WorldWideScience

Sample records for validated capillary gas

  1. Gas-Filled Capillary Model

    International Nuclear Information System (INIS)

    Steinhauer, L. C.; Kimura, W. D.

    2006-01-01

    We have developed a 1-D, quasi-steady-state numerical model for a gas-filled capillary discharge that is designed to aid in selecting the optimum capillary radius in order to guide a laser beam with the required intensity through the capillary. The model also includes the option for an external solenoid B-field around the capillary, which increases the depth of the parabolic density channel in the capillary, thereby allowing for propagation of smaller laser beam waists. The model has been used to select the parameters for gas-filled capillaries to be utilized during the Staged Electron Laser Acceleration -- Laser Wakefield (STELLA-LW) experiment

  2. Capillary gas-solid chromatography

    International Nuclear Information System (INIS)

    Berezkin, V.G.

    1996-01-01

    Modern state of gas adsorption chromatography in open capillary columns has been analyzed. The history of the method development and its role in gas chromatography, ways to construct open adsorptional capillary columns, foundations of the theory of retention and washing of chromatographic regions in gas adsorption capillary columns have been considered. The fields is extensively and for analyzing volatile compounds of different isotopic composition, inorganic and organic gases, volatile organic polar compounds, aqueous solutions of organic compounds. Separation of nuclear-spin isomers and isotopes of hydrogen is the first illustrative example of practical application of the adsorption capillary chromatography. It is shown that duration of protium and deuterium nuclear isomers may be reduced if the column temperature is brought to 47 K

  3. Validation of capillary blood analysis and capillary testing mode on the epoc Point of Care system

    Directory of Open Access Journals (Sweden)

    Jing Cao

    2017-12-01

    Full Text Available Background: Laboratory test in transport is a critical component of patient care, and capillary blood is a preferred sample type particularly in children. This study evaluated the performance of capillary blood testing on the epoc Point of Care Blood Analysis System (Alere Inc. Methods: Ten fresh venous blood samples was tested on the epoc system under the capillary mode. Correlation with GEM 4000 (Instrumentation Laboratory was examined for Na+, K+, Cl-, Ca2+, glucose, lactate, hematocrit, hemoglobin, pO2, pCO2, and pH, and correlation with serum tested on Vitros 5600 (Ortho Clinical Diagnostics was examined for creatinine. Eight paired capillary and venous blood was tested on epoc and ABL800 (Radiometer for the correlation of Na+, K+, Cl-, Ca2+, glucose, lactate, hematocrit, hemoglobin, pCO2, and pH. Capillary blood from 23 apparently healthy volunteers was tested on the epoc system to assess the concordance to reference ranges used locally. Results: Deming regression correlation coefficients for all the comparisons were above 0.65 except for ionized Ca2+. Accordance of greater than 85% to the local reference ranges were found in all assays with the exception of pO2 and Cl-. Conclusion: Data from this study indicates that capillary blood tests on the epoc system provide comparable results to reference method for these assays, Na+, K+, glucose, lactate, hematocrit, hemoglobin, pCO2, and pH. Further validation in critically ill patients is needed to implement the epoc system in patient transport. Impact of the study: This study demonstrated that capillary blood tests on the epoc Point of Care Blood Analysis System give comparable results to other chemistry analyzers for major blood gas and critical tests. The results are informative to institutions where pre-hospital and inter-hospital laboratory testing on capillary blood is a critical component of patient point of care testing. Keywords: Epoc, Capillary, Transport, Blood gas, Point of care

  4. Validation of capillary blood analysis and capillary testing mode on the epoc Point of Care system.

    Science.gov (United States)

    Cao, Jing; Edwards, Rachel; Chairez, Janette; Devaraj, Sridevi

    2017-12-01

    Laboratory test in transport is a critical component of patient care, and capillary blood is a preferred sample type particularly in children. This study evaluated the performance of capillary blood testing on the epoc Point of Care Blood Analysis System (Alere Inc). Ten fresh venous blood samples was tested on the epoc system under the capillary mode. Correlation with GEM 4000 (Instrumentation Laboratory) was examined for Na+, K+, Cl-, Ca2+, glucose, lactate, hematocrit, hemoglobin, pO2, pCO2, and pH, and correlation with serum tested on Vitros 5600 (Ortho Clinical Diagnostics) was examined for creatinine. Eight paired capillary and venous blood was tested on epoc and ABL800 (Radiometer) for the correlation of Na+, K+, Cl-, Ca2+, glucose, lactate, hematocrit, hemoglobin, pCO2, and pH. Capillary blood from 23 apparently healthy volunteers was tested on the epoc system to assess the concordance to reference ranges used locally. Deming regression correlation coefficients for all the comparisons were above 0.65 except for ionized Ca2+. Accordance of greater than 85% to the local reference ranges were found in all assays with the exception of pO2 and Cl-. Data from this study indicates that capillary blood tests on the epoc system provide comparable results to reference method for these assays, Na+, K+, glucose, lactate, hematocrit, hemoglobin, pCO2, and pH. Further validation in critically ill patients is needed to implement the epoc system in patient transport. This study demonstrated that capillary blood tests on the epoc Point of Care Blood Analysis System give comparable results to other chemistry analyzers for major blood gas and critical tests. The results are informative to institutions where pre-hospital and inter-hospital laboratory testing on capillary blood is a critical component of patient point of care testing.

  5. Gas-filled capillaries for plasma-based accelerators

    International Nuclear Information System (INIS)

    Filippi, F; Anania, M P; Brentegani, E; Biagioni, A; Chiadroni, E; Ferrario, M; Pompili, R; Romeo, S; Cianchi, A; Zigler, A

    2017-01-01

    Plasma Wakefield Accelerators are based on the excitation of large amplitude plasma waves excited by either a laser or a particle driver beam. The amplitude of the waves, as well as their spatial dimensions and the consequent accelerating gradient depend strongly on the background electron density along the path of the accelerated particles. The process needs stable and reliable plasma sources, whose density profile must be controlled and properly engineered to ensure the appropriate accelerating mechanism. Plasma confinement inside gas filled capillaries have been studied in the past since this technique allows to control the evolution of the plasma, ensuring a stable and repeatable plasma density distribution during the interaction with the drivers. Moreover, in a gas filled capillary plasma can be pre-ionized by a current discharge to avoid ionization losses. Different capillary geometries have been studied to allow the proper temporal and spatial evolution of the plasma along the acceleration length. Results of this analysis obtained by varying the length and the number of gas inlets will be presented. (paper)

  6. Gas-filled capillaries for plasma-based accelerators

    Science.gov (United States)

    Filippi, F.; Anania, M. P.; Brentegani, E.; Biagioni, A.; Cianchi, A.; Chiadroni, E.; Ferrario, M.; Pompili, R.; Romeo, S.; Zigler, A.

    2017-07-01

    Plasma Wakefield Accelerators are based on the excitation of large amplitude plasma waves excited by either a laser or a particle driver beam. The amplitude of the waves, as well as their spatial dimensions and the consequent accelerating gradient depend strongly on the background electron density along the path of the accelerated particles. The process needs stable and reliable plasma sources, whose density profile must be controlled and properly engineered to ensure the appropriate accelerating mechanism. Plasma confinement inside gas filled capillaries have been studied in the past since this technique allows to control the evolution of the plasma, ensuring a stable and repeatable plasma density distribution during the interaction with the drivers. Moreover, in a gas filled capillary plasma can be pre-ionized by a current discharge to avoid ionization losses. Different capillary geometries have been studied to allow the proper temporal and spatial evolution of the plasma along the acceleration length. Results of this analysis obtained by varying the length and the number of gas inlets will be presented.

  7. Real-Time Gas Identification by Analyzing the Transient Response of Capillary-Attached Conductive Gas Sensor

    Directory of Open Access Journals (Sweden)

    Behzad Bahraminejad

    2010-05-01

    Full Text Available In this study, the ability of the Capillary-attached conductive gas sensor (CGS in real-time gas identification was investigated. The structure of the prototype fabricated CGS is presented. Portions were selected from the beginning of the CGS transient response including the first 11 samples to the first 100 samples. Different feature extraction and classification methods were applied on the selected portions. Validation of methods was evaluated to study the ability of an early portion of the CGS transient response in target gas (TG identification. Experimental results proved that applying extracted features from an early part of the CGS transient response along with a classifier can distinguish short-chain alcohols from each other perfectly. Decreasing time of exposition in the interaction between target gas and sensing element improved the reliability of the sensor. Classification rate was also improved and time of identification was decreased. Moreover, the results indicated the optimum interval of the early transient response of the CGS for selecting portions to achieve the best classification rates.

  8. A convenient tool for gas derivatization using fine-needle capillary mounting for protein crystals

    International Nuclear Information System (INIS)

    Mizuno, Nobuhiro; Makino, Masatomo; Kumasaka, Takashi

    2013-01-01

    A convenient gas-derivatization tool for protein crystals is presented in combination with a fine-needle capillary and a gas-pressure regulator. Gas derivatization of protein crystals is useful not only to analyse gas-binding proteins but also to solve the phase problem of X-ray crystallography by using noble gases. However, the gas pressurization tools for these experiments are often elaborate and need to release the gas before flash-cooling. To simplify this step, a procedure using a fine-needle capillary to mount and flash-cool protein crystals under the pressurization of gases has been developed. After the crystals are picked up with the capillary, the capillary is sealed with an adhesive and then connected directly to a gas regulator. The quality of the diffraction data using this method is comparable with that of data from conventional pressurization procedures. The preparation of xenon-derivatives of hen egg-white lysozyme using this method was a success. In the derivatives, two new xenon binding sites were found and one of their sites vanished by releasing the gas. This observation shows the availability of flash-cooling under gas pressurization. This procedure is simple and useful for preparing gas-derivative crystals

  9. Fabrication and modeling of narrow capillaries for vacuum system gas inlets

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Jensen, Søren; Hansen, Ole

    2005-01-01

    Micrometer-sized cylindrical capillaries with well-controlled dimensions are fabricated using deep reactive ion etching. The flow through the capillaries is experimentally characterized for varying pressures, temperatures, and diameters. For the parameters used, it is shown that the Knudsen numbe...... is in the intermediate flow regime, and Knudsen's expression for the flow fit the data well. The flow properties of the capillaries make them ideal for introducing gas into vacuum systems and in particular mass spectrometers. ©2005 American Institute of Physics...

  10. Effect of capillary condensation on gas transport properties in porous media

    Science.gov (United States)

    Yoshimoto, Yuta; Hori, Takuma; Kinefuchi, Ikuya; Takagi, Shu

    2017-10-01

    We investigate the effect of capillary condensation on gas diffusivity in porous media composed of randomly packed spheres with moderate wettability. To simulate capillary phenomena at the pore scale while retaining complex pore networks of the porous media, we employ density functional theory (DFT) for coarse-grained lattice gas models. The lattice DFT simulations reveal that capillary condensations preferentially occur at confined pores surrounded by solid walls, leading to the occlusion of narrow pores. Consequently, the characteristic lengths of the partially wet structures are larger than those of the corresponding dry structures with the same porosities. Subsequent gas diffusion simulations exploiting the mean-square displacement method indicate that while the effective diffusion coefficients significantly decrease in the presence of partially condensed liquids, they are larger than those in the dry structures with the same porosities. Moreover, we find that the ratio of the porosity to the tortuosity factor, which is a crucial parameter that determines an effective diffusion coefficient, can be reasonably related to the porosity even for the partially wet porous media.

  11. Gas adsorption and capillary condensation in nanoporous alumina films

    Energy Technology Data Exchange (ETDEWEB)

    Casanova, Felix; Chiang, Casey E; Li, Chang-Peng; Roshchin, Igor V; Schuller, Ivan K [Physics Department, University of California-San Diego, La Jolla, CA 92093 (United States); Ruminski, Anne M; Sailor, Michael J [Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093 (United States)], E-mail: casanova@physics.ucsd.edu

    2008-08-06

    Gas adsorption and capillary condensation of organic vapors are studied by optical interferometry, using anodized nanoporous alumina films with controlled geometry (cylindrical pores with diameters in the range of 10-60 nm). The optical response of the film is optimized with respect to the geometric parameters of the pores, for potential performance as a gas sensor device. The average thickness of the adsorbed film at low relative pressures is not affected by the pore size. Capillary evaporation of the liquid from the nanopores occurs at the liquid-vapor equilibrium described by the classical Kelvin equation with a hemispherical meniscus. Due to the almost complete wetting, we can quantitatively describe the condensation for isopropanol using the Cohan model with a cylindrical meniscus in the Kelvin equation. This model describes the observed hysteresis and allows us to use the adsorption branch of the isotherm to calculate the pore size distribution of the sample in good agreement with independent structural measurements. The condensation for toluene lacks reproducibility due to incomplete surface wetting. This exemplifies the relevant role of the fluid-solid (van der Waals) interactions in the hysteretic behavior of capillary condensation.

  12. Gas adsorption and capillary condensation in nanoporous alumina films

    International Nuclear Information System (INIS)

    Casanova, Felix; Chiang, Casey E; Li, Chang-Peng; Roshchin, Igor V; Schuller, Ivan K; Ruminski, Anne M; Sailor, Michael J

    2008-01-01

    Gas adsorption and capillary condensation of organic vapors are studied by optical interferometry, using anodized nanoporous alumina films with controlled geometry (cylindrical pores with diameters in the range of 10-60 nm). The optical response of the film is optimized with respect to the geometric parameters of the pores, for potential performance as a gas sensor device. The average thickness of the adsorbed film at low relative pressures is not affected by the pore size. Capillary evaporation of the liquid from the nanopores occurs at the liquid-vapor equilibrium described by the classical Kelvin equation with a hemispherical meniscus. Due to the almost complete wetting, we can quantitatively describe the condensation for isopropanol using the Cohan model with a cylindrical meniscus in the Kelvin equation. This model describes the observed hysteresis and allows us to use the adsorption branch of the isotherm to calculate the pore size distribution of the sample in good agreement with independent structural measurements. The condensation for toluene lacks reproducibility due to incomplete surface wetting. This exemplifies the relevant role of the fluid-solid (van der Waals) interactions in the hysteretic behavior of capillary condensation

  13. Gas adsorption and capillary condensation in nanoporous alumina films.

    Science.gov (United States)

    Casanova, Fèlix; Chiang, Casey E; Li, Chang-Peng; Roshchin, Igor V; Ruminski, Anne M; Sailor, Michael J; Schuller, Ivan K

    2008-08-06

    Gas adsorption and capillary condensation of organic vapors are studied by optical interferometry, using anodized nanoporous alumina films with controlled geometry (cylindrical pores with diameters in the range of 10-60 nm). The optical response of the film is optimized with respect to the geometric parameters of the pores, for potential performance as a gas sensor device. The average thickness of the adsorbed film at low relative pressures is not affected by the pore size. Capillary evaporation of the liquid from the nanopores occurs at the liquid-vapor equilibrium described by the classical Kelvin equation with a hemispherical meniscus. Due to the almost complete wetting, we can quantitatively describe the condensation for isopropanol using the Cohan model with a cylindrical meniscus in the Kelvin equation. This model describes the observed hysteresis and allows us to use the adsorption branch of the isotherm to calculate the pore size distribution of the sample in good agreement with independent structural measurements. The condensation for toluene lacks reproducibility due to incomplete surface wetting. This exemplifies the relevant role of the fluid-solid (van der Waals) interactions in the hysteretic behavior of capillary condensation.

  14. Application of a sensor array based on capillary-attached conductive gas sensors for odor identification

    International Nuclear Information System (INIS)

    Bahraminejad, Behzad; Basri, Shahnor; Isa, Maryam; Hambali, Zarida

    2010-01-01

    An electronic nose based on an array of capillary-attached conductive gas sensors was fabricated. The identification ability of the developed structure was investigated by employing different categories of simple and complex odor databases. Feature data sets were generated from the dynamic and steady state responses of the sensor array to the applied odor databases. Combinations of different feature extraction and classification methods were used to detect target gases. Validation of each technique was evaluated. Achievements of the study proved high classification rates of the fabricated e-nose in odor identification. It was indicated that gas identification is possible by applying the early selected portion of transient responses of the developed sensor array. The ability of the mentioned structure in analyzing gas mixtures was also investigated. The results presented high accuracy in the classification of gas mixtures

  15. [Determination of acetochlor and oxyfluorfen by capillary gas chromatography].

    Science.gov (United States)

    Xiang, Wen-Sheng; Wang, Xiang-Jing; Wang, Jing; Wang, Qing

    2002-09-01

    A method is described for the determination of acetochlor and oxyfluorfen by capillary gas chromatography with FID and an SE-30 capillary column (60 m x 0.53 mm i. d., 1.5 microm), using dibutyl phthalate as the internal standard. The standard deviations for acetochlor and oxyfluorfen concentration(mass fraction) were 0.44% and 0.47% respectively. The relative standard deviations for acetochlor and oxyfluorfen were 0.79% and 0.88% and the average recoveries for acetochlor and oxyfluorfen were 99.3% and 101.1% respectively. The method is simple, rapid and accurate.

  16. Numerical simulation and experimental validation of coiled adiabatic capillary tubes

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Valladares, O. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico (UNAM), Apdo. Postal 34, 62580 Temixco, Morelos (Mexico)

    2007-04-15

    The objective of this study is to extend and validate the model developed and presented in previous works [O. Garcia-Valladares, C.D. Perez-Segarra, A. Oliva, Numerical simulation of capillary tube expansion devices behaviour with pure and mixed refrigerants considering metastable region. Part I: mathematical formulation and numerical model, Applied Thermal Engineering 22 (2) (2002) 173-182; O. Garcia-Valladares, C.D. Perez-Segarra, A. Oliva, Numerical simulation of capillary tube expansion devices behaviour with pure and mixed refrigerants considering metastable region. Part II: experimental validation and parametric studies, Applied Thermal Engineering 22 (4) (2002) 379-391] to coiled adiabatic capillary tube expansion devices working with pure and mixed refrigerants. The discretized governing equations are coupled using an implicit step by step method. A special treatment has been implemented in order to consider transitions (subcooled liquid region, metastable liquid region, metastable two-phase region and equilibrium two-phase region). All the flow variables (enthalpies, temperatures, pressures, vapor qualities, velocities, heat fluxes, etc.) together with the thermophysical properties are evaluated at each point of the grid in which the domain is discretized. The numerical model allows analysis of aspects such as geometry, type of fluid (pure substances and mixtures), critical or non-critical flow conditions, metastable regions, and transient aspects. Comparison of the numerical simulation with a wide range of experimental data presented in the technical literature will be shown in the present article in order to validate the model developed. (author)

  17. Amplification of spontaneous emission of neon-like argon in a fast gas-filled capillary discharge

    International Nuclear Information System (INIS)

    Kolacek, K.; Schmidt, J.; Bohacek, V.; Ripa, M.; Frolov, O.; Vrba, P.; Straus, J.; Prukner, V.; Rupasov, A. A.; Shikanov, A. S.

    2008-01-01

    The evolution of the CAPEX facility and its basic diagnostics are described. The experiments carried out in the last modification of this facility accomplished with the demonstration of amplified spontaneous emission of neon-like argon (Ar 8+ ) at the wavelength 46.88 nm. The first version of the facility, CAPEX1, operated with a plastic capillary and had a short high-power passive prepulse and an imperfect gas-filling system. In the second version, CAPEX2, a ceramic capillary was used, the prepulse amplitude was lowered, and the gas-filling system was improved. In the third, most successful version, CAPEX3, the capillary bending was reduced, a longer external prepulse was used, and the gas-filling system was further optimized. For each version, results of X-ray measurements are presented and interpreted

  18. Atmospheric-pressure dielectric barrier discharge with capillary injection for gas-phase nanoparticle synthesis

    International Nuclear Information System (INIS)

    Ghosh, Souvik; Liu, Tianqi; Bilici, Mihai; Cole, Jonathan; Huang, I-Min; Sankaran, R Mohan; Staack, David; Mariotti, Davide

    2015-01-01

    We present an atmospheric-pressure dielectric barrier discharge (DBD) reactor for gas-phase nanoparticle synthesis. Nickel nanoparticles are synthesized by homogenous nucleation from nickelocene vapor and characterized online by aerosol mobility measurements. The effects of residence time and precursor concentration on particle growth are studied. We find that narrower distributions of smaller particles are produced by decreasing the precursor concentration, in agreement with vapor nucleation theory, but larger particles and aggregates form at higher gas flow rates where the mean residence time should be reduced, suggesting a cooling effect that leads to enhanced particle nucleation. In comparison, incorporating a capillary gas injector to alter the velocity profile is found to significantly reduce particle size and agglomeration. These results suggest that capillary gas injection is a better approach to decreasing the mean residence time and narrowing the residence time distribution for nanoparticle growth by producing a sharp and narrow velocity profile. (paper)

  19. Signal-Pressure Curves of Cascaded Four-Wave Mixing in Gas-Filled Capillary by fs Pulses

    International Nuclear Information System (INIS)

    Chen Baozhen; Huang Zuqia

    2005-01-01

    The theoretical framework for the cascaded four waves mixing (CFWM) in gas-filled capillary by fs pulses is constructed. Based on the theoretical framework, the signal-pressure curves (SPC) of the CFWM in gas-filled capillary by fs pulses are calculated. With a comparison between the theoretical and experimental SPC we have discussed the influence of the walk-off and phase modulation on the SPC. At the same time, we have discussed the possible origin of the first three peaks of the SPC.

  20. Lodenafil carbonate tablets: optimization and validation of a capillary zone electrophoresis method

    OpenAIRE

    Codevilla, Cristiane F; Ferreira, Pâmela Cristina L; Sangoi, Maximiliano S; Fröehlich, Pedro Eduardo; Bergold, Ana Maria

    2012-01-01

    A simple capillary zone electrophoresis (CZE) method was developed and validated for the analysis of lodenafil carbonate in tablets. Response surface methodology was used for optimization of the pH and concentration of the buffer, applied voltage and temperature. The method employed 50 mmol L-1 borate buffer at pH 10 as background electrolyte with an applied voltage of 15 kV. The separation was carried out in a fused-silica capillary maintained at 32.5 ºC and the detection wavelength was 214 ...

  1. Evaluation of dimension effects on a capillary-attached gas sensor

    International Nuclear Information System (INIS)

    Bahraminejad, Behzad; Basri, Shahnor; Isa, Maryam; Hambli, Zarida

    2010-01-01

    The analysis and useful gas sensing properties of a capillary-attached gas sensor (CGS) have been recently investigated. The aim of the present work was the assessment of dimension effects on the CGS sensing properties both diameterwise and lengthwise. CGS samples in different dimensions were fabricated and tested by exposure to different target gases in different concentration ranges. Dimension effects on CGS properties such as selectivity, sensitivity, rise time and input range were investigated. It was observed that the CGS with smaller diameter and longer lengths generated more selective information. However, decreasing sensitivity and increasing minimum input range were some disadvantages of smaller diameters. Longer length also made longer rise time and slower sensor. Finally, the optimum ranges for the CGS in length and diameter were suggested

  2. Route to Soft X-ray Laser Pumped by Gas-Filled-Capillary Discharge

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Schmidt, Jiří; Prukner, Václav; Řípa, Milan; Frolov, Oleksandr; Štraus, Jaroslav; Vrba, Pavel

    2004-01-01

    Roč. 34, - (2004), s. 154-157 ISSN 1433-5581. [First Cairo Conference on Plasma Physics & Applications. Cairo, 11.10.2003-15.10.2003] R&D Projects: GA ČR(CZ) GA202/03/0711 Grant - others:GA MŠk1(CZ) LA 235 Keywords : fast capillary discharge * soft x-Ray laser Subject RIV: BL - Plasma and Gas Discharge Physics

  3. Quantification of nucleotides by ICPMS: coupling of ICPMS with capillary electrophoresis or capillary HPLC

    International Nuclear Information System (INIS)

    Inagaki, K.; Fujii, S.; Takatsu, A.; Yarita, T.; Zhu, Y.; Chiba, K.

    2009-01-01

    Full text: Quantification of nucleotides in small volumes of biological samples has eagerly been demanded. A method using ICPMS coupled with capillary electrophoresis or capillary liquid chromatography is reported. A new interface system, which consists of a double tube nebulizer inserted with a fused silica capillary tube and a cylinder mini-chamber with a sheath gas inlet, was designed. Moreover, the surface conditions of the sampling and skimmer cones, and the introduction of H 2 gas into the plasma were found to significantly improve the signal/background ratio for phosphorus determination at m/z 31. (author)

  4. On-line Automated Sample Preparation-Capillary Gas Chromatography for the Analysis of Plasma Samples.

    NARCIS (Netherlands)

    Louter, A.J.H.; van der Wagt, R.A.C.A.; Brinkman, U.A.T.

    1995-01-01

    An automated sample preparation module, (the automated sample preparation with extraction columns, ASPEC), was interfaced with a capillary gas chromatograph (GC) by means of an on-column interface. The system was optimised for the determination of the antidepressant trazodone in plasma. The clean-up

  5. Numerical analyses on the effect of capillary condensation on gas diffusivities in porous media

    Science.gov (United States)

    Yoshimoto, Yuta; Hori, Takuma; Kinefuchi, Ikuya; Takagi, Shu

    2017-11-01

    We investigate the effect of capillary condensation on gas diffusivities in porous media composed of randomly packed spheres with moderate wettability. Lattice density functional theory simulations successfully reproduce realistic adsorption/desorption isotherms and provide fluid density distributions inside the porous media. We find that capillary condensations lead to the occlusion of narrow pores because they preferentially occur at confined spaces surrounded by the solid walls. Consequently, the characteristic lengths of the partially wet structures are larger than those of the corresponding dry structures with the same porosities. Subsequent gas diffusion simulations exploiting the mean-square displacement method indicate that while effective diffusion coefficients significantly decrease in the presence of partially condensed liquids, they are larger than those in the dry structures with the same porosities. Most importantly, we find that the porosity-to-tortuosity ratio, which is a crucial parameter that determines the effective diffusion coefficient, can be reasonably related to the porosity even for the partially wet porous media.

  6. A High Position Resolution X-ray Detector: an Edge on Illuminated Capillary Plate Combined with a Gas Amplification Structure

    CERN Document Server

    Iacobaeus, C.; Lund-Jensen, B.; Ostling, J.; Pavlopoulos, P.; Peskov, V.; Tokanai, F.

    2006-01-01

    We have developed and successfully tested a prototype of a new type of high position resolution hybrid X-ray detector. It contains a thin wall lead glass capillary plate converter of X-rays combined with a microgap parallel-plate avalanche chamber filled with gas at 1 atm. The operation of these converters was studied in a wide range of X-ray energies (from 6 to 60 keV) at incident angles varying from 0-90 degree. The detection efficiency, depending on the geometry, photon energy, incident angle and the mode of operation, was between 5-30 percent in a single step mode and up to 50 percent in a multi-layered combination. Depending on the capillary geometry, the position resolution achieved was between 0.050-0.250 mm in digital form and was practically independent of the photon energy or gas mixture. The usual lead glass capillary plates operated without noticeable charging up effects at counting rates of 50 Hz/mm2, and hydrogen treated capillaries up to 10E5 Hz/mm2. The developed detector may open new possibil...

  7. Simulation of capillary bridges between nanoscale particles.

    Science.gov (United States)

    Dörmann, Michael; Schmid, Hans-Joachim

    2014-02-04

    Capillary forces are very important as they exceed in general other adhesion forces. But at the same time the exact calculation of these forces is very complex, so often assumptions and approximations are used. Previous research was done with regard to micrometer sized particles, but the behavior of nanoscale particles is different. Hence, the results for micrometer sized particles cannot be directly transferred when considering nanoscale particles. Therefore, a simulation method was developed to calculate numerically the shape of a rotationally symmetrical capillary bridge between two spherical particles or a particle and a plate. The capillary bridge in the gap between the particles is formed due to capillary condensation and is in thermodynamic equilibrium with the gas phase. Hence the Kelvin equation and the Young-Laplace equation can be used to calculate the profile of the capillary bridge, depending on the relative humidity of the surrounding air. The bridge profile consists of several elements that are determined consecutively and interpolated linearly. After the shape is determined, the volume and force, divided into capillary pressure force and surface tension force, can be calculated. The validation of this numerical model will be shown by comparison with several different analytical calculations for micrometer-sized particles. Furthermore, it is demonstrated that two often used approximations, (1) the toroidal approximation and (2) the use of an effective radius, cannot be used for nanoscale particles without remarkable mistake. It will be discussed how the capillary force and its components depend on different parameters, like particle size, relative humidity, contact angle, and distance, respectively. The rupture of a capillary bridge due to particle separation will also be presented.

  8. Monitoring the behaviour of 4-ketocyclophosphamide versus cyclophosphamide during capillary gas chromatography by mass spectrometry

    NARCIS (Netherlands)

    Bruijn, de E.A.; Oosterom, van A.T.; Leclercq, P.A.; Haan, de J.W.; Ven, van de L.J.M.; Tjaden, U.R.

    1987-01-01

    Capillary Gas Chromatography (CGC) is capable of determining underivatized cyclophosphamide (CPA) using SCOT OV 275 columns. Then CPA is subjected to in situ degradation resulting in formation of a cyclization product which can be determined selectively in biological fluids. In routine bioanalysis

  9. Investigation of parameters affecting the online combination of supercritical fluid extraction with capillary gas chromatography

    NARCIS (Netherlands)

    Lou, X.W.; Janssen, J.G.M.; Cramers, C.A.M.G.

    1996-01-01

    Two different injectors, a split/splitless injector and a programmed temperature vaporizer (PTV) injector were investigated as the interface in on-line supercritical fluid extraction (SFE)-capillary gas chromatography (cGC). The parameters affecting the chromatographic peak shapes as well as the

  10. Capillary Rise: Validity of the Dynamic Contact Angle Models.

    Science.gov (United States)

    Wu, Pingkeng; Nikolov, Alex D; Wasan, Darsh T

    2017-08-15

    The classical Lucas-Washburn-Rideal (LWR) equation, using the equilibrium contact angle, predicts a faster capillary rise process than experiments in many cases. The major contributor to the faster prediction is believed to be the velocity dependent dynamic contact angle. In this work, we investigated the dynamic contact angle models for their ability to correct the dynamic contact angle effect in the capillary rise process. We conducted capillary rise experiments of various wetting liquids in borosilicate glass capillaries and compared the model predictions with our experimental data. The results show that the LWR equations modified by the molecular kinetic theory and hydrodynamic model provide good predictions on the capillary rise of all the testing liquids with fitting parameters, while the one modified by Joos' empirical equation works for specific liquids, such as silicone oils. The LWR equation modified by molecular self-layering model predicts well the capillary rise of carbon tetrachloride, octamethylcyclotetrasiloxane, and n-alkanes with the molecular diameter or measured solvation force data. The molecular self-layering model modified LWR equation also has good predictions on the capillary rise of silicone oils covering a wide range of bulk viscosities with the same key parameter W(0), which results from the molecular self-layering. The advantage of the molecular self-layering model over the other models reveals the importance of the layered molecularly thin wetting film ahead of the main meniscus in the energy dissipation associated with dynamic contact angle. The analysis of the capillary rise of silicone oils with a wide range of bulk viscosities provides new insights into the capillary dynamics of polymer melts.

  11. Assembly for connecting the column ends of two capillary columns

    International Nuclear Information System (INIS)

    Kolb, B.; Auer, M.; Pospisil, P.

    1984-01-01

    In gas chromatography, the column ends of two capillary columns are inserted into a straight capillary from both sides forming annular gaps. The capillary is located in a tee out of which the capillary columns are sealingly guided, and to which carrier gas is supplied by means of a flushing flow conduit. A ''straight-forward operation'' having capillary columns connected in series and a ''flush-back operation'' are possible. The dead volume between the capillary columns can be kept small

  12. Application of Homochiral Alkylated Organic Cages as Chiral Stationary Phases for Molecular Separations by Capillary Gas Chromatography.

    Science.gov (United States)

    Xie, Shengming; Zhang, Junhui; Fu, Nan; Wang, Bangjin; Hu, Cong; Yuan, Liming

    2016-11-08

    Molecular organic cage compounds have attracted considerable attention due to their potential applications in gas storage, catalysis, chemical sensing, molecular separations, etc. In this study, a homochiral pentyl cage compound was synthesized from a condensation reaction of ( S , S )-1,2-pentyl-1,2-diaminoethane and 1,3,5-triformylbenzene. The imine-linked pentyl cage diluted with a polysiloxane (OV-1701) was explored as a novel stationary phase for high-resolution gas chromatographic separation of organic compounds. Some positional isomers were baseline separated on the pentyl cage-coated capillary column. In particular, various types of enantiomers including chiral alcohols, esters, ethers and epoxides can be resolved without derivatization on the pentyl cage-coated capillary column. The reproducibility of the pentyl cage-coated capillary column for separation was investigated using nitrochlorobenzene and styrene oxide as analytes. The results indicate that the column has good stability and separation reproducibility after being repeatedly used. This work demonstrates that molecular organic cage compounds could become a novel class of chiral separation media in the near future.

  13. Application of Homochiral Alkylated Organic Cages as Chiral Stationary Phases for Molecular Separations by Capillary Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Shengming Xie

    2016-11-01

    Full Text Available Molecular organic cage compounds have attracted considerable attention due to their potential applications in gas storage, catalysis, chemical sensing, molecular separations, etc. In this study, a homochiral pentyl cage compound was synthesized from a condensation reaction of (S,S-1,2-pentyl-1,2-diaminoethane and 1,3,5-triformylbenzene. The imine-linked pentyl cage diluted with a polysiloxane (OV-1701 was explored as a novel stationary phase for high-resolution gas chromatographic separation of organic compounds. Some positional isomers were baseline separated on the pentyl cage-coated capillary column. In particular, various types of enantiomers including chiral alcohols, esters, ethers and epoxides can be resolved without derivatization on the pentyl cage-coated capillary column. The reproducibility of the pentyl cage-coated capillary column for separation was investigated using nitrochlorobenzene and styrene oxide as analytes. The results indicate that the column has good stability and separation reproducibility after being repeatedly used. This work demonstrates that molecular organic cage compounds could become a novel class of chiral separation media in the near future.

  14. π-Extended triptycene-based material for capillary gas chromatographic separations.

    Science.gov (United States)

    Yang, Yinhui; Wang, Qinsi; Qi, Meiling; Huang, Xuebin

    2017-10-02

    Triptycene-based materials feature favorable physicochemical properties and unique molecular recognition ability that offer good potential as stationary phases for capillary gas chromatography (GC). Herein, we report the investigation of utilizing a π-extended triptycene material (denoted as TQPP) for GC separations. As a result, the TQPP capillary column exhibited high column efficiency of 4030 plates m -1 and high-resolution performance for a wide range of analytes, especially structural and positional isomers. Interestingly, the TQPP stationary phase showed unique shape selectivity for alkanes isomers and preferential retention for analytes with halogen atoms and H-bonding nature mainly through their halogen-bonding and H-bonding interactions. In addition, the TQPP column had good repeatability and reproducibility with the RSD values of 0.02-0.34% for run-to-run, 0.09-0.80% for day-to-day and 1.4-5.2% for column-to-column, respectively, and favorable thermal stability up to 280 °C. This work demonstrates the promising future of triptycene-based materials as a new class of stationary phases for GC separations. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A fully automated fast analysis system for capillary gas chromatography. Part 1. Automation of system control

    NARCIS (Netherlands)

    Snijders, H.M.J.; Rijks, J.P.E.M.; Bombeeck, A.J.; Rijks, J.A.; Sandra, P.; Lee, M.L.

    1992-01-01

    This paper is dealing with the design, the automation and evaluation of a high speed capillary gas chromatographic system. A combination of software and hardware was developed for a new cold trap/reinjection device that allows selective solvent eliminating and on column sample enrichment and an

  16. Gas dispersion concentration of trace inorganic contaminants from fuel gas and analysis using head-column field-amplified sample stacking capillary electrophoresis.

    Science.gov (United States)

    Yang, Jianmin; Li, Hai-Fang; Li, Meilan; Lin, Jin-Ming

    2012-08-21

    The presence of inorganic elements in fuel gas generally accelerates the corrosion and depletion of materials used in the fuel gas industry, and even leads to serious accidents. For identification of existing trace inorganic contaminants in fuel gas in a portable way, a highly efficient gas-liquid sampling collection system based on gas dispersion concentration is introduced in this work. Using the constructed dual path gas-liquid collection setup, inorganic cations and anions were simultaneously collected from real liquefied petroleum gas (LPG) and analyzed by capillary electrophoresis (CE) with indirect UV absorbance detection. The head-column field-amplified sample stacking technique was applied to improve the detection limits to 2-25 ng mL(-1). The developed collection and analytical methods have successfully determined existing inorganic contaminants in a real LPG sample in the range of 4.59-138.69 μg m(-3). The recoveries of cations and anions with spiked LPG samples were between 83.98 and 105.63%, and the relative standard deviations (RSDs) were less than 7.19%.

  17. Analysis of polycyclic aromatic hydrocarbons I. Determination by gas chromatography with glass and fused silica capillary columns

    International Nuclear Information System (INIS)

    Perez, M. M.; Gonzalez, D.

    1987-01-01

    A study of the analysis by gas chromatography of aromatic polycyclic hydrocarbons is presented. The separation has been carried out by glass and fused silica capillary column. The limitations and the advantages of the procedure are discussed in terms of separation efficiency, sensitivity and precision. (Author) 17 refs

  18. Validation of an analytical method for nitrous oxide (N2O) laughing gas by headspace gas chromatography coupled to mass spectrometry (HS-GC-MS): forensic application to a lethal intoxication.

    Science.gov (United States)

    Giuliani, N; Beyer, J; Augsburger, M; Varlet, V

    2015-03-01

    Drug abuse is a widespread problem affecting both teenagers and adults. Nitrous oxide is becoming increasingly popular as an inhalation drug, causing harmful neurological and hematological effects. Some gas chromatography-mass spectrometry (GC-MS) methods for nitrous oxide measurement have been previously described. The main drawbacks of these methods include a lack of sensitivity for forensic applications; including an inability to quantitatively determine the concentration of gas present. The following study provides a validated method using HS-GC-MS which incorporates hydrogen sulfide as a suitable internal standard allowing the quantification of nitrous oxide. Upon analysis, sample and internal standard have similar retention times and are eluted quickly from the molecular sieve 5Å PLOT capillary column and the Porabond Q column therefore providing rapid data collection whilst preserving well defined peaks. After validation, the method has been applied to a real case of N2O intoxication indicating concentrations in a mono-intoxication. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Comparison of two validated gas-chromatographic methods for the determination of trihalomethanes in drinking water Comparação de dois métodos cromatográficos validados para a dosagem de trialometanos em água potável

    OpenAIRE

    Maria Yumiko Tominaga; Antonio Flavio Mídio

    2003-01-01

    In this paper the results obtained using two validated gas-chromatographic procedures on drinking water for the determination of trihalomethanes are compared. The volatile compounds, chloroform (CF), bromodichloromethane (BDCM), dibromochloromethane (DBCM) and bromoform (BF) were detected by purge and trap capillary column gas-chromatography with electrolytic conductivity detector ( ELCD) and the simple and rapid gas-chromatographic method by electron capture detector (ECD) after liquid-liqui...

  20. Composition of the C6+ Fraction of Natural Gas by Multiple Porous Layer Open Tubular Capillaries Maintained at Low Temperatures.

    Science.gov (United States)

    Burger, Jessica L; Lovestead, Tara M; Bruno, Thomas J

    2016-03-17

    As the sources of natural gas become more diverse, the trace constituents of the C 6 + fraction are of increasing interest. Analysis of fuel gas (including natural gas) for compounds with more than 6 carbon atoms (the C 6 + fraction) has historically been complex and expensive. Hence, this is a procedure that is used most often in troubleshooting rather than for day-to-day operations. The C 6 + fraction affects gas quality issues and safety considerations such as anomalies associated with odorization. Recent advances in dynamic headspace vapor collection can be applied to this analysis and provide a faster, less complex alternative for compositional determination of the C 6 + fraction of natural gas. Porous layer open tubular capillaries maintained at low temperatures (PLOT-cryo) form the basis of a dynamic headspace sampling method that was developed at NIST initially for explosives in 2009. This method has been recently advanced by the combining of multiple PLOT capillary traps into one "bundle," or wafer, resulting in a device that allows the rapid trapping of relatively large amounts of analyte. In this study, natural gas analytes were collected by flowing natural gas from the laboratory (gas out of the wall) or a prepared surrogate gas flowing through a chilled wafer. The analytes were then removed from the PLOT-cryo wafer by thermal desorption and subsequent flushing of the wafer with helium. Gas chromatography (GC) with mass spectrometry (MS) was then used to identify the analytes.

  1. A chiral capillary electrophoresis method for ropivacaine hydrochloride in pharmaceutical formulations : Validation and comparison with chiral liquid chromatography

    NARCIS (Netherlands)

    Sänger-Van De Griend, C. E.; Wahlström, H.; Gröningsson, K.; Widahl-Näsman, Monica E.

    A capillary electrophoresis method for the determination of the enantiomeric purity of the local anaesthetic ropivacaine hydrochloride in injection solutions has been validated. The method showed the required limit of quantitation of 0.1% enantiomeric impurity. Good performances were shown for

  2. Analysis of polycyclic aromatic hydrocarbons. I. Determination by gas chromatography with glass and fused solica capillary columns

    International Nuclear Information System (INIS)

    Perez Garcia, M.; Gonzalez, D.

    1987-01-01

    A study of the analysis by gas chromatography of aromatic polycyclic hydrocarbons is presented. The separation has been carried out by glass and fused silice capillary column. The limitations and the advantages of the procedure are discussed in terms of separation efficiency, sensitivity and precision. (author). 3 figs., 17 refs

  3. A purge-and-trap capillary column gas chromatographic method for the measurement of halocarbons in water and air

    Energy Technology Data Exchange (ETDEWEB)

    Happell, J.D.; Wallace, D.W.R.; Wills, K.D.; Wilke, R.J.; Neill, C.C.

    1996-06-01

    This report describes an automated, accurate, precise and sensitive capillary column purge- and -trap method capable of quantifying CFC-12, CFC-11, CFC-113, CH{sub 3}CCL{sub 3}, and CCL{sub 4} during a single chromatographic analysis in either water or gas phase samples.

  4. Validation of a capillary electrophoresis method for the enantiomeric purity testing of ropivacaine, a new local anaesthetic compound

    NARCIS (Netherlands)

    Sänger-Van De Griend, C. E.; Gröningsson, K.

    A capillary electrophoresis method for the determination of the enantiomeric purity of ropivacaine, a new local anaesthetic compound developed by Astra Pain Control AB, has been validated. The method showed the required limit of quantitation of 0.1%, enantiomeric impurity and proved to be robust.

  5. Amplification of spontaneous emission of neon-like argon in a fast gas-filled capillary discharge

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Schmidt, Jiří; Boháček, Vladislav; Řípa, Milan; Frolov, Oleksandr; Vrba, Pavel; Štraus, Jaroslav; Prukner, Václav; Rupasov, A. A.; Shikanov, A. S.

    2008-01-01

    Roč. 34, č. 2 (2008), s. 162-168 ISSN 1063-780X R&D Projects: GA ČR GA202/06/1324; GA MŠk LA08024; GA AV ČR KJB100430702; GA AV ČR KAN300100702 Institutional research plan: CEZ:AV0Z20430508 Keywords : soft X-ray * laser * fast high-current * capillary discharge Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.785, year: 2008

  6. Analysis of Critical Permeabilty, Capillary Pressure and Electrical Properties for Mesaverde Tight Gas Sandstones from Western U.S. Basins

    Energy Technology Data Exchange (ETDEWEB)

    Alan Byrnes; Robert Cluff; John Webb; John Victorine; Ken Stalder; Daniel Osburn; Andrew Knoderer; Owen Metheny; Troy Hommertzheim; Joshua Byrnes; Daniel Krygowski; Stefani Whittaker

    2008-06-30

    Although prediction of future natural gas supply is complicated by uncertainty in such variables as demand, liquefied natural gas supply price and availability, coalbed methane and gas shale development rate, and pipeline availability, all U.S. Energy Information Administration gas supply estimates to date have predicted that Unconventional gas sources will be the dominant source of U.S. natural gas supply for at least the next two decades (Fig. 1.1; the period of estimation). Among the Unconventional gas supply sources, Tight Gas Sandstones (TGS) will represent 50-70% of the Unconventional gas supply in this time period (Fig. 1.2). Rocky Mountain TGS are estimated to be approximately 70% of the total TGS resource base (USEIA, 2005) and the Mesaverde Group (Mesaverde) sandstones represent the principal gas productive sandstone unit in the largest Western U.S. TGS basins including the basins that are the focus of this study (Washakie, Uinta, Piceance, northern Greater Green River, Wind River, Powder River). Industry assessment of the regional gas resource, projection of future gas supply, and exploration programs require an understanding of reservoir properties and accurate tools for formation evaluation. The goal of this study is to provide petrophysical formation evaluation tools related to relative permeability, capillary pressure, electrical properties and algorithms for wireline log analysis. Detailed and accurate moveable gas-in-place resource assessment is most critical in marginal gas plays and there is need for quantitative tools for definition of limits on gas producibility due to technology and rock physics and for defining water saturation. The results of this study address fundamental questions concerning: (1) gas storage; (2) gas flow; (3) capillary pressure; (4) electrical properties; (5) facies and upscaling issues; (6) wireline log interpretation algorithms; and (7) providing a web-accessible database of advanced rock properties. The following text

  7. Capillary gas chromatographic analysis of mycolic acid cleavage products, cellular fatty acids, and alcohols of Mycobacterium xenopi.

    OpenAIRE

    Luquin, M; Lopez, F; Ausina, V

    1989-01-01

    The fatty acids, alcohols, and mycolic acids of 26 strains of Mycobacterium xenopi were studied by capillary gas chromatography and thin-layer chromatography. All strains contained alpha-, keto-, and omega-carboxymycolates. The primary mycolic acid cleavage product was hexacosanoic acid. The fatty acid patterns and, especially, the presence of 2-docosanol are characteristic markers of M. xenopi.

  8. Validity of using modified capillary column with larger diameter to study the Cs diffusion in local Taiwan laterite

    International Nuclear Information System (INIS)

    Tsing-Hai Wang; National Tsing Hua University, Hsinchu, Taiwan; Wen-Chun Yeh; Shih-Chin Tsai; Yi-Lin Jan; Shi-Ping Teng

    2008-01-01

    We have examined the working diameter of capillary columns with diameter of 5, 7, 10 and 20 mm. These modified capillary columns were carefully filled with local Taiwan laterite (LTL). The porosity and density of these packed columns was 0.51±0.02 g/g and 1.27±0.05 g/cm 3 , respectively. The diffusion experiments were then carried out in synthetic groundwater with Cs loading of 0.1mM at room temperature. Experimental results have shown that the diffusion profiles of modified capillary columns fit Fick's second law very well. This result revealed that the working diameter of a capillary column can be expanded to at least to 20 mm without affecting the validity of the derived diffusion coefficients. Among these columns, the ones with 5 mm diameter show the most consistent results of the derived K d , apparent and effective diffusion coefficients. Although the derived distribution and effective diffusion coefficients slightly decrease as the diameter of these columns increases due to the increase of the solid/liquid ratio. These values are still informative of the Cs diffusion in local Taiwan laterite. Moreover, our results clearly demonstrate the potential of using 'modified capillary method' to study the diffusion behaviors of concerned radionuclide because columns with large diameter enable the filling with more versatile geological substances. (author)

  9. First attempts to combine capillary tubes with photocathodes

    CERN Document Server

    Peskov, Vladimir; Sokolova, T; Radionov, I

    1999-01-01

    We describe our efforts to combine glass capillary plates, operating as a gas amplification structure at approx 1 atm, with photocathodes sensitive to visible light. Such capillary tubes are a by-product of the manufacture of Microchannel Plates and are commercially available. Preliminary tests indicate that gas gains >10 sup 3 could be achieved without photon feedback. With two capillary plates in tandem (double-step multiplication) overall gains up to 10 sup 5 were possible at counting rate <100 Hz/mm sup 2. This approach may open new possibilities for detection of visible photons by gaseous detectors. Potential advantages are: high gains, large sensitive area, high granularity, and insensitivity to magnetic fields.

  10. Aerosol penetration through capillaries and leaks: experimental studies on the influence of pressure

    International Nuclear Information System (INIS)

    Morton, D.A.V.; Mitchell, J.P.

    1995-01-01

    It is important to understand the movement of aerosols through ultrafine leak-paths with dimensions of similar order to the gas-borne particles when assessing the validity of leak-testing procedures for transport containers for radioactive materials. Experiments have been undertaken to investigate the penetration of micron-sized airborne particles using glass micro-capillaries as model leak-paths. Previous studies demonstrated a simple relationship between air leakage and total particle penetration rates at a constant driving pressure (100 kPa). The present work has demonstrated the importance of pressure in regulating the rate at which the leak-path is plugged by deposited particles. Much of this deposition appears to take place at the entrances of the capillaries where the air-flow converges. (author)

  11. Capillary condensation between disks in two dimensions

    OpenAIRE

    Gil, Tamir; Ipsen, John Hjorth

    1997-01-01

    Capillary condensation between two two-dimensional wetted circular substrates (disks) is studied by an effective free energy description of the wetting interface. The interfacial free-energy potential is developed on the basis of the theory for the wetting of a single disk, where interfacial capillary fluctuations play a dominant role. A simple approximative analytical expression of the interfacial free energy is developed and is validated numerically. The capillary condensation is characteri...

