pilot plant and a superheater demonstration test. Concerning the research and development for the advanced clear energy vehicle project, a development program is reported for an energy-efficient, low-pollution vehicle which is a combination of a hybrid mechanism and clean energy. Reported also is the research and development of supercritical fluid utilization, in which the reaction of supercritical water upon addition of solvent, its oxidation and hydrogenation, and so forth, are explained. (NEDO)

  10. Projecting demand and supply of forest biomass for heating in Norway

    International Nuclear Information System (INIS)

    Tromborg, Erik; Havskjold, Monica; Lislebo, Ole; Rorstad, Per Kristian

    2011-01-01

    This paper assesses the increase in demand and supply for forest biomass for heating in Norway in 2020. By then there is a political aim to double the national production of bioenergy from the level in 2008. The competitiveness of woody biomass in central and district heating is analyzed in a model selecting the least-cost heating technology and scale in municipalities given a set of constraints and under different fuels price scenarios. The supply of forest biomass from roundwood is estimated based on data of forest inventories combined with elasticities regarding price and standing volumes. The supply of biomass from harvesting residues is estimated in an engineering approach based on data from the national forest inventories and roundwood harvest. The results show how the production of bioenergy is affected by changes in energy prices and support schemes for bioenergy. One conclusion from the analyses is that the government target of 14 TWh more bioenergy by 2020 is not likely to be met by current technologies and policy incentives. The contribution of the analysis is the detailed presentation of the heat market potentials and technology choices combined with supply functions for both roundwood and harvesting residues. - Highlights: → This paper accesses the demand and supply for forest biomass for heating in Norway in 2020. → Market share for wood in central and new district heating is analyzed in a cost-minimizing model. → The supply of forest biomass includes wood chips from import, roundwood and harvesting residues. → The production of bioenergy is affected by changes in energy prices and support schemes. → The government target for bioenergy is not met by current technologies and policy incentives.

  11. Wood, straw, energetic crops... Biomass energy. A sustainable alternative for your projects

    International Nuclear Information System (INIS)

    2007-01-01

    After having briefly recalled the French and European legal context promoting the use of renewable energies, this document highlights the challenges associated with such a development. They concern the environment, the energetic independence, the cost of energy, and the local and rural development. It evokes the actions and labels which favour the improvement and the renewal of domestic heating equipment, the large number of installations using biomass for collective heating or for industrial heating. It indicates the objectives of the biomass energy programme for 2007-2010, and describes the French energy conservation agency (ADEME) role and missions within this programme

  12. The End of the Line, Preparing the Main Plant Process Building for Demolition at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Rowell, L.E.; Kurasch, D.H.; Hackett, M.; Gorsuch, G.; Sullivan, D.W.

    2009-01-01

    The West Valley Demonstration Project (WVDP) Act of 1980 authorized the Department of Energy to conduct a high-level radioactive waste management demonstration project at the site of the former Spent Fuel Reprocessing Plant in West Valley, New York to demonstrate solidification techniques to prepare high-level liquid waste for disposal. The reprocessing facility at this site was the only commercial NRC-licensed spent fuel reprocessing plant to have operated in the United States. The spent fuel reprocessing operations ended in 1972 and DoE's cleanup operations have been underway since 1982. High-level waste solidification was safely concluded in 2002 and follow-on activities at the site have been concentrated on facility decontamination and waste management and off-site disposal. Among the features that remain at the WVDP site is the highly-contaminated Main Plant Process Building (MPPB). The five-story reinforced concrete structure, which was formerly used to reprocess irradiated nuclear fuel, contains residual levels of contamination in some areas that prohibit safe human entry. DoE's long-range plans for the site include demolition of the MPPB. Current site contractor, West Valley Environmental Services LLC (WVES), while actively working to dismantle equipment and decontaminate areas inside the MPPB, has developed a conceptual two-phase plan for demolishing the structure that provides a cost-effective, lower-dose alternative to conventional demolition techniques. This paper discusses the current condition of the MPPB and the demolition-ready preparations conducted in the facility thus far. This paper also introduces the concept of a two-part surgical demolition plan that has been proposed and is being evaluated as a safe method of demolishing the structure. The practical applications that support feasibility for the demolition approach are being demonstrated through current work applications in the MPPB. The Inside-Out Demolition proposal for the MPPB is a safe

  13. Evaluation of the groundwater flow model for southern Utah and Goshen Valleys, Utah, updated to conditions through 2011, with new projections and groundwater management simulations

    Science.gov (United States)

    Brooks, Lynette E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Southern Utah Valley Municipal Water Association, updated an existing USGS model of southern Utah and Goshen Valleys for hydrologic and climatic conditions from 1991 to 2011 and used the model for projection and groundwater management simulations. All model files used in the transient model were updated to be compatible with MODFLOW-2005 and with the additional stress periods. The well and recharge files had the most extensive changes. Discharge to pumping wells in southern Utah and Goshen Valleys was estimated and simulated on an annual basis from 1991 to 2011. Recharge estimates for 1991 to 2011 were included in the updated model by using precipitation, streamflow, canal diversions, and irrigation groundwater withdrawals for each year. The model was evaluated to determine how well it simulates groundwater conditions during recent increased withdrawals and drought, and to determine if the model is adequate for use in future planning. In southern Utah Valley, the magnitude and direction of annual water-level fluctuation simulated by the updated model reasonably match measured water-level changes, but they do not simulate as much decline as was measured in some locations from 2000 to 2002. Both the rapid increase in groundwater withdrawals and the total groundwater withdrawals in southern Utah Valley during this period exceed the variations and magnitudes simulated during the 1949 to 1990 calibration period. It is possible that hydraulic properties may be locally incorrect or that changes, such as land use or irrigation diversions, occurred that are not simulated. In the northern part of Goshen Valley, simulated water-level changes reasonably match measured changes. Farther south, however, simulated declines are much less than measured declines. Land-use changes indicate that groundwater withdrawals in Goshen Valley are possibly greater than estimated and simulated. It is also possible that irrigation

  14. Joint environmental assessment for Chevron USA, Inc. and Santa Fe Energy Resources, Inc.: Midway Valley 3D seismic project, Kern County, California

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The proposed Midway Valley 3D Geophysical Exploration Project covers approximately 31,444 aces of private lands, 6,880 acres of Department of Energy (DOE) Lands within Naval Petroleum Reserve 2 (NPR2) and 3,840 acres of lands administered by the Bureau of Land Management (BLM), in western Kern County, California. This environmental assessment (EA) presents an overview of the affected environment within the project area using results of a literature review of biological field surveys previously conducted within or adjacent to a proposed 3D seismic project. The purpose is to provide background information to identify potential and known locations of sensitive wildlife and special status plant species within the proposed seismic project area. Biological field surveys, following agency approved survey protocols, will be conducted during October through November 1996 to acquire current resources data to provide avoidance as the project is being implemented in the field.

  15. Joint environmental assessment for Chevron USA, Inc. and Santa Fe Energy Resources, Inc.: Midway Valley 3D seismic project, Kern County, California

    International Nuclear Information System (INIS)

    1996-10-01

    The proposed Midway Valley 3D Geophysical Exploration Project covers approximately 31,444 aces of private lands, 6,880 acres of Department of Energy (DOE) Lands within Naval Petroleum Reserve 2 (NPR2) and 3,840 acres of lands administered by the Bureau of Land Management (BLM), in western Kern County, California. This environmental assessment (EA) presents an overview of the affected environment within the project area using results of a literature review of biological field surveys previously conducted within or adjacent to a proposed 3D seismic project. The purpose is to provide background information to identify potential and known locations of sensitive wildlife and special status plant species within the proposed seismic project area. Biological field surveys, following agency approved survey protocols, will be conducted during October through November 1996 to acquire current resources data to provide avoidance as the project is being implemented in the field

  16. Operational strategy for soil concentration predictions of strontium/yttrium-90 and cesium-137 in surface soil at the West Valley Demonstration Project site

    International Nuclear Information System (INIS)

    Myers, J.A.

    1995-01-01

    There are difficulties associated with the assessment of the interpretation of field measurements, determination of guideline protocols and control and disposal of low level radioactive contaminated soil in the environmental health physics field. Questions are raised among scientists and in public forums concerning the necessity and high costs of large area soil remediation versus the risks of low-dose radiation health effects. As a result, accurate soil activity assessments become imperative in decontamination situations. The West Valley Demonstration Project (WVDP), a US Department of Energy facility located in West Valley, New York is managed and operated by West Valley Nuclear Services Co., Inc. (WVNS). WVNS has identified contaminated on-site soil areas with a mixed variety of radionuclides (primarily fission product). Through the use of data obtained from a previous project performed during the summer of 1994 entitled ''Field Survey Correlation and Instrumentation Response for an In Situ Soil Measurement Program'' (Myers), the WVDP offers a unique research opportunity to investigate the possibility of soil concentration predictions based on exposure or count rate responses returned from a survey detector probe. In this study, correlations are developed between laboratory measured soil beta activity and survey probe response for the purposes of determining the optimal detector for field use and using these correlations to establish predictability of soil activity levels

  17. Development and delivery of a workshop methodology: planning for biomass power plant projects

    Energy Technology Data Exchange (ETDEWEB)

    Gray, A.J.; Delbridge, P.; Trevorrow, E.; Pile, C.

    2001-07-01

    This report gives details of the approach used to develop a workshop methodology to help planners and stakeholders address key issues that may arise when submitting a planning application for a biomass power plant in the light of the UK government's energy and climate change targets. The results of interviews with stakeholders (central government, regulatory authorities, developers, planners, non-governmental organisations, local community, resident groups) are summarised, and the NIMBY (not in my back yard) syndrome, the lack of trust in the developer, and lack of awareness of the use of biomass are discussed. Details are given of the design and testing of the workshop methodology and the resulting workshop methodology and workbook guide aimed at understanding the stakeholder issues and concerns through stakeholder discussions.

  18. Cost-Efficient and Sustainable Deployment of Renewable Energy Sources towards the 20% Target by 2020, and beyond. D2.6. Synthesis Report on Possible Valleys of Opportunity for Cooperation Mechanisms in Europe, Based on Wind, Biomass and Solar Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Longa, F. [ECN Policy Studies, Amsterdam (Netherlands)

    2013-02-15

    This document concludes the work carried out within Work Package 2 of the RES4Less project with a synthesis of the main results. The aim of WP2 is to identify so called Valleys of Opportunity (VoO) for an enhanced deployment of Renewable Energy Sources (RES) across Europe, based on cooperation among Member States (MS). The general expectation is that Valleys of Opportunity will be located in areas where RES resources are more abundant. Specifically, Northern countries could exploit their large wind potential, especially within the North Sea basin. Eastern countries could benefit from the presence of large and to some extent untapped biomass resources. Southern countries could take advantage of the fact that the amount of daily sun-hours is relatively large, making the deployment of Solar-based technologies economically attractive. In order to establish a preliminary set of candidate VoOs that look attractive from an economical perspective, a methodology has been developed to systematically analyze RES surpluses in EU, characterize them in terms of costs and technology composition, and determine which member states could be interested in exploiting them. The analysis has been applied to the renewable electricity (RES-E) sector using ECN model RESolve-E and its satellite model RES4Less. The results of the modelling exercise provide a starting point towards the identification of realizable VoOs. The subsequent steps in the analysis are: (a) Elaborate on the model outcomes focusing on a specific technology and a specific region; (b) Conduct a reality check on the model outcomes against known actual plans and expected developments, and eventually complement any shortcomings by drawing information from additional sources; (c) Narrow down candidate VoOs to more realistic VoOs by considering practical barriers, constraints and restrictions that are not address by the model but are very likely to come into play; (d) Identify an interesting case study to bring forward for an

  19. Progress on Optimizing Miscanthus Biomass Production for the European Bioeconomy: Results of the EU FP7 Project OPTIMISC

    Science.gov (United States)

    Lewandowski, Iris; Clifton-Brown, John; Trindade, Luisa M.; van der Linden, Gerard C.; Schwarz, Kai-Uwe; Müller-Sämann, Karl; Anisimov, Alexander; Chen, C.-L.; Dolstra, Oene; Donnison, Iain S.; Farrar, Kerrie; Fonteyne, Simon; Harding, Graham; Hastings, Astley; Huxley, Laurie M.; Iqbal, Yasir; Khokhlov, Nikolay; Kiesel, Andreas; Lootens, Peter; Meyer, Heike; Mos, Michal; Muylle, Hilde; Nunn, Chris; Özgüven, Mensure; Roldán-Ruiz, Isabel; Schüle, Heinrich; Tarakanov, Ivan; van der Weijde, Tim; Wagner, Moritz; Xi, Qingguo; Kalinina, Olena

    2016-01-01

    This paper describes the complete findings of the EU-funded research project OPTIMISC, which investigated methods to optimize the production and use of miscanthus biomass. Miscanthus bioenergy and bioproduct chains were investigated by trialing 15 diverse germplasm types in a range of climatic and soil environments across central Europe, Ukraine, Russia, and China. The abiotic stress tolerances of a wider panel of 100 germplasm types to drought, salinity, and low temperatures were measured in the laboratory and a field trial in Belgium. A small selection of germplasm types was evaluated for performance in grasslands on marginal sites in Germany and the UK. The growth traits underlying biomass yield and quality were measured to improve regional estimates of feedstock availability. Several potential high-value bioproducts were identified. The combined results provide recommendations to policymakers, growers and industry. The major technical advances in miscanthus production achieved by OPTIMISC include: (1) demonstration that novel hybrids can out-yield the standard commercially grown genotype Miscanthus x giganteus; (2) characterization of the interactions of physiological growth responses with environmental variation within and between sites; (3) quantification of biomass-quality-relevant traits; (4) abiotic stress tolerances of miscanthus genotypes; (5) selections suitable for production on marginal land; (6) field establishment methods for seeds using plugs; (7) evaluation of harvesting methods; and (8) quantification of energy used in densification (pellet) technologies with a range of hybrids with differences in stem wall properties. End-user needs were addressed by demonstrating the potential of optimizing miscanthus biomass composition for the production of ethanol and biogas as well as for combustion. The costs and life-cycle assessment of seven miscanthus-based value chains, including small- and large-scale heat and power, ethanol, biogas, and insulation

  20. Progress on optimizing miscanthus biomass production for the European bioeconomy: Results of the EU FP7 project OPTIMISC

    Directory of Open Access Journals (Sweden)

    Iris Lewandowski

    2016-11-01

    Full Text Available This paper describes the complete findings of the EU-funded research project OPTIMISC, which investigated methods to optimize the production and use of miscanthus biomass. Miscanthus bioenergy and bioproduct chains were investigated by trialing fifteen diverse germplasm types in a range of climatic and soil environments across central Europe, Ukraine, Russia and China. The abiotic stress tolerances of a wider panel of 100 germplasm types to drought, salinity and low temperatures were measured in the laboratory and a field trial in Belgium. A small selection of germplasm types was evaluated for performance in grasslands on marginal sites in Germany and the UK. The growth traits underlying biomass yield and quality were measured to improve regional estimates of feedstock availability. Several potential high-value bioproducts were identified. The combined results provide recommendations to policymakers, growers and industry. The major technical advances in miscanthus production achieved by OPTIMISC include: 1 demonstration that novel hybrids can out-yield the standard commercially grown genotype Miscanthus x giganteus; 2 characterisation of the interactions of physiological growth responses with environmental variation within and between sites; 3 quantification of biomass-quality-relevant traits; 4 abiotic stress tolerances of miscanthus genotypes; 5 selections suitable for production on marginal land; 6 field establishment methods for seeds using plugs; 7 evaluation of harvesting methods; and 8 quantification of energy used in densification (pellet technologies with a range of hybrids with differences in stem wall properties. End-user needs were addressed by demonstrating the potential of optimizing miscanthus biomass composition for the production of ethanol and biogas as well as for combustion. The costs and life-cycle assessment of seven miscanthus-based value chains, including small- and large-scale heat and power, ethanol, biogas and

  1. Progress on Optimizing Miscanthus Biomass Production for the European Bioeconomy: Results of the EU FP7 Project OPTIMISC.

    Science.gov (United States)

    Lewandowski, Iris; Clifton-Brown, John; Trindade, Luisa M; van der Linden, Gerard C; Schwarz, Kai-Uwe; Müller-Sämann, Karl; Anisimov, Alexander; Chen, C-L; Dolstra, Oene; Donnison, Iain S; Farrar, Kerrie; Fonteyne, Simon; Harding, Graham; Hastings, Astley; Huxley, Laurie M; Iqbal, Yasir; Khokhlov, Nikolay; Kiesel, Andreas; Lootens, Peter; Meyer, Heike; Mos, Michal; Muylle, Hilde; Nunn, Chris; Özgüven, Mensure; Roldán-Ruiz, Isabel; Schüle, Heinrich; Tarakanov, Ivan; van der Weijde, Tim; Wagner, Moritz; Xi, Qingguo; Kalinina, Olena

    2016-01-01

    This paper describes the complete findings of the EU-funded research project OPTIMISC, which investigated methods to optimize the production and use of miscanthus biomass. Miscanthus bioenergy and bioproduct chains were investigated by trialing 15 diverse germplasm types in a range of climatic and soil environments across central Europe, Ukraine, Russia, and China. The abiotic stress tolerances of a wider panel of 100 germplasm types to drought, salinity, and low temperatures were measured in the laboratory and a field trial in Belgium. A small selection of germplasm types was evaluated for performance in grasslands on marginal sites in Germany and the UK. The growth traits underlying biomass yield and quality were measured to improve regional estimates of feedstock availability. Several potential high-value bioproducts were identified. The combined results provide recommendations to policymakers, growers and industry. The major technical advances in miscanthus production achieved by OPTIMISC include: (1) demonstration that novel hybrids can out-yield the standard commercially grown genotype Miscanthus x giganteus; (2) characterization of the interactions of physiological growth responses with environmental variation within and between sites; (3) quantification of biomass-quality-relevant traits; (4) abiotic stress tolerances of miscanthus genotypes; (5) selections suitable for production on marginal land; (6) field establishment methods for seeds using plugs; (7) evaluation of harvesting methods; and (8) quantification of energy used in densification (pellet) technologies with a range of hybrids with differences in stem wall properties. End-user needs were addressed by demonstrating the potential of optimizing miscanthus biomass composition for the production of ethanol and biogas as well as for combustion. The costs and life-cycle assessment of seven miscanthus-based value chains, including small- and large-scale heat and power, ethanol, biogas, and insulation

  2. Energy from biomass. Summaries of the Biomass Projects carried out as part of the Department of Trade and Industry`s New and Renewable Energy Programme. Vol. 4: anaerobic digestion for biogas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    These volumes of summaries provide easy access to the many projects carried out in the Energy from Biomass programme area as part of the Department of Trade and Industry`s New and Renewable Energy Programme. The summaries in this volume cover contractor reports on the subject published up to December 1997. (author)

  3. Energy from biomass. Summaries of the Biomass Projects carried out as part of the Department of Trade and Industry's New and Renewable Energy Programme. Vol. 3: converting wood fuel to energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    These volumes of summaries provide easy access to the many projects carried out in the Energy from Biomass programme area as part of the Department of Trade and Industry's New and Renewable Energy Programme. The summaries in this volume cover contractor reports on the subject published up to December 1997. (author)

  4. Energy from biomass. Summaries of the Biomass Projects carried out as part of the Department of Trade and Industry's New and Renewable Energy Programme. Vol. 5: straw, poultry litter and energy crops as energy sources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    These volumes of summaries provide easy access to the many projects carried out in the Energy from Biomass programme area as part of the Department of Trade and Industry's New and Renewable Energy Programme. The summaries in this volume cover contractor reports on the subject published up to December 1997. (author)

  5. Biomass burning studies and the International Global Atmospheric Chemistry (IGAC) project

    Science.gov (United States)

    Prinn, Ronald G.

    1991-01-01

    IGAC is an ambitious, decade-long and global research initiative concerned with major research challenges in the field of atmospheric chemistry; its chemists and ecosystem biologists are addressing the problems associated with global biomass burning (BMB). Among IGAC's goals is the achievement of a fundamental understanding of the natural and anthropogenic processes determining changes in atmospheric composition and chemistry, in order to allow century-long predictions. IGAC's studies have been organized into 'foci', encompassing the marine, tropical, polar, boreal, and midlatitude areas, as well as their global composite interactions. Attention is to be given to the effects of BMB on biogeochemical cycles.

  6. Production of biomass in wet peatlands (paludiculture). The EU-AID project 'Wetland energy' in Belarus. Solutions for the substitution of fossil fuels (peat briquettes) by biomass from wet peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Wichtmann, Wendelin [Michael Succow Stiftung fuer den Schutz der Natur, Greifswald (Germany); Haberl, Andreas; Tanneberger, Franziska

    2012-07-01

    In Belarus, a pilot project demonstrating site adapted management of wet peatlands for biomass production have started recently. In cooperation with local stakeholders, the currently environmentally unfriendly peat extraction for energy will be converted into a sustainable land use system. By replacing the peat briquettes with locally produced briquettes using biomass from rewetted peatlands the income situation of remote and rural areas will be improved. In various combustion trials of peatland biomass in Germany and Belarus the suitability of the material for energy production has been demonstrated. The EU-Aid funded project in Belarus is realized by the Michael Succow Foundation in cooperation with the International Sacharov Environmental University (ISEU) and the Institute for Nature Management of the National Academy of Sciences (IfNM). Applied, site-specific management concepts, employing site adapted machinery for reed and sedge vegetation on wet peatlands will not only result in avoidance of environmentally harmful peat extraction, but also in benefits for distinctive biodiversity. This site adapted peatlands management (paludiculture) comprises the reduction of greenhousegas (GHG) emissions by rewetting of drained peatlands and by the replacement of fossil fuels by biomass from these sites. Under favourable conditions additionally CO{sub 2} sequestration by new peat formation reestablished. The biomass will be harvested with site adapted machinery and processed to fuel briquettes. (orig.)

  7. Retrofit options to enable biomass firing at Irish peat plants: Background report 4.2 for the EU Joule 2+ project: Energy from biomass: An assessment of two promising systems for energy production

    International Nuclear Information System (INIS)

    Van den Broek, R.; Faaij, A.; Blaney, G.

    1995-05-01

    An overview is given of the most promising options for retrofitting existing Irish peat plants to accept biomass fuel. It is expected that with low investment costs the existing peat stations can be adapted to enable them to fire biomass. It will also be possible to co-fire peat and biomass, this option will become a way of using biomass in power generation with relatively low risk, both on the field of initial investments and supply security. The objectives of this report are: assessing the different technical options for retrofitting the plants to enable biomass firing; provide investment costs, efficiencies, emissions and expected lifetimes for the different retrofit options. The results from this study are used in the final integration phase of the EU-Joule project 'Energy from biomass'. Chapter 2 deals with methodological considerations which have been made in estimation of the investment costs. In chapter 3 the present situation is described. Both peat harvesting and power plant operation of both sod and milled peat plants are explained. Also some past experiences with wood chips firing in Irish peat stations are discussed. Chapter 4 gives a general view on retrofitting peat plants to enable biomass firing. Some starting points like biomass fuel feeding and emission standards that have to be met are highlighted. The rationale behind four main choices are given. Finally, a technical description is presented of the two boiler adaptations that will be considered among the different retrofit options, namely conversion of milled peat units into bubbling fluidized bed and into a whole tree energy unit. Six retrofit options are described in more detail in chapter 5. Information is given on the present status of the plants, the technical considerations of the retrofit, expected performance and an estimation of a range in which the investment costs can be expected. 4 figs., 10 tabs., 5 appendices

  8. Status of groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units, 2005-08: California GAMA Priority Basin Project

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study units are located in California's Central Valley and include parts of Butte, Colusa, Glenn, Placer, Sacramento, Shasta, Solano, Sutter, Tehama, Yolo, and Yuba Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The three study units were designated to provide spatially-unbiased assessments of the quality of untreated groundwater in three parts of the Central Valley hydrogeologic province, as well as to provide a statistically consistent basis for comparing water quality regionally and statewide. Samples were collected in 2005 (Southern Sacramento Valley), 2006 (Middle Sacramento Valley), and 2007-08 (Northern Sacramento Valley). The GAMA studies in the Southern, Middle, and Northern Sacramento Valley were designed to provide statistically robust assessments of the quality of untreated groundwater in the primary aquifer systems that are used for drinking-water supply. The assessments are based on water-quality data collected by the USGS from 235 wells in the three study units in 2005-08, and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter, referred to as primary aquifers) assessed in this study are defined by the depth intervals of the wells in the CDPH database for each study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. The status of the current quality of the groundwater resource was assessed by using data from samples analyzed for volatile organic

  9. Risks and chances of combined forestry and biomass projects under the Clean Development Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Dutschke, Michael; Kapp, Gerald; Lehmann, Anna; Schaefer, Volkmar (Hamburg Inst. International Economics (Germany))

    2006-06-15

    The Clean Development Mechanism (CDM) aims at reducing greenhouse gas (GHG) emissions, while at the same time taking up CO{sub 2} from the atmosphere in vegetation by means of afforestation and reforestation. In spite of these options being complementary, rules and modalities for both project classes are being treated separately in the relevant decisions by the Conference of the Parties to the UN Framework Convention on Climate Change. The present study reviews the state of bioenergy use in developing countries, modalities and procedures under the CDM, and the potential for transaction cost reduction in climate mitigation projects. There are four potential types of combinations in the matrix between small-scale - large-scale / afforestation and reforestation - bioenergy activities. We develop criteria for assessing sustainable development benefits and present an example project for each of the potential project types. We find that the individual risks of single-category projects do not increase when combining project categories and that each combination holds potential for integrated sustainability benefits. Risks for local livelihoods do increase with project size, but a transparent, participatory planning phase is able to counterbalance smallholders' lack of negotiation power. Further research will have to develop concrete project examples and blueprints with approved CDM methodologies, thereby decreasing transaction costs and risk for all potential project partners. (au)

  10. Preliminary Study of the Effect of the Proposed Long Lake Valley Project Operation on the Transport of Larval Suckers in Upper Klamath Lake, Oregon

    Science.gov (United States)

    Wood, Tamara M.

    2009-01-01

    A hydrodynamic model of Upper Klamath and Agency Lakes, Oregon, was used to explore the effects of the operation of proposed offstream storage at Long Lake Valley on transport of larval suckers through the Upper Klamath and Agency Lakes system during May and June, when larval fish leave spawning sites in the Williamson River and springs along the eastern shoreline and become entrained in lake currents. A range in hydrologic conditions was considered, including historically high and low outflows and inflows, lake elevations, and the operation of pumps between Upper Klamath Lake and storage in Long Lake Valley. Two wind-forcing scenarios were considered: one dominated by moderate prevailing winds and another dominated by a strong reversal of winds from the prevailing direction. On the basis of 24 model simulations that used all combinations of hydrology and wind forcing, as well as With Project and No Action scenarios, it was determined that the biggest effect of project operations on larval transport was the result of alterations in project management of the elevation in Upper Klamath Lake and the outflow at the Link River and A Canal, rather than the result of pumping operations. This was because, during the spring time period of interest, the amount of water pumped between Upper Klamath Lake and Long Lake Valley was generally small. The dominant effect was that an increase in lake elevation would result in more larvae in the Williamson River delta and in Agency Lake, an effect that was enhanced under conditions of wind reversal. A decrease in lake elevation accompanied by an increase in the outflow at the Link River had the opposite effect on larval concentration and residence time.

  11. Preliminary report on the geology of the Red River Valley drilling project, eastern North Dakota and northwestern Minnesota

    International Nuclear Information System (INIS)

    Moore, W.L.

    1979-01-01

    Thirty-two wells, 26 of which penetrated the Precambrian, were drilled along the eastern edge of the Williston Basin in the eastern tier of counties in North Dakota and in nearby counties in northwestern Minnesota. These tests, along the Red River Valley of the North, were drilled to study the stratigraphy and uranium potential of this area. The drilling program was unsuccessful in finding either significant amounts of uranium or apparently important shows of uranium. It did, however, demonstrate the occurrence of thick elastic sections in the Ordovician, Jurassic and Cretaceous Systems, within the Red River Valley, along the eastern margins of the Williston Basin which could serve as host rocks for uranium ore bodies

  12. Protection of drinking water reservoirs in buried glacial valleys in the ice-marginal landscape for securing future demand in the European perspective (ENCORE-Project).

    Science.gov (United States)

    Smit, F. W. H.; Bregman, E. P. H.

    2012-04-01

    Quaternary glaciations have left a significant sedimentological fingerprint in the subsurface of north Europe, in the form of buried glacial valleys. These structures are important drinking water reservoirs for millions of people in the ice-marginal landscape, but are increasingly threatened by anthropogenic pollution (nitrate, sulphate and organic pollutants) and geogenic pollution (salinization). That is one of the conclusion of a recent overview study in the IML of northern Europe from the North Sea to the southern Baltic area. Adequate policy making is yet not possible for several reasons: - Large amounts of data are needed to get a good grip on the lateral continuity of the complex infill. - The BurVal Working Group (2006) has shown that a combination of high resolution seismic survey, together with transient electromagnetic (TEM) surveys can provide realistic data for 3D hydrogeological models. However, these data have not yet been retrieved on a European scale. - Available borehole data can only be used as control points in 3D hydrological models, since the infill of buried glacial valleys is often lateral too complex to make sound interpolations possible. Pollution in buried glacial valleys crosses national borders in northern Europe and therefore national geological surveys have to cooperate in a newly formed European project on protection of these structures. The ENCORE - project (Environmental Conference of the European Regions) has shown in the past that it can facilitate fruitful European cooperation, which is urgently needed due to the costs of gathering data and due to knowledge gaps between different countries. By working together in a European context, these problems can be reduced so that better policy making is possible in order to secure our future drinking water availability.