  12. Accuracy of Transcutaneous CO2 Values Compared With Arterial and Capillary Blood Gases.

    Science.gov (United States)

    Lambert, Laura L; Baldwin, Melissa B; Gonzalez, Cruz Velasco; Lowe, Gary R; Willis, J Randy

    2018-05-08

    Transcutaneous monitors are utilized to monitor a patient's respiratory status. Some patients have similar values when comparing transcutaneous carbon dioxide ( P tcCO 2 ) values with blood gas analysis, whereas others show extreme variability. A retrospective review of data was performed to determine how accurately P tcCO 2 correlated with CO 2 values obtained by arterial blood gas (ABG) or capillary blood gas. To determine whether P tcCO 2 values correlated with ABG or capillary blood gas values, subjects' records were retrospectively reviewed. Data collected included the P tcCO 2 value at the time of blood gas procurement and the ABG or capillary blood gas P CO 2 value. Agreement of pairs of methods (ABG vs P tcCO 2 and capillary blood gas vs P tcCO 2 ) was assessed with the Bland-Altman approach with limits of agreement estimated with a mixed model to account for serial measurements per subject. A total of 912 pairs of ABG/ P tcCO 2 values on 54 subjects and 307 pairs of capillary blood gas/ P tcCO 2 values on 34 subjects were analyzed. The P CO 2 range for ABG was 24-106 mm Hg, and P tcCO 2 values were 27-133 mm Hg. The P CO 2 range for capillary blood gas was 29-108 mm Hg, and P tcCO 2 values were 30-103 mm Hg. For ABG/ P tcCO 2 comparisons, the Pearson correlation coefficient was 0.82, 95% CI was 0.80-0.84, and P was <.001. For capillary blood gas/ P tcCO 2 comparisons, the Pearson correlation coefficient was 0.77, 95% CI was 0.72-0.81, and P was <.001. For ABG/ P tcCO 2 , the estimated difference ± SD was -6.79 t± 7.62 mm Hg, and limits of agreement were -22.03 to 8.45. For capillary blood gas/ P tcCO 2 , the estimated difference ± SD was -1.61 ± 7.64 mm Hg, and limits of agreement were -16.88 to 13.66. The repeatability coefficient was about 30 mm Hg. Based on these data, capillary blood gas comparisons showed less variation and a slightly lower correlation with P tcCO 2 than did ABG comparisons. After accounting for serial measurements per patient

  13. Determination of cocaine in brazilian paper currency by capillary gas chromatography/mass spectrometry

    Directory of Open Access Journals (Sweden)

    Enrico Di Donato

    2007-01-01

    Full Text Available The presence of illicit drugs such as cocaine and marijuana in US paper currency is very well demonstrated. However, there is no published study describing the presence of cocaine and/or other illicit drugs in Brazilian paper currency. In this study, Brazilian banknotes were collected from nine cities, extracted and analyzed by capillary gas chromatography/mass spectrometry, in order to investigate the presence of cocaine. Bills were extracted with deionized water followed by ethyl acetate. Results showed that 93% of the bills presented cocaine in a concentration range of 2.38-275.10 µg/bill.

  14. Quantitative aspects of directly coupled supercritical fluid extraction-capillary gas chromatography with a conventional split/splitless injector as interface

    NARCIS (Netherlands)

    Lou, X.W.; Janssen, J.G.M.; Cramers, C.A.

    1993-01-01

    The quant. aspects of online supercrit. fluid extn.-capillary gas chromatog. (SFE-GC) with a split/splitless injector as interface were studied. Special attention was paid to the discrimination behavior and the reproducibility of the split/splitless interface. A simple exptl. set-up is proposed that

  15. Impacts on oil recovery from capillary pressure and capillary heterogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Bognoe, Thomas

    2008-07-01

    phase bridges is observed. The water may pass the capillary discontinuity before inlet core is at endpoint for spontaneous imbibition. The observations of the water flood experiments have been validated using numerical simulators Eclipse and Sensor. Experimentally measured capillary pressure and relative permeability curves have been used to history match the observed production of the waterfloods. The observed variations in production mechanisms at wettability change are confirmed. Direct measurement of saturation methods for measuring capillary pressure scanning curves have been investigated and compared to conventional centrifuge techniques. The same trends are observed for curves measured at different wettabilities, and the capillary pressure curves measured using DMS methods have also been validated in numerical simulations of type Eclipse and Sensor. A feasibility study to develop a new method of measuring capillary pressure at various wettabilities has been performed with encouraging results. The conclusion is that the work should be further developed. The method has potential to enable capillary pressure measurements using live crude oil at reservoir conditions. All in all, several experimental methods applicable in future SCAL synthesis have been presented. The observations are consistent and underline the production mechanisms of fractured chalk reservoirs, and will serve as inspiration in the future evaluations of tertiary oil recovery processes. An innovative approach to the measurement of capillary pressure is suggested.

  16. Exploitation of a microporous organic polymer as a stationary phase for capillary gas chromatography

    International Nuclear Information System (INIS)

    Lu, Cuiming; Liu, Shuqin; Xu, Jianqiao; Ding, Yajuan; Ouyang, Gangfeng

    2016-01-01

    Microporous organic polymers (MOPs) have emerged as a new class of functional porous materials with unique characteristics and potential uses in diverse areas. However, the field of MOPs for gas chromatographic (GC) separations has not been well explored. Herein, a MOP namely KAPs-1 was dynamic coated onto a capillary column for the first time. The fabricated column exhibited a nonpolar nature and the column efficiency for n-dodecane was up to 7769 plates m"−"1. The KAPs-1 coated column showed high GC separation performance for a series of volatile organic compounds (VOCs) including the challenging ethylbenzene and xylene isomers, which could not be resolved at baseline on the commercial 5% phenyl polysiloxane stationary phase. Moreover, the relative standard deviations for five replicate determinations of the studied analytes were 0.0–0.6%, 0.9–3.2%, 1.1–5.9%, 0.8–3.7% for retention time, peak area, peak height and peak width, respectively. To investigate the interaction between some analytes and the stationary phase, thermodynamic and kinetic parameters were also evaluated. The results of this study show it is very promising to utilize MOPs as stationary phases for capillary GC. - Highlights: • A microporous organic polymer was explored as a novel stationary phase for capillary GC. • The column showed high separation performance for VOCs including the challenging ethylbenzene and xylene isomers. • Thermodynamic and kinetic parameters for BTEXs were determined to study the analyte-stationary phase interaction.

  17. Early Regimes of Water Capillary Flow in Slit Silica Nanochannels

    DEFF Research Database (Denmark)

    Oyarzua, Elton; Walther, Jens Honore; Mejia, Andres

    2015-01-01

    on the dynamics of capillaryfilling. The results indicate that the nanoscale imbibition process is divided into three main flow regimes:an initial regime where the capillary force is balanced only by the inertial drag and characterized by aconstant velocity and a plug flow profile. In this regime, the meniscus...... velocity profiles identify the passage froman inviscid flow to a developing Poiseuille flow. Gas density profiles ahead of the capillary front indicatea transient accumulation of air on the advancing meniscus. Furthermore, slower capillary filling ratescomputed for higher air pressures reveal a significant...... retarding effect of the gas displaced by the advancing meniscus....

  18. Determination of Organic Pollutants in Small Samples of Groundwaters by Liquid-Liquid Extraction and Capillary Gas Chromatography

    DEFF Research Database (Denmark)

    Harrison, I.; Leader, R.U.; Higgo, J.J.W.

    1994-01-01

    A method is presented for the determination of 22 organic compounds in polluted groundwaters. The method includes liquid-liquid extraction of the base/neutral organics from small, alkaline groundwater samples, followed by derivatisation and liquid-liquid extraction of phenolic compounds after neu...... neutralisation. The extracts were analysed by capillary gas chromatography. Dual detection by flame Ionisation and electron capture was used to reduce analysis time....

  19. Characterisation of capillary ionic liquid columns for gas chromatography-mass spectrometry analysis of fatty acid methyl esters.

    Science.gov (United States)

    Zeng, Annie Xu; Chin, Sung-Tong; Nolvachai, Yada; Kulsing, Chadin; Sidisky, Leonard M; Marriott, Philip J

    2013-11-25

    Due to their distinct chemical properties, the application of ionic liquid (IL) compounds as gas chromatography (GC) stationary phases offer unique GC separation especially in the analysis of geometric and positional fatty acid methyl ester (FAME) isomers. Elution behaviour of FAME on several commercialised IL capillary columns including phosphonium based SLB-IL59, SLB-IL60, SLB-IL61 and SLB-IL76 and imidazolium based SLB-IL82, SLB-IL100, and SLB-IL111 as well as a general purpose column SLB-5ms, were evaluated in gas chromatography-mass spectrometry (GC-MS) analysis. The phases were further characterised by using a linear solvation energy relationship (LSER) approach according to the equivalent chain length (ECL) index of FAME. Among all tested IL columns, elution temperatures of saturated FAME increased as their McReynolds' polarity value decreased, except for IL60. ECL values increased markedly as the stationary phase polarity increased, particularly for the polyunsaturated FAME. The LSER study indicated a lowest l/e value at 0.864 for IL111, displaying phase selectivity towards unsaturated FAME, with higher peak capacity within a carbon number isomer group. s and e descriptors calculated from LSER were validated by excellent correlation with dipole moments and lowest unoccupied molecular orbital (LUMO) energies, with R(2) values of 0.99 and 0.92 respectively, calculated using GAUSSIAN. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. The Determination of Pesticidal and Non-Pesticidal Organotin Compounds by in situ Ethylation and Capillary Gas Chromatography with Pulsed Flame Photometric Detection

    Science.gov (United States)

    The concurrent determination of pesticidal and non-pesticidal organotin compounds in several water matrices, using a simultaneous in situ ethylation and liquid-liquid extraction followed by splitless injection mode capillary gas chromatography with pulsed flame photometric detect...

  1. Exploitation of a microporous organic polymer as a stationary phase for capillary gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Cuiming; Liu, Shuqin; Xu, Jianqiao; Ding, Yajuan; Ouyang, Gangfeng, E-mail: cesoygf@mail.sysu.edu.cn

    2016-01-01

    Microporous organic polymers (MOPs) have emerged as a new class of functional porous materials with unique characteristics and potential uses in diverse areas. However, the field of MOPs for gas chromatographic (GC) separations has not been well explored. Herein, a MOP namely KAPs-1 was dynamic coated onto a capillary column for the first time. The fabricated column exhibited a nonpolar nature and the column efficiency for n-dodecane was up to 7769 plates m{sup −1}. The KAPs-1 coated column showed high GC separation performance for a series of volatile organic compounds (VOCs) including the challenging ethylbenzene and xylene isomers, which could not be resolved at baseline on the commercial 5% phenyl polysiloxane stationary phase. Moreover, the relative standard deviations for five replicate determinations of the studied analytes were 0.0–0.6%, 0.9–3.2%, 1.1–5.9%, 0.8–3.7% for retention time, peak area, peak height and peak width, respectively. To investigate the interaction between some analytes and the stationary phase, thermodynamic and kinetic parameters were also evaluated. The results of this study show it is very promising to utilize MOPs as stationary phases for capillary GC. - Highlights: • A microporous organic polymer was explored as a novel stationary phase for capillary GC. • The column showed high separation performance for VOCs including the challenging ethylbenzene and xylene isomers. • Thermodynamic and kinetic parameters for BTEXs were determined to study the analyte-stationary phase interaction.

  2. Semi-automatic assessment of skin capillary density: proof of principle and validation.

    Science.gov (United States)

    Gronenschild, E H B M; Muris, D M J; Schram, M T; Karaca, U; Stehouwer, C D A; Houben, A J H M

    2013-11-01

    Skin capillary density and recruitment have been proven to be relevant measures of microvascular function. Unfortunately, the assessment of skin capillary density from movie files is very time-consuming, since this is done manually. This impedes the use of this technique in large-scale studies. We aimed to develop a (semi-) automated assessment of skin capillary density. CapiAna (Capillary Analysis) is a newly developed semi-automatic image analysis application. The technique involves four steps: 1) movement correction, 2) selection of the frame range and positioning of the region of interest (ROI), 3) automatic detection of capillaries, and 4) manual correction of detected capillaries. To gain insight into the performance of the technique, skin capillary density was measured in twenty participants (ten women; mean age 56.2 [42-72] years). To investigate the agreement between CapiAna and the classic manual counting procedure, we used weighted Deming regression and Bland-Altman analyses. In addition, intra- and inter-observer coefficients of variation (CVs), and differences in analysis time were assessed. We found a good agreement between CapiAna and the classic manual method, with a Pearson's correlation coefficient (r) of 0.95 (Pdifferences between the two methods, with an intercept of the Deming regression of 1.75 (-6.04; 9.54), while the Bland-Altman analysis showed a mean difference (bias) of 2.0 (-13.5; 18.4) capillaries/mm(2). The intra- and inter-observer CVs of CapiAna were 2.5% and 5.6% respectively, while for the classic manual counting procedure these were 3.2% and 7.2%, respectively. Finally, the analysis time for CapiAna ranged between 25 and 35min versus 80 and 95min for the manual counting procedure. We have developed a semi-automatic image analysis application (CapiAna) for the assessment of skin capillary density, which agrees well with the classic manual counting procedure, is time-saving, and has a better reproducibility as compared to the

  3. Capillary condensation between disks in two dimensions

    DEFF Research Database (Denmark)

    Gil, Tamir; Ipsen, John Hjorth

    1997-01-01

    Capillary condensation between two two-dimensional wetted circular substrates (disks) is studied by an effective free energy description of the wetting interface. The interfacial free-energy potential is developed on the basis of the theory for the wetting of a single disk, where interfacial...... capillary fluctuations play a dominant role. A simple approximative analytical expression of the interfacial free energy is developed and is validated numerically. The capillary condensation is characterized by the analysis of the coverage of the condensed phase, its stability, and asymptotic behaviors...

  4. Selective removal of water in purge and cold-trap capillary gas chromatographic analysis of volatile organic traces in aqueous samples

    NARCIS (Netherlands)

    Noij, T.H.M.; van Es, A.J.J.; Cramers, C.A.M.G.; Rijks, J.A.; Dooper, R.P.M.

    1987-01-01

    The design and features of an on-line purge and cold-trap pre-concentration device for rapid analysis of volatile organic compounds in aqueous samples are discussed. Excessive water is removed from the purge gas by a condenser or a water permeable membrane in order to avoid blocking of the capillary

  5. Novel preconcentration technique for on-line coupling to high-speed narrow-bore capillary gas chromatography: sample enrichment by equilibrium (ab)sorption, I: Principles and theoretical aspects

    NARCIS (Netherlands)

    Pham Tuan, H.; Janssen, J.G.M.; Cramers, C.A.M.G.

    1997-01-01

    In recent years, there has been substantial progress in the field of high-speed narrow-bore capillary gas chromatography (GC) in general, and in the development of (trans)portable gas chromatographs for fast and accurate analysis in field applications in particular. Due to the limited

  6. A validation study for the gas migration modelling of the compacted bentonite using existing experiment data

    International Nuclear Information System (INIS)

    Tawara, Y.; Mori, K.; Tada, K.; Shimura, T.; Sato, S.; Yamamoto, S.; Hayashi, H.

    2010-01-01

    gas to enter the water-saturated bentonite without propagation of pressure-induced pathway. In this validation study, we have adopted here two computer codes GETFLOWS and Code B right which are based on different conceptual models, respectively. GETFLOWS is the conventional non-isothermal multi-phase fluid-flow code. However pressure-induced macroscopic pathway propagation of porous media is incorporated by changing porosity and permeability explicitly depending on the pore pressure distribution. Code B right is so called coupled THM code and can be applied to non-isothermal two-phase flow in deformable porous media. Automatic inversion code namely UCODE-2005, which was developed by U.S Geological Survey, was used with GETFLOWS. Good matching was attained reasonably between the simulated and observed flow rate in both GETFLOWS and Code-Bright. However when we neglected the pressure-induced pathway propagations, any combinations of flow parameters could not provide a reasonable match between simulated and observed results. This also means that the capillary threshold for gas entry into water-saturated bentonite exists, suggesting consideration of unconventional two phase flow. On the other hand, the identified residual water saturation eventually, which can reproduce observed behaviour well, became extremely high. When we consider long-term behaviour including the re-saturation period after closure of disposal system, it is not available directly as the parameter of the unsaturated bentonite. The identified residual water saturation is only applicable to the fully-water saturated environments. The future work will focus on the gas flow in unsaturated bentonite using experimental data from not only laboratory but also in-situ data. In addition, we are planning to develop the modelling technique of long-term water and gas migration behaviour in the EBS which includes both re-saturation and gas migration phase considering the contribution of THMC coupled phenomena

  7. Minimal formulation of the linear spatial analysis of capillary jets: Validity of the two-mode approach

    Science.gov (United States)

    González, H.; Vazquez, P. A.; García, F. J.; Guerrero, J.

    2018-04-01

    A rigorous and complete formulation of the linear evolution of harmonically stimulated capillary jets should include infinitely many spatial modes to account for arbitrary exit conditions [J. Guerrero et al., J. Fluid Mech. 702, 354 (2012), 10.1017/jfm.2012.182]. However, it is not rare to find works in which only the downstream capillary dominant mode, the sole unstable one, is retained, with amplitude determined by the jet deformation at the exit. This procedure constitutes an oversimplification, unable to handle a flow rate perturbation without jet deformation at the exit (the most usual conditions). In spite of its decaying behavior, the other capillary mode (subdominant) must be included in what can be called a "minimal linear formulation." Deformation and mean axial velocity amplitudes at the jet exit are the two relevant parameters to simultaneously find the amplitudes of both capillary modes. Only once these amplitudes are found, the calculation of the breakup length may be eventually simplified by disregarding the subdominant mode. Simple recipes are provided for predicting the breakup length, which are checked against our own numerical simulations. The agreement is better than in previous attempts in the literature. Besides, the limits of validity of the linear formulation are explored in terms of the exit velocity amplitude, the wave number, the Weber number, and the Ohnesorge number. Including the subdominant mode extends the range of amplitudes for which the linear model gives accurate predictions, the criterion for keeping this mode being that the breakup time must be shorter than a given formula. It has been generally assumed that the shortest intact length happens for the stimulation frequency with the highest growth rate. However, we show that this correlation is not strict because the amplitude of the dominant mode has a role in the breakup process and it depends on the stimulation frequency.

  8. The role of the gas/plasma plume and self-focusing in a gas-filled capillary discharge waveguide for high-power laser-plasma applications

    CERN Document Server

    Ciocarlan, C.; Islam, M. R.; Ersfeld, B.; Abuazoum, S.; Wilson, R.; Aniculaesei, C.; Welsh, G. H.; Vieux, G.; Jaroszynski, D. A.; 10.1063/1.4822333

    2013-01-01

    The role of the gas/plasma plume at the entrance of a gas-filled capillary discharge plasma waveguide in increasing the laser intensity has been investigated. Distinction is made between neutral gas and hot plasma plumes that, respectively, develop before and after discharge breakdown. Time-averaged measurements show that the on-axis plasma density of a fully expanded plasma plume over this region is similar to that inside the waveguide. Above the critical power, relativistic and ponderomotive selffocusing lead to an increase in the intensity, which can be nearly a factor of 2 compared with the case without a plume. When used as a laser plasma wakefield accelerator, the enhancement of intensity can lead to prompt electron injection very close to the entrance of the waveguide. Self-focusing occurs within two Rayleigh lengths of the waveguide entrance plane in the region, where the laser beam is converging. Analytical theory and numerical simulations show that, for a density of 3.01018 cm3, the peak normalized...

  9. Rapid determination of cholesterol in milk and milk products by direct saponification and capillary gas chromatography.

    Science.gov (United States)

    Fletouris, D J; Botsoglou, N A; Psomas, I E; Mantis, A I

    1998-11-01

    A simple method is described for the determination of cholesterol in milk and milk products. Samples (0.2 g) are saponified in capped tubes with 0.5 M methanolic KOH solution by heating for 15 min at 80 degrees C. Water is added to the mixtures, and the unsaponifiable fractions are extracted with hexane to be further analyzed by capillary gas chromatography. Because of the rapid sample preparation and gas chromatographic procedures, a single sample can be analyzed in 30 min. Overall recovery was 98.6%, and the linearity was excellent for the fortification range examined. Precision data that were based on the variation within and between days suggested an overall relative standard deviation value of 1.4%. The method has been successfully applied to quantitate cholesterol in a variety of milk products.

  10. Density functional study of condensation in capped capillaries.

    Science.gov (United States)

    Yatsyshin, P; Savva, N; Kalliadasis, S

    2015-07-15

    We study liquid adsorption in narrow rectangular capped capillaries formed by capping two parallel planar walls (a slit pore) with a third wall orthogonal to the two planar walls. The most important transition in confined fluids is arguably condensation, where the pore becomes filled with the liquid phase which is metastable in the bulk. Depending on the temperature T, the condensation in capped capillaries can be first-order (at T≤Tcw) or continuous (at T>Tcw), where Tcw is the capillary wetting temperature. At T>Tcw, the capping wall can adsorb mesoscopic amounts of metastable under-condensed liquid. The onset of condensation is then manifested by the continuous unbinding of the interface between the liquid adsorbed on the capping wall and the gas filling the rest of the capillary volume. In wide capped capillaries there may be a remnant of wedge filling transition, which is manifested by the adsorption of liquid drops in the corners. Our classical statistical mechanical treatment predicts a possibility of three-phase coexistence between gas, corner drops and liquid slabs adsorbed on the capping wall. In sufficiently wide capillaries we find that thick prewetting films of finite length may be nucleated at the capping wall below the boundary of the prewetting transition. Prewetting then proceeds in a continuous manner manifested by the unbinding interface between the thick and thin films adsorbed on the side walls. Our analysis is based on a detailed numerical investigation of the density functional theory for the fluid equilibria for a number of illustrative case studies.

  11. Uniaxial creep as a control on mercury intrusion capillary pressure in consolidating rock salt

    Energy Technology Data Exchange (ETDEWEB)

    Dewers, Thomas [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Heath, Jason E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Leigh, Christi D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The nature of geologic disposal of nuclear waste in salt formations requires validated and verified two - phase flow models of transport of brine and gas through intact, damaged, and consolidating crushed salt. Such models exist in oth er realms of subsurface engineering for other lithologic classes (oil and gas, carbon sequestration etc. for clastics and carbonates) but have never been experimentally validated and parameterized for salt repository scenarios or performance assessment. Mo dels for waste release scenarios in salt back - fill require phenomenological expressions for capillary pressure and relative permeability that are expected to change with degree of consolidation, and require experimental measurement to parameterize and vali date. This report describes a preliminary assessment of the influence of consolidation (i.e. volume strain or porosity) on capillary entry pressure in two phase systems using mercury injection capillary pressure (MICP). This is to both determine the potent ial usefulness of the mercury intrusion porosimetry method, but also to enable a better experimental design for these tests. Salt consolidation experiments are performed using novel titanium oedometers, or uniaxial compression cells often used in soil mech anics, using sieved run - of - mine salt from the Waste Isolation Pilot Plant (WIPP) as starting material. Twelve tests are performed with various starting amounts of brine pore saturation, with axial stresses up to 6.2 MPa (%7E900 psi) and temperatures to 90 o C. This corresponds to UFD Work Package 15SN08180211 milestone "FY:15 Transport Properties of Run - of - Mine Salt Backfill - Unconsolidated to Consolidated". Samples exposed to uniaxial compression undergo time - dependent consolidation, or creep, to various deg rees. Creep volume strain - time relations obey simple log - time behavior through the range of porosities (%7E50 to 2% as measured); creep strain rate increases with temperature and applied stress as

  12. Estimation of Fatty Acids in Corn Oil by Gas Capillary Chromatography

    International Nuclear Information System (INIS)

    Kamal, Mohammad A; Klein Peter

    2007-01-01

    Fatty acids provide energy as well as play important role in some cellular structures like cell membrane and certain hormones. Saturated fatty acids are usually found in animal products and in some vegetable oils as well. These saturated fatty acids may be a factor in weight gain and obesity but eating them in moderate amounts may not be damaging to health of every person. Monounsaturated fatty acids can lower blood levels of low density lipoprotein cholesterol and have potential to increase blood levels of high density lipoprotein cholesterol and by this way plays protective role against heart disease. The omega 3 and 6 fatty acids have vital roles in many biological systems such as nervous, immune, cardiovascular, dermal and vision systems. Therefore, it is essential to optimize the instrumental conditions and column specification for the estimation of various fatty acids in the oil, which was considered in the current study using Gas Capillary Chromatography. (author)

  13. Ionization Waves in a Fast, Hollow-Cathode-Assisted Capillary Discharge

    International Nuclear Information System (INIS)

    Rutkevich, I.; Mond, M.; Kaufman, Y.; Choi, P.; Favre, M.

    1999-01-01

    The initial, low-current stage of the evolution of a soft x-ray emitting, hollow-cathode-assisted capillary discharge initiated by a steep high-voltage pulse is investigated. The capillary is surrounded by a shield having the cathode potential. The mean electric field E of the order of 10 kV/cm and the low gas pressure (P<1Torr) provide conditions for extensive electron runaway. This is taken into account in the formulation of the theoretical approach by retaining the inertial terms in the momentum equation for the electrons. In addition, the ionization rate is calculated by considering the cross section for ionization by high-energy electrons. The two-dimensional system of the basic equations is reduced to a system of one-dimensional equations for the axial distributions of the physical quantities by introducing appropriate radial profiles of the electric potential, and the electron gas parameters and satisfying the electrodynamic boundary conditions at the capillary wall and at the shield. The resulting system of equations admits solutions in the form of stationary ionization waves transferring the anode potential to the cathode end. Numerical calculations of such solutions for argon show that the wave velocity V increases with the gas pressure P and with the density of initial electron beam ejected from the cathode hole ahead of the ionization front, while the dependence of V on the applied voltage is weak. At the instant when the virtual anode reaches the cathode hole, the plasma in the capillary is not yet fully ionized. The traverse time of the ionization wave along the capillary calculated for various gas pressures is in reasonable agreement with experimentally registered time delay for a high-current stage resulting in voltage collapse and soft x-ray emission

  14. Capillary condensation in porous alumina observed by positronium lifetime spectroscopy

    International Nuclear Information System (INIS)

    Ivanov, Eugeniu; Vata, Ion; Toderian, Stefan; Dudu, Dorin; Rusen, Ion; Stefan, Nitisor

    2008-01-01

    The PALS method based on time distribution measurements has been used to study capillary condensation of different gases adsorbed in microporous alumina powder. The isotherms exhibit features which are associated with a shifted gas-liquid transition. The sorption and desorption processes are irreversible presenting a hysteresis effect. Suggestions on some new aspects of the capillary condensation dynamics are made

  15. Continuous determination of volatile products in anaerobic fermenters by on-line capillary gas chromatography

    International Nuclear Information System (INIS)

    Diamantis, V.; Melidis, P.; Aivasidis, A.

    2006-01-01

    Bio-ethanol and biogas produced during the anaerobic conversion of organic compounds has been a subject of great interest since the oil crisis of the 1970s. In ethanol fermentation and anaerobic treatment of wastewaters, end-product (ethanol) and intermediate-products (short-chain fatty acids, SCFA) cause inhibition that results in reduced process efficiency. Control of these constituents is of utmost importance for bioreactor optimization and process stability. Ethanol and SCFA can be detected with precision by capillary gas chromatography usually conducted in off-line measurements. In this work, an on-line monitoring and controlling system was developed and connected to the fermenter via an auto-sampling equipment, which could perform the feeding, filtration and dilution of the sample and final injection into the gas chromatograph through an automation-based programmed procedure. The sample was continuously pumped from the recycle stream of the bioreactor and treated using a microfiltration unit. The concentrate was returned to the reactor while the permeate was quantitatively mixed with an internal standard solution. The system comprised of a gas chromatograph with the flow cell and one-shot sampler and a PC with the appropriate software. The on-line measurement of ethanol and SCFA, directly from the liquid phase of an ethanol fermenter and a high-rate continuous mode anaerobic digester, was accomplished by gas chromatography. Also, this monitoring and controlling system was proved to be effective in the continuous fermentation of alcohol-free beer

  16. Determination of C6-C10 aromatic hydrocarbons in water by purge-and-trap capillary gas chromatography

    Science.gov (United States)

    Eganhouse, R.P.; Dorsey, T.F.; Phinney, C.S.; Westcott, A.M.

    1993-01-01

    A method is described for the determination of the C6-C10 aromatic hydrocarbons in water based on purge-and-trap capillary gas chromatography with flame ionization and mass spectrometric detection. Retention time data and 70 eV mass spectra were obtained for benzene and all 35 C7-C10 aromatic hydrocarbons. With optimized chromatographic conditions and mass spectrometric detection, benzene and 33 of the 35 alkylbenzenes can be identified and measured in a 45-min run. Use of a flame ionization detector permits the simultaneous determination of benzene and 26 alkylbenzenes.

  17. Capillary contact angle in a completely wet groove.

    Science.gov (United States)

    Parry, A O; Malijevský, A; Rascón, C

    2014-10-03

    We consider the phase equilibria of a fluid confined in a deep capillary groove of width L with identical side walls and a bottom made of a different material. All walls are completely wet by the liquid. Using density functional theory and interfacial models, we show that the meniscus separating liquid and gas phases at two phase capillary coexistence meets the bottom capped end of the groove at a capillary contact angle θ(cap)(L) which depends on the difference between the Hamaker constants. If the bottom wall has a weaker wall-fluid attraction than the side walls, then θ(cap) > 0 even though all the isolated walls are themselves completely wet. This alters the capillary condensation transition which is now first order; this would be continuous in a capped capillary made wholly of either type of material. We show that the capillary contact angle θ(cap)(L) vanishes in two limits, corresponding to different capillary wetting transitions. These occur as the width (i) becomes macroscopically large, and (ii) is reduced to a microscopic value determined by the difference in Hamaker constants. This second wetting transition is characterized by large scale fluctuations and essential critical singularities arising from marginal interfacial interactions.

  18. Rapid analysis of ethanol and water in commercial products using ionic liquid capillary gas chromatography with thermal conductivity detection and/or barrier discharge ionization detection.

    Science.gov (United States)

    Weatherly, Choyce A; Woods, Ross M; Armstrong, Daniel W

    2014-02-26

    Analysis of ethanol and water in consumer products is important in a variety of processes and often is mandated by regulating agencies. A method for the simultaneous quantitation of ethanol and water that is simple, accurate, precise, rapid, and cost-effective is demonstrated. This approach requires no internal standard for the quantitation of both ethanol and water at any/all levels in commercial products. Ionic liquid based gas chromatography (GC) capillary columns are used to obtain a fast analysis with high selectivity and resolution of water and ethanol. Typical run times are just over 3 min. Examination of the response range of water and ethanol with GC, thermal conductivity detection (TCD), and barrier ionization detection (BID) is performed. Quantitation of both ethanol and water in consumer products is accomplished with both TCD and BID GC detectors using a nonlinear calibration. Validation of method accuracy is accomplished by using standard reference materials.

  19. Development and validation of a stability-indicating capillary zone electrophoretic method for the assessment of entecavir and its correlation with liquid chromatographic methods.

    Science.gov (United States)

    Dalmora, Sergio Luiz; Nogueira, Daniele Rubert; D'Avila, Felipe Bianchini; Souto, Ricardo Bizogne; Leal, Diogo Paim

    2011-01-01

    A stability-indicating capillary zone electrophoresis (CZE) method was validated for the analysis of entecavir in pharmaceutical formulations, using nimesulide as an internal standard. A fused-silica capillary (50 µm i.d.; effective length, 40 cm) was used while being maintained at 25°C; the applied voltage was 25 kV. A background electrolyte solution consisted of a 20 mM sodium tetraborate solution at pH 10. Injections were performed using a pressure mode at 50 mbar for 5 s, with detection at 216 nm. The specificity and stability-indicating capability were proven through forced degradation studies, evaluating also the in vitro cytotoxicity test of the degraded products. The method was linear over the concentration range of 1-200 µg mL(-1) (r(2) = 0.9999), and was applied for the analysis of entecavir in tablet dosage forms. The results were correlated to those of validated conventional and fast LC methods, showing non-significant differences (p > 0.05).

  20. Grand canonical Monte Carlo simulation study of capillary condensation between nanoparticles.

    Science.gov (United States)

    Kim, Seonmin; Ehrman, Sheryl H

    2007-10-07

    Capillary condensation at the nanoscale differs from condensation in the bulk phase, because it is a strong function of surface geometry and gas-surface interactions. Here, the effects of geometry on the thermodynamics of capillary condensation at the neck region between nanoparticles are investigated via a grand canonical Monte Carlo simulation using a two-dimensional lattice gas model. The microscopic details of the meniscus formation on various surface geometries are examined and compared with results of classical macromolecular theory, the Kelvin equation. We assume that the system is composed of a lattice gas and the surfaces of two particles are approximated by various shapes. The system is modeled on the basis of the molecular properties of the particle surface and lattice gas in our system corresponding to titania nanoparticles and tetraethoxy orthosilicate molecules, respectively. This system was chosen in order to reasonably emulate our previous experimental results for capillary condensation on nanoparticle surfaces. Qualitatively, our simulation results show that the specific geometry in the capillary zone, the surface-surface distance, and the saturation ratio are important for determining the onset and broadening of the liquid meniscus. The meniscus height increases continuously as the saturation ratio increases and the meniscus broadens faster above the saturation ratio of 0.90. The change of the radius of curvature of the particle surface affects the dimensions of the capillary zone, which drives more condensation in narrow zones and less condensation in wide zones. The increase of surface-surface distance results in the decrease of the meniscus height or even the disappearance of the meniscus entirely at lower saturation ratios. These effects are significant at the nanoscale and must be carefully considered in order to develop predictive relationships for meniscus height as a function of saturation conditions.

  1. Quantitative aspects of directly coupled supercritical fluid extraction-capillary gas chromatography with a conventional split/splitless injector as interface

    OpenAIRE

    Lou, X.W.; Janssen, J.G.M.; Cramers, C.A.

    1993-01-01

    The quant. aspects of online supercrit. fluid extn.-capillary gas chromatog. (SFE-GC) with a split/splitless injector as interface were studied. Special attention was paid to the discrimination behavior and the reproducibility of the split/splitless interface. A simple exptl. set-up is proposed that allows accurate quantitation in online SFE-split GC. The results obtained in online SFE-GC compare favorably with those from conventional GC with split injection. Discrimination is absent when wor...

  2. An in situ spatially resolved analytical technique to simultaneously probe gas phase reactions and temperature within the packed bed of a plug flow reactor.

    Science.gov (United States)

    Touitou, Jamal; Burch, Robbie; Hardacre, Christopher; McManus, Colin; Morgan, Kevin; Sá, Jacinto; Goguet, Alexandre

    2013-05-21

    This paper reports the detailed description and validation of a fully automated, computer controlled analytical method to spatially probe the gas composition and thermal characteristics in packed bed systems. As an exemplar, we have examined a heterogeneously catalysed gas phase reaction within the bed of a powdered oxide supported metal catalyst. The design of the gas sampling and the temperature recording systems are disclosed. A stationary capillary with holes drilled in its wall and a moveable reactor coupled with a mass spectrometer are used to enable sampling and analysis. This method has been designed to limit the invasiveness of the probe on the reactor by using the smallest combination of thermocouple and capillary which can be employed practically. An 80 μm (O.D.) thermocouple has been inserted in a 250 μm (O.D.) capillary. The thermocouple is aligned with the sampling holes to enable both the gas composition and temperature profiles to be simultaneously measured at equivalent spatially resolved positions. This analysis technique has been validated by studying CO oxidation over a 1% Pt/Al2O3 catalyst and the spatial resolution profiles of chemical species concentrations and temperature as a function of the axial position within the catalyst bed are reported.

  3. Determination of DDTs and PCBs by capillary gas chromatography and electron capture detection

    International Nuclear Information System (INIS)

    1988-01-01

    This reference method deals with the determination of DDTs and PCBs in marine environmental samples using high resolution gas chromatography. Several other halogenated pesticides and other electron capturing organic compounds may be present in samples and many of these may also be determined by this method. Not all electron capturing residues will be resistant to all of the clean up procedures described here for the analysis of DTTs and PCBs. Therefore, additional information on the stability of some common pesticides using this methodology is also provided. The high separation power of open tubular (''capillary'') columns allows the identification and quantification of many compounds in the complex mixtures occurring in environmental samples. This manual provides information on the theoretical and practical aspects of the use of these high resolution columns for the analysis of DDTs and PCBs in environmental samples. The qualitative and quantitative method can be applied to any sample type (aerosol/vapour, water, particulates, biota, etc.) provided that suitable cleaned-up extracts dissolved in n-hexane are available for injection into the GC system. For example, methods for obtaining these cleaned-up sample extracts from marine organisms are described in detail in UNEP Reference Method no. 14 and for sediments in No. 17. The change in the field of application by analysing by capillary rather than packed columns may be less dramatic for DDTs. However, with the increased separation, the possibilities of inaccurate analysis resulting from overlap with interfering compounds is reduced. 7 refs, 1 fig., 3 tabs

  4. Performance Validation and Scaling of a Capillary Membrane Solid-Liquid Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, S; Cook, J; Juratovac, J; Goodwillie, J; Burke, T

    2011-10-25

    Algaeventure Systems (AVS) has previously demonstrated an innovative technology for dewatering algae slurries that dramatically reduces energy consumption by utilizing surface physics and capillary action. Funded by a $6M ARPA-E award, transforming the original Harvesting, Dewatering and Drying (HDD) prototype machine into a commercially viable technology has required significant attention to material performance, integration of sensors and control systems, and especially addressing scaling issues that would allow processing extreme volumes of algal cultivation media/slurry. Decoupling the harvesting, dewatering and drying processes, and addressing the rate limiting steps for each of the individual steps has allowed for the development individual technologies that may be tailored to the specific needs of various cultivation systems. The primary performance metric used by AVS to assess the economic viability of its Solid-Liquid Separation (SLS) dewatering technology is algae mass production rate as a function of power consumption (cost), cake solids/moisture content, and solids capture efficiency. An associated secondary performance metric is algae mass loading rate which is dependent on hydraulic loading rate, area-specific hydraulic processing capacity (gpm/in2), filter:capillary belt contact area, and influent algae concentration. The system is capable of dewatering 4 g/L (0.4%) algae streams to solids concentrations up to 30% with capture efficiencies of 80+%, however mass production is highly dependent on average cell size (which determines filter mesh size and percent open area). This paper will present data detailing the scaling efforts to date. Characterization and performance data for novel membranes, as well as optimization of off-the-shelf filter materials will be examined. Third party validation from Ohio University on performance and operating cost, as well as design modification suggestions will be discussed. Extrapolation of current productivities

  5. The free-jet expansion from a capillary source

    International Nuclear Information System (INIS)

    Miller, D.R.; Fineman, M.A.; Murphy, H.

    1985-01-01

    This paper presents a comparison of the free-jet expansions originating from an orifice and a capillary by measuring the terminal gas properties. Time-of-flight and intensity data are reported for pure gases (He, Ar, CO 2 ) and mixtures of CO 2 /He, together with condensed dimer intensities for Ar and Co 2 . Pitot tube data are reported for N 2 . The results suggest that the free-jet expansions are nearly the same, provided the capillary is modeled as a non-isentropic Fanno flow process. The Fanno flow is slightly non-adiabatic, which complicates the analysis. Only the condensation kinetics appear strongly sensitive to the differences in the initial conditions for the supersonic expansion; any kinetic process relaxing near the capillary orifice exit would be affected

  6. Laser–capillary interaction for the EXIN project

    Energy Technology Data Exchange (ETDEWEB)

    Bisesto, F.G., E-mail: fabrizio.giuseppe.bisesto@lnf.infn.it [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Sapienza – University of Rome, P.le Aldo Moro, 2, 00185 Rome (Italy); Anania, M.P. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Bacci, A.L. [INFN – Milano, Via Celoria 16, 20133 Milan (Italy); Bellaveglia, M.; Chiadroni, E. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Cianchi, A. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Universit degli studi di Roma Tor Vergata, Via di Tor Vergata, Rome (Italy); Curcio, A. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Sapienza – University of Rome, P.le Aldo Moro, 2, 00185 Rome (Italy); Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Galletti, M.; Gallo, A.; Ghigo, A. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Marocchino, A.; Mostacci, A.; Petrarca, M. [Sapienza – University of Rome, P.le Aldo Moro, 2, 00185 Rome (Italy); INFN – Roma1, P.le Aldo Moro, 2, 00185 Rome (Italy); Pompili, R. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Rossi, A.R.; Serafini, L. [INFN – Milano, Via Celoria 16, 20133 Milan (Italy); Vaccarezza, C. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy)

    2016-09-01

    The EXIN project is under development within the SPARC-LAB facility of the National Laboratory of Frascati (LNF-INFN). This project aims to accelerate pre-existing electron bunches with high brightness by exploiting the wakefield plasma acceleration technique, while preserving the initial brightness. The wakefield is excited inside a dielectric capillary by high intensity laser pulses produced by the FLAME laser interacting with a gas. In this work, we present numerical simulations in order to optimize energy coupling between our laser with super-Gaussian transverse profile and a dielectric capillary. Moreover, an overview of the experimental layout will be given.

  7. A novel in situ strategy for the preparation of a β-cyclodextrin/polydopamine-coated capillary column for capillary electrochromatography enantioseparations.

    Science.gov (United States)

    Guo, Heying; Niu, Xiaoying; Pan, Congjie; Yi, Tao; Chen, Hongli; Chen, Xingguo

    2017-06-01

    Inspired by the chiral recognition ability of β-cyclodextrin and the natural adhesive properties of polydopamine under alkaline conditions, in this study, a rapid and in situ modification strategy was developed to fabricate β-cyclodextrin/polydopamine composite material coated-capillary columns for open tubular capillary electrochromatography. The results of scanning electron microscopy, FTIR spectroscopy, streaming potential, and electro-osmotic flow studies indicated that β-cyclodextrin/polydopamine was successfully fixed on the inner wall of the capillary column. This coating can be achieved within 1 h affording a greatly reduced capillary preparation time. The performance of the β-cyclodextrin/polydopamine-coated capillary was validated by the analysis of seven pairs of chiral analytes, namely epinephrine, norepinephrine, isoprenaline, terbutaline, verapamil, tryptophane, carvedilol. Good enantioseparation efficiencies were achieved for all. For three consecutive runs, the relative standard deviations for the migration times of the analytes for intraday, interday, and column-to-column repeatability were in the range of 0.41-1.74, 1.03-4.18, and 1.66-8.24%, respectively. Moreover, the separation efficiency of the β-cyclodextrin/polydopamine-coated capillary column did not decrease obviously over 90 runs. The strategy should also be feasible to introduce and immobilize other chiral selectors on the inner walls surface of capillary columns. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Determination of clebopride in plasma by capillary gas chromatography-negative-ion chemical ionization mass spectrometry.

    Science.gov (United States)

    Robinson, P R; Jones, M D; Maddock, J

    1988-11-18

    A procedure for the analysis of clebopride in plasma using capillary gas chromatography-negative-ion chemical ionization mass spectrometry has been developed. Employing an ethoxy analogue as internal standard, the two compounds were extracted from basified plasma using dichloromethane. Subsequent reaction with heptafluorobutyryl imidazole produced volatile monoheptafluorobutyryl derivatives whose ammonia negative-ion mass spectra proved ideal for selected-ion monitoring. The recovery of clebopride from plasma at 0.536 nmol/l was found to be 85.5 +/- 0.9% (n = 3) whilst measurement down to 0.268 nmol/l was possible with a coefficient of variation of 7.9%. Plasma levels of the compound are reported in two volunteers following ingestion of 1 mg of clebopride as the malate salt.

  9. Capillary gas chromatographic separation of organic bases using a pH-adjusted basic water stationary phase.

    Science.gov (United States)

    Darko, Ernest; Thurbide, Kevin B

    2016-09-23

    The use of a pH-adjusted water stationary phase for analyzing organic bases in capillary gas chromatography (GC) is demonstrated. Through modifying the phase to typical values near pH 11.5, it is found that various organic bases are readily eluted and separated. Conversely, at the normal pH 7 operating level, they are not. Sodium hydroxide is found to be a much more stable base than ammonium hydroxide for altering the pH due to the higher volatility and evaporation of the latter. In the basic condition, such analytes are not ionized and are observed to produce good peak shapes even for injected masses down to about 20ng. By comparison, analyses on a conventional non-polar capillary GC column yield more peak tailing and only analyte masses of 1μg or higher are normally observed. Through carefully altering the pH, it is also found that the selectivity between analytes can be potentially further enhanced if their respective pKa values differ sufficiently. The analysis of different pharmaceutical and petroleum samples containing organic bases is demonstrated. Results indicate that this approach can potentially offer unique and beneficial selectivity in such analyses. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Direct Analysis of Organic Compounds in Liquid Using a Miniature Photoionization Ion Trap Mass Spectrometer with Pulsed Carrier-Gas Capillary Inlet.

    Science.gov (United States)

    Lu, Xinqiong; Yu, Quan; Zhang, Qian; Ni, Kai; Qian, Xiang; Tang, Fei; Wang, Xiaohao

    2017-08-01

    A miniature ion trap mass spectrometer with capillary direct sampling and vacuum ultraviolet photoionization source was developed to conduct trace analysis of organic compounds in liquids. Self-aspiration sampling is available where the samples are drawn into the vacuum chamber through a capillary with an extremely low flow rate (less than 1 μL/min), which minimizes sample consumption in each analysis to tens of micrograms. A pulsed gas-assisted inlet was designed and optimized to promote sample transmission in the tube and facilitate the cooling of ions, thereby improving instrument sensitivity. A limit of detection of 2 ppb could be achieved for 2,4-dimethylaniline in a methanol solution. The sampling system described in the present study is specifically suitable for a miniature photoionization ion trap mass spectrometer that can perform rapid and online analysis for liquid samples. Graphical Abstract ᅟ.

  11. A coupling modulation model of capillary waves from gravity waves: Theoretical analysis and experimental validation

    Science.gov (United States)

    Chen, Pengzhen; Wang, Xiaoqing; Liu, Li; Chong, Jinsong

    2016-06-01

    According to Bragg theory, capillary waves are the predominant scatterers of high-frequency band (such as Ka-band) microwave radiation from the surface of the ocean. Therefore, understanding the modulation mechanism of capillary waves is an important foundation for interpreting high-frequency microwave remote sensing images of the surface of the sea. In our experiments, we discovered that modulations of capillary waves are significantly larger than the values predicted by the classical theory. Further, analysis shows that the difference in restoring force results in an inflection point while the phase velocity changes from gravity waves region to capillary waves region, and this results in the capillary waves being able to resonate with gravity waves when the phase velocity of the gravity waves is equal to the group velocity of the capillary waves. Consequently, we propose a coupling modulation model in which the current modulates the capillary wave indirectly by modulating the resonant gravity waves, and the modulation of the former is approximated by that of the latter. This model very effectively explains the results discovered in our experiments. Further, based on Bragg scattering theory and this coupling modulation model, we simulate the modulation of normalized radar cross section (NRCS) of typical internal waves and show that the high-frequency bands are superior to the low-frequency bands because of their greater modulation of NRCS and better radiometric resolution. This result provides new support for choice of radar band for observation of wave-current modulation oceanic phenomena such as internal waves, fronts, and shears.

  12. Mixed Fluid Conditions: Capillary Phenomena

    KAUST Repository

    Santamarina, Carlos

    2017-07-06

    Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration, and surfactant concentration; on the other hand, the contact angle responds to interfacial tensions, surface topography, invasion velocity, and chemical interactions. Interfaces are not isolated but interact through the fluid pressure and respond to external fields. Jumps, snap-offs and percolating wetting liquids along edges and crevices are ubiquitous in real, non-cylindrical porous networks. Pore- and macroscale instabilities together with pore structure variability-and-correlation favor fluid trapping and hinder recovery efficiency. The saturation-pressure characteristic curve is affected by the saturation-history, flow-rate, the mechanical response of the porous medium, and time-dependent reactive and diffusive processes; in addition, there are salient differences between unsaturation by internal gas nucleation and gas invasion. Capillary forces add to other skeletal forces in the porous medium and can generate open-mode discontinuities when the capillary entry pressure is high relative to the effective stress. Time emerges as an important variable in mixed-fluid conditions and common quasi-static analyses may fail to capture the system response.

  13. Reversed-phase liquid chromatography coupled on-line with capillary gas chromatography use of an anion-exchange membrane to remove an ion-pair reagent from the eluent.

    NARCIS (Netherlands)

    Brinkman, U.A.T.; Goosens, E.C.; de Jong, D.; de Jong, G.J.; Beerthuizen, I.M.