  13. BPA/Lower Valley transmission project. Final environmental impact statement. Appendices A, B, D, E, G-N

    International Nuclear Information System (INIS)

    1998-06-01

    Bonneville Power Administration is investigating the feasibility of constructing an additional transmission line, which for the most part will be adjacent to the existing transmission line. This would require the construction or acquisition of additional access roads, used for routine and emergency maintenance and construction activities. A survey was conducted to map any occurrences of threatened, endangered and sensitivity plant species and weed species along the Swan Valley-Teton Line. This report contains Appendices A, B, D, E, G--N

  14. Infrastructure improvement project for rationalization of international energy use. Basic survey project on efficient use of unutilized biomass in ASEAN countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Surveys and researches were performed on a small-size power generation system using biomass which is available affluently in ASEAN countries, but is not fully utilized. The current fiscal year has carried out researches on a small-size power generation system using palm shells available in great abundance in Malaysia. Having been performed in December 2000 are the preliminary conferences of ACE with Ptm, collection of necessary data and literatures, and decisions on the specifications of the small-size power generation system and its basic design conditions. In January 2001, collection of literatures related to production, combustion, and use of the biomass for the purpose of power generation and other than the power generation, as well as visits to palm oil factories were implemented. In March 2001, the final specifications were decided on the small-size power generation system. This project has carried out not only the discussions on the specifications of devices, but also joint researches on design ideas to facilitate technological transfer. This paper includes the reports and literatures used at the workshops in addition to the basic specifications of the small-size power generation system that can be used in wide areas. (NEDO)

  15. The influence of perceived uncertainty on entrepreneurial action in emerging renewable energy technology; biomass gasification projects in the Netherlands

    International Nuclear Information System (INIS)

    Meijer, Ineke S.M.; Hekkert, Marko P.; Koppenjan, Joop F.M.

    2007-01-01

    Emerging renewable energy technologies cannot break through without the involvement of entrepreneurs who dare to take action amidst uncertainty. The uncertainties that the entrepreneurs involved perceive will greatly affect their innovation decisions and can prevent them from engaging in innovation projects aimed at developing and implementing emerging renewable energy technologies. This article analyzes how perceived uncertainties and motivation influence an entrepreneur's decision to act, using empirical data on biomass gasification projects in the Netherlands. Our empirical results show that technological, political and resource uncertainty are the most dominant sources of perceived uncertainty influencing entrepreneurial decision-making. By performing a dynamic analysis, we furthermore demonstrate that perceived uncertainties and motivation are not stable, but evolve over time. We identify critical factors in the project's internal and external environment which influence these changes in perceived uncertainties and motivation, and describe how various interactions between the different variables in the conceptual model (internal and external factors, perceived uncertainty, motivation and previous actions of the entrepreneurs) positively or negatively influence the decision of entrepreneurs to continue entrepreneurial action. We discuss how policymakers can use these insights for stimulating the development and diffusion of emerging renewable energy technologies

  16. Economic, energy and environmental evaluations of biomass-based fuel ethanol projects based on life cycle assessment and simulation

    International Nuclear Information System (INIS)

    Yu Suiran; Tao Jing

    2009-01-01

    This paper summarizes the research of Monte Carlo simulation-based Economic, Energy and Environmental (3E) Life Cycle Assessment (LCA) of the three Biomass-based Fuel Ethanol (BFE) projects in China. Our research includes both theoretical study and case study. In the theoretical study part, 3E LCA models are structured, 3E Index Functions are defined and the Monte Carlo simulation is introduced to address uncertainties in BFE life cycle analysis. In the case study part, projects of Wheat-based Fuel Ethanol (WFE) in Central China, Corn-based Fuel Ethanol (CFE) in Northeast China, and Cassava-based Fuel Ethanol (CFE) in Southwest China are evaluated from the aspects of economic viability and investment risks, energy efficiency and airborne emissions. The life cycle economy assessment shows that KFE project in Guangxi is viable, while CFE and WFE projects are not without government's subsidies. Energy efficiency assessment results show that WFE, CFE and KFE projects all have positive Net Energy Values. Emissions results show that the corn-based E10 (a blend of 10% gasoline and 90% ethanol by volume), wheat-based E10 and cassava-base E10 have less CO 2 and VOC life cycle emissions than conventional gasoline, but wheat-based E10 and cassava-based E10 can generate more emissions of CO, CH 4 , N 2 O, NO x , SO 2 , PM 10 and corn-based E10 can has more emissions of CH 4 , N 2 O, NO x , SO, PM 10 .

  17. Scotts Valley Energy Office and Human Capacity Building that will provide energy-efficiency services and develop sustainable renewable energy projects.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Temashio [Scotts Valley Band of Pomo Indians

    2013-06-28

    The primary goal of this project is to develop a Scotts Valley Energy Development Office (SVEDO). This office will further support the mission of the Tribe's existing leadership position as the DOE Tribal Multi-County Weatherization Energy Program (TMCWEP) in creating jobs and providing tribal homes and buildings with weatherization assistance to increase energy efficiency, occupant comfort and improved indoor air quality. This office will also spearhead efforts to move the Tribe towards its further strategic energy goals of implementing renewable energy systems through specific training, resource evaluation, feasibility planning, and implementation. Human capacity building and continuing operations are two key elements of the SVEDO objectives. Therefore, the project will 1) train and employ additional Tribal members in energy efficiency, conservation and renewable resource analyses and implementation; 2) purchase materials and equipment required to implement the strategic priorities as developed by the Scotts Valley Tribe which specifically include implementing energy conservation measures and alternative energy strategies to reduce energy costs for the Tribe and its members; and 3) obtain a dedicated office and storage space for ongoing SVEDO operations.

  18. Biomass combustion power generation technologies: Background report 4.1 for the EU Joule 2+ project: Energy from biomass: An assessment of two promising systems for energy production

    International Nuclear Information System (INIS)

    Van den Broek, R.; Faaij, A.; Van Wijk, A.

    1995-05-01

    New developments in biomass combustion technology in progress tend to go towards efficiencies which come close to the present fossil fuel fired systems. The objective of this study is to give a representation of the state of the art and future prospects of biomass combustion technologies and to compare those on a location-independent basis. This will be done both by a general boiler technology description on the basis of qualitative criteria and by a comparison of most recently built and planned power plants on more quantitative grounds. The methodology which has been used in gathering, selecting, presenting and comparing the information is discussed in chapter 2. In chapter 3, a general introduction is given on some basic principles of biomass combustion technology. This includes the combustion process, the Rankine steam cycle and NO x formation. Different boiler technologies which are in use for biomass combustion power generation are discussed in chapter 4. The main groups of boilers which are discussed are the pile burners, stoker fired boilers, suspension fired boilers and fluidized bed boilers. The description focuses on aspects such as construction, operation, fuel requirements, efficiencies and emissions. Chapter 5 deals with individual existing or planned biomass combustion plants, resulting from an international inventory. All the different technologies which have been discussed in chapter 4 are discussed in chapter 5 in the context of complete power plants. The information which is presented for each plant comprises a technical description, efficiencies, emissions and investment costs. At the end of chapter 5 an overview of comparable data from the literature is given, as well as an overview of the results of the inventory. 32 figs., 28 tabs., 4 appendices., 51 refs

  19. Environmental assessment for the treatment of Class A low-level radioactive waste and mixed low-level waste generated by the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    1995-11-01

    The U.S. Department of Energy (DOE) is currently evaluating low-level radioactive waste management alternatives at the West Valley Demonstration Project (WVDP) located on the Western New York Nuclear Service Center (WNYNSC) near West Valley, New York. The WVDP's mission is to vitrify high-level radioactive waste resulting from commercial fuel reprocessing operations that took place at the WNYNSC from 1966 to 1972. During the process of high-level waste vitrification, low-level radioactive waste (LLW) and mixed low-level waste (MILLW) will result and must be properly managed. It is estimated that the WVDP's LLW storage facilities will be filled to capacity in 1996. In order to provide sufficient safe storage of LLW until disposal options become available and partially fulfill requirements under the Federal Facilities Compliance Act (FFCA), the DOE is proposing to use U.S. Nuclear Regulatory Commission-licensed and permitted commercial facilities in Oak Ridge, Tennessee; Clive, Utah; and Houston, Texas to treat (volume-reduce) a limited amount of Class A LLW and MLLW generated from the WVDP. Alternatives for ultimate disposal of the West Valley LLW are currently being evaluated in an environmental impact statement. This proposed action is for a limited quantity of waste, over a limited period of time, and for treatment only; this proposal does not include disposal. The proposed action consists of sorting, repacking, and loading waste at the WVDP; transporting the waste for commercial treatment; and returning the residual waste to the WVDP for interim storage. For the purposes of this assessment, environmental impacts were quantified for a five-year operating period (1996 - 2001). Alternatives to the proposed action include no action, construction of additional on-site storage facilities, construction of a treatment facility at the WVDP comparable to commercial treatment, and off-site disposal at a commercial or DOE facility

  20. Potential for Coal Power Plants to Co-Fire with Woody Biomass in the U. S. North, 2010-2030: A Technical Document Supporting the Northern Forest Futures Project

    Science.gov (United States)

    Michael E. Goerndt; Francisco X. Aguilar; Kenneth E. Skog

    2015-01-01

    Future use of woody biomass to produce electric power in the U.S. North can have an important influence on timber production, carbon storage in forests, and net carbon emissions from producing electric power. The Northern Forest Futures Project (NFFP) has provided regional- and state-level projections of standing forest biomass, land-use change, and timber harvest,...

  1. Design and operating features of the high-level waste vitrification system for the West Valley demonstration project

    International Nuclear Information System (INIS)

    Siemens, D.H.; Beary, M.M.; Barnes, S.M.; Berger, D.N.; Brouns, R.A.; Chapman, C.C.; Jones, R.M.; Peters, R.D.; Peterson, M.E.

    1986-03-01

    A liquid-fed joule-heated ceramic melter system is the reference process for immobilization of the high-level liquid waste in the US and several foreign countries. This system has been under development for over ten years at Pacific Northwest Laboratory and other national laboratories operated for the US Department of Energy. Pacific Northwest Laboratory contributed to this research through its Nuclear Waste Treatment Program and used applicable data to design and test melters and related systems using remote handling of simulated radioactive wastes. This report describes the equipment designed in support of the high-level waste vitrification program at West Valley, New York. Pacific Northwest Laboratory worked closely with West Valley Nuclear Services Company to design a liquid-fed ceramic melter, a liquid waste preparation and feed tank and pump, an off-gas treatment scrubber, and an enclosed turntable for positioning the waste canisters. Details of these designs are presented including the rationale for the design features and the alternatives considered

  2. A global conversation about energy from biomass: the continental conventions of the global sustainable bioenergy project

    Science.gov (United States)

    Lynd, Lee Rybeck; Aziz, Ramlan Abdul; de Brito Cruz, Carlos Henrique; Chimphango, Annie Fabian Abel; Cortez, Luis Augusto Barbosa; Faaij, Andre; Greene, Nathanael; Keller, Martin; Osseweijer, Patricia; Richard, Tom L.; Sheehan, John; Chugh, Archana; van der Wielen, Luuk; Woods, Jeremy; van Zyl, Willem Heber

    2011-01-01

    The global sustainable bioenergy (GSB) project was formed in 2009 with the goal of providing guidance with respect to the feasibility and desirability of sustainable, bioenergy-intensive futures. Stage 1 of this project held conventions with a largely common format on each of the world's continents, was completed in 2010, and is described in this paper. Attended by over 400 persons, the five continental conventions featured presentations, breakout sessions, and drafting of resolutions that were unanimously passed by attendees. The resolutions highlight the potential of bioenergy to make a large energy supply contribution while honouring other priorities, acknowledge the breadth and complexity of bioenergy applications as well as the need to take a systemic approach, and attest to substantial intra- and inter-continental diversity with respect to needs, opportunities, constraints and current practice relevant to bioenergy. The following interim recommendations based on stage 1 GSB activities are offered: — Realize that it may be more productive, and also more correct, to view the seemingly divergent assessments of bioenergy as answers to two different questions rather than the same question. Viewed in this light, there is considerably more scope for reconciliation than might first be apparent, and it is possible to be informed rather than paralysed by divergent assessments.— Develop established and advanced bioenergy technologies such that each contributes to the other's success. That is, support and deploy in the near-term meritorious, established technologies in ways that enhance rather than impede deployment of advanced technologies, and support and deploy advanced technologies in ways that expand rather than contract opportunities for early adopters and investors.— Be clear in formulating policies what mix of objectives are being targeted, measure the results of these policies against these objectives and beware of unintended consequences

  3. Status and understanding of groundwater quality in the Monterey Bay and Salinas Valley Basins, 2005-California GAMA Priority Basin Project

    Science.gov (United States)

    Kulongoski, Justin T.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the approximately 1,000 square mile (2,590 km2) Monterey Bay and Salinas Valley Basins (MS) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in central California in Monterey, Santa Cruz, and San Luis Obispo Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA MS study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer systems (hereinafter referred to as primary aquifers). The assessment is based on water-quality and ancillary data collected in 2005 by the USGS from 97 wells and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifers were defined by the depth intervals of the wells listed in the CDPH database for the MS study unit. The quality of groundwater in the primary aquifers may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifers of the MS study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal and (or) California regulatory or

  4. Slow pyrolysis for rural small biomass energy by joint project developments of Brazil and Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Kampegowda, Rajesh; Chandayot, Pongchan [Asian University, Chonburi (Thailand)], email: rkempegowda@asianust.ac.th; Pannirselvam, Pagandai V.; Humberto, Maricy; Santos, Joao Matias [Universidade Federal do Rio Grande do Norte (DEQ/UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica. Grupo de Pesquisa em Engenharia de Custos], email: pannirbr@gmail.com

    2008-07-01

    The efficiency for carbonization by slow pyrolysis is still low in the current method studied using rice straw in Thailand and cashewnut shell in Brazil, however direct heating process yields better char yield of 17% as compared to indirect heating with 15% process using horizontal metal drum kiln.where as vertical kiln were mainly used in Brazil. Higher yield is made possible from Brasilian cashew nut shell to make oil and char. Carbon and energy balance was also carried out and the results were compared for the direct and indirect process. Burning by indirect draft gives better results like more char, faster process. Direct draft gives less char, but higher quality (higher C and H2). Also a lot of straw is left unburnt in the direct draft kiln, because of bad temperature distribution and flow inside. The kiln design is found to be more suitable for indirect draft rather than direct draft. Both methods still give rice straw charcoal that has low calorific value with an output char LHV of 4337 kcal/kg as compared to fresh rice straw of 3412 kcal/kg. In the direct heating method output char is enriched to 45% with a still unburnt rice straw left out as compared to indirect heating method with carbon enrichment of 39%. There is a loss of 13% of carbon through the ash in the both the methods. The carbon content in the condensate is in the order of 18.5% for the indirect process as compared to 13.9% in the direct process due to less exhaust and carbon enrichment inside the kiln. There is a loss of 43% of carbon in the exhaust from indirect heating process as compared to direct heating process which is reduced to 26%. The energy balance predicts a heat loss of 14% in exhaust gases. A practical small scale slow pyrolysis project was developed to meet rural energy and heat requirements. to make the clean energy from waste resources possible by the joint project. (author)

  5. Life Detection and Characterization of Subsurface Ice and Brine in the McMurdo Dry Valleys Using an Ultrasonic Gopher: A NASA ASTEP Project

    Science.gov (United States)

    Doran, P. T.; Bar-Cohen, Y.; Fritsen, C.; Kenig, F.; McKay, C. P.; Murray, A.; Sherrit, S.

    2003-01-01

    Evidence for the presence of ice and fluids near the surface of Mars in both the distant and recent past is growing with each new mission to the Planet. One explanation for fluids forming springlike features on Mars is the discharge of subsurface brines. Brines offer potential refugia for extant Martian life, and near surface ice could preserve a record of past life on the planet. Proven techniques to get underground to sample these environments, and get below the disruptive influence of the surface oxidant and radiation regime, will be critical for future astrobiology missions to Mars. Our Astrobiology for Science and Technology for Exploring Planets (ASTEP) project has the goal to develop and test a novel ultrasonic corer in a Mars analog environment, the McMurdo Dry valleys, Antarctica, and to detect and describe life in a previously unstudied extreme ecosystem; Lake Vida (Fig. 1), an ice-sealed lake.

  6. Management of invasive plant species in the valley of the River Ślepiotka in Katowice – the example of the REURIS project

    Directory of Open Access Journals (Sweden)

    Frelich Małgorzata

    2014-06-01

    Full Text Available In recent years, programmes aimed at improving environmental conditions in river valleys within urban spaces have been initiated in many of the European Community countries. An example is the project “Revitalization of Urban River Spaces – REURIS” which was implemented in 2009-2012. Its main aim was to revitalize a part of the valley of the River Ślepiotka in Katowice. One of the tasks of the project was a comprehensive treatment to combat invasive plant species occurring in this area, carried out by using a combination of chemical and mechanical methods. Chemical treatment involved the application of herbicide mixtures, and mechanical treatment included, among others, mowing and/or removal of the undesirable plants. The work focused primarily on reducing the spread of two species of the Impatiens genus: I. glandulifera and I. parviflora, and the species Padus serotina, Reynoutria japonica and Solidago canadensis. Currently, the maintenance works on this section of the river are performed by the Urban Greenery Department in Katowice, which continues the elimination of invasive plants, according to the objectives of the REURIS program. In 2012 the Department of Botany and Nature Protection at the Faculty of Biology and Environmental Protection started to monitor the implementation and the effects of the implemented actions for elimination and participated in the action of removal of selected invasive plant species: Impatiens parviflora and Reynoutria japonica within specific areas. These actions led to a reduction in the area occupied by invasive plants and a weakening of their growth rate and ability to reproduce.

  7. Electrifying biomass

    International Nuclear Information System (INIS)

    Kusnierczyk, D.

    2005-01-01

    British Columbia's (BC) energy plan was outlined in this PowerPoint presentation. BC Hydro is the third largest electric utility in Canada with a generating capacity of 11,000 MW, 90 per cent of which is hydro generation. Various independent power project (IPP) biomass technologies were outlined, including details of biogas, wood residue and municipal solid waste facilities. An outline of BC Hydro's overall supply mix was presented, along with details of the IPP supply mix. It was suggested that the cancellation of the Duke Point power project has driven growth in the renewable energy sector. A chart of potential energy contribution by resource type was presented, as well as unit energy cost ranges. Resources included small and large hydro; demand side management; resource smart natural gas; natural gas; coal; wind; geothermal; biomass; wave; and tidal. The acquisition process was reviewed. Details of calls for tenders were presented, and issues concerning bidder responsibility and self-selection were examined. It was observed that wood residue presents a firm source of electricity that is generally local, and has support from the public. In addition, permits for wood residue energy conversion are readily available. However, size limitations, fuel risks, and issues concerning site control may prove to be significant challenges. It was concluded that the success of biomass energy development will depend on adequate access and competitive pricing. tabs., figs

  8. 75 FR 62853 - Notice of Availability of the Record of Decision for the Imperial Valley Solar Project and...

    Science.gov (United States)

    2010-10-13

    ... Management Plan (RMP) for the project site and the surrounding areas) located in the California Desert... Associated Amendment to the California Desert Conservation Area Resource Management Plan-Amendment, Imperial... the proprietary SunCatcher technology and facilities. The IVS project site is proposed on...

  9. 76 FR 18542 - Copper Valley Electric Association; Notice of Scoping Document 2 and Soliciting Scoping Comments...

    Science.gov (United States)

    2011-04-04

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-002] Copper Valley.... Applicant: Copper Valley Electric Association (Copper Valley) d. Name of Project: Allison Creek Project. e.... 791(a)-825(r). g. Applicant Contact: Robert A. Wilkinson, CEO, Copper Valley Electric Association, P.O...

  10. Getting Digital Assets from Public-Private Partnership Research Projects through "The Valley of Death," and Making Them Sustainable.

    Science.gov (United States)

    Aartsen, Wendy; Peeters, Paul; Wagers, Scott; Williams-Jones, Bryn

    2018-01-01

    Projects in public-private partnerships, such as the Innovative Medicines Initiative (IMI), produce data services and platforms (digital assets) to help support the use of medical research data and IT tools. Maintaining these assets beyond the funding period of a project can be a challenge. The reason for that is the need to develop a business model that integrates the perspectives of all different stakeholders involved in the project, and these digital assets might not necessarily be addressing a problem for which there is an addressable market of paying customers. In this manuscript, we review four IMI projects and the digital assets they produced as a means of illustrating the challenges in making digital assets sustainable and the lessons learned. To progress digital assets beyond proof-of-concept into widely adopted tools, there is a need for continuation of multi-stakeholder support tailored to these assets. This would be best done by implementing a structure similar to the accelerators that are in place to help transform startup businesses into growing and thriving businesses. The aim of this article is to highlight the risk of digital asset loss and to provoke discussion on the concept of developing an "accelerator" for digital assets from public-private partnership research projects to increase the chance that digital assets will be sustained and continue to add value long after a project has ended.

  11. Valley Fever

    Science.gov (United States)

    ... valley fever. These fungi are commonly found in soil in specific regions. The fungi's spores can be stirred into the air by ... species have a complex life cycle. In the soil, they grow as a mold with long filaments that break off into airborne ...

  12. Biomass Energy | Climate Neutral Research Campuses | NREL

    Science.gov (United States)

    Biomass Energy Biomass Energy Biomass from local sources can be key to a campus climate action plan biomass may fit into your campus climate action plan. Campus Options Considerations Sample Project Related biomass fuels for energy does not add to the net amount of carbon in the atmosphere. This is because the

  13. Design assessment for Melton Valley liquid low-level waste collection and transfer system upgrade project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-10-01

    This project is designed for collecting liquid low level waste (LLLW) from generating points inside the Radioisotope Engineering and Development Center (Buildings 7920 and 7930) facility and transferring this waste to the Collection Tank (F-1800) in the new Monitoring and Control Station (MCS) facility. The LLLW is transferred to the MCS in a new, underground, jacketed, stainless steel piping system. The LLLW will then be transferred from Tank F-1800 through a new, underground, jacketed, stainless steel piping system that connects the existing Bethel Valley LLLW Collection System and the Evaporator Facility Service Tanks. The interface for the two systems will be at the existing Interconnecting Pipe Line (ICPL) Valve Box adjacent to the Nonradiological Wastewater Treatment Plant. The project scope consists of the following systems: (1) Building 7920 LLLW Collection System; (2) Building 7930 LLLW Collection System; (3) LLLW Underground Transfer System to MCS; (4) MCS Building (including all equipment contained therein); (5) LLLW Underground Transfer System to ICPL Valve Box; and (6) Leak detection system for jacketed piping systems (3) and (5)

  14. The cultural analysis in the environmental impact studies. Jepirachi wind pilot project and connecting road between the Aburra valley and Cauca River

    International Nuclear Information System (INIS)

    Ruiz, Aura Luz; Carmona, Sergio Ivan

    2006-01-01

    This article is synthesis of the investigation to choose I in environment title of Master and Development of the National University of Host Colombia Medellin, on the speech, the social images and representations that emerge in the Studies from environmental Impact -EIA- from the cultural systems from communities affected by the implantation and operation. From two macro projects, that are part of the Plans of national Development, regional and local in Colombia: one, the Project Pilot of Generation of Aeolian Energy Jepirachi, in Colombian the Guajira discharge that affects indigenous communities of several establishments Wayuu in the sector of Average Moon. The other, the project of Road Connection between Valleys of the Aburra River - and the Cauca River, which it affects communities that inhabit an axis of rural transition - urban, whose cultural composition is diverse in its origin, mobility and interactions. It was left from two hypotheses: one, is that the analysis made in the cultural dimension of the EIA, is insufficient lo identify, lo evaluate and to handle the impacts on the cultural systems; second, front lo the treatment of the cultural systems is the existence of fundamental differences. There is cultural systems in Colombia which status is recognized greater and category than to others. The analysis of the speech allowed to obtain a diagnosis on semantic the rhetorical structure and - formal and textual cohesion, coherence, correlations and associations in the EIA and to identify the social images and representations that emerge on the populations taken part by the projects. Finally conclusions. That consider they leave to the debate on the cultural analyses that have been made in the EIA ,their emptiness and limitations and the different courses open that can take futures works from investigation

  15. A Hybrid Life-Cycle Assessment of Nonrenewable Energy and Greenhouse-Gas Emissions of a Village-Level Biomass Gasification Project in China

    Directory of Open Access Journals (Sweden)

    Mingyue Pang

    2012-07-01

    Full Text Available Small-scale bio-energy projects have been launched in rural areas of China and are considered as alternatives to fossil-fuel energy. However, energetic and environmental evaluation of these projects has rarely been carried out, though it is necessary for their long-term development. A village-level biomass gasification project provides an example. A hybrid life-cycle assessment (LCA of its total nonrenewable energy (NE cost and associated greenhouse gas (GHG emissions is presented in this paper. The results show that the total energy cost for one joule of biomass gas output from the project is 2.93 J, of which 0.89 J is from nonrenewable energy, and the related GHG emission cost is 1.17 × 10−4 g CO2-eq over its designed life cycle of 20 years. To provide equivalent effective calorific value for cooking work, the utilization of one joule of biomass gas will lead to more life cycle NE cost by 0.07 J and more GHG emissions by 8.92 × 10−5 g CO2-eq compared to natural gas taking into consideration of the difference in combustion efficiency and calorific value. The small-scale bio-energy project has fallen into dilemma, i.e., struggling for survival, and for a more successful future development of village-level gasification projects, much effort is needed to tide over the plight of its development, such as high cost and low efficiency caused by decentralized construction, technical shortcomings and low utilization rate of by-products.

  16. Seaweed potentials – evaluation of year-round biomass composition of commercial cultivated sugarkelp- results from project KOMBI

    OpenAIRE

    Holdt, Susan Løvstad; Silva Marinho, Goncalo; Angelidaki, Irini

    2015-01-01

    In this study, the year-round protein, amino acid, fatty acid, pigments, mineral and vitamin content and profiles were considered to evaluate the nutritional value and harvest time of the Saccharina latissima biomass for optimized value and application. Sugarkelp was cultivated both in close proximity to a blue mussel and fish farm (IMTA) and in a reference site, both outside Horsens fjord in Denmark. Sugarkelp biomass was measured by harvesting sporophytes (deployed in February 2013) from 1m...

  17. Hydrogen from biomass

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    Hydrogen is generally regarded as the energy carrier of the future. The development of a process for hydrogen production from biomass complies with the policy of the Dutch government to obtain more renewable energy from biomass. This report describes the progress of the BWP II project, phase 2 of

  18. Zooplankton biomass (displacement volume, dry mass, ash-free dry mass) data collected in Eastern Central Atlantic during CIPREA project from 1978-07-25 to 1978-09-12 by France (NODC Accession 0070783)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton biomass (displacement volume, dry mass, and ashfree dry mass) data collected in Eastern Central Atlantic during CIPREA project in Jul - Sep 1978 by...

  19. Sacramento River Flood Control Project, California, Mid-Valley Area, Phase III. Design Memorandum, Volume 2 of 2

    Science.gov (United States)

    1995-08-01

    a mix of native grasses upon completion of construction. The lime treatment construction alternative would render the top 4 feet of treated soil...project area. Site CA-Sut-il is a prehistoric burial mound recorded in 1934 by R.F. Heizer . He noted that this mound could be "a key mound to...Endangered Species section. The topical lime treatment construction alternative proposed for Sites 3, 12, 12A, 13, 15, 15A, and 15B, would render the

  20. 'Reference Biospheres' for solid radioactive waste disposal. Report of BIOMASS Theme 1 of the BIOsphere Modelling and ASSessment (BIOMASS) Programme. Part of the IAEA Co-ordinated Research Project on Biosphere Modelling and Assessment (BIOMASS)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The IAEA Programme on BIOsphere Modelling and ASSessment (BIOMASS) was launched in Vienna in October 1996. The programme was concerned with developing and improving capabilities to predict the transfer of radionuclides in the environment. The programme had three themes: Theme 1: Radioactive Waste Disposal. The objective was to develop the concept of a standard or reference biosphere for application to the assessment of the long-term safety of repositories for radioactive waste. Under the general heading of 'Reference Biospheres', six Task Groups were established: Task Group 1: Principles for the Definition of Critical and Other Exposure Groups. Task Group 2: Principles for the Application of Data to Assessment Models. Task Group 3: Consideration of Alternative Assessment Contexts. Task Group 4: Biosphere System Identification and Justification. Task Group 5: Biosphere System Descriptions. Task Group 6: Model Development. Theme 2: Environmental Releases. BIOMASS provided an international forum for activities aimed at increasing the confidence in methods and models for the assessment of radiation exposure related to environmental releases. Two Working Groups addressed issues concerned with the reconstruction of radiation doses received by people from past releases of radionuclides to the environment and the evaluation of the efficacy of remedial measures. Theme 3: Biosphere Processes. The aim of this Theme was to improve capabilities for modelling the transfer of radionuclides in particular parts of the biosphere identified as being of potential radiological significance and where there were gaps in modelling approaches. This topic was explored using a range of methods including reviews of the literature, model inter-comparison exercises and, where possible, model testing against independent sources of data. Three Working Groups were established to examine the modelling of: (1) long term tritium dispersion in the environment; (2) radionuclide uptake by fruits; and (3

  1. Forest biomass-based energy

    Science.gov (United States)

    Janaki R. R. Alavalapati; Pankaj Lal; Andres Susaeta; Robert C. Abt; David N. Wear

    2013-01-01

    Key FindingsHarvesting woody biomass for use as bioenergy is projected to range from 170 million to 336 million green tons by 2050, an increase of 54 to 113 percent over current levels.Consumption projections for forest biomass-based energy, which are based on Energy Information Administration projections, have a high level of...

  2. Dynamics of spatial clustering of schistosomiasis in the Yangtze River Valley at the end of and following the World Bank Loan Project.

    Science.gov (United States)

    Hu, Yi; Xiong, Chenglong; Zhang, Zhijie; Luo, Can; Ward, Michael; Gao, Jie; Zhang, Lijuan; Jiang, Qingwu

    2014-06-01

    The 10-year (1992-2001) World Bank Loan Project (WBLP) contributed greatly to schistosomiasis control in China. However, the re-emergence of schistosomiasis in recent years challenged the long-term progress of the WBLP strategy. In order to gain insight in the long-term progress of the WBLP, the spatial pattern of the epidemic was investigated in the Yangtze River Valley between 1999-2001 and 2007-2008. Two spatial cluster methods were jointly used to identify spatial clusters of cases. The magnitude and number of clusters varied during 1999-2001. It was found that prevalence of schistosomiasis had been greatly reduced and maintained at a low level during 2007-2008, with little change. Besides, spatial clusters most frequently occurred within 16 counties in the Dongting Lake region and within 5 counties in the Poyang Lake region. These findings precisely pointed out the prior places for future public health planning and resource allocation of schistosomiasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Summary of the GNWT Dehcho regional workshop on the social impacts of the Mackenzie Valley gas project

    International Nuclear Information System (INIS)

    2005-01-01

    The proposed Mackenzie Gas Project will span at least 20 years and is expected to have significant social impacts. This workshop provided a forum for communities and government to evaluate the social impacts of the project, as well as a means for initiating collaborative planning to monitor and manage them over the next 20 years. Local plans for managing the impacts during the construction of the pipeline were discussed, as well as issues concerning future economic activity, demographic changes and long-lasting social impacts. Participants included government and community representatives from various areas in the Northwest Territories (NT). Impacts on employment and income were reviewed, as well as issues concerning housing, health and wellness. The role of the NT bureau of statistics in the monitoring of social trends was examined. Current government resources for managing impacts were evaluated as well as various social envelope departments. Community resources for managing social impacts were reviewed. Positive and negative impacts were discussed for each of the topics presented at the workshops, as well as current and future mitigation efforts. Participants developed concrete suggestions for monitoring impacts, assessing resource needs and collaborating. refs., tabs., figs.

  4. Small-scale hydro power in the Anniviers Valley. Project Ayer-Nava. Variants and preliminary project; Forces Motrices de la Gougra SA. Mini-hydraulique en Anniviers. Projet Ayer-Nava. Etude de variantes et avant-projet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-04-15

    This report for the Swiss Federal Office of Energy (SFOE) reports on the preliminary project for a small hydropower plant near Ayer, a village in the Anniviers Valley (Swiss Alps). Water from the Nava, a steep mountain river, should be lead into a hydraulic scheme for power generation. A hydraulic head of 400 to 550 m is available, depending on the variant considered. The corresponding expected mechanical power is 0.9 to 1.1 MW. For the most promising variant a preliminary project is described (peak electric power: 0.91 MW, annual electrical energy production: 3.1 GWh). The local geology and hydrogeology are presented. The water collection points, conduits and the power station are described. Technical details on water quantities and energy production are presented. Financial aspects including construction and operating costs are presented and the economic viability of the project is discussed. Environmental aspects are reviewed. Further steps to be taken in the realisation of this hydropower installation are listed.

  5. Technoeconomic and policy drivers of project performance for bioenergy alternatives using biomass from beetle-killed trees

    Science.gov (United States)

    Robert M. Campbell; Nathaniel M. Anderson; Daren E. Daugaard; Helen T. Naughton

    2018-01-01

    As a result of widespread mortality from beetle infestation in the forests of the western United States, there are substantial stocks of biomass suitable as a feedstock for energy production. This study explored the financial viability of four production pathway scenarios for the conversion of beetle-killed pine to bioenergy and bioproducts in the Rocky Mountains....

  6. Summary and evaluation of existing geological and geophysical data near prospective surface facilities in Midway Valley, Yucca Mountain Project, Nye County, Nevada

    International Nuclear Information System (INIS)

    Gibson, J.D.; Swan, F.H.; Wesling, J.R.; Bullard, T.F.; Perman, R.C.; Angell, M.M.; DiSilvestro, L.A.

    1992-01-01

    Midway Valley, located at the eastern base of the Yucca Mountain in southwestern Nevada, is the preferred location of the surface facilities for the potential high-level nuclear waste repository at Yucca Mountain. One goal in siting these surface facilities is to avoid faults that could produce relative displacements in excess of 5 cm in the foundations of the waste-handling buildings. This study reviews existing geologic and geophysical data that can be used to assess the potential for surface fault rupture within Midway Valley. Dominant tectonic features in Midway Valley are north-trending, westward-dipping normal faults along the margins of the valley: the Bow Ridge fault to the west and the Paintbrush Canyon fault to the east. Published estimates of average Quaternary slip rates for these faults are very low but the age of most recent displacement and the amount of displacement per event are largely unknown. Surface mapping and interpretive cross sections, based on limited drillhole and geophysical data, suggest that additional normal faults, including the postulated Midway Valley fault, may exist beneath the Quaternary/Tertiary fill within the valley. Existing data, however, are inadequate to determine the location, recency, and geometry of this faulting. To confidently assess the potential for significant Quaternary faulting in Midway Valley, additional data are needed that define the stratigraphy and structure of the strata beneath the valley, characterize the Quaternary soils and surfaces, and establish the age of faulting. The use of new and improved geophysical techniques, combined with a drilling program, offers the greatest potential for resolving subsurface structure in the valley. Mapping of surficial geologic units and logging of soil pits and trenches within these units must be completed, using accepted state-of-the-art practices supported by multiple quantitative numerical and relative age-dating techniques

  7. Proceedings of the GNWT Beaufort-Delta regional workshop on the social impacts of the Mackenzie Valley Gas Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This workshop provided a forum for communities and governments to discuss the potential social impacts of the Mackenzie Gas Project (MGP). The purpose of the workshop was to ensure that communities will have the capacity to manage the social impacts of the pipeline and related exploration and development activities in the future. The workshop was organized around key questions that solicited community perspectives on social impacts from various governmental agencies. The construction of the MGP will result in increased needs for housing, medical services, and social work programs in affected communities. It is expected that construction camps located near communities will create the need for additional drug abuse, and domestic violence counsellors. Inventories of social programs and baseline profiles of social conditions were presented. Local plans for managing impacts during construction of the MGP were discussed, and potential mitigation efforts were reviewed. Issues related to funding and social assistance were also examined. It was concluded that the workshop will serve as the basis for future collaboration and cooperation amongst the various levels of government in managing the social impacts of the pipeline. Six presentations were given at the workshop. refs., tabs., figs.

  8. Evaluating wildlife mortality hotspots, habitat connectivity and potential mitigation along US 287 and MT 87 in the Madison Valley, Montana : project summary report: 8217-001.

    Science.gov (United States)

    2016-11-01

    The Madison Valley is situated in the Greater Yellowstone Ecosystem (GYE) and plays a key role in connecting this ecologicallyintact ecosystem to other intact areas of the Central Rockies, particularly the wildlands of central Idaho and the Selway-Bi...

  9. 77 FR 42722 - Copper Valley Electric Association; Notice of Updated Environmental Analysis Preparation Schedule

    Science.gov (United States)

    2012-07-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-002] Copper Valley...: Original License Application. b. Project No.: 13124-002. c. Applicant: Copper Valley Electric Association (Copper Valley). d. Name of Project: Allison Creek Project. e. Location: On the south side of Port Valdez...

  10. Status and understanding of groundwater quality in the Bear Valley and Lake Arrowhead Watershed Study Unit, 2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Mathany, Timothy; Burton, Carmen

    2017-06-20

    Groundwater quality in the 112-square-mile Bear Valley and Lake Arrowhead Watershed (BEAR) study unit was investigated as part of the Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit comprises two study areas (Bear Valley and Lake Arrowhead Watershed) in southern California in San Bernardino County. The GAMA-PBP is conducted by the California State Water Resources Control Board (SWRCB) in cooperation with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory.The GAMA BEAR study was designed to provide a spatially balanced, robust assessment of the quality of untreated (raw) groundwater from the primary aquifer systems in the two study areas of the BEAR study unit. The assessment is based on water-quality collected by the USGS from 38 sites (27 grid and 11 understanding) during 2010 and on water-quality data from the SWRCB-Division of Drinking Water (DDW) database. The primary aquifer system is defined by springs and the perforation intervals of wells listed in the SWRCB-DDW water-quality database for the BEAR study unit.This study included two types of assessments: (1) a status assessment, which characterized the status of the quality of the groundwater resource as of 2010 by using data from samples analyzed for volatile organic compounds, pesticides, and naturally present inorganic constituents, such as major ions and trace elements, and (2) an understanding assessment, which evaluated the natural and human factors potentially affecting the groundwater quality. The assessments were intended to characterize the quality of groundwater resources in the primary aquifer system of the BEAR study unit, not the treated drinking water delivered to consumers. Bear Valley study area and the Lake Arrowhead Watershed study area were also compared statistically on the basis of water-quality results and factors potentially affecting the groundwater quality.Relative concentrations (RCs

  11. Biomass resources in California

    Energy Technology Data Exchange (ETDEWEB)

    Tiangco, V.M.; Sethi, P.S. [California Energy Commission, Sacramento, CA (United States)

    1993-12-31

    The biomass resources in California which have potential for energy conversion were assessed and characterized through the project funded by the California Energy Commission and the US Department of Energy`s Western Regional Biomass Energy Program (WRBEP). The results indicate that there is an abundance of biomass resources as yet untouched by the industry due to technical, economic, and environmental problems, and other barriers. These biomass resources include residues from field and seed crops, fruit and nut crops, vegetable crops, and nursery crops; food processing wastes; forest slash; energy crops; lumber mill waste; urban wood waste; urban yard waste; livestock manure; and chaparral. The estimated total potential of these biomass resource is approximately 47 million bone dry tons (BDT), which is equivalent to 780 billion MJ (740 trillion Btu). About 7 million BDT (132 billion MJ or 124 trillion Btu) of biomass residue was used for generating electricity by 66 direct combustion facilities with gross capacity of about 800 MW. This tonnage accounts for only about 15% of the total biomass resource potential identified in this study. The barriers interfering with the biomass utilization both in the on-site harvesting, collection, storage, handling, transportation, and conversion to energy are identified. The question whether these barriers present significant impact to biomass {open_quotes}availability{close_quotes} and {open_quotes}sustainability{close_quotes} remains to be answered.

  12. Seaweed potentials – evaluation of year-round biomass composition of commercial cultivated sugarkelp- results from project KOMBI

    DEFF Research Database (Denmark)

    Holdt, Susan Løvstad; Silva Marinho, Goncalo; Angelidaki, Irini

    In this study, the year-round protein, amino acid, fatty acid, pigments, mineral and vitamin content and profiles were considered to evaluate the nutritional value and harvest time of the Saccharina latissima biomass for optimized value and application. Sugarkelp was cultivated both in close...... 0.62-0.88% DW in July to 3.33-3.35% DW in November (PMineral content are discussed in relation......, homogenizing and chemical characterization by various methods for the specific analyses of biomass composition. Protein content varied throughout the experimental period with the highest values recorded in November (10.8%) and the lowest values recorded in May 2013 (1.3 %). The lipid concentration varied from...

  13. Decontamination of the product handling area at the West Valley Demonstration Project: Final topical report for period July 1985 to February 1986

    International Nuclear Information System (INIS)

    Phillips, E.C.

    1986-06-01

    The purpose of this report is to describe the decontamination and decommissioning (D and D) preparations of an existing facility at the West Valley Demonstration Project (WVDP), the Product Handling Area (PHA), to be part of a Liquid Waste Treatment System (LWTS) in conjunction with the Cement Solidification System (CSS). Two interconnected facilities, the Uranium Product Cell (UPC) and the Uranium Loadout Area (ULO), form the PHA. Both of these facilities contain large tanks. Both of the tanks in the UPC are suitable for use as components of the LWTS. In addition, the UPC is the only existing means of access to the bottom of the Product Purification Cell (PPC) in which some of the equipment for the LWTS will be installed. Consequently, this report describes the decontamination of the PHA from a radioactively contaminated environment to one which may be entered in street clothes. Of the two facilities of the PHA, the UPC was the more highly contaminated prior to decontamination. Decontamination of the UPC has been completed leaving most of the surfaces in the facility smearably clean. Decontamination of the UPC consisted of washing all surfaces, draining the floor sump, removing unneeded piping, installing a back flow filter system, painting all surfaces, installing rubber matting on the floor and placing new stainless steel covering on the UPC ledge. Decontamination operations in the ULO have been completed and were similar to those in the UPC consisting of decontaminating by hand wipedown, removing contamination fixed in paint, and applying new paint. In addition, two pumps and a concrete pump niche were removed. Prior to decontamination, surface contamination was present in the ULO. After decontamination, most of the surfaces in the ULO were clean of smearable contamination. D and D Operations were initiated in the PHA in July 1985 and completed in February 1986. 13 figs., 9 tabs

  14. Decontamination and decommissioning of the extraction chemical room at the West Valley Demonstration Project. Final topical report, December 1982-April 1984

    International Nuclear Information System (INIS)

    Phillips, E.C.

    1985-12-01

    The purpose of this report is to describe the preparation of a facility for use in decontaminating and decommissioning (D and D) extraction cells at the West Valley Demonstration Project (WVDP). In order to prepare such a facility, it was necessary to decontaminate, decommission and equip the Extraction Chemical Room (XCR) at the WVDP. This report describes the D and D of the XCR from a radioactively contaminated condition to an essentially shirt sleeve environment. Also included is a description of the changes made to the XCR for use in the D and D of the extraction cells which are located beneath the floor of the XCR. In the XCR prior to D and D, radiological surveys indicated a maximum radiation field of 5 mrad/hr, due to sources internal to the room, and 20,000 dpm beta/100 cm 2 surface contamination. A radiation source external to the XCR caused a hot spot with a 9 mrad/hr exposure rate inside the XCR. The D and D of the XCR, located on the fifth floor elevation 48.8 m of the reprocessing plant at the WVDP, has been completed. D and D operations included removal of piping, tanks, supports, and equipment to provide a clean work area of about 278.7 m 2 and 5.2 m high. Subsequent to the removal of piping and equipment, a new floor was installed in part of the room and equipment for use in the D and D of the extraction cells was added. The equipment included a large containment tent over the extraction cell hatches, a jib crane, two gantries, a monorail crane, an air transporter, and a temporary ventilation system. D and D operations in the XCR were initiated in December 1982 and the completed facility was available for use in February 1984

  15. Electric power generation using biomass gasification systems in nature in isolated communities of the Amazon region: project GASEIBRAS; Geracao de eletricidade utilizando sistemas de gaseificacao de biomassa in natura em comunidades isoladas da regiao amazonica: projeto GASEIBRAS

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira; Velazquez, Silvia M. Stortini Goncalves; Santos, Sandra M. Apolinario dos; Lora, Beatriz Acquaro [Universidade de Sao Paulo (CENBIO/USP), SP (Brazil). Centro de Referencia Nacional em Biomassa], e-mails: suani@iee.usp.br, sgvelaz@iee.usp.br, sandra@iee.usp.br, blora@iee.usp.br

    2006-07-01

    This paper will present the pioneering project of electric energy generation from renewable sources 'GASEIBRAS - Nationalization of the Biomass Gasification Technology and Formation of Human Resources in the Amazon Region', recently approved by the National Advice of Scientific and Technological Development (CNPq) and for the Ministry of Mines and Energy (MME). The GASEIBRAS project intends to use the experience previously acquired in the project GASEIFAMAZ - Comparison between Existing Technologies of Biomass Gasification in Brazil and Exterior and Formation of Human Resources in the North Region, sponsored by FINEP/CTENERG, to develop and construct a 20 kWe biomass gasification system, with total national technology, easy to operate and to maintain, and fed with local available biomass residues. Apart from contributing for the development of the national technology, this project will provide the sustainable development of the isolated communities in the Amazon region. The ongoing development of this project will enable to consolidate the national biomass gasification technology for electricity generation. The implemented prototype will allow the response of this project in other regions of the country, due its tailor made characteristic to attend to small isolated communities, thus supplying decentralized energy from renewable sources, to Amazon region. (author)

  16. Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, M.; Wu, Y.; Wang, M; Energy Systems

    2008-01-31

    The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

  17. Status and understanding of groundwater quality in the two southern San Joaquin Valley study units, 2005-2006 - California GAMA Priority Basin Project

    Science.gov (United States)

    Burton, Carmen A.; Shelton, Jennifer L.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the southern San Joaquin Valley was investigated from October 2005 through March 2006 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. There are two study units located in the southern San Joaquin Valley: the Southeast San Joaquin Valley (SESJ) study unit and the Kern County Subbasin (KERN) study unit. The GAMA Priority Basin Project in the SESJ and KERN study units was designed to provide a statistically unbiased, spatially distributed assessment of untreated groundwater quality within the primary aquifers. The status assessment is based on water-quality and ancillary data collected in 2005 and 2006 by the USGS from 130 wells on a spatially distributed grid, and water-quality data from the California Department of Public Health (CDPH) database. Data was collected from an additional 19 wells for the understanding assessment. The aquifer systems (hereinafter referred to as primary aquifers) were defined as that part of the aquifer corresponding to the perforation interval of wells listed in the CDPH database for the SESJ and KERN study units. The status assessment of groundwater quality used data from samples analyzed for anthropogenic constituents such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents such as major ions and trace elements. The status assessment is intended to characterize the quality of untreated groundwater resources within the primary aquifers in the SESJ and KERN study units, not the quality of drinking water delivered to consumers. Although the status assessment applies to untreated groundwater, Federal and California regulatory and non-regulatory water-quality benchmarks that apply to drinking water are used

  18. Physical and institutional vulnerability assessment method applied in Alpine communities. Preliminary Results of the SAMCO-ANR Project in the Guil Valley (French Southern Alps)

    Science.gov (United States)

    Carlier, Benoit; Dujarric, Constance; Puissant, Anne; Lissak, Candide; Viel, Vincent; Bétard, François; Madelin, Malika; Fort, Monique; Arnaud-Fassetta, Gilles

    2015-04-01

    The Guil catchment is particularly prone to torrential and gravitational hazards such as floods, debris flows, landslides or avalanches due to several predisposing factors (bedrock supplying abundant debris, strong hillslope-channel connectivity) in a context of summer Mediterranean rainstorms as triggers. These hazards severely impact the local population (fatalities, destruction of buildings and infrastructures, loss of agricultural land, road closures). Since the second half of the 20th century, the progressive decline of agro-pastoralism and the development of tourism activities led to a concentration of human stakes on alluvial cones and valley bottom, therefore an increase of vulnerability for mountainous communities. Following the 1957 and 2000 catastrophic floods and the 1948 and 2008 avalanche episodes, some measures were taken to reduce exposure to risks (engineering works, standards of construction, rescue training…). Nevertheless, in front of urban expansion (land pressures and political pressures) and obsolescence of the existing protective measures, it is essential to reassess the vulnerability of the stakes exposed to hazards. Vulnerability analysis is, together with hazard evaluation, one of the major steps of risk assessment. In the frame of the SAMCO project designed for mountain risk assessment, our goal is to estimate specific form of vulnerability for communities living in the Upper Guil catchment in order to provide useful documentation for a better management of the valley bottom and the implementation of adequate mitigation measures. Here we present preliminary results on three municipalities of the upper Guil catchment: Aiguilles, Abriès, and Ristolas. We propose an empirical semi-quantitative indicator of potential hazards consequences on element at risk (based on GIS) with an application to different (local and regional scale) scales. This indicator, called Potential Damage Index, enable us to describe, quantify, and visualize direct

  19. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  20. Detailed study of selenium and other constituents in water, bottom sediment, soil, alfalfa, and biota associated with irrigation drainage in the Uncompahgre Project area and in the Grand Valley, west-central Colorado, 1991-93

    Science.gov (United States)

    Butler, D.L.; Wright, W.G.; Stewart, K.C.; Osmundson, B.C.; Krueger, R.P.; Crabtree, D.W.

    1996-01-01

    In 1985, the U.S. Department of the Interior began a program to study the effects of irrigation drainage in the Western United States. These studies were done to determine whether irrigation drainage was causing problems related to human health, water quality, and fish and wildlife resources. Results of a study in 1991-93 of irrigation drainage associated with the Uncompahgre Project area, located in the lower Gunnison River Basin, and of the Grand Valley, located along the Colorado River, are described in this report. The focus of the report is on the sources, distribution, movement, and fate of selenium in the hydrologic and biological systems and the effects on biota. Generally, other trace- constituent concentrations in water and biota were not elevated or were not at levels of concern. Soils in the Uncompahgre Project area that primarily were derived from Mancos Shale contained the highest concentrations of total and watrer-extractable selenium. Only 5 of 128\\x11alfalfa samples had selenium concentrations that exceeded a recommended dietary limit for livestock. Selenium data for soil and alfalfa indicate that irrigation might be mobilizing and redistributing selenium in the Uncompahgre Project area. Distribution of dissolved selenium in ground water is affected by the aqueous geochemical environment of the shallow ground- water system. Selenium concentrations were as high as 1,300\\x11micrograms per liter in water from shallow wells. The highest concentrations of dissolved selenium were in water from wells completed in alluvium overlying the Mancos Shale of Cretaceous age; selenium concentrations were lower in water from wells completed in Mancos Shale residuum. Selenium in the study area could be mobilized by oxidation of reduced selenium, desorption from aquifer sediments, ion exchange, and dissolution. Infiltration of irrigation water and, perhaps nitrate, provide oxidizing conditions for mobilization of selenium from alluvium and shale residuum and for

  1. 75 FR 22775 - Copper Valley Electric Association; Notice of Scoping Meeting and Soliciting Scoping Comments for...

    Science.gov (United States)

    2010-04-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-000] Copper Valley....: 13124-000. c. Applicant: Copper Valley Electric Association. d. Name of Project: Allison Lake Project. e.... 791(a)-825(r). g. Applicant Contact: Robert A. Wilkinson, CEO, Copper Valley Electric Association, P.O...

  2. The biomass file

    International Nuclear Information System (INIS)

    2010-01-01

    As biomass represents the main source of renewable energy to reach the 23 per cent objective in terms of energy consumption by 2020, a first article gives a synthetic overview of its definition, its origins, its possible uses, its share in the French energy mix, its role by 2020, strengths and weaknesses for its development, the growth potential of its market, and its implications in terms of employment. A second article outlines the assets of biomass, indicates the share of some crops in biomass energy production, and discusses the development of new resources and the possible energy valorisation of various by-products. Interviews about biomass market and development perspectives are proposed with representatives of institutions, energy industries and professional bodies concerned with biomass development and production. Other articles comments the slow development of biomass-based cogeneration, the coming into operation of a demonstration biomass roasting installation in Pau (France), the development potential of biogas in France, the project of bio natural gas vehicles in Lille, and the large development of biogas in Germany

  3. Biomass feedstock analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Moilanen, A.; Kurkela, E. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The overall objectives of the project `Feasibility of electricity production from biomass by pressurized gasification systems` within the EC Research Programme JOULE II were to evaluate the potential of advanced power production systems based on biomass gasification and to study the technical and economic feasibility of these new processes with different type of biomass feed stocks. This report was prepared as part of this R and D project. The objectives of this task were to perform fuel analyses of potential woody and herbaceous biomasses with specific regard to the gasification properties of the selected feed stocks. The analyses of 15 Scandinavian and European biomass feed stock included density, proximate and ultimate analyses, trace compounds, ash composition and fusion behaviour in oxidizing and reducing atmospheres. The wood-derived fuels, such as whole-tree chips, forest residues, bark and to some extent willow, can be expected to have good gasification properties. Difficulties caused by ash fusion and sintering in straw combustion and gasification are generally known. The ash and alkali metal contents of the European biomasses harvested in Italy resembled those of the Nordic straws, and it is expected that they behave to a great extent as straw in gasification. Any direct relation between the ash fusion behavior (determined according to the standard method) and, for instance, the alkali metal content was not found in the laboratory determinations. A more profound characterisation of the fuels would require gasification experiments in a thermobalance and a PDU (Process development Unit) rig. (orig.) (10 refs.)

  4. Biomass recalcitrance

    DEFF Research Database (Denmark)

    Felby, Claus

    2009-01-01

    Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes - this co......Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes...... - this collective resistance is known as "biomass recalcitrance." Breakthrough technologies are needed to overcome barriers to developing cost-effective processes for converting biomass to fuels and chemicals. This book examines the connection between biomass structure, ultrastructure, and composition......, to resistance to enzymatic deconstruction, with the aim of discovering new cost-effective technologies for biorefineries. It contains chapters on topics extending from the highest levels of biorefinery design and biomass life-cycle analysis, to detailed aspects of plant cell wall structure, chemical treatments...

  5. Biomass as a fuel: Advantages, limitations and possibilities

    International Nuclear Information System (INIS)

    McBurney, B.

    1997-01-01

    This presentation briefly outlines major issues related to the use of biomass fuels. Advantages and disadvantages of biomass fuels are identified, as well as major factors that may facilitate greater use of biomass fuels. Highlights of the US DOE Biomass Power Program, program activities, and demonstration projects are presented. Some statistical and economic data are provided, including biomass fueled electric capacity, biomass energy consumption by sector, and fuel cost savings and greenhouse gas emissions reductions for four biomass co-fired units

  6. Clean and efficient application of biomass for production of power and heat - Phase 3 in a long-term strategic research project

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.J.; Jensen, A.D.; Jensen, P.A.; Johnsson, J.E.; Dam-Johansen, K.

    2002-06-01

    This project contains activities on: Rheology of ashes from co-firing of coal and biomass; Investigation of ash and deposit formation in full-scale utility boilers; and Selective catalytic reduction: Deactivation under biomass combustion. A fly ash and deposit investigation was carried out as part of the SK Power Company test programme on co-firing of biomasses in a grate-fired boiler. The alternative biomasses (wood chips, olive stones and shea nuts) contain more K, S, and Cl, than wheat straw, and higher fly ash mass loading (mass of fly ash/volume of flue gas) was observed when co-firing alternative biomasses with wheat straw. Anyhow, no significant change in deposit structure when co-firing alkali-rich biomass was observed: KCl is glues residual ash particles together, independent of the feedstock mixture. Thus it can be concluded that co-firing of the actual biomasses in boilers designed for straw-firing, at the present shares is not problematic, from an ash formation and/or deposit build-up point-of-view. Anyhow the increase in ash mass loading in the flue gas, may cause increased build-up of particulate deposits in the convective pass of the boiler. Mature deposit samples from the Masnedoe and Ensted straw-fired boilers were investigated by SEM and EDX. Each deposit sample was classified into an inner, an intermediate, and an outer main layer. The outermost deposit layers at Masnedoe and Ensted looked chemically quite similar, even though they were of different colours. The intermediate layer at Ensted contained many Si- and Ca-rich particles glued together by melted KCI, while the intermediate deposit layers at Masnedoe were different. Since the straw fuels probably are similar, the differences observed in the deposit chemistry must be induced by the higher temperature of the Masnedoe deposit. An experimental method has been set up for viscosity determinations on ashes from co-firing with wheat straw. The method contains a pre-treatment of the ashes, where

  7. Northeast Regional Biomass Program

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, R.A.

    1991-11-01

    The management structure and program objectives for the Northeast Regional Biomass Program (NRBP) remain unchanged from previous years. Additional funding was provided by the Bonneville Power Administration Regional Biomass Program to continue the publication of articles in the Biologue. The Western Area Power Administration and the Council of Great Lakes Governors funded the project Characterization of Emissions from Burning Woodwaste''. A grant for the ninth year was received from DOE. The Northeast Regional Biomass Steering Committee selected the following four projects for funding for the next fiscal year. (1) Wood Waste Utilization Conference, (2) Performance Evaluation of Wood Systems in Commercial Facilities, (3) Wood Energy Market Utilization Training, (4) Update of the Facility Directory.

  8. Northeast Regional Biomass Program

    International Nuclear Information System (INIS)

    O'Connell, R.A.

    1991-11-01

    The management structure and program objectives for the Northeast Regional Biomass Program (NRBP) remain unchanged from previous years. Additional funding was provided by the Bonneville Power Administration Regional Biomass Program to continue the publication of articles in the Biologue. The Western Area Power Administration and the Council of Great Lakes Governors funded the project ''Characterization of Emissions from Burning Woodwaste''. A grant for the ninth year was received from DOE. The Northeast Regional Biomass Steering Committee selected the following four projects for funding for the next fiscal year. (1) Wood Waste Utilization Conference, (2) Performance Evaluation of Wood Systems in Commercial Facilities, (3) Wood Energy Market Utilization Training, (4) Update of the Facility Directory

  9. Biomass energy

    International Nuclear Information System (INIS)

    Pasztor, J.; Kristoferson, L.

    1992-01-01

    Bioenergy systems can provide an energy supply that is environmentally sound and sustainable, although, like all energy systems, they have an environmental impact. The impact often depends more on the way the whole system is managed than on the fuel or on the conversion technology. The authors first describe traditional biomass systems: combustion and deforestation; health impact; charcoal conversion; and agricultural residues. A discussion of modern biomass systems follows: biogas; producer gas; alcohol fuels; modern wood fuel resources; and modern biomass combustion. The issue of bioenergy and the environment (land use; air pollution; water; socioeconomic impacts) and a discussion of sustainable bioenergy use complete the paper. 53 refs., 9 figs., 14 tabs

  10. Biomass Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Decker, Steve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brunecky, Roman [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lin, Chien-Yuan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Amore, Antonella [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wei, Hui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chen, Xiaowen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tucker, Melvin P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Czernik, Stefan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sluiter, Amie D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Magrini, Kimberly A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Himmel, Michael E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sheehan, John [Formerly NREL; Dayton, David C. [Formerly NREL; Bozell, Joseph J. [Formerly NREL; Adney, William S. [Formerly NREL; Aden, Andy [Formerly NREL; Hames, Bonnie [Formerly NREL; Thomas, Steven R. [Formerly NREL; Bain, Richard L. [Formerly NREL

    2017-08-02

    Biomass constitutes all the plant matter found on our planet, and is produced directly by photosynthesis, the fundamental engine of life on earth. It is the photosynthetic capability of plants to utilize carbon dioxide from the atmosphere that leads to its designation as a 'carbon neutral' fuel, meaning that it does not introduce new carbon into the atmosphere. This article discusses the life cycle assessments of biomass use and the magnitude of energy captured by photosynthesis in the form of biomass on the planet to appraise approaches to tap this energy to meet the ever-growing demand for energy.