    1995-01-01

    In order to enable the coupling of reversed-phase liquid chromatography (RPLC) with capillary gas chromatography (GC), the performance of an anion-exchange micromembrane device has been studied to remove the ion-pair reagent methanesulphonic acid from an acetonitrile/water LC eluent. The regenerant

  14. Isotopic fractionation of fentanyl and its deuterated analogues by capillary gas chromatography

    International Nuclear Information System (INIS)

    Sera, Shoji; Goromaru, Tsuyoshi

    1997-01-01

    Isotopic fractionation of fentanyl (FT) and its deuterated analogues by gas chromatography using capillary columns (CBP1 and CBP5) has been investigated. Seven kinds of analogues were labeled with 5 to 19 deuterium atoms at the anilino, propionyl and/or phenylethyl group of FT. The retention times of deuterated FT in CBP1 and CBP5 columns are inversely proportional to the number of labeled deuterium atoms in the molecule. The difference in free enegy changes (ΔΔG) had a linear relationship with the number of labeled deuterium atoms, except for labeling at anilino and phenylethyl group. The contribution of a deuterium atom to the ΔΔG value was estimated to be 1.13 cal/mol in CBP1 and 1.40 cal/mol in CBP5, respectively. While, its contribution in the propiony group was 2.84 cal/mol in CBP1 and 2.48 cal/mol in CBP5, respectively. An important factor in separation by GC may differences in interactions between the stationary phase of the column with the three dimensional protrusive moiety in the molecule. (author)

  15. Isotopic fractionation of fentanyl and its deuterated analogues by capillary gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Sera, Shoji; Goromaru, Tsuyoshi [Fukuyama Univ., Hiroshima (Japan)

    1997-12-01

    Isotopic fractionation of fentanyl (FT) and its deuterated analogues by gas chromatography using capillary columns (CBP1 and CBP5) has been investigated. Seven kinds of analogues were labeled with 5 to 19 deuterium atoms at the anilino, propionyl and/or phenylethyl group of FT. The retention times of deuterated FT in CBP1 and CBP5 columns are inversely proportional to the number of labeled deuterium atoms in the molecule. The difference in free enegy changes ({Delta}{Delta}G) had a linear relationship with the number of labeled deuterium atoms, except for labeling at anilino and phenylethyl group. The contribution of a deuterium atom to the {Delta}{Delta}G value was estimated to be 1.13 cal/mol in CBP1 and 1.40 cal/mol in CBP5, respectively. While, its contribution in the propiony group was 2.84 cal/mol in CBP1 and 2.48 cal/mol in CBP5, respectively. An important factor in separation by GC may differences in interactions between the stationary phase of the column with the three dimensional protrusive moiety in the molecule. (author)

  16. New capillary number definition for displacement of residual nonwetting phase in natural fractures

    NARCIS (Netherlands)

    Alquaimi, B.; Rossen, W.R.

    2017-01-01

    We propose a new capillary number for flow in fractures starting with a force balance on a trapped ganglion in a fracture. The new definition is validated with laboratory experiments using five distinctive model fractures. Capillary desaturation curves were generated experimentally using

  17. Thermally stable dexsil-400 glass capillary columns

    International Nuclear Information System (INIS)

    Maskarinec, M.P.; Olerich, G.

    1980-01-01

    The factors affecting efficiency, thermal stability, and reproducibility of Dexsil-400 glass capillary columns for gas chromatography in general, and for polycyclic aromatic hydrocarbons (PAHs) in particular were investigated. Columns were drawn from Kimble KG-6 (soda-lime) glass or Kimox (borosilicate) glass. All silylation was carried out at 200 0 C. Columns were coated according to the static method. Freshly prepared, degassed solutions of Dexsil-400 in pentane or methylene chloride were used. Thermal stability of the Dexsil 400 columns with respect to gas chromatography/mass spectrometry (GC/MS) were tested. Column-to-column variability is a function of each step in the fabrication of the columns. The degree of etching, extent of silylation, and stationary phase film thickness must be carefully controlled. The variability in two Dexsil-400 capillary column prepared by etching, silylation with solution of hexa methyl disilazone (HMDS), and static coating is shown and also indicates the excellent selectivity of Dexsil-400 for the separation of alkylated aromatic compounds. The wide temperature range of Dexsil-400 and the high efficiency of the capillary columns also allow the analysis of complex mixtures with minimal prefractionation. Direct injection of a coal liquefaction product is given. Analysis by GC/MS indicated the presence of parent PAHs, alkylated PAHs, nitrogen and sulfur heterocycles, and their alkylated derivatives. 4 figures

  18. Desing of a new driver for fast capillary discharge

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Boháček, Vladislav; Schmidt, Jiří; Šunka, Pavel; Řípa, Milan; Ullschmied, Jiří; Fuciman, Marcel

    2001-01-01

    Roč. 11, č. 11 (2001), s. Pr2-613 ISSN 1155-4339 Institutional research plan: CEZ:AV0Z2043910 Keywords : capillary Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.401, year: 2001

  19. [Is the use of plastic capillary tubes justified for blood gases analysis?].

    Science.gov (United States)

    Daurès, Marie-Françoise; Bozonnat, Marie-Cécile; Cristol, Jean-Paul

    2011-01-01

    Some clinical units, such as neonatal or maternity units, preferentially use capillary tubes when analysing blood gases. Using glass tubes is delicate and nurses must recollect blood when breaking. In order to eliminate this problem, we tested flexible, plastic capillary tubes in both the above mentionned units and in our biochemistry laboratory. Each unit, where glass tubes were habitually used, tested 200 flexible, plastic capillary tubes. In addition, the nursing staffed filled out a questionnaire concerned tube usage. Both units clearly preferred using the flexible tubes. In the laboratory, results for blood gas analyses were compared between rigid glass and flexible plastic capillary tubes for 112 patients. Concordance tests did not showed significant differences between the two tube types, except for hematocrit and total haemoglobin. A questionnaire was also presented to the lab technician, who confirmed the easier usability of plastic capillary tubes.

  20. Time effectiveness of capillary effect improvement of ramie fabrics processed by RF glow discharging

    International Nuclear Information System (INIS)

    Wang Zhiwen; Wei Weixing; He Yanhe; Zhao Yuanqing; Pan Liyiji; Li Xuemei; Shi Shaodui; Li Guangxin

    2010-01-01

    The time effectiveness of capillary effect improvement of ramie fabrics processed by RF glow discharging was studied. The ramie fabrics were processed in fulfilling with different gas (O 2 , N 2 , Ar) by different parameters (such as pressure,power and time) plasma. The capillary effect of the ramie fabrics processed by RF glow discharging was tested at different time. The results indicate that the capillary effect of ramie fabrics processed by RF glow discharging has been improved, the improvement of the capillary effect firstly decrease rapidly, then slowly, and become stable after 15 day, it indicate that improvement of the ramie fabrics capillary has good time effectiveness, and the plasma parameter for the best capillary effect improvement of ramie fabric is 100 W and 40 Pa processed 20 min by oxygen plasma. (authors)

  1. Capillary interactions in nano-particle suspensions

    International Nuclear Information System (INIS)

    Bossev, D.P.; Warren, G.

    2009-01-01

    We have investigated the structures formed by colloidal particles suspended in solvents at volume fractions below 10% and interacting through capillary bridges. Such systems resemble colloidal gas of sticky nano-spheres that form pearl-necklace like chains that, in turn, induce strong viscoelasticity due to the formation of 3-D fractal network. The capillary force dominates the electrostatic and Van der Waals forces in solutions and can bridge multiple particles depending of the volume of the capillary bridge. We have investigated the morphology of the structures formed at different fractions of the bridging fluid. Small-angle neutron scattering (SANS) is used to study nanoparticles with an average diameter of 10 nm in polar and non-polar organic solvents at ambient temperatures. SANS intensity as a function of the scattering vector is analyzed as a product of a form factor, that depends on the particle shape, and a structure factor, that characterizes the interparticle inter reactions. The interaction of particles in polar solvents is considered to be through electrostatic repulsion and the data is successfully fitted by Hayter-Penfold mean spherical approximation (HPMSA). Computer simulations of a pearl necklace-like chain of spheres is conducted to explain the structure factor when capillary bridges are present. Alternatively, we have analyzed the slope of the intensity at low scattering vector in a double logarithmic plot to determine the dimension of the fractal structures formed by the particles at different volume fraction of the bridging fluid. We have also studied the properties of the capillary bridge between a pair of particles. The significance of this study is to explore the possibility of using capillary force as a tool to engineer new colloidal structures and materials in solutions and to optimize their viscoelastic properties. (author)

  2. Chromatographic efficiency of polar capillary columns applied for the analysis of fatty acid methyl esters by gas chromatography.

    Science.gov (United States)

    Waktola, Habtewold D; Mjøs, Svein A

    2018-04-01

    The chromatographic efficiency that could be achieved in temperature-programmed gas chromatography was compared for four capillary columns that are typically applied for analysis of fatty acid methyl esters (FAME). Three different carrier gases, hydrogen, helium and nitrogen, were applied. For each experiment, the carrier gas velocities and the temperature rates were varied with a full 9 × 3 design, with nine levels on the carrier gas velocity and temperature rates of 1, 2 or 3°C/min. Response surface methodology was used to create models of chromatographic efficiency as a function of temperature rate and carrier gas velocity. The chromatographic efficiency was defined as the inverse of peak widths measured in retention index units. The final results were standardized so that the efficiencies that could be achieved within a certain time frame, defined by the retention time of the last compound in the chromatogram, could be compared. The results show that there were clear differences in the efficiencies that could be achieved with the different columns and that the efficiency decreased with increasing polarity of the stationary phase. The differences can be explained by higher resistance to mass transfer in the stationary phase in the most polar columns. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Enhancement of the EUV emission of a metallic capillary discharge operated with argon ambient gas

    Energy Technology Data Exchange (ETDEWEB)

    Chan, L. S., E-mail: lschan1982@yahoo.com; Tan, D., E-mail: lschan1982@yahoo.com; Saboohi, S., E-mail: lschan1982@yahoo.com; Yap, S. L., E-mail: lschan1982@yahoo.com; Wong, C. S., E-mail: lschan1982@yahoo.com [Plasma Technology Research Centre, Physics Department, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-03-05

    In this work, the metallic capillary discharge is operated with two different ambients: air and argon. In the experiments reported here, the chamber is first evacuated to 10{sup −5} mbar. The discharge is initiated by the transient hollow cathode effect generated electron beam, with either air ambient or argon ambient at 10{sup −4} mbar. The bombardment of electron beam at the tip of the stainless steel anode gives rise to a metallic vapor, which is injected into the capillary and initiates the main discharge through the capillary. The EUV emission is measured for different discharge voltages for both conditions and compared. It is found that the metallic capillary discharge with argon ambientis able to produce higher EUV energy compared to that with air ambient.

  4. Validation of spectral gas radiation models under oxyfuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Johann Valentin

    2013-05-15

    Combustion of hydrocarbon fuels with pure oxygen results in a different flue gas composition than combustion with air. Standard computational-fluid-dynamics (CFD) spectral gas radiation models for air combustion are therefore out of their validity range in oxyfuel combustion. This thesis provides a common spectral basis for the validation of new spectral models. A literature review about fundamental gas radiation theory, spectral modeling and experimental methods provides the reader with a basic understanding of the topic. In the first results section, this thesis validates detailed spectral models with high resolution spectral measurements in a gas cell with the aim of recommending one model as the best benchmark model. In the second results section, spectral measurements from a turbulent natural gas flame - as an example for a technical combustion process - are compared to simulated spectra based on measured gas atmospheres. The third results section compares simplified spectral models to the benchmark model recommended in the first results section and gives a ranking of the proposed models based on their accuracy. A concluding section gives recommendations for the selection and further development of simplified spectral radiation models. Gas cell transmissivity spectra in the spectral range of 2.4 - 5.4 {mu}m of water vapor and carbon dioxide in the temperature range from 727 C to 1500 C and at different concentrations were compared in the first results section at a nominal resolution of 32 cm{sup -1} to line-by-line models from different databases, two statistical-narrow-band models and the exponential-wide-band model. The two statistical-narrow-band models EM2C and RADCAL showed good agreement with a maximal band transmissivity deviation of 3 %. The exponential-wide-band model showed a deviation of 6 %. The new line-by-line database HITEMP2010 had the lowest band transmissivity deviation of 2.2% and was therefore recommended as a reference model for the

  5. Role of capillary electrophoresis in the fight against doping in sports.

    Science.gov (United States)

    Harrison, Christopher R

    2013-08-06

    At present the role of capillary electrophoresis in the detection of doping agents in athletes is, for the most part, nonexistent. More traditional techniques, namely gas and liquid chromatography with mass spectrometric detection, remain the gold standard of antidoping tests. This Feature will investigate the in-roads that capillary electrophoresis has made, the limitations that the technique suffers from, and where the technique may grow into being a key tool for antidoping analysis.

  6. Characterization of free and bound fatty acids in human gallstones by capillary gas liquid chromatography

    International Nuclear Information System (INIS)

    Channa, N.A.; Khand, F.D.; Noorani, M.A.; Bhanger, M.I.

    2002-01-01

    Forty-four human gallstone samples either of pure cholesterol or cholesterol and bilirubin were randomly selected and analyzed by capillary gas liquid chromatography for the relative percentage composition of free and total fatty acids. The results showed that bound fatty acids were present in higher amounts than the free fatty acids. Amongst the bound fatty acids the percentage occurrence for palmitic acid was highest followed by stearic, oleic, linoleic and myristic acids. Fatty acids myristic, palmitic and linoleic were present in higher amounts in cholesterol gallstones, whereas stearic acid in cholesterol and bilirubin gallstones. When compared, no significant difference (p < 0.05) in the levels of free and bound fatty acids were seen in gallstones of males and females. The results suggest that bound fatty acids have a role to play in the structure of gallstones. (author)

  7. Changes in the basic experimental parameters of capillary gas chromatography in the 20th century.

    Science.gov (United States)

    Berezkin, V G; Viktorova, E N

    2003-01-24

    Studies of qualitative changes in capillary gas chromatography are of significant practical and scientific interest. This paper analyzes the evolution of the most important experimental chromatographic parameters over the last three decades and is based on the use of a new approach to scientometrical research that is referred to as applied scientometry. One essential feature of this approach is that it looks at the entire contents of each paper rather than only taking account its title, abstract. and references (as is typical for conventional scientometry). In this paper, we monitor how the most important chromatographic parameters, such as column length and diameter, layer thickness, stationary liquid phases, separation temperature mode. etc., have been evolving over the period 1970-2000. We used data from the following journals: Chromatographia, Journal of Chromatography, and Journal of High Resolution Chromatography and Chromatography Communications.

  8. [Analysis of hydrogen isotopes by gas chromatography using a MnCl2 coated γ-Al2O3 capillary packed column].

    Science.gov (United States)

    Chen, Ping; Fu, Xiaolong; Hu, Peng; Xiao, Chengjian; Ren, Xingbi; Xia, Xiulong; Wang, Heyi

    2017-07-08

    The conventional packed column gas chromatographic analysis of hydrogen isotopes has low column efficiency, broad peak and long retention time. In this work, a γ -Al 2 O 3 with MnCl 2 coated capillary packed column was tested at cryogenic temperature. The systematic column efficiency analysis and the hydrogen isotopes analytical technique research had been carried out. The results showed that, the γ -Al 2 O 3 with MnCl 2 coating could greatly improve the surface degree of order, pore structure and adsorption properties. Also the o -H 2 peak and p -H 2 peak were eluted in a single area. The γ -Al 2 O 3 with MnCl 2 coating was packed into a 0.53 mm inner diameter and 1.0 m long fused silica capillary column. It had a good linear relationship used this column with thermal conductivity detector (TCD) to detect the volume concentrations of hydrogen isotopes from 1 to 10 mL/L, and the relative error was less than 5% for low concentration sample testing. For H 2 , HD and D 2 , the retention times can be shortened to 39, 46 and 60 s, respectively. The limits of detection were reduced to 0.046, 0.067 and 0.072 mL/L, respectively. Compared with conventional packed column, capillary packed column had sharper peak form, higher separation degree of adjacent components, shorter retention time and lower detection limits. The above results indicate that the capillary packed column with TCD detector can be used for fast detection of low concentration of hydrogen isotopes and their online analysis.

  9. The application of capillary microsampling in GLP toxicology studies.

    Science.gov (United States)

    Verhaeghe, Tom; Dillen, Lieve; Stieltjes, Hans; Zwart, Loeckie de; Feyen, Bianca; Diels, Luc; Vroman, Ann; Timmerman, Philip

    2017-04-01

    Capillary microsampling (CMS) to collect microplasma volumes is gradually replacing traditional, larger volume sampling from rats in GLP toxicology studies. About 32 µl of blood is collected with a capillary, processed to plasma and stored in a 10- or 4-µl capillary which is washed out further downstream in the laboratory. CMS has been standardized with respect to materials, assay validation experiments and application for sample analysis. The implementation of CMS has resulted in blood volume reductions in the rat from 300 to 32 µl per time point and the elimination of toxicokinetic satellite groups in the majority of the rat GLP toxicology studies. The technique has been successfully applied in 26 GLP studies for 12 different projects thus far.

  10. Two-dimensional capillary electrophoresis: capillary isoelectric focusing and capillary zone electrophoresis with laser-induced fluorescence detection

    Science.gov (United States)

    Dickerson, Jane A.; Ramsay, Lauren M.; Dada, Oluwatosin O.; Cermak, Nathan

    2011-01-01

    Capillary isoelectric focusing and capillary zone electrophoresis are coupled with laser-induced fluorescence detection to create an ultrasensitive two-dimensional separation method for proteins. In this method, two capillaries are joined through a buffer filled interface. Separate power supplies control the potential at the injection end of the first capillary and at the interface; the detector is held at ground potential. Proteins are labeled with the fluorogenic reagent Chromeo P503, which preserves the isoelectric point of the labeled protein. The labeled proteins were mixed with ampholytes and injected into the first dimension capillary. A focusing step was performed with the injection end of the capillary at high pH and the interface at low pH. To mobilize components, the interface was filled with a high pH buffer, which was compatible with the second dimension separation. A fraction was transferred to the second dimension capillary for separation. The process of fraction transfer and second dimension separation was repeated two dozen times. The separation produced a spot capacity of 125. PMID:20603830

  11. Capillary gas chromatographic analysis of nerve agents using large volume injections. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Deinum, T.; Nieuwenhuy, C.

    1994-11-01

    The procedure developed at TNO-Prins Maurits Laboratory (TNO-PML) for the verification of intact organophosphorus chemical warfare agents in water samples was improved. The last step in this procedure, the laborious and non-reproducible transfer of an ethyl acetate extract onto a Tenax-adsorption tube followed by thermal desorption of the Tenax-tube, was replaced by large volume injection of the extract onto a capillary gas chromatographic system. The parameters controlling the injection of a large volume of an extract (200 ul) were investigated and optimized. As ethyl acetate caused severe problems, potential new solvents were evaluated. With the improved procedure, the nerve agents sarin, tabun, soman, diisopropyl fluorophosphate (DFP) and VX could be determined in freshly prepared water samples at pg/ml (ppt) levels. The fate of the nerve agents under study in water at two pH`s (4.8 and 6) was investigated. For VX, the pH should be adjusted before extraction. Moreover, it is worthwhile to acidify water samples to diminish hydrolysis.

  12. Trace analysis of halogenated hydrocarbons in gaseous samples by on-line enrichment in an adsorption trap, on-column cold-trapping and capillary gas chromatography. I.Method and instrumentation

    NARCIS (Netherlands)

    Noij, T.H.M.; Fabian, P.; Borchers, R.; Janssen, F.; Cramers, C.A.M.G.; Rijks, J.A.

    1987-01-01

    A method is described for the determination of halocarbons in gaseous samples down to the ppt level (1:1012, v/v), consisting of successive on-line sub-ambient enrichment on an adsorbent, on-column cryofocusing, capillary gas chromatography and electron-capture detection. The quantitative aspects of

  13. EVEGAS Project (European validation exercise of GAS migration model)

    Energy Technology Data Exchange (ETDEWEB)

    Manai, T. [Geostock S.A., Rueil-Malmaison (France)

    1995-03-01

    The EVEGAS project aims at the verification and validation of numerical codes suitable for simulating gas flow phenomenon in low permeability porous media. Physical phenomena involved in gas generation and gas flow are numerous, often complex, and may not be very well described. The existing numerical codes cannot represent all the occurring possible phenomena, but allow a good trade-off betwen simplicity and representativity of such phenomena. Two phase flow (Gas and Water) appear to be the most consequential phenomena in gas migration and pressure sizing. The project is organised in three major steps: (1) a simple problem with analytical solutions. (2) A few problems based on laboratory or in-situ experiments. (3) A 3-D repository scenarios involving the following aspects: a repository design; a source of gas; rock characteristics; and fluid characteristics.

  14. Measurement of Muscle Protein Fractional Synthetic Rate by Capillary Gas Chromatography/Combustion Isotope Ratio Mass Spectrometry

    Science.gov (United States)

    Yarasheski, Kevin E.; Smith, Kenneth; Rennie, Michael J.; Bier, Dennis M.

    2014-01-01

    The measurement of skeletal muscle protein fractional synthetic rate using an infusion of (1-13C)leucine and measuring the isotopic abundance of the tracer in skeletal muscle protein by preparative gas chromatography (GC)/ninhydrin isotope ratio mass spectrometry (IRMS) is laborious and subject to errors owing to contamination by 12C. The purpose of this study was to compare muscle (13C)leucine enrichment measured with the conventional preparative GC/ninhydrin IRMS approach to a new, continuous-flow technique using capillary GC/combustion IRMS. Quadriceps muscles were removed from four Sprague–Dawley rats after each was infused at a different rate with (1-13C)leucine for 6–8 h. Muscle leucine enrichment (at.% excess) measured by both methods differed by less than 4%, except at low (13C)leucine enrichments (IRMS was used to assess muscle (13C)leucine enrichment and fractional muscle protein synthesis rate in ten normal young men and women infused with (1,2-13C2)leucine for 12–14 h. This approach reduced the variability of the isotope abundance measure and gave estimates of muscle protein synthesis rate (0.050 ± 0.011% h−1 (mean ± SEM); range = 0.023–0.147% h−1) that agree with published values determined using the standard analytical approach. The measurement of (13C)leucine enrichment from skeletal muscle protein by capillary GC/combustion IRMS provides a simple, acceptable and practical alternative to preparative GC/ninhydrin IRMS. PMID:1420371

  15. Gas-chromatographic separation of hydrogen isotopes mixtures on capillary molecular sieve 5 A column at 173 K

    International Nuclear Information System (INIS)

    Bidica, N.; Preda, A.; Stanciu, V.

    2002-01-01

    Analysis of a gas mixture of hydrogen species, is not too easy because the differences in their physical-chemical properties are very small; the most different are their masses, and consequently most common analytical method appear to be the mass-spectrometry. However, the impossibility to distinguish between two ions (atomic or molecular) with the same mass renders this method as unapplicable. Another problem is the decay of tritium with production of 3 He. These disadvantages of mass-spectrometry have made that other analytical methods, like gas chromatography, to be considered and developed. Thus, there are many papers about various chromatographic columns especially prepared for hydrogen species separation but the preparation and treatment of these columns are very difficult to reproduce. Besides these, there are two other main disadvantages: column operating temperature is very low and long retention times for hydrogen species (more than half an hour) are required. However, the gas-chromatography method still remains an appropriate one. The method described in this paper was based on using a capillary molecular sieve 5A column which has been operated for this kind of separation. The retention times were relatively short, about 8-9 minutes. The carrier gas was Ne and the detector - TCD. In the paper chromatograms for various carrier flow rates and various hydrogen isotope mixtures are presented. The results demonstrated a quite good efficiency for H 2 , HD, D 2 and a not very good one for orthoH 2 -paraH 2 . (authors)

  16. Validation of CATHARE for gas-cooled reactors

    International Nuclear Information System (INIS)

    Fabrice Bentivoglio; Ola Widlund; Manuel Saez

    2005-01-01

    Full text of publication follows: Extensively validated and qualified for light-water reactor safety studies, the thermo-hydraulics code CATHARE has been adapted to deal also with gas-cooled reactor applications. In order to validate the code for these novel applications, CEA (Commissariat a l'Energie Atomique) has initiated an ambitious long-term experimental program. The foreseen experimental facilities range from small-scale loops for physical correlations, to component technology and system demonstration loops. In the short-term perspective, CATHARE is being validated against existing experimental data, in particular from the German power plant Oberhausen II and the South African Pebble-Bed Micro Model (PBMM). Oberhausen II, operated by the German utility EVO, is a 50 MW(e) direct-cycle Helium turbine plant. The power source is a gas burner rather than a nuclear reactor core, but the power conversion system resembles those of the GFR (Gas-cooled Fast Reactor) and other high-temperature reactor concepts. Oberhausen II was operated for more than 100 000 hours between 1974 and 1988. Design specifications, drawings and experimental data have been obtained through the European HTR project, offering a unique opportunity to validate CATHARE on a large-scale Brayton cycle. Available measurements of temperatures, pressures and mass flows throughout the circuit have allowed a very comprehensive thermohydraulic description of the plant, in steady-state conditions as well as during transients. The Pebble-Bed Micro Model (PBMM) is a small-scale model conceived to demonstrate the operability and control strategies of the South African PBMR concept. The model uses Nitrogen instead of Helium, and an electrical heater with a maximum rating of 420 kW. As the full-scale PBMR, the PBMM loop features three turbines and two compressors on the primary circuit, located on three separate shafts. The generator, however, is modelled by a third compressor on a separate circuit, with a

  17. 3D capillary valves for versatile capillary patterning of channel walls

    NARCIS (Netherlands)

    Papadimitriou, Vasileios; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    We demonstrate passive capillary patterning of channel walls with a liquid in situ. Patterning is performed using a novel 3D capillary valve system combining three standard capillary stop valves. A range of different patterns is demonstrated in three channel walls. Capillary patterning was designed

  18. Multiphase Transport in Porous Media: Gas-Liquid Separation Using Capillary Pressure Gradients International Space Station (ISS) Flight Experiment Development

    Science.gov (United States)

    Wheeler, Richard R., Jr.; Holtsnider, John T.; Dahl, Roger W.; Deeks, Dalton; Javanovic, Goran N.; Parker, James M.; Ehlert, Jim

    2013-01-01

    Advances in the understanding of multiphase flow characteristics under variable gravity conditions will ultimately lead to improved and as of yet unknown process designs for advanced space missions. Such novel processes will be of paramount importance to the success of future manned space exploration as we venture into our solar system and beyond. In addition, because of the ubiquitous nature and vital importance of biological and environmental processes involving airwater mixtures, knowledge gained about fundamental interactions and the governing properties of these mixtures will clearly benefit the quality of life here on our home planet. The techniques addressed in the current research involving multiphase transport in porous media and gas-liquid phase separation using capillary pressure gradients are also a logical candidate for a future International Space Station (ISS) flight experiment. Importantly, the novel and potentially very accurate Lattice-Boltzmann (LB) modeling of multiphase transport in porous media developed in this work offers significantly improved predictions of real world fluid physics phenomena, thereby promoting advanced process designs for both space and terrestrial applications.This 3-year research effort has culminated in the design and testing of a zero-g demonstration prototype. Both the hydrophilic (glass) and hydrophobic (Teflon) media Capillary Pressure Gradient (CPG) cartridges prepared during the second years work were evaluated. Results obtained from ground testing at 1-g were compared to those obtained at reduced gravities spanning Martian (13-g), Lunar (16-g) and zero-g. These comparisons clearly demonstrate the relative strength of the CPG phenomena and the efficacy of its application to meet NASAs unique gas-liquid separation (GLS) requirements in non-terrestrial environments.LB modeling software, developed concurrently with the zero-g test effort, was shown to accurately reproduce observed CPG driven gas-liquid separation

  19. Fast temperature programming in gas chromatography using resistive heating

    NARCIS (Netherlands)

    Dallüge, J.; Ou-Aissa, R.; Vreuls, J.J.; Brinkman, U.A.T.; Veraart, J.R.

    1999-01-01

    The features of a resistive-heated capillary column for fast temperature-programmed gas chromatography (GC) have been evaluated. Experiments were carried out using a commercial available EZ Flash GC, an assembly which can be used to upgrade existing gas chromatographs. The capillary column is placed

  20. Application of capillary gas chromatography-mass spectrometry to chemical characterization of radiation-induced base damage of DNA: implications for assessing DNA repair processes

    International Nuclear Information System (INIS)

    Dizdaroglu, M.

    1985-01-01

    The application of capillary gas chromatography-mass spectrometry (GC-MS) to the chemical characterization of radiation-induced base products of calf thymus DNA is presented. Samples of calf thymus DNA irradiated in N 2 O-saturated aqueous solution were hydrolyzed with HCOOH, trimethylsilylated, and subjected to GC-MS analysis using a fused-silica capillary column. Hydrolysis conditions suitable for the simultaneous analysis of the radiation-induced products of all four DNA bases in a single run were determined. The trimethylsilyl derivatives of these products had excellent GC properties and easily interpretable mass spectra; an intense molecular ion (M+.) and a characteristic (M-CH 3 )+ ion were observed. The complementary use of t-butyldimethylsilyl derivatives was also demonstrated. These derivatives provided an intense characteristic (M-57)+ ion, which appeared as either the base peak or the second most intense ion in the spectra. All mass spectra obtained are discussed

  1. Fast gas heating and radial distribution of active species in nanosecond capillary discharge in pure nitrogen and N2:O2 mixtures

    Science.gov (United States)

    Lepikhin, N. D.; Popov, N. A.; Starikovskaia, S. M.

    2018-05-01

    Fast gas heating is studied experimentally and numerically using pulsed nanosecond capillary discharge in pure nitrogen and N2:O2 mixtures under the conditions of high specific deposited energy (up to 1 eV/molecule) and high reduced electric fields (100–300 Td). Deposited energy, electric field and gas temperature are measured as functions of time. The radial distribution of active species is analyzed experimentally. The roles of processes involving {{{N}}}2({{B}}) ={{{N}}}2({{{B}}}3{{{\\Pi }}}{{g}},{{{W}}}3{{{Δ }}}{{u}},{{B}}{{\\prime} }3{{{Σ }}}{{u}}-), {{{N}}}2({{{A}}}3{{{Σ }}}{{u}}+) and N(2D) excited nitrogen species leading to heat release are analyzed using numerical modeling in the framework of 1D axial approximation.

  2. Hyperbaric oxygen treatment for air or gas embolism.

    Science.gov (United States)

    Moon, R E

    2014-01-01

    Gas can enter arteries (arterial gas embolism) due to alveolar-capillary disruption (caused by pulmonary overpressurization, e.g., breath-hold ascent by divers) or veins (venous gas embolism, VGE) as a result of tissue bubble formation due to decompression (diving, altitude exposure) or during certain surgical procedures where capillary hydrostatic pressure at the incision site is sub-atmospheric. Both AGE and VGE can be caused by iatrogenic gas injection. AGE usually produces strokelike manifestations, such as impaired consciousness, confusion, seizures and focal neurological deficits. Small amounts of VGE are often tolerated due to filtration by pulmonary capillaries. However, VGE can cause pulmonary edema, cardiac "vapor lock" and AGE due to transpulmonary passage or right-to-left shunt through a patent foramen ovale. Intravascular gas can cause arterial obstruction or endothelial damage and secondary vasospasm and capillary leak. Vascular gas is frequently not visible with radiographic imaging, which should not be used to exclude the diagnosis of AGE. Isolated VGE usually requires no treatment; AGE treatment is similar to decompression sickness (DCS), with first aid oxygen then hyperbaric oxygen. Although cerebral AGE (CAGE) often causes intracranial hypertension, animal studies have failed to demonstrate a benefit of induced hypocapnia. An evidence-based review of adjunctive therapies is presented.

  3. Design and evaluation of capillary coupled with optical fiber light-emitting diode induced fluorescence detection for capillary electrophoresis.

    Science.gov (United States)

    Ji, Hongyun; Li, Meng; Guo, Lihong; Yuan, Hongyan; Wang, Chunling; Xiao, Dan

    2013-09-01

    A new detector, capillary coupled with optical fiber LED-induced fluorescence detector (CCOF-LED-IFD, using CCOF for short), is introduced for CE. The strategy of the present work was that the optical fiber and separation capillary were, in the parallel direction, fastened in a fixation capillary with larger inner diameter. By employing larger inner diameter, the fixation capillary allowed the large diameter of the optical fiber to be inserted into it. By transmitting an enhanced excitation light through the optical fiber, the detection sensitivity was improved. The advantages of the CCOF-CE system were validated by the detection of riboflavin, and the results were compared to those obtained by the in-capillary common optical fiber LED-induced fluorescence detector (IC-COF-LED-IFD, using COF for short). The LODs of CCOF-CE and COF-CE were 0.29 nM and 11.0 nM (S/N = 3), respectively. The intraday (n = 6) repeatability and interday (n = 6) reproducibility of migration time and corresponding peak area for both types of CE were all less than 1.10 and 3.30%, respectively. The accuracy of the proposed method was judged by employing standard addition method, and recoveries obtained were in the range of 98.0-102.4%. The results indicated that the sensitivity of the proposed system was largely improved, and that its reproducibility and accuracy were satisfactory. The proposed system was successfully applied to separate and determine riboflavin in real sample. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. [Determination of 44 organophosphorus pesticides in food by SPE disk extraction-capillary gas chromatography with pulsed flame photometric detection].

    Science.gov (United States)

    Luo, Xiao-Fei; Yang, Yuan; Sun, Cheng-Jun

    2012-01-01

    To develop a method for the simultaneous determination of 44 organophosphorus pesticides in food by SPE disk extraction-capillary gas chromatography with pulsed flame photometric detection. Organophosphorus pesticides in food were extracted ultrasonically with water. Then the extract was cleaned-up with SPE disk and eluted with ethyl acetate. Finally the eluent was condensed to 1mL under N2 at 55 degrees C. Gas chromatography was applied for quantitative detection of the organophosphorus pesticides in the sample. The linear range of the method for all the pesticides were in the range of 0.01-0.5 mg/kg with correlation coefficients of 0.992-1.000. The detection limits of the method were in the range of 0.0005-0.01 mg/kg. The recoveries for most pesticides were 60%-120% with relative standard deviations of less than 15%. The method is simple, sensitive, environmentally friendly and suitable for the determination of organophosphorous pesticides in food.

  5. New Liquid Phases for the Gas Chromatographic Separation of Strong Bases on Capillary Columns

    OpenAIRE

    Grob, K.

    2017-01-01

    The current practice of pretreating the solid support with free alkali to increase separation efficiency for basic compounds proved to be unsuitable for capillary columns. Instead of this, homogenous organic materials of high base strength are required. We found polyethylene imine (PEI) and polypropylene imine (PPI) to be very efficient as liquid phases of capillary columns for the separation of bases. The preparation of polymers is mentioned. Silanization or acetylation of the free hydroxyl ...

  6. Slope wavenumber spectrum models of capillary and capillary-gravity waves

    Institute of Scientific and Technical Information of China (English)

    贾永君; 张杰; 王岩峰

    2010-01-01

    Capillary and capillary-gravity waves possess a random character, and the slope wavenumber spectra of them can be used to represent mean distributions of wave energy with respect to spatial scale of variability. But simple and practical models of the slope wavenumber spectra have not been put forward so far. In this article, we address the accurate definition of the slope wavenumber spectra of water surface capillary and capillary-gravity waves. By combining the existing slope wavenumber models and using th...

  7. Statistical intensity variation analysis for rapid volumetric imaging of capillary network flux.

    Science.gov (United States)

    Lee, Jonghwan; Jiang, James Y; Wu, Weicheng; Lesage, Frederic; Boas, David A

    2014-04-01

    We present a novel optical coherence tomography (OCT)-based technique for rapid volumetric imaging of red blood cell (RBC) flux in capillary networks. Previously we reported that OCT can capture individual RBC passage within a capillary, where the OCT intensity signal at a voxel fluctuates when an RBC passes the voxel. Based on this finding, we defined a metric of statistical intensity variation (SIV) and validated that the mean SIV is proportional to the RBC flux [RBC/s] through simulations and measurements. From rapidly scanned volume data, we used Hessian matrix analysis to vectorize a segment path of each capillary and estimate its flux from the mean of the SIVs gathered along the path. Repeating this process led to a 3D flux map of the capillary network. The present technique enabled us to trace the RBC flux changes over hundreds of capillaries with a temporal resolution of ~1 s during functional activation.

  8. Nonaqueous capillary electrophoresis of dextromethorphan and its metabolites.

    Science.gov (United States)

    Pelcová, Marta; Langmajerová, Monika; Cvingráfová, Eliška; Juřica, Jan; Glatz, Zdeněk

    2014-10-01

    This study deals with the nonaqueous capillary electrophoretic separation of dextromethorphan and its metabolites using a methanolic background electrolyte. The optimization of separation conditions was performed in terms of the resolution of dextromethorphan and dextrorphan and the effect of separation temperature, voltage, and the characteristics of the background electrolyte were studied. Complete separation of all analytes was achieved in 40 mM ammonium acetate dissolved in methanol. Hydrodynamic injection was performed at 3 kPa for 4 s. The separation voltage was 20 kV accompanied by a low electric current. The ultraviolet detection was performed at 214 nm, the temperature of the capillary was 25°C. These conditions enabled the separation of four analytes plus the internal standard within 9 min. Further, the developed method was validated in terms of linearity, sensitivity, and repeatability. Rat liver perfusate samples were subjected to the nonaqueous capillary electrophoretic method to illustrate its applicability. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Identification of thermal degradation products of polymers by capillary gas chromatography

    NARCIS (Netherlands)

    Pacakova, V.; Borecka, M.; Leclercq, P.A.; Kaiser, R.E.

    1981-01-01

    Samples of polyethylene, polypropylene, polystyrene and five styrene copolymers were thermally degraded in a quartz tubular reactor at 5100e in an inert atmosphere. The degradation products were separated on-line on capillary coltmlS coated with squalane, OV-17 and SE-30 as stationary phases. The

  10. Sapphire capillaries for laser-driven wakefield acceleration in plasma. Fs-laser micromachining and characterization

    International Nuclear Information System (INIS)

    Schwinkendorf, Jan-Patrick

    2012-05-01

    Plasma wakefields are a promising approach for the acceleration of electrons with ultrahigh (10 to 100 GV/m) electric fields. Nowadays, high-intensity laser pulses are routinely utilized to excite these large-amplitude plasma waves. However, several detrimental effects such as laser diffraction, electron-wake dephasing and laser depletion may terminate the acceleration process. Two of these phenomena can be mitigated or avoided by the application of capillary waveguides, e.g. fabricated out of sapphire for longevity. Capillaries may compensate for laser diffraction like a fiber and allow for the creation of tapered gas-density profiles working against the dephasing between the accelerating wave and the particles. Additionally, they offer the possibility of controlled particle injection. This thesis is reporting on the set up of a laser for fs-micromachining of capillaries of almost arbitrary shapes and a test stand for density-profile characterization. These devices will permit the creation of tailored gas-density profiles for controlled electron injection and acceleration inside plasma.

  11. Sapphire capillaries for laser-driven wakefield acceleration in plasma. Fs-laser micromachining and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, Jan-Patrick

    2012-08-15

    Plasma wakefields are a promising approach for the acceleration of electrons with ultrahigh (10 to 100 GV/m) electric fields. Nowadays, high-intensity laser pulses are routinely utilized to excite these large-amplitude plasma waves. However, several detrimental effects such as laser diffraction, electron-wake dephasing and laser depletion may terminate the acceleration process. Two of these phenomena can be mitigated or avoided by the application of capillary waveguides, e.g. fabricated out of sapphire for longevity. Capillaries may compensate for laser diffraction like a fiber and allow for the creation of tapered gas-density profiles working against the dephasing between the accelerating wave and the particles. Additionally, they offer the possibility of controlled particle injection. This thesis is reporting on the set up of a laser for fs-micromachining of capillaries of almost arbitrary shapes and a test stand for density-profile characterization. These devices will permit the creation of tailored gas-density profiles for controlled electron injection and acceleration inside plasma.

  12. Measurements of capillary pressure and electric permittivity of gas-water systems in porous media at elevated pressures : Application to geological storage of CO2 in aquifers and wetting behavior in coal

    NARCIS (Netherlands)

    Plug, W.J.

    2007-01-01

    Sequestration of CO2 in aquifers and coal layers is a promising technique to reduce greenhouse gas emissions. Considering the reservoir properties, e.g. wettability, heterogeneity and the caprocks sealing capacity, the capillary pressure is an important measure to evaluate the efficiency, the

  13. Trends in the analysis of natural gas by capillary gas chromatography

    NARCIS (Netherlands)

    Cramers, C.A.M.G.; Rossum, van G.J.

    1986-01-01

    The importance of correct determination of physical and chemical properties of natural gas is evident. The calculation of calorific value or hydrocarbon dew point requires detailed analysis as can be provided by gas chromatography. Analysis by gas chromatography is a necessary complement to direct

  14. The analysis of semi-volatile and non-volatile petroleum hydrocarbons in a soil/sediment matrix by capillary column gas chromatography/flame ionization detection (GC/FID)

    International Nuclear Information System (INIS)

    George, J.E. III; Thoma, J.J.; Hastings, M.

    1990-01-01

    A comprehensive analysis for semi-volatile and non-volatile fractions of petroleum hydrocarbons can be achieved by a solvent extraction/concentration techniques that will effectively extract these high molecular weight fractions from a soil matrix. The prepared extract is then injected directly into a gas chromatograph equipped with a capillary column and flame ionization detector. This technique applies to the following types of commercially available petroleum hydrocarbons: Diesel Nos. 2,4,5, and 6, fuel oils and several grades of lubrication oil. The identification of a particular petroleum hydrocarbon is determined visually by comparison of the samples with known hydrocarbon standards. Accurate quantitation of the chromatograms is possible by using peak area summation and the presence of an internal standard. The practical quantitation limit for the method is 10 mg/Kg for most fuel types. This paper presents a method for determining the concentration of these fuel types in soil. Data will be presented only on 10W40 lubrication oil in terms of method validation, calibration, percent recovery, and method detection limits. A discussion of the quatitation techniques used will also be included

  15. Validation of OpenFoam for heavy gas dispersion applications.

    Science.gov (United States)

    Mack, A; Spruijt, M P N

    2013-11-15

    In the present paper heavy gas dispersion calculations were performed with OpenFoam. For a wind tunnel test case, numerical data was validated with experiments. For a full scale numerical experiment, a code to code comparison was performed with numerical results obtained from Fluent. The validation was performed in a gravity driven environment (slope), where the heavy gas induced the turbulence. For the code to code comparison, a hypothetical heavy gas release into a strongly turbulent atmospheric boundary layer including terrain effects was selected. The investigations were performed for SF6 and CO2 as heavy gases applying the standard k-ɛ turbulence model. A strong interaction of the heavy gas with the turbulence is present which results in a strong damping of the turbulence and therefore reduced heavy gas mixing. Especially this interaction, based on the buoyancy effects, was studied in order to ensure that the turbulence-buoyancy coupling is the main driver for the reduced mixing and not the global behaviour of the turbulence modelling. For both test cases, comparisons were performed between OpenFoam and Fluent solutions which were mainly in good agreement with each other. Beside steady state solutions, the time accuracy was investigated. In the low turbulence environment (wind tunnel test) which for both codes (laminar solutions) was in good agreement, also with the experimental data. The turbulent solutions of OpenFoam were in much better agreement with the experimental results than the Fluent solutions. Within the strong turbulence environment, both codes showed an excellent comparability. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Acquisition system environmental effects study. [for capillary-screen propellant retention devices

    Science.gov (United States)

    1975-01-01

    The effects of vibration, warm gas exposure, and feed system startup/shutdown fluid dynamics on capillary-screen propellant retention capabilities are quantified. The existing technology is extended to the point where quantitative conlusions in terms of design criteria may be drawn.

  17. Nucleation theory - Is replacement free energy needed?. [error analysis of capillary approximation

    Science.gov (United States)

    Doremus, R. H.

    1982-01-01

    It has been suggested that the classical theory of nucleation of liquid from its vapor as developed by Volmer and Weber (1926) needs modification with a factor referred to as the replacement free energy and that the capillary approximation underlying the classical theory is in error. Here, the classical nucleation equation is derived from fluctuation theory, Gibb's result for the reversible work to form a critical nucleus, and the rate of collision of gas molecules with a surface. The capillary approximation is not used in the derivation. The chemical potential of small drops is then considered, and it is shown that the capillary approximation can be derived from thermodynamic equations. The results show that no corrections to Volmer's equation are needed.

  18. Energy efficiency of the laser control of gas diffusion through capillaries

    International Nuclear Information System (INIS)

    Karlov, N.V.; Orlov, A.N.; Petrov, Y.N.; Prokhorov, A.M.

    1983-01-01

    In summary, these experimental results show that the energy which would be consumed in a heterogeneous separation process based on the laser control of the diffusion of resonant gases through capillaries would be less than one photon per separated molecule, and this energy might approach the limits set by the laws of thermodynamics

  19. Controlling the role of nanopore morphology in capillary condensation.

    Science.gov (United States)

    Casanova, Fèlix; Chiang, Casey E; Ruminski, Anne M; Sailor, Michael J; Schuller, Ivan K

    2012-05-01

    The effect of pore morphology on capillary condensation and evaporation in nanoporous silicon is studied experimentally. A variety of cooperative and local effects are observed in tailored nanopores with well-defined regions by directly probing gas adsorption in each region using optical interferometry. All observations are ascribed to the ability of the nanopore region to access the gas reservoir directly and the nucleation of liquid bridges at local heterogeneities within the nanopore region. These assumptions, consistent with recent simulations, can be extended to any real nanoporous system.

  20. Parametric study of a capillary tube-suction line heat exchanger in a transcritical CO2 heat pump cycle

    International Nuclear Information System (INIS)

    Agrawal, Neeraj; Bhattacharyya, Souvik

    2008-01-01

    The capillary tube in a transcritical CO 2 system behaves differently as temperature and pressure are two independent parameters unlike those in a sub-critical cycle. A capillary tube-suction line heat exchanger (CL-SLHX) in a transcritical vapour compression cycle considering homogeneous two-phase flow is modelled in this study based on mass, energy and momentum equations. Effects of gas cooler temperature, evaporator temperature and internal diameter of capillary tube are investigated. Heat transfer rate is observed to be influenced by refrigerant quality, mass flow rate and the prevailing temperature difference. Heat transfer rate variation with gas cooler temperature is unique, recording an initial increase followed by a decrease. Frictional pressure drop influences the heat transfer; consequently, chances of re-condensation of refrigerant vapour are very marginal. Larger diameter of capillary tube leads to increase in refrigerant mass flow rate and increase in heat transfer rate as well. Shorter inlet adiabatic capillary length with larger heat exchanger length is better for heat transfer. This study is an attempt to dispel the scepticism prevailing in transcritical CO 2 system community overemphasising the need for a throttle valve to control the optimum discharge pressure

  1. Simultaneous determination of polyamines, N-acetylated polyamines and the polyamine analogues BE-3-3-3 and BE-4-4-4-4 by capillary gas chromatography with nitrogen-phosphorus detection

    NARCIS (Netherlands)

    Dorhout, B; Kingma, AW; deHoog, E; Muskiet, FAJ

    1997-01-01

    We describe a method for the profiling of polyamines, N-acetylated polyamines and the polyamine analogues N-1,N-11 bis(ethyl)norspermine (BE-3-3-3) and 1,19-bis(ethylamino)-5,10,15-triazanonadecane (BE-4-4-4-4) in L1210 murine leukaemia cells by capillary gas chromatography with nitrogen-phosphorus

  2. Multiple capillary biochemical analyzer

    Science.gov (United States)

    Dovichi, N.J.; Zhang, J.Z.

    1995-08-08

    A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibers to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands. 21 figs.

  3. Capillaries for use in a multiplexed capillary electrophoresis system

    Science.gov (United States)

    Yeung, E.S.; Chang, H.T.; Fung, E.N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  4. Validation of OpenFoam for heavy gas dispersion applications

    NARCIS (Netherlands)

    Mack, A.; Spruijt, M.P.N.

    2013-01-01

    In the present paper heavy gas dispersion calculations were performed with OpenFoam. For a windtunnel test case, numerical data was validated with experiments. For a full scale numerical experiment,a code to code comparison was performed with numerical results obtained from Fluent. The validationwas

  5. A capillary-based perfusion phantom for simulation of brain perfusion for MRI

    International Nuclear Information System (INIS)

    Maciak, A.; Kronfeld, A.; Mueller-Forell, W.; Wille, C.; Kempski, O.; Stoeter, P.

    2010-01-01

    Purpose: The measurement of the CBF is a non-standardized procedure and there are no reliable gold standards. This abstract shows a capillary-based perfusion-phantom for CE-DSC-MRI. It has equivalent flow properties to those within the tissue capillary system of the human brain and allows the validation of the Siemens Perfusion (MR) software. Materials and Methods: The perfusion phantom consists of a dialyzer for the simulation of the capillary system, a feeding tube for simulation of the AIF and a pulsatile pump for simulation of the heart. Using this perfusion phantom, the exact determination of the gold standard CBF due to the well-known geometry of the phantom is easy. It was validated based on different perfusion measurements. These measurements were investigated with standard software (Siemens Perfusion MR). The software determined the CBF within the capillary system. Based on this CBF, a comparison to the gold standard was made with several different flow speeds. After AIF selection, a total of 726 CBF data points were automatically extracted by the software. Results: This results in a comparison of the gold standard CBF to these 726 CBF values. Therefore, a reproducible and reliable deviation estimation between gold standard CBF and measured CBF using the software was computed. It can be shown that the deviation between gold standard and software-based evaluation ranges between 1 and 31 %. Conclusion: There is no significance for any correlation between flow speed and amount of deviation. The mean measured CBF is 11.4 % higher than the gold standard CBF (p-value < 0.001). Using this kind of perfusion-phantom, the validation of different software systems allows reliable conclusions about their quality. (orig.)