  11. Análise dos projetos de desenvolvimento dos vales dos rios Tietê e Paraná Analyzing the development projects for the Tietê and Paraná valleys

    Directory of Open Access Journals (Sweden)

    Elaine Mendonça Bernardes

    2006-04-01

    Full Text Available Este artigo avalia as alternativas propostas para a região dos vales dos rios Tietê e Paraná, no estado de São Paulo. Os projetos formalmente elaborados para a região foram analisados através do método da estrutura lógica. Tal método consiste em representar um projeto na forma de uma matriz 4 × 4 cujos elementos permitem a análise do projeto em questão pela utilização de critérios relacionados ao método científico, à análise de sistemas e ao ponto de vista da gerência de programas. Os resultados encontrados demonstraram a inconsistência nos planos e projetos existentes para a região.This article analyzes the proposed alternatives expressed in the plans and projects for the region of the Tietê and Paraná valleys, in the state of São Paulo, Brazil. The plans and projects were analyzed by the logical structure method, which consists in representing a project in a 4 × 4 matrix. The elements of the matrix make it possible to analyze the project using criteria related to the scientific method, systems analysis and program management. The results revealed inconsistencies in the existing plans and projects for the region.

  12. Biomass as a modern fuel

    International Nuclear Information System (INIS)

    Hall, D.O.; House, J.

    1994-01-01

    Case studies are presented for several developed and developing countries. Constraints involved in modernising biomass energy and the potential for turning them into entrepreneurial opportunities are discussed. It is concluded that the long term impacts of biomass programmes and projects depend mainly on ensuring sustainability, flexibility and replicability while taking account of local conditions and providing multiple benefits. Implementation of biomass projects requires governmental policy initiatives that will internalise the external economic, social and environmental costs of conventional fuel sources so that biomass fuels can become competitive on a ''level playing field''. Policies are also required to encourage R and D and commercialisation of biomass energy programs in close co-ordination with the private sector. (author)

  13. The biomass

    International Nuclear Information System (INIS)

    Viterbo, J.

    2011-01-01

    Biomass comes mainly from forests and agriculture and is considered as a clean alternative energy that can be valorized as heat, power, bio-fuels and chemical products but its mass production is challenging in terms of adequate technology but also in terms of rethinking the use of lands. Forests can be managed to produce biomass but bio-fuels can also be generated from sea-weeds. Biomass appears very promising but on one hand we have to secure its supplying and assure its economical profitability and on another hand we have to assure a reasonable use of lands and a limited impact on the environment. The contribution of biomass to sustainable development depends on the balance between these 2 ends. (A.C.)

  14. Biomass [updated

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL

    2016-01-01

    Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in the forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.

  15. Trading biomass or GHG emission credits?

    NARCIS (Netherlands)

    Laurijssen, J; Faaij, A.P.C.

    2009-01-01

    Global biomass potentials are considerable but unequally distributed over the world. Countries with Kyoto targets could import biomass to substitute for fossil fuels or invest in bio-energy projects in the country of biomass origin and buy the credits (Clean Development Mechanism (CDM) and Joint

  16. ALTENER - Biomass event in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The publication contains the lectures held in the Biomass event in Finland. The event was divided into two sessions: Fuel production and handling, and Co-combustion and gasification sessions. Both sessions consisted of lectures and the business forum during which the companies involved in the research presented themselves and their research and their equipment. The fuel production and handling session consisted of following lectures and business presentations: AFB-NETT - business opportunities for European biomass industry; Wood waste in Europe; Wood fuel production technologies in EU- countries; new drying method for wood waste; Pellet - the best package for biofuel - a view from the Swedish pelletmarket; First biomass plant in Portugal with forest residue fuel; and the business forum of presentations: Swedish experiences of willow growing; Biomass handling technology; Chipset 536 C Harvester; KIC International. The Co-combustion and gasification session consisted of following lectures and presentations: Gasification technology - overview; Overview of co-combustion technology in Europe; Modern biomass combustion technology; Wood waste, peat and sludge combustion in Enso Kemi mills and UPM-Kymmene Rauma paper mill; Enhanced CFB combustion of wood chips, wood waste and straw in Vaexjoe in Sweden and Grenaa CHP plant in Denmark; Co-combustion of wood waste; Biomass gasification projects in India and Finland; Biomass CFB gasifier connected to a 350 MW{sub t}h steam boiler fired with coal and natural gas - THERMIE demonstration project in Lahti (FI); Biomass gasification for energy production, Noord Holland plant in Netherlands and Arbre Energy (UK); Gasification of biomass in fixed bed gasifiers, Wet cleaning and condensing heat recovery of flue gases; Combustion of wet biomass by underfeed grate boiler; Research on biomass and waste for energy; Engineering and consulting on energy (saving) projects; and Research and development on combustion of solid fuels

  17. ALTENER - Biomass event in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The publication contains the lectures held in the Biomass event in Finland. The event was divided into two sessions: Fuel production and handling, and Co-combustion and gasification sessions. Both sessions consisted of lectures and the business forum during which the companies involved in the research presented themselves and their research and their equipment. The fuel production and handling session consisted of following lectures and business presentations: AFB-NETT - business opportunities for European biomass industry; Wood waste in Europe; Wood fuel production technologies in EU- countries; new drying method for wood waste; Pellet - the best package for biofuel - a view from the Swedish pelletmarket; First biomass plant in Portugal with forest residue fuel; and the business forum of presentations: Swedish experiences of willow growing; Biomass handling technology; Chipset 536 C Harvester; KIC International. The Co-combustion and gasification session consisted of following lectures and presentations: Gasification technology - overview; Overview of co-combustion technology in Europe; Modern biomass combustion technology; Wood waste, peat and sludge combustion in Enso Kemi mills and UPM-Kymmene Rauma paper mill; Enhanced CFB combustion of wood chips, wood waste and straw in Vaexjoe in Sweden and Grenaa CHP plant in Denmark; Co-combustion of wood waste; Biomass gasification projects in India and Finland; Biomass CFB gasifier connected to a 350 MW{sub t}h steam boiler fired with coal and natural gas - THERMIE demonstration project in Lahti (FI); Biomass gasification for energy production, Noord Holland plant in Netherlands and Arbre Energy (UK); Gasification of biomass in fixed bed gasifiers, Wet cleaning and condensing heat recovery of flue gases; Combustion of wet biomass by underfeed grate boiler; Research on biomass and waste for energy; Engineering and consulting on energy (saving) projects; and Research and development on combustion of solid fuels

  18. Short-rotation Willow Biomass Plantations Irrigated and Fertilised with Wastewaters. Results from a 4-year multidisciplinary field project in Sweden, France, Northern Ireland and Greece

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Stig [Svaloef Weibull AB, Svaloef (Sweden); Cuingnet, Christian; Clause, Pierre [Association pour le Developpement des Culture Energetiques, Lille (France); Jakobsson, Ingvar [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden); Dawson, Malcolm [Queens Univ., Northern Ireland (United Kingdom); Backlund, Arne [A and B Backlund ApS, Charlottenlund (Denmark); Mavrogianopoulus, George [Agricultural Univ. of Athens (Greece)

    2003-01-01

    This report summarises results and experiences gathered from field trials with recycling of pre-treated wastewater, diverted human urine mixed with water, and municipal sludge, within plantations of willow species specifically selected for biomass production. Experimental sites were established in Sweden (Roma), France (Orchies), Northern Ireland (Culmore) and Greece (Larissa). The project was carried out during a 4-year period with financial support from the EU FAIR Programme. The experimental sites were supplied with primary effluent from municipal treatment plants (Culmore and Larissa), stored industrial effluent from a chicory processing plant (Orchies), biologically treated and stored municipal wastewater (Roma) and human urine mixture from diverting low-flush toilets mixed with water (Roma). Application rates of the wastewaters or the urine mixture were equivalent to the calculated evapotranspiration rate at each site. Wastewaters were also applied up to three times this value to evaluate any possible negative effects. Estimations and evaluations were carried out mainly concerning: biomass growth, potential biological attacks of the plantations, plant water requirements, fertilisation effects of the wastewater, plant uptake of nutrients and heavy metals from applied wastewater, possible soil or groundwater impact, sanitary aspects, and potentials for removal in the soil-plant filter of nutrients and biodegradable organic material from applied wastewater. The results clearly indicated that biomass production in young willow plantations could be enhanced substantially after recycling of wastewater resources. The impact on soil and groundwater of nutrients (nitrogen and phosphorus) and heavy metals (copper, zinc, lead and cadmium) was limited, even when the application of water and nutrients exceeded the plant requirements. Also, the soil-plant system seemed to function as a natural treatment filter for pre-treated (primary settled) wastewater, with a treatment

  19. Outcome of UNIDO symposium on biomass energy

    International Nuclear Information System (INIS)

    Nazemi, A.H.

    1997-01-01

    The results of the UNIDO symposium are presented. The symposium covered a variety of subjects, beginning with a comparison of biomass energy production and potential uses in different regions, specific country case studies about the present situation and trends in biomass energy utilisation. Technological aspects discussed included the production of biomass resources, their conversion into energy carriers and technology transfer to developing countries. An analysis of financial resources available and mechanisms for funding biomass projects were given. Environmental effects and some relatively successful biomass projects under development were described. (K.A.)

  20. Viewls - Biomass production potentials in Central and Eastern Europe under different scenarios. Final report of WP3 of the VIEWLS project, funded by DG-Tren

    Energy Technology Data Exchange (ETDEWEB)

    Dam, J. van; Faaij, A.; Lewandowski, I. (and others)

    2006-01-15

    The EU has set ambitious targets to increase the use of Renewable Energy Sources from which a large part has to come from biomass To meet these targets, a large amount of biomass resources is needed which requires large areas of land in the EU. This article discusses a methodology and results for a regional biomass potential assessment in Central and Eastern European Accession countries (CEEC). The biomass potential assessment is implemented for a defined set of scenarios. The scenarios are based on the main drivers in Europe relevant for agriculture and land use change, i.e. World Trade Negotiations or Common Agricultural Policy. The methodology for the biomass potential assessment is based on land use changes over time. A certain amount of land is needed to meet the required production for food (derived from agricultural crops and livestock) and wood products. The surplus available land can possibly be used for biomass production. Results of the biomass potential assessment are available on a Nuts-3 region level in the CEEC for different scenarios. As the concept of large-scale biomass production is only feasible when production is profitable for the stakeholders involved, price and cost-relations are included in the assessment. Final deliverable are cost-supply curves from different sources (energy crops, residues) and scenarios for the CEEC. (au)

  1. Valley polarization in bismuth

    Science.gov (United States)

    Fauque, Benoit

    2013-03-01

    The electronic structure of certain crystal lattices can contain multiple degenerate valleys for their charge carriers to occupy. The principal challenge in the development of valleytronics is to lift the valley degeneracy of charge carriers in a controlled way. In bulk semi-metallic bismuth, the Fermi surface includes three cigar-shaped electron valleys lying almost perpendicular to the high symmetry axis known as the trigonal axis. The in-plane mass anisotropy of each valley exceeds 200 as a consequence of Dirac dispersion, which drastically reduces the effective mass along two out of the three orientations. According to our recent study of angle-dependent magnetoresistance in bismuth, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. As a consequence of a unique combination of high mobility and extreme mass anisotropy in bismuth, the effect is visible even at room temperature in a magnetic field of 1 T. Thus, a modest magnetic field can be used as a valley valve in bismuth. The results of our recent investigation of angle-dependent magnetoresistance in other semi-metals and doped semiconductors suggest that a rotating magnetic field can behave as a valley valve in a multi-valley system with sizeable mass anisotropy.

  2. Estimating Swedish biomass energy supply

    International Nuclear Information System (INIS)

    Johansson, J.; Lundqvist, U.

    1999-01-01

    Biomass is suggested to supply an increasing amount of energy in Sweden. There have been several studies estimating the potential supply of biomass energy, including that of the Swedish Energy Commission in 1995. The Energy Commission based its estimates of biomass supply on five other analyses which presented a wide variation in estimated future supply, in large part due to differing assumptions regarding important factors. In this paper, these studies are assessed, and the estimated potential biomass energy supplies are discusses regarding prices, technical progress and energy policy. The supply of logging residues depends on the demand for wood products and is limited by ecological, technological, and economic restrictions. The supply of stemwood from early thinning for energy and of straw from cereal and oil seed production is mainly dependent upon economic considerations. One major factor for the supply of willow and reed canary grass is the size of arable land projected to be not needed for food and fodder production. Future supply of biomass energy depends on energy prices and technical progress, both of which are driven by energy policy priorities. Biomass energy has to compete with other energy sources as well as with alternative uses of biomass such as forest products and food production. Technical progress may decrease the costs of biomass energy and thus increase the competitiveness. Economic instruments, including carbon taxes and subsidies, and allocation of research and development resources, are driven by energy policy goals and can change the competitiveness of biomass energy

  3. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D [VTT Energy, Espoo (Finland)

    1997-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  4. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D. [VTT Energy, Espoo (Finland)

    1996-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  5. Biomass IGCC

    Energy Technology Data Exchange (ETDEWEB)

    Salo, K; Keraenen, H [Enviropower Inc., Espoo (Finland)

    1997-12-31

    Enviropower Inc. is developing a modern power plant concept based on pressurised fluidized-bed gasification and gas turbine combined cycle (IGCC). The process is capable of maximising the electricity production with a variety of solid fuels - different biomass and coal types - mixed or separately. The development work is conducted on many levels. These and demonstration efforts are highlighted in this article. The feasibility of a pressurised gasification based processes compared to competing technologies in different applications is discussed. The potential of power production from biomass is also reviewed. (orig.) 4 refs.

  6. Biomass IGCC

    Energy Technology Data Exchange (ETDEWEB)

    Salo, K.; Keraenen, H. [Enviropower Inc., Espoo (Finland)

    1996-12-31

    Enviropower Inc. is developing a modern power plant concept based on pressurised fluidized-bed gasification and gas turbine combined cycle (IGCC). The process is capable of maximising the electricity production with a variety of solid fuels - different biomass and coal types - mixed or separately. The development work is conducted on many levels. These and demonstration efforts are highlighted in this article. The feasibility of a pressurised gasification based processes compared to competing technologies in different applications is discussed. The potential of power production from biomass is also reviewed. (orig.) 4 refs.

  7. Constraints on Shallow Crustal Structure across the San Andreas Fault Zone, Coachella Valley, Southern California: Results from the Salton Seismic Imaging Project (SSIP)

    Science.gov (United States)

    Hernandez, A.; Persaud, P.; Bauer, K.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.

    2015-12-01

    The strong influence of basin structure and crustal heterogeneities on seismic wave propagation suggests that these factors should be included in calculations of strong ground shaking. Knowledge of the shallow subsurface is thus essential for an accurate seismic hazard estimate for the densely populated Coachella Valley, the region north of the potential M7.8 rupture near the Salton Sea. Using SSIP data, we analyzed first arrivals from nine 65-911 kg explosive shots recorded along a profile in the Coachella Valley in order to evaluate the interpretation of our 2D tomographic results and give added details on the structural complexity of the shallow crust. The line extends 37 km from the Peninsular Ranges to the Little San Bernardino Mountains crossing the major strands of the San Andreas Fault Zone. We fit traveltime curves to our picks with forward modeling ray tracing, and determined 1D P-wave velocity models for traveltime arrivals east and west of each shot, and a 2D model for the line. We also inferred the geometry of near-vertical faults from the pre-stack line migration method of Bauer et al. (2013). In general, the 1D models east of individual shots have deeper basement contacts and lower apparent velocities, ~5 km/s at 4 km depth, whereas the models west of individual shots have shallower basement and velocities up to 6 km/s at 2 km depth. Mismatches in basement depths (assuming 5-6 km/s) between individual 1D models indicate a shallowly dipping basement, deepening eastward towards the Banning Fault and shoaling abruptly farther east. An east-dipping structure in the 2D model also gives a better fit than horizontal layers. Based on high velocity zones derived from traveltimes at 9-20 km from the western end of the line, we included an offset from ~2 km to 4 km depth near the middle of the line, which significantly improved the 2D model fit. If fault-related, this offset could represent the Garnet Hill Fault if it continues southward in the subsurface.

  8. YEAR 2 BIOMASS UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  9. 48 CFR 1452.237-71 - Utilization of Woody Biomass.

    Science.gov (United States)

    2010-10-01

    ... Biomass. 1452.237-71 Section 1452.237-71 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR... Utilization of Woody Biomass. As prescribed in § 1437.7202, insert the following clause: Utilization of Woody Biomass (MAY 2005) (a) The contractor may remove and utilize woody biomass, if: (1) Project work is...

  10. Greening Turner Valley

    International Nuclear Information System (INIS)

    Byfield, M.

    2010-01-01

    This article discussed remedial activities undertaken in the Turner Valley. Remedial action in the valley must satisfy the financial concerns of engineers and investors as well as the environmental concerns of residents and regulators. Natural gas production in the Turner Valley began in 1914. The production practices were harmful and wasteful. Soil and water pollution was not considered a problem until recently. The impacts of cumulative effects and other pollution hazards are now being considered as part of many oil and gas environmental management programs. Companies know it is cheaper and safer to prevent pollutants from being released, and more efficient to clean them up quickly. Oil and gas companies are also committed to remediating historical problems. Several factors have simplified remediation plans in the Turner Valley. Area real estate values are now among the highest in Alberta. While the valley residents are generally friendly to the petroleum industry, strong communication with all stakeholders in the region is needed. 1 fig.

  11. Materials for Waste Incinerators and Biomass Plants

    DEFF Research Database (Denmark)

    Rademakers, P.; Grossmann, G.; Karlsson, A.

    1998-01-01

    This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13.......This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13....

  12. Biomass for electricity

    International Nuclear Information System (INIS)

    Barbucci, P.; Neri, G.; Trebbi, G.

    1995-01-01

    This paper describes the activities carried out at ENEL-Thermal research center to develop technologies suitable to convert biomass into power with high conversion efficiency: a demonstration project, Energy Farm, to build an Integrated Gasification Combined Cycle (IGCC) plant fed by wood chips; a demonstration plant for converting wood chips into oil by thermal conversion (pyrolysis oil); combustion tests of different oils produced by thermal conversion. 3 figs., 1 tab

  13. Biomass combustion gas turbine CHP

    Energy Technology Data Exchange (ETDEWEB)

    Pritchard, D.

    2002-07-01

    This report summarises the results of a project to develop a small scale biomass combustor generating system using a biomass combustor and a micro-gas turbine indirectly fired via a high temperature heat exchanger. Details are given of the specification of commercially available micro-turbines, the manufacture of a biomass converter, the development of a mathematical model to predict the compatibility of the combustor and the heat exchanger with various compressors and turbines, and the utilisation of waste heat for the turbine exhaust.

  14. Biomass Characterization | Bioenergy | NREL

    Science.gov (United States)

    Characterization Biomass Characterization NREL provides high-quality analytical characterization of biomass feedstocks, intermediates, and products, a critical step in optimizing biomass conversion clear, amber liquid Standard Biomass Laboratory Analytical Procedures We maintain a library of

  15. 77 FR 68816 - Notice of Availability of the Draft Environmental Impact Statement for the Proposed Sun Valley to...

    Science.gov (United States)

    2012-11-16

    ...; AZA35079] Notice of Availability of the Draft Environmental Impact Statement for the Proposed Sun Valley to... Proposed Sun Valley to Morgan 500/230-kilovolt (kV) Transmission Line Project (Project) and Draft Bradshaw... comments by any of the following methods: Web site: http://www.blm.gov/az/st/en.html . Email: SunValley...

  16. Getting Digital Assets from Public–Private Partnership Research Projects through “The Valley of Death,” and Making Them Sustainable

    Science.gov (United States)

    Aartsen, Wendy; Peeters, Paul; Wagers, Scott; Williams-Jones, Bryn

    2018-01-01

    Projects in public–private partnerships, such as the Innovative Medicines Initiative (IMI), produce data services and platforms (digital assets) to help support the use of medical research data and IT tools. Maintaining these assets beyond the funding period of a project can be a challenge. The reason for that is the need to develop a business model that integrates the perspectives of all different stakeholders involved in the project, and these digital assets might not necessarily be addressing a problem for which there is an addressable market of paying customers. In this manuscript, we review four IMI projects and the digital assets they produced as a means of illustrating the challenges in making digital assets sustainable and the lessons learned. To progress digital assets beyond proof-of-concept into widely adopted tools, there is a need for continuation of multi-stakeholder support tailored to these assets. This would be best done by implementing a structure similar to the accelerators that are in place to help transform startup businesses into growing and thriving businesses. The aim of this article is to highlight the risk of digital asset loss and to provoke discussion on the concept of developing an “accelerator” for digital assets from public–private partnership research projects to increase the chance that digital assets will be sustained and continue to add value long after a project has ended. PMID:29594123

  17. Getting Digital Assets from Public–Private Partnership Research Projects through “The Valley of Death,” and Making Them Sustainable

    Directory of Open Access Journals (Sweden)

    Wendy Aartsen

    2018-03-01

    Full Text Available Projects in public–private partnerships, such as the Innovative Medicines Initiative (IMI, produce data services and platforms (digital assets to help support the use of medical research data and IT tools. Maintaining these assets beyond the funding period of a project can be a challenge. The reason for that is the need to develop a business model that integrates the perspectives of all different stakeholders involved in the project, and these digital assets might not necessarily be addressing a problem for which there is an addressable market of paying customers. In this manuscript, we review four IMI projects and the digital assets they produced as a means of illustrating the challenges in making digital assets sustainable and the lessons learned. To progress digital assets beyond proof-of-concept into widely adopted tools, there is a need for continuation of multi-stakeholder support tailored to these assets. This would be best done by implementing a structure similar to the accelerators that are in place to help transform startup businesses into growing and thriving businesses. The aim of this article is to highlight the risk of digital asset loss and to provoke discussion on the concept of developing an “accelerator” for digital assets from public–private partnership research projects to increase the chance that digital assets will be sustained and continue to add value long after a project has ended.

  18. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  19. Valley-polarized quantum transport generated by gauge fields in graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Garcia, Jose H; Roche, Stephan

    2017-01-01

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by t...... Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder....

  20. Decontamination of the chemical crane room and decontamination and decommissioning of the extraction chemical room at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Phillips, E.C.; Golden, M.P.

    1986-01-01

    This paper describes the decontamination of the Chemical Crane Room (CCR) of the West Valley Plant and the Extraction Chemical Room (XCR) from radioactively contaminated conditions to essentially shirt sleeve environments. In both cases, subsequent use re-contaminated the rooms. Prior to decontamination, general exposure rates in the CCR were 50 to 100 mR/hr with hot spots as high as 2000 mR/hr. Smearable levels on the floor were in the range of 10 5 to 10 6 dpm per 100/cm 2 . Respiratory protection was mandatory for entry. In the Extraction Chemical Room (XCR) prior to decontamination and decommissioning (D/D), radiological surveys indicated a maximum radiation field of 5 mR/hr, due to sources internal to the room, and 20,000 dpm beta/100 cm 2 surface contamination. A radiation source external to the XCR caused a hot spot with a 9 mR/hr exposure rate inside the XCR. The CCR, located at the north end of the Chemical Process Cell (CPC) is for the storage and servicing of two bridge cranes used in the CPC. Decontamination and exposure reduction in the CCR has been completed using vacuum cleaning, damp wipe down, and surface grinding followed by shielding and painting. The decontamination and decommissioning of the Extraction Chemical Room (XCR), located on the fifth floor elevation (160') of the reprocessing plant at the WVDP, has been completed. D/D operations included removal of piping, tanks, supports, and equipment to provide a clean work area of about 3000 square feet and 17 feet high

  1. West Valley Reprocessing Plant. Safety analysis report, supplement 21

    International Nuclear Information System (INIS)

    1976-01-01

    Supplement No. 21 contains responses to USNRC questions on quality assurance contained in USNRC letter to NFS dated January 22, 1976, revised pages for the safety analysis report, and Appendix IX ''Quality Assurance Manual--West Valley Construction Projects.''

  2. Biomass Energy Basics | NREL

    Science.gov (United States)

    Biomass Energy Basics Biomass Energy Basics We have used biomass energy, or "bioenergy" keep warm. Wood is still the largest biomass energy resource today, but other sources of biomass can landfills (which are methane, the main component in natural gas) can be used as a biomass energy source. A

  3. Zooplankton biomass (displacement volume) data collected in Indian Ocean, Southern Pacific and Southern Atlantic Ocean during Discovery Investigations project from 1931-01-02 to 1951-10-18 by Discovery II, data were acquired from the NMFS-COPEPOD database (NODC Accession 0071064)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton biomass (displacement volume) data collected in Indian Ocean, Southern Pacific and Southern Atlantic Ocean during Discovery Investigations project from...

  4. EERC Center for Biomass Utilization 2006

    Energy Technology Data Exchange (ETDEWEB)

    Zygarlicke, Christopher J. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Hurley, John P. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Aulich, Ted R. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Folkedahl, Bruce C. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Strege, Joshua R. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Patel, Nikhil [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Shockey, Richard E. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center

    2009-05-27

    The Center for Biomass Utilization® 2006 project at the Energy & Environmental Research Center (EERC) consisted of three tasks related to applied fundamental research focused on converting biomass feedstocks to energy, liquid transportation fuels, and chemicals. Task 1, entitled Thermochemical Conversion of Biomass to Syngas and Chemical Feedstocks, involved three activities. Task 2, entitled Crop Oil Biorefinery Process Development, involved four activities. Task 3, entitled Management, Education, and Outreach, focused on overall project management and providing educational outreach related to biomass technologies through workshops and conferences.

  5. Development Strategies for Deployment of Biomass Resources in the Production of Biomass Power: November 6, 2001--February 28, 2003

    Energy Technology Data Exchange (ETDEWEB)

    Kaminsky, J.

    2004-01-01

    The study analyzes strategies for deployment of biomass resources for biopower generation. It compares biomass supply databases and the projected biopower market penetration for several alternative incentive scenarios. It analyzes the availability of biomass to meet the projected market demands and recommends future research.

  6. Aerosol Properties Downwind of Biomass Burns Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Buseck, Peter R [Arizona State Univ., Tempe, AZ (United States)

    2016-04-01

    We determined the morphological, chemical, and thermal properties of aerosol particles generated by biomass burning during the Biomass Burning Observation Project (BBOP) campaign during the wildland fire season in the Pacific Northwest from July to mid-September, 2013, and in October, 2013 from prescribed agricultural burns in the lower Mississippi River Valley. BBOP was a field campaign of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility. The morphological information was both two-dimensional, as is typical of most microscopy images and that have many of the characteristic of shadows in that they lack depth data, and three-dimensional (3D). The electron tomographic measurements will provided 3D data, including the presence and nature of pores and interstices, and whether the individual particles are coated by or embedded within other materials. These microphysical properties were determined for particles as a function of time and distance from the respective sources in order to obtain detailed information regarding the time evolution of changes during aging.

  7. Estimation of Biomass Dynamics in Alpine Treeline Ecotone using Airborne Lidar and Repeat Photography

    Science.gov (United States)

    McCaffrey, D. R.; Hopkinson, C.

    2016-12-01

    Historic photographs provide visual records of landscapes which pre-date aerial and satellite observations, but analysis of these photographs has largely been qualitative due to varying spatial scale within an oblique image. Recent technological advances, such as the WSL monoplotting tool, provide the ability to georeference single oblique images, allowing for quantitative spatial analysis of land cover change between historic photographs and contemporary repeat photographs. The WSL monoplotting tool was used to compare alpine land cover change between 12 photographs from a 1914 survey of the West Castle valley (Alberta, Canada; 49.3° N, 114.4° W) and 12 repeat photographs, collected in 2006 by the Mountain Legacy Project. We tested for correlations between land cover shifts over the 92 year observation period and geomorphic controls (e.g. elevation, slope, aspect), with a focus on vegetative change in the alpine treeline ecotone (ATE). A model of above ground biomass was generated using an airborne lidar observation of the valley (2014) and ground validated measurements of tree height, diameter at breast height, and leaf area index from 25 plots (400 m2). By creating a high resolution map of ATE dynamics over a 92 year interval and incorporating a model of above ground biomass, the relative magnitude of anthropogenic, orographic, and climatic controls on ATE can be explored. This research provides a unique opportunity to understand the impact that continued atmospheric warming could have on vegetative boundaries in sensitive alpine systems, such as the eastern slopes of the Rocky Mountains.

  8. EnerGEO biomass pilot

    International Nuclear Information System (INIS)

    Tum, M.; Guenther, K.P.; McCallum, I.; Balkovic, J.; Khabarov, N.; Kindermann, G.; Leduc, S.; Biberacher, M.

    2013-01-01

    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  9. EnerGEO biomass pilot

    Energy Technology Data Exchange (ETDEWEB)

    Tum, M.; Guenther, K.P. [German Aerospace Center (DLR), Wessling (Germany). German Remote Sensing Data Center (DFD); McCallum, I.; Balkovic, J.; Khabarov, N.; Kindermann, G.; Leduc, S. [International Institute for Applied Systems Analysis (IIASA), Laxenburg (Austria); Biberacher, M. [Research Studios Austria AG (RSA), Salzburg (Austria)

    2013-07-01

    In the framework of the EU FP7 project EnerGEO (Earth Observations for Monitoring and Assessment of the Environmental Impact of Energy Use) sustainable energy potentials for forest and agricultural areas were estimated by applying three different model approaches. Firstly, the Biosphere Energy Transfer Hydrology (BETHY/DLR) model was applied to assess agricultural and forest biomass increases on a regional scale with the extension to grassland. Secondly, the EPIC (Environmental Policy Integrated Climate) - a cropping systems simulation model - was used to estimate grain yields on a global scale and thirdly the Global Forest Model (G4M) was used to estimate global woody biomass harvests and stock. The general objective of the biomass pilot is to implement the observational capacity for using biomass as an important current and future energy resource. The scope of this work was to generate biomass energy potentials for locations on the globe and to validate these data. Therefore, the biomass pilot was focused to use historical and actual remote sensing data as input data for the models. For validation purposes, forest biomass maps for 1987 and 2002 for Germany (Bundeswaldinventur (BWI-2)) and 2001 and 2008 for Austria (Austrian Forest Inventory (AFI)) were prepared as reference. (orig.)

  10. The stage-classified matrix models project a significant increase in biomass carbon stocks in China's forests between 2005 and 2050.

    Science.gov (United States)

    Hu, Huifeng; Wang, Shaopeng; Guo, Zhaodi; Xu, Bing; Fang, Jingyun

    2015-06-25

    China's forests are characterized by young age, low carbon (C) density and a large plantation area, implying a high potential for increasing C sinks in the future. Using data of provincial forest area and biomass C density from China's forest inventories between 1994 and 2008 and the planned forest coverage of the country by 2050, we developed a stage-classified matrix model to predict biomass C stocks of China's forests from 2005 to 2050. The results showed that total forest biomass C stock would increase from 6.43 Pg C (1 Pg = 10(15) g) in 2005 to 9.97 Pg C (95% confidence interval: 8.98 ~ 11.07 Pg C) in 2050, with an overall net C gain of 78.8 Tg C yr(-1) (56.7 ~ 103.3 Tg C yr(-1); 1 Tg = 10(12) g). Our findings suggest that China's forests will be a large and persistent biomass C sink through 2050.

  11. The stage-classified matrix models project a significant increase in biomass carbon stocks in China’s forests between 2005 and 2050

    Science.gov (United States)

    Hu, Huifeng; Wang, Shaopeng; Guo, Zhaodi; Xu, Bing; Fang, Jingyun

    2015-01-01

    China’s forests are characterized by young age, low carbon (C) density and a large plantation area, implying a high potential for increasing C sinks in the future. Using data of provincial forest area and biomass C density from China’s forest inventories between 1994 and 2008 and the planned forest coverage of the country by 2050, we developed a stage-classified matrix model to predict biomass C stocks of China’s forests from 2005 to 2050. The results showed that total forest biomass C stock would increase from 6.43 Pg C (1 Pg = 1015 g) in 2005 to 9.97 Pg C (95% confidence interval: 8.98 ~ 11.07 Pg C) in 2050, with an overall net C gain of 78.8 Tg C yr−1 (56.7 ~ 103.3 Tg C yr−1; 1 Tg = 1012 g). Our findings suggest that China’s forests will be a large and persistent biomass C sink through 2050. PMID:26110831

  12. Proceedings of the fifth International Slovak Biomass Forum (ISBF)

    International Nuclear Information System (INIS)

    2005-02-01

    The publication has been set up as a proceedings of the conference dealing with use of biomass for energy production. The main conference topics are focused on the following scopes: Session 1: RES Policies, strategies, political background; Session 2: Bioenergy markets, tools and influence factors; Session 3: Biomass fuels production and trading; Parallel Session 4: Biomass firing technologies; Parallel Session 5: Municipal projects uptake; Parallel Session 6: Biomass large and small CHP; Parallel Session 7: Environmental biomass technologies; Session 8: Biomass projects financing roundtable; In this proceedings 54 contributions is included

  13. The carbon stable isotope biogeochemistry of streams, Taylor Valley, Antarctica

    International Nuclear Information System (INIS)

    Lyons, W.B.; Leslie, D.L.; Harmon, R.S.; Neumann, K.; Welch, K.A.; Bisson, K.M.; McKnight, D.M.

    2013-01-01

    Highlights: ► δ 13 C-DIC reported from McMurdo Dry Valleys, Antarctica, streams. ► Stream water δ 13 C PDB values range −9.4‰ to +5.1‰, largely inorganic in character. ► Atmospheric exchange is the dominant control on δ 13 C-DIC. - Abstract: The McMurdo Dry Valleys region of Antarctica is the largest ice-free region on the continent. This study reports the first C stable isotope measurements for dissolved inorganic C present in ephemeral streams in four dry valleys that flow for four to twelve weeks during the austral summer. One of these valleys, Taylor Valley, has been the focus of the McMurdo Dry Valleys Long-Term Ecological Research (MCM-LTER) program since 1993. Within Taylor Valley, numerous ephemeral streams deliver water to three perennially ice-covered, closed-basin lakes: Lake Fryxell, Lake Hoare, and Lake Bonney. The Onyx River in the Wright Valley, the longest river in Antarctica, flows for 40 km from the Wright Lower Glacier and Lake Brownworth at the foot of the glacier to Lake Vanda. Streamflow in the McMurdo Dry Valley streams is produced primarily from glacial melt, as there is no overland flow. However, hyporheic zone exchange can be a major hydrogeochemical process in these streams. Depending on landscape position, these streams vary in gradient, channel substrate, biomass abundance, and hyporheic zone extent. This study sampled streams from Taylor, Wright, Garwood, and Miers Valleys and conducted diurnal sampling of two streams of different character in Taylor Valley. In addition, transect sampling was undertaken of the Onyx River in Wright Valley. The δ 13 C PDB values from these streams span a range of greater than 14‰, from −9.4‰ to +5.1‰, with the majority of samples falling between −3‰ and +2‰, suggesting that the C stable isotope composition of dissolved C in McMurdo Dry Valley streams is largely inorganic in character. Because there are no vascular plants on this landscape and no groundwater input to these

  14. Biomass, a 750 billion euros bet

    International Nuclear Information System (INIS)

    Remoue, A.

    2010-01-01

    Despite the check of its previous attempts to develop power generation from biomass fuels, the French government has announced the financing of 32 new projects of biomass fueled power plants representing 266 MW of additional power. Today's production represents 700 MW and the goal is to raise this production to 1230 MW by 2012 and 3530 MW by 2020. The development of biomass projects requires more important shareholders equity than wind power or solar energy projects and a good organization of the supply chain. (J.S.)

  15. Ethanol from lignocellulosic biomasses

    International Nuclear Information System (INIS)

    Ricci, E.; Viola, E.; Zimbardi, F.; Braccio, G.; Cuna, D.

    2001-01-01

    In this report are presented results achieved on the process optimisation of bioethanol production from wheat straw, carried out within the ENEA's project of biomass exploitation for renewable energy. The process consists of three main steps: 1) biomass pretreatment by means of steam explosion; 2) enzymatic hydrolysis of the cellulose fraction; 3) fermentation of glucose. To perform the hydrolysis step, two commercial enzymatic mixtures have been employed, mainly composed by β-glucosidase (cellobiase), endo-glucanase and exo-glucanase. The ethanologenic yeast Saccharomyces cerevisiae has been used to ferment the glucose in he hydrolyzates. Hydrolysis yield of 97% has been obtained with steam exploded wheat straw treated at 220 0 C for 3 minutes and an enzyme to substrate ratio of 4%. It has been pointed out the necessity of washing with water the pretreated what straw, in order to remove the biomass degradation products, which have shown an inhibition effect on the yeast. At the best process conditions, a fermentation yield of 95% has been achieved. In the Simultaneous Saccharification and Fermentation process, a global conversion of 92% has been obtained, which corresponds to the production of about 170 grams of ethanol per kilogram of exploded straw [it

  16. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  17. Lessons learned from existing biomass power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, G.

    2000-02-24

    This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

  18. Biomass torrefaction mill

    Science.gov (United States)

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  19. Groundwater quality in Coachella Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Coachella Valley is one of the study areas being evaluated. The Coachella study area is approximately 820 square miles (2,124 square kilometers) and includes the Coachella Valley groundwater basin (California Department of Water Resources, 2003). Coachella Valley has an arid climate, with average annual rainfall of about 6 inches (15 centimeters). The runoff from the surrounding mountains drains to rivers that flow east and south out of the study area to the Salton Sea. Land use in the study area is approximately 67 percent (%) natural, 21% agricultural, and 12% urban. The primary natural land cover is shrubland. The largest urban areas are the cities of Indio and Palm Springs (2010 populations of 76,000 and 44,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Coachella Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Coachella Valley are completed to depths between 490 and 900 feet (149 to 274 meters), consist of solid casing from the land surface to a depth of 260 to 510 feet (79 to 155 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to

  20. Status of groundwater quality in the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit, 2008-2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Parsons, Mary C.; Hancock, Tracy Connell; Kulongoski, Justin T.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the approximately 963-square-mile Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in southern California in San Bernardino, Riverside, San Diego, and Imperial Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The GAMA Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected by the U.S. Geological Survey from 52 wells (49 grid wells and 3 understanding wells) and on water-quality data from the California Department of Public Health database. The primary aquifer system was defined by the depth intervals of the wells listed in the California Department of Public Health database for the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study assesses the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds (VOCs), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifer system of the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit, not the

  1. 78 FR 935 - Copper Valley Electric Association, Inc.; Notice of Availability of Environmental Assessment

    Science.gov (United States)

    2013-01-07

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-003] Copper Valley Electric Association, Inc.; Notice of Availability of Environmental Assessment In accordance with the... 47897), the Office of Energy Projects has reviewed Copper Valley Electric Association, Inc.'s...

  2. 76 FR 78628 - Copper Valley Electric Association, Inc.; Notice of Application and Applicant-Prepared EA...

    Science.gov (United States)

    2011-12-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-003] Copper Valley... Application: Major License. b. Project No.: P-13124-003. c. Date filed: August 30, 2011. d. Applicant: Copper.... 791 (a)-825(r). h. Applicant Contact: Robert A. Wilkinson, CEO, Copper Valley Electric Association...

  3. 78 FR 71599 - Copper Valley Electric Association, Inc.; Notice of Availability of Environmental Assessment

    Science.gov (United States)

    2013-11-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-005] Copper Valley Electric Association, Inc.; Notice of Availability of Environmental Assessment In accordance with the... 47897), the Office of Energy Projects has reviewed Copper Valley Electric Association, Inc.'s...

  4. 78 FR 38711 - Copper Valley Electric Association, Inc.; Notice of Availability of Environmental Assessment

    Science.gov (United States)

    2013-06-27

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-003] Copper Valley Electric Association, Inc.; Notice of Availability of Environmental Assessment In accordance with the... 47897), the Office of Energy Projects has reviewed Copper Valley Electric Association, Inc.'s...

  5. Modelling the transfer of radionuclides to fruit. Report of the Fruits Working Group of BIOMASS Theme 3. Part of the IAEA Co-ordinated Research Project on Biosphere Modelling and Assessment (BIOMASS)

    International Nuclear Information System (INIS)

    2003-07-01

    This report contains a description of the activities carried out by the Fruits Working Group and presents the main results such as conceptual advances, quantitative data and models on the transfer of radionuclides to fruit in the context of the overall objective of BIOMASS Theme 3. The aim of the study was to improve understanding of the processes affecting the migration of radionuclides in the fruit system and to identify the uncertainties associated with modelling the transfer of radionuclides to fruit. The overall objective was to improve the accuracy of risk assessment that should translate to improved health safety for the population and associated cost savings. The significance of fruit, intended as that particular component of the human diet generally consumed as a dessert item, derives from its high economic value, the agricultural area devoted to its cultivation, and its consumption rates. These are important factors for some countries and groups of population. Fruits may become contaminated with radioactive material from nuclear facilities during routine operation, as a consequence of nuclear accidents, or due to migration through the biosphere of radionuclides from radioactive waste disposal facilities. Relevant radionuclides when considering transfer to fruit from atmospheric deposition were identified as 3 H, 14 C, 35 S, 36 Cl, 90 Sr, 129 I, 134 Cs and 137 Cs. The transfer of radionuclides to fruit is complex and involves many interactions between biotic and abiotic components. Edible fruit is borne by different plant species, such as herbaceous plants, shrubs and trees, that can grow under different climatic conditions and may be found in agricultural or natural ecosystems. A review of experimental, field and modelling information on the transfer of radionuclides to fruit was carried out at the inception of the activities of the Group, taking into account results from a Questionnaire circulated to radioecologists. Results on current experimental

  6. Modelling the transfer of radionuclides to fruit. Report of the Fruits Working Group of BIOMASS Theme 3. Part of the IAEA Co-ordinated Research Project on Biosphere Modelling and Assessment (BIOMASS)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This report contains a description of the activities carried out by the Fruits Working Group and presents the main results such as conceptual advances, quantitative data and models on the transfer of radionuclides to fruit in the context of the overall objective of BIOMASS Theme 3. The aim of the study was to improve understanding of the processes affecting the migration of radionuclides in the fruit system and to identify the uncertainties associated with modelling the transfer of radionuclides to fruit. The overall objective was to improve the accuracy of risk assessment that should translate to improved health safety for the population and associated cost savings. The significance of fruit, intended as that particular component of the human diet generally consumed as a dessert item, derives from its high economic value, the agricultural area devoted to its cultivation, and its consumption rates. These are important factors for some countries and groups of population. Fruits may become contaminated with radioactive material from nuclear facilities during routine operation, as a consequence of nuclear accidents, or due to migration through the biosphere of radionuclides from radioactive waste disposal facilities. Relevant radionuclides when considering transfer to fruit from atmospheric deposition were identified as {sup 3}H, {sup 14}C, {sup 35}S, {sup 36}Cl, {sup 90}Sr, {sup 129}I, {sup 134}Cs and {sup 137}Cs. The transfer of radionuclides to fruit is complex and involves many interactions between biotic and abiotic components. Edible fruit is borne by different plant species, such as herbaceous plants, shrubs and trees, that can grow under different climatic conditions and may be found in agricultural or natural ecosystems. A review of experimental, field and modelling information on the transfer of radionuclides to fruit was carried out at the inception of the activities of the Group, taking into account results from a Questionnaire circulated to

  7. Reconstruction of the MSRs in-situ at Beaver Valley

    International Nuclear Information System (INIS)

    Yarden, A.; Tam, C.W.; Deahna, S.T.; McFeaters, C.V.

    1992-01-01

    The Moisture Separator Reheaters (MSRs) have been problem components at Beaver Valley 1 pressurized water reactor since the plant started up 16 years ago, many of the problems encountered being widespread in the nuclear industry. In 1991, Duquesne Light rebuilt the Beaver Valley 1 MSRs and in 1992 did the same at unit 2. The reconstruction projects have proved cost effective with short payback times and significant improvements in station performance. (Author)

  8. Breathing Valley Fever

    Centers for Disease Control (CDC) Podcasts

    2014-02-04

    Dr. Duc Vugia, chief of the Infectious Diseases Branch in the California Department of Public Health, discusses Valley Fever.  Created: 2/4/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/5/2014.

  9. Recalibration of a ground-water flow model of the Mississippi River Valley alluvial aquifer in Southeastern Arkansas, 1918, with simulations of hydraulic heads caused by projected ground-water withdrawals through 2049

    Science.gov (United States)

    Stanton, Gregory P.; Clark, Brian R.

    2003-01-01

    The Mississippi River Valley alluvial aquifer, encompassing parts of Arkansas, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee supplies an average of 5 billion gallons of water per day. However, withdrawals from the aquifer in recent years have caused considerable drawdown in the hydraulic heads in southeastern Arkansas and other areas. The effects of current ground-water withdrawals and potential future withdrawals on water availability are major concerns of water managers and users as well as the general public. A full understanding of the behavior of the aquifer under various water-use scenarios is critical for the development of viable water-management and alternative source plans. To address these concerns, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Vicksburg District, and the Arkansas Soil and Water Conservation Commission developed and calibrated a ground-water flow model for the Mississippi River valley alluvial aquifer in southeastern Arkansas to simulate hydraulic heads caused by projected ground-water withdrawals. A previously published ground-water flow model for the alluvial aquifer in southeastern Arkansas was updated and recalibrated to reflect more current pumping stresses with additional stress periods added to bring the model forward from 1982 to 1998. The updated model was developed and calibrated with MODFLOW-2000 finite difference numerical modeling and parameter estimation software. The model was calibrated using hydraulic-head data collected during 1972 and 1982 and hydraulic-head measurements made during spring (February to April) of 1992 and 1998. The residuals for 1992 and 1998 have a mean absolute value of 4.74 and 5.45 feet, respectively, and a root mean square error of 5.9 and 6.72 feet, respectively. The effects of projected ground-water withdrawals were simulated through 2049 in three predictive scenarios by adding five additional stress periods of 10 years each. In the three scenarios

  10. Small-scale hydro power in the Anniviers Valley. Project Chippis-Ricard. Variants and preliminary project; Forces Motrices de la Gougra SA. Mini-hydraulique en Anniviers. Projet Chippis-Ricard. Etude de variantes et avant-projet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-04-15

    This report for the Swiss Federal Office of Energy (SFOE) reports on the preliminary project for a small hydropower plant in Chippis, Switzerland. The project takes advantage of an existing irrigation scheme that deviates water from the Navisence River into two successive tunnels (total 1.8 km) and a following channel built on steep mountain sides. The basic idea of the project is to increase the flow rate entering the tunnels from 265 l/s to 1265 l/s and to lead the additional 1000 l/s to a new penstock connected to the second tunnel's outlet. In this way, a hydraulic head of 130 m could be used for power generation for over 600 households (mechanical power: 0.8 to 1.1 MW, annual electrical energy production: 2.5 to 3.6 GWh, depending on the variant considered). The report reviews the history of water use at this location and its present use as well as a feasibility study previously made. The project is described, including water collection points, conduits, the power station and the particular aspects of the joint use of water for power generation and irrigation from mid April to mid September. Technical details on water quantities and energy production are presented. Financial aspects including construction and operating costs are presented and the economic viability of the project is discussed. Environmental aspects are reviewed. Further steps to be taken in the realisation of this hydropower installation are listed.

  11. The ICIF project: Assessment of pathways of innovative cultures in forest for biomass production. Final report on the implementation of the experimental arrangement in Ardennes

    International Nuclear Information System (INIS)

    Rantien, Caroline; Gibaud, Gwenaelle; Richter, Claudine; Pousse, Noemie; Boulanger, Vincent; Deleuze, Christine

    2014-12-01

    Within the context created by the objective to increase the production of biomass-based energy, the authors studied the possibilities of using various crops and species in forests (i.e. in more acid soils), but also the impacts of these cultures on soil fertility. In a first part, they present and describe the experimental installation: site selection and characterization, experiment scheme, ash supply (choice, packaging, origin of ashes), and realisation. Then, they report the study of plants growth after one year, report some measurements regarding initial soil conditions (physical and chemical properties), and observations about flora development. They also mention performed information and communication action, and discuss perspectives

  12. Biomass energy in Central America

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J M [Biomass Users` Network, Regional Office for Central America and the Caribbean, San Jose (Costa Rica)

    1995-12-01

    The objective of this paper is to introduce the concept of biomass to energy issues and opportunities in Central America. In this region, made up of seven countries (Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama), the biomass sector has the potential to play a crucial role in alleviating the environmental and development predicaments faced by all economies of the region. This paper assesses the available biomass resources at the regional and country levels and gives an overview of the current utilization of biomass fuels. It also describes the overall context in which the biomass-to-energy initiatives are immersed. At the regional level, biomass energy consumption accounts for more than 50% of total energy consumption. In regard to the utilization of biomass for energy purposes, it is clear that Central America faces a critical juncture at two levels, both mainly in rural areas: in the productive sector and at the household level. The absence of sustainable development policies and practices has jeopardized the availability of biomass fuels, particularly wood. Firewood is an important source of energy for rural industries such as coffee processing, which is one of the largest productive activities in the region. This paper comments on some of the most successful technological innovations already in place in the region, for instance, the rapid development of co-generation projects by the sugar cane industry, especially in El Salvador and Guatemala, the substitution of coffee husks for firewood in coffee processing plants in Costa Rica and El Salvador and the sustainable use of pine forests for co-generation in Honduras. Only one out of every two inhabitants in Central America now has access to electricity from the public grid. Biomass fuels, mainly firewood but also, to a lesser extent, other crop residues such as corn stalks, are the main source of energy for cooking and heating by most of the population. (It is foreseen that by the end

  13. Biomass energy in Central America

    International Nuclear Information System (INIS)

    Blanco, J.M.

    1995-01-01

    The objective of this paper is to introduce the concept of biomass to energy issues and opportunities in Central America. In this region, made up of seven countries (Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama), the biomass sector has the potential to play a crucial role in alleviating the environmental and development predicaments faced by all economies of the region. This paper assesses the available biomass resources at the regional and country levels and gives an overview of the current utilization of biomass fuels. It also describes the overall context in which the biomass-to-energy initiatives are immersed. At the regional level, biomass energy consumption accounts for more than 50% of total energy consumption. In regard to the utilization of biomass for energy purposes, it is clear that Central America faces a critical juncture at two levels, both mainly in rural areas: in the productive sector and at the household level. The absence of sustainable development policies and practices has jeopardized the availability of biomass fuels, particularly wood. Firewood is an important source of energy for rural industries such as coffee processing, which is one of the largest productive activities in the region. This paper comments on some of the most successful technological innovations already in place in the region, for instance, the rapid development of co-generation projects by the sugar cane industry, especially in El Salvador and Guatemala, the substitution of coffee husks for firewood in coffee processing plants in Costa Rica and El Salvador and the sustainable use of pine forests for co-generation in Honduras. Only one out of every two inhabitants in Central America now has access to electricity from the public grid. Biomass fuels, mainly firewood but also, to a lesser extent, other crop residues such as corn stalks, are the main source of energy for cooking and heating by most of the population. (It is foreseen that by the end

  14. Ward Valley transfer stalled by Babbitt

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Interior Secretary Bruce Babbitt announced on November 24 that he would not authorize the land transfer for the proposed low-level waste disposal site at Ward Valley, California, until a legal challenge to the facility's license and environmental impact statement is resolved. Even if the matter is resolved quickly, there exists the possibility that yet another hearing will be held on the project, even though state courts in California have stated flatly that no such hearings are required

  15. Ward Valley transfer stalled by Babbitt

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    Interior Secretary Bruce Babbitt announced on November 24 that he would not authorize the land transfer for the proposed low-level waste disposal site at Ward Valley, California, until a legal challenge to the facility's license and environmental impact statement is resolved. Even if the matter is resolved quickly, there exists the possibility that yet another hearing will be held on the project, even though state courts in California have stated flatly that no such hearings are required.

  16. Biomass is beginning to threaten the wood-processors

    International Nuclear Information System (INIS)

    Beer, G.; Sobinkovic, B.

    2004-01-01

    In this issue an exploitation of biomass in Slovak Republic is analysed. Some new projects of constructing of the stoke-holds for biomass processing are published. The grants for biomass are ascending the prices of wood raw material, which is thus becoming less accessible for the wood-processors. An excessive wood export threatens the domestic processors

  17. 2015 Plan. Project 4: electric power supply, technologies, cost and availability. Sub-project forest biomass. Plano 2015. Projeto 4: oferta de energia eletrica, tecnologia, custos e disponibilidades. Subprojeto biomassa florestal

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The potential and the costs of forest biomass utilization for electric power generation in Brazil are evaluated, including a discussion of the technologies and the forecasts in fuel production area (forests management) and in electric power conversion and generation areas. The socio-economics and environmental aspects referring to wood utilization as energetic resource are also described. (C.G.C.).

  18. Hydrothermal Liquefaction of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international

  19. Biomass energy conversion: conventional and advanced technologies

    Energy Technology Data Exchange (ETDEWEB)

    Young, B C; Hauserman, W B [Energy and Environmental Research Center, University of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  20. Biomass energy conversion: conventional and advanced technologies

    International Nuclear Information System (INIS)

    Young, B.C.; Hauserman, W.B.

    1995-01-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  1. Renewable biomass energy: Understanding regional scale environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Graham, R.L.; Downing, M.

    1993-12-31

    If biomass energy is to become a significant component of the US energy sector, millions of acres of farmland must be converted to energy crops. The environmental implications of this change in land use must be quantitatively evaluated. The land use changes will be largely driven by economic considerations. Farmers will grow energy crops when it is profitable to do so. Thus, models which purport to predict environmental changes induced by energy crop production must take into account those economic features which will influence land use change. In this paper, we present an approach for projecting the probable environmental impacts of growing energy crops at the regional scale. The approach takes into account both economic and environmental factors. We demonstrate the approach by analyzing, at a county-level the probable impact of switchgrass production on erosion, evapotranspiration, nitrate in runoff, and phosphorous fertilizer use in multi-county subregions within the Tennessee Valley Authority (TVA) region. Our results show that the adoption of switchgrass production will have different impacts in each subregion as a result of differences in the initial land use and soil conditions in the subregions. Erosion, evapotranspiration, and nitrate in runoff are projected to decrease in both subregions as switchgrass displaces the current crops. Phosphorous fertilizer applications are likely to increase in one subregion and decrease in the other due to initial differences in the types of conventional crops grown in each subregion. Overall these changes portend an improvement in water quality in the subregions with the increasing adoption of switchgrass.

  2. Renewable biomass energy: Understanding regional scale environmental impacts

    International Nuclear Information System (INIS)

    Graham, R.L.; Downing, M.

    1993-01-01

    If biomass energy is to become a significant component of the US energy sector, millions of acres of farmland must be converted to energy crops. The environmental implications of this change in land use must be quantitatively evaluated. The land use changes will be largely driven by economic considerations. Farmers will grow energy crops when it is profitable to do so. Thus, models which purport to predict environmental changes induced by energy crop production must take into account those economic features which will influence land use change. In this paper, we present an approach for projecting the probable environmental impacts of growing energy crops at the regional scale. The approach takes into account both economic and environmental factors. We demonstrate the approach by analyzing, at a county-level, the probable impact of switchgrass production on erosion, evapotranspiration, nitrate in runoff, and phosphorous fertilizer use in two multi-county subregions within the Tennessee Valley Authority (TVA) region. Our results show that the adoption of switchgrass production will have different impacts in each subregion as a result of differences in the initial land use and soil conditions in the subregions. Erosion, evapotranspiration, and nitrate in runoff are projected to decrease in both subregions as switchgrass displaces the current crops. Phosphorous fertilizer applications are likely to increase in one subregion and decrease in the other due to initial differences in the types of conventional crops grown in each subregion. Overall these changes portend an improvement in water quality in the subregions with the increasing adoption of switchgrass

  3. Biomass treatment method

    Science.gov (United States)

    Friend, Julie; Elander, Richard T.; Tucker, III; Melvin P.; Lyons, Robert C.

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  4. Rheology of concentrated biomass

    Science.gov (United States)

    J.R. Samaniuk; J. Wang; T.W. Root; C.T. Scott; D.J. Klingenberg

    2011-01-01

    Economic processing of lignocellulosic biomass requires handling the biomass at high solids concentration. This creates challenges because concentrated biomass behaves as a Bingham-like material with large yield stresses. Here we employ torque rheometry to measure the rheological properties of concentrated lignocellulosic biomass (corn stover). Yield stresses obtained...

  5. Major Biomass Conference

    Science.gov (United States)

    Top Scientists, Industry and Government Leaders to Gather for Major Biomass Conference America, South America and Europe will focus on building a sustainable, profitable biomass business at the Third Biomass Conference of the Americas in Montreal. Scheduled presentations will cover all biomass

  6. Biomass Feedstocks | Bioenergy | NREL

    Science.gov (United States)

    Feedstocks Biomass Feedstocks Our mission is to enable the coordinated development of biomass generic biomass thermochemical conversion process (over a screened-back map of the United States) showing U.S. Biomass Resources, represented by photos of timber, corn stover, switchgrass, and poplar. All

  7. Valley-polarized quantum transport generated by gauge fields in graphene

    Science.gov (United States)

    Settnes, Mikkel; Garcia, Jose H.; Roche, Stephan

    2017-09-01

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by the superposition/cancellation of superimposed gauge fields which differently affect time reversal symmetry. The onset of a valley-polarized Hall current concomitant to a dissipative valley-polarized current flow in the opposite valley is revealed by a {{e}2}/h Hall conductivity plateau. We employ efficient linear scaling Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder.

  8. Methods for pretreating biomass

    Science.gov (United States)

    Balan, Venkatesh; Dale, Bruce E; Chundawat, Shishir; Sousa, Leonardo

    2017-05-09

    A method for pretreating biomass is provided, which includes, in a reactor, allowing gaseous ammonia to condense on the biomass and react with water present in the biomass to produce pretreated biomass, wherein reactivity of polysaccharides in the biomass is increased during subsequent biological conversion as compared to the reactivity of polysaccharides in biomass which has not been pretreated. A method for pretreating biomass with a liquid ammonia and recovering the liquid ammonia is also provided. Related systems which include a biochemical or biofuel production facility are also disclosed.

  9. Energy from biomass and waste

    International Nuclear Information System (INIS)

    1991-01-01

    This report provides a review of the Commission of the European Communities (CEC) Energy Demonstration Programme in the sector of Energy from biomass and waste, and examines the current status of the energy technologies associated with the sector, in relation to projects supported under the Programme, those included under various national programmes and by reference to the published literature. Detailed overviews of five sub-categories represented in the Energy from biomass and waste sector are presented to illustrate their relative significance in terms of estimated energy potential, technological and economic status and the nature of future research, development and demonstration needs. Finally the potential role of the biomass and waste energy technologies in meeting the energy needs of the developing world is discussed. 33 refs; 2 figs; 11 tabs

  10. Swiss Biomass Programme - Overview report on the 2007 research programme; Programm Biomasse: Ueberblicksbericht zum Forschungsprogramm 2007

    Energy Technology Data Exchange (ETDEWEB)

    Binggeli, D; Guggisberg, B

    2008-07-01

    This illustrated report for the Swiss Federal Office of Energy (SFOE) presents an overview of the results obtained in 2007 within the framework of the Swiss Biomass research programme. The potential for biomass use in Switzerland is reviewed and the emphases of the national programme are discussed. The results obtained are noted for the following areas: process optimisation, including - amongst others - particle emissions and control aspects as well as combined wood-pellets and solar heating systems. Projects involving non-wood biomass are reported on, including biomass digesters and various biogas systems. Further reports deal with the analysis and optimisation of material flows, organic pollutants and methane losses. New conversion technologies are reported on. Further reports deal with basic strategies and concepts in the area of biomass usage. National and international co-operation is also discussed. A selection of innovative pilot and demonstration projects is also presented and research and development projects are listed.