  6. Microvascular remodelling in preeclampsia: quantifying capillary rarefaction accurately and independently predicts preeclampsia.

    Science.gov (United States)

    Antonios, Tarek F T; Nama, Vivek; Wang, Duolao; Manyonda, Isaac T

    2013-09-01

    Preeclampsia is a major cause of maternal and neonatal mortality and morbidity. The incidence of preeclampsia seems to be rising because of increased prevalence of predisposing disorders, such as essential hypertension, diabetes, and obesity, and there is increasing evidence to suggest widespread microcirculatory abnormalities before the onset of preeclampsia. We hypothesized that quantifying capillary rarefaction could be helpful in the clinical prediction of preeclampsia. We measured skin capillary density according to a well-validated protocol at 5 consecutive predetermined visits in 322 consecutive white women, of whom 16 subjects developed preeclampsia. We found that structural capillary rarefaction at 20-24 weeks of gestation yielded a sensitivity of 0.87 with a specificity of 0.50 at the cutoff of 2 capillaries/field with the area under the curve of the receiver operating characteristic value of 0.70, whereas capillary rarefaction at 27-32 weeks of gestation yielded a sensitivity of 0.75 and a higher specificity of 0.77 at the cutoff of 8 capillaries/field with area under the curve of the receiver operating characteristic value of 0.82. Combining capillary rarefaction with uterine artery Doppler pulsatility index increased the sensitivity and specificity of the prediction. Multivariable analysis shows that the odds of preeclampsia are increased in women with previous history of preeclampsia or chronic hypertension and in those with increased uterine artery Doppler pulsatility index, but the most powerful and independent predictor of preeclampsia was capillary rarefaction at 27-32 weeks. Quantifying structural rarefaction of skin capillaries in pregnancy is a potentially useful clinical marker for the prediction of preeclampsia.

  7. Quantification of fentanyl in serum by isotope dilution analysis using capillary gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Sera, Shoji; Goromaru, Tsuyoshi [Fukuyama Univ., Hiroshima (Japan); Sameshima, Teruko; Kawasaki, Koichi; Oda, Toshiyuki

    1998-06-01

    The quantitative determination of fentanyl (FT) in serum was examined by isotope dilution analysis using a capillary gas chromatograph equipped with a surface ionization detector. The separation of FT and its deuterated analogue, FT-{sup 2}H{sub 19}, was achieved within 15 min a column temperature of 260degC by using a 25 m column. Measurement of the samples prepared by the addition of a known amount of FT in the range of 0.2 to 40 ng/ml with 20 ng/ml of FT-{sup 2}H{sub 19} to human control serum allowed observation of a linear relationship between the peak area ratio and the added amount ratio. The correlation coefficient obtained by regression analysis was 0.999. The advantage of the present isotope dilution method was demonstrated by comparison with other FT analogues which substituted a propionyl group with an acetyl group or a phenethyl group with a benzyl group as the internal standard. The present method was used to determine the serum level of FT in surgical patients after i.v. administration. No endogenous compounds and concomitant drugs interfered with the detection of FT or FT-{sup 2}H{sub 19}. This method was considered to be useful for the pharmacokinetic study of FT in patients. (author)

  8. Quantification of fentanyl in serum by isotope dilution analysis using capillary gas chromatography

    International Nuclear Information System (INIS)

    Sera, Shoji; Goromaru, Tsuyoshi; Sameshima, Teruko; Kawasaki, Koichi; Oda, Toshiyuki

    1998-01-01

    The quantitative determination of fentanyl (FT) in serum was examined by isotope dilution analysis using a capillary gas chromatograph equipped with a surface ionization detector. The separation of FT and its deuterated analogue, FT- 2 H 19 , was achieved within 15 min a column temperature of 260degC by using a 25 m column. Measurement of the samples prepared by the addition of a known amount of FT in the range of 0.2 to 40 ng/ml with 20 ng/ml of FT- 2 H 19 to human control serum allowed observation of a linear relationship between the peak area ratio and the added amount ratio. The correlation coefficient obtained by regression analysis was 0.999. The advantage of the present isotope dilution method was demonstrated by comparison with other FT analogues which substituted a propionyl group with an acetyl group or a phenethyl group with a benzyl group as the internal standard. The present method was used to determine the serum level of FT in surgical patients after i.v. administration. No endogenous compounds and concomitant drugs interfered with the detection of FT or FT- 2 H 19 . This method was considered to be useful for the pharmacokinetic study of FT in patients. (author)

  9. Capillary red blood cell velocimetry by phase-resolved optical coherence tomography.

    Science.gov (United States)

    Tang, Jianbo; Erdener, Sefik Evren; Fu, Buyin; Boas, David A

    2017-10-01

    We present a phase-resolved optical coherence tomography (OCT) method to extend Doppler OCT for the accurate measurement of the red blood cell (RBC) velocity in cerebral capillaries. OCT data were acquired with an M-mode scanning strategy (repeated A-scans) to account for the single-file passage of RBCs in a capillary, which were then high-pass filtered to remove the stationary component of the signal to ensure an accurate measurement of phase shift of flowing RBCs. The angular frequency of the signal from flowing RBCs was then quantified from the dynamic component of the signal and used to calculate the axial speed of flowing RBCs in capillaries. We validated our measurement by RBC passage velocimetry using the signal magnitude of the same OCT time series data.

  10. Transient behavior of a supersonic three-dimensional micronozzle with an intersecting capillary

    Science.gov (United States)

    Matlis, N. H.; Gonsalves, A. J.; Steinke, S.; van Tilborg, J.; Shaw, B.; Mittelberger, D. E.; Geddes, C. G. R.; Leemans, W. P.

    2016-02-01

    An analysis of the interaction between a pulsed, supersonic microjet and an intersecting gas-filled capillary is presented, which enables a direct measurement of the pressure evolution inside the nozzle of the microjet. Plasma-emission spectroscopy was used to resolve, on a sub-microsecond timescale, the build-up and decay of pressure in the nozzle, which are shown to be correlated to the volume of the plenum supplying the nozzle and to the nozzle-throat size, respectively. The microjet, which was integrated with a capillary-discharge waveguide in a sapphire structure, was used to create a small, tunable region of high density gas within a centimeter-scale plateau of lower-density for use in a laser-plasma accelerator. The resultant longitudinally structured gas-density profile has been used to provide control of electron trapping and acceleration, but its evolution has not previously been directly quantified. The results presented here pave the way for improved control of laser-plasma accelerators and are also relevant to applications such as miniature satellites and lab-on-a-chip where precise knowledge of microjet pressure evolution is critical.

  11. Analysis of anabolic steroids in body fluids by capillary gas chromatography with a two-channel detection system and a computer.

    Science.gov (United States)

    Uralets, V P; Semenova, V A; Yakushin, M A; Semenov, V A

    1983-11-25

    A method is described for analysis of multi-component mixtures of steroid metabolites in biological fluids by means of capillary gas chromatography with glass and fused-silica columns and simultaneous detection of methoxylamine-trimethylsilyl derivatives with universal flame-ionization and selective nitrogen alkali flameionization detectors. A data system was applied to the on-line treatment of the results. Computer programs were designed for precise calculation of Kováts retention indices from the known values for selected natural urinary steroids. The programs allow the selection of nitrogen-containing components, normalized chromatogram plotting for both detection channels and qualitative and quantitative analysis. Results are presented on the detection of metabolites of methandrostenolone, 17 alpha-methyltestosterone, 19-nortestosterone and fluoxymesterone.

  12. A two-step method for rapid characterization of electroosmotic flows in capillary electrophoresis.

    Science.gov (United States)

    Zhang, Wenjing; He, Muyi; Yuan, Tao; Xu, Wei

    2017-12-01

    The measurement of electroosmotic flow (EOF) is important in a capillary electrophoresis (CE) experiment in terms of performance optimization and stability improvement. Although several methods exist, there are demanding needs to accurately characterize ultra-low electroosmotic flow rates (EOF rates), such as in coated capillaries used in protein separations. In this work, a new method, called the two-step method, was developed to accurately and rapidly measure EOF rates in a capillary, especially for measuring the ultra-low EOF rates in coated capillaries. In this two-step method, the EOF rates were calculated by measuring the migration time difference of a neutral marker in two consecutive experiments, in which a pressure driven was introduced to accelerate the migration and the DC voltage was reversed to switch the EOF direction. Uncoated capillaries were first characterized by both this two-step method and a conventional method to confirm the validity of this new method. Then this new method was applied in the study of coated capillaries. Results show that this new method is not only fast in speed, but also better in accuracy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Time resolved EUV spectra from Zpinching capillary discharge plasma

    Science.gov (United States)

    Jancarek, Alexandr; Nevrkla, Michal; Nawaz, Fahad

    2015-09-01

    We developed symmetrically charged driver to obtain high voltage, high current Z-pinching capillary discharge. Plasma is created by up to 70 kA, 29 ns risetime current pulse passing through a 5 mm inner diameter, 224 mm long capillary filled with gas to initial pressure in the range of 1 kPa. Due to the low inductance design of the driver, the pinch is observable directly from the measured current curve. Time-integrated and time-resolved spectra of discharge plasma radiation are recorded together with the capillary current and analyzed. The most encouraging spectra were captured in the wavelength range 8.3 ÷ 14 nm. This spectral region contains nitrogen Balmer series lines including potentially lasing NVII 2 - 3 transition. Spectral lines are identified in the NIST database using the FLY kinetic code. The line of 13.38 nm wavelength, transition NVII 2 - 3, was observed in gated, and also in time-integrated spectra for currents >60 kA. This work has been supported by the Ministry of Education, Youth and Sports of the Czech Republic grants LG13029.

  14. Capillary detectors

    International Nuclear Information System (INIS)

    Konijn, J.; Winter, K.; Vilain, P.; Wilquet, G.; Fabre, J.P.; Kozarenko, E.; Kreslo, I.; Goldberg, J.; Hoepfner, K.; Bay, A.; Currat, C.; Koppenburg, P.; Frekers, D.; Wolff, T.; Buontempo, S.; Ereditato, A.; Frenkel, A.; Liberti, B.; Martellotti, G.; Penso, G.; Ekimov, A.; Golovkin, S.; Govorun, V.; Medvedkov, A.; Vasil'chenko, V.

    1998-01-01

    The option for a microvertex detector using glass capillary arrays filled with liquid scintillator is presented. The status of capillary layers development and possible read-out techniques for high rate environment are reported. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. The creation of hypersonic flows by a powerful impulse capillary discharge

    Science.gov (United States)

    Pashchina, A. S.; Karmatsky, R. E.; Klimov, A. I.

    2017-11-01

    The possibility of using a powerful pulsed capillary discharge to produce quasi-stationary highspeed plasma flows with characteristic Mach numbers M = 3-10 and temperatures T = 3000-6000 K has been experimentally substantiated. In a rarefied gas atmosphere ( p ∞ condensed particles in a carbon-containing plasma.

  16. Validation of a method by gas chromatography for the determination of fatty acids that comprise the active ingredient D-004

    International Nuclear Information System (INIS)

    Rodriguez Leyes, Eduardo A; Marrero Delange, David; Gonzalez Canavaciolo, Victor L; Sierra Perez, Roxana; Adames Fajardo, Yuliamny

    2009-01-01

    D-004 is a new active ingredient obtained from the Cuban royal palm (Roystonea regia) fruits. This substance is mainly composed by a mixture of saturated and unsaturated free fatty acids, from 8 to 18 carbon atoms, and has shown to be effective in experimental model of prostate hyperplasia. A capillary gas chromatographic method for the determination of the fatty acids in D-004 was developed and validated. The acids were analyzed as methyl ester derivatives, which were obtained by reaction with 10 % acetyl chloride in methanol and separated in a BPX-5 wide-bore column using tridecanoic acid as internal standard. The specificity study showed no interferences regarding the determination of this mixture, once the samples were submitted to stress conditions. Determination of the total fatty acid content was linear (r > 0.999; CVs of the response factors and of the slopes lower than 5 and 2 %, respectively) and without bias in the studied concentration range, from 50 to 150 % of the nominal mass. In the accuracy study, over the range 80 to 120 % of the nominal fatty acid concentration, high recoveries (100.4 to 100.8 %) were reached. Good results were obtained in the repeatability and intermediate precision studies (CV < 2%), proving that the method is precise. These results support that this method is properly validated, being appropriate for the quality control and stability studies of this active ingredient

  17. Capillary pressure - saturation relations for supercritical CO2 and brine: Implications for capillary/residual trapping in carbonate reservoirs during geologic carbon sequestration

    Science.gov (United States)

    Wang, S.; Tokunaga, T. K.

    2014-12-01

    In geologic carbon sequestration (GCS), data on capillary pressure (Pc) - saturation (Sw) relations are routinely needed to appraise reservoir processes. Capillarity and its hysteresis have been often experimentally studied in oil-water, gas-water and three phase gas-oil-water systems, but fewer works have been reported on scCO2-water under in-situ reservoir conditions. Here, Pc-Sw relations of supercritical (sc) CO2 displacing brine, and brine rewetting the porous medium to trap scCO2 were studied to understand CO2 transport and trapping behavior in carbonate reservoirs under representative reservoir conditions. High-quality drainage and imbibition (and associated capillary pressure hysteresis) curves were measured under elevated temperature and pressure (45 ºC, 8.5 and 12 MPa) for scCO2-brine as well as at room temperature and pressure (23 ºC, 0.1 MPa) for air-brine in unconsolidated limestone and dolomite sand columns using newly developed semi-automated multistep outflow-inflow porous plate apparatus. Drainage and imbibition curves for scCO2-brine deviated from the universal scaling curves for hydrophilic interactions (with greater deviation under higher pressure) and shifted to lower Pc than predicted based on interfacial tension (IFT) changes. Augmented scaling incorporating differences in IFT and contact angle improved the scaling results but the scaled curves still did not converge onto the universal curves. Equilibrium residual trapping of the nonwetting phase was determined at Pc =0 during imbibition. The capillary-trapped amounts of scCO2 were significantly larger than for air. It is concluded that the deviations from the universal capillary scaling curves are caused by scCO2-induced wettability alteration, given the fact that pore geometry remained constant and IFT is well constrained. In-situ wettability alteration by reactive scCO2 is of critical importance and must be accounted for to achieve reliable predictions of CO2 behavior in GCS reservoirs.

  18. Xenon capillary discharge as a source of soft X-ray

    Czech Academy of Sciences Publication Activity Database

    Vrba, Pavel; Vrbová, M.

    2002-01-01

    Roč. 52, supplement D (2002), s. 112-116 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/20th./. Prague, 10.06.2002-13.06.2002] Institutional research plan: CEZ:AV0Z2043910 Keywords : capillary discharge, soft X-ray Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.311, year: 2002

  19. Validation of mechanistic models for gas precipitation in solids during postirradiation annealing experiments

    Science.gov (United States)

    Rest, J.

    1989-12-01

    A number of different phenomenological models for gas precipitation in solids during postirradiation annealing experiments have been proposed. Validation of such mechanistic models for gas release and swelling is complicated by the use of data containing large systematic errors, and phenomena characterized by synergistic effects as well as uncertainties in materials properties. Statistical regression analysis is recommended for the selection of a reasonably well characterized data base for gas release from irradiated fuel under transient heating conditions. It is demonstrated that an appropriate data selection method is required in order to realistically examine the impact of differing descriptions of the phenomena, and uncertainties in selected materials properties, on the validation results. The results of the analysis show that the kinetics of gas precipitation in solids depend on bubble overpressurization effects and need to be accounted for during the heatup phase of isothermal heating experiments. It is shown that if only the total gas release values (as opposed to time-dependent data) were available, differentiation between different gas precipitation models would be ambiguous. The observed sustained increase in the fractional release curve at relatively high temperatures after the total precipitation of intragranular gas in fission gas bubbles is ascribed to the effects of a grain-growth/grain-boundary sweeping mechanism.

  20. Validation of mechanistic models for gas precipitation in solids during postirradiation annealing experiments

    International Nuclear Information System (INIS)

    Rest, J.

    1989-01-01

    A number of different phenomenological models for gas precipitation in solids during postirradiation annealing experiments have been proposed. Validation of such mechanistic models for gas release and swelling is complicated by the use of data containing large systematic errors, and phenomena characterized by synergistic effects as well as uncertainties in materials properties. Statistical regression analysis is recommended for the selection of a reasonably well characterized data base for gas release from irradiated fuel under transient heating conditions. It is demonstrated that an appropriate data selection method is required in order to realistically examine the impact of differing descriptions of the phenomena, and uncertainties in selected materials properties, on the validation results. The results of the analysis show that the kinetics of gas precipitation in solid depend on bubble overpressurization effects and need to be accounted for during the heatup phase of isothermal heating experiments. It is shown that if only the total gas release values (as opposed to time-dependent data) were available, differentiation between different gas precipitation models would be ambiguous. The observed sustained increase in the fractional release curve at relatively high temperatures after the total precipitation of intragranular gas in fission gas bubbles is ascribed to the effects of a grain-growth/grain-boundary sweeping mechanism. (orig.)

  1. Simultaneous determination of metoprolol and metabolites in urine by capillary column gas chromatography as oxazolidineone and trimethylsilyl derivatives.

    Science.gov (United States)

    Gyllenhaal, O; Hoffmann, K J

    1984-08-10

    A method for the determination of metoprolol and its main metabolites in urine is presented. The method comprises derivatization of the aminopropanol side-chain with phosgene at alkaline pH and isolation in an organic phase at acidic pH. After trimethylsilylation, separation and quantification are performed by capillary column gas chromatography with flame ionization detection. The reaction is performed at pH 12 with 60 microliters of 2 M phosgene in toluene added in three portions. Diethyl ether--dichloromethane is used as extraction medium and bis(trimethylsilyl) acetamide as silylating agent. With spiked samples linear standard curves were obtained for metoprolol and three of its main metabolites with a detection limit varying between 4 and 20 mumol/l of urine. The method was applied to urine samples from a normal individual who had taken 292 mumol of metoprolol as tartrate.

  2. Quantitative Determination of Lercanidipine Enantiomers in Commercial Formulations by Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Luciana Pereira Lourenço

    2015-01-01

    Full Text Available An enantioselective method based on capillary electrophoresis (CE using cyclodextrin (CD as chiral selector was developed and validated for determination of lercanidipine (LER enantiomers, a drug calcium channel blocker which exerts antihypertensive effects of long duration, in a pharmaceutical formulation. Optimum separation of LER enantiomers was obtained on a 50 cm × 50 μm id capillary using a sodium acetate buffer solution 200 mmol/L pH 4.0 containing 10 mmol/L of 2,3,6-o-methyl-β-cyclodextrin (TM-β-CD as background electrolyte. The capillary temperature and voltage were 15°C and 25 kV, respectively, hydrodynamic injection and detection at 237 nm. Linearity was obtained in the range 12.5–100 μg/mL for both enantiomers (r≥0.995. The RSD (% and relative errors (E, % obtained in precision and accuracy studies (intraday and interday were lower than 5%. After validation, the method was applied to quantify the enantiomers of LER in commercial tablets and the results were satisfactory in terms of accuracy and precision, both less than 5%. Therefore, this method was found to be appropriate for enantioselective quality control of LER enantiomers in pharmaceutical formulations.

  3. Automated Parallel Capillary Electrophoretic System

    Science.gov (United States)

    Li, Qingbo; Kane, Thomas E.; Liu, Changsheng; Sonnenschein, Bernard; Sharer, Michael V.; Kernan, John R.

    2000-02-22

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  4. Pump effect of a capillary discharge in electrically conductive liquids

    Czech Academy of Sciences Publication Activity Database

    De Baerdemaeker, F.; Šimek, Milan; Leys, C.; Verstraete, W.

    2007-01-01

    Roč. 27, č. 4 (2007), s. 473-485 ISSN 0272-4324 R&D Projects: GA AV ČR IAA1043403 Institutional research plan: CEZ:AV0Z20430508 Keywords : water * conductive * capillary * AC discharge * pump Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.747, year: 2007 http://www.springerlink.com/content/w802073563282272/fulltext.pdf

  5. Influence of Capillary Condensation Effects on Mass Transport through Porous Membranes

    Czech Academy of Sciences Publication Activity Database

    Uchytil, Petr; Petričkovič, Roman; Thomas, S.; Siedel-Morgenstern, A.

    2003-01-01

    Roč. 33, č. 3 (2003), s. 273-281 ISSN 1383-5866 R&D Projects: GA ČR GA104/01/0945 Institutional research plan: CEZ:AV0Z4072921 Keywords : capillary condensation * mass transport * gas separation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.355, year: 2003

  6. Thermogravimetric and Pyrolysis-Capillary Gas Chromatography-Mass Spectrometric Analysis of Pinus Halepensis Mill. Wood

    International Nuclear Information System (INIS)

    Hafsi, S.; Benbouzid, M.; Zimny, T.

    2005-01-01

    The analytical methods TG and Py-capillary-GC-MS were used to study the thermal degradation of Pinus Halepensis Mill. wood. The TG analysis in air and in nitrogen showed that the percentage content of char and ash were, 23.1% and 7.7% respectively. TG and DTG analysis proved that the evolution of organic degradation products occurs mainly between 215C and 380C and has its maximum evolution rate at 360C in nitrogen and 347C in air. Py-capillary-GC-MS analysis of the pyrolysis at 400C identified the presence of valuable chemicals such aliphatic and aromatic hydrocarbons, phenols, aldehydes, esters and saturated and unsaturated long chain fatty acids. (author)

  7. Development and Validation of Improved Method for Fingerprint ...

    African Journals Online (AJOL)

    Purpose: To develop and validate an improved method by capillary zone electrophoresis with photodiode array detection for the fingerprint analysis of Ligusticum chuanxiong Hort. (Rhizoma Chuanxiong). Methods: The optimum high performance capillary electrophoresis (HPCE) conditions were 30 mM borax containing 5 ...

  8. Determination of some individual chlorobiphenyls in eel-fat with capillary gaschromatography: collaborative study

    NARCIS (Netherlands)

    Tuinstra, L.G.M.T.; Roos, A.H.; Werdmuller, G.A.

    1984-01-01

    A method for the determination of six individual chlorobiphenyls in eel-fat, based on saponification of the sample and determination with capillary gas chromatography, was studied collaboratively. Eleven laboratories submitted analytical results in duplo of six individual chlorbiphenyls on two

  9. Solvent jet desorption capillary photoionization-mass spectrometry.

    Science.gov (United States)

    Haapala, Markus; Teppo, Jaakko; Ollikainen, Elisa; Kiiski, Iiro; Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2015-03-17

    A new ambient mass spectrometry method, solvent jet desorption capillary photoionization (DCPI), is described. The method uses a solvent jet generated by a coaxial nebulizer operated at ambient conditions with nitrogen as nebulizer gas. The solvent jet is directed onto a sample surface, from which analytes are extracted into the solvent and ejected from the surface in secondary droplets formed in collisions between the jet and the sample surface. The secondary droplets are directed into the heated capillary photoionization (CPI) device, where the droplets are vaporized and the gaseous analytes are ionized by 10 eV photons generated by a vacuum ultraviolet (VUV) krypton discharge lamp. As the CPI device is directly connected to the extended capillary inlet of the MS, high ion transfer efficiency to the vacuum of MS is achieved. The solvent jet DCPI provides several advantages: high sensitivity for nonpolar and polar compounds with limit of detection down to low fmol levels, capability of analyzing small and large molecules, and good spatial resolution (250 μm). Two ionization mechanisms are involved in DCPI: atmospheric pressure photoionization, capable of ionizing polar and nonpolar compounds, and solvent assisted inlet ionization capable of ionizing larger molecules like peptides. The feasibility of DCPI was successfully tested in the analysis of polar and nonpolar compounds in sage leaves and chili pepper.

  10. Capillary pressure as a unique function of electric permittivity and water saturation

    NARCIS (Netherlands)

    Plug, W.J.; Slob, E.; Van Turnhout, J.; Bruining, J.

    2007-01-01

    The relation between capillary pressure (Pc) and interfacial area has been investigated by measuring Pc and the electric permittivity at 100 kHz simultaneously as function of the water saturation, (Sw). Drainage and imbibition experiments have been conducted for sand-distilled water-gas (CO2/N2)

  11. Numerical simulation of gas-phonon coupling in thermal transpiration flows.

    Science.gov (United States)

    Guo, Xiaohui; Singh, Dhruv; Murthy, Jayathi; Alexeenko, Alina A

    2009-10-01

    Thermal transpiration is a rarefied gas flow driven by a wall temperature gradient and is a promising mechanism for gas pumping without moving parts, known as the Knudsen pump. Obtaining temperature measurements along capillary walls in a Knudsen pump is difficult due to extremely small length scales. Meanwhile, simplified analytical models are not applicable under the practical operating conditions of a thermal transpiration device, where the gas flow is in the transitional rarefied regime. Here, we present a coupled gas-phonon heat transfer and flow model to study a closed thermal transpiration system. Discretized Boltzmann equations are solved for molecular transport in the gas phase and phonon transport in the solid. The wall temperature distribution is the direct result of the interfacial coupling based on mass conservation and energy balance at gas-solid interfaces and is not specified a priori unlike in the previous modeling efforts. Capillary length scales of the order of phonon mean free path result in a smaller temperature gradient along the transpiration channel as compared to that predicted by the continuum solid-phase heat transfer. The effects of governing parameters such as thermal gradients, capillary geometry, gas and phonon Knudsen numbers and, gas-surface interaction parameters on the efficiency of thermal transpiration are investigated in light of the coupled model.

  12. Towards point of care testing for C. difficile infection by volatile profiling, using the combination of a short multi-capillary gas chromatography column with metal oxide sensor detection

    International Nuclear Information System (INIS)

    McGuire, N D; Ewen, R J; De Lacy Costello, B; Garner, C E; Vaughan, K; Ratcliffe, N M; Probert, C S J

    2014-01-01

    Rapid volatile profiling of stool sample headspace was achieved using a combination of short multi-capillary chromatography column (SMCC), highly sensitive heated metal oxide semiconductor sensor and artificial neural network software. For direct analysis of biological samples this prototype offers alternatives to conventional gas chromatography (GC) detectors and electronic nose technology. The performance was compared to an identical instrument incorporating a long single capillary column (LSCC). The ability of the prototypes to separate complex mixtures was assessed using gas standards and homogenized in house ‘standard’ stool samples, with both capable of detecting more than 24 peaks per sample. The elution time was considerably faster with the SMCC resulting in a run time of 10 min compared to 30 min for the LSCC. The diagnostic potential of the prototypes was assessed using 50 C. difficile positive and 50 negative samples. The prototypes demonstrated similar capability of discriminating between positive and negative samples with sensitivity and specificity of 85% and 80% respectively. C. difficile is an important cause of hospital acquired diarrhoea, with significant morbidity and mortality around the world. A device capable of rapidly diagnosing the disease at the point of care would reduce cases, deaths and financial burden. (paper)

  13. Wall modified photonic crystal fibre capillaries as porous layer open tubular columns for in-capillary micro-extraction and capillary chromatography

    International Nuclear Information System (INIS)

    Kazarian, Artaches A.; Sanz Rodriguez, Estrella; Deverell, Jeremy A.; McCord, James; Muddiman, David C.; Paull, Brett

    2016-01-01

    Wall modified photonic crystal fibre capillary columns for in-capillary micro-extraction and liquid chromatographic separations is presented. Columns contained 126 internal parallel 4 μm channels, each containing a wall bonded porous monolithic type polystyrene-divinylbenzene layer in open tubular column format (PLOT). Modification longitudinal homogeneity was monitored using scanning contactless conductivity detection and scanning electron microscopy. The multichannel open tubular capillary column showed channel diameter and polymer layer consistency of 4.2 ± 0.1 μm and 0.26 ± 0.02 μm respectively, and modification of 100% of the parallel channels with the monolithic polymer. The modified multi-channel capillaries were applied to the in-capillary micro-extraction of water samples. 500 μL of water samples containing single μg L"−"1 levels of polyaromatic hydrocarbons were extracted at a flow rate of 10 μL min"−"1, and eluted in 50 μL of acetonitrile for analysis using HPLC with fluorescence detection. HPLC LODs were 0.08, 0.02 and 0.05 μg L"−"1 for acenaphthene, anthracene and pyrene, respectively, with extraction recoveries of between 77 and 103%. The modified capillaries were also investigated briefly for direct application to liquid chromatographic separations, with the retention and elution of a standard protein (cytochrome c) under isocratic conditions demonstrated, proving chromatographic potential of the new column format, with run-to-run retention time reproducibility of below 1%. - Highlights: • Novel PS-DVB modified photonic crystal fibres for in-capillary micro-extraction. • New method for micro-extraction of PAHs and HPLC-FL detection at sub-ppb levels. • Demonstration of PS-DVB modified photonic crystal fibres for capillary bioseparations.

  14. Wall modified photonic crystal fibre capillaries as porous layer open tubular columns for in-capillary micro-extraction and capillary chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian, Artaches A. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); W.M. Keck FT-ICR-MS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC (United States); Sanz Rodriguez, Estrella; Deverell, Jeremy A. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); McCord, James; Muddiman, David C. [W.M. Keck FT-ICR-MS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC (United States); Paull, Brett, E-mail: Brett.Paull@utas.edu.au [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); ARC Centre of Excellence for Electromaterials Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia)

    2016-01-28

    Wall modified photonic crystal fibre capillary columns for in-capillary micro-extraction and liquid chromatographic separations is presented. Columns contained 126 internal parallel 4 μm channels, each containing a wall bonded porous monolithic type polystyrene-divinylbenzene layer in open tubular column format (PLOT). Modification longitudinal homogeneity was monitored using scanning contactless conductivity detection and scanning electron microscopy. The multichannel open tubular capillary column showed channel diameter and polymer layer consistency of 4.2 ± 0.1 μm and 0.26 ± 0.02 μm respectively, and modification of 100% of the parallel channels with the monolithic polymer. The modified multi-channel capillaries were applied to the in-capillary micro-extraction of water samples. 500 μL of water samples containing single μg L{sup −1} levels of polyaromatic hydrocarbons were extracted at a flow rate of 10 μL min{sup −1}, and eluted in 50 μL of acetonitrile for analysis using HPLC with fluorescence detection. HPLC LODs were 0.08, 0.02 and 0.05 μg L{sup −1} for acenaphthene, anthracene and pyrene, respectively, with extraction recoveries of between 77 and 103%. The modified capillaries were also investigated briefly for direct application to liquid chromatographic separations, with the retention and elution of a standard protein (cytochrome c) under isocratic conditions demonstrated, proving chromatographic potential of the new column format, with run-to-run retention time reproducibility of below 1%. - Highlights: • Novel PS-DVB modified photonic crystal fibres for in-capillary micro-extraction. • New method for micro-extraction of PAHs and HPLC-FL detection at sub-ppb levels. • Demonstration of PS-DVB modified photonic crystal fibres for capillary bioseparations.

  15. Apparent dynamic contact angle of an advancing gas--liquid meniscus

    International Nuclear Information System (INIS)

    Kalliadasis, S.; Chang, H.

    1994-01-01

    The steady motion of an advancing meniscus in a gas-filled capillary tube involves a delicate balance of capillary, viscous, and intermolecular forces. The limit of small capillary numbers Ca (dimensionless speeds) is analyzed here with a matched asymptotic analysis that links the outer capillary region to the precursor film in front of the meniscus through a lubricating film. The meniscus shape in the outer region is constructed and the apparent dynamic contact angle Θ that the meniscus forms with the solid surface is derived as a function of the capillary number, the capillary radius, and the Hamaker's constant for intermolecular forces, under conditions of weak gas--solid interaction, which lead to fast spreading of the precursor film and weak intermolecular forces relative to viscous forces within the lubricating film. The dependence on intermolecular forces is very weak and the contact angle expression has a tight upper bound tan Θ=7.48 Ca 1/3 for thick films, which is independent of the Hamaker constant. This upper bound is in very good agreement with existing experimental data for wetting fluids in any capillary and for partially wetting fluids in a prewetted capillary. Significant correction to the Ca 1/3 dependence occurs only at very low Ca, where the intermolecular forces become more important and tan Θ diverges slightly from the above asymptotic behavior toward lower values

  16. Validity and reliability assessment of the Brazilian version of the game addiction scale (GAS).

    Science.gov (United States)

    Lemos, Igor Lins; Cardoso, Adriana; Sougey, Everton Botelho

    2016-05-01

    The uncontrolled use of video games can be addictive. The Game Addiction Scale (GAS) is an instrument that was developed to assess this type of addiction. The GAS consists of 21 items that are divided into the following seven factors: salience, tolerance, mood modification, relapse, withdrawal, conflict and problems. This study assessed the convergent validity and reliability of the GAS according to measures of internal consistency and test-retest stability. Three hundred and eighty four students completed the GAS, the Internet Addiction Test (IAT), the Liebowitz Social Anxiety Scale (LSAS), the Beck Depression Inventory (BDI) and the Video Game Addiction Test (VAT). A subgroup of the participants (n=76) completed the GAS again after 30days to determine test-retest stability. The GAS demonstrated excellent internal consistency (Cronbach's alpha=0.92), was highly correlated with the VAT (r=0.883) and was moderately correlated with the BDI (r=0.358), the LSAS (r=0.326) and the IAT (r=0.454). In the Brazilian Portuguese population, the GAS shows good internal consistency. These data indicate that the GAS can be used to assess video game addiction due to its demonstrated psychometric validity. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. An apparatus with a horizontal capillary tube intended for measurement of the surface tension of supercooled liquids

    Science.gov (United States)

    Vinš, Václav; Hošek, Jan; Hykl, Jiří; Hrubý, Jan

    2015-05-01

    New experimental apparatus for measurement of the surface tension of liquids under the metastable supercooled state has been designed and assembled in the study. The measuring technique is similar to the method employed by P.T. Hacker [NACA TN 2510] in 1951. A short liquid thread of the liquid sample was sucked inside a horizontal capillary tube partly placed in a temperature-controlled glass chamber. One end of the capillary tube was connected to a setup with inert gas which allowed for precise tuning of the gas overpressure in order of hundreds of Pa. The open end of the capillary tube was precisely grinded and polished before the measurement in order to assure planarity and perpendicularity of the outer surface. The liquid meniscus at the open end was illuminated by a laser beam and observed by a digital camera. Application of an increasing overpressure of the inert gas at the inner meniscus of the liquid thread caused variation of the outer meniscus such that it gradually changed from concave to flat and subsequently convex shape. The surface tension at the temperature of the inner meniscus could be evaluated from the overpressure corresponding to exactly planar outer meniscus. Detailed description of the new setup together with results of the preliminary tests is provided in the study.

  18. Capillary force between wetted nanometric contacts and its application to atomic force microscopy.

    Science.gov (United States)

    Crassous, Jérôme; Ciccotti, Matteo; Charlaix, Elisabeth

    2011-04-05

    We extend to the case of perfect wetting the exact calculation of Orr et al. (J. Fluid. Mech. 1975, 67, 723) for a pendular ring connecting two dry surfaces. We derive an approximate analytical expression for the capillary force between two highly curved surfaces covered by a wetting liquid film. The domain of validity of this expression is assessed and extended by a custom-made numerical simulation based on the full exact mathematical description. In the case of attractive liquid-solid van der Waals interactions, the capillary force increases monotonically with decreasing vapor pressure up to several times its saturation value. This accurate description of the capillary force makes it possible to estimate the adhesion force between wet nanoparticles; it can also be used to quantitatively interpret pull-off forces measured by atomic force microscopy.

  19. A study of coherent radiation generated in an ablative capillary discharge

    Czech Academy of Sciences Publication Activity Database

    Hübner, Jakub; Vrba, Pavel

    2013-01-01

    Roč. 53, č. 2 (2013), s. 79-87 ISSN 1210-2709 R&D Projects: GA ČR GAP102/12/2043 Institutional support: RVO:61389021 Keywords : capillary discharge * XUV or soft X-ray laser * plasma modeling * ablation Subject RIV: BL - Plasma and Gas Discharge Physics https://ojs.cvut.cz/ojs/index.php/ap/article/view/1787/1619

  20. Capillaries modified by noncovalent anionic polymer adsorption for capillary zone electrophoresis, micellar electrokinetic capillary chromatography and capillary electrophoresis mass spectrometry

    DEFF Research Database (Denmark)

    Bendahl, L; Hansen, S H; Gammelgaard, Bente

    2001-01-01

    A simple coating procedure for generation of a high and pH-independent electroosmotic flow in capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MEKC) is described. The bilayer coating was formed by noncovalent adsorption of the ionic polymers Polybrene...... capillaries was (4.9+/-0.1) x 10(-4) cm2V(-1)s(-1) in a pH-range of 2-10 (ionic strength = 30 mM). When alkaline compounds were used as test substances intracapillary and intercapillary migration time variations (n = 6) were less than 1% relative standard deviation (RSD) and 2% RSD, respectively in the entire...... pH range. The coating was fairly stable in the presence of sodium dodecyl sulfate, and this made it possible to perform fast MEKC separations at low pH. When neutral compounds were used as test substances, the intracapillary migration time variations (n = 6) were less than 2% RSD in a pH range of 2...

  1. Physiological factors influencing capillary growth.

    Science.gov (United States)

    Egginton, S

    2011-07-01

    (1) Angiogenesis (growth of new capillaries from an existing capillary bed) may result from a mismatch in microvascular supply and metabolic demand (metabolic error signal). Krogh examined the distribution and number of capillaries to explore the correlation between O(2) delivery and O(2) consumption. Subsequently, the heterogeneity in angiogenic response within a muscle has been shown to reflect either differences in fibre type composition or mechanical load. However, local control leads to targetted angiogenesis in the vicinity of glycolytic fibre types following muscle stimulation, or oxidative fibres following endurance training, while heterogeneity of capillary spacing is maintained during ontogenetic growth. (2) Despite limited microscopy resolution and lack of specific markers, Krogh's interest in the structure of the capillary wall paved the way for understanding the mechanisms of capillary growth. Angiogenesis may be influenced by the response of perivascular or stromal cells (fibroblasts, macrophages and pericytes) to altered activity, likely acting as a source for chemical signals modulating capillary growth such as vascular endothelial growth factor. In addition, haemodynamic factors such as shear stress and muscle stretch play a significant role in adaptive remodelling of the microcirculation. (3) Most indices of capillarity are highly dependent on fibre size, resulting in possible bias because of scaling. To examine the consequences of capillary distribution, it is therefore helpful to quantify the area of tissue supplied by individual capillaries. This allows the spatial limitations inherent in most models of tissue oxygenation to be overcome generating an alternative approach to Krogh's tissue cylinder, the capillary domain, to improve descriptions of intracellular oxygen diffusion. © 2010 The Author. Acta Physiologica © 2010 Scandinavian Physiological Society.

  2. Modeling of low-capillary number segmented flows in microchannels using OpenFOAM

    NARCIS (Netherlands)

    Hoang, D.A.; Van Steijn, V.; Portela, L.M.; Kreutzer, M.T.; Kleijn, C.R.

    2012-01-01

    Modeling of low-Capillary number segmented flows in microchannels is important for the design of microfluidic devices. We present numerical validations of microfluidic flow simulations using the volume-of-fluid (VOF) method as implemented in OpenFOAM. Two benchmark cases were investigated to ensure

  3. Control of evaporation by geometry in capillary structures. From confined pillar arrays in a gap radial gradient to phyllotaxy-inspired geometry.

    Science.gov (United States)

    Chen, Chen; Duru, Paul; Joseph, Pierre; Geoffroy, Sandrine; Prat, Marc

    2017-11-08

    Evaporation is a key phenomenon in the natural environment and in many technological systems involving capillary structures. Understanding the evaporation front dynamics enables the evaporation rate from microfluidic devices and porous media to be finely controlled. Of particular interest is the ability to control the position of the front through suitable design of the capillary structure. Here, we show how to design model capillary structures in microfluidic devices so as to control the drying kinetics. This is achieved by acting on the spatial organization of the constrictions that influence the invasion of the structure by the gas phase. Two types of control are demonstrated. The first is intended to control the sequence of primary invasions through the pore space, while the second aims to control the secondary liquid structures: films, bridges, etc., that can form in the region of pore space invaded by the gas phase. It is shown how the latter can be obtained from phyllotaxy-inspired geometry. Our study thus opens up a route toward the control of the evaporation kinetics by means of tailored capillary structures.

  4. Comparisons Between Histology and Optical Coherence Tomography Angiography of the Periarterial Capillary-Free Zone.

    Science.gov (United States)

    Balaratnasingam, Chandrakumar; An, Dong; Sakurada, Yoichi; Lee, Cecilia S; Lee, Aaron Y; McAllister, Ian L; Freund, K Bailey; Sarunic, Marinko; Yu, Dao-Yi

    2018-05-01

    To use the capillary-free zone along retinal arteries, a physiologic area of superficial avascularization, as an anatomic paradigm to investigate the reliability of optical coherence tomography angiography (OCTA) for visualizing the deep retinal circulation. Validity analysis and laboratory investigation. Five normal human donor eyes (mean age 69.8 years) were perfusion-labeled with endothelial antibodies and the capillary networks of the perifovea were visualized using confocal scanning laser microscopy. Regions of the capillary-free zone along the retinal artery were imaged using OCTA in 16 normal subjects (age range 24-51 years). Then, 3 × 3-mm scans were acquired using the RTVue XR Avanti (ver. 2016.1.0.26; Optovue, Inc, Fremont, California, USA), PLEX Elite 9000 (ver. 1.5.0.15909; Zeiss Meditec, Inc, Dublin, California, USA), Heidelberg Spectralis OCT2 (Family acquisition module 6.7.21.0; Heidelberg Engineering, Heidelberg, Germany), and DRI-OCT Triton (Ver. 1.1.1; Topcon Corp, Tokyo, Japan). Images of the superficial plexus, deep vascular plexus, and a slab containing all vascular plexuses were generated using manufacturer-recommended default settings. Comparisons between histology and OCTA were performed. Histologic analysis revealed that the capillary-free zone along the retinal artery was confined to the plane of the superficial capillary plexus and did not include the intermediate and deep capillary plexuses. Images derived from OCTA instruments demonstrated a prominent capillary-free zone along the retinal artery in slabs of the superficial plexus, deep plexus, and all capillary plexuses. The number of deep retinal capillaries seen in the capillary-free zone was significantly greater on histology than on OCTA (P zone as an anatomic paradigm, we show that the deep vascular beds of the retina are not completely visualized using OCTA. This may be a limitation of current OCTA techniques. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Nanoparticle-based capillary electroseparation of proteins in polymer capillaries under physiological conditions

    DEFF Research Database (Denmark)

    Nilsson, C.; Harwigsson, I.; Becker, K.

    2010-01-01

    Totally porous lipid-based liquid crystalline nanoparticles were used as pseudostationary phase for capillary electroseparation with LIF detection of proteins at physiological conditions using unmodified cyclic olefin copolymer capillaries (Topas (R), 6.7 cm effective length). In the absence of n...... at protein friendly conditions. The developed capillary-based method facilitates future electrochromatography of proteins on polymer-based microchips under physiological conditions and enables the initial optimization of separation conditions in parallel to the chip development....

  6. Western Blotting using Capillary Electrophoresis

    OpenAIRE

    Anderson, Gwendolyn J.; Cipolla, Cynthia; Kennedy, Robert T.

    2011-01-01

    A microscale Western blotting system based on separating sodium-dodecyl sulfate protein complexes by capillary gel electrophoresis followed by deposition onto a blotting membrane for immunoassay is described. In the system, the separation capillary is grounded through a sheath capillary to a mobile X-Y translation stage which moves a blotting membrane past the capillary outlet for protein deposition. The blotting membrane is moistened with a methanol and buffer mixture to facilitate protein a...

  7. Validated Method for the Determination of Piroxicam by Capillary Zone Electrophoresis and Its Application to Tablets

    Directory of Open Access Journals (Sweden)

    Arın Gül Dal

    2014-01-01

    piroxicam in tablets. The separation of piroxicam was conducted in a fused-silica capillary by using 10 mM borate buffer (pH 9.0 containing 10% (v/v methanol as background electrolyte. The optimum conditions determined were 25 kV for separation voltage and 1 s for injection time. Analysis was carried out with UV detection at 204 nm. Naproxen sodium was used as an internal standard. The method was linear over the range of 0.23–28.79 µg/mL. The accuracy and precision were found to be satisfied within the acceptable limits (<2%. The LOD and LOQ were found to be 0.07 and 0.19 µg/mL, respectively. The method described here was applied to tablet dosage forms and the content of a tablet was found in the limits of USP-24 suggestions. To compare the results of capillary electrophoretic method, UV spectrophotometric method was developed and the difference between two methods was found to be insignificant. The capillary zone electrophoretic method developed in this study is rapid, simple, and suitable for routine analysis of piroxicam in pharmaceutical tablets.

  8. Microwave discharges in capillary tubes

    International Nuclear Information System (INIS)

    Dervisevic, Emil

    1984-01-01

    This research thesis aims at being a contribution to the study of microwave discharge by a surface wave, and more precisely focusses on the discharge in capillary tubes filled with argon. The author first present theoretical models which describe, on the one hand, the propagation of the surface wave along the plasma column, and, on the other hand, longitudinal and radial profiles of the main discharge characteristics. The second part addresses the study of the influence of parameters (gas pressure and tube radius) on discharge operation and characteristics. Laws of similitude as well as empirical relationships between argon I and argon II emission line intensities, electron density, and electric field in the plasma have been established [fr

  9. Reclamation of potable water from mixed gas streams

    Science.gov (United States)

    Judkins, Roddie R; Bischoff, Brian L; Debusk, Melanie Moses; Narula, Chaitanya

    2013-08-20

    An apparatus for separating a liquid from a mixed gas stream can include a wall, a mixed gas stream passageway, and a liquid collection assembly. The wall can include a first surface, a second surface, and a plurality of capillary condensation pores. The capillary condensation pores extend through the wall, and have a first opening on the first surface of the wall, and a second opening on the second surface of the wall. The pore size of the pores can be between about 2 nm to about 100 nm. The mixed gas stream passageway can be in fluid communication with the first opening. The liquid collection assembly can collect liquid from the plurality of pores.

  10. Ultra narrow bore thick film capillaries for microcolumn separations. Part 1. GC experiments

    NARCIS (Netherlands)

    Steenackers, D.; Sandra, P.J.F.; Sandra, P.; Devos, G.

    1993-01-01

    Ultra narrow bore (50 mum 1.0.) fused silica columns were statically coated with apolar stationary phases to obtain beta values ranging from 6.25 to 50 (filmthickness 2 to 0.25 mum). Performance of the 1 and 2 mum columns in Capillary Gas Chromatography (CGC) is highlighted.

  11. Multi-Capillary Column-Ion Mobility Spectrometry of Volatile Metabolites Emitted by Saccharomyces Cerevisiae

    Directory of Open Access Journals (Sweden)

    Christoph Halbfeld

    2014-09-01

    Full Text Available Volatile organic compounds (VOCs produced during microbial fermentations determine the flavor of fermented food and are of interest for the production of fragrances or food additives. However, the microbial synthesis of these compounds from simple carbon sources has not been well investigated so far. Here, we analyzed the headspace over glucose minimal salt medium cultures of Saccharomyces cerevisiae using multi-capillary column-ion mobility spectrometry (MCC-IMS. The high sensitivity and fast data acquisition of the MCC-IMS enabled online analysis of the fermentation off-gas and 19 specific signals were determined. To four of these volatile compounds, we could assign the metabolites ethanol, 2-pentanone, isobutyric acid, and 2,3-hexanedione by MCC-IMS measurements of pure standards and cross validation with thermal desorption–gas chromatography-mass spectrometry measurements. Despite the huge biochemical knowledge of the biochemistry of the model organism S. cerevisiae, only the biosynthetic pathways for ethanol and isobutyric acid are fully understood, demonstrating the considerable lack of research of volatile metabolites. As monitoring of VOCs produced during microbial fermentations can give valuable insight into the metabolic state of the organism, fast and non-invasive MCC-IMS analyses provide valuable data for process control.

  12. Gas transport and separation with ceramic membranes. Part I: Multilayer diffusion and capillary condensation

    NARCIS (Netherlands)

    Uhlhorn, R.J.R.; Uhlhorn, R.J.R.; Keizer, Klaas; Burggraaf, Anthonie; Burggraaf, A.J.

    1992-01-01

    Multilayer diffusion and capillary condensation of propylene on supported γ-alumina films greatly improved the permeability and selectivity. Multilayer diffusion, occurring at relative pressures of 0.4 to 0.8 strongly increased the permeability of 6 times the Knudsen permeability, yielding

  13. Capillary-discharge sodium plasma for pulsed-power X-ray laser experiments

    International Nuclear Information System (INIS)

    Young, F.C.; Commisso, R.J.; Cooperstein, G.