  11. Biofuel from "humified" biomass

    Science.gov (United States)

    Kpogbemabou, D.; Lemée, L.; Amblès, A.

    2009-04-01

    In France, 26% of the emissions of greenhouse effect gas originate from transportation which depends for 87% on fossil fuels. Nevertheless biofuels can contribute to the fight against climate change while reducing energetic dependence. Indeed biomass potentially represents in France 30 Mtoe a year that is to say 15% national consumption. But 80% of these resources are made of lignocellulosic materials which are hardly exploitable. First-generation biofuels are made from sugar, starch, vegetable oil, or animal fats. Due to their competition with human food chain, first-generation biofuels could lead to food shortages and price rises. At the contrary second-generation biofuel production can use a variety of non food crops while using the lignocellulosic part of biomass [1]. Gasification, fermentation and direct pyrolysis are the most used processes. However weak yields and high hydrogen need are limiting factors. In France, the National Program for Research on Biofuels (PNRB) aims to increase mobilizable biomass resource and to develop lignocellulosic biomass conversion. In this context, the LIGNOCARB project studies the liquefaction of biodegraded biomass in order to lower hydrogen consumption. Our aim was to develop and optimize the biodegradation of the biomass. Once the reactor was achieved, the influence of different parameters (starting material, aeration, moisture content) on the biotransformation process was studied. The monitored parameters were temperature, pH and carbon /nitrogen ratio. Chemical (IHSS protocol) and biochemical (van Soest) fractionations were used to follow the maturity ("humic acid"/"fulvic acid" ratio) and the biological stability (soluble, hemicelluloses, celluloses, lignin) of the organic matter (OM). In example, the increase in lignin can be related to the stabilization since the OM becomes refractory to biodegradation whereas the increase in the AH/AF ratio traduces "humification". However, contrarily to the composting process, we do

  12. Biomass energy in the making

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Wood, straw, agricultural residues, organic wastes, biomass is everywhere you look. But the efficient use of this source of green electricity - the world's second largest renewable energy source - requires optimization of biomass collection and combustion processes. Biomass is back on the political agenda. In mid-June of this year, the French government gave this renewable energy a boost by selecting twenty-two projects to generate power and heat with biomass. The plants, to be commissioned by 2010, will be located in eleven different regions and will consume energy from organic plant matter. The power generated will be bought at a firm price of 128 euros per megawatt-hour. Most of the fuel will come from forest and paper industry waste, but straw and even grape pomace will be used in some cases. The plants will have a combined generating capacity of 300 MWh, raising France's installed biomass capacity to a total of 700 MWe. A drop of water in the ocean in the overall scheme of France's electricity. It is true that France has long neglected biomass. In 2004, electricity generated from biological resources represented a mere 1.74 TWhe in France, just 0.3% of its power consumption. This will rise to 0.6% once the new plants have come on line. The trend is the same in all of the EU's 27 member states, according to Eurostat, the statistical office of the European Communities: the amount of electricity generated from biomass (including biogas, municipal waste and wood) has practically doubled in six years, rising from 40 to 80 TWhe between 2000 and 2005. This is an improvement, but it still only represents 2.5% of the electricity supplied to Europeans. On a global scale, biomass contributes just 1% of total electric power generation. Yet biomass is an energy resource found all over the world, whether as agricultural waste, wood chips, or dried treatment plant sludge, to name but a few. Biomass power plants have managed to gain a foothold mainly in countries that produce

  13. Source apportionment of PM10 mass and particulate carbon in the Kathmandu Valley, Nepal

    Science.gov (United States)

    Kim, Bong Mann; Park, Jin-Soo; Kim, Sang-Woo; Kim, Hyunjae; Jeon, Haeun; Cho, Chaeyoon; Kim, Ji-Hyoung; Hong, Seungkyu; Rupakheti, Maheswar; Panday, Arnico K.; Park, Rokjin J.; Hong, Jihyung; Yoon, Soon-Chang

    2015-12-01

    The Kathmandu Valley in Nepal is a bowl-shaped urban basin in the Himalayan foothills with a serious problem of fine particulate air pollution that impacts local health and impairs visibility. Particulate carbon concentrations have reached severe levels that threaten the health of 3.5 million local residents. Moreover, snow and ice on the Himalayan mountains are melting as a result of additional warming due to particulate carbon, especially high black carbon concentrations. To date, the sources of the Valley's particulate carbon and the impacts of different sources on particulate carbon concentrations are not well understood. Thus, before an effective control strategy can be developed, these particulate carbon sources must be identified and quantified. Our study has found that the four primary sources of particulate carbon in the Kathmandu Valley during winter are brick kilns, motor vehicles, fugitive soil dust, and biomass/garbage burning. Their source contributions are quantified using a recently developed new multivariate receptor model SMP. In contrast to other highly polluted areas such as China, secondary contribution is almost negligible in Kathmandu Valley. Brick kilns (40%), motor vehicles (37%) and biomass/garbage burning (22%) have been identified as the major sources of elemental carbon (black carbon) in the Kathmandu Valley during winter, while motor vehicles (47%), biomass/garbage burning (32%), and soil dust (13%) have been identified as the most important sources of organic carbon. Our research indicates that controlling emissions from motor vehicles, brick kilns, biomass/garbage burning, and soil dust is essential for the mitigation of the particulate carbon that threatens public health, impairs visibility, and influences climate warming within and downwind from the Kathmandu Valley. In addition, this paper suggests several useful particulate carbon mitigation methods that can be applied to Kathmandu Valley and other areas in South Asia with

  14. Experiences of the BIOMAS-CUBA Project. Energy alternatives from biomass in Cuban rural areas; Experiencias del proyecto BIOMAS-CUBA. Alternativas energéticas a partir de la biomasa en el medio rural cubano

    Energy Technology Data Exchange (ETDEWEB)

    Suárez, J.; Martín, G. J.; Cepero, L.; Funes-Monzote, F.; Blanco, D.; Machado, R., E-mail: jesus.suarez@indio.atenas.inf.cu [Estación Experimental de Pastos y Forrajes ' Indio Hatuey' Central España Republicana CP 44280, Matanzas (Cuba); Sotolongo, J. A. [Centro de Aplicaciones Tecnológicas para el Desarrollo Sostenible (Cuba); Rodríguez, E. [Estación de Pastos de Sancti Spíritus (Cuba); Savran, Valentina [Dirección de Planificación Física de Cabaiguán, Sancti Spíritus (Cuba); Rivero, J. L. [Estación de Pastos de Las Tunas (Cuba); Martín, C.; García, A. [Grupo de Tecnología de Biorrecursos, Universidad de Matanzas (Cuba)

    2011-07-01

    This paper provides experiences of the international project BIOMAS-CUBA in the implementation of energy supply alternatives from biomass in rural areas, which are compatible to food security and environmental sustainability. These experiences are comprised between 2009 and 2011, within the agroenergetic farm concept, and are related to research and technological innovation processes associated to: the morphological, productive and chemical evaluation of germplasm of non-edible oil plants with potential to produce biodiesel, ethanol and other products; the planting and agricultural management of associations of Jatropha curcas and 21 food crops; the cleaning and oil extraction of Jatropha seeds; the physical-chemical characterization of such oil; the production of biodiesel and its co-products; the biogas production from excreta and bioproducts and biofertilizers, with the effluents of biodigesters; the gasification of ligneous biomass to generate electricity; the characterization and classification of integrated food and energy production systems. Likewise, the socioeconomic and environmental studies allowed appreciating adequate economic-financial feasibility, remarkable increases in food production, the formation of human capital and the improvement of the people's quality of life, a positive environmental impact and a substitution of energy porters and conventional fertilizers. (author)

  15. Imperial Valley Environmental Project: progress report

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, P.L.; Anspaugh, L.R. (eds.)

    1977-10-19

    Progress is reported in six areas of research: air quality, water quality, ecosystem quality, subsidence and seismicity, socioeconomic effects, and integrated assessment. A major goal of the air quality element is to evaluate the rate of emission of H/sub 2/S, CO/sub 2/, H/sub 2/, N/sub 2/, CH/sub 4/, and C/sub 2/H/sub 6/ from the operation of the geothermal loop experimental facility at Niland. Concentrations of H/sub 2/S were found to vary between 1500 to 4900 ppM by volume at the Niland facility. To distinguish between geothermal fluids and other waters, extensive sampling networks were established. A major accomplishment was the installation of a high-resolution subsidence-detection network in the Salton Sea geothermal field area, centered on the test facility at Niland. A major effort went into establishing a background of data needed for subsequent impact assessments related to socioeconomic issues raised by geothermal developments. Underway are a set of geothermal energy scenarios that include power development schedules, technology characterizations, and considerations of power-plant-siting criteria. A Gaussian air-pollution model was modified for use in preliminary air-quality assessments. A crop-growth model was developed to evaluate impacts of gases released from geothermal operations on various agricultural crops. Work is also reported on the legal analysis of geothermal legislation and the legal aspects of water-supply utilization. Remote sensing was directed primarily at the Salton Sea, Heber, Brawley, and East Mesa KGRAs. However, large-format photography of the entire Salton Trough was completed. Thermal and multispectral imaging was done for several selected sites in the Salton Sea KGRA. (JGB)

  16. Imperial Valley Environmental Project: quarterly data report

    Energy Technology Data Exchange (ETDEWEB)

    Nyholm, R.A.; Anspaugh, L.R. (comps.)

    1977-04-13

    This is a catalog of all samples which have been collected and the presently available results of chemical and other analyses. Types covered include: air quality, water quality, ecosystem quality, subsidence and seismicity, remotely sensed data, socioeconomic effects, and measurements of radioactivity. (MHR)

  17. DUE GlobBiomass - Estimates of Biomass on a Global Scale

    Science.gov (United States)

    Eberle, J.; Schmullius, C.

    2017-12-01

    For the last three years, a new ESA Data User Element (DUE) project had focussed on creating improved knowledge about the Essential Climate Variable Biomass. The main purpose of the DUE GlobBiomass project is to better characterize and to reduce uncertainties of AGB estimates by developing an innovative synergistic mapping approach in five regional sites (Sweden, Poland, Mexico, Kalimantan, South Africa) for the epochs 2005, 2010 and 2015 and for one global map for the year 2010. The project team includes leading Earth Observation experts of Europe and is linked through Partnership Agreements with further national bodies from Brazil, Canada, China, Russia and South Africa. GlobBiomass has demonstrated how EO observation data can be integrated with in situ measurements and ecological understanding to provide improved biomass estimates that can be effectively exploited by users. The target users had mainly be drawn from the climate and carbon cycle modelling communities and included users concerned with carbon emissions and uptake due to biomass changes within initiatives such as REDD+. GlobBiomass provided a harmonised structure that can be exploited to address user needs for biomass information, but will be capable of being progressively refined as new data and methods become available. This presentation will give an overview of the technical prerequisites and final results of the GlobBiomass project.

  18. Groundwater availability of the Central Valley Aquifer, California

    Science.gov (United States)

    Faunt, Claudia C.

    2009-01-01

    California's Central Valley covers about 20,000 square miles and is one of the most productive agricultural regions in the world. More than 250 different crops are grown in the Central Valley with an estimated value of $17 billion per year. This irrigated agriculture relies heavily on surface-water diversions and groundwater pumpage. Approximately one-sixth of the Nation's irrigated land is in the Central Valley, and about one-fifth of the Nation's groundwater demand is supplied from its aquifers. The Central Valley also is rapidly becoming an important area for California's expanding urban population. Since 1980, the population of the Central Valley has nearly doubled from 2 million to 3.8 million people. The Census Bureau projects that the Central Valley's population will increase to 6 million people by 2020. This surge in population has increased the competition for water resources within the Central Valley and statewide, which likely will be exacerbated by anticipated reductions in deliveries of Colorado River water to southern California. In response to this competition for water, a number of water-related issues have gained prominence: conservation of agricultural land, conjunctive use, artificial recharge, hydrologic implications of land-use change, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS Groundwater Resources Program made a detailed assessment of groundwater availability of the Central Valley aquifer system, that includes: (1) the present status of groundwater resources; (2) how these resources have changed over time; and (3) tools to assess system responses to stresses from future human uses and climate variability and change. This effort builds on previous investigations, such as the USGS Central Valley Regional Aquifer System and Analysis (CV-RASA) project and several other groundwater studies in the Valley completed by Federal, State and local agencies at differing scales. The

  19. Developing business in emerging biomass energy markets

    International Nuclear Information System (INIS)

    Kadyszewski, J.

    2005-01-01

    Global market trends for forest products were reviewed in this PowerPoint presentation. The status of biomass energy products in relation to climate change and renewable energy portfolio standards was also examined. It was noted that China has increased investment in processing capacity and has increased imports of raw logs. India has doubled its imports of raw logs. Details of major tropical log producers and consumers were presented. Details of the biomass industry in the United States were presented, as well as data on fuel use at biomass energy plants and biomass energy capacity. An overview of biomass energy in the Russian far east and Siberia was presented, as well as details of activities and opportunities in Brazil and Indonesia. An economic analysis for small dry kilns was presented. Issues concerning boiler capacity in Russian companies for 2001-2005 were discussed. A case study of a biomass project from Congo was presented. It was noted that projects that replace fossil fuels can obtain revenues from the sale of carbon benefits, and that biomass energy offers the most attractive current option for the removal of carbon dioxide (CO 2 ) from the atmosphere. Details of a district heating project in Siberia were presented, and it was noted that in remote regions, costs for heat and power from biomass can be lower than costs from diesel and coal. It was concluded that there will be significant growth for biomass energy systems in the developing world, and that climate change will be an increasingly important element in advancing biomass energy. tabs., figs

  20. Allometric relationship and biomass expansion factors (BEFs) for above- and below-ground biomass prediction and stem volume estimation for ash (Fraxinus excelsior L.) and oak (Quercus robur L.)

    Czech Academy of Sciences Publication Activity Database

    Krejza, Jan; Světlík, J.; Bednář, P.

    2017-01-01

    Roč. 31, č. 4 (2017), s. 1303-1316 ISSN 0931-1890 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : floodplain forest * root biomass * leaf biomass * branch biomass * shoot biomass * Allometry * stem volume * biomass expansion factor Subject RIV: GK - Forestry OBOR OECD: Forestry Impact factor: 1.842, year: 2016

  1. Projectables

    DEFF Research Database (Denmark)

    Rasmussen, Troels A.; Merritt, Timothy R.

    2017-01-01

    CNC cutting machines have become essential tools for designers and architects enabling rapid prototyping, model-building and production of high quality components. Designers often cut from new materials, discarding the irregularly shaped remains. We introduce ProjecTables, a visual augmented...... reality system for interactive packing of model parts onto sheet materials. ProjecTables enables designers to (re)use scrap materials for CNC cutting that would have been previously thrown away, at the same time supporting aesthetic choices related to wood grain, avoiding surface blemishes, and other...... relevant material properties. We conducted evaluations of ProjecTables with design students from Aarhus School of Architecture, demonstrating that participants could quickly and easily place and orient model parts reducing material waste. Contextual interviews and ideation sessions led to a deeper...

  2. Project financing of biomass conversion plants. Analysis and limitation of bank-specific risks; Projektfinanzierung von Biogasanlagen. Analyse und Begrenzung der bankspezifischen Risiken

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Eileen

    2011-07-01

    In view of the climate change, limited availability of fossil fuels and increasing energy prices, the power generation from renewable energy sources increasingly is promoted by the state. In this case, bio energy plays a special role. The implementation of bio energy projects usually occurs in the context of project financing. Under this aspect, the author of the book under consideration reports on an analysis and limitation of bank-specific risks.

  3. Communal biomass conversion plants

    International Nuclear Information System (INIS)

    1991-06-01

    The Coordinating Committee set up by the Danish government in 1986 were given the responsibility of investigating the potentials for biomass conversion plants in Denmark, especially in relation to agricultural, environmental and energy aspects. The results of the Committee's plan of management for this project are presented. This main report covers 13 background reports which deal with special aspects in detail. The report describes the overall plan of management, the demonstration and follow-up programme and the individual biogas demonstration plants. Information gained from these investigations is presented. The current general status, (with emphasis on the technical and economical aspects) and the prospects for the future are discussed. The interest other countries have shown in Danish activities within the field of biogas production is described, and the possibilities for Danish export of technology and know-how in this relation are discussed. It is claimed that Denmark is the first country that has instigated a coordinated development programme for biomass conversion plants. (AB) 24 refs

  4. Biomass and territory

    International Nuclear Information System (INIS)

    Leca, Christel; Regnier, Yannick; Couturier, Christian; Cousin, Stephane; Defaye, Serge; Jilek, Wolfgang; Merle, Sophie; Le Treis, Marc; Jacques, Dominique; Gauthier, Alice; Formerg, Thomas; Duffes, Thomas; Bellanger, Delphine; Nguyen, Elodie

    2012-01-01

    As the biomass sector is growing, several questions are raised regarding the durability of the use of wood as energy source: risk of forest over-exploitation, impact of particles on health, oversized projects without any relationship with local interests, controversy on carbon assessment, massive imports of pellets without real guarantee of durability. A first article addresses the role of French local communities, and identifies six main regions with different characteristics. The example of the Austrian region of Styria is discussed where the share of renewable energies has reached 26,5% (61% of biomass including paper mill wastes). Opportunities and limitations of the development of the agro-fuel sector are briefly discussed. The case of the city of Aubenas is commented (heat network supplied by wood). The issue of short circuit supply is discussed. Other articles outline how air quality is an asset for wood energy, discuss which kind of wood is adapted to an environment-friendly heating, the need to promote wood energy, the importance of the empowerment of local communities, the perspective of a new law on heat, the need to review mechanisms supporting cogeneration, and the role of the French rural network (Reseau Rural Francais) to support rural actors of the wood energy sector

  5. Valley Topological Phases in Bilayer Sonic Crystals

    Science.gov (United States)

    Lu, Jiuyang; Qiu, Chunyin; Deng, Weiyin; Huang, Xueqin; Li, Feng; Zhang, Fan; Chen, Shuqi; Liu, Zhengyou

    2018-03-01

    Recently, the topological physics in artificial crystals for classical waves has become an emerging research area. In this Letter, we propose a unique bilayer design of sonic crystals that are constructed by two layers of coupled hexagonal array of triangular scatterers. Assisted by the additional layer degree of freedom, a rich topological phase diagram is achieved by simply rotating scatterers in both layers. Under a unified theoretical framework, two kinds of valley-projected topological acoustic insulators are distinguished analytically, i.e., the layer-mixed and layer-polarized topological valley Hall phases, respectively. The theory is evidently confirmed by our numerical and experimental observations of the nontrivial edge states that propagate along the interfaces separating different topological phases. Various applications such as sound communications in integrated devices can be anticipated by the intriguing acoustic edge states enriched by the layer information.

  6. 77 FR 33237 - Saline Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National...

    Science.gov (United States)

    2012-06-05

    ... Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National Park, Inyo... an Environmental Impact Statement for the Saline Valley Warm Springs Management Plan, Death Valley... analysis process for the Saline Valley Warm Springs Management Plan for Death Valley [[Page 33238...

  7. Biomass gasification for production of 'green energy'

    International Nuclear Information System (INIS)

    Mambre, V.

    2008-01-01

    This paper presents the differences between biomass gasification and biomass methanation, two ways of using biomass for decentralized production of energy. The stakes of biomass and biomass gasification for meeting the European and national energy goals and environmental targets are summarized. The gasification principle is described and in particular the FICFB optimized process from Repotec for the production of concentrated syngas. The four different ways of syngas valorization (combined heat and power (CHP), 'green methane' (SNG), 'green hydrogen' (gas shift) and liquid biofuels of 2. generation (Fisher-Tropsch)) are recalled and compared with each other. Finally, the economical and environmental key issues of the global chain are summarized with their technological and scientific key locks. The GAYA R and D project of Gaz de France Suez group, which aims at developing gasification and methanation demonstration plants through different programs with European partners, is briefly presented. (J.S.)

  8. Production of methanol/DME from biomass

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Münster-Swendsen, Janus

    In this project the production of DME/methanol from biomass has been investigated. Production of DME/methanol from biomass requires the use of a gasifier to transform the solid fuel to a synthesis gas (syngas) - this syngas can then be catalytically converted to DME/methanol. Two different gasifier...... cleaning. This was proved by experiments. Thermodynamic computer models of DME and methanol plants based on using the Two-Stage Gasification concept were created to show the potential of such plants. The models showed that the potential biomass to DME/methanol + net electricity energy efficiency was 51...... gasification, but little information exists on using these types of gasifiers for biomass gasification. The experiments performed provided quantitative data on product and gas composition as a function of operation conditions. Biomass can be gasified with less oxygen consumption compared to coal. The organic...

  9. Pellets for Power: sustainable biomass import from Ukraine : public final report

    NARCIS (Netherlands)

    Elbersen, H.W.; Poppens, R.P.; Lesschen, J.P.; Sluis, van der T.; Galytska, M.; Kulyk, M.; Jamblinne, de P.; Kraisvitnii, P.; Rii, O.; Hoekstra, T.

    2013-01-01

    This project responds to the mismatch between on the one hand a growing demand for biomass on the Dutch and EU energy markets with a limited biomass potential and on the other hand large amounts of biomass and biomass potential currently underutilised in Ukraine. Ukraine itself is seen as a very

  10. The California Valley grassland

    Science.gov (United States)

    Keeley, J.E.; Schoenherr, Allan A.

    1990-01-01

    Grasslands are distributed throughout California from Oregon to Baja California Norte and from the coast to the desert (Brown 1982) (Figure 1). This review will focus on the dominant formation in cismontane California, a community referred to as Valley Grassland (Munz 1959). Today, Valley Grassland is dominated by non-native annual grasses in genera such as Avena (wild oat), Bromus (brome grass), and Hordeum (barley), and is often referred to as the California annual grassland. On localized sites, native perennial bunchgrasses such as Stipa pultra (purple needle grass) may dominate and such sites are interpreted to be remnants of the pristine valley grassland. In northwestern California a floristically distinct formation of the Valley Grassland, known as Coast Prairie (Munz 1959) or Northern Coastal Grassland (Holland and Keil 1989) is recognized. The dominant grasses include many native perennial bunchgrasses in genera such as Agrostis, Calamagrostis, Danthonia, Deschampsia, Festuca, Koeleria and Poa (Heady et al. 1977). Non-native annuals do not dominate, but on some sites non-native perennials like Anthoxanthum odoratum may colonize the native grassland (Foin and Hektner 1986). Elevationally, California's grasslands extend from sea level to at leas 1500 m. The upper boundary is vague because montane grassland formations are commonly referred to as meadows; a community which Munz (1959) does not recognize. Holland and Keil (1989) describe the montane meadow as an azonal community; that is, a community restricted not so much to a particular climatic zone but rather controlled by substrate characteristics. They consider poor soil-drainage an over-riding factor in the development of montane meadows and, in contrast to grasslands, meadows often remain green through the summer drought. Floristically, meadows are composed of graminoids; Cyperaceae, Juncaceae, and rhizomatous grasses such as Agropyron (wheat grass). Some bunchgrasses, such as Muhlenbergia rigens, are

  11. Great Lakes Regional Biomass Energy Program

    International Nuclear Information System (INIS)

    Kuzel, F.

    1993-01-01

    The Great Lakes Regional Biomass Energy Program (GLRBEP) was initiated September, 1983, with a grant from the Office of Energy Efficiency and Renewable Energy of the US Department of Energy (DOE). The program provides resources to public and private organizations in the Great Lakes region to increase the utilization and production of biomass fuels. The objectives of the GLRBEP are to: (1) improve the capabilities and effectiveness of biomass energy programs in the state energy offices; (2) assess the availability of biomass resources for energy in light of other competing needs and uses; (3) encourage private sector investments in biomass energy technologies; (4) transfer the results of government-sponsored biomass research and development to the private sector; (5) eliminate or reduce barriers to private sector use of biomass fuels and technology; (6) prevent or substantially mitigate adverse environmental impacts of biomass energy use. The Program Director is responsible for the day-to-day activities of the GLRBEP and for implementing program mandates. A 40 member Technical Advisory Committee (TAC) sets priorities and recommends projects. The governor of each state in the region appoints a member to the Steering Council, which acts on recommendations of the TAC and sets basic program guidelines. The GLRBEP is divided into three separate operational elements. The State Grants component provides funds and direction to the seven state energy offices in the region to increase their capabilities in biomass energy. State-specific activities and interagency programs are emphasized. The Subcontractor component involves the issuance of solicitations to undertake projects that address regional needs, identified by the Technical Advisory Committee. The Technology Transfer component includes the development of nontechnical biomass energy publications and reports by Council staff and contractors, and the dissemination of information at conferences, workshops and other events

  12. Rift Valley Fever.

    Science.gov (United States)

    Hartman, Amy

    2017-06-01

    Rift Valley fever (RVF) is a severe veterinary disease of livestock that also causes moderate to severe illness in people. The life cycle of RVF is complex and involves mosquitoes, livestock, people, and the environment. RVF virus is transmitted from either mosquitoes or farm animals to humans, but is generally not transmitted from person to person. People can develop different diseases after infection, including febrile illness, ocular disease, hemorrhagic fever, or encephalitis. There is a significant risk for emergence of RVF into new locations, which would affect human health and livestock industries. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Pretreated densified biomass products

    Science.gov (United States)

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  14. High Temperature Corrosion in Biomass Incineration Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Gotthjælp, K.

    1997-01-01

    The aim of the project is to study the role of ash deposits in high temperature corrosion of superheater materials in biomass and refuse fire combined heat and power plants. The project has included the two main activities: a) A chemical characterisation of ash deposits collected from a major...

  15. Importance of biomass energy sources for Turkey

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2008-01-01

    Various agricultural residues such as grain dust, crop residues and fruit tree residues are available in Turkey as the sources of biomass energy. Among the biomass energy sources, fuelwood seems to be one of the most interesting because its share of the total energy production of Turkey is high at 21% and the techniques for converting it to useful energy are not necessarily sophisticated. Selection of a particular biomass for energy requirements is influenced by its availability, source and transportation cost, competing uses and prevalent fossil fuel prices. Utilization of biomass is a very attractive energy resource, particularly for developing countries since biomass uses local feedstocks and labor. Like many developing countries, Turkey relies on biomass to provide much of its energy requirement. More efficient use of biomass in producing energy, both electrical and thermal, may allow Turkey to reduce petroleum imports, thus affecting its balance of payments dramatically. Turkey has always been one of the major agricultural countries in the world. The importance of agriculture is increasing due to biomass energy being one of the major resources in Turkey. Biomass waste materials can be used in Turkey to provide centralized, medium- and large-scale production of process heat for electricity production. Turkey's first biomass power project is under development in Adana province, at an installed capacity of 45 MW. Two others, at a total capacity of 30 MW, are at the feasibility study stage in Mersin and Tarsus provinces. Electricity production from biomass has been found to be a promising method in the nearest future in Turkey

  16. Evaluation of Water Security in Kathmandu Valley before and after Water Transfer from another Basin

    OpenAIRE

    Bhesh Raj Thapa; Hiroshi Ishidaira; Vishnu Prasad Pandey; Tilak Mohan Bhandari; Narendra Man Shakya

    2018-01-01

    Kathmandu Upatyaka Khanepani Limited (KUKL) has planned to harness water from outside the valley from Melamchi as an inter-basin project to supply water inside the ring road (core valley area) of the Kathmandu Valley (KV). The project, called the “Melamchi Water Supply Project (MWSP)”, is expected to have its first phase completed by the end of September 2018 and its second phase completed by the end of 2023 to supply 170 MLD (million liters a day) through the first phase and an additional 34...

  17. Public beliefs that may affect biomass development

    International Nuclear Information System (INIS)

    Draper, H.M.

    1993-01-01

    The Tennessee River chip mill controversy involves the expansion of the pulp and paper industry rather than the biomass energy industry; however, the concerns expressed by environmentalists are likely to be the same for biomass projects that propose use of privately-owned land. It may be incorrect to assume that private landowners will have more flexibility in forest management techniques than public agencies. In fact, when faced with a potentially large new demand source for wood, environmentalists will try to stop the project while pushing for stringent regulation of harvesting. This paper describes and analyzes beliefs about forest management (related to biomass energy) taken from the 1,200 letters and 200 public hearing statements received by TVA on the chip mill environmental impact statement. The chip mill controversy suggests that there is a potential for strong coalitions to form to stop new biomass demand sources. As much as possible, the biomass industry will need to anticipate and address land management issues. New concepts such as landscape ecology and ecosystem management should be considered. Even so, increased use of non-dedicated biomass resources will require more public acceptance of the concept that ecosystems and their biomass resources can tolerate increased levels of management

  18. Sustainable use of forest biomass for energy

    International Nuclear Information System (INIS)

    Stupak Moeller, Inge

    2005-01-01

    The substitution of biomass for fossil fuels in energy consumption is a measure to mitigate global warming, and political action plans at European and national levels exist for an increased use. The use of forest biomass for energy can imply different economic and environmental advantages and disadvantages for the society, the energy sector and forestry. For the achievement of an increased and sustainable use of forest biomass for energy, the EU 5th Framework project WOOD-EN-MAN aimed at synthesising current knowledge and creating new knowledge within the field

  19. Aburra Valley: Quo vadis?

    International Nuclear Information System (INIS)

    Hermelin, Michel

    2008-01-01

    These paper intents a brief description of the evolution that characterised natural risk prevention in the area surrounding the city of Medellin, Colombia, called the Aburra Valley. Both the lithological and structural composition of the Valle and its topographic and climatic conditions contribute to the abundance of destructive natural phenomena as earthquakes, slope movements, flash floods and, in a lower proportion, to floods. The population increase, which reaches now 3.5 millions inhabitants and the frequent occupation of sites exposed to natural hazards have resulted in numerous disasters. At present two entities called SIMPAD and DAPARD work on risk prevention, on city and department scale respectively. The amount of knowledge about physical environment is considered to be insufficient, together with regulations which should direct land use in accordance to restrictions related to natural hazards. Several seminars on this topic have already been carried out and the organisers of the present one, destined to commemorate the twentieth anniversary of the Villatina disaster, should make the decision to meet each two years. Furthermore, the creation of a permanent commission dedicated to study past events, to foster information broadcasting and to seek a better knowledge of the Aburra Valley, should be considered

  20. Research cooperation project in fiscal 1999. Research cooperation on a technology to treat well waste water by utilizing biomass (follow-up); 1999 nendo bio riyo ni yoru kohaisui shori gijutsu ni kansuru kenkyu kyoryoku (follow up)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The research cooperation project on a technology to treat well waste water by utilizing biomass has used as the object the well waste water from the north mine in the Wu Shan mine in Jiangxi Province. The research included surveys on properties of the well waste water from the subject mine by means of the site survey, discussions on treatment conditions based on studies in Japan, and discussions on factors for designing a full size facility as a result of pilot plant operation research. The Japanese side has transported to Beijing the bench-scale testing equipment used for the studies in Japan (an oxidation and neutralization testing equipment and a copper recovery testing equipment). In the present follow-up project, supports were provided to the research and development activities performed voluntarily by the Chinese side by using the above bench-scale testing equipment through guiding the tests at the site and supplying consumables. Certain bacteria have capability to oxidize ferrous ions in the mine well waste water into ferric ions. Utilizing these bacteria results in sedimentation of iron oxides in lower pH zones than in the conventional method, making removal of heavy metals from the well waste water possible. As a result, such effects may be expected as reduction in chemical cost, and reduction of quantity of the produced sediments. (NEDO)

  1. Groundwater quality in the Antelope Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Antelope Valley is one of the study areas being evaluated. The Antelope study area is approximately 1,600 square miles (4,144 square kilometers) and includes the Antelope Valley groundwater basin (California Department of Water Resources, 2003). Antelope Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lakebeds in the lower parts of the valley. Land use in the study area is approximately 68 percent (%) natural (mostly shrubland and grassland), 24% agricultural, and 8% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Palmdale and Lancaster (2010 populations of 152,000 and 156,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Antelope Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Antelope Valley are completed to depths between 360 and 700 feet (110 to 213 meters), consist of solid casing from the land surface to a depth of 180 to 350 feet (55 to 107 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation and sewer and septic

  2. Groundwater quality in the Owens Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Owens Valley is one of the study areas being evaluated. The Owens study area is approximately 1,030 square miles (2,668 square kilometers) and includes the Owens Valley groundwater basin (California Department of Water Resources, 2003). Owens Valley has a semiarid to arid climate, with average annual rainfall of about 6 inches (15 centimeters). The study area has internal drainage, with runoff primarily from the Sierra Nevada draining east to the Owens River, which flows south to Owens Lake dry lakebed at the southern end of the valley. Beginning in the early 1900s, the City of Los Angeles began diverting the flow of the Owens River to the Los Angeles Aqueduct, resulting in the evaporation of Owens Lake and the formation of the current Owens Lake dry lakebed. Land use in the study area is approximately 94 percent (%) natural, 5% agricultural, and 1% urban. The primary natural land cover is shrubland. The largest urban area is the city of Bishop (2010 population of 4,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to the Owens Lake dry lakebed. The primary aquifers in Owens Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database

  3. The Uncanny Valley and Nonverbal Communication in Virtual Characters

    DEFF Research Database (Denmark)

    Tinwell, Angela; Grimshaw, Mark Nicholas; Abdel Nabi, Debbie

    2014-01-01

    This chapter provides an overview of a current research project investigating the Uncanny Valley phenomenon in realistic, human-like virtual characters. !e research methods used in this Work include a retrospective of both empirical studies and philosophical writings on the Uncanny. No other...... research has explored the notion that realistic, human-like, virtual characters are regarded less favorably due to a perceived diminished degree of responsiveness in facial expression, specifically, nonverbal communication (NVC) in the upper face region. So far, this research project has provided the first...... empirical evidence to test the Uncanny Valley phenomenon in the domain of animated video game characters with speech, as opposed to just still, unresponsive images, as used in previous studies. Based on the results of these experiments, a conceptual framework of the Uncanny Valley in virtual characters has...

  4. Biosol Project: development of a new technology for the treatment of soils contaminated with hydrocarbons. bio-remediation by means of the addition of a biomass material (part one)

    International Nuclear Information System (INIS)

    2005-01-01

    The general mission of the project is to contribute to the development of new technologies based on the bio-remediation of soils contaminated with hydrocarbons. It is pretended to develop a bio-remediation technology based on the use 'on site' of a biomass material with absorbent properties that allows to reduce time and costs of treatment of contaminated soils by hydrocarbons in comparison with other current technologies. The biomass must be biodegradable and to act as a bio-stimulator of the endogenous microbial population, which is the responsible of the degradation of the pollutants contained in the soil. Another objective to achieve is that the new technology has to be able to decontaminate soils over the maximum thresholds of concentration reached by similar technologies of bio-remediation (50.000 ppm), in order to obtain that the technique could be competitive in comparison with other techniques more conventional based on chemical or physical treatments, and more aggressive from an ecological point of view (for example: chemical oxidation, thermal desorption). The amount and quality of published scientific works also demonstrate that still there are many points to investigate until understanding perfectly how the microorganisms interact with the different phases and compounds that conforms the porous matrix of the soil. In this sense IAP emphasizes the necessity to have a previous study of characterization for any contaminated soil that it wants to be treated by means of technologies based on the bio-remediation. In a similar line, it emphasizes the studies about bio-remediation presented in the 8. Consoil (May of 2003). The works presented in this forum put in evidence the necessity of arrange pilot experiences of application that allow to advance in the development of new technologies applicable to similar scales to the real ones. Also the bio-remediation based on the bio-stimulation of the endogenous microbial populations by means of the addition of

  5. 78 FR 61984 - Copper Valley Electric Association, Inc.; Notice of Application To Amend License and Accepted for...

    Science.gov (United States)

    2013-10-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-005] Copper Valley...: Amendment to License. b. Project No: 13124-005. c. Date Filed: September 27, 2013. d. Applicant: Copper..., Copper Valley Electric Association, Inc., P.O. Box 45, Mile 187 Glenn Highway, Glennallen, AK 99588, (907...

  6. Biomass CCS study

    Energy Technology Data Exchange (ETDEWEB)

    Cavezzali, S.

    2009-11-15

    The use of biomass in power generation is one of the important ways in reducing greenhouse gas emissions. Specifically, the cofiring of biomass with coal could be regarded as a common feature to any new build power plant if a sustainable supply of biomass fuel is readily accessible. IEA GHG has undertaken a techno-economic evaluation of the use of biomass in biomass fired and co-fired power generation, using post-combustion capture technology. This report is the result of the study undertaken by Foster Wheeler Italiana.

  7. The Regional Biomass-Energy Agency (ERBE): an opportunity for the biomass-energy development in Wallonia

    International Nuclear Information System (INIS)

    Lemaire, P.; Menu, J.F.; Belle, J.F. van; Schenkel, Y.

    1997-01-01

    In 1995, the European Commission (Directorate-General for Energy) and the Walloon government set up a biomass-energy agency (ERBE), to promote and build biomass-energy projects in Wallonia (Belgium). A survey of biomass-energy potential indicates that wood-energy seems to offer the best utilization opportunities. Forest and logging residues, sawmills' and joineries' off-cuts, pallets residues, etc. could be burnt in wood district heating units with a significant social benefit. Consequently, the ERBE Agency is trying to set up projects in this way in Austria (+/- 100 wood heating systems) or in Sweden. It serves to inform industries and municipalities about biomass-energy, to advise them in the building of biomass-energy projects, to identify their energy needs and their biomass resources, to carry out prefeasibility studies, to inform them about financing opportunities, and so on. (author)

  8. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H.; Morris, M.; Rensfelt, E. [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1997-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  9. Biomass gasification for energy production

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, H; Morris, M; Rensfelt, E [TPS Termiska Prosesser Ab, Nykoeping (Sweden)

    1998-12-31

    Biomass and waste are becoming increasingly interesting as fuels for efficient and environmentally sound power generation. Circulating fluidized bed (CFB) gasification for biomass and waste has been developed and applied to kilns both in the pulp and paper industry and the cement industry. A demonstration plant in Greve-in- Chianti, Italy includes two 15 MW{sub t}h RDF-fuelled CFB gasifiers of TPS design, the product gas from which is used in a cement kiln or in steam boiler for power generation. For CFB gasification of biomass and waste to reach a wider market, the product gas has to be cleaned effectively so that higher fuel to power efficiencies can be achieved by utilizing power cycles based on engines or gas turbines. TPS has developed both CFB gasification technology and effective secondary stage tar cracking technology. The integrated gasification - gas-cleaning technology is demonstrated today at pilot plant scale. To commercialise the technology, the TPS`s strategy is to first demonstrate the process for relatively clean fuels such as woody biomass and then extend the application to residues from waste recycling. Several demonstration projects are underway to commercialise TPS`s gasification and gas cleaning technology. In UK the ARBRE project developed by ARBRE Energy will construct a gasification plant at Eggborough, North Yorkshire, which will provide gas to a gas turbine and steam turbine generation system, producing 10 MW and exporting 8 Mw of electricity. It has been included in the 1993 tranche of the UK`s Non Fossil Fuel Obligation (NFFO) and has gained financial support from EC`s THERMIE programme as a targeted BIGCC project. (author)

  10. EERC Center for Biomass Utilization 2005

    Energy Technology Data Exchange (ETDEWEB)

    Zygarlicke, C J; Schmidt, D D; Olson, E S; Leroux, K M; Wocken, C A; Aulich, T A; WIlliams, K D

    2008-07-28

    Biomass utilization is one solution to our nation’s addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area of developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nation’s reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with

  11. Valley development on Hawaiian volcanoes

    International Nuclear Information System (INIS)

    Baker, V.R.; Gulick, V.C.

    1987-01-01

    Work in progress on Hawaiian drainage evolution indicates an important potential for understanding drainage development on Mars. Similar to Mars, the Hawaiian valleys were initiated by surface runoff, subsequently enlarged by groundwater sapping, and eventually stabilized as aquifers were depleted. Quantitative geomorphic measurements were used to evaluate the following factors in Hawaiian drainage evolution: climate, stream processes, and time. In comparing regions of similar climate, drainage density shows a general increase with the age of the volcani island. With age and climate held constant, sapping dominated valleys, in contrast to runoff-dominated valleys, display the following: lower drainage densities, higher ratios of valley floor width to valley height, and more positive profile concavities. Studies of stream junction angles indicate increasing junction angles with time on the drier leeward sides of the major islands. The quantitative geomorphic studies and earlier field work yielded important insights for Martian geomorphology. The importance of ash mantling in controlling infiltration on Hawaii also seems to apply to Mars. The Hawaiian valley also have implications for the valley networks of Martian heavily cratered terrains

  12. Biomass for rural vitality report

    International Nuclear Information System (INIS)

    McDonald, S.; DiPaolo, J.; Bryan, J.

    2009-06-01

    This report was completed by the Eastern Lake Ontario Regional Innovation Network (ELORIN) in order to identify opportunities for producing pellets from agricultural biomass in Lennox and Addington County. An agricultural profile of the county was presented. Potential feedstocks for biomass production included industrial hemp; switchgrass; short rotation crop willow; hybrid poplars; and miscanthus. Available soil survey data was combined with soil class data in order to generate maps of the total area of land available for energy crop production. The pelletizing process was described. A cost projection for 3 to 7 ton per hour pellet production facility was also presented. Potential markets for using the pellets include greenhouses, residential home heating suppliers and large industrial users. The study showed that heating just 1 per cent of Ontario's greenhouse space with switchgrass will create a demand for 15,000 tonnes of pellets. The average home requires 3 to 4 tonnes of pellets per year for heating. 3 tabs., 54 figs.

  13. Biomass Business Opportunities Viet Nam

    Energy Technology Data Exchange (ETDEWEB)

    Zwebe, D [SNV Netherlands Development Organisation, Ha Noi (Viet Nam)

    2012-03-15

    The goal of this survey is to provide a more specific and integral perspective in which niches, relevant policy development by the Vietnamese government, legislation and sustainability criteria are clearly addressed to benefit both the Dutch Private sector as well as to stimulate Dutch-Vietnamese cooperation and support the Vietnamese government in its search for tangible options to develop the desired enabling environment for a sustainable biomass/biofuel market. The following activities are defined to be executed to reach the goal of the project: Biomass availability in Vietnam (Chapter 2); Government of Vietnam and Energy (Chapter 3); The opportunities and barriers to enter the market in Vietnam (Chapter 4 and 5); Stakeholder analysis of the bio-energy sector (Chapter 6); and Recommendations (Chapter 7)

  14. Zooplankton biomass (displacement volume) data collected in North Atlantic during ICNAF NORWESTLANT projects I-III in 1963 by different countries, data were acquired from the NMFS-COPEPOD database (NODC Accession 0070201)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton biomass data (displacement volume) collected in North Atlantic during ICNAF (International Convention for the Northwest Atlantic Fisheries) NORWESTLANT...

  15. Zooplankton biomass (displacement and settled volume) data collected during the International Cooperative Investigations of the Tropical Atlantic EQUALANT I, EQUALANT II, and EQUALANT III projects from 1963-02-15 to 1964-07-09 (NODC Accession 0071432)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton biomass (displacement and settled volume) data collected during the International Cooperative Investigations of the Tropical Atlantic EQUALANT I,...

  16. Development of Solar Biomass Drying System

    Directory of Open Access Journals (Sweden)

    Atnaw Samson Mekbib

    2017-01-01

    Full Text Available The purpose of this paper focuses on the experimental pre-treatment of biomass in agricultural site using solar energy as power source and contribution of common use and efficiency solar dryer system for consumer. The main purpose of this design for solar cabinet dryer is to dry biomass via direct and indirect heating. Direct heating is the simplest method to dry biomass by exposing the biomass under direct sunlight. The solar cabinet dryer traps solar heat to increase the temperature of the drying chamber. The biomass absorbs the heat and transforms the moisture content within the biomass into water vapour and then leaves the chamber via the exhaust air outlet. This problem however can be solved by adopting indirect solar drying system. High and controllable temperatures can be achieved as a fan is used to move the air through the solar collector. This project has successfully created a solar cabinet dryer that combines both direct and indirect solar drying systems and functions to dry biomass as well as crops effectively and efficiently with minimal maintenance. Hence, it is indeed a substitution for conventional dryers which are affordable to local farmers.

  17. Forest biomass observation: current state and prospective

    Directory of Open Access Journals (Sweden)

    D. G. Schepaschenko

    2017-08-01

    Full Text Available With this article, we provide an overview of the methods, instruments and initiatives for forest biomass observation at global scale. We focus on the freely available information, provided by both remote and in-situ observations. The advantages and limitation of various space borne methods, including optical, radar (C, L and P band and LiDAR, as well as respective instruments available on the orbit (MODIS, Proba-V, Landsat, Sentinel-1, Sentinel-2 , ALOS PALSAR, Envisat ASAR or expecting (BIOMASS, GEDI, NISAR, SAOCOM-CS are discussed. We emphasize the role of in-situ methods in the development of a biomass models, providing calibration and validation of remote sensing data. We focus on freely available forest biomass maps, databases and empirical models. We describe the functionality of Biomass.Geo-Wiki.org portal, which provides access to a collection of global and regional biomass maps in full resolution with unified legend and units overplayed with high-resolution imagery. The Forest-Observation-System.net is announced as an international cooperation to establish a global in-situ forest biomass database to support earth observation and to encourage investment in relevant field-based observations and science. Prospects of unmanned aerial vehicles in the forest inventory are briefly discussed. The work was partly supported by ESA IFBN project (contract 4000114425/15/NL/FF/gp.

  18. Electricity production by advanced biomass power systems

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y [VTT Energy, Espoo (Finland). Energy Production Technologies; Bridgwater, T [Aston Univ. Birmingham (United Kingdom); Beckman, D [Zeton Inc., Burlington, Ontario (Canada)

    1996-11-01

    This report gives the results of the Pyrolysis Collaborative Project organized by the International Energy Agency (IEA) under Biomass Agreement. The participating countries or organizations were Canada, European Community (EC), Finland, United States of America, and the United Kingdom. The overall objective of the project was to establish baseline assessments for the performance and economics of power production from biomass. Information concerning the performance of biomass-fuelled power plants based on gasification is rather limited, and even less data is available of on pyrolysis based power applications. In order to gain further insight into the potential for these technologies, this study undertook the following tasks: (1) Prepare process models to evaluate the cost and performance of new advanced biomass power production concepts, (2) Assess the technical and economic uncertainties of different biomass power concepts, (3) Compare the concepts in small scale and in medium scale production (5 - 50 MW{sub e}) to conventional alternatives. Processes considered for this assessment were biomass power production technologies based on gasification and pyrolysis. Direct combustion technologies were employed as a reference for comparison to the processes assessed in this study. Wood was used a feedstock, since the most data was available for wood conversion

  19. Modelling of biomass pyrolysis

    International Nuclear Information System (INIS)

    Kazakova, Nadezhda; Petkov, Venko; Mihailov, Emil

    2015-01-01

    Pyrolysis is an essential preliminary step in a gasifier. The first step in modelling the pyrolysis process of biomass is creating a model for the chemical processes taking place. This model should describe the used fuel, the reactions taking place and the products created in the process. The numerous different polymers present in the organic fraction of the fuel are generally divided in three main groups. So, the multistep kinetic model of biomass pyrolysis is based on conventional multistep devolatilization models of the three main biomass components - cellulose, hemicelluloses, and lignin. Numerical simulations have been conducted in order to estimate the influence of the heating rate and the temperature of pyrolysis on the content of the virgin biomass, active biomass, liquid, solid and gaseous phases at any moment. Keywords: kinetic models, pyrolysis, biomass pyrolysis.

  20. Summary Robert Noyce and the invention of Silicon Valley

    CERN Document Server

    2014-01-01

    This work offers a summary of the book "THE MAN BEHIND THE MICROCHIP: Robert Noyce and the Invention of Silicon Valley""by Leslie Berlin.The Man behind the Microchip is Leslie Berlin's first book. This author is project historian for the Silicon Valley Archives, a division of the Stanford University Department of Special Collections. This book tells the story of a giant of the high-tech industry: the multimillionaire Bob Noyce. This co-founder of Fairchild Semiconductor and Intel co-invented the integrated circuit which became the electronic heart of every modern computer, automobile, advance

  1. Community assessment of tropical tree biomass

    DEFF Research Database (Denmark)

    Theilade, Ida; Rutishauser, Ervan; Poulsen, Michael K.

    2015-01-01

    Background REDD+ programs rely on accurate forest carbon monitoring. Several REDD+ projects have recently shown that local communities can monitor above ground biomass as well as external professionals, but at lower costs. However, the precision and accuracy of carbon monitoring conducted by local...... communities have rarely been assessed in the tropics. The aim of this study was to investigate different sources of error in tree biomass measurements conducted by community monitors and determine the effect on biomass estimates. Furthermore, we explored the potential of local ecological knowledge to assess...... measurement, with special attention given to large and odd-shaped trees. A better understanding of traditional classification systems and concepts is required for local tree identifications and wood density estimates to become useful in monitoring of biomass and tree diversity....

  2. Report on the research cooperation promoting project in fiscal 1998. Research cooperation related to the mine waste water treatment technology utilizing biomass; 1998 nendo kenkyu kyoryoku suishin jigyo hokokusho. Bio riyo ni yoru kohaisui shori gijutsu ni kansuru kyoryoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This paper describes the achievement in relation with the mine waste water treatment technology utilizing biomass, from among the promotion projects for research cooperation with China. Waste water is converted into ferric iron (Fe{sup 3+}), which precipitates at low pH, by utilizing iron oxidizing bacteria which use ferrous iron (Fe{sup 2+}) in the waste water as the energy source, and is precipitated and removed by using low-cost calcium carbonate as a neutralizing agent. Fiscal 1998 has performed eight site surveys with 47 persons in total. The main survey items are the study and guidance of pilot plant operation and the survey on measures to prevent occurrence of contamination by heavy metals in Wushan Mine. Additional site surveys were made at Dexing Mine and Yinshan Lead/Zinc Mine. Continued from fiscal 1997, consumables required for the pilot plant were purchased, and items of the bench-scale testing equipment used by Japan for domestic researches (an oxidation and neutralization testing equipment and a copper recovering and testing equipment) were transported to China. The operation research data of the pilot plant were put in order and analyzed. This paper summarizes the concept design of the shaft waste water treatment facilities for the north mine in Wushan Mine, and the surveys on measures for heavy metal contamination sources. (NEDO)

  3. Process for treating biomass

    Science.gov (United States)

    Campbell, Timothy J.; Teymouri, Farzaneh

    2018-04-10

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  4. Energy production from biomass

    International Nuclear Information System (INIS)

    Bestebroer, S.I.

    1995-01-01

    The aim of the task group 'Energy Production from Biomass', initiated by the Dutch Ministry of Economic Affairs, was to identify bottlenecks in the development of biomass for energy production. The bottlenecks were identified by means of a process analysis of clean biomass fuels to the production of electricity and/or heat. The subjects in the process analysis are the potential availability of biomass, logistics, processing techniques, energy use, environmental effects, economic impact, and stimulation measures. Three categories of biomass are distinguished: organic residual matter, imported biomass, and energy crops, cultivated in the Netherlands. With regard to the processing techniques attention is paid to co-firing of clean biomass in existing electric power plants (co-firing in a coal-fired power plant or co-firing of fuel gas from biomass in a coal-fired or natural gas-fired power plant), and the combustion or gasification of clean biomass in special stand-alone installations. 5 figs., 13 tabs., 28 refs

  5. The Drentsche Aa valley system

    International Nuclear Information System (INIS)

    Gans, W. de.

    1981-01-01

    This thesis is composed of five papers concerned with Late Quaternary geology and geomorphology of the Aa valley system. The correlation and chronostratigraphic position of the layers have been established by radiocarbon dating. (Auth.)

  6. Torrefaction of biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-05-15

    The objective of this project was to investigate and understand some of the basics of the process of torrefaction and explore the true characteristics of this new type of solid biomass fuel. Tests with torrefaction of different biomass have thus been conducted in both laboratory scale as well as bench scale investigating samples from milligram up to >100 kg. Test in TGA-FTIR and a lab scale pyro-ofen was used to understand the basic chemistry of the influence of torrefaction temperature on the kinetics of the process as well as the condensable gases leaving the process. The results reveal a process that above 250 deg. C is exothermic and that the major condensable gases consist mainly of methanol, acetic acid and water. Significant amounts of methyl-chloride were detected in the condensable gases and do thereby suggest that a certain amount of corrosive Cl could be reduced from the fuel by means of torrefaction. It was also concluded that great care has to be taken during and after production as the torrefied material was seen to self-ignite in an air environment at temperatures above 200 deg. C. The grindability of the material (energy consumption during milling) is indeed significantly improved by torrefaction and can be reduced up to 6 times compared to raw biomass. The results from test in bench scale as well as in lab scale mills suggested that in order to reach grindability similar to coal a torrefaction temperature above 240 deg. C is required for wood chips and above 290 deg. C for wood pellets. These figures will however differ with the type of biomass torrefied and the particle size of the material torrefied and milled. Moisture uptake in torrefied materials is decreased compared to raw biomass. However, due to formation of cavities in the material during torrefaction, the full effect is met first after densification. The hydrophobicity of the material increases with higher torrefaction temperature, but still a rather significant moisture uptake is

  7. Clean and efficient utilization of biomass for production of electricity and heat. Phase 1 in a long-term strategic research project

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.J.; Jensen, P.A.; Jensen, A.; Lin, W.; Johnsson, J.E.; Nielsen, H.P.; Andersen, K.H.; Dam-Johansen, K.

    1999-03-01

    The project constists basically of three different parts: 1) pre-treatment processes of straw for power production, 2) biofuel combustion in fluidized beds and 3) formation of ash and deposits in biofuel-fired thermal conversion processes. The study of pre-treatment of biofuels for power production may be subdivided into the following activities: a) release of K and Cl from straw during pyrolysis, b) extraction of K and Cl from straw char, c) particle characterization, pyrolysis kinetics and char combustion, and, finally, d) a technical and economical evaluation in order to evaluate an industrial scale pre-treatment process capable of treating 20 tons of straw per hour. The study of biofuel thermal conversion in fluidized bed combustors (FBCs), consist of: a) agglomeration in FBCs, b) reduction and decompositon of NO and N{sub 2}O over char and bed material, c) NOx eissions from biofuel-fired FBCs, and, finally, d) the hydrodynamics of the 80 MW{sub th} Grenaa CFB boiler. Full-scale measurements of ash and deposit formation in biofuel-fired boilers have been conducted at several power plants. A number of bottom and fly ashes, and deposits have been collected and analyses by means of standard wet chemical analyses and advanced scanning electron microscopy analyses. A number of thermodynamic modelling activities have been conducted. First, an outline of potassium chemistry in systems fired with straw or co-fired with straw and coal is provided. Secondly, biofuel ash chemistry is outlined considering thermal conversion of salix, straw and wood fuels in a number of combustion and gasification concepts. A number of models for non-ideal liquid mixtures of ash compounds have been investigated. A round-robin comparison of the performance of four well-documented algorithms and databases for minimization of the total Gibbs energy of a mass-balance constrained system is also described. Finally, three cases of application of the in-house Gibbs energy minimization algorithm

  8. Biomass CFB gasifier connected to a 350 MW{sub t}h steam boiler fired with coal and natural gas - THERMIE demonstration project in Lahti in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Palonen, J. [Foster Wheeler Energia Oy, Varkaus (Finland). Varkaus Global New Products

    1997-12-31

    Laempoevoima Oy`s Kymijaervi power plant gasification project is to demonstrate the direct gasification of wet biofuel and the use of hot, raw and very low-calorific gas directly in the existing coal-fired boiler. The gasification of biofuels and co-combustion of gases in the existing coal-fired boiler offers many advantages such as: recycling of CO{sub 2}, decreased SO{sub 2} and NO{sub x} emissions, efficient way to utilize biofuels and recycled refuse fuels, low investment and operation costs, and utilization of the existing power plant capacity. Furthermore, only small modifications are required in the boiler, possible disturbances in the gasifier do not shut down the power plant. (author)

  9. Biomass CFB gasifier connected to a 350 MW{sub t}h steam boiler fired with coal and natural gas - THERMIE demonstration project in Lahti in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Palonen, J [Foster Wheeler Energia Oy, Varkaus (Finland). Varkaus Global New Products

    1998-12-31

    Laempoevoima Oy`s Kymijaervi power plant gasification project is to demonstrate the direct gasification of wet biofuel and the use of hot, raw and very low-calorific gas directly in the existing coal-fired boiler. The gasification of biofuels and co-combustion of gases in the existing coal-fired boiler offers many advantages such as: recycling of CO{sub 2}, decreased SO{sub 2} and NO{sub x} emissions, efficient way to utilize biofuels and recycled refuse fuels, low investment and operation costs, and utilization of the existing power plant capacity. Furthermore, only small modifications are required in the boiler, possible disturbances in the gasifier do not shut down the power plant. (author)

  10. Singular Strategic Project for the Development, Demonstration and Evaluation of Energy Crop Biomass-based Energy Production in Spain (On Cultivos); Proyecto Singular y Estragetico para el desarrollo, demostracion y evaluacion de la produccion de energia en Espana a partir de la biomasa de cultivos energeticos (On Cultivos)

    Energy Technology Data Exchange (ETDEWEB)

    Manzano, E.; Maleta, E. J.; Carrasco, J. E.

    2008-07-01

    The Singular Strategic Project (PSE) On Cultivos, Development, demonstration and evaluation of the viability of energy crop biomass-based energy production in Spain, has been under way since 2005. This article describes the project objectives and general data indicating the current project status and the most relevant preliminary results obtained since it began. The On Cultivos PSE is proving to be an effective tool to channel the R and D efforts required to achieve the integral commercial implementation of energy crops in Spain. (Author) 4 refs.