    1986-01-01

    A capillary discharge plasma is being studied as a source of sodium plasma for Na/Ne x-ray laser experiments. The objective is to develop an intense x-ray pump of He-α emission from Na for matched-line photopumping of Ne. A uniform Na-bearing plasma (≅2-cm dia and ≅4-cm long) is to be injected into the anode-cathode gap of the Gamble II pulsed-power generator and imploded by MA-level currents to produce the intense sodium K-line radiation. Implosions of neon gas puffs have produced up to 50 GW of 0.92-keV He-α line emission, and similar x-ray power is expected from sodium implosions. Plasma from the capillary is produced by discharging current through an evacuated small hole in a plastic dielectric (≤ 3-mm dia and 1 to 2.5-cm long). A Na-bearing plasma is generated by forming the hole in NaF. Discharges of 30-kA (60-kA) peak current and 2-μs (2.6-μs) period are provided by a 0.6-μF (1.8-μF) capacitor bank charged to 25 kV. Diagnostics to evaluate plasma characteristics include witness plates, Faraday cups, photodiodes, open-shutter photographs, framing images, and visible light and near UV spectrographs. This plasma source emits visible light for 5-10 μs over a region extending - 1.5 cm from the capillary. Emission is more intense for capillary dia ≤ 0.8 mm. Spectroscopic measurements indicate that both positive ions and neutrals are present, including neutral Na from NaF capillaries. Velocities of≅2 cm/μs are deduced from Faraday cup measurements. For a 0.3-mm dia plastic capillary and 30-kA discharge current, ≅100 μg of capillary material is removed, which corresponds to≅10 μg/cm in the plasma

  14. Analysis of polycyclic aromatic hydrocarbons I. Determination by gas chromatography with glass and fused silica capillary columns; Analisis de Hidrocarburos aromaticos policiclicos. I. Determinacion por cromatografia de gases con columnas capilares de vidrio de silice fundida

    Energy Technology Data Exchange (ETDEWEB)

    Perez, M M; Gonzalez, D

    1987-07-01

    A study of the analysis by gas chromatography of aromatic polycyclic hydrocarbons is presented. The separation has been carried out by glass and fused silica capillary column. The limitations and the advantages of the procedure are discussed in terms of separation efficiency, sensitivity and precision. (Author) 17 refs.

  15. Growth of metal-organic framework HKUST-1 in capillary using liquid-phase epitaxy for open-tubular capillary electrochromatography and capillary liquid chromatography.

    Science.gov (United States)

    Bao, Tao; Zhang, Juan; Zhang, Wenpeng; Chen, Zilin

    2015-02-13

    Much attention is being paid to applying metal-organic frameworks (MOFs) as stationary phases in chromatography because of their fascinating properties, such as large surface-to-volume ratios, high levels of porosity, and selective adsorption. HKUST-1 is one of the best-studied face-centered-cubic MOF containing nano-sized channels and side pockets for film growth. However, growth of HKUST-1 framework inside capillary column as stationary phase for capillary electrochromatography is a challenge work. In this work, we carry out the growth of HKUST-1 on the inner wall of capillary by using liquid-phase epitaxy process at room temperature. The fabricated HKUST-1@capillary can be successfully used for the separation of substituted benzene including methylbenzene, ethylbenzene, styrene, chlorobenzene, bromobenzene, o-dichlorobenzene, benzene series, phenolic acids, and benzoic acids derivates. High column efficiency of 1.5×10(5) N/m for methylbenzene was achieved. The formation of HKUST-1 grown in the capillary was confirmed and characterized by scanning electron microscopy images, Fourier transform infrared spectra and X-ray diffraction. The column showed long lifetime and excellent stability. The relative standard deviations for intra-day and inter-day repeatability of the HKUST-1@capillary were lower than 7%. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Generation of standard gas mixtures of halogenated, aliphatic, and aromatic compounds and prediction of the individual output rates based on molecular formula and boiling point.

    Science.gov (United States)

    Thorenz, Ute R; Kundel, Michael; Müller, Lars; Hoffmann, Thorsten

    2012-11-01

    In this work, we describe a simple diffusion capillary device for the generation of various organic test gases. Using a set of basic equations the output rate of the test gas devices can easily be predicted only based on the molecular formula and the boiling point of the compounds of interest. Since these parameters are easily accessible for a large number of potential analytes, even for those compounds which are typically not listed in physico-chemical handbooks or internet databases, the adjustment of the test gas source to the concentration range required for the individual analytical application is straightforward. The agreement of the predicted and measured values is shown to be valid for different groups of chemicals, such as halocarbons, alkanes, alkenes, and aromatic compounds and for different dimensions of the diffusion capillaries. The limits of the predictability of the output rates are explored and observed to result in an underprediction of the output rates when very thin capillaries are used. It is demonstrated that pressure variations are responsible for the observed deviation of the output rates. To overcome the influence of pressure variations and at the same time to establish a suitable test gas source for highly volatile compounds, also the usability of permeation sources is explored, for example for the generation of molecular bromine test gases.

  17. Paramecium swimming in a capillary tube

    Science.gov (United States)

    Jana, Saikat; Jung, Sunghwan

    2010-03-01

    Micro-organisms exhibit different strategies for swimming in complex environments. Many micro-swimmers such as paramecium congregate and tend to live near wall. We investigate how paramecium moves in a confined space as compared to its motion in an unbounded fluid. A new theoretical model based on Taylor's sheet is developed, to study such boundary effects. In experiments, paramecia are put inside capillary tubes and their swimming behavior is observed. The data obtained from experiments is used to test the validity of our theoretical model and understand how the cilia influence the locomotion of paramecia in confined geometries.

  18. Capillary absorption spectrometer and process for isotopic analysis of small samples

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, M. Lizabeth; Kelly, James F.; Sams, Robert L.; Moran, James J.; Newburn, Matthew K.; Blake, Thomas A.

    2018-04-24

    A capillary absorption spectrometer and process are described that provide highly sensitive and accurate stable absorption measurements of analytes in a sample gas that may include isotopologues of carbon and oxygen obtained from gas and biological samples. It further provides isotopic images of microbial communities that allow tracking of nutrients at the single cell level. It further targets naturally occurring variations in carbon and oxygen isotopes that avoids need for expensive isotopically labeled mixtures which allows study of samples taken from the field without modification. The process also permits sampling in vivo permitting real-time ambient studies of microbial communities.

  19. Capillary absorption spectrometer and process for isotopic analysis of small samples

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, M. Lizabeth; Kelly, James F.; Sams, Robert L.; Moran, James J.; Newburn, Matthew K.; Blake, Thomas A.

    2016-03-29

    A capillary absorption spectrometer and process are described that provide highly sensitive and accurate stable absorption measurements of analytes in a sample gas that may include isotopologues of carbon and oxygen obtained from gas and biological samples. It further provides isotopic images of microbial communities that allow tracking of nutrients at the single cell level. It further targets naturally occurring variations in carbon and oxygen isotopes that avoids need for expensive isotopically labeled mixtures which allows study of samples taken from the field without modification. The method also permits sampling in vivo permitting real-time ambient studies of microbial communities.

  20. GC Method Validation for the Analysis of Menthol in Suppository Pharmaceutical Dosage Form

    Directory of Open Access Journals (Sweden)

    Murad N. Abualhasan

    2017-01-01

    Full Text Available Menthol is widely used as a fragrance and flavor in the food and cosmetic industries. It is also used in the medical and pharmaceutical fields for its various biological effects. Gas chromatography (GC is considered to be a sensitive method for the analysis of menthol. GC chromatographic separation was developed using capillary column (VF-624 and a flame ionization detector (FID. The method was validated as per ICH guidelines for various parameters such as precision, linearity, accuracy, solution stability, robustness, limit of detection, and quantification. The tested validation parameters were found to be within acceptable limits. The method was successfully applied for the quantification of menthol in suppositories formulations. Quality control departments and official pharmacopeias can use our developed method in the analysis of menthol in pharmaceutical dosage formulation and raw material.

  1. Biomedical applications of capillary electrophoresis

    International Nuclear Information System (INIS)

    Kartsova, L A; Bessonova, E A

    2015-01-01

    The review deals with modern analytical approaches used in capillary electrophoresis for solving medical and biological problems: search for biomarkers of various diseases and rapid diagnosis based on characteristic profiles of biologically active compounds by capillary electrophoresis with mass spectrometric detection; monitoring of the residual drugs in biological fluids for evaluating the efficiency of drug therapy; testing of the enantiomeric purity of pharmaceutical products; the use of novel materials as components of stationary and pseudo-stationary phases in capillary electrophoresis and capillary electrochromatography to increase the selectivity of separation of components of complex matrices; and identification of various on-line preconcentration techniques to reduce the detection limits of biologically active analytes. A topical trend in capillary electrophoresis required in clinical practice, viz., the design of microfluidic systems, is discussed. The bibliography includes 173 references

  2. A multicomponent multiphase lattice Boltzmann model with large liquid–gas density ratios for simulations of wetting phenomena

    International Nuclear Information System (INIS)

    Zhang Qing-Yu; Zhu Ming-Fang; Sun Dong-Ke

    2017-01-01

    A multicomponent multiphase (MCMP) pseudopotential lattice Boltzmann (LB) model with large liquid–gas density ratios is proposed for simulating the wetting phenomena. In the proposed model, two layers of neighboring nodes are adopted to calculate the fluid–fluid cohesion force with higher isotropy order. In addition, the different-time-step method is employed to calculate the processes of particle propagation and collision for the two fluid components with a large pseudo-particle mass contrast. It is found that the spurious current is remarkably reduced by employing the higher isotropy order calculation of the fluid–fluid cohesion force. The maximum spurious current appearing at the phase interfaces is evidently influenced by the magnitudes of fluid–fluid and fluid–solid interaction strengths, but weakly affected by the time step ratio. The density ratio analyses show that the liquid–gas density ratio is dependent on both the fluid–fluid interaction strength and the time step ratio. For the liquid–gas flow simulations without solid phase, the maximum liquid–gas density ratio achieved by the present model is higher than 1000:1. However, the obtainable maximum liquid–gas density ratio in the solid–liquid–gas system is lower. Wetting phenomena of droplets contacting smooth/rough solid surfaces and the dynamic process of liquid movement in a capillary tube are simulated to validate the proposed model in different solid–liquid–gas coexisting systems. It is shown that the simulated intrinsic contact angles of droplets on smooth surfaces are in good agreement with those predicted by the constructed LB formula that is related to Young’s equation. The apparent contact angles of droplets on rough surfaces compare reasonably well with the predictions of Cassie’s law. For the simulation of liquid movement in a capillary tube, the linear relation between the liquid–gas interface position and simulation time is observed, which is identical to

  3. Capillary concentrators for synchrotron radiation beamlines

    International Nuclear Information System (INIS)

    Heald, S.M.; Brewe, D.L.; Kim, K.H.; Brown, F.C.; Barg, B.; Stern, E.A.

    1996-01-01

    Capillary concentrators condense x-rays by multiple reflections down a gradually tapering capillary. They can provide sub-micron beam spots, and are promising candidates for use in the next generation x-ray microprobe beamlines. The weak energy dependence of their properties make them especially useful for energy scanning applications such as micro-XAFS. This paper examines the potential performance of capillary optics for an x-ray microprobe, as well as some practical issues such as fabrication and alignment. Best performance at third generation sources requires long capillaries, and the authors have been using fiber optics techniques to fabricate capillaries up to one meter in length. The performance of shorter (less than about 0.5 m) capillaries has often been found to agree well with theoretical calculations, indicating the inner surface is a high quality x-ray reflector. These capillaries have been tested at the NSLS for imaging and micro-XAFS down to 2.6 microm resolution with excellent results. On an unfocused bend magnet line flux density approaching 10 6 ph/sec/microm 2 has been achieved. While nearly optimum profiles have been achieved for longer capillaries, the results have been disappointing, and alignment problems are suspected. The dramatic improvement in performance possible at third generation synchrotrons such as the APS is discussed along with improvements possible by using the capillaries in conjunction with coupling optics

  4. Design validation and performance of closed loop gas recirculation system

    International Nuclear Information System (INIS)

    Kalmani, S.D.; Majumder, G.; Mondal, N.K.; Shinde, R.R.; Joshi, A.V.

    2016-01-01

    A pilot experimental set up of the India Based Neutrino Observatory's ICAL detector has been operational for the last 4 years at TIFR, Mumbai. Twelve glass RPC detectors of size 2 × 2 m 2 , with a gas gap of 2 mm are under test in a closed loop gas recirculation system. These RPCs are continuously purged individually, with a gas mixture of R134a (C 2 H 2 F 4 ), isobutane (iC 4 H 10 ) and sulphur hexafluoride (SF 6 ) at a steady rate of 360 ml/h to maintain about one volume change a day. To economize gas mixture consumption and to reduce the effluents from being released into the atmosphere, a closed loop system has been designed, fabricated and installed at TIFR. The pressure and flow rate in the loop is controlled by mass flow controllers and pressure transmitters. The performance and integrity of RPCs in the pilot experimental set up is being monitored to assess the effect of periodic fluctuation and transients in atmospheric pressure and temperature, room pressure variation, flow pulsations, uniformity of gas distribution and power failures. The capability of closed loop gas recirculation system to respond to these changes is also studied. The conclusions from the above experiment are presented. The validations of the first design considerations and subsequent modifications have provided improved guidelines for the future design of the engineering module gas system.

  5. Supercritical fluid extraction-capillary gas chromatography: on-line coupling with a programmed temperature vaporizer

    NARCIS (Netherlands)

    Houben, R.J.; Janssen, J.G.M.; Leclercq, P.A.; Rijks, J.A.; Cramers, C.A.M.G.

    1990-01-01

    A simple and versatile system is described for the on-line coupling of SFE to capillary GC. The interfacing consists of a programmed temperature vaporizer (PTV) injector. With this injector it is possible to combine solute trapping, elimination of a high flow of extraction fluid, and quantitative

  6. Capillary evaporation in colloid-polymer mixtures selectively confined to a planar slit

    International Nuclear Information System (INIS)

    Schmidt, Matthias; Fortini, Andrea; Dijkstra, Marjolein

    2004-01-01

    Using density functional theory and Monte Carlo simulations we investigate the Asakura-Oosawa-Vrij mixture of hard sphere colloids and non-adsorbing ideal polymers under selective confinement of the colloids to a planar slab geometry. This is a model for confinement of colloid-polymer mixtures by either two parallel walls with a semi-permeable polymer coating or through the use of laser tweezers. We find that such a pore favours the colloidal gas over the colloidal liquid phase and induces capillary evaporation. A treatment based on the Kelvin equation gives a good account of the location of the capillary binodal for large slit widths. The colloid density profile is found to exhibit a minimum (maximum) at contact with the wall for large (small) slit widths

  7. Nuclear track evolution by capillary condensation during etching in SSNT detectors

    International Nuclear Information System (INIS)

    Martín-Landrove, R.; Sajo-Bohus, L.; Palacios, D.

    2013-01-01

    The microscopic process taking place during chemical etching is described in terms of a dynamic framework governed by capillary condensation. The aim is to obtain physical information on how the cone shaped tracks with curved walls evolve during chemical etching under a close examination of first principles. The results obtained with the proposed theory are compared with published values to establish their range of validity. - Highlights: ► Capillary condensation seems to play a role at early etched track evolution. ► The etched track shape and the first principles behind it are easily related. ► In spite of its simplicity, theory was able to pass stringent experimental tests. ► Theory results have a simple analytical form which includes etch induction time

  8. Capillary pumped loop body heat exchanger

    Science.gov (United States)

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)

    1998-01-01

    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  9. A microfluidic circulatory system integrated with capillary-assisted pressure sensors.

    Science.gov (United States)

    Chen, Yangfan; Chan, Ho Nam; Michael, Sean A; Shen, Yusheng; Chen, Yin; Tian, Qian; Huang, Lu; Wu, Hongkai

    2017-02-14

    The human circulatory system comprises a complex network of blood vessels interconnecting biologically relevant organs and a heart driving blood recirculation throughout this system. Recreating this system in vitro would act as a bridge between organ-on-a-chip and "body-on-a-chip" and advance the development of in vitro models. Here, we present a microfluidic circulatory system integrated with an on-chip pressure sensor to closely mimic human systemic circulation in vitro. A cardiac-like on-chip pumping system is incorporated in the device. It consists of four pumping units and passive check valves, which mimic the four heart chambers and heart valves, respectively. Each pumping unit is independently controlled with adjustable pressure and pump rate, enabling users to control the mimicked blood pressure and heartbeat rate within the device. A check valve is located downstream of each pumping unit to prevent backward leakage. Pulsatile and unidirectional flow can be generated to recirculate within the device by programming the four pumping units. We also report an on-chip capillary-assisted pressure sensor to monitor the pressure inside the device. One end of the capillary was placed in the measurement region, while the other end was sealed. Time-dependent pressure changes were measured by recording the movement of the liquid-gas interface in the capillary and calculating the pressure using the ideal gas law. The sensor covered the physiologically relevant blood pressure range found in humans (0-142.5 mmHg) and could respond to 0.2 s actuation time. With the aid of the sensor, the pressure inside the device could be adjusted to the desired range. As a proof of concept, human normal left ventricular and arterial pressure profiles were mimicked inside this device. Human umbilical vein endothelial cells (HUVECs) were cultured on chip and cells can respond to mechanical forces generated by arterial-like flow patterns.

  10. Capillary optics for radiation focusing

    International Nuclear Information System (INIS)

    Peurrung, A.J.; Reeder, P.L.; Bliss, M.; Craig, R.A.; Lepel, E.A.; Stromswold, D.C.; Stoffels, J.; Sunberg, D.S.; Tenny, H.

    1996-11-01

    Capillary lens technology may ultimately bring benefits to neutron and x-ray-based science like conventional lenses with visible light. Although the technology is not yet 10 years old, these lenses have already had a significant impact in engineering, science, and medicine. Capillary lenses are advantageous when it is desirable to increase the radiation flux at a location without regard to its angular divergence. PNNL has worked to improve the technology in several ways. A single, optimally tapered capillary was manufactured, which allows intensity gains of a factor of 270 for an initially parallel, incident x-ray beam. Feasibility of constructing neutron lenses using 58 Ni (particularly effective at reflecting neutrons) has been explored. Three applications for capillary optics have been identified and studied: neutron telescope, Gandolphi x-ray diffractometry, and neutron radiotherapy. A brief guide is given for determining which potential applications are likely to be helped by capillary optics

  11. Multi-sample immunoassay inside optical fiber capillary enabled by evanescent wave detection

    Directory of Open Access Journals (Sweden)

    Chun-Wei Wang

    2016-03-01

    Full Text Available A novel evanescent wave-based (EW microfluidic capillary fiber-optic biosensor (MCFOB has been developed using capillaries as a transducer embedded in a multichannel device to enhance the collection efficiency of the fluorescence signal. The capillary serves dual roles as a waveguide and a container, enabling more straightforward, consistent, and compact biosensor packaging compared to conventional optical fiber biosensors and microfluidic systems. In order to detect multiple samples in one device, the biosensor incorporates a polydimethysiloxane (PDMS multi-channel device, which also serves as cladding for the biosensor. In addition, this biosensor only consumes 10 μl of a sample and does not require hydrofluoric acid etching in the fabrication process. The orientation for signal collection is optimized by comparing the lateral and normal signal directions for detected glyceraldehyde 3-phosphate dehydrogenase (GAPDH. C-reactive protein (CRP is used to validate the MCFOB, and the limit of detection (LOD for CRP in the MCFOB is 1.94 ng/ml (74 pM. Moreover, the real-time measurement is demonstrated to verify that the evanescent wave is the only exciting light source in the MCFOB, which gives the potential for real-time measurement applications. Keywords: C-reactive protein, Capillary, Fiber-optic, Microfluidic, Evanescent wave, Immunoassay

  12. Capillary waves of compressible fluids

    International Nuclear Information System (INIS)

    Falk, Kerstin; Mecke, Klaus

    2011-01-01

    The interplay of thermal noise and molecular forces is responsible for surprising features of liquids on sub-micrometer lengths-in particular at interfaces. Not only does the surface tension depend on the size of an applied distortion and nanoscopic thin liquid films dewet faster than would be expected from hydrodynamics, but also the dispersion relation of capillary waves differ at the nanoscale from the familiar macroscopic behavior. Starting with the stochastic Navier-Stokes equation we study the coupling of capillary waves to acoustic surface waves which is possible in compressible fluids. We find propagating 'acoustic-capillary waves' at nanometer wavelengths where in incompressible fluids capillary waves are overdamped.

  13. Fluid Delivery System For Capillary Electrophoretic Applications.

    Science.gov (United States)

    Li, Qingbo; Liu, Changsheng; Kane, Thomas E.; Kernan, John R.; Sonnenschein, Bernard; Sharer, Michael V.

    2002-04-23

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  14. Monoliths in capillary electrochromatography and capillary liquid chromatography in conjunction with mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Moravcová, Dana; Rantamäki, A. H.; Duša, Filip; Wiedmer, S. K.

    2016-01-01

    Roč. 37, 7-8 (2016), s. 880-912 ISSN 0173-0835 Institutional support: RVO:68081715 Keywords : capillary electrochromatography * capillary liquid chromatography * mass spec- trometry * monolithic columns Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.744, year: 2016

  15. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    International Nuclear Information System (INIS)

    Biagioni, A.; Anania, M.P.; Bellaveglia, M.; Chiadroni, E.; Giovenale, D. Di; Pirro, G. Di; Ferrario, M.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Cianchi, A.; Filippi, F.; Mostacci, A.; Zigler, A.

    2016-01-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  16. Microfilter paper radioimmunoassay of cortisol and dehydroepiandosterone sulphate in capillary blood

    International Nuclear Information System (INIS)

    Bodrogi, L.; Feher, T.

    1982-01-01

    A microfilter paper method is reported for cortisol and dehydroepiandosterone sulphate radioimmunoassay in fingertip capillary blood. The steroid content of dry blood spot on filter paper is determined. The results are compared to those obtained by conventional technique used for venous blood. Control experiments validated the introduction of this simple and rapid method to assess hormone function in clinical chemistry. (author)

  17. Capillary-based integrated digital PCR in picoliter droplets.

    Science.gov (United States)

    Chen, Jinyu; Luo, Zhaofeng; Li, Lin; He, Jinlong; Li, Luoquan; Zhu, Jianwei; Wu, Ping; He, Liqun

    2018-01-30

    The droplet digital polymerase chain reaction (ddPCR) is becoming more and more popular in diagnostic applications in academia and industry. In commercially available ddPCR systems, after they have been made by a generator, the droplets have to be transferred manually to modules for amplification and detection. In practice, some of the droplets (∼10%) are lost during manual transfer, leading to underestimation of the targets. In addition, the droplets are also at risk of cross-contamination during transfer. By contrast, in labs, some chip-based ddPCRs have been demonstrated where droplets always run in channels. However, the droplets easily coalesce to large ones in chips due to wall wetting as well as thermal oscillation. The loss of droplets becomes serious when such ddPCRs are applied to absolutely quantify rare mutations, such as in early diagnostics in clinical research or when measuring biological diversity at the cell level. Here, we propose a capillary-based integrated ddPCR system that is used for the first time to realize absolute quantification in this way. In this system, a HPLC T-junction is used to generate droplets and a long HPLC capillary connects the generator with both a capillary-based thermocycler and a capillary-based cytometer. The performance of the system is validated by absolute quantification of a gene specific to lung cancer (LunX). The results show that this system has very good linearity (0.9988) at concentrations ranging from NTC to 2.4 × 10 -4 copies per μL. As compared to qPCR, the all-in-one scheme is superior both in terms of the detection limit and the smaller fold changes measurement. The system of ddPCR might provide a powerful approach for clinical or academic applications where rare events are mostly considered.

  18. Knudsen-Like Scaling May Be Inappropriate for Gas Shales

    KAUST Repository

    Patzek, Tadeusz

    2017-01-01

    We assert that a classification of gas flow regimes in shales that is widely accepted in the petroleum industry, may be inconsistent with the physics of high-pressure gas flow in capillaries. This classification follows from the 1946 work

  19. A Chip-Capillary Hybrid Device for Automated Transfer of Sample Pre-Separated by Capillary Isoelectric Focusing to Parallel Capillary Gel Electrophoresis for Two-Dimensional Protein Separation

    Science.gov (United States)

    Lu, Joann J.; Wang, Shili; Li, Guanbin; Wang, Wei; Pu, Qiaosheng; Liu, Shaorong

    2012-01-01

    In this report, we introduce a chip-capillary hybrid device to integrate capillary isoelectric focusing (CIEF) with parallel capillary sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-PAGE) or capillary gel electrophoresis (CGE) toward automating two-dimensional (2D) protein separations. The hybrid device consists of three chips that are butted together. The middle chip can be moved between two positions to re-route the fluidic paths, which enables the performance of CIEF and injection of proteins partially resolved by CIEF to CGE capillaries for parallel CGE separations in a continuous and automated fashion. Capillaries are attached to the other two chips to facilitate CIEF and CGE separations and to extend the effective lengths of CGE columns. Specifically, we illustrate the working principle of the hybrid device, develop protocols for producing and preparing the hybrid device, and demonstrate the feasibility of using this hybrid device for automated injection of CIEF-separated sample to parallel CGE for 2D protein separations. Potentials and problems associated with the hybrid device are also discussed. PMID:22830584

  20. On hydraulics of capillary tubes

    Directory of Open Access Journals (Sweden)

    N.G. Aloyan

    2016-03-01

    Full Text Available The article considers the laws of motion of water in the capillary tubes, taken as a model for flowing well, on the analogical net count device. For capillary tube the lower limit value of flow rate is empirically determined above which the total hydraulic resistance of the capillary is practically constant. The specificity of the phenomenon is that the regime of motion, by a Reynolds number, for a given flow rate still remains laminar. This circumstance can perplex the specialists, so the author invites them to the scientific debate on the subject of study. Obviously, to identify the resulting puzzle it is necessary to conduct a series of experiments using capillaries of different lengths and diameters and with different values of overpressure. The article states that in tubes with very small diameter the preliminary magnitude of capillary rise of water in the presence of flow plays no role and can be neglected.

  1. Western blotting using capillary electrophoresis.

    Science.gov (United States)

    Anderson, Gwendolyn J; M Cipolla, Cynthia; Kennedy, Robert T

    2011-02-15

    A microscale Western blotting system based on separating sodium-dodecyl sulfate protein complexes by capillary gel electrophoresis followed by deposition onto a blotting membrane for immunoassay is described. In the system, the separation capillary is grounded through a sheath capillary to a mobile X-Y translation stage which moves a blotting membrane past the capillary outlet for protein deposition. The blotting membrane is moistened with a methanol and buffer mixture to facilitate protein adsorption. Although discrete protein zones could be detected, bands were broadened by ∼1.7-fold by transfer to membrane. A complete Western blot for lysozyme was completed in about one hour with 50 pg mass detection limit from low microgram per milliliter samples. These results demonstrate substantial reduction in time requirements and improvement in mass sensitivity compared to conventional Western blots. Western blotting using capillary electrophoresis shows promise to analyze low volume samples with reduced reagents and time, while retaining the information content of a typical Western blot.

  2. Nasal Lobular Capillary Hemangioma

    Directory of Open Access Journals (Sweden)

    Prashant Patil

    2013-01-01

    Full Text Available Nasal lobular capillary hemangioma is a rare benign tumor of the paranasal sinuses. This lesion is believed to grow rapidly in size over time. The exact etiopathogenesis is still a dilemma. We discuss a case of nasal lobular capillary hemangioma presenting with a history of epistaxis. Contrast enhanced computed tomography of paranasal sinuses revealed an intensely enhancing soft-tissue mass in the left nasal cavity and left middle and inferior meati with no obvious bony remodeling or destruction. We present imaging and pathologic features of nasal lobular capillary hemangioma and differentiate it from other entities like nasal angiofibroma.

  3. Development and validation of a gas chromatography-mass spectrometry assay for opiates and cocaine in human teeth.

    Science.gov (United States)

    Pellegrini, Manuela; Casá, Adriana; Marchei, Emilia; Pacifici, Roberta; Mayné, Ruth; Barbero, Vanessa; Garcia-Algar, Oscar; Pichini, Simona

    2006-02-24

    A procedure based on gas chromatography-mass spectrometry (GC-MS) is described for determination of opiates (6-monoacetylmorphine, morphine and codeine) and cocaine and metabolites (cocaine, benzoylecgonine and cocaethylene) in human teeth. After addition of nalorphine as internal standard, pulverized samples were incubated in HCl at 37 degrees C for 18 h. Then, after pH adjustment to 6, and the analytes were extracted with two volumes of 3 ml of chloroform/isopropanol (9:1). Chromatography was performed on a fused silica capillary column and analytes were determined in the selected-ion-monitoring (SIM) mode. The assay was validated in the range 7.5 (6.0 in case of codeine) to 500 ng/g with mean absolute recoveries ranged between 74.1 and 92.1% for the different analytes and precision and accuracy always better than 15%. The method was applied to the analysis of teeth from drug-addicts to assess past chronic consumption and verify self-reported declarations. In case of opiates, concentration range was 36.5-570.0 ng/g for 6-monoacetylmorphine, 8.7-154.8 ng/g for morphine and 7.9-127.9 ng/g for codeine. Cocaine concentration ranged between 5.6 and 57.2 ng/g with its principal metabolite benzoylecgonine varying from 12.6 to 81.7 ng/g and cocaethylene present in only one sample at 10 ng/g value. Teeth can be a promising non-invasive biological matrix in biomedical analysis for both clinical and forensic purposes.

  4. Measurement of rimantadine in plasma by capillary gas chromatography/mass spectrometry with a deuterium-labeled internal standard

    International Nuclear Information System (INIS)

    Herold, D.A.; Anonick, P.K.; Kinter, M.; Hayden, F.G.

    1988-01-01

    Rimantadine is a synthetic antiviral agent used in prophylaxis and in treating the early stages of uncomplicated influenza A illness. We describe a stable isotope-dilution assay involving capillary gas chromatography/mass spectrometry. We used 200 ng of d3-rimantadine, added to 1 mL of plasma, as the internal standard. The rimantadine was extracted from the plasma with a Bond-Elut CN column, the column was washed with water, and the rimantadine was eluted with methanol, dried, and treated to form the t-butyldimethylsilyl derivative. The mass spectrometer was operated in the selected ion monitoring mode. Ions at m/z 236 and m/z 239 were monitored, corresponding to the loss of C4H9 from the rimantadine derivative and d3-rimantadine, respectively. Within-run precision (CVs) ranged from 8.9% at 29 micrograms/L to 3.2% at 1666 micrograms/L. Corresponding data for between-run precision were 5.4% and 1.7%. Treated volunteers (n = 86) provided plasma samples with a concentration range of 153 to 1127 micrograms/L. This simplified method allows rapid, precise assay of rimantadine in plasma

  5. Progression of Diabetic Capillary Occlusion: A Model.

    Directory of Open Access Journals (Sweden)

    Xiao Fu

    2016-06-01

    Full Text Available An explanatory computational model is developed of the contiguous areas of retinal capillary loss which play a large role in diabetic maculapathy and diabetic retinal neovascularization. Strictly random leukocyte mediated capillary occlusion cannot explain the occurrence of large contiguous areas of retinal ischemia. Therefore occlusion of an individual capillary must increase the probability of occlusion of surrounding capillaries. A retinal perifoveal vascular sector as well as a peripheral retinal capillary network and a deleted hexagonal capillary network are modelled using Compucell3D. The perifoveal modelling produces a pattern of spreading capillary loss with associated macular edema. In the peripheral network, spreading ischemia results from the progressive loss of the ladder capillaries which connect peripheral arterioles and venules. System blood flow was elevated in the macular model before a later reduction in flow in cases with progression of capillary occlusions. Simulations differing only in initial vascular network structures but with identical dynamics for oxygen, growth factors and vascular occlusions, replicate key clinical observations of ischemia and macular edema in the posterior pole and ischemia in the retinal periphery. The simulation results also seem consistent with quantitative data on macular blood flow and qualitative data on venous oxygenation. One computational model applied to distinct capillary networks in different retinal regions yielded results comparable to clinical observations in those regions.

  6. Capillary waves in slow motion

    International Nuclear Information System (INIS)

    Seydel, Tilo; Tolan, Metin; Press, Werner; Madsen, Anders; Gruebel, Gerhard

    2001-01-01

    Capillary wave dynamics on glycerol surfaces has been investigated by means of x-ray photon correlation spectroscopy performed at grazing angles. The measurements show that thermally activated capillary wave motion is slowed down exponentially when the sample is cooled below 273 K. This finding directly reflects the freezing of the surface waves. The wave-number dependence of the measured time constants is in quantitative agreement with theoretical predictions for overdamped capillary waves

  7. Neonatal blood gas sampling methods | Goenka | South African ...

    African Journals Online (AJOL)

    There is little published guidance that systematically evaluates the different methods of neonatal blood gas sampling, where each method has its individual benefits and risks. This review critically surveys the available evidence to generate a comparison between arterial and capillary blood gas sampling, focusing on their ...

  8. Study on Shale Adsorption Equation Based on Monolayer Adsorption, Multilayer Adsorption, and Capillary Condensation

    Directory of Open Access Journals (Sweden)

    Qing Chen

    2017-01-01

    Full Text Available Shale gas is an effective gas resource all over the world. The evaluation of pore structure plays a critical role in exploring shale gas efficiently. Nitrogen adsorption experiment is one of the significant approaches to analyze pore size structure of shale. Shale is extremely heterogeneous due to component diversity and structure complexity. Therefore, adsorption isotherms for homogeneous adsorbents and empirical isotherms may not apply to shale. The shape of adsorption-desorption curve indicates that nitrogen adsorption on shale includes monolayer adsorption, multilayer adsorption, and capillary condensation. Usually, Langmuir isotherm is a monolayer adsorption model for ideal interfaces; BET (Brunauer, Emmett, Teller adsorption isotherm is a multilayer adsorption model based on specific assumptions; Freundlich isotherm is an empirical equation widely applied in liquid phase adsorption. In this study, a new nitrogen adsorption isotherm is applied to simultaneously depict monolayer adsorption, multilayer adsorption, and capillary condensation, which provides more real and accurate representation of nitrogen adsorption on shale. In addition, parameters are discussed in relation to heat of adsorption which is relevant to the shape of the adsorption isotherm curve. The curve fitting results indicate that our new nitrogen adsorption isotherm can appropriately describe the whole process of nitrogen adsorption on shale.

  9. Laboratory-based validation of the baseline sensors of the ITER diagnostic residual gas analyzer

    International Nuclear Information System (INIS)

    Klepper, C.C.; Biewer, T.M.; Marcus, C.; Graves, V.B.; Andrew, P.; Hughes, S.; Gardner, W.L.

    2017-01-01

    The divertor-specific ITER Diagnostic Residual Gas Analyzer (DRGA) will provide essential information relating to DT fusion plasma performance. This includes pulse-resolving measurements of the fuel isotopic mix reaching the pumping ducts, as well as the concentration of the helium generated as the ash of the fusion reaction. In the present baseline design, the cluster of sensors attached to this diagnostic's differentially pumped analysis chamber assembly includes a radiation compatible version of a commercial quadrupole mass spectrometer, as well as an optical gas analyzer using a plasma-based light excitation source. This paper reports on a laboratory study intended to validate the performance of this sensor cluster, with emphasis on the detection limit of the isotopic measurement. This validation study was carried out in a laboratory set-up that closely prototyped the analysis chamber assembly configuration of the baseline design. This includes an ITER-specific placement of the optical gas measurement downstream from the first turbine of the chamber's turbo-molecular pump to provide sufficient light emission while preserving the gas dynamics conditions that allow for /textasciitilde 1 s response time from the sensor cluster [1].

  10. Laboratory-based validation of the baseline sensors of the ITER diagnostic residual gas analyzer

    Science.gov (United States)

    Klepper, C. C.; Biewer, T. M.; Marcus, C.; Andrew, P.; Gardner, W. L.; Graves, V. B.; Hughes, S.

    2017-10-01

    The divertor-specific ITER Diagnostic Residual Gas Analyzer (DRGA) will provide essential information relating to DT fusion plasma performance. This includes pulse-resolving measurements of the fuel isotopic mix reaching the pumping ducts, as well as the concentration of the helium generated as the ash of the fusion reaction. In the present baseline design, the cluster of sensors attached to this diagnostic's differentially pumped analysis chamber assembly includes a radiation compatible version of a commercial quadrupole mass spectrometer, as well as an optical gas analyzer using a plasma-based light excitation source. This paper reports on a laboratory study intended to validate the performance of this sensor cluster, with emphasis on the detection limit of the isotopic measurement. This validation study was carried out in a laboratory set-up that closely prototyped the analysis chamber assembly configuration of the baseline design. This includes an ITER-specific placement of the optical gas measurement downstream from the first turbine of the chamber's turbo-molecular pump to provide sufficient light emission while preserving the gas dynamics conditions that allow for \\textasciitilde 1 s response time from the sensor cluster [1].

  11. Laboratory-based validation of the baseline sensors of the ITER diagnostic residual gas analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Biewer, Theodore M. [ORNL; Marcus, Chris [ORNL; Klepper, C Christopher [ORNL; Andrew, Philip [ITER Organization, Cadarache, France; Gardner, W. L. [United States ITER Project Office; Graves, Van B. [ORNL; Hughes, Shaun [ITER Organization, Saint Paul Lez Durance, France

    2017-10-01

    The divertor-specific ITER Diagnostic Residual Gas Analyzer (DRGA) will provide essential information relating to DT fusion plasma performance. This includes pulse-resolving measurements of the fuel isotopic mix reaching the pumping ducts, as well as the concentration of the helium generated as the ash of the fusion reaction. In the present baseline design, the cluster of sensors attached to this diagnostic's differentially pumped analysis chamber assembly includes a radiation compatible version of a commercial quadrupole mass spectrometer, as well as an optical gas analyzer using a plasma-based light excitation source. This paper reports on a laboratory study intended to validate the performance of this sensor cluster, with emphasis on the detection limit of the isotopic measurement. This validation study was carried out in a laboratory set-up that closely prototyped the analysis chamber assembly configuration of the baseline design. This includes an ITER-specific placement of the optical gas measurement downstream from the first turbine of the chamber's turbo-molecular pump to provide sufficient light emission while preserving the gas dynamics conditions that allow for \\textasciitilde 1 s response time from the sensor cluster [1].

  12. Comprehensive protein profiling by multiplexed capillary zone electrophoresis using cross-linked polyacrylamide coated capillaries.

    Science.gov (United States)

    Liu, Shaorong; Gao, Lin; Pu, Qiaosheng; Lu, Joann J; Wang, Xingjia

    2006-02-01

    We have recently developed a new process to create cross-linked polyacrylamide (CPA) coatings on capillary walls to suppress protein-wall interactions. Here, we demonstrate CPA-coated capillaries for high-efficiency (>2 x 10(6) plates per meter) protein separations by capillary zone electrophoresis (CZE). Because CPA virtually eliminates electroosmotic flow, positive and negative proteins cannot be analyzed in a single run. A "one-sample-two-separation" approach is developed to achieve a comprehensive protein analysis. High throughput is achieved through a multiplexed CZE system.

  13. Ion guiding and losses in insulator capillaries

    International Nuclear Information System (INIS)

    Juhasz, Z.; Sulik, B.; Vikor, Gy.; Biri, S.; Fekete, E.; Ivan, I.; Gall, F.; Toekesi, K.; Matefi-Tempfli, S.; Matefi-Tempfli, M.

    2007-01-01

    Complete text of publication follows. Not long ago it was discovered that insulating capillaries can guide slow ions, so that the ions avoid close contact with the capillary walls and preserve their initial charge state. This phenomenon did not only give a new puzzle for theoreticians but opened the way for new possible applications where ions are manipulated (deflected, focused and directed to different patterns on the irradiated media) with small capillary devices. The most important question for such applications is how large fraction of the ions can be guided to the desired direction. It is already known that the ion guiding is due to the charging up of the inner capillary walls by earlier ion impact events. In tilted capillaries one side of the capillary walls charges up. This deflects the later arriving ions, so that some of them pass through the capillaries nearly parallel with respect to their axes. The angle where the transmission drops to 1/e of the direct transmission at 0 deg is the guiding angle, which characterize the guiding ability. At 0 deg the ideal 100 percent transmission for the ions, which enter the capillaries, is reduced due to the mirror charge attraction and geometrical imperfections. These losses appear in the transmission for tilted capillaries with similar magnitude, since after the deflection region, which usually restricted to the close surroundings of the capillary openings, the guided ions pass through the rest of the capillaries as in non-tilted samples. In our experimental studies with Al 2 O 3 capillaries we found that around 90 percent of the incoming ions are lost. To understand these significant losses, the effects of the mirror charge attraction and geometrical imperfections have been calculated classically. The mirror charge potential was taken from.The model of the capillaries used in the calculations can be seen in Figure 1. The calculations have shown that the effects of mirror charge attraction and the angular

  14. DNA typing by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, N.

    1997-10-08

    Capillary electrophoresis is becoming more and more important in nucleic acid analysis including DNA sequencing, typing and disease gene measurements. This work summarized the background of DNA typing. The recent development of capillary electrophoresis was also discussed. The second part of the thesis showed the principle of DNA typing based on using the allelic ladder as the absolute standard ladder in capillary electrophoresis system. Future work will be focused on demonstrating DNA typing on multiplex loci and examples of disease diagnosis in the on-line format of PCR-CE. Also capillary array electrophoresis system should allow high throughput, fast speed DNA typing. Only the introduction and conclusions for this report are available here. A reprint was removed for separate processing.

  15. Effect of hindpaw electrical stimulation on capillary flow heterogeneity and oxygen delivery (Conference Presentation)

    Science.gov (United States)

    Li, Yuandong; Wei, Wei; Li, Chenxi; Wang, Ruikang K.

    2017-02-01

    We report a novel use of optical coherence tomography (OCT) based angiography to visualize and quantify dynamic response of cerebral capillary flow pattern in mice upon hindpaw electrical stimulation through the measurement of the capillary transit-time heterogeneity (CTH) and capillary mean transit time (MTT) in a wide dynamic range of a great number of vessels in vivo. The OCT system was developed to have a central wavelength of 1310 nm, a spatial resolution of 8 µm and a system dynamic range of 105 dB at an imaging rate of 92 kHz. The mapping of dynamic cerebral microcirculations was enabled by optical microangiography protocol. From the imaging results, the spatial homogenization of capillary velocity (decreased CTH) was observed in the region of interest (ROI) corresponding to the stimulation, along with an increase in the MTT in the ROI to maintain sufficient oxygen exchange within the brain tissue during functional activation. We validated the oxygen consumption due to an increase of the MTT through demonstrating an increase in the deoxygenated hemoglobin (HbR) during the stimulation by the use of laser speckle contrast imaging.

  16. Bacterial surface layer proteins as a novel capillary coating material for capillary electrophoretic separations

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Gordaliza, Estefanía, E-mail: emorenog@ucm.es [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid (Spain); Stigter, Edwin C.A. [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Molecular Cancer Research, Universitair Medisch Centrum Utrecht, Wilhelmina Kinder Ziekenhuis, Lundlaan 6, 3584, EA Utrecht (Netherlands); Lindenburg, Petrus W.; Hankemeier, Thomas [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands)

    2016-06-07

    A novel concept for stable coating in capillary electrophoresis, based on recrystallization of surface layer proteins on hydrophobized fused silica capillaries, was demonstrated. Surface layer protein A (SlpA) from Lactobacillus acidophilus bacteria was extracted, purified and used for coating pre-silanized glass substrates presenting different surface wettabilities (either hydrophobic or hydrophilic). Contact angle determination on SlpA-coated hydrophobic silica slides showed that the surfaces turned to hydrophilic after coating (53 ± 5°), due to a protein monolayer formation by protein-surface hydrophobic interactions. Visualization by atomic force microscopy demonstrated the presence of a SlpA layer on methylated silica slides displaying a surface roughness of 0.44 ± 0.02 nm. Additionally, a protein layer was visualized by fluorescence microscopy in methylated silica capillaries coated with SlpA and fluorescein isothiocyanate-labeled. The SlpA-coating showed an outstanding stability, even after treatment with 20 mM NaOH (pH 12.3). The electroosmotic flow in coated capillaries showed a partial suppression at pH 7.50 (3.8 ± 0.5 10{sup −9} m{sup 2} V{sup −1} s{sup −1}) when compared with unmodified fused silica (5.9 ± 0.1 10{sup −8} m{sup 2} V{sup −1} s{sup −1}). To demonstrate the potential of this novel coating, the SlpA-coated capillaries were applied for the first time for electrophoretic separation, and proved to be very suitable for the isotachophoretic separation of lipoproteins in human serum. The separations showed a high degree of repeatability (absolute migration times with 1.1–1.8% coefficient-of-variation (CV) within a day) and 2–3% CV inter-capillary reproducibility. The capillaries were stable for more than 100 runs at pH 9.40, and showed to be an exceptional alternative for challenging electrophoretic separations at long-term use. - Highlights: • New coating using recrystallized surface-layer proteins on

  17. Capillary Condensation in Confined Media

    OpenAIRE

    Charlaix, Elisabeth; Ciccotti, Matteo

    2009-01-01

    28 pages - To appear in 2010 in the Handbook of Nanophysics - Vol 1 - Edited by Klaus Sattler - CRC Press; We review here the physics of capillary condensation of liquids in confined media, with a special regard to the application in nanotechnologies. The thermodynamics of capillary condensation and thin film adsorption are first exposed along with all the relevant notions. The focus is then shifted to the modelling of capillary forces, to their measurements techniques (including SFA, AFM and...

  18. Capillary-Condenser-Pumped Heat-Transfer Loop

    Science.gov (United States)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  19. Characterization of a capillary plasma reactor for carbon dioxide decomposition

    International Nuclear Information System (INIS)

    Mori, Shinsuke; Yamamoto, Aguru; Suzuki, Masaaki

    2006-01-01

    The decomposition of carbon dioxide in a plasma reactor was investigated experimentally, using capillary discharge tubes with a diameter of 0.5 or 3.0 mm and a length of 25, 50, 75, 100 or 150 mm. The chemical composition of the reaction products and the current-voltage characteristics were measured over a pressure range of 3.33-120 Torr, and the CO 2 conversion rates and reduced electric fields were calculated. The results show that the influence of downscaling on the reduced electric fields can be well evaluated by adjusting both the current density, i, and the products of the pressure and the tube diameter, pd. However, the characteristics of CO 2 decomposition cannot be determined based on i and pd; they are better characterized by i and p. It can be deduced from our experimental results that the CO 2 conversion rate is predominated by the electron impact CO 2 dissociation and gas phase reverse reactions even in a capillary plasma reactor

  20. Capillary Columns with a Sorbent Based on Functionalized Poly(1-Trimethylsilyl-1-Propyne) for the Elution Analysis of Natural Gas

    Science.gov (United States)

    Yakovleva, E. Yu.; Patrushev, Yu. V.; Pai, Z. P.

    2018-05-01

    The chromatographic properties of capillary columns prepared using functionalized poly(1- trimethylsilyl-1-propyne) (PTMSP) are evaluated and compared with the performance of a commercial column with divinylbenzene polymer sorbent. The loading capacity of a PTMSP column with dimensions of 30 m × 0.53 mm × 0.8 μm is shown to be about 2.5 times higher than that of a divinylbenzene polymer column with a diameter of 0.32 mm and a film thickness of 10 μm. The increased value of the background current for PTMSP columns at 220°C is explained by the presence of non-polar bulky substituents in the polymer chain. Differences in the order of elution are found for the following pairs of compounds: acetylene-ethylene; ethane-water; butene-1-isobutane; and sulfur dioxide-carbonyl sulfide. On a column with the functionalized PTMC, analysis of a mixture composition close to natural gas is found to be complete within 27 min.

  1. Phase Behaviors of Reservoir Fluids with Capillary Eff ect Using Particle Swarm Optimization

    KAUST Repository

    Ma, Zhiwei

    2013-05-06

    The study of phase behavior is important for the oil and gas industry. Many approaches have been proposed and developed for phase behavior calculation. In this thesis, an alternative method is introduced to study the phase behavior by means of minimization of Helmholtz free energy. For a system at fixed volume, constant temperature and constant number of moles, the Helmholtz free energy reaches minimum at the equilibrium state. Based on this theory, a stochastic method called Particle Swarm Optimization (PSO) algorithm, is implemented to compute the phase diagrams for several pure component and mixture systems. After comparing with experimental and the classical PT-ash calculation, we found the phase diagrams obtained by minimization of the Helmholtz Free Energy approach match the experimental and theoretical diagrams very well. Capillary effect is also considered in this thesis because it has a significant influence on the phase behavior of reservoir fluids. In this part, we focus on computing the phase envelopes, which consists of bubble and dew point lines. Both fixed and calculated capillary pressure from the Young-Laplace equation cases are introduced to study their effects on phase envelopes. We found that the existence of capillary pressure will change the phase envelopes. Positive capillary pressure reduces the dew point and bubble point temperatures under the same pressure condition, while the negative capillary pressure increases the dew point and bubble point temperatures. In addition, the change of contact angle and pore radius will affect the phase envelope. The effect of the pore radius on the phase envelope is insignificant when the radius is very large. These results may become reference for future research and study. Keywords: Phase Behavior; Particle Swarm Optimization; Capillary Pressure; Reservoir Fluids; Phase Equilibrium; Phase Envelope.

  2. Phase Behaviors of Reservoir Fluids with Capillary Eff ect Using Particle Swarm Optimization

    KAUST Repository

    Ma, Zhiwei

    2013-01-01

    The study of phase behavior is important for the oil and gas industry. Many approaches have been proposed and developed for phase behavior calculation. In this thesis, an alternative method is introduced to study the phase behavior by means of minimization of Helmholtz free energy. For a system at fixed volume, constant temperature and constant number of moles, the Helmholtz free energy reaches minimum at the equilibrium state. Based on this theory, a stochastic method called Particle Swarm Optimization (PSO) algorithm, is implemented to compute the phase diagrams for several pure component and mixture systems. After comparing with experimental and the classical PT-ash calculation, we found the phase diagrams obtained by minimization of the Helmholtz Free Energy approach match the experimental and theoretical diagrams very well. Capillary effect is also considered in this thesis because it has a significant influence on the phase behavior of reservoir fluids. In this part, we focus on computing the phase envelopes, which consists of bubble and dew point lines. Both fixed and calculated capillary pressure from the Young-Laplace equation cases are introduced to study their effects on phase envelopes. We found that the existence of capillary pressure will change the phase envelopes. Positive capillary pressure reduces the dew point and bubble point temperatures under the same pressure condition, while the negative capillary pressure increases the dew point and bubble point temperatures. In addition, the change of contact angle and pore radius will affect the phase envelope. The effect of the pore radius on the phase envelope is insignificant when the radius is very large. These results may become reference for future research and study. Keywords: Phase Behavior; Particle Swarm Optimization; Capillary Pressure; Reservoir Fluids; Phase Equilibrium; Phase Envelope.

  3. Determination of perfluorobutane in rat blood by automatic headspace capillary gas chromatography and selected ion monitoring mass spectrometry.

    Science.gov (United States)

    Hvattum, E; Normann, P T; Oulie, I; Uran, S; Ringstad, O; Skotland, T

    2001-01-01

    A new contrast agent (Sonazoid; NC100100) for ultrasound imaging has been developed. It is an aqueous suspension of lipid stabilised perfluorobutane (PFB) gas microbubbles. An automatic headspace capillary gas-chromatographic mass spectrometric method using electron impact ionisation was developed for analysis of Sonazoid PFB in rat blood. The calibration standards were gaseous PFB dissolved in ethanol in the range of 0.5-5000 ng PFB. Fluorotrichloromethane (CFC 11) was used as an internal standard of the method and the MS detector was set to single ion monitoring of the base fragment ions of PFB (m/z 69 and 119) and CFC 11 (m/z 101). The calibration graph, made by plotting the peak area ratios of PFB (m/z 69) to CFC 11(m/z 101) against the amount of PFB, was fitted to a second-order polynomial equation with weighting 1/y2 and found to be reproducible. The limit of quantification of the method was set to 0.4 ng PFB. The between-day variation of the method was below 9.2% relative standard deviation (RSD) and the within-day variation of the method was below 7.6% RSD. The accuracy of the method, as compared to Coulter counter, was estimated by determination of PFB in samples where Sonazoid was added to saline and found to range from 91.5% to 105.2%. PFB, added as Sonazoid, was found to be stable for at least 7 months in rat blood samples when stored at -20 degrees C.

  4. Steroids in porcine follicular fluid: analysis by HPLC, capillary CG and capillary CG/MS after purification on SEP-PAK C18 and ion exchange chromatography.

    Science.gov (United States)

    Khalil, M W; Lawson, V

    1983-04-01

    Steroids in porcine follicular fluid have been concentrated by reverse phase chromatography in SEP-PAK C18 and purified further on the cation exchanger SP-Sephadex C-25. Fractionation into unconjugated neutral and phenolic steroids, glucuronides and sulfates was carried out on triethylaminohydroxypropyl Sephadex LH-20 (TEAP-LH-20). The unconjugated neutral fraction was analysed by high pressure liquid chromatography (HPLC) on a C18 radial cartridge 5 mm I.D.; 10 mu, or on a C18 5 mu RESOLVE column, and by capillary gas chromatography (GC) on a 12 M OV-1 cross linked fused silica column. Testosterone, progesterone and androstenedione were the major steroids detected by HPLC monitored at 254 nm, although 17- hydroxy-, 20 alpha-dihydro- and 20 beta-dihydroprogesterone were also present. Pregnenolone, pregnanediol, dehydroepiandrosterone, 17-hydroxypregnenolone and androsterone were detected by capillary CG as their 0-methyloxime trimethylsilyether derivatives. Further confirmation of structure was provided by complete mass spectral data or by selective ion monitoring (SIM).

  5. Effects of Capillary Forces and Adsorption on Reserves Distribution

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1996-01-01

    The purpose of this study is to evaluate the effects of capillary forces and adsorption on the distribution of a hydrocarbon mixture in an oil-gas-condensate reservoir. These effects consist in the precipitation of the liquid phase in thin pores and on the internal surface of the reservoir rock....... To estimate the amount of the dispersed liquid condensate, analytical methods based on the generalization of the Kelvin equation and on the potential theory of adsorption have been developed. Sample calculations show significant role of adsorption, especially, in the neighborhood of the critical point...

  6. Soft X-ray emission of a fast-capillary-discharge device

    Czech Academy of Sciences Publication Activity Database

    Schmidt, Jiří; Koláček, Karel; Štraus, Jaroslav; Prukner, Václav; Frolov, Oleksandr; Boháček, Vladislav

    2005-01-01

    Roč. 13, č. 2 (2005), s. 105-109 ISSN 1051-9998. [International Conference on High- Power Particle Beams, BEAMS /15th./. St. Petersburg, 18.7.2004-23.7.2004] R&D Projects: GA AV ČR(CZ) KSK2043105; GA ČR(CZ) GA202/03/0711 Institutional research plan: CEZ:AV0Z20430508 Keywords : pre-pulse plasma * capillary discharge * soft X-ray laser Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.271, year: 2005

  7. Capillary adhesion in the limit of saturation: Thermodynamics, self-consistent field modeling and experiment

    NARCIS (Netherlands)

    Sprakel, J.H.B.; Besseling, N.A.M.; Cohen Stuart, M.A.; Leermakers, F.A.M.

    2008-01-01

    We introduce a simple thermodynamic argument for capillary adhesion forces, for various geometries, in the limit of saturation of the bulk phase. For one specific geometry (i.e., the sphere¿plate geometry such as that found in the colloidal probe AFM technique), we provide evidence of the validity

  8. Gas distribution effects on waste properties: Viscosities of bubbly slurries

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Shah, R.R.; Davis, R.L.

    1994-09-01

    The retention and episodic release of flammable gases are critical safety concerns for double-shell tanks that contain waste slurries. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The presence of gas bubbles is expected to affect the rheology of the sludge, but essentially no literature data are available to assess the effect of bubbles. Accordingly, the objectives of this study are to develop models for the effect of gas bubbles on the viscosity of a particulate slurry, develop an experimental method (capillary rheometer), collect data on the viscosity of a bubbly slurry, and develop a theoretical basis for interpreting the experimental data from the capillary rheometer

  9. Capillary leak syndrome: etiologies, pathophysiology, and management.

    Science.gov (United States)

    Siddall, Eric; Khatri, Minesh; Radhakrishnan, Jai

    2017-07-01

    In various human diseases, an increase in capillary permeability to proteins leads to the loss of protein-rich fluid from the intravascular to the interstitial space. Although sepsis is the disease most commonly associated with this phenomenon, many other diseases can lead to a "sepsis-like" syndrome with manifestations of diffuse pitting edema, exudative serous cavity effusions, noncardiogenic pulmonary edema, hypotension, and, in some cases, hypovolemic shock with multiple-organ failure. The term capillary leak syndrome has been used to describe this constellation of disease manifestations associated with an increased capillary permeability to proteins. Diseases other than sepsis that can result in capillary leak syndrome include the idiopathic systemic capillary leak syndrome or Clarkson's disease, engraftment syndrome, differentiation syndrome, the ovarian hyperstimulation syndrome, hemophagocytic lymphohistiocytosis, viral hemorrhagic fevers, autoimmune diseases, snakebite envenomation, and ricin poisoning. Drugs including some interleukins, some monoclonal antibodies, and gemcitabine can also cause capillary leak syndrome. Acute kidney injury is commonly seen in all of these diseases. In addition to hypotension, cytokines are likely to be important in the pathophysiology of acute kidney injury in capillary leak syndrome. Fluid management is a critical part of the treatment of capillary leak syndrome; hypovolemia and hypotension can cause organ injury, whereas capillary leakage of administered fluid can worsen organ edema leading to progressive organ injury. The purpose of this article is to discuss the diseases other than sepsis that produce capillary leak and review their collective pathophysiology and treatment. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  10. Electro-capillary effects in capillary filling dynamics of electrorheological fluids.

    Science.gov (United States)

    Dhar, Jayabrata; Ghosh, Uddipta; Chakraborty, Suman

    2015-09-21

    The flow of electrorheological fluids is characterized by an apparent increase in viscosity manifested by the yield stress property of the fluid, which is a function of the applied electric field and the concentration of the suspended solute phase within the dielectric medium. This property of electrorheological fluids generally hinders flow through a capillary if the imposed shear stress is lower than the induced yield stress. This results in a plug-like zone in the flow profile, thus giving the fluid Bingham plastic properties. In the present work, we study such influences of the yield stress on the capillary filling dynamics of an electrorheological fluid by employing a rheologically consistent reduced order formalism. One important feature of the theoretical formalism is its ability to address the intricate interplay between the surface tension and viscous forces, both of which depend sensitively on the electric field. Our analysis reveals that the progress of the capillary front is hindered at an intermediate temporal regime, which is attributable to the increase of the span of the plug-zone across the channel width with time. With a preliminary understanding on the cessation of the capillary front advancement due to the yield stress property of the electrorheological fluids, we further strive to achieve a basic comparison with an experimental study made earlier. Reasonable agreements with the reported data support our theoretical framework. Comprehensive scaling analysis brings further insight to our reported observations over various temporal regimes.

  11. Microfluidic PMMA interfaces for rectangular glass capillaries

    International Nuclear Information System (INIS)

    Evander, Mikael; Tenje, Maria

    2014-01-01

    We present the design and fabrication of a polymeric capillary fluidic interface fabricated by micro-milling. The design enables the use of glass capillaries with any kind of cross-section in complex microfluidic setups. We demonstrate two different designs of the interface; a double-inlet interface for hydrodynamic focusing and a capillary interface with integrated pneumatic valves. Both capillary interfaces are presented together with examples of practical applications. This communication shows the design optimization and presents details of the fabrication process. The capillary interface opens up for the use of complex microfluidic systems in single-use glass capillaries. They also enable simple fabrication of glass/polymer hybrid devices that can be beneficial in many research fields where a pure polymer chip negatively affects the device's performance, e.g. acoustofluidics. (technical note)

  12. Analytical method validation of GC-FID for the simultaneous measurement of hydrocarbons (C2-C4) in their gas mixture

    OpenAIRE

    Oman Zuas; Harry budiman; Muhammad Rizky Mulyana

    2016-01-01

    An accurate gas chromatography coupled to a flame ionization detector (GC-FID) method was validated for the simultaneous analysis of light hydrocarbons (C2-C4) in their gas mixture. The validation parameters were evaluated based on the ISO/IEC 17025 definition including method selectivity, repeatability, accuracy, linearity, limit of detection (LOD), limit of quantitation (LOQ), and ruggedness. Under the optimum analytical conditions, the analysis of gas mixture revealed that each target comp...

  13. Droplet spreading and capillary imbibition in a porous medium: A coupled IB-VOF method based numerical study

    Science.gov (United States)

    Das, Saurish; Patel, H. V.; Milacic, E.; Deen, N. G.; Kuipers, J. A. M.

    2018-01-01

    We investigate the dynamics of a liquid droplet in contact with a surface of a porous structure by means of the pore-scale level, fully resolved numerical simulations. The geometrical details of the solid porous matrix are resolved by a sharp interface immersed boundary method on a Cartesian computational grid, whereas the motion of the gas-liquid interface is tracked by a mass conservative volume of fluid method. The numerical simulations are performed considering a model porous structure that is approximated by a 3D cubical scaffold with cylindrical struts. The effect of the porosity and the equilibrium contact angle (between the gas-liquid interface and the solid struts) on the spreading behavior, liquid imbibition, and apparent contact angle (between the gas-liquid interface and the porous base) are studied. We also perform several simulations for droplet spreading on a flat surface as a reference case. Gas-liquid systems of the Laplace number, La = 45 and La = 144 × 103 are considered neglecting the effect of gravity. We report the time exponent (n) and pre-factor (C) of the power law describing the evolution of the spreading diameter (S = Ctn) for different equilibrium contact angles and porosity. Our simulations reveal that the apparent or macroscopic contact angle varies linearly with the equilibrium contact angle and increases with porosity. Not necessarily for all the wetting porous structures, a continuous capillary drainage occurs, and we find that the rate of the capillary drainage very much depends on the fluid inertia. At La = 144 × 103, numerically we capture the capillary wave induced pinch-off and daughter droplet ejection. We observe that on the porous structure the pinch-off is weak compared to that on a flat plate.

  14. Selective capillary diffusion of equimolar H2/D2 gas mixtures through etched ion track membranes prepared from polyethylene terephthalate and polyimide

    International Nuclear Information System (INIS)

    Schmidt, K.; Angert, N.; Trautmann, C.

    1996-01-01

    The selective capillary diffusion of equimolar H 2 /D 2 gas mixtures through ion track membranes prepared from polyethylene terephthalate and polyimide was investigated at a temperature of 293 K, a primary pressure of 0.15 MPa and a secondary pressure of 10 -4 MPa. Different values of the separation factor Z(H 2 /D 2 ) between experiment and computer simulation exists in the case of polyethylene terephthalate ion track membranes because of multiple pores. Membranes for which multiple pores were reduced by varying the irradiation angle showed an increased separation factor. The separation factor is a function of the pore diameter. This is shown for polyimide ion track membranes with a pore size in the range of 0.17 and 0.5 μm. After grafting with styrene the separation factor increased, indicating grafting within the pores. (orig.)

  15. A complete soil hydraulic model accounting for capillary and adsorptive water retention, capillary and film conductivity, and hysteresis

    NARCIS (Netherlands)

    Sakai, Masaru; Van Genuchten, Martinus Th|info:eu-repo/dai/nl/31481518X; Alazba, A. A.; Setiawan, Budi Indra; Minasny, Budiman

    2015-01-01

    A soil hydraulic model that considers capillary hysteretic and adsorptive water retention as well as capillary and film conductivity covering the complete soil moisture range is presented. The model was obtained by incorporating the capillary hysteresis model of Parker and Lenhard into the hydraulic

  16. X-ray focusing using capillary arrays

    International Nuclear Information System (INIS)

    Nugent, K.A.; Chapman, H.N.

    1990-01-01

    A new form of X-ray focusing device based on glass capillary arrays is presented. Theoretical and experimental results for array of circular capillaries and theoretical and computational results for square hole capillaries are given. It is envisaged that devices such as these will find wide applications in X-ray optics as achromatic condensers and collimators. 3 refs., 4 figs

  17. Capillary condenser/evaporator

    Science.gov (United States)

    Valenzuela, Javier A. (Inventor)

    2010-01-01

    A heat transfer device is disclosed for transferring heat to or from a fluid that is undergoing a phase change. The heat transfer device includes a liquid-vapor manifold in fluid communication with a capillary structure thermally connected to a heat transfer interface, all of which are disposed in a housing to contain the vapor. The liquid-vapor manifold transports liquid in a first direction and conducts vapor in a second, opposite direction. The manifold provides a distributed supply of fluid (vapor or liquid) over the surface of the capillary structure. In one embodiment, the manifold has a fractal structure including one or more layers, each layer having one or more conduits for transporting liquid and one or more openings for conducting vapor. Adjacent layers have an increasing number of openings with decreasing area, and an increasing number of conduits with decreasing cross-sectional area, moving in a direction toward the capillary structure.

  18. Micro-injector for capillary electrophoresis.

    Science.gov (United States)

    Sáiz, Jorge; Koenka, Israel Joel; García-Ruiz, Carmen; Müller, Beat; Chwalek, Thomas; Hauser, Peter C

    2015-08-01

    A novel micro-injector for capillary electrophoresis for the handling of samples with volumes down to as little as 300 nL was designed and built in our laboratory for analyses in which the available volume is a limitation. The sample is placed into a small cavity located directly in front of the separation capillary, and the injection is then carried out automatically by controlled pressurization of the chamber with compressed air. The system also allows automated flushing of the injection chamber as well as of the capillary. In a trial with a capillary electrophoresis system with contactless conductivity detector, employing a capillary of 25 μm diameter, the results showed good stability of migration times and peak areas. To illustrate the technique, the fast separation of five inorganic cations (Na(+) , K(+) , NH4 (+) , Ca(2+) , and Mg(2+) ) was set up. This could be achieved in less than 3 min, with good limits of detection (10 μM) and linear ranges (between about 10 and 1000 μM). The system was demonstrated for the determination of the inorganic cations in porewater samples of a lake sediment core. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Modal effects on pump-pulse propagation in an Ar-filled capillary

    OpenAIRE

    Chapman, Richard T.; Butcher, Thomas J.; Horak, Peter; Poletti, Francesco; Frey, Jeremy G.; Brocklesby, William S.

    2010-01-01

    Accurate three-dimensional modelling of nonlinear pulse propagation within a gas-filled capillary is essential for understanding and improving the XUV yield in high harmonic generation. We introduce both a new model based on a multimode generalized nonlinear Schrödinger equation and a novel spatio-spectral measurement technique to which the model can be compared. The theory shows excellent agreement with the measured output spectrum and the spatio-spectral measurement reveals that the model c...

  20. Design of Capillary Flows with Spatially Graded Porous Films

    Science.gov (United States)

    Joung, Young Soo; Figliuzzi, Bruno Michel; Buie, Cullen

    2013-11-01

    We have developed a new capillary tube model, consisting of multi-layered capillary tubes oriented in the direction of flow, to predict capillary speeds on spatially graded porous films. Capillary flows through thin porous media have been widely utilized for small size liquid transport systems. However, for most media it is challenging to realize arbitrary shapes and spatially functionalized micro-structures with variable flow properties. Therefore, conventional media can only be used for capillary flows obeying Washburn's equation and the modifications thereof. Given this background, we recently developed a method called breakdown anodization (BDA) to produce highly wetting porous films. The resulting surfaces show nearly zero contact angles and fast water spreading speed. Furthermore, capillary pressure and spreading diffusivity can be expressed as functions of capillary height when customized electric fields are used in BDA. From the capillary tube model, we derived a general capillary flow equation of motion in terms of capillary pressure and spreading diffusivity. The theoretical model shows good agreement with experimental capillary flows. The study will provide novel design methodologies for paper-based microfluidic devices.

  1. A Capillary-Based Static Phase Separator for Highly Variable Wetting Conditions

    Science.gov (United States)

    Thomas, Evan A.; Graf, John C.; Weislogel, Mark M.

    2010-01-01

    The invention, a static phase separator (SPS), uses airflow and capillary wetting characteristics to passively separate a two-phase (liquid and air) flow. The device accommodates highly variable liquid wetting characteristics. The resultant design allows for a range of wetting properties from about 0 to over 90 advancing contact angle, with frequent complete separation of liquid from gas observed when using appropriately scaled test conditions. Additionally, the design accommodates a range of air-to-liquid flow-rate ratios from only liquid flow to over 200:1 air-to-liquid flow rate. The SPS uses a helix input section with an ice-cream-cone-shaped constant area cross section (see figure). The wedge portion of the cross section is on the outer edge of the helix, and collects the liquid via centripetal acceleration. The helix then passes into an increasing cross-sectional area vane region. The liquid in the helix wedge is directed into the top of capillary wedges in the liquid containment section. The transition from diffuser to containment section includes a 90 change in capillary pumping direction, while maintaining inertial direction. This serves to impinge the liquid into the two off-center symmetrical vanes by the airflow. Rather than the airflow serving to shear liquid away from the capillary vanes, the design allows for further penetration of the liquid into the vanes by the air shear. This is also assisted by locating the air exit ports downstream of the liquid drain port. Additionally, any droplets not contained in the capillary vanes are re-entrained downstream by a third opposing capillary vane, which directs liquid back toward the liquid drain port. Finally, the dual air exit ports serve to slow the airflow down, and to reduce the likelihood of shear. The ports are stove-piped into the cavity to form an unfriendly capillary surface for a wetting fluid to carryover. The liquid drain port is located at the start of the containment region, allowing for

  2. Experimental validation of a combustion kinetics based multi-zone model for natural gas-diesel RCCI engines

    NARCIS (Netherlands)

    Mikulski, M.; Bekdemir, C.; Willems, F.P.T.

    2016-01-01

    This paper presents the validation results of TNO's combustion model designed to support RCCI control development. In-depth validation was performed on a multi-cylinder heavy-duty engine operating in RCCI mode on natural gas and diesel fuel. It was shown that the adopted approach is able to

  3. On-capillary sample cleanup method for the electrophoretic determination of carbohydrates in juice samples.

    Science.gov (United States)

    Morales-Cid, Gabriel; Simonet, Bartolomé M; Cárdenas, Soledad; Valcárcel, Miguel

    2007-05-01

    On many occasions, sample treatment is a critical step in electrophoretic analysis. As an alternative to batch procedures, in this work, a new strategy is presented with a view to develop an on-capillary sample cleanup method. This strategy is based on the partial filling of the capillary with carboxylated single-walled carbon nanotube (c-SWNT). The nanoparticles retain interferences from the matrix allowing the determination and quantification of carbohydrates (viz glucose, maltose and fructose). The precision of the method for the analysis of real samples ranged from 5.3 to 6.4%. The proposed method was compared with a method based on a batch filtration of the juice sample through diatomaceous earth and further electrophoretic determination. This method was also validated in this work. The RSD for this other method ranged from 5.1 to 6%. The results obtained by both methods were statistically comparable demonstrating the accuracy of the proposed methods and their effectiveness. Electrophoretic separation of carbohydrates was achieved using 200 mM borate solution as a buffer at pH 9.5 and applying 15 kV. During separation, the capillary temperature was kept constant at 40 degrees C. For the on-capillary cleanup method, a solution containing 50 mg/L of c-SWNTs prepared in 300 mM borate solution at pH 9.5 was introduced for 60 s into the capillary just before sample introduction. For the electrophoretic analysis of samples cleaned in batch with diatomaceous earth, it is also recommended to introduce into the capillary, just before the sample, a 300 mM borate solution as it enhances the sensitivity and electrophoretic resolution.

  4. Proper Use of Capillary Number in Chemical Flooding

    Directory of Open Access Journals (Sweden)

    Hu Guo

    2017-01-01

    Full Text Available Capillary number theory is very important for chemical flooding enhanced oil recovery. The difference between microscopic capillary number and the microscopic one is easy to confuse. After decades of development, great progress has been made in capillary number theory and it has important but sometimes incorrect application in EOR. The capillary number theory was based on capillary tube bundles and Darcy’s law hypothesis, and this should always be kept in mind when used in chemical flooding EOR. The flow in low permeability porous media often shows obvious non-Darcy effects, which is beyond Darcy’s law. Experiments data from ASP flooding and SP flooding showed that remaining oil saturation was not always decreasing as capillary number kept on increasing. Relative permeability was proved function of capillary number; its rate dependence was affected by capillary end effects. The mobility control should be given priority rather than lowering IFT. The displacement efficiency was not increased as displacement velocity increased as expected in heavy oil chemical flooding. Largest capillary number does not always make highest recovery in chemical flooding in heterogeneous reservoir. Misuse of CDC in EOR included the ignorance of mobility ratio, Darcy linear flow hypothesis, difference between microscopic capillary number and the microscopic one, and heterogeneity caused flow regime alteration. Displacement of continuous oil or remobilization of discontinuous oil was quite different.

  5. Water movement in glass bead porous media: 1. Experiments of capillary rise and hysteresis

    Science.gov (United States)

    Lu, T. X.; Biggar, J. W.; Nielsen, D. R.

    1994-12-01

    Experimental observations of capillary rise and hysteresis of water or ethanol in glass beads are presented to improve our understanding of those physical processes in porous media. The results provide evidence that capillary rise into porous media cannot be fully explained by a model of cylinders. They further demonstrate that the "Ink bottle" model does not provide an adequate explanation of hysteresis. Glass beads serving as a model for ideal soil are enclosed in a rectangular glass chamber model. A TV camera associated with a microscope was used to record the processes of capillary rise and drainage. It is clearly shown during capillary rise that the fluid exhibits a "jump" behavior at the neck of the pores in an initially dry profile or at the bottom of the water film in an initially wet profile. Under an initially dry condition, the jump initiates at the particle with smallest diameter. The jump process continues to higher elevations until at equilibrium the surface tensile force is balanced by the hydrostatic force. The wetting front at that time is readily observed as flat and saturated. Under an initially wet condition, capillary rise occurs as a water film thickening process associated with the jump process. Trapped air behind the wetting front renders the wetting front irregular and unsaturated. The capillary rise into an initially wet porous medium can be higher than that into an initially dry profile. During the drying process, large surface areas associated with the gas-liquid interface develop, allowing the porous medium to retain more water than during the wetting process at the same pressure. That mechanism explains better the hysteresis phenomenon in porous media in contrast to other mechanisms that now prevail.

  6. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    Science.gov (United States)

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  7. Phosphodiesterase-4 inhibition as a therapeutic approach to treat capillary leakage in systemic inflammation.

    Science.gov (United States)

    Schick, Martin Alexander; Wunder, Christian; Wollborn, Jakob; Roewer, Norbert; Waschke, Jens; Germer, Christoph-Thomas; Schlegel, Nicolas

    2012-06-01

    In sepsis and systemic inflammation, increased microvascular permeability and consecutive breakdown of microcirculatory flow significantly contribute to organ failure and death. Evidence points to a critical role of cAMP levels in endothelial cells to maintain capillary endothelial barrier properties in acute inflammation. However, approaches to verify this observation in systemic models are rare. Therefore we tested here whether systemic application of the phosphodiesterase-4-inhibitors (PD-4-Is) rolipram or roflumilast to increase endothelial cAMP was effective to attenuate capillary leakage and breakdown of microcirculatory flow in severe lipopolysaccharide (LPS)-induced systemic inflammation in rats. Measurements of cAMP in mesenteric microvessels demonstrated significant LPS-induced loss of cAMP levels which was blocked by application of rolipram. Increased endothelial cAMP by application of either PD-4-I rolipram or roflumilast led to stabilization of endothelial barrier properties as revealed by measurements of extravasated FITC-albumin in postcapillary mesenteric venules. Accordingly, microcirculatory flow in mesenteric venules was significantly increased following PD-4-I treatment and blood gas analyses indicated improved metabolism. Furthermore application of PD-4-I after manifestation of LPS-induced systemic inflammation and capillary leakage therapeutically stabilized endothelial barrier properties as revealed by significantly reduced volume resuscitation for haemodynamic stabilization. Accordingly microcirculation was significantly improved following treatment with PD-4-Is. Our results demonstrate that inflammation-derived loss of endothelial cAMP contributes to capillary leakage which was blocked by systemic PD-4-I treatment. Therefore these data suggest a highly clinically relevant and applicable approach to stabilize capillary leakage in sepsis and systemic inflammation.

  8. Separation of oligopeptides, nucleobases, nucleosides and nucleotides using capillary electrophoresis/electrochromatography with sol-gel modified inner capillary wall.

    Science.gov (United States)

    Svobodová, Jana; Kofroňová, Olga; Benada, Oldřich; Král, Vladimír; Mikšík, Ivan

    2017-09-29

    The aim of this article is to study the modification of an inner capillary wall with sol-gel coating (pure silica sol-gel or silica sol-gel containing porphyrin-brucine conjugate) and determine its influence on the separation process using capillary electrophoresis/electrochromatography method. After modification of the inner capillary surface the separation of analytes was performed using two different phosphate buffers (pH 2.5 and 9.0) and finally the changes in electrophoretic mobilities of various samples were calculated. To confirm that the modification of the inner capillary surface was successful, the parts of the inner surfaces of capillaries were observed using scanning electron microscopy. The analytes used as testing samples were oligopeptides, nucleosides, nucleobases and finally nucleotides. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Tomographic Imaging of Water Injection and Withdrawal in PEMFC Gas Diffusion Layers

    Energy Technology Data Exchange (ETDEWEB)

    McGill U; Gostick, J. T.; Gunterman, H. P.; Weber, A. Z.; Newman, J. S.; Kienitz, B. L.; MacDowell, A. A.

    2010-06-25

    X-ray computed tomography was used to visualize the water configurations inside gas diffusion layers for various applied capillary pressures, corresponding to both water invasion and withdrawal. A specialized sample holder was developed to allow capillary pressure control on the small-scale samples required. Tests were performed on GDL specimens with and without hydrophobic treatments.

  10. Modelling of capillary Z-pinch recombination pumping of boron extreme ultraviolet laser

    Czech Academy of Sciences Publication Activity Database

    Vrba, Pavel; Bobrova, N. A.; Sasorov, P. V.; Vrbová, M.; Hübner, Jakub

    2009-01-01

    Roč. 16, č. 7 (2009), 073105 1-073105 11 ISSN 1070-664X R&D Projects: GA ČR GA102/07/0275 Institutional research plan: CEZ:AV0Z20430508 Keywords : Boron * capillary * discharges (electric * laser ablation * optical pumping * plasma heating by laser * plasma kinetic theory * plasma magnetohydrodynamics * Z pinch Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.475, year: 2009 http://link.aip.org/link/? PHP /16/073105

  11. Gas transport in low-permeability formations: a review of experimental evidence and modeling approaches

    International Nuclear Information System (INIS)

    Marschall, Paul; Keller, Lukas; Lanyon, Bill; Senger, Rainer

    2012-01-01

    concept, the three phases (solid, wetting fluid, non-wetting fluid) are assumed to supe rimpose each other at a given location of the porous medium. Basic physical principles, such as mass and momentum balance and the laws of thermodynamics apply for each phase and for all types of energy transformation in the system. The phases are described in terms of continuous density functions, implying that a representative elementary volume exists, which is relevant at the macroscopic scale for all the physical phenomena involved in the intended application. On the macroscopic scale, phase couplings are expressed in terms of capillary pressure and relative permeability-saturation relationships. Numerous scientific papers have been published in the recent years, aimed at assessing the range of validity of the continuum models of two-phase flow. Applicability of continuum concepts of two-phase flow on gas transport in clay-stones. clay-stones exhibit low permeability, low porosity and a pore size distribution, which consists mainly of micro- and meso-pores. The low permeability is associated with low capillary numbers, suggesting that gas transport occurs in the regime of capillary fingering. The displacement of pore water by a gas phase is mainly restricted to the sparse network of macro-pores (> 20 nm), because the micro- and meso-pores are hardly invaded by the gas phase due to their high capillary entry pressure. The poor connectedness of the network of macro-pores raises the issues of the appropriate averaging volume and, as a consequence, of the transferability of the equation of motion from a local (pore) scale to a global scale formulation, which can be expressed in terms of macroscopic 'effective' two-phase flow properties ('up-scaling'). Valuable insight addressing the issue of spatial continuity of the pore structure can be gained by high resolution 3-D imaging techniques, examples of which are discussed in the paper. (authors)

  12. Polymer microfluidic device replacing fluids using only capillary force

    Science.gov (United States)

    Chung, Kwang Hyo; Lee, Dae Sik; Yang, Haesik; Kim, Sung Jin; Pyo, Hyun Bong

    2005-02-01

    A novel polymer microfluidic device for self-wash using only capillary force is presented. A liquid filled in a reaction chamber is replaced by another liquid with no external actuation. All the fluidic actuations in the device is pre-programmed about time and sequence, and accomplished by capillary force naturally. Careful design is necessary for exact actions. The fluidic conduits were designed by the newly derived theoretical equations about the capillary stop pressure and flow time. Simulations using CFD-ACE+ were conducted to check the validity of theory and the performance of the chip. These analytic results were consistent with experimental ones. The chip was made of polymers for the purpose of single use and low price. It was fabricated by sealing the hot-embossed PMMA substrate with a PET film. For simpler fabrication, the chip was of a single height. The embossing master was produced from a nickel-electroplating on a SU8-patterned Ni-plate followed by CMP. The contact angles of liquids on substrates were manipulated through the mixing of surfactants, and the temporal variations were monitored for a more exact design. The real actuation steps in experiment revealed the stable performance of selfwash, and coincided well with the designed ones. The presented microfluidic method can be applicable to other LOCs of special purposes through simple modification. For example, array or serial types would be possible for multiple selfwashes.

  13. RCCS Experiments and Validation for High Temperature Gas-Cooled Reactor

    International Nuclear Information System (INIS)

    Chang Oh; Cliff Davis; Goon C. Park

    2007-01-01

    A reactor cavity cooling system (RCCS), an air-cooled helical coil RCCS unit immersed in the water pool, was proposed to overcome the disadvantages of the weak cooling ability of air-cooled RCCS and the complex structure of water-cooled RCCS for the high temperature gas-cooled reactor (HTGR). An experimental apparatus was constructed to investigate the various heat transfer phenomena in the water pool type RCCS, such as the natural convection of air inside the cavity, radiation in the cavity, the natural convection of water in the water pool and the forced convection of air in the cooling pipe. The RCCS experimental results were compared with published correlations. The CFX code was validated using data from the air-cooled portion of the RCCS. The RELAP5 code was validated using measured temperatures from the reactor vessel and cavity walls

  14. Isolation of 4,5-O-Dicaffeoylquinic Acid as a Pigmentation Inhibitor Occurring in Artemisia capillaris Thunberg and Its Validation In Vivo

    Directory of Open Access Journals (Sweden)

    Nadia Tabassum

    2016-01-01

    Full Text Available There is a continual need to develop novel and effective melanogenesis inhibitors for the prevention of hyperpigmentation disorders. The plant Artemisia capillaris Thunberg (Oriental Wormwood was screened for antipigmentation activity using murine cultured cells (B16-F10 malignant melanocytes. Activity-based fractionation using HPLC and NMR analyses identified the compound 4,5-O-dicaffeoylquinic acid as an active component in this plant. 4,5-O-Dicaffeoylquinic acid significantly reduced melanin synthesis and tyrosinase activity in a dose-dependent manner in the melanocytes. In addition, 4,5-O-dicaffeoylquinic acid treatment reduced the expression of tyrosinase-related protein-1. Significantly, we could validate the antipigmentation activity of this compound in vivo, using a zebrafish model. Moreover, 4,5-O-dicaffeoylquinic acid did not show toxicity in this animal model. Our discovery of 4,5-O-dicaffeoylquinic acid as an inhibitor of pigmentation that is active in vivo shows that this compound can be developed as an active component for formulations to treat pigmentation disorders.

  15. Isolation of 4,5-O-Dicaffeoylquinic Acid as a Pigmentation Inhibitor Occurring in Artemisia capillaris Thunberg and Its Validation In Vivo.

    Science.gov (United States)

    Tabassum, Nadia; Lee, Ji-Hyung; Yim, Soon-Ho; Batkhuu, Galzad Javzan; Jung, Da-Woon; Williams, Darren R

    2016-01-01

    There is a continual need to develop novel and effective melanogenesis inhibitors for the prevention of hyperpigmentation disorders. The plant Artemisia capillaris Thunberg (Oriental Wormwood) was screened for antipigmentation activity using murine cultured cells (B16-F10 malignant melanocytes). Activity-based fractionation using HPLC and NMR analyses identified the compound 4,5-O-dicaffeoylquinic acid as an active component in this plant. 4,5-O-Dicaffeoylquinic acid significantly reduced melanin synthesis and tyrosinase activity in a dose-dependent manner in the melanocytes. In addition, 4,5-O-dicaffeoylquinic acid treatment reduced the expression of tyrosinase-related protein-1. Significantly, we could validate the antipigmentation activity of this compound in vivo, using a zebrafish model. Moreover, 4,5-O-dicaffeoylquinic acid did not show toxicity in this animal model. Our discovery of 4,5-O-dicaffeoylquinic acid as an inhibitor of pigmentation that is active in vivo shows that this compound can be developed as an active component for formulations to treat pigmentation disorders.

  16. Reliability of widefield capillary microscopy to measure nailfold capillary density in systemic sclerosis.

    Science.gov (United States)

    Hudson, M; Masetto, A; Steele, R; Arthurs, E; Baron, M

    2010-01-01

    To determine intra- and inter-observer reliability of widefield microscopy to measure nailfold capillary density in patients with systemic sclerosis (SSc). Five SSc patients were examined with a STEMV-8 Zeiss biomicroscope with 50x magnification. The nailfold of the second, third, fourth and fifth fingers of both hands of each patient were photographed twice by each of two observers, once in the morning and again in the afternoon (total of 32 pictures). Two raters reviewed the photographs to produce capillary density readings. Intra- and inter-rater reliability of the readings were computed using intra-class correlations (ICC). Additional analyses were undertaken to determine the impact of other sources of variability in the data, namely patient, finger, technician and time. Intra-and inter-rater reliability were substantial (ICC 0.72-0.84) when raters were reading the same photographs or photographs taken at the same time of day. Agreement was only fair between morning and afternoon density readings (ICC 0.30-0.37). Patients, individual fingers and technician accounted for a large part of the variability in the data (combined variance component of 7.69 out of the total 12.23). The coefficient of variation of widefield microscopy was 24%. Although intra- and inter-rater reliability of nailfold capillary density measurements using widefield microscopy are good, proper standardisation of the conditions under which capillaroscopy is done and better imaging of nailfold capillary abnormalities should be considered if nailfold capillary density is to be used as an outcome measure in multi-centre clinical trials in SSc.

  17. Fatigue Performance of Ti-6Al-4V Additively Manufactured Specimens with Integrated Capillaries of an Embedded Structural Health Monitoring System.

    Science.gov (United States)

    Hinderdael, Michaël; Strantza, Maria; De Baere, Dieter; Devesse, Wim; De Graeve, Iris; Terryn, Herman; Guillaume, Patrick

    2017-08-25

    Additive manufacturing (AM) of metals offers new possibilities for the production of complex structures. Up to now, investigations on the mechanical response of AM metallic parts show a significant spread and unexpected failures cannot be excluded. In this work, we focus on the detection of fatigue cracks through the integration of a Structural Health Monitoring (SHM) system in Ti-6Al-4V specimens. The working principle of the presented system is based on the integration of small capillaries that are capable of detecting fatigue cracks. Four-point bending fatigue tests have been performed on Ti-6Al-4V specimens with integrated capillaries and compared to the reference specimenswithout capillaries. Specimens were produced by conventional subtractive manufacturing of wrought material and AM, using the laser based Directed Energy Deposition (DED) process. In this study, we investigated the effect of the presence of the capillary on the fatigue strength and fatigue initiation location. Finite element (FEM) simulations were performed to validate the experimental test results. The presence of a drilled capillary in the specimens did not alter the fatigue initiation location. However, the laser based DED production process introduced roughness on the capillary surface that altered the fatigue initiation location to the capillary surface. The fatigue performance was greatly reduced when considering a printed capillary. It is concluded that the surface quality of the integrated capillary is of primary importance in order not to influence the structural integrity of the component to be monitored.

  18. Interfacial layering and capillary roughness in immiscible liquids.

    Science.gov (United States)

    Geysermans, P; Pontikis, V

    2010-08-21

    The capillary roughness and the atomic density profiles of extended interfaces between immiscible liquids are determined as a function of the interface area by using molecular dynamics and Lennard-Jones (12-6) potentials. We found that with increasing area, the interface roughness diverges logarithmically, thus fitting the theoretical mean-field prediction. In systems small enough for the interfacial roughness not to blur the structural details, atomic density profiles across the fluid interface are layered with correlation length in the range of molecular correlations in liquids. On increasing the system size, the amplitude of the thermally excited position fluctuations of the interface increases, thus causing layering to rapidly vanish, if density profiles are computed without special care. In this work, we present and validate a simple method, operating in the direct space, for extracting from molecular dynamics trajectories the "intrinsic" structure of a fluid interface that is the local density profile of the interface cleaned from capillary wave effects. Estimated values of interfacial properties such as the tension, the intrinsic width, and the lower wavelength limit of position fluctuations are in agreement with results collected from the literature.

  19. Surface modification by EUV laser beam based on capillary discharge

    Czech Academy of Sciences Publication Activity Database

    Frolov, Oleksandr; Koláček, Karel; Schmidt, Jiří; Štraus, Jaroslav; Prukner, Václav; Shukurov, A.

    -, č. 58 (2011), s. 484-487 ISSN 2010-376X. [International Conference on Fusion and Plasma Physics. Bali, Indonésie, 26.10.2011-28.10.2011] R&D Projects: GA AV ČR KAN300100702; GA MŠk LA08024; GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z20430508 Keywords : soft x-ray * EUV * laser * radiation * source * capillary * discharge * plasma * ablation * surface modification Subject RIV: BL - Plasma and Gas Discharge Physics http://www.waset.org/journals/waset/v58/v58-99.pdf

  20. Determination of alcohols, ethers and organic acids in irradiated sweet potato wine by capillary gas chromatography

    International Nuclear Information System (INIS)

    Zhou Yingcai; Yuan Bihuai; Xu Peishu; Wang Xiuying

    1986-01-01

    Alcohols, ethers and organic acids in irradiated sweet potato wine have been determined with capillary GC. The results show that the contents of some components have changed after irradiation, but no new species are formed. The G values of the changed components have been calculated

  1. Transport of volatile organic compounds across the capillary fringe

    Science.gov (United States)

    McCarthy, Kathleen A.; Johnson, Richard L.

    1993-01-01

    Physical experiments were conducted to investigate the transport of a dissolved volatile organic compound (trichloroethylene, TCE) from shallow groundwater to the unsaturated zone under a variety of conditions including changes in the soil moisture profile and water table position. Experimental data indicated that at moderate groundwater velocities (0.1 m/d), vertical mechanical dispersion was negligible and molecular diffusion was the dominant vertical transport mechanism. Under these conditions, TCE concentrations decreased nearly 3 orders of magnitude across the capillary fringe and soil gas concentrations remained low relative to those of underlying groundwater. Data collected during a water table drop showed a short-term increase in concentrations throughout most of the unsaturated zone, but these concentrations quickly declined and approached initial values after the water table was returned to its original level. In the deep part of the unsaturated zone, the water table drop resulted in a long-term decrease in concentrations, illustrating the effects of hysteresis in the soil moisture profile. A two-dimensional random walk advection-diffusion model was developed to simulate the experimental conditions, and numerical simulations agreed well with experimental data. A simpler, one-dimensional finite-difference diffusion-dispersion model was also developed. One-dimensional simulations based on molecular diffusion also agreed well with experimental data. Simulations which incorporated mechanical dispersion tended to overestimate flux across the capillary fringe. Good agreement between the one- and two-dimensional models suggested that a simple, one-dimensional approximation of vertical transport across the capillary fringe can be useful when conditions are appropriate.

  2. Liquid-gas and solid-liquid interface: thermodynamics of capillary condensation application to a prosimetry by calorimetric measurements

    International Nuclear Information System (INIS)

    Derrien, Francois; Hartmanshenn, Olivier.

    1978-01-01

    A direct determination of the pore radii distribution is proposed using calorimetric measurements during condensation and evacuation of pores by capillary condensate. This method is independant of any gravimetric or volumetric measurement of adsorption

  3. Isotope dilution analysis for urinary fentanyl and its main metabolite, norfentanyl, in patients by isotopic fractionation using capillary gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Sera, Shoji; Goromaru, Tsuyoshi [Fukuyama Univ., Hiroshima (Japan). Faculty of Pharmacy and Pharmaceutical Sciences; Sameshima, Teruko; Kawasaki, Koichi; Oda, Toshiyuki

    1998-07-01

    Isotope dilution analysis was applied to determine urinary excretion of fentanyl (FT) and its main metabolite, norfentanyl (Nor-FT), by isotopic fractionation using a capillary gas chromatograph equipped with a surface ionization detector (SID). Urinary FT was determined quantitatively in the range of 0.4-40 ng/ml using deuterium labeled FT (FT-{sup 2}H{sub 19}), as an internal standard. We also performed isotope dilution analysis of Nor-FT in urine. N-Alkylation was necessary to sensitively detect Nor-FT with SID. Methyl derivative was selected from 3 kinds of N-alkyl derivatives to increase sensitivity and peak resolution, and to prevent interference with urinary compound. Nor-FT concentration was quantitatively determined in the range of 10-400 ng/ml using deuterium labeled Nor-FT (Nor-FT-{sup 2}H{sub 10}). No endogenous compounds or concomitant drugs interfered with the detection of FT and Nor-FT in the urine of patients. The present method will be useful for pharmacokinetic studies and the evaluation of drug interactions in FT metabolism. (author)

  4. Isotope dilution analysis for urinary fentanyl and its main metabolite, norfentanyl, in patients by isotopic fractionation using capillary gas chromatography

    International Nuclear Information System (INIS)

    Sera, Shoji; Goromaru, Tsuyoshi; Sameshima, Teruko; Kawasaki, Koichi; Oda, Toshiyuki

    1998-01-01

    Isotope dilution analysis was applied to determine urinary excretion of fentanyl (FT) and its main metabolite, norfentanyl (Nor-FT), by isotopic fractionation using a capillary gas chromatograph equipped with a surface ionization detector (SID). Urinary FT was determined quantitatively in the range of 0.4-40 ng/ml using deuterium labeled FT (FT- 2 H 19 ), as an internal standard. We also performed isotope dilution analysis of Nor-FT in urine. N-Alkylation was necessary to sensitively detect Nor-FT with SID. Methyl derivative was selected from 3 kinds of N-alkyl derivatives to increase sensitivity and peak resolution, and to prevent interference with urinary compound. Nor-FT concentration was quantitatively determined in the range of 10-400 ng/ml using deuterium labeled Nor-FT (Nor-FT- 2 H 10 ). No endogenous compounds or concomitant drugs interfered with the detection of FT and Nor-FT in the urine of patients. The present method will be useful for pharmacokinetic studies and the evaluation of drug interactions in FT metabolism. (author)

  5. Applications of capillary optics for focused ion beams

    International Nuclear Information System (INIS)

    Umezawa, Kenji

    2014-01-01

    This article introduces applications of focused ion beams (∼1 μm) with glass capillaries systems. A first report on the interaction between ion beams and glass capillaries was published in 1996. The guiding capabilities of glass capillaries were discovered due to ion reflection from inner wall of glass surfaces. Meanwhile, the similar optics have been already realized in focusing X-rays using glass capillaries. The basic technology of X-rays optics using glass capillaries had been developed in the 1980's and 1900's. Also, low energy atom scattering spectroscopy for insulator material analysis will be mentioned. (author)

  6. Characterization of internal wetting in polymer electrolyte membrane gas diffusion layers

    Science.gov (United States)

    Cheung, Perry; Fairweather, Joseph D.; Schwartz, Daniel T.

    Capillary pressure vs. saturation (P C(S L)) curves are fundamental to understanding liquid water transport and flooding in PEM gas diffusion layers (GDLs). P C(S L) curves convolute the influence of GDL pore geometry and internal contact angles at the three-phase liquid/solid/gas boundary. Even simple GDL materials are a spatially non-uniform mixture of carbon fiber and binder, making a Gaussian distribution of contact angles likely, based on the Cassie-Baxter equation. For a given Gaussian contact angle distribution with mean (θ Mean) and standard deviation (σ), a realistic P C(S L) curve can be computed using a bundle of capillaries model and GDL pore size distribution data. As expected, computed P C(S L) curves show that θ Mean sets the overall hydrophilic (θ Mean 90°) character of the GDL (i.e., liquid saturation level at a given capillary pressure), and σ affects the slope of the P C(S L) curve. The capillary bundle model also can be used with (θ Mean, σ) as unknown parameters that are best-fit to experimentally acquired P C(S L) and pore size distribution data to find (θ Mean, σ) values for actual GDL materials. To test this, pore size distribution data was acquired for Toray TGP-H-090 along with hysteretic liquid and gas intrusion capillary pressure curve data. High quality best-fits were found between the model and combined datasets, with GDL liquid intrusion showing fairly neutral internal surface wetting properties (θ Mean = 92° and σ = 10°) whereas gas intrusion displayed a hydrophilic character (θ Mean = 52° and σ = 8°). External liquid advancing and receding contact angles were also measured on this same material and they also showed major hysteresis. The new methods described here open the door for better understanding of the link between GDL material processing and the wetting properties that affect flooding.

  7. Capillary density: An important parameter in nailfold capillaroscopy.

    Science.gov (United States)

    Emrani, Zahra; Karbalaie, Abdolamir; Fatemi, Alimohammad; Etehadtavakol, Mahnaz; Erlandsson, Björn-Erik

    2017-01-01

    Nailfold capillaroscopy is one of the various noninvasive bioengineering methods used to investigate skin microcirculation. It is an effective examination for assessing microvascular changes in the peripheral circulation; hence it has a significant role for the diagnosis of Systemic sclerosis with the classic changes of giant capillaries as well as the decline in capillary density with capillary dropout. The decline in capillary density is one of microangiopathic features existing in connective tissue disease. It is detectable with nailfold capillaroscopy. This parameter is assessed by applying quantitative measurement. In this article, we reviewed a common method for calculating the capillary density and the relation between the number of capillaries as well as the existence of digital ulcers, pulmonary arterial hypertension, autoantibodies, scleroderma patterns and different scoring system. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The task of validation of gas-dynamic characteristics of a multistage centrifugal compressor for a natural gas booster compressor station

    Science.gov (United States)

    Danilishin, A. M.; Kozhukhov, Y. V.; Neverov, V. V.; Malev, K. G.; Mironov, Y. R.