  11. Lorraine - The beautiful biomass energy

    International Nuclear Information System (INIS)

    Braun, Pascale

    2013-01-01

    This article evokes various projects of biomass energy production which have been recently developed and built in north-eastern France, notably for industrial and heating applications. It also outlines that the largest industrial projects have been given up: because of the relative steadiness of gas and coal prices, and of the possible opportunity given by shale gas exploitation, industries have been reluctant in investing installations which take longer time to be written off. The quantities of yearly available wood have been reduced for different reasons: resource accessibility, landscape preservation, vicinity of water harnessing points. These restrictions entailed the definition of threshold for the public support of new projects, a decision with which industrials disagree

  12. Transport and supply logistics of biomass fuels: Vol. 1. Supply chain options for biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J; Browne, M; Palmer, H; Hunter, A; Boyd, J

    1996-10-01

    The study which forms part of a wider project funded by the Department of Trade and Industry, looks at the feasibility of generating electricity from biomass-fuelled power stations. Emphasis is placed on supply availabilty and transport consideration for biomass fuels such as wood wastes from forestry, short rotation coppice products, straw, miscanthus (an energy crop) and farm animal slurries. The study details the elements of the supply chain for each fuel from harvesting to delivery at the power station. The delivered cost of each fuel, the environmental impact of the biomass fuel supply and other relevant non-technical issues are addressed. (UK)

  13. Biomass Thermochemical Conversion Program. 1983 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  14. Transport of regional pollutants through a remote trans-Himalayan valley in Nepal

    Science.gov (United States)

    Dhungel, Shradda; Kathayat, Bhogendra; Mahata, Khadak; Panday, Arnico

    2018-01-01

    Anthropogenic emissions from the combustion of fossil fuels and biomass in Asia have increased in recent years. High concentrations of reactive trace gases and light-absorbing and light-scattering particles from these sources form persistent haze layers, also known as atmospheric brown clouds, over the Indo-Gangetic plains (IGP) from December through early June. Models and satellite imagery suggest that strong wind systems within deep Himalayan valleys are major pathways by which pollutants from the IGP are transported to the higher Himalaya. However, observational evidence of the transport of polluted air masses through Himalayan valleys has been lacking to date. To evaluate this pathway, we measured black carbon (BC), ozone (O3), and associated meteorological conditions within the Kali Gandaki Valley (KGV), Nepal, from January 2013 to July 2015. BC and O3 varied over both diurnal and seasonal cycles. Relative to nighttime, mean BC and O3 concentrations within the valley were higher during daytime when the up-valley flow (average velocity of 17 m s-1) dominated. BC and O3 concentrations also varied seasonally with minima during the monsoon season (July to September). Concentrations of both species subsequently increased post-monsoon and peaked during March to May. Average concentrations for O3 during the seasonally representative months of April, August, and November were 41.7, 24.5, and 29.4 ppbv, respectively, while the corresponding BC concentrations were 1.17, 0.24, and 1.01 µg m-3, respectively. Up-valley fluxes of BC were significantly greater than down-valley fluxes during all seasons. In addition, frequent episodes of BC concentrations 2-3 times higher than average persisted from several days to a week during non-monsoon months. Our observations of increases in BC concentration and fluxes in the valley, particularly during pre-monsoon, provide evidence that trans-Himalayan valleys are important conduits for transport of pollutants from the IGP to the

  15. Christmas Valley Renewable Energy Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Del Mar, Robert [Oregon Department of Energy, Salem, OR (United States)

    2017-05-22

    In partnership with the Oregon Military Department, the Department of Energy used the award to assess and evaluate renewable resources in a 2,622-acre location in Lake County, central Oregon, leading to future development of up to 200 MW of solar electricity. In partnership with the Oregon Military Department, the Department of Energy used the award to assess and evaluate renewable resources in a 2,622-acre location in Lake County, central Oregon, leading to future development of up to 200 MW of solar electricity. The Oregon Military Department (Military) acquired a large parcel of land located in south central Oregon. The land was previously owned by the US Air Force and developed for an Over-the-Horizon Backscatter Radar Transmitter Facility, located about 10 miles east of the town of Christmas Valley. The Military is investigating a number of uses for the site, including Research and Development (R&D) laboratory, emergency response, military operations, developing renewable energy and related educational programs. One of the key potential uses would be for a large scale solar photovoltaic power plant. This is an attractive use because the site has excellent solar exposure; an existing strong electrical interconnection to the power grid; and a secure location at a moderate cost per acre. The project objectives include: 1. Site evaluation 2. Research and Development (R&D) facility analysis 3. Utility interconnection studies and agreements 4. Additional on-site renewable energy resources analysis 5. Community education, outreach and mitigation 6. Renewable energy and emergency readiness training program for veterans

  16. First biomass conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this third volume deal with Environmental Issues, Biomass Energy System Studies, and Biomass in Latin America. Concerning Environmental Issues, the following topics are emphasized: Global Climate Change, Biomass Utilization, Biofuel Test Procedures, and Commercialization of Biomass Products. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  17. First biomass conference of the Americas: Energy, environment, agriculture, and industry

    International Nuclear Information System (INIS)

    1993-01-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this third volume deal with Environmental Issues, Biomass Energy System Studies, and Biomass in Latin America. Concerning Environmental Issues, the following topics are emphasized: Global Climate Change, Biomass Utilization, Biofuel Test Procedures, and Commercialization of Biomass Products. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  18. Biomass energy development

    International Nuclear Information System (INIS)

    Ng'eny-Mengech, A.

    1990-01-01

    This paper deals more specifically with biomethanation process and non conventional sources of biomass energy such as water hyacinths and vegetable oil hydrocarbon fuels. It highlights socioeconomic issues in biomass energy production and use. The paper also contains greater details on chemical conversion methods and processes of commercial ethanol and methanol production. (author). 291 refs., 6 tabs

  19. 11 Soil Microbial Biomass

    African Journals Online (AJOL)

    186–198. Insam H. (1990). Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil. Biol. Biochem. 22: 525–532. Insam H. D. and Domsch K. H. (1989). Influence of microclimate on soil microbial biomass. Soil Biol. Biochem. 21: 211–21. Jenkinson D. S. (1988). Determination of microbial.

  20. Hydrothermal conversion of biomass

    NARCIS (Netherlands)

    Knezevic, D.

    2009-01-01

    This thesis presents research of hydrothermal conversion of biomass (HTC). In this process, hot compressed water (subcritical water) is used as the reaction medium. Therefore this technique is suitable for conversion of wet biomass/ waste streams. By working at high pressures, the evaporation of

  1. World wide biomass resources

    NARCIS (Netherlands)

    Faaij, A.P.C.

    2012-01-01

    In a wide variety of scenarios, policy strategies, and studies that address the future world energy demand and the reduction of greenhouse gas emissions, biomass is considered to play a major role as renewable energy carrier. Over the past decades, the modern use of biomass has increased

  2. Biomass fuelled indirect fired micro turbine

    Energy Technology Data Exchange (ETDEWEB)

    Pritchard, D.

    2005-07-01

    This report summarises the findings of a project to further develop and improve a system based on the Bowman TG50 50kWe turbine and a C3(S) combustor with a high temperature heat exchanger for the production of electricity from biomass. Details are given of the specific aims of the project, the manufacture of a new larger biomass combustor, the development of startup and shutdown procedures, waste heat recuperation, adaption of a PC-based mathematical model, and capital equipment costs. The significant levels of carbon emission savings and the commercial prospects of the biomass generator gas turbine combined heat and power (CHP) system are considered, and recommendations are presented.

  3. Torrefied biomass for use in power station sector; Torrefizierte Biomasse zum Einsatz im Kraftwerkssektor

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Janet; Schaubach, Kay [Deutsches Biomasseforschungszentrum (DBFZ) gemeinnuetzige GmbH, Leipzig (Germany). Bereich Bioenergiesysteme; Kiel, Jaap; Carbo, Michiel [Energy Research Centre of the Netherlands (ECN), Petten (Netherlands); Wojcik, Magdalena [OFI Austrian Research Institute for Chemistry and Technology, Vienna (Austria)

    2013-10-01

    In the torrefaction process biomass is heated up in the absence of oxygen to a temperature of at least 250 C. By combining torrefaction with pelletisation or briquetting, biomass materials can be converted into a high-energy-density bioenergy carrier with improved behaviour in (long-distance) transport, handling and storage. Torrefaction also creates superior properties for biomass in many major end-use applications. The process has the potential to provide a significant contribution to an enlarged raw material portfolio for sustainable biomass fuel production inside Europe by including both agricultural and forestry biomass (residues). The article will briefly introduce the concept and objectives of the project and the different torrefaction technologies involved and then focus on the results obtained within the first project phase of the EU-project SECTOR. This comprises production of torrefied biomass batches, subsequent densification (pelletisation and briquetting), characterisation and Round Robin testing of characterisation methods, initial logistics and end-use performance testing, material safety data sheet preparation and sustainability assessment along the value chain. (orig.)

  4. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas

    2011-01-01

    This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During...... the hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed...... by dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction...

  5. Biomass power in transition

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, D.K. [Zurn/NEPCO, Redmond, WA (United States)

    1996-12-31

    Electricity production from biomass fuel has been hailed in recent years as an environmentally acceptable energy source that delivers on its promise of economically viable renewable energy. A Wall Street Journal article from three years ago proclaimed wood to be {open_quotes}moving ahead of costly solar panels and wind turbines as the leading renewable energy alternative to air-fouling fossils fuels and scary nuclear plants.{close_quotes} Biomass fuel largely means wood; about 90% of biomass generated electricity comes from burning waste wood, the remainder from agricultural wastes. Biomass power now faces an uncertain future. The maturing of the cogeneration and independent power plant market, restructuring of the electric industry, and technological advances with power equipment firing other fuels have placed biomass power in a competitive disadvantage with other power sources.

  6. Remarks on energetic biomass

    International Nuclear Information System (INIS)

    Mathis, Paul; Pelletier, Georges

    2011-01-01

    The authors report a study of energy biomass by considering its three main sources (forest, agriculture and wastes) and three energy needs (heat, fuel for transports, electricity) in the French national context. After having recalled the various uses of biomass (animal feeding, energy production, materials, chemical products), the authors discuss the characteristics of biomass with respect to other energy sources. Then, they analyse and discuss the various energy needs which biomass could satisfy: heat production (in industry, in the residential and office building sector), fuel for transports, electricity production. They assess and discuss the possible biomass production of its three main sources: forest, agriculture, and wastes (household, agricultural and industrial wastes). They also discuss the opportunities for biogas production and for second generation bio-fuel production

  7. Considerations in implementing integrated biomass energy systems in developing countries

    International Nuclear Information System (INIS)

    Perlack, R.D.; Ranney, J.W.

    1993-01-01

    Biomass energy is emerging as a real option for satisfying power needs in developing countries. Experience has shown improvements in GDP are directly linked to increased consumption of energy. Biomass energy can also be environmentally and developmentally beneficial where it will be both grown and used. Biomass production can offset deforestation, reduce soil erosion, increase rural employment, and stimulate development. Moreover, when biomass is grown renewably there is no net buildup of atmospheric carbon. Issues and barriers associated with implementing integrated biomass energy systems in developing countries are discussed. An integrated biomass energy system is dependent on sustainably grown and managed energy crops, supportive of rural development, and environmentally beneficial, adapted to local conditions; takes advantage of by- and co-products and uses conversion technologies that have been optimized for biomass. A preliminary evaluation of a biomass to electricity project relying on plantation grown feedstocks in Southwest China indicates that biomass could be grown and converted to electricity at costs lower than alternatives and yield an internal rate of return of about 15%. The IRR based on a social and environmental benefits are substantial and investment in the facility is well-justified. However, assessing biomass energy systems is exceedingly complex. Considerations are grouped into biomass production, biomass logistics and transport, and biomass conversion. Implementation requires considerations of energy and economics, institutional and social issues, and environmental issues. The conclusion that such a project would be viable in rural China is shadowed by many site-specific circumstances and highlights the need for systematic and integrated appraisal

  8. Wallowa County Integrated Biomass Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Christoffersen, Nils [Wallowa Resources Community Solutions Inc., Wallowa, OR (United States)

    2014-05-02

    The Integrated Biomass Energy Center (IBEC) is an approximately 0.1 MW CHP integrated biorefinery in Northeastern Oregon which will demonstrate and validate small-scale combined heat and power from lignin intermediates/residues. IBEC will be co-located with feedstock suppliers and thermal and power customers for distributed generation. The project was developed by Wallowa Resources Community Solutions Inc.

  9. Air quality on biomass harvesting operations

    Science.gov (United States)

    Dana Mitchell

    2011-01-01

    The working environment around logging operations can be very dusty. But, air quality around logging operations is not well documented. Equipment movements and trafficking on the landing can cause dust to rise into the air. The addition of a biomass chipper creates different air flow patterns and may stir up additional dust. This project addresses two topics related to...

  10. Emissions from biomass burning in the Yucatan

    Science.gov (United States)

    R. J. Yokelson; J. D. Crounse; P. F. DeCarlo; T. Karl; S. Urbanski; E. Atlas; T. Campos; Y. Shinozuka; V. Kapustin; A. D. Clarke; A. Weinheimer; D. J. Knapp; D. D. Montzka; J. Holloway; P. Weibring; F. Flocke; W. Zheng; D. Toohey; P. O. Wennberg; C. Wiedinmyer; L. Mauldin; A. Fried; D. Richter; J. Walega; J. L. Jimenez; K. Adachi; P. R. Buseck; S. R. Hall; R. Shetter

    2009-01-01

    In March 2006 two instrumented aircraft made the first detailed field measurements of biomass burning (BB) emissions in the Northern Hemisphere tropics as part of the MILAGRO project. The aircraft were the National Center for Atmospheric Research C-130 and a University of Montana/ US Forest Service Twin Otter. The initial emissions of up to 49 trace gas or particle...

  11. Biomass - Overview of Swiss Research Programme 2003; Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Binggeli, D.; Guggisberg, B.

    2003-07-01

    This overview for the Swiss Federal Office of Energy (SFOE) discusses the results obtained in 2003 in various research projects worked on in Switzerland on the subject of biomass. In the biomass combustion area, subjects discussed include system optimisation for automatic firing, combustion particles, low-particle pellet furnaces, design and optimisation of wood-fired storage ovens, efficiency of filtering techniques and methane generation from wood. Also, an accredited testing centre for wood furnaces is mentioned and measurements made on an installation are presented. As far as the fermentation of biogenic wastes is concerned, biogas production from dairy-product wastes is described. Other projects discussed include a study on eco-balances of energy products, certification and marketing of biogas, evaluation of membranes, a measurement campaign for solar sludge-drying, the operation of a percolator installation for the treatment of bio-wastes, the effects of compost on the environment and the fermentation of coffee wastes. Also, statistics on biogas production in 2002 is looked at. Finally, a preliminary study on biofuels is presented.

  12. Economical analyses of construction of a biomass boiler house

    International Nuclear Information System (INIS)

    Normak, A.

    2002-01-01

    To reduce the energy costs we can use cheaper fuel to fire our boiler. One of the cheapest fuels is wood biomass. It is very actual issue how to use cheaper wood biomass in heat generation to decrease energy costs and to increase biomass share in our energy balance. Before we decide to build biomass boiler house it is recommendable to analyse the economical situation and work out most profitable, efficient, reliable and ecological boiler plant design on particular conditions. The best way to perform the analyses is to use the economical model presented. It saves our time and gives objective evaluation to the project. (author)

  13. Biomass CHP Catalog of Technologies

    Science.gov (United States)

    This report reviews the technical and economic characterization of biomass resources, biomass preparation, energy conversion technologies, power production systems, and complete integrated CHP systems.

  14. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    International Nuclear Information System (INIS)

    1994-08-01

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site's tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site

  15. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

  16. Modeling of biomass pyrolysis

    International Nuclear Information System (INIS)

    Samo, S.R.; Memon, A.S.; Akhund, M.A.

    1995-01-01

    The fuels used in industry and power sector for the last two decades have become expensive. As a result renewable energy source have been emerging increasingly important, of these, biomass appears to be the most applicable in the near future. The pyrolysis of biomass plays a key role amongst the three major and important process generally encountered in a gas producer, namely, pyrolysis, combustion and reduction of combustion products. Each biomass has its own pyrolysis characteristics and this important parameters must be known for the proper design and efficient operation of a gasification system. Thermogravimetric analysis has been widely used to study the devolatilization of solid fuels, such as biomass. It provides the weight loss history of a sample heated at a predetermined rate as a function of time and temperature. This paper presents the experimental results of modelling the weight loss curves of the main biomass components i.e. cellulose, hemicellulose and lignin. Thermogravimetric analysis of main components of biomass showed that pyrolysis is first order reaction. Furthermore pyrolysis of cellulose and hemicelluloe can be regarded as taking place in two stages, for while lignin pyrolysis is a single stage process. This paper also describes the Thermogravimetric Analysis (TGA) technique to predict the weight retained during pyrolysis at any temperature, for number of biomass species, such as cotton stalk, bagasse ad graoundnut shell. (author)

  17. Evaluating a biomass resource: The TVA region-wide biomass resource assessment model

    Energy Technology Data Exchange (ETDEWEB)

    Downing, M.; Graham, R.L. [Oak Ridge National Lab., TN (United States)

    1993-12-31

    The economic and supply structures of short rotation woody crop (SRWC) markets have not been established. Establishing the likely price and supply of SRWC biomass in a region is a complex task because biomass is not an established commodity as are oil, natural gas and coal. In this study we project the cost and supply of short-rotation woody biomass for the TVA region -- a 276 county area that includes all of Tennessee and portions of 10 contiguous states in the southeastern United States. Projected prices and quantities of SRWC are assumed to be a function of the amount and quality of crop and pasture land available in a region, expected SRWC yields and production costs on differing soils and land types, and the profit that could be obtained from current conventional crop production on these same lands. Results include the supply curve of SRWC biomass that is projected to be available from the entire region, the amount and location of crop and pasture land that would be used, and the conventional agricultural crops that would be displaced as a function of SRWC production. Finally, we show the results of sensitivity analysis on the projected cost and supply of SRWC biomass. In particular, we examine the separate impacts of varying SRWC production yields.

  18. The biomass theme 1 project: Reference biospheres

    International Nuclear Information System (INIS)

    Crossland, I.; Torres-Vidal, C.

    2000-01-01

    The long-term safety of a facility for the disposal of long-lived radioactive waste would principally depend upon a combination of engineered and natural barriers which would ensure that the radioactivity was prevented from reaching the biosphere. To assess radiological safety over extended timescales requires the construction of 'assessment biospheres'. A possibility is the development of 'Reference Biospheres', a series of stylised, internationally-agreed assessment biospheres that could be used to support post-closure assessments in a wide variety of situations. Current activities in this subject area are described. (author)

  19. Global patterns and predictions of seafloor biomass using random forests

    Digital Repository Service at National Institute of Oceanography (India)

    Wei, Chih-Lin; Rowe, G.T.; Escobar-Briones, E.; Boetius, A; Soltwedel, T.; Caley, M.J.; Soliman, Y.; Huettmann, F.; Qu, F.; Yu, Z.; Pitcher, C.R.; Haedrich, R.L.; Wicksten, M.K.; Rex, M.A; Baguley, J.G.; Sharma, J.; Danovaro, R.; MacDonald, I.R.; Nunnally, C.C.; Deming, J.W.; Montagna, P.; Levesque, M.; Weslawsk, J.M.; Wlodarska-Kowalczuk, M.; Ingole, B.S.; Bett, B.J.; Billett, D.S.M.; Yool, A; Bluhm, B.A; Iken, K.; Narayanaswamy, B.E.

    A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML) field projects. The machine-learning algorithm, Random Forests, was employed to model...

  20. 31 flavors to 50 shades of grey: battling Phytophthoras in native habitats managed by the Santa Clara Valley Water District

    Science.gov (United States)

    Janet Hillman; Tedmund J. Swiecki; Elizabeth A. Bernhardt; Heather K. Mehl; Tyler B. Bourret; David Rizzo

    2017-01-01

    The Santa Clara Valley Water District (District) is a wholesale water supplier for 1.8 million people in Santa Clara County, California. Capital, water utility, and stream maintenance projects result in extensive, long-term mitigation requirements in riparian, wetland, and upland habitats throughout the county. In 2014, several restoration sites on the valley floor and...

  1. Biomass in Germany

    International Nuclear Information System (INIS)

    Chapron, Thibaut

    2014-01-01

    This document provides, first, an overview of biomass industry in Germany: energy consumption and renewable energy production, the French and German electricity mix, the 2003-2013 evolution of renewable electricity production and the 2020 forecasts, the biomass power plants, plantations, biofuels production and consumption in Germany. Then, the legal framework of biofuels development in Germany is addressed (financial incentives, tariffs, direct electricity selling). Next, a focus is made on biogas production both in France and in Germany (facilities, resources). Finally, the French-German cooperation in the biomass industry and the research actors are presented

  2. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  3. Catalytic biomass pyrolysis process

    Science.gov (United States)

    Dayton, David C.; Gupta, Raghubir P.; Turk, Brian S.; Kataria, Atish; Shen, Jian-Ping

    2018-04-17

    Described herein are processes for converting a biomass starting material (such as lignocellulosic materials) into a low oxygen containing, stable liquid intermediate that can be refined to make liquid hydrocarbon fuels. More specifically, the process can be a catalytic biomass pyrolysis process wherein an oxygen removing catalyst is employed in the reactor while the biomass is subjected to pyrolysis conditions. The stream exiting the pyrolysis reactor comprises bio-oil having a low oxygen content, and such stream may be subjected to further steps, such as separation and/or condensation to isolate the bio-oil.

  4. Biomass for green cement

    Energy Technology Data Exchange (ETDEWEB)

    Cumming, R. [Lafarge Canada Inc., Calgary, AB (Canada)

    2006-07-01

    Lafarge examined the use of waste biomass products in its building materials and provided background information on its operations. Cement kiln infrastructure was described in terms of providing access to shipping, rail and highways; conveying and off-loading equipment; having large storage facilities; and, offering continuous monitoring and stack testing. The presentation identified the advantages and disadvantages of a few different biomass cases such as coal; scrap tires; non-recyclable household waste; and processed biomass. A chart representing landfill diversion rates was presented and the presentation concluded with a discussion of energy recovery and recycling. 1 tab., figs.

  5. Electricity from biomass

    International Nuclear Information System (INIS)

    Price, B.

    1998-11-01

    Electricity from biomass assesses the potential of biomass electricity for displacing other more polluting power sources and providing a relatively clean and ecologically friendly source of energy; discusses its environmental and economic effects, while analysing political and institutional initiatives and constraints; evaluates key factors, such as energy efficiency, economics, decentralisation and political repurcussions; considers the processes and technologies employed to produce electricity from biomass; and discusses the full range of incentives offered to producers and potential producers and the far-reaching implications it could have for industry, society and the environment. (author)

  6. Physical, chemical, net haul, bird surveys, and other observations (BIOMASS data) from the British Antarctic Survey FIBEX and SIBEX Projects from 01 November 1980 to 30 April 1985 (NODC Accession 9400053)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession includes observations of physical, chemical, and biomass properties from three field experiments conducted by the British Antarctic Survey: the First...

  7. Chemical, Physical, and zooplankton abundance/biomass data collected using several instruments in the Coastal Waters of California as a part of the California Cooperative Fisheries Investigation (CALCOFI) project, from 07 January 2000 to 01 July 2000 (NODC Accession 0000298)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, and zooplankton abundance/biomass data were collected using secchi disk, zooplankton net, current meter (ADCP), bottle, and CTD casts in the...

  8. Termisk forgasning af biomasse

    DEFF Research Database (Denmark)

    Henriksen, Ulrik Birk

    2005-01-01

    The title of this Ph.D. thesis is: Thermal Gasification of Biomass. Compilation of activities in the ”Biomass Gasification Group” at Technical University of Denmark (DTU). This thesis gives a presentation of selected activities in the Biomass Gasification Group at DTU. The activities are related...... to thermal gasification of biomass. Focus is on gasification for decentralised cogeneration of heat and power, and on related research on fundamental processes. In order to insure continuity of the presentation the other activities in the group, have also been described. The group was started in the late...... of these activities has been fruitful. The two- stage gasifier was developed for gasification aiming at decentralised cogeneration of heat and power. The development ranged from lap-top scale equipment to a fully automatic plant with more than 2000 hours of operation. Compared to most other gasification processes...

  9. Biomass_Master

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Biomass data found in this data set are broken into four regions of the Northeast US Continental Shelf Large Marine Ecosystem: Gulf of Maine, Georges Bank,...

  10. Biomass for bioenergy

    DEFF Research Database (Denmark)

    Bentsen, Niclas Scott

    Across the range of renewable energy resources, bioenergy is probably the most complex, as using biomass to support energy services ties into a number of fields; climate change, food production, rural development, biodiversity and environmental protection. Biomass offer several options...... for displacing fossil resources and is perceived as one of the main pillars of a future low-carbon or no-carbon energy supply. However, biomass, renewable as it is, is for any relevant, time horizon to be considered a finite resource as it replenishes at a finite rate. Conscientious stewardship of this finite...... the undesirable impacts of bioenergy done wrong. However, doing bioenergy right is a significant challenge due to the ties into other fields of society. Fundamentally plant biomass is temporary storage of solar radiation energy and chemically bound energy from nutrients. Bioenergy is a tool to harness solar...

  11. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2014-01-01

    Biomass is one of the most abundant sources of renewable energy, and will be an important part of a more sustainable future energy system. In addition to direct combustion, there is growing attention on conversion of biomass into liquid en-ergy carriers. These conversion methods are divided...... into biochemical/biotechnical methods and thermochemical methods; such as direct combustion, pyrolysis, gasification, liquefaction etc. This chapter will focus on hydrothermal liquefaction, where high pressures and intermediate temperatures together with the presence of water are used to convert biomass...... into liquid biofuels, with the aim of describing the current status and development challenges of the technology. During the hydrothermal liquefaction process, the biomass macromolecules are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive...

  12. Woody biomass utilization trends, barriers, and strategies: Perspectives of U.S. Forest Service managers

    Science.gov (United States)

    Shiloh Sundstrom; Max Nielsen-Pincus; Cassandra Moseley; Sarah. McCaffrey

    2012-01-01

    The use of woody biomass is being promoted across the United States as a means of increasing energy independence, mitigating climate change, and reducing the cost of hazardous fuels reduction treatments and forest restoration projects. The opportunities and challenges for woody biomass use on the national forest system are unique. In addition to making woody biomass...

  13. From research plots to prototype biomass plantations

    Energy Technology Data Exchange (ETDEWEB)

    Kenney, W.A.; Vanstone, B.J.; Gambles, R.L.; Zsuffa, L. [Univ. of Toronto, Ontario (Canada)

    1993-12-31

    The development of biomass energy plantations is now expanding from the research plot phase into the next level of development at larger scale plantings. This is necessary to provide: more accurate information on biomass yields, realistic production cost figures, venues to test harvesting equipment, demonstration sites for potential producers, and a supply of feedstock for prototype conversion facilities. The paper will discuss some of these objectives and some of the challenges encountered in the scale-up process associated with a willow prototype plantation project currently under development in Eastern Canada.

  14. Production costs for SRIC Populus biomass

    International Nuclear Information System (INIS)

    Strauss, C.H.

    1991-01-01

    Production costs for short rotation, intensive culture (SRIC) Populus biomass were developed from commercial-sized plantations under investigation throughout the US. Populus hybrid planted on good quality agricultural sites at a density of 850 cuttings/acre was projected to yield an average of 7 ovendry (OD) tons/acre/year. Discounted cash-flow analysis of multiple rotations showed preharvest production costs of $14/ton (OD). Harvesting and transportation expenses would increase the delivered cost to $35/ton (OD). Although this total cost compared favorably with the regional market price for aspen (Populus tremuloides), future investments in SRIC systems will require the development of biomass energy markets

  15. Biomass thermochemical conversion program: 1987 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1988-01-01

    The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

  16. BIOMASS REBURNING - MODELING/ENGINEERING STUDIES

    International Nuclear Information System (INIS)

    Vladimir Zamansky; David Moyeda; Mark Sheldon

    2000-01-01

    This project is designed to develop engineering and modeling tools for a family of NO(sub x) control technologies utilizing biomass as a reburning fuel. During the tenth reporting period (January 1-March 31, 2000), EER and NETL R and D group continued to work on Tasks 2, 3, 4, and 5. Information regarding these tasks will be included in the next Quarterly Report. This report includes (Appendix 1) a conceptual design study for the introduction of biomass reburning in a working coal-fired utility boiler. This study was conducted under the coordinated SBIR program funded by the U. S. Department of Agriculture

  17. Fundamental Study of Single Biomass Particle Combustion

    DEFF Research Database (Denmark)

    Momenikouchaksaraei, Maryam

    This thesis is a comprehensive study of single biomass particle combustion. The effect of particle shape and size and operating conditions on biomass conversion characteristics were investigated experimentally and theoretically. The experimental samples were divided in two groups: particles...... well-defined conditions, and the complete combustion processes were recorded as video sequences by a CCD camera installed in the set-up. One of the project objectives is to simulate conditions reasonably close to the conditions in a power plant boiler, i.e., reasonably high temperatures (up to 1600°C...

  18. Asymmetric valley-resolved beam splitting and incident modes in slanted graphene junctions

    International Nuclear Information System (INIS)

    Hsieh, S. H.; Chu, C. S.

    2016-01-01

    Electron injection into a graphene sheet through a slanted armchair graphene nanoribbon (AGNR) is investigated. An incident mode, or subband, in the AGNR is valley-unpolarized. Our attention is on the valley-resolved nature of the injected electron beams and its connection to the incident mode. It is known for a normal injection that an incident mode will split symmetrically into two valley-resolved beams of equal intensity. We show, in contrast, that slanted injections result in asymmetric valley-resolved beam splitting. The most asymmetric beam splitting cases, when one of the valley-resolved beams has basically disappeared, are found and the condition derived. This is shown not due to trigonal warping because it holds even in the low incident energy regime, as long as collimation allows. These most asymmetric beam splitting cases occur at energies within an energy interval near and include the subband edge of an incident mode. The physical picture is best illustrated by a projection of the slanted AGNR subband states onto that of the 2D graphene sheet. It follows that the disappearing of a valley-resolved beam coincides with the situation that the group velocities of the projected states in the corresponding valley are in backward directions

  19. 2007 Biomass Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    The Biomass Program is actively working with public and private partners to meet production and technology needs. With the corn ethanol market growing steadily, researchers are unlocking the potential of non-food biomass sources, such as switchgrass and forest and agricultural residues. In this way, the Program is helping to ensure that cost-effective technologies will be ready to support production goals for advanced biofuels.

  20. Solid biomass barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    The primary energy production from solid biomass in the European Union reached 79.3 Mtoe in 2010 which implies a growth rate of 8% between 2009 and 2010. The trend, which was driven deeper by Europe's particularly cold winter of 2009-2010, demonstrates that the economic down-turn failed to weaken the member states' efforts to structure the solid biomass sector. Heat consumption rose sharply: the volume of heat sold by heating networks increased by 18% and reached 6.7 Mtoe and if we consider the total heat consumption (it means with and without recovery via heating networks) the figure is 66 Mtoe in 2010, which amounts to 10.1% growth. The growth of electricity production continued through 2010 (8.3% up on 2009) and rose to 67 TWh but at a slower pace than in 2009 (when it rose by 11.3% on 2008). The situation of the main producer countries: Sweden, Finland, Germany and France is reviewed. It appears that cogeneration unit manufacturers and biomass power plant constructors are the main beneficiaries of the current biomass energy sector boom. There is a trend to replace coal-fired plants that are either obsolete or near their end of life with biomass or multi-fuel plants. These opportunities will enable the industry to develop and further exploit new technologies such as gasification, pyrolysis and torrefaction which will enable biomass to be turned into bio-coal. (A.C.)