    2017-08-01

    The aim of this work is the validation study for the numerical modeling of characteristics of a multistage centrifugal compressor for natural gas. In the research process was the analysis used grid interfaces and software systems. The result revealed discrepancies between the simulated and experimental characteristics and outlined the future work plan.

  9. Capillary condensation in one-dimensional irregular confinement.

    Science.gov (United States)

    Handford, Thomas P; Pérez-Reche, Francisco J; Taraskin, Sergei N

    2013-07-01

    A lattice-gas model with heterogeneity is developed for the description of fluid condensation in finite sized one-dimensional pores of arbitrary shape. Mapping to the random-field Ising model allows an exact solution of the model to be obtained at zero-temperature, reproducing the experimentally observed dependence of the amount of fluid adsorbed in the pore on external pressure. It is demonstrated that the disorder controls the sorption for long pores and can result in H2-type hysteresis. Finite-temperature Metropolis dynamics simulations support analytical findings in the limit of low temperatures. The proposed framework is viewed as a fundamental building block of the theory of capillary condensation necessary for reliable structural analysis of complex porous media from adsorption-desorption data.

  10. Capillary Interactions between a Probe Tip and a Nanoparticle

    International Nuclear Information System (INIS)

    Li-Ning, Sun; Le-Feng, Wang; Wei-Bin, Rong

    2008-01-01

    To understand capillary interactions between probe tips and nanoparticles under ambient conditions, a theoretical model of capillary forces between them is developed based on the geometric relations. It is found that the contribution of surface tension force to the total capillary force attains to similar order of magnitude as the capillary pressure force in many cases. It is also shown that the tip shape and the radial distance of the meniscus have great influence on the capillary force. The capillary force decreases with the increasing separation distances, and the variance of the contact angles may change the magnitudes of capillary forces several times at large radial distances. The applicability of the symmetric meniscus approximation is discussed. (condensed matter: structure, mechanical and thermal properties)

  11. SU-E-QI-06: Design and Initial Validation of a Precise Capillary Phantom to Test Perfusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R; Iacobucci, G; Khobragade, P; Ying, L; Snyder, K; Wack, D; Rudin, S; Ionita, C [University at Buffalo, Buffalo, NY (United States)

    2014-06-15

    Purpose: To design a precise perfusion phantom mimicking capillaries of the brain vasculature which could be used to test various perfusion protocols and algorithms which generate perfusion maps. Methods: A perfusion phantom was designed in Solidworks and built using additive manufacturing. The phantom was an overall cylindrical shape of diameter and height 20mm and containing capillaries of 200μm or 300μm which were parallel and in contact making up the inside volume where flow was allowed. We created a flow loop using a peristaltic pump and contrast agent was injected manually. Digital Subtraction Angiographic images and low contrast images with cone beam CT were acquired after the contrast was injected. These images were analyzed by our own code in LabVIEW software and Time-Density Curve, MTT and TTP was calculated. Results: Perfused area was visible in the cone beam CT images; however, individual capillaries were not distinguishable. The Time-Density Curve acquired was accurate, sensitive and repeatable. The parameters MTT, and TTP offered by the phantom were very sensitive to slight changes in the TDC shape. Conclusion: We have created a robust calibrating model for evaluation of existing perfusion data analysis systems. This approach is extremely sensitive to changes in the flow due to the high temporal resolution and could be used as a golden standard to assist developers in calibrating and testing of imaging perfusion systems and software algorithms. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.

  12. SU-E-QI-06: Design and Initial Validation of a Precise Capillary Phantom to Test Perfusion Systems

    International Nuclear Information System (INIS)

    Wood, R; Iacobucci, G; Khobragade, P; Ying, L; Snyder, K; Wack, D; Rudin, S; Ionita, C

    2014-01-01

    Purpose: To design a precise perfusion phantom mimicking capillaries of the brain vasculature which could be used to test various perfusion protocols and algorithms which generate perfusion maps. Methods: A perfusion phantom was designed in Solidworks and built using additive manufacturing. The phantom was an overall cylindrical shape of diameter and height 20mm and containing capillaries of 200μm or 300μm which were parallel and in contact making up the inside volume where flow was allowed. We created a flow loop using a peristaltic pump and contrast agent was injected manually. Digital Subtraction Angiographic images and low contrast images with cone beam CT were acquired after the contrast was injected. These images were analyzed by our own code in LabVIEW software and Time-Density Curve, MTT and TTP was calculated. Results: Perfused area was visible in the cone beam CT images; however, individual capillaries were not distinguishable. The Time-Density Curve acquired was accurate, sensitive and repeatable. The parameters MTT, and TTP offered by the phantom were very sensitive to slight changes in the TDC shape. Conclusion: We have created a robust calibrating model for evaluation of existing perfusion data analysis systems. This approach is extremely sensitive to changes in the flow due to the high temporal resolution and could be used as a golden standard to assist developers in calibrating and testing of imaging perfusion systems and software algorithms. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation

  13. Validation of a rapid micellar electrokinetic capillary chromatographic method for the simultaneous determination of isoniazid and pyridoxine hydrochloride in pharmaceutical formulation.

    Science.gov (United States)

    Nemutlu, E; Celebier, M; Uyar, B; Altinöz, S

    2007-07-01

    An efficient and reliable micellar electrokinetic capillary chromatography (MEKC) method has been developed for the simultaneous determination of isoniazid (ISO) and pyridoxine hydrochloride (PYR) in pharmaceutical formulations. A chemometric two level full factorial design approach was used to search for the optimum conditions of separation. Three parameters were selected for this study: the buffer pH, the buffer concentration and sodium dodecyl sulphate (SDS) concentrations. Resolution, peak symmetry and analysis time were established as response. The two analytes were separated within 6 min with the optimized conditions: 50 mM borate buffer, 25 mM SDS pH 7.8, 35 degrees C, at 50 mbar 4s injection and 30 kV by using a fused silica capillary (72 cm effective length, 50 microm i.d.). The detection wavelength was set to 205 nm. Meloxicam was used as internal standard. The method was validated with respect to stability, linearity range, limit of quantitation and detection, precision, accuracy, specificity and robustness. The detection limits of the method were 1.0 microg mL(-1) for ISO and 0.40 microg mL(-1) for PYR and the method was linear at least in the range of 3.0-100 microg mL(-1) for ISO and 1.0-100 microg mL(-1) for PYR with excellent correlation coefficients (0.9995 for ISO and 0.9998 for PYR). Relative standard deviations (R.S.D.s) of the described method ranged between 0.54 and 2.27% for intra-day precision and between 0.65 and 2.69% for inter-day precision. The developed method was applied to the tablet form of ISO and PYR-containing the pharmaceutical preparations and the data were compared with obtained from the standard addition method. No statistically significant difference was found.

  14. Microgravity Investigation of Capillary Driven Imbibition

    Science.gov (United States)

    Dushin, V. R.; Nikitin, V. F.; Smirnov, N. N.; Skryleva, E. I.; Tyurenkova, V. V.

    2018-05-01

    The goal of the present paper is to investigate the capillary driven filtration in porous media under microgravity conditions. New mathematical model that allows taking into account the blurring of the front due to the instability of the displacement that is developing at the front is proposed. The constants in the mathematical model were selected on the basis of the experimental data on imbibition into unsaturated porous media under microgravity conditions. The flow under the action of a combination of capillary forces and a constant pressure drop or a constant flux is considered. The effect of capillary forces and the type of wettability of the medium on the displacement process is studied. A criterion in which case the capillary effects are insignificant and can be neglected is established.

  15. Capillary detectors for high resolution tracking

    CERN Document Server

    Annis, P

    1997-01-01

    We present a new tracking device based on glass capillary bundles or layers filled with highly purified liquid scintillator and read out at one end by means of image intensifiers and CCD devices. A large-volume prototype consisting of 5 × 105 capillaries with a diameter of 20 μm and a length of 180 cm and read out by a megapixel CCD has been tested with muon and neutrino beams at CERN. With this prototype a two track resolution of 33 μm was achieved with passing through muons. Images of neutrino interactions in a capillary bundle have also been acquired and analysed. Read-out chains based on Electron Bombarded CCD (EBCCD) and image pipeline devices are also investigated. Preliminary results obtained with a capillary bundle read out by an EBCCD are presented.

  16. Genetic variability of Artemisia capillaris (Wormwood capillary) by ...

    African Journals Online (AJOL)

    The genetic variability among individuals of Artemisia capillaris from state of Terengganu, Malaysia was examined by using the random amplified polymorphic DNA (RAPD) technique. The samples were collected from differences regional in Terengganu State. The genomic DNA was extracted from the samples leaves.

  17. Geometry-induced phase transition in fluids: capillary prewetting.

    Science.gov (United States)

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2013-02-01

    We report a new first-order phase transition preceding capillary condensation and corresponding to the discontinuous formation of a curved liquid meniscus. Using a mean-field microscopic approach based on the density functional theory we compute the complete phase diagram of a prototypical two-dimensional system exhibiting capillary condensation, namely that of a fluid with long-ranged dispersion intermolecular forces which is spatially confined by a substrate forming a semi-infinite rectangular pore exerting long-ranged dispersion forces on the fluid. In the T-μ plane the phase line of the new transition is tangential to the capillary condensation line at the capillary wetting temperature T(cw). The surface phase behavior of the system maps to planar wetting with the phase line of the new transition, termed capillary prewetting, mapping to the planar prewetting line. If capillary condensation is approached isothermally with T>T(cw), the meniscus forms at the capping wall and unbinds continuously, making capillary condensation a second-order phenomenon. We compute the corresponding critical exponent for the divergence of adsorption.

  18. Impaired skin capillary recruitment in essential hypertension is caused by both functional and structural capillary rarefaction

    NARCIS (Netherlands)

    Serne, EH; Gans, ROB; ter Maaten, JC; Tangelder, GJ; Donker, AJM; Stehouwer, CDA

    Capillary rarefaction occurs in many tissues in patients with essential hypertension and may contribute to an increased vascular resistance and impaired muscle metabolism. Rarefaction may be caused by a structural (anatomic) absence of capillaries, functional nonperfusion, or both. The aim of this

  19. On Capillary Rise and Nucleation

    Science.gov (United States)

    Prasad, R.

    2008-01-01

    A comparison of capillary rise and nucleation is presented. It is shown that both phenomena result from a balance between two competing energy factors: a volume energy and a surface energy. Such a comparison may help to introduce nucleation with a topic familiar to the students, capillary rise. (Contains 1 table and 3 figures.)

  20. High lung volume increases stress failure in pulmonary capillaries

    Science.gov (United States)

    Fu, Z.; Costello, M. L.; Tsukimoto, K.; Prediletto, R.; Elliott, A. R.; Mathieu-Costello, O.; West, J. B.

    1992-01-01

    We previously showed that when pulmonary capillaries in anesthetized rabbits are exposed to a transmural pressure (Ptm) of approximately 40 mmHg, stress failure of the walls occurs with disruption of the capillary endothelium, alveolar epithelium, or sometimes all layers. The present study was designed to test whether stress failure occurred more frequently at high than at low lung volumes for the same Ptm. Lungs of anesthetized rabbits were inflated to a transpulmonary pressure of 20 cmH2O, perfused with autologous blood at 32.5 or 2.5 cmH2O Ptm, and fixed by intravascular perfusion. Samples were examined by both transmission and scanning electron microscopy. The results were compared with those of a previous study in which the lung was inflated to a transpulmonary pressure of 5 cmH2O. There was a large increase in the frequency of stress failure of the capillary walls at the higher lung volume. For example, at 32.5 cmH2O Ptm, the number of endothelial breaks per millimeter cell lining was 7.1 +/- 2.2 at the high lung volume compared with 0.7 +/- 0.4 at the low lung volume. The corresponding values for epithelium were 8.5 +/- 1.6 and 0.9 +/- 0.6. Both differences were significant (P less than 0.05). At 52.5 cmH2O Ptm, the results for endothelium were 20.7 +/- 7.6 (high volume) and 7.1 +/- 2.1 (low volume), and the corresponding results for epithelium were 32.8 +/- 11.9 and 11.4 +/- 3.7. At 32.5 cmH2O Ptm, the thickness of the blood-gas barrier was greater at the higher lung volume, consistent with the development of more interstitial edema. Ballooning of the epithelium caused by accumulation of edema fluid between the epithelial cell and its basement membrane was seen at 32.5 and 52.5 cmH2O Ptm. At high lung volume, the breaks tended to be narrower and fewer were oriented perpendicular to the axis of the pulmonary capillaries than at low lung volumes. Transmission and scanning electron microscopy measurements agreed well. Our findings provide a physiological

  1. Fast separation of enantiomers by capillary electrophoresis using a combination of two capillaries with different internal diameters.

    Science.gov (United States)

    Šebestová, Andrea; Petr, Jan

    2017-12-01

    The combination of capillaries with different internal diameters was used to accelerate the separation of enantiomers in capillary electrophoresis. Separation of R,S-1,1'-binaphthalene-2,2'-diyl hydrogen phosphate using isopropyl derivative of cyclofructan 6 was studied as a model system. The best separation conditions included 500 mM sodium borate pH 9.5 with 60 mM concentration of the chiral selector. Separation lasted approx. 1.5 min using the combination of 50 and 100 μm id capillaries of 9.7 cm and 22.9 cm, respectively. It allowed approx. 12-fold acceleration in comparison to the traditional long-end separation mainly due to the higher electroosmotic flow generated in the connected capillaries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Taguchi Method for Development of Mass Flow Rate Correlation using Hydrocarbon Refrigerant Mixture in Capillary Tube

    Directory of Open Access Journals (Sweden)

    Shodiya Sulaimon

    2014-07-01

    Full Text Available The capillary tube is an important control device used in small vapor compression refrigeration systems such as window air-conditioners, household refrigerators and freezers. This paper develops a non-dimensional correlation based on the test results of the adiabatic capillary tube for the mass flow rate through the tube using a hydrocarbon refrigerant mixture of 89.3% propane and 10.7% butane (HCM. The Taguchi method, a statistical experimental design approach, was employed. This approach explores the economic benefit that lies in studies of this nature, where only a small number of experiments are required and yet valid results are obtained. Considering the effects of the capillary tube geometry and the inlet condition of the tube, dimensionless parameters were chosen. The new correlation was also based on the Buckingham Pi theorem. This correlation predicts 86.67% of the present experimental data within a relative deviation of -10% to +10%. The predictions by this correlation were also compared with results in published literature.

  3. Simple gas chromatographic system for analysis of microbial respiratory gases

    Science.gov (United States)

    Carle, G. C.

    1972-01-01

    Dual column ambient temperature system, consisting of pair of capillary columns, microbead thermistor detector and micro gas-sampling valve, is used in remote life-detection equipment for space experiments. Performance outweighs advantage gained by utilizing single-column systems to reduce weight, conserve carrier gas and operate at lower power levels.

  4. A novel optimised and validated method for analysis of multi-residues of pesticides in fruits and vegetables by microwave-assisted extraction (MAE)-dispersive solid-phase extraction (d-SPE)-retention time locked (RTL)-gas chromatography-mass spectrometry with Deconvolution reporting software (DRS).

    Science.gov (United States)

    Satpathy, Gouri; Tyagi, Yogesh Kumar; Gupta, Rajinder Kumar

    2011-08-01

    A rapid, effective and ecofriendly method for sensitive screening and quantification of 72 pesticides residue in fruits and vegetables, by microwave-assisted extraction (MAE) followed by dispersive solid-phase extraction (d-SPE), retention time locked (RTL) capillary gas-chromatographic separation in trace ion mode mass spectrometric determination has been validated as per ISO/IEC: 17025:2005. Identification and reporting with total and extracted ion chromatograms were facilitated to a great extent by Deconvolution reporting software (DRS). For all compounds LOD were 0.002-0.02mg/kg and LOQ were 0.025-0.100mg/kg. Correlation coefficients of the calibration curves in the range of 0.025-0.50mg/kg were >0.993. To validate matrix effects repeatability, reproducibility, recovery and overall uncertainty were calculated for the 35 matrices at 0.025, 0.050 and 0.100mg/kg. Recovery ranged between 72% and 114% with RSD of <20% for repeatability and intermediate precision. The reproducibility of the method was evaluated by an inter laboratory participation and Z score obtained within ±2. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hemawan, Kadek W.; Gou, Huiyang; Hemley, Russell J. [Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd., NW, Washington, DC 20015 (United States)

    2015-11-02

    Polycrystalline diamond has been synthesized on silicon substrates at atmospheric pressure, using a microwave capillary plasma chemical vapor deposition technique. The CH{sub 4}/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H{sub 2} into the deposition gas chemistry. Electronically excited species of CN, C{sub 2}, Ar, N{sub 2}, CH, H{sub β}, and H{sub α} were observed in the emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T{sub 2g} phonon at 1333 cm{sup −1} peak relative to the Raman features of graphitic carbon. Field emission scanning electron microscopy images reveal that, depending on the growth conditions, the carbon microstructures of grown films exhibit “coral” and “cauliflower-like” morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.

  6. Analytical method validation of GC-FID for the simultaneous measurement of hydrocarbons (C2-C4 in their gas mixture

    Directory of Open Access Journals (Sweden)

    Oman Zuas

    2016-09-01

    Full Text Available An accurate gas chromatography coupled to a flame ionization detector (GC-FID method was validated for the simultaneous analysis of light hydrocarbons (C2-C4 in their gas mixture. The validation parameters were evaluated based on the ISO/IEC 17025 definition including method selectivity, repeatability, accuracy, linearity, limit of detection (LOD, limit of quantitation (LOQ, and ruggedness. Under the optimum analytical conditions, the analysis of gas mixture revealed that each target component was well-separated with high selectivity property. The method was also found to be precise and accurate. The method linearity was found to be high with good correlation coefficient values (R2 ≥ 0.999 for all target components. It can be concluded that the GC-FID developed method is reliable and suitable for determination of light C2-C4 hydrocarbons (including ethylene, propane, propylene, isobutane, and n-butane in their gas mixture. The validated method has successfully been applied to the estimation of hydrocarbons light C2-C4 hydrocarbons in natural gas samples, showing high performance repeatability with relative standard deviation (RSD less than 1.0% and good selectivity with no interference from other possible components could be observed.

  7. Analysis of glycated hemoglobin A1c by capillary electrophoresis and capillary isoelectric focusing

    Czech Academy of Sciences Publication Activity Database

    Koval, Dušan; Kašička, Václav; Cottet, H.

    2011-01-01

    Roč. 413, č. 1 (2011), s. 8-15 ISSN 0003-2697 R&D Projects: GA ČR GP203/09/P485; GA ČR(CZ) GA203/08/1428 Institutional research plan: CEZ:AV0Z40550506 Keywords : capillary zone electrophoresis * capillary isoelectric focusing * glycated hemoglobin HbA1c Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.996, year: 2011

  8. An innovative technique for estimating water saturation from capillary pressure in clastic reservoirs

    Science.gov (United States)

    Adeoti, Lukumon; Ayolabi, Elijah Adebowale; James, Logan

    2017-11-01

    A major drawback of old resistivity tools is the poor vertical resolution and estimation of hydrocarbon when applying water saturation (Sw) from historical resistivity method. In this study, we have provided an alternative method called saturation height function to estimate hydrocarbon in some clastic reservoirs in the Niger Delta. The saturation height function was derived from pseudo capillary pressure curves generated using modern wells with complete log data. Our method was based on the determination of rock type from log derived porosity-permeability relationship, supported by volume of shale for its classification into different zones. Leverette-J functions were derived for each rock type. Our results show good correlation between Sw from resistivity based method and Sw from pseudo capillary pressure curves in wells with modern log data. The resistivity based model overestimates Sw in some wells while Sw from the pseudo capillary pressure curves validates and predicts more accurate Sw. In addition, the result of Sw from pseudo capillary pressure curves replaces that of resistivity based model in a well where the resistivity equipment failed. The plot of hydrocarbon pore volume (HCPV) from J-function against HCPV from Archie shows that wells with high HCPV have high sand qualities and vice versa. This was further used to predict the geometry of stratigraphic units. The model presented here freshly addresses the gap in the estimation of Sw and is applicable to reservoirs of similar rock type in other frontier basins worldwide.

  9. Capillary detectors for high resolution tracking

    International Nuclear Information System (INIS)

    Annis, P.; Bay, A.; Bonekaemper, D.; Buontempo, S.; Ereditato, A.; Fabre, J.P.; Fiorillo, G.; Frekers, D.; Frenkel, A.; Galeazzi, F.; Garufi, F.; Goldberg, J.; Golovkin, S.; Hoepfner, K.; Konijn, J.; Kozarenko, E.; Kreslo, I.; Liberti, B.; Martellotti, G.; Medvedkov, A.; Mommaert, C.; Panman, J.; Penso, G.; Petukhov, Yu.; Rondeshagen, D.; Tyukov, V.; Vasilchenko, V.; Vilain, P.; Vischers, J.L.; Wilquet, G.; Winter, K.; Wolff, T.; Wong, H.

    1997-01-01

    We present a new tracking device based on glass capillary bundles or layers filled with highly purified liquid scintillator and read out at one end by means of image intensifiers and CCD devices. A large-volume prototype consisting of 5 x 10 5 capillaries with a diameter of 20 μm and a length of 180 cm and read out by a megapixel CCD has been tested with muon and neutrino beams at CERN. With this prototype a two track resolution of 33 μm was achieved with passing through muons. Images of neutrino interactions in a capillary bundle have also been acquired and analysed. Read-out chains based on electron bombarded CCD (EBCCD) and image pipeline devices are also investigated. Preliminary results obtained with a capillary bundle read out by an EBCCD are presented. (orig.)

  10. Open tubular capillary column for the separation of cytochrome C tryptic digest in capillary electrochromatography.

    Science.gov (United States)

    Ali, Faiz; Cheong, Won Jo

    2015-10-01

    A silica capillary of 50 μm internal diameter and 500 mm length (416 mm effective length) was chemically modified with 4-(trifluoromethoxy) phenyl isocyanate in the presence of dibutyl tin dichloride as catalyst. Sodium diethyl dithiocarbamate was reacted with the terminal halogen of the bound ligand to incorporate the initiator moiety, and in situ polymerization was performed using a monomer mixture of styrene, N-phenylacrylamide, and methacrylic acid. The resultant open tubular capillary column immobilized with the copolymer layer was used for the separation of tryptic digest of cytochrome C in capillary electrochromatography. The sample was well eluted and separated into many components. The elution patterns of tryptic digest of cytochrome C were studied with respect to pH and water content in the mobile phase. This preliminary study demonstrates that open tubular capillary electrochromatography columns with a modified copolymer layer composed of proper nonpolar and polar units fabricated by reversible addition-fragmentation transfer polymerization can be useful as separation media for proteomic analysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Advanced Gas Sensors Using SERS-Activated Waveguides

    Science.gov (United States)

    Lascola, Robert; McWhorter, Scott; Murph, Simona Hunyadi

    2010-08-01

    This contribution describes progress towards the development and testing of a functionalized capillary that will provide detection of low-concentration gas-phase analytes through SERS. Measurement inside a waveguide allows interrogation of a large surface area, potentially overcoming the short distance dependence of the SERS effect. The possible use of Raman spectroscopy for gas detection is attractive for IR-inactive molecules or scenarios where infrared technology is inconvenient. However, the weakness of Raman scattering limits the use of the technique to situations where low detection limits are not required or large gas pressures are present. With surface-enhanced Raman spectroscopy (SERS), signal enhancements of 106 are often claimed, and higher values are seen in specific instances. However, most of the examples of SERS analysis are on liquid-phase samples, where the molecular density is high, usually combined with some sort of sample concentration at the surface. Neither of these factors is present in gas-phase samples. Because the laser is focused to a small point in the typical experimental setup, and the spatial extent of the effect above the surface is small (microns), the excitation volume is miniscule. Thus, exceptionally large enhancements are required to generate a signal comparable to that obtained by conventional Raman measurements. A reflective waveguide offers a way to increase the interaction volume of the laser with a SERS-modified surface. The use of a waveguide to enhance classical Raman measurements was recently demonstrated by S.M. Angel and coworkers, who obtained 12- to 30-fold sensitivity improvements for nonabsorbing gases (CO2, CH4) with a silvered capillary (no SERS enhancement). Shi et al.. demonstrated 10-to 100-fold enhancement of aqueous Rhodamine 6G in a capillary coated with silver nanoparticles. They observed enhancements of 10- to 100-fold compared to direct sampling, but this relied on a "double substrate", which required

  12. Understanding capillary condensation and hysteresis in porous silicon: network effects within independent pores.

    Science.gov (United States)

    Naumov, Sergej; Khokhlov, Alexey; Valiullin, Rustem; Kärger, Jörg; Monson, Peter A

    2008-12-01

    The ability to exert a significant degree of pore structure control in porous silicon materials has made them attractive materials for the experimental investigation of the relationship between pore structure, capillary condensation, and hysteresis phenomena. Using both experimental measurements and a lattice gas model in mean field theory, we have investigated the role of pore size inhomogeneities and surface roughness on capillary condensation of N2 at 77K in porous silicon with linear pores. Our results resolve some puzzling features of earlier experimental work. We find that this material has more in common with disordered materials such as Vycor glass than the idealized smooth-walled cylindrical pores discussed in the classical adsorption literature. We provide strong evidence that this behavior comes from the complexity of the processes within independent linear pores, arising from the pore size inhomogeneities along the pore axis, rather than from cooperative effects between different pores.

  13. Gas-phase chemistry of Mo, Ru, W, and Os metal carbonyl complexes

    International Nuclear Information System (INIS)

    Wang, Y.; Qin, Z.; Fan, F.L.

    2014-01-01

    Metal carbonyl complexes were used for studying the gas-phase chemical behavior of Mo, Ru, W and Os isotopes with an on-line low temperature isothermal gas chromatography apparatus. Short-lived Mo and Ru isotopes were produced by a 252 Cf spontaneous fission source. Short-lived nuclides of W and Os were produced using the heavy ion reactions 19 F + 159 Tb and 165 Ho, respectively. Short-lived products were thermalized in a recoil chamber filled with a gas mixture of helium and carbon monoxide. The carbonyls formed were then transported through capillaries to an isothermal chromatography column for study of the adsorption behavior as a function of temperature. On-line isothermal chromatography (IC) experiments on Teflon (PTFE) and quartz surfaces showed that short-lived isotopes of the listed elements can form carbonyl complexes which are very volatile and interact most likely in physical sorption processes. Deduced adsorption enthalpies of Mo and Ru carbonyls were -38 ± 2 kJ/mol and -36 ± 2 kJ/mol, respectively. These values are in good agreement with literature data, partly obtained with different chromatographic techniques. A validation of the applied Monte Carlo model to deduce adsorption enthalpies with Mo isotopes of different half-lives proved the validity of the underlying adsorption model. The investigations using a gas-jet system coupled to a heavy ion accelerator without any preseparator clearly showed the limitations of the approach. The He and CO gas mixture, which was directly added into the chamber, will result in decomposition of CO gas and produce some aerosol particles. After the experiment of 173 W and 179 Os in the heavy ion experiments, the Teflon column was covered by a yellowish deposit; the adsorption enthalpy of W and Os carbonyls could therefore not be properly deduced using Monte Carlo simulations. (orig.)

  14. Nanoscale Capillary Flows in Alumina: Testing the Limits of Classical Theory.

    Science.gov (United States)

    Lei, Wenwen; McKenzie, David R

    2016-07-21

    Anodic aluminum oxide (AAO) membranes have well-formed cylindrical channels, as small as 10 nm in diameter, in a close packed hexagonal array. The channels in AAO membranes simulate very small leaks that may be present for example in an aluminum oxide device encapsulation. The 10 nm alumina channel is the smallest that has been studied to date for its moisture flow properties and provides a stringent test of classical capillary theory. We measure the rate at which moisture penetrates channels with diameters in the range of 10 to 120 nm with moist air present at 1 atm on one side and dry air at the same total pressure on the other. We extend classical theory for water leak rates at high humidities by allowing for variable meniscus curvature at the entrance and show that the extended theory explains why the flow increases greatly when capillary filling occurs and enables the contact angle to be determined. At low humidities our measurements for air-filled channels agree well with theory for the interdiffusive flow of water vapor in air. The flow rate of water-filled channels is one order of magnitude less than expected from classical capillary filling theory and is coincidentally equal to the helium flow rate, validating the use of helium leak testing for evaluating moisture flows in aluminum oxide leaks.

  15. Harvesting liquid from unsaturated vapor - nanoflows induced by capillary condensation

    Science.gov (United States)

    Vincent, Olivier; Marguet, Bastien; Stroock, Abraham

    2016-11-01

    A vapor, even subsaturated, can spontaneously form liquid in nanoscale spaces. This process, known as capillary condensation, plays a fundamental role in various contexts, such as the formation of clouds or the dynamics of hydrocarbons in the geological subsurface. However, large uncertainties remain on the thermodynamics and fluid mechanics of the phenomenon, due to experimental challenges as well as outstanding questions about the validity of macroscale physics at the nanometer scale. We studied experimentally the spatio-temporal dynamics of water condensation in a model nanoporous medium (pore radius 2 nm), taking advantage of the color change of the material upon hydration. We found that at low relative humidities ( 60 % RH, driven by a balance between the pore capillary pressure and the condensation stress given by Kelvin equation. Further analyzing the imbibition dynamics as a function of saturation allowed us to extract detailed information about the physics of nano-confined fluids. Our results suggest excellent extension of macroscale fluid dynamics and thermodynamics even in pores 10 molecules in diameter.

  16. Biomimetic Unidirectional Capillary Action

    Science.gov (United States)

    Rupert, Eric; Moran, Patrick; Dahl, Jason

    2017-11-01

    In arid environments animals require specialized adaptations to collect adequate water. The Texas horned lizard (P. cornutum) has superhydrophylic skin which draws water out of moist soil or directly from water sources. The water then makes its way into the lizard's unidirectional capillary system, made of overlapping scales, which serves to channel water to its mouth. Testing different channel geometries, repeated ``D'' shaped chambers as in Commans et al. (2015) and truncated isosceles triangle chambers, as found in P. cornutum, we show the ability to have passive, unidirectional, fluid transport. Tests were carried out with the capillaries in a horizontal configuration. While both capillary geometries produced the desired traits, the triangular chambers showed superior unidirectionality, with no observed back flow, while ``D'' chambers showed back flow under testing conditions. The chambers provided similar flow rates. These types of channel systems will find use in microfluidics, notably in medical, printing, and lab-on-chip applications.

  17. Rapid capillary coating by epoxy-poly-(dimethylacrylamide): Performance in capillary zone electrophoresis of protein and polystyrene carboxylate

    Czech Academy of Sciences Publication Activity Database

    Chiari, M.; Cretich, M.; Šťastná, Miroslava; Radko, S. P.; Chrambach, A.

    2001-01-01

    Roč. 22, č. 4 (2001), s. 656-659 ISSN 0173-0835 Institutional research plan: CEZ:AV0Z4031919 Keywords : capillary coating * capillary zone electrophoresis * proteins Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.282, year: 2001

  18. The penetration of aerosols through fine capillaries

    International Nuclear Information System (INIS)

    Mitchell, J.P.; Edwards, R.T.; Ball, M.H.E.

    1989-10-01

    A novel experimental technique has been developed to study the penetration of aerosol particles ranging from about 1 to 15 μm aerodynamic diameter through capillaries varying from 20 to 80 μm bore and from 10 to 50 mm in length. When the driving pressure was 100 kPa, the penetration of the airborne particles was considerably smaller than expected from a simple comparison of particle diameter with the bore of the capillary. Particle size distributions determined after penetration through the capillaries were in almost all cases similar to the particle size distribution of the aerosol at the capillary entrance. This lack of size-selectivity can be explained in terms of the capillary behaving as a conventional suction-based sampler from a near still (calm) air environment. The resulting particle penetration data are important in assessing the potential for the leakage of aerosols through seals in containers used to transport radioactive materials. (author)

  19. Simulation Of Gas Focused Liquid Jets

    OpenAIRE

    Zahoor, Rizwan

    2018-01-01

    The main aim of dissertation is to develop an experimentally verified computational fluid dynamic (CFD) model of micron-sized liquid jet, produced by an injection molded Gas Dynamic Virtual Nozzle (GDVN). In these nozzles, liquid jets are efficiently orientedly transporting mass and momentum. They are produced by intelligently projecting hydrodynamic focusing effect from a high-speed stream of a co-flowing lower density and lower viscosity gas on a stream of liquid from a feeding capillary. L...

  20. Intracranial capillary hemangioma mimicking a dissociative disorder

    Directory of Open Access Journals (Sweden)

    Alexander Lacasse

    2012-01-01

    Full Text Available Capillary hemangiomas, hamartomatous proliferation of vascular endothelial cells, are rare in the central nervous system (CNS. Intracranial capillary hemangiomas presenting with reversible behavioral abnormalities and focal neurological deficits have rarely been reported. We report a case of CNS capillary hemangioma presenting with transient focal neurological deficits and behavioral abnormalities mimicking Ganser’s syndrome. Patient underwent total excision of the vascular malformation, resulting in complete resolution of his symptoms.

  1. Measurement of Capillary Radius and Contact Angle within Porous Media.

    Science.gov (United States)

    Ravi, Saitej; Dharmarajan, Ramanathan; Moghaddam, Saeed

    2015-12-01

    The pore radius (i.e., capillary radius) and contact angle determine the capillary pressure generated in a porous medium. The most common method to determine these two parameters is through measurement of the capillary pressure generated by a reference liquid (i.e., a liquid with near-zero contact angle) and a test liquid. The rate of rise technique, commonly used to determine the capillary pressure, results in significant uncertainties. In this study, we utilize a recently developed technique for independently measuring the capillary pressure and permeability to determine the equivalent minimum capillary radii and contact angle of water within micropillar wick structures. In this method, the experimentally measured dryout threshold of a wick structure at different wicking lengths is fit to Darcy's law to extract the maximum capillary pressure generated by the test liquid. The equivalent minimum capillary radii of different wick geometries are determined by measuring the maximum capillary pressures generated using n-hexane as the working fluid. It is found that the equivalent minimum capillary radius is dependent on the diameter of pillars and the spacing between pillars. The equivalent capillary radii of micropillar wicks determined using the new method are found to be up to 7 times greater than the current geometry-based first-order estimates. The contact angle subtended by water at the walls of the micropillars is determined by measuring the capillary pressure generated by water within the arrays and the measured capillary radii for the different geometries. This mean contact angle of water is determined to be 54.7°.

  2. Genetics Home Reference: megalencephaly-capillary malformation syndrome

    Science.gov (United States)

    ... Additional NIH Resources (1 link) National Institute of Neurological Disorders and Stroke: Megalencephaly Educational Resources (5 links) Boston Children's Hospital: Capillary Malformation Cincinnati Children's Hospital: Capillary Malformations ...

  3. Cell adhesion during bullet motion in capillaries.

    Science.gov (United States)

    Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger D; Ishikawa, Takuji

    2016-08-01

    A numerical analysis is presented of cell adhesion in capillaries whose diameter is comparable to or smaller than that of the cell. In contrast to a large number of previous efforts on leukocyte and tumor cell rolling, much is still unknown about cell motion in capillaries. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram was obtained for various values of capillary diameter and receptor density. We found that bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis. Copyright © 2016 the American Physiological Society.

  4. Intramedullary capillary haemangioma.

    LENUS (Irish Health Repository)

    Kelleher, T

    2012-02-03

    Intramedullary capillary haemangioma is extremely rare and only four cases have been previously reported. We describe a further case, outlining the clinical, radiological, surgical and pathological features.

  5. Colloid mobilization and transport during capillary fringe fluctuations.

    Science.gov (United States)

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L

    2014-07-01

    Capillary fringe fluctuations due to changing water tables lead to displacement of air-water interfaces in soils and sediments. These moving air-water interfaces can mobilize colloids. We visualized colloids interacting with moving air-water interfaces during capillary fringe fluctuations by confocal microscopy. We simulated capillary fringe fluctuations in a glass-bead-filled column. We studied four specific conditions: (1) colloids suspended in the aqueous phase, (2) colloids attached to the glass beads in an initially wet porous medium, (3) colloids attached to the glass beads in an initially dry porous medium, and (4) colloids suspended in the aqueous phase with the presence of a static air bubble. Confocal images confirmed that the capillary fringe fluctuations affect colloid transport behavior. Hydrophilic negatively charged colloids initially suspended in the aqueous phase were deposited at the solid-water interface after a drainage passage, but then were removed by subsequent capillary fringe fluctuations. The colloids that were initially attached to the wet or dry glass bead surface were detached by moving air-water interfaces in the capillary fringe. Hydrophilic negatively charged colloids did not attach to static air-bubbles, but hydrophobic negatively charged and hydrophilic positively charged colloids did. Our results demonstrate that capillary fringe fluctuations are an effective means for colloid mobilization.

  6. Identification of volatiles by headspace gas chromatography with simultaneous flame ionization and mass spectrometric detection.

    Science.gov (United States)

    Tiscione, Nicholas B; Yeatman, Dustin Tate; Shan, Xiaoqin; Kahl, Joseph H

    2013-10-01

    Volatiles are frequently abused as inhalants. The methods used for identification are generally nonspecific if analyzed concurrently with ethanol or require an additional analytical procedure that employs mass spectrometry. A previously published technique utilizing a capillary flow technology splitter to simultaneously quantitate and confirm ethyl alcohol by flame ionization and mass spectrometric detection after headspace sampling and gas chromatographic separation was evaluated for the detection of inhalants. Methanol, isopropanol, acetone, acetaldehyde, toluene, methyl ethyl ketone, isoamyl alcohol, isobutyl alcohol, n-butyl alcohol, 1,1-difluoroethane, 1,1,1-trifluoroethane, 1,1,1,2-tetrafluoroethane (Norflurane, HFC-134a), chloroethane, trichlorofluoromethane (Freon®-11), dichlorodifluoromethane (Freon®-12), dichlorofluoromethane (Freon®-21), chlorodifluoromethane (Freon®-22) and 1,2-dichlorotetrafluoroethane (Freon®-114) were validated for qualitative identification by this method. The validation for qualitative identification included evaluation of matrix effects, sensitivity, carryover, specificity, repeatability and ruggedness/robustness.

  7. An experimental technique to measure the capillary waves in electrified microjets

    Directory of Open Access Journals (Sweden)

    Rebollo-Muñoz Noelia

    2012-04-01

    Full Text Available Backlight optical imaging is an experimental technique with an enormous potential in microfluidics to study very varied fluid configurations and phenomena. In this paper, we show the capability of this technique to precisely characterize the capillary waves growing in electrified microjets. For this purpose, images of electrified liquid jets formed by electrospray were acquired and processed using a sub-pixel resolution technique. Our results reflect the validity and usefulness of optical imaging for this type of application.

  8. Efficient compression of the femtosecond pulses of an ytterbium laser in a gas-filled capillary

    International Nuclear Information System (INIS)

    Konyashchenko, Aleksandr V; Losev, Leonid L; Tenyakov, S Yu

    2011-01-01

    A 290-fs radiation pulse of an ytterbium laser system with a central wavelength of 1028 nm and an energy of 145 μJ was compressed to a 27-fs pulse with an energy of 75 μJ. The compression was realised on the basis of the effect of pulse spectrum broadening in a xenon-filled glass capillary for a pulse repetition rate of 3kHz. (control of laser radiation parameters)

  9. Soft x-ray lasing in a capillary discharge

    International Nuclear Information System (INIS)

    Lee, Tong-Nyong; Shin, Hyun-Joon; Kim, Dong-Eon

    1995-01-01

    Soft x-ray lasing in the C VI Balmer α transition is observed in a capillary discharge. The capillary is made of polyethylene with a bore diameter of 1.2 mm. Plasma radiation from the discharge is analyzed using a toroidal mirror and a two-meter grazing-incidence spectrograph-monochromator. The electron temperatures are measured at both the axial and the peripheral region close to the capillary wall, using space-resolved spectra. A comparison of the branching ratio in the hot (axial) and the cool (peripheral) plasma regions indicates that there is a large population inversion between n=3 and 2 states of C 5+ ions in the cool (Te∼13 eV) region of the capillary plasma. Relative line intensities of the C VI Hα and a number of non-lasing lines are compared in this cool region as a function of capillary length. The C VI Hα line intensity increases exponentially whereas those of non-lasing transitions increase linearly with an increase of the capillary length. The gain coefficient thus measured indicates 2.8 cm -1 . The lasing line intensity does not seem to increase exponentially beyond a capillary length of 16 mm and the gain-length product, gL, obtained here is 3.9, which is a typical value one would expect for a recombination soft x-ray laser. The photoelectric signals of the lasing line indicate that the lasing takes place about 40 ns after the current peak in the first half cycle of the capillary discharge, with a lasing pulse width of 60 ns in FWHM

  10. Viscosity measurement in the capillary tube viscometer under unsteady flow

    International Nuclear Information System (INIS)

    Park, Heung Jun; Yoo, Sang Sin; Suh, Sang Ho

    2000-01-01

    The objective of the present study is to develop a new device that the viscous characteristics of fluids are determined by applying the unsteady flow concept to the traditional capillary tube viscometer. The capillary tube viscometer consists of a small cylindrical reservoir, capillary tube, a load cell system that measures the mass flow rate, interfaces, and computer. Due to the small size of the reservoir the height of liquid in the reservoir decreases as soon as the liquid in the reservoir drains out through the capillary and the mass flow rate in the capillary decreases as the hydrostatic pressure in the reservoir decreases resulting in a decrease of the shear rate in the capillary tube. The instantaneous shear rate and driving force in the capillary tube are determined by measuring the mass flow rate through the capillary, and the fluid viscosity is determined from the measured flow rate and the driving force

  11. Validation of the new filters configuration for the RPC gas systems at LHC experiments

    CERN Document Server

    Mandelli, Beatrice; Guida, Roberto; Hahn, Ferdinand; Haider, Stefan

    2012-01-01

    Resistive Plate Chambers (RPCs) are widely employed as muon trigger systems at the Large Hadron Collider (LHC) experiments. Their large detector volume and the use of a relatively expensive gas mixture make a closed-loop gas circulation unavoidable. The return gas of RPCs operated in conditions similar to the experimental background foreseen at LHC contains large amount of impurities potentially dangerous for long-term operation. Several gas-cleaning agents, characterized during the past years, are currently in use. New test allowed understanding of the properties and performance of a large number of purifiers. On that basis, an optimal combination of different filters consisting of Molecular Sieve (MS) 5Å and 4Å, and a Cu catalyst R11 has been chosen and validated irradiating a set of RPCs at the CERN Gamma Irradiation Facility (GIF) for several years. A very important feature of this new configuration is the increase of the cycle duration for each purifier, which results in better system stabilit...

  12. A high-resolution non-invasive approach to quantify oxygen transport across the capillary fringe and within the underlying groundwater.

    Science.gov (United States)

    Haberer, Christina M; Rolle, Massimo; Liu, Sanheng; Cirpka, Olaf A; Grathwohl, Peter

    2011-03-25

    Oxygen transport across the capillary fringe is relevant for many biogeochemical processes. We present a non-invasive technique, based on optode technology, to measure high-resolution concentration profiles of oxygen across the unsaturated/saturated interface. By conducting a series of quasi two-dimensional flow-through laboratory experiments, we show that vertical hydrodynamic dispersion in the water-saturated part of the capillary fringe is the process limiting the mass transfer of oxygen. A number of experimental conditions were tested in order to investigate the influence of grain size and horizontal flow velocity on transverse vertical dispersion in the capillary fringe. In the same setup, analogous experiments were simultaneously carried out in the fully water-saturated zone, therefore allowing a direct comparison with oxygen transfer across the capillary fringe. The outcomes of the experiments under various conditions show that oxygen transport in the two zones of interest (i.e., the unsaturated/saturated interface and the saturated zone) is characterized by very similar transverse dispersion coefficients. An influence of the capillary fringe morphology on oxygen transport has not been observed. These results may be explained by the narrow grain size distribution used in the experiments, leading to a steep decline in water saturation at the unsaturated/saturated interface and to the absence of trapped gas in this transition zone. We also modeled flow (applying the van Genuchten and the Brooks-Corey relationships) and two-dimensional transport across the capillary fringe, obtaining simulated profiles of equivalent aqueous oxygen concentration that were in good agreement with the observations. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Early capillary flux homogenization in response to neural activation.

    Science.gov (United States)

    Lee, Jonghwan; Wu, Weicheng; Boas, David A

    2016-02-01

    This Brief Communication reports early homogenization of capillary network flow during somatosensory activation in the rat cerebral cortex. We used optical coherence tomography and statistical intensity variation analysis for tracing changes in the red blood cell flux over hundreds of capillaries nearly at the same time with 1-s resolution. We observed that while the mean capillary flux exhibited a typical increase during activation, the standard deviation of the capillary flux exhibited an early decrease that happened before the mean flux increase. This network-level data is consistent with the theoretical hypothesis that capillary flow homogenizes during activation to improve oxygen delivery. © The Author(s) 2015.

  14. Can positrons be guided by insulating capillaries?

    International Nuclear Information System (INIS)

    DuBois, R.D.; Toekesi, K.

    2011-01-01

    Complete text of publication follows. Investigations of guiding of few hundred eV antiparticles by macroscopic insulating capillaries have been described. Using subfemtoamp positron and electron beams, we demonstrated that a portion of the entering beams were transmitted and emerged in the direction of the capillary. We also demonstrated that the transmitted intensities decreased as the capillary tilt angle was increased (see Fig. 1). Both of these are indications of guiding. However, a comparison with transmitted photon data implies that the positron transmission may result from geometric factors associated with our diffuse beams and tapered capillary used in these studies. For electrons, the comparison indicates differences which could imply that even very low intensity beams can be guided. Measurements of the transmitted intensity as a function of charge entering the capillary were inconclusive as no major increases in the transmitted intensity were observed. 2D static simulations imply that our beam intensities, although extremely small with respect to previous guiding experiments, were capable of supplying sufficient charge for guiding to occur. Although not definitive, our study implies that sub-femtoamp beam intensities are sufficient to form charge patches and produce guiding. This may have been observed for electrons with the question remaining open for positrons. That guiding was not clearly seen may have been due to the capillary geometry used or it may indicate that although sufficient charge is being supplied, the surface and bulk resistivities of glass permit this charge to dissipate faster than it is formed. This aspect was not taken into consideration in our simulations but a crude estimate of the discharge rate implies that beam intensities on the order of pA, rather than fA as used here, may be required for guiding to occur in the capillaries used here. Additional studies are required to definitively answer the question as to whether antiparticles

  15. Analysis of enantiomeric and non-enantiomeric monoterpenes in plant emissions using portable dynamic air sampling/solid-phase microextraction (PDAS-SPME) and chiral gas chromatography/mass spectrometry

    Science.gov (United States)

    Yassaa, Noureddine; Williams, Jonathan

    A portable dynamic air sampler (PDAS) using a porous polymer solid-phase microextraction (SPME) fibre has been validated for the determination of biogenic enantiomeric and non-enantiomeric monoterpenes in air. These compounds were adsorbed in the field, and then thermally desorbed at 250 °C in a gas chromatograph injector port connected via a β-cyclodextrin capillary separating column to a mass spectrometer. The optimized method has been applied for investigating the emissions of enantiomeric monoterpenes from Pseudotsuga menziesii (Douglas-fir), Rosmarinus officinalis (Rosemary) and Lavandula lanata (Lavender) which were selected as representative of coniferous trees and aromatic plants, respectively. The enantiomers of α-pinene, sabinene, camphene, δ-3-carene, β-pinene, limonene, β-phellandrene, 4-carene and camphor were successfully determined in the emissions from the three plants. While Douglas-fir showed a strong predominance toward (-)-enantiomers, Rosemary and Lavender demonstrated a large variation in enantiomeric distribution of monoterpenes. The simplicity, rapidity and sensitivity of dynamic sampling with porous polymer coated SPME fibres coupled to chiral capillary gas chromatography/mass spectrometry (GC/MS) makes this method potentially useful for in-field investigations of atmosphere-biosphere interactions and studies of optically explicit atmospheric chemistry.

  16. Capillary electrophoresis as a screening tool for alpha amylase inhibitors in plant extracts

    OpenAIRE

    Hamdan, Imad I.; Afifi, Fatima U.

    2010-01-01

    Capillary electrophoresis (CE) method was developed for screening plant extract for potential alpha amylase (AA) inhibitory activity. The method was validated against a well established UV method. Overall, the proposed method was shown able to detect plants with significant alpha amylase inhibitory activity but not those with rather clinically insignificant activities. Fifty plant species were screened using both the proposed CE method and the UV method and seven plant species were found to p...

  17. Paramecium swimming in capillary tube

    Science.gov (United States)

    Jana, Saikat; Um, Soong Ho; Jung, Sunghwan

    2012-04-01

    Swimming organisms in their natural habitat need to navigate through a wide range of geometries and chemical environments. Interaction with boundaries in such situations is ubiquitous and can significantly modify the swimming characteristics of the organism when compared to ideal laboratory conditions. We study the different patterns of ciliary locomotion in glass capillaries of varying diameter and characterize the effect of the solid boundaries on the velocities of the organism. Experimental observations show that Paramecium executes helical trajectories that slowly transition to straight lines as the diameter of the capillary tubes decreases. We predict the swimming velocity in capillaries by modeling the system as a confined cylinder propagating longitudinal metachronal waves that create a finite pressure gradient. Comparing with experiments, we find that such pressure gradient considerations are necessary for modeling finite sized ciliary organisms in restrictive geometries.

  18. Magneto-capillary valve for integrated purification and enrichment of nucleic acids and proteins.

    Science.gov (United States)

    den Dulk, Remco C; Schmidt, Kristiane A; Sabatté, Gwénola; Liébana, Susana; Prins, Menno W J

    2013-01-07

    We describe the magneto-capillary valve (MCV) technology, a flexible approach for integrated biological sample preparation within the concept of stationary microfluidics. Rather than moving liquids in a microfluidic device, discrete units of liquid are present at fixed positions in the device and magnetic particles are actuated between the fluids. The MCV concept is characterized by the use of two planar surfaces at a capillary mutual distance, with specific features to confine the fluids by capillary forces, and the use of a gas or a phase-change material separating the stationary aqueous liquids. We have studied the physics of magneto-capillary valving by quantifying the magnetic force as a function of time and position, which reveals the balance of magnetic, capillary and frictional forces in the system. By purification experiments with a fluorescent tracer we have measured the amount of co-transported liquid, which is a key parameter for efficient purification. To demonstrate the versatility of the technology, several MCV device architectures were tested in a series of biological assays, showing the purification and enrichment of nucleic acids and proteins. Target recovery comparable to non-miniaturized commercial kits was observed for the extraction of DNA from human cells in buffer, using a device architecture with patterned air valves. Experiments using an enrichment module and patterned air valves demonstrate a 40-fold effective enrichment of DNA in buffer. DNA was also successfully purified from blood plasma using paraffin phase-change valves. Finally, the enrichment of a protein biomarker (prostate-specific antigen) using geometrical air valves resulted in a 7-fold increase of detection signal. The MCV technology is versatile, offers extensive freedom for the design of fully integrated systems, and is expected to be manufacturable in a cost-effective way. We conclude that the MCV technology can become an important enabling technology for point

  19. MEMS-Based Micro Gas Chromatography: Design, Fabrication and Characterization

    OpenAIRE

    Zareian-Jahromi, Mohammad Amin

    2009-01-01

    This work is focused on the design, fabrication and characterization of high performance MEMS-based micro gas chromatography columns having wide range of applications in the pharmaceutical industry, environmental monitoring, petroleum distillation, clinical chemistry, and food processing. The first part of this work describes different approaches to achieve high-performance microfabricated silicon-glass separation columns for micro gas chromatographic (µGC) systems. The capillary width effec...

  20. Generalized polymer effective charge measurement by capillary isotachophoresis.

    Science.gov (United States)

    Chamieh, Joseph; Koval, Dušan; Besson, Adeline; Kašička, Václav; Cottet, Hervé

    2014-11-28

    In this work, we have generalized the use of capillary isotachophoresis as a universal method for determination of effective charge of anionic and cationic (co)polymers on ordinary capillary electrophoresis instruments. This method is applicable to a broad range of strong or weak polyelectrolytes with good repeatability. Experimental parameters (components and concentrations of leading and terminating electrolytes, capillary diameters, constant electric current intensity) were optimized for implementation in 100 μm i.d. capillaries for both polyanions and polycations. Determined values of polymer effective charge were in a very good agreement with those obtained by capillary electrophoresis with indirect UV detection. Uncertainty of the effective charge measurement using isotachophoresis was addressed and estimated to be ∼5-10% for solutes with mobilities in the 20-50 × 10(-9)m(2)V(-1)s(-1) range. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Isotherms of Capillary Condensation Influenced by Formation of Adsorption Films.

    Science.gov (United States)

    Churaev; Starke; Adolphs

    2000-01-15

    Isotherms of capillary condensation are often used to determine the vapor sorption capacity of porous adsorbents as well as the pore size distribution by radii. In this paper, for calculating the volume of capillary condensate and of adsorption films in a porous body, an approach based on the theory of surface forces is used. Adsorption isotherms and disjoining pressure isotherms of wetting films are presented here in an exponential form discussed earlier. The calculations were made for straight cylindrical capillaries of different radii and slit pores of different width. The mechanisms of capillary condensation differ in cylindrical and slit pores. In cylindrical pores capillary condensation occurs due to capillary instability of curved wetting films on a capillary surface, when film thickness grows. In the case of slit pores, coalescence of wetting films formed on opposite slit surfaces proceeds under the action of attractive dispersion forces. Partial volumes of liquid in the state of both capillary condensate and adsorbed films are calculated dependent on the relative vapor pressure in a surrounding media. Copyright 2000 Academic Press.

  2. Geometry Effects of Capillary on the Evaporation from the Meniscus

    International Nuclear Information System (INIS)

    Choi, Choong Hyo; Jin, Song Wan; Yoo, Jung Yul

    2007-01-01

    The effect of capillary cross-section geometry on evaporation is investigated in terms of the meniscus shape, evaporation rate and evaporation-induced flow for circular, square and rectangular cross-sectional capillaries. The shapes of water and ethanol menisci are not much different from each other in square and rectangular capillaries even though the surface tension of water is much larger than that of ethanol. On the other hand, the shapes of water and ethanol menisci are very different from each other in circular capillary. The averaged evaporation fluxes in circular and rectangular capillaries are measured by tracking the meniscus position. At a given position, the averaged evaporation flux in rectangular capillaries in much larger than that in circular capillary with comparable hydraulic diameter. The flow near the evaporating meniscus is also measured using micro-PIV, so that the rotating vortex motion is observed near the evaporating ethanol and methanol menisci except for the case of methanol meniscus in rectangular capillary. This difference is considered to be due to the existence of corner menisci at the four corners

  3. Capillary condensation in pores with rough walls: a density functional approach.

    Science.gov (United States)

    Bryk, P; Rzysko, W; Malijevsky, Al; Sokołowski, S

    2007-09-01

    The effect of surface roughness of slit-like pore walls on the capillary condensation of a spherical particles and short chains is studied. The gas molecules interact with the substrate by a Lennard-Jones (9,3) potential. The rough layer at each pore wall has a variable thickness and density and consists of a disordered quenched matrix of spherical particles. The system is described in the framework of a density functional approach and using computer simulations. The contribution due to attractive van der Waals interactions between adsorbate molecules is described by using first-order mean spherical approximation and mean-field approximation.

  4. Flammable Gas Refined Safety Analysis Tool Software Verification and Validation Report for Resolve Version 2.5

    International Nuclear Information System (INIS)

    BRATZEL, D.R.

    2000-01-01

    The purpose of this report is to document all software verification and validation activities, results, and findings related to the development of Resolve Version 2.5 for the analysis of flammable gas accidents in Hanford Site waste tanks

  5. Simultaneous determination of clebopride and a major metabolite N-desbenzylclebopride in plasma by capillary gas chromatography-negative-ion chemical ionization mass spectrometry.

    Science.gov (United States)

    Robinson, P R; Jones, M D; Maddock, J; Rees, L W

    1991-03-08

    A procedure for the simultaneous assay of clebopride and its major metabolite N-desbenzylclebopride in plasma has been developed. The method utilizes capillary gas chromatography-negative-ion chemical ionization mass spectrometry with selected-ion monitoring of characteristic ions. Employing 2-ethoxy analogues as internal standards, the benzamides were extracted from basified plasma using dichloromethane. Subsequent reaction with heptafluorobutyric anhydride produced volatile mono- and diheptafluorobutyryl derivatives of clebopride and N-desbenzylclebopride, respectively. The methane negative-ion mass spectra of these derivatives exhibited intense high-mass ions ideal for specific quantitation of low levels in biological fluids. Using this procedure the recovery of the drug and metabolite from human plasma was found to be 84.4 +/- 1.5% (n = 3) and 77.4 +/- 4.7% (n = 3), respectively, at 0.5 ng/ml. Measurement of both compounds down to 0.10 ng/ml with a coefficient of variation of less than 10.5% is described. Plasma levels are reported in four volunteers up to 24 h following oral administration of 1 mg of clebopride malate salt.

  6. Reverse capillary flow of condensed water through aligned multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Yun, Jongju; Jeon, Wonjae; Alam Khan, Fakhre; Lee, Jinkee; Baik, Seunghyun

    2015-01-01

    Molecular transport through nanopores has recently received considerable attention as a result of advances in nanofabrication and nanomaterial synthesis technologies. Surprisingly, water transport investigations through carbon nanochannels resulted in two contradicting observations: extremely fast transport or rejection of water molecules. In this paper, we elucidate the mechanism of impeded water vapor transport through the interstitial space of aligned multiwalled carbon nanotubes (aligned-MWCNTs)—capillary condensation, agglomeration, reverse capillary flow, and removal by superhydrophobicity at the tip of the nanotubes. The origin of separation comes from the water’s phase change from gas to liquid, followed by reverse capillary flow. First, the saturation water vapor pressure is decreased in a confined space, which is favorable for the phase change of incoming water vapor into liquid drops. Once continuous water meniscus is formed between the nanotubes by the adsoprtion and agglomeration of water molecules, a high reverse Laplace pressure is induced in the mushroom-shaped liquid meniscus at the entry region of the aligned-MWCNTs. The reverse Laplace pressure can be significantly enhanced by decreasing the pore size. Finally, the droplets pushed backward by the reverse Laplace pressure can be removed by superhydrophobicity at the tip of the aligned-MWCNTs. The analytical analysis was also supported by experiments carried out using 4 mm-long aligned-MWCNTs with different intertube distances. The water rejection rate and the separation factor increased as the intertube distance decreased, resulting in 90% and 10, respectively, at an intertube distance of 4 nm. This mechanism and nanotube membrane may be useful for energy-efficient water vapor separation and dehumidification. (paper)

  7. Integrated refractive index optical ring resonator detector for capillary electrophoresis.

    Science.gov (United States)

    Zhu, Hongying; White, Ian M; Suter, Jonathan D; Zourob, Mohammed; Fan, Xudong

    2007-02-01

    We developed a novel miniaturized and multiplexed, on-capillary, refractive index (RI) detector using liquid core optical ring resonators (LCORRs) for future development of capillary electrophoresis (CE) devices. The LCORR employs a glass capillary with a diameter of approximately 100 mum and a wall thickness of a few micrometers. The circular cross section of the capillary forms a ring resonator along which the light circulates in the form of the whispering gallery modes (WGMs). The WGM has an evanescent field extending into the capillary core and responds to the RI change due to the analyte conducted in the capillary, thus permitting label-free measurement. The resonating nature of the WGM enables repetitive light-analyte interaction, significantly enhancing the LCORR sensitivity. This LCORR architecture achieves dual use of the capillary as a sensor head and a CE fluidic channel, allowing for integrated, multiplexed, and noninvasive on-capillary detection at any location along the capillary. In this work, we used electro-osmotic flow and glycerol as a model system to demonstrate the fluid transport capability of the LCORRs. In addition, we performed flow speed measurement on the LCORR to demonstrate its flow analysis capability. Finally, using the LCORR's label-free sensing mechanism, we accurately deduced the analyte concentration in real time at a given point on the capillary. A sensitivity of 20 nm/RIU (refractive index units) was observed, leading to an RI detection limit of 10-6 RIU. The LCORR marries photonic technology with microfluidics and enables rapid on-capillary sample analysis and flow profile monitoring. The investigation in this regard will open a door to novel high-throughput CE devices and lab-on-a-chip sensors in the future.

  8. A capillary-based perfusion phantom for simulation of brain perfusion for MRI; Ein kapillarbasiertes Phantom zur Simulation der Gehirnperfusion mit der Magnet-Resonanz-Tomografie

    Energy Technology Data Exchange (ETDEWEB)

    Maciak, A.; Kronfeld, A.; Mueller-Forell, W. [Universitaetsklinikum Mainz (Germany). Inst. fuer Neuroradiologie; Wille, C. [Fachhochschule Bingen (Germany). Inst. fuer Informatik; Kempski, O. [Universitaetsklinikum Mainz (Germany). Inst. fuer Neurochirurgische Pathophysiologie; Stoeter, P. [CEDIMAT, Santo Domingo (Dominican Republic). Inst. of Neuroradiology

    2010-10-15

    Purpose: The measurement of the CBF is a non-standardized procedure and there are no reliable gold standards. This abstract shows a capillary-based perfusion-phantom for CE-DSC-MRI. It has equivalent flow properties to those within the tissue capillary system of the human brain and allows the validation of the Siemens Perfusion (MR) software. Materials and Methods: The perfusion phantom consists of a dialyzer for the simulation of the capillary system, a feeding tube for simulation of the AIF and a pulsatile pump for simulation of the heart. Using this perfusion phantom, the exact determination of the gold standard CBF due to the well-known geometry of the phantom is easy. It was validated based on different perfusion measurements. These measurements were investigated with standard software (Siemens Perfusion MR). The software determined the CBF within the capillary system. Based on this CBF, a comparison to the gold standard was made with several different flow speeds. After AIF selection, a total of 726 CBF data points were automatically extracted by the software. Results: This results in a comparison of the gold standard CBF to these 726 CBF values. Therefore, a reproducible and reliable deviation estimation between gold standard CBF and measured CBF using the software was computed. It can be shown that the deviation between gold standard and software-based evaluation ranges between 1 and 31 %. Conclusion: There is no significance for any correlation between flow speed and amount of deviation. The mean measured CBF is 11.4 % higher than the gold standard CBF (p-value < 0.001). Using this kind of perfusion-phantom, the validation of different software systems allows reliable conclusions about their quality. (orig.)

  9. Gas chromatographic analysis of simmondsins and simmondsin ferulates in jojoba meal.

    Science.gov (United States)

    Van Boven, M; Holser, R; Cokelaere, M; Flo, G; Decuypere, E

    2000-09-01

    A capillary gas chromatographic method was developed for the simultaneous determination of simmondsins and simmondsin ferulates in jojoba meal, in detoxified jojoba meal, in jojoba meal extracts, and in animal food mixtures.

  10. Capillary array electrophoresis using laser-excited confocal fluorescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.C.; Quesada, M.A.; Mathies, R.A. [Univ. of California, Berkeley, CA (United States)

    1992-04-15

    Capillary electrophoresis (CE) has found widespread application in analytical and biomedical research, and the scope and sophistication of CE is still rapidly advancing. Gel-filled capillaries have been employed for the rapid separation and analysis of synthetic polynucleotides, DNA sequencing fragments, and DNA restriction fragments. Open-tube capillary electrophoresis has attained subattomole detection levels in amino acid separations 14 and proven its utility for the separation of proteins, viruses, and bacteria. Separation of the optical isomers of dansyl amino acids has also been successfully demonstrated. Micellar electrokinetic capillary chromatography, isoelectric focusing, and on-column derivatization can all be performed on CE columns, demonstrating the utility of capillary electrophoresis as an analytical and micropreparative tool. 29 refs., 6 figs., 1 tab.

  11. Numerical simulation and experimental validation of the three-dimensional flow field and relative analyte concentration distribution in an atmospheric pressure ion source.

    Science.gov (United States)

    Poehler, Thorsten; Kunte, Robert; Hoenen, Herwart; Jeschke, Peter; Wissdorf, Walter; Brockmann, Klaus J; Benter, Thorsten

    2011-11-01

    In this study, the validation and analysis of steady state numerical simulations of the gas flows within a multi-purpose ion source (MPIS) are presented. The experimental results were obtained with particle image velocimetry (PIV) measurements in a non-scaled MPIS. Two-dimensional time-averaged velocity and turbulent kinetic energy distributions are presented for two dry gas volume flow rates. The numerical results of the validation simulations are in very good agreement with the experimental data. All significant flow features have been correctly predicted within the accuracy of the experiments. For technical reasons, the experiments were conducted at room temperature. Thus, numerical simulations of ionization conditions at two operating points of the MPIS are also presented. It is clearly shown that the dry gas volume flow rate has the most significant impact on the overall flow pattern within the APLI source; far less critical is the (larger) nebulization gas flow. In addition to the approximate solution of Reynolds-Averaged Navier-Stokes equations, a transport equation for the relative analyte concentration has been solved. The results yield information on the three-dimensional analyte distribution within the source. It becomes evident that for ion transport into the MS ion transfer capillary, electromagnetic forces are at least as important as fluid dynamic forces. However, only the fluid dynamics determines the three-dimensional distribution of analyte gas. Thus, local flow phenomena in close proximity to the spray shield are strongly impacting on the ionization efficiency.

  12. Development of micro-beam NRA for 3D-mapping of hydrogen distribution in solids: Application of tapered glass capillary to 6 MeV 15N ion

    International Nuclear Information System (INIS)

    Sekiba, D.; Yonemura, H.; Nebiki, T.; Wilde, M.; Ogura, S.; Yamashita, H.; Matsumoto, M.; Kasagi, J.; Iwamura, Y.; Itoh, T.; Matsuzaki, H.; Narusawa, T.; Fukutani, K.

    2008-01-01

    A micro-beam NRA system, by means of a resonant nuclear reaction 1 H( 15 N, αγ) 12 C, has been developed for the purpose of the 3D mapping of the hydrogen distribution in solids. To obtain the tens μm size of the beam spot, the combination of the newly proposed tapered glass capillary and a conventional quadrupole magnetic lens is employed. An Y patterned film on a substrate is prepared as an application of the developed system. The 6 MeV 15 N beam focused by glass capillaries down to 50 μm successfully shows the hydrogen distribution. The in-plane NRA profile implies that the beam emitted from the glass capillary outlet is parallel, although the original beam has a considerable divergence. The NRA measurements in the 10 3 Pa N 2 atmosphere due to the low gas conductance of the glass capillary is also demonstrated

  13. Vacuum scanning capillary photoemission microscopy.

    Science.gov (United States)

    Aseyev, S A; Cherkun, A P; Mironov, B N; Petrunin, V V; Chekalin, S V

    2017-08-01

    We demonstrate the use of a conical capillary in a scanning probe microscopy for surface analysis. The probe can measure photoemission from a substrate by transmitting photoelectrons along the capillary as a function of probe position. The technique is demonstrated on a model substrate consisting of a gold reflecting layer on a compact disc which has been illuminated by an unfocused laser beam with a wavelength 400nm, from a femtosecond laser with a beam size of 4mm. A quartz capillary with a 2-µm aperture has been used in the experiments. The period of gold microstructure, shown to be 1.6µ, was measured by the conical probe operating in shear force mode. In shear force regime, the dielectric capillary has been used as a "classical" SPM tip, which provided images reflecting the surface topology. In a photoelectron regime photoelectrons passed through hollow tip and entered a detector. The spatial distribution of the recorded photoelectrons consisted of periodic mountain-valley strips, resembling the surface profile of the sample. Submicron spatial resolution has been achieved. This approach paves the way to study pulsed photodesorption of large organic molecular ions with high spatial and element resolution using the combination of a hollow-tip scanner with time-of-flight technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Generalized network modeling of capillary-dominated two-phase flow.

    Science.gov (United States)

    Raeini, Ali Q; Bijeljic, Branko; Blunt, Martin J

    2018-02-01

    We present a generalized network model for simulating capillary-dominated two-phase flow through porous media at the pore scale. Three-dimensional images of the pore space are discretized using a generalized network-described in a companion paper [A. Q. Raeini, B. Bijeljic, and M. J. Blunt, Phys. Rev. E 96, 013312 (2017)2470-004510.1103/PhysRevE.96.013312]-which comprises pores that are divided into smaller elements called half-throats and subsequently into corners. Half-throats define the connectivity of the network at the coarsest level, connecting each pore to half-throats of its neighboring pores from their narrower ends, while corners define the connectivity of pore crevices. The corners are discretized at different levels for accurate calculation of entry pressures, fluid volumes, and flow conductivities that are obtained using direct simulation of flow on the underlying image. This paper discusses the two-phase flow model that is used to compute the averaged flow properties of the generalized network, including relative permeability and capillary pressure. We validate the model using direct finite-volume two-phase flow simulations on synthetic geometries, and then present a comparison of the model predictions with a conventional pore-network model and experimental measurements of relative permeability in the literature.

  15. Generalized network modeling of capillary-dominated two-phase flow

    Science.gov (United States)

    Raeini, Ali Q.; Bijeljic, Branko; Blunt, Martin J.

    2018-02-01

    We present a generalized network model for simulating capillary-dominated two-phase flow through porous media at the pore scale. Three-dimensional images of the pore space are discretized using a generalized network—described in a companion paper [A. Q. Raeini, B. Bijeljic, and M. J. Blunt, Phys. Rev. E 96, 013312 (2017), 10.1103/PhysRevE.96.013312]—which comprises pores that are divided into smaller elements called half-throats and subsequently into corners. Half-throats define the connectivity of the network at the coarsest level, connecting each pore to half-throats of its neighboring pores from their narrower ends, while corners define the connectivity of pore crevices. The corners are discretized at different levels for accurate calculation of entry pressures, fluid volumes, and flow conductivities that are obtained using direct simulation of flow on the underlying image. This paper discusses the two-phase flow model that is used to compute the averaged flow properties of the generalized network, including relative permeability and capillary pressure. We validate the model using direct finite-volume two-phase flow simulations on synthetic geometries, and then present a comparison of the model predictions with a conventional pore-network model and experimental measurements of relative permeability in the literature.

  16. An integrated approach for the validation of energy and environmental system analysis models : used in the validation of the Flexigas Excel BioGas model

    NARCIS (Netherlands)

    Pierie, Frank; van Someren, Christian; Liu, Wen; Bekkering, Jan; Hengeveld, Evert Jan; Holstein, J.; Benders, René M.J.; Laugs, Gideon A.H.; van Gemert, Wim; Moll, Henri C.

    2016-01-01

    A review has been completed for a verification and validation (V&V) of the (Excel) BioGas simulator or EBS model. The EBS model calculates the environmental impact of biogas production pathways using Material and Energy Flow Analysis, time dependent dynamics, geographic information, and Life Cycle

  17. Equilibrium capillary forces with atomic force microscopy

    NARCIS (Netherlands)

    Sprakel, J.H.B.; Besseling, N.A.M.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2007-01-01

    We present measurements of equilibrium forces resulting from capillary condensation. The results give access to the ultralow interfacial tensions between the capillary bridge and the coexisting bulk phase. We demonstrate this with solutions of associative polymers and an aqueous mixture of gelatin

  18. Indirect fluorescence detection of native amino acids in capillary zone electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Kuhr, W.G.; Yeung, E.S.

    1988-09-01

    Amino acids are but one of several important classes of small chemical compounds in biological chemistry that have an inherent lack of analytically useful physical properties. Amino acids, peptides, fatty acids, sugars, many mono-, di-, and tricarboxylic acids, and phosphorylated intermediates in glycolysis and metabolism show little, if any, UV or visible absorption, fluorescence, or electrochemical activity. As the emphasis of biochemical research shifts to smaller samples where, for example, picomolar quantities of amino acids are analyzed in gas phase protein sequencing or in microliter samples of the extracellular fluid of the mammalian brain, the analytical problem becomes even more challenging due to the small volume of sample available for analysis. In this work, laser-induced fluorescence spectroscopy is performed on-column to detect the bands separated with capillary zone electrophoresis (CZE). CZE is an instrumental form of zone electrophoresis where chemical species are separated purely on the basis of their electrophoretic mobility, since no supporting gel is utilized. Both anions and cations can be separated in the same run because of the large electroosmotic flow generated in small diameter capillaries. This technique has already been used successfully in the rapid, efficient separation of dansyl-amino acids.

  19. Multianalyte detection using a capillary-based flow immunosensor.

    Science.gov (United States)

    Narang, U; Gauger, P R; Kusterbeck, A W; Ligler, F S

    1998-01-01

    A highly sensitive, dual-analyte detection system using capillary-based immunosensors has been designed for explosive detection. This model system consists of two capillaries, one coated with antibodies specific for 2,4,6-trinitrotoluene (TNT) and the other specific for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) combined into a single device. The fused silica capillaries are prepared by coating anti-TNT and anti-RDX antibodies onto the silanized inner walls using a hetero-bifunctional crosslinker. After immobilization, the antibodies are saturated with a suitable fluorophorelabeled antigen. A "T" connector is used to continuously flow the buffer solution through the individual capillaries. To perform the assay, an aliquot of TNT or RDX or a mixture of the two analytes is injected into the continuous flow stream. In each capillary, the target analyte displaces the fluorophore-labeled antigen from the binding pocket of the antibody. The labeled antigen displaced from either capillary is detected downstream using two portable spectrofluorometers. The limits of detection for TNT and RDX in the multi-analyte formate are 44 fmol (100 microliters of 0.1 ng/ml TNT solution) and 224 fmol (100 microliters of 0.5 ng/ml RDX solution), respectively. The entire assay for both analytes can be performed in less than 3 min.

  20. A fully automated 384 capillary array for DNA sequencer. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingbo; Kane, T

    2003-03-20

    Phase I SpectruMedix has successfully developed an automatic 96-capillary array DNA prototype based on the multiplexed capillary electrophoresis system originated from Ames Laboratory-USDOE, Iowa State University. With computer control of all steps involved in a 96-capillary array running cycle, the prototype instrument (the SCE9600) is now capable of sequencing 450 base pairs (bp) per capillary, or 48,000 bp per instrument run within 2 hrs. Phase II of this grant involved the advancement of the core 96 capillary technologies, as well as designing a high density 384 capillary prototype. True commercialization of the 96 capillary instrument involved finalization of the gel matrix, streamlining the instrument hardware, creating a more reliable capillary cartridge, and further advancement of the data processing software. Together these silos of technology create a truly commercializable product (the SCE9610) capable of meeting the operation needs of the sequencing centers.

  1. A fast, comprehensive screening method for doping agents in urine by gas chromatography-triple quadrupole mass spectrometry.

    Science.gov (United States)

    Van Eenoo, Peter; Van Gansbeke, Wim; De Brabanter, Nik; Deventer, Koen; Delbeke, Frans T

    2011-05-27

    The use of performance enhancing drugs in sports is prohibited. For the detection of misuse of such substances gas chromatography or liquid chromatography coupled to mass spectrometry are the most frequently used detection techniques. In this work the development and validation of a fast gas chromatography tandem mass spectrometric method for the detection of a wide range of doping agents is described. The method can determine 13 endogenous steroids (the steroid profile), 19-norandrosterone, salbutamol and 11-nor-Δ9-tetrahydrocannabinol.9carboxylic acid in the applicable ranges and to detect qualitatively over 140 substances in accordance with the minimum required performance levels of the World Anti-Doping Agency in 1ml of urine. The classes of substances included in the method are anabolic steroids, β2-agonists, stimulants, narcotics, hormone antagonists and modulators and beta-blockers. Moreover, using a short capillary column and hydrogen as a carrier gas the run time of the method is less than 8min. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Weight-controlled capillary viscometer

    Science.gov (United States)

    Digilov, Rafael M.; Reiner, M.

    2005-11-01

    The draining of a water column through a vertical discharge capillary tube is examined with the aid of a force sensor. The change of the mass of the liquid in the column with time is found to be not purely exponential as implied by Poiseuille's law. Using observed residuals associated with a kinetic energy correction, an approximate formula for the mass as a function of time is derived and excellent agreement with experimental data is attained. These results are verified by a viscosity test of distilled water at room temperature. A simple and inexpensive weight-controlled capillary viscometer is proposed that is especially suitable for undergraduate physics and chemistry laboratories.

  3. Capillary electrophoresis: principles and applications in illicit drug analysis.

    Science.gov (United States)

    Tagliaro, F; Turrina, S; Smith, F P

    1996-02-09

    Capillary electrophoresis, which appeared in the early 1980s, is now rapidly expanding into many scientific disciplines, including analytical chemistry, biotechnology and biomedical and pharmaceutical sciences. In capillary electrophoresis,electrokinetic separations are carried out in tiny capillaries at high voltages (10-30 kV), thus obtaining high efficiencies (N > 10(5)) and excellent mass sensitivities (down to 10(-18)-10(-20) moles). The main features of capillary electrophoresis are: versatility of application (from inorganic ions to large DNA fragments), use of different separation modes with different selectivity, extremely low demands on sample volume, negligible running costs, possibility of interfacing with different detection systems, ruggedness and simplicity of instrumentation. Capillary electrophoresis applications in forensic sciences have appeared only recently, but are now rapidly growing, particularly in forensic toxicology. The present paper briefly describes the basic principles of capillary electrophoresis, from both the instrumental and analytical points of view. Furthermore, the main applications in the analysis of illicit/controlled drugs in both illicit preparations and biological samples are presented and discussed (43 references). It is concluded that the particular separation mechanism and the high complementarity of this technique to chromatography makes capillary electrophoresis a new powerful tool of investigation in the hands of forensic toxicologists.

  4. Fundamental structural aspects and features in the bioengineering of the gas exchangers: comparative perspectives.

    Science.gov (United States)

    Maina, J N

    2002-01-01

    the ubiquitous method of transfer of O2 across biological tissues. Gills, evaginated gas exchangers, were the primordial respiratory organs that evolved for water breathing, whereas lungs (invaginated gas exchangers) developed for terrestrial (air) breathing. Transitional (= bimodal = amphibious) breathing has evolved in animals with specialized organs that extract O2 from both water and air. Lungs are tidally (= bidirectionally) ventilated, while gills are unidirectionally ventilated, a feature that allows the highly efficient counter-current disposition between blood and water. Since animals occupy inconstant environmental milieus and their metabolic states vary, gas exchangers are designed to operate optimally across a spectrum of conditions that range from resting to exercise and even under hypoxia. Inbuilt structural and functional flexibility provides the requisite safety factors that allow adjustments to modest pressures. The fundamental structural features that determine the respiratory function of a gas exchanger are respiratory surface area, thickness of the blood-water/gas (tissue) barrier and volume of the pulmonary capillary blood. The diffusing capacity of a gas exchanger correlates directly with the surface area and inversely with the thickness of the blood-water/gas (tissue) barrier. An extensive surface area is generated in gills by extensive stratification of the gas exchanger and in lungs by profuse internal subdivision. Compartmentalization yields small terminal gas exchange compartments that compel greater commitment of energy to ventilate. The surfactant, a phospholipid lining, reduces the forces of surface tension at the air-water interface. This attenuates the propensity of physical collapse of the minute gas exchange units and minimizes the cost of ventilation. The surfactant characterizes all the gas exchangers derived from the piscine air bladder. In the lower air-breathing vertebrates, such as the lungfishes (Dipnoi), amphibians and certain

  5. THE CAPILLARY PATTERN IN HUMAN MASSETER MUSCLE DURING AGEING

    Directory of Open Access Journals (Sweden)

    Erika Cvetko

    2013-10-01

    Full Text Available The effect of ageing on the capillary network in skeletal muscles has produced conflicting results in both, human and animals studies. Some of the inconsistencies are due to non-comparable and biased methods that were applied on thin transversal sections, especially in muscles with complicated morphological structures, such as in human masseter muscle. We present a new immunohistochemical method for staining capillaries and muscle fibres in 100 µm thick sections as well as novel approach to 3D visualization of capillaries and muscle fibres. Applying confocal microscopy and virtual 3D stereological grids, or tracing capillaries in virtual reality, length of capillaries within a muscle volume or length of capillaries adjacent to muscle fibre per fibre length, fibre surface or fibre volume were evaluated in masseter muscle of young and old subjects by an unbiased approach. Our findings show that anatomic capillarity is well maintained in masseter muscle in old subjects; however, vascular remodelling occurs with age, which could be a response to changed muscle function and age-related muscle fibre type transformations.

  6. Scaling laws in centrifuge modelling for capillary rise in soils; Lois de similitude de l'ascension capillaire dans les sols en centrifugeuse

    Energy Technology Data Exchange (ETDEWEB)

    Rezzoug, A.; Konig, D.; Triantafyllidis, Th. [Ruhr Bochum Univ. (Germany)

    2000-07-01

    It appears to be possible to extend the application of geotechnical centrifuge modelling to environmental problems. In this paper, one aspect of similitude laws concerning the flow of water through soils is investigated. Within the Network of European Centrifuges of Environmental Geotechnic Research (NECER), several tests have been carried out to study similitude laws describing the capillary ascension in porous media under different levels of acceleration. The aim of this paper is to present the results obtained at Ruhr-Universitaet Bochum. A fine sand is used in the experiment. For the visualisation of capillary height in the soil sample, image processing is used. Different boundary conditions (constant water level or variable) have been investigated and discussed. A simple similitude law for capillary rise has been investigated and the kinetic phenomena has been measured at different g-levels. These experiments confirm, that capillary rise appears to be scaled by the factor N and time seems to be scaled by N{sup 2}. These results validate thus the possibility of using accelerated small-scale models of capillary phenomena in a centrifuge, and open the way to more complex investigations on flow and pollutant transports in unsaturated centrifuged soils. (authors)

  7. TiN coating on steel by pulsed capillary discharge

    International Nuclear Information System (INIS)

    Avaria, G; Favre, M; Bhuyan, H; Wyndham, E; Kelly, H; Grondona, D; Marquez, A

    2006-01-01

    The characteristic geometry of a pulsed capillary discharge (PCD)[1] establishes natural conditions for the formation of plasma jets, which expand in the chamber's neutral gas. A locally stored capacitor, coaxial with the capillary, is pulse charged to a maximum of -10kV, giving a current pulse of ∼10ns, ∼2kA. The discharge is operated in nitrogen, in a continuous pulsing mode, at a frequency of 50 Hz and pressures of 0.3 to 1 Torr. The coating produced by these plasma jets on substrates of AISI 304 stainless steel have been studied. The chamber's anode is made of titanium, which interacts with the nitrogen plasma producing TiN coatings on the substrates. The results are presented for the plasma characterization at different discharge pressures and times, as well as SEM, EDS and AFM analysis of deposits made. This characterization was carried out using Langmuir double probes, which provide data on the electronic temperature and density in the plasma jet. At the same time spectrographic studies of the plasma were carried out, and the presence of ionized atoms of titanium and nitrogen were observed. An inverse relation between the pressure of nitrogen present in the chamber and the thickness of the coating over steel was found, as well as a direct relationship between the temperature and plasma densities with the thickness of the deposit (CW)

  8. An integrated multiple capillary array electrophoresis system for high-throughput DNA sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X.

    1998-03-27

    A capillary array electrophoresis system was chosen to perform DNA sequencing because of several advantages such as rapid heat dissipation, multiplexing capabilities, gel matrix filling simplicity, and the mature nature of the associated manufacturing technologies. There are two major concerns for the multiple capillary systems. One concern is inter-capillary cross-talk, and the other concern is excitation and detection efficiency. Cross-talk is eliminated through proper optical coupling, good focusing and immersing capillary array into index matching fluid. A side-entry excitation scheme with orthogonal detection was established for large capillary array. Two 100 capillary array formats were used for DNA sequencing. One format is cylindrical capillary with 150 {micro}m o.d., 75 {micro}m i.d and the other format is square capillary with 300 {micro}m out edge and 75 {micro}m inner edge. This project is focused on the development of excitation and detection of DNA as well as performing DNA sequencing. The DNA injection schemes are discussed for the cases of single and bundled capillaries. An individual sampling device was designed. The base-calling was performed for a capillary from the capillary array with the accuracy of 98%.

  9. Escherichia coli adhesive coating as a chiral stationary phase for open tubular capillary electrochromatography enantioseparation

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Qifeng, E-mail: fuqifeng1990@163.com [Department of Medicinal Chemistry, Southwest Medical University, Luzhou 646000 (China); Zhang, Kailian; Gao, Die; Wang, Lujun [Department of Medicinal Chemistry, Southwest Medical University, Luzhou 646000 (China); Yang, Fengqing; Liu, Yao [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); Xia, Zhining, E-mail: tcm_anal_cqu@163.com [Innovative Drug Research Centre and School of Pharmaceutical Sciences, Chongqing University, Chongqing 400030 (China); School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China)

    2017-05-29

    Bacteria, the microorganism with intrinsic chirality, have numerous fascinating chiral phenomena such as various chirality-triggered biological processes and behaviors. Herein, bacteria were firstly explored as novel chiral stationary phases in open-tubular capillary electrochromatography (OT-CEC) for enantioseparation of fluoroquinolone enantiomers and simultaneous separation of six fluoroquinolone antibiotics. The model strain, i.e. non-pathogenic Escherichia coli (E. coli) DH5α, was adhered onto the inner surface of positively charged polyethyleneimine (PEI) modified capillaries based on the bacterial adhesion characteristics and strong electrostatic interaction. The morphology and thickness of the bacteria adhesive coatings in the capillary were characterized by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). Baseline separation of ofloxacin and partial separation of lomefloxacin enantiomers could be achieved by the E. coli coated columns. The preparation parameters including the coating time and concentration of bacteria that affecting the chiral resolution were intensively investigated. The electrophoretic parameters, including pH, buffer concentration and applied voltage, were also optimized. The developed method was validated (linearity, LOD, LOQ, intra-day, inter-day and column-to-column repeatability and recovery) and successfully utilized for the quantitative analysis of ofloxacin enantiomers in the ofloxacin tablets. Moreover, only a slight decrease in the separation efficiency was observed after 90 consecutive runs on the E. coli@capillary. These results demonstrated that bacteria are promising stationary phases for chiral separation in CEC. - Highlights: • Bacteria were firstly introduced in OT-CEC as a chiral stationary phase for chiral separation. • Enantioseparation of ofloxacin enantiomers was achieved on E. coli coated open tubular capillary column. • Bacterial stationary phases may be used to

  10. Escherichia coli adhesive coating as a chiral stationary phase for open tubular capillary electrochromatography enantioseparation

    International Nuclear Information System (INIS)

    Fu, Qifeng; Zhang, Kailian; Gao, Die; Wang, Lujun; Yang, Fengqing; Liu, Yao; Xia, Zhining

    2017-01-01

    Bacteria, the microorganism with intrinsic chirality, have numerous fascinating chiral phenomena such as various chirality-triggered biological processes and behaviors. Herein, bacteria were firstly explored as novel chiral stationary phases in open-tubular capillary electrochromatography (OT-CEC) for enantioseparation of fluoroquinolone enantiomers and simultaneous separation of six fluoroquinolone antibiotics. The model strain, i.e. non-pathogenic Escherichia coli (E. coli) DH5α, was adhered onto the inner surface of positively charged polyethyleneimine (PEI) modified capillaries based on the bacterial adhesion characteristics and strong electrostatic interaction. The morphology and thickness of the bacteria adhesive coatings in the capillary were characterized by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). Baseline separation of ofloxacin and partial separation of lomefloxacin enantiomers could be achieved by the E. coli coated columns. The preparation parameters including the coating time and concentration of bacteria that affecting the chiral resolution were intensively investigated. The electrophoretic parameters, including pH, buffer concentration and applied voltage, were also optimized. The developed method was validated (linearity, LOD, LOQ, intra-day, inter-day and column-to-column repeatability and recovery) and successfully utilized for the quantitative analysis of ofloxacin enantiomers in the ofloxacin tablets. Moreover, only a slight decrease in the separation efficiency was observed after 90 consecutive runs on the E. coli@capillary. These results demonstrated that bacteria are promising stationary phases for chiral separation in CEC. - Highlights: • Bacteria were firstly introduced in OT-CEC as a chiral stationary phase for chiral separation. • Enantioseparation of ofloxacin enantiomers was achieved on E. coli coated open tubular capillary column. • Bacterial stationary phases may be used to

  11. Minimized Capillary End Effect During CO2 Displacement in 2-D Micromodel by Manipulating Capillary Pressure at the Outlet Boundary in Lattice Boltzmann Method

    Science.gov (United States)

    Kang, Dong Hun; Yun, Tae Sup

    2018-02-01

    We propose a new outflow boundary condition to minimize the capillary end effect for a pore-scale CO2 displacement simulation. The Rothman-Keller lattice Boltzmann method with multi-relaxation time is implemented to manipulate a nonflat wall and inflow-outflow boundaries with physically acceptable fluid properties in 2-D microfluidic chip domain. Introducing a mean capillary pressure acting at CO2-water interface to the nonwetting fluid at the outlet effectively prevents CO2 injection pressure from suddenly dropping upon CO2 breakthrough such that the continuous CO2 invasion and the increase of CO2 saturation are allowed. This phenomenon becomes most pronounced at capillary number of logCa = -5.5, while capillary fingering and massive displacement of CO2 prevail at low and high capillary numbers, respectively. Simulations with different domain length in homogeneous and heterogeneous domains reveal that capillary pressure and CO2 saturation near the inlet are reproducible compared with those with a proposed boundary condition. The residual CO2 saturation uniquely follows the increasing tendency with increasing capillary number, corroborated by experimental evidences. The determination of the mean capillary pressure and its sensitivity are also discussed. The proposed boundary condition is commonly applicable to other pore-scale simulations to accurately capture the spatial distribution of nonwetting fluid and corresponding displacement ratio.

  12. Condensation and Evaporation Transitions in Deep Capillary Grooves

    OpenAIRE

    Malijevský, A. (Alexandr); Parry, A.O.

    2014-01-01

    We study the order of capillary condensation and evaporation transitions of a simple fluid adsorbed in a deep capillary groove using a fundamental measure density functional theory (DFT). The walls of the capillary interact with the fluid particles via long-ranged, dispersion, forces while the fluid-fluid interaction is modelled as a truncated Lennard-Jones-like potential. We find that below the wetting temperature $T_w$ condensation is first-order and evaporation is continuous with the metas...

  13. Hierarchical capillary adhesion of microcantilevers or hairs

    International Nuclear Information System (INIS)

    Liu Jianlin; Feng Xiqiao; Xia Re; Zhao Hongping

    2007-01-01

    As a result of capillary forces, animal hairs, carbon nanotubes or nanowires of a periodically or randomly distributed array often assemble into hierarchical structures. In this paper, the energy method is adopted to analyse the capillary adhesion of microsized hairs, which are modelled as clamped microcantilevers wetted by liquids. The critical conditions for capillary adhesion of two hairs, three hairs or two bundles of hairs are derived in terms of Young's contact angle, elastic modulus and geometric sizes of the beams. Then, the hierarchical capillary adhesion of hairs is addressed. It is found that for multiple hairs or microcantilevers, the system tends to take a hierarchical structure as a result of the minimization of the total potential energy of the system. The level number of structural hierarchy increases with the increase in the number of hairs if they are sufficiently long. Additionally, we performed experiments to verify our theoretical solutions for the adhesion of microbeams

  14. Application of CHESS single-bounce capillaries at synchrotron beamlines

    Science.gov (United States)

    Huang, R.; Szebenyi, T.; Pfeifer, M.; Woll, A.; Smilgies, D.-M.; Finkelstein, K.; Dale, D.; Wang, Y.; Vila-Comamala, J.; Gillilan, R.; Cook, M.; Bilderback, D. H.

    2014-03-01

    Single-bounce capillaries are achromatic X-ray focusing optics that can provide efficient and high demagnification focusing with large numerical apertures. Capillary fabrication at CHESS can be customized according to specific application requirements. Exemplary applications are reviewed in this paper, as well as recent progress on condensers for high-resolution transmission X-ray microscopy and small focal size capillaries.

  15. Post-column derivatization capillary electrochromatography for detection of biogenic amines in tuna-meat.

    Science.gov (United States)

    Oguri, Shigeyuki; Okuya, Yukie; Yanase, Yukiko; Suzuki, Sayaka

    2008-08-15

    A system to perform post-column derivatization capillary electrochromatography (CEC) was developed for the first time. The system mainly included a 4-microm (O.D.) silica packed column (200 mm effective length x 0.1 mm inner diameter I.D.) with micro-magnetic particles (MMPs) frits, a T-junction connector, an in-line fluorescence detector and a high-voltage power supply. The system was evaluated by using histamine (HA) as a standard biogenic amine for this study. A 5 microM HA solution was loaded at the anodic site of the capillary column by applying 3 kV for 5s. Then, HA was electrophoretically eluted with a 20mM phosphate buffer (pH 7) by applying 3 kV, and was derivatized with 3mM o-phthalaldehyde (OPA)/N-acetylcysteine (NAC) in 100 mM borate (pH 10), which was continuously delivered through the reagent-loading capillary tube by gravity into the T-junction connector. HA derivative was finally detected with the in-line fluorescence detector (lambda(Ex)=340 nm, lambda(Em)=450 nm) at 9.7 min after sample loading. To test the utility of this system, it was next employed for its ability to detect the presence of HA and other kinds of biogenic amines, including cadaverine (Cad), spermidine (Spm) and tyramine (Tyr) in tuna-meat, once the validity of the method had been confirmed.

  16. A Study of Coherent Radiation Generated in an Ablative Capillary Discharge

    Directory of Open Access Journals (Sweden)

    Jakub Hübner

    2013-01-01

    Full Text Available Feasible soft-X-ray amplification in the CVI and NVII Balmer transition is investigated in a capillary discharge. The best conditions and parameters for the experimental set-up are found for an ablative capillary. The most optimistic results have shown that the gain would be greater than one, which is the condition for successful ASE (Amplified spontaneous emission in capillary discharges. The capillary discharge evolution is modeled using the NPINCH program, employing a one-dimensional physical model based on MHD equations. The information about the capillary discharge evolution is processed in the FLY, FLYPAPER, FLYSPEC programs, enabling the population to be modeled on specific levels during capillary discharge.

  17. Biodegradation of phenol, salicylic acid, benzenesulfonic acid, and iomeprol by Pseudomonas fluorescens in the capillary fringe.

    Science.gov (United States)

    Hack, Norman; Reinwand, Christian; Abbt-Braun, Gudrun; Horn, Harald; Frimmel, Fritz H

    2015-12-01

    Mass transfer and biological transformation phenomena in the capillary fringe were studied using phenol, salicylic acid, benzenesulfonic acid, and the iodinated X-ray contrast agent iomeprol as model organic compounds and the microorganism strain Pseudomonas fluorescens. Three experimental approaches were used: Batch experiments (uniform water saturation and transport by diffusion), in static columns (with a gradient of water saturation and advective transport in the capillaries) and in a flow-through cell (with a gradient of water saturation and transport by horizontal and vertical flow: 2-dimension flow-through microcosm). The reactors employed for the experiments were filled with quartz sand of defined particle size distribution (dp=200...600 μm, porosity ε=0.42). Batch experiments showed that phenol and salicylic acid have a high, whereas benzenesulfonic acid and iomeprol have a quite low potential for biodegradation under aerobic conditions and in a matrix nearly close to water saturation. Batch experiments under anoxic conditions with nitrate as electron acceptor revealed that the biodegradation of the model compounds was lower than under aerobic conditions. Nevertheless, the experiments showed that the moisture content was also responsible for an optimized transport in the liquid phase of a porous medium. Biodegradation in the capillary fringe was found to be influenced by both the moisture content and availability of the dissolved substrate, as seen in static column experiments. The gas-liquid mass transfer of oxygen also played an important role for the biological activity. In static column experiments under aerobic conditions, the highest biodegradation was found in the capillary fringe (e.g. βt/β0 (phenol)=0 after t=6 d) relative to the zone below the water table and unsaturated zone. The highest biodegradation occurred in the flow-through cell experiment where the height of the capillary fringe was largest. Copyright © 2015 Elsevier B.V. All rights

  18. Channeling of neutral particles in micro- and nano-capillaries

    International Nuclear Information System (INIS)

    Dabagov, S.B.

    2003-01-01

    After briefly reviewing the main directions in X-ray optics and analyzing the development of capillary optics, a general theory of radiation propagation through capillary structures is described in both geometrical optics and wave optics approximations. Analysis of radiation field structure inside a capillary waveguide shows that wave propagation in channels can be of a purely modal nature, with transmitted energy mostly concentrated in the immediate neighbourhood of capillary inner walls. A qualitative change in radiation scattering with decreasing channel diameter 0 namely, the transition from surface channeling in microcapillaries to bulk channeling in nanocapillaries - is discussed [ru

  19. Validation of SCALE for High Temperature Gas-Cooled Reactors Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Ilas, Dan [ORNL; Kelly, Ryan P [ORNL; Sunny, Eva E [ORNL

    2012-08-01

    This report documents verification and validation studies carried out to assess the performance of the SCALE code system methods and nuclear data for modeling and analysis of High Temperature Gas-Cooled Reactor (HTGR) configurations. Validation data were available from the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhE Handbook), prepared by the International Reactor Physics Experiment Evaluation Project, for two different HTGR designs: prismatic and pebble bed. SCALE models have been developed for HTTR, a prismatic fuel design reactor operated in Japan and HTR-10, a pebble bed reactor operated in China. The models were based on benchmark specifications included in the 2009, 2010, and 2011 releases of the IRPhE Handbook. SCALE models for the HTR-PROTEUS pebble bed configuration at the PROTEUS critical facility in Switzerland have also been developed, based on benchmark specifications included in a 2009 IRPhE draft benchmark. The development of the SCALE models has involved a series of investigations to identify particular issues associated with modeling the physics of HTGRs and to understand and quantify the effect of particular modeling assumptions on calculation-to-experiment comparisons.

  20. On the Validity of the “Thin” and “Thick” Double-Layer Assumptions When Calculating Streaming Currents in Porous Media

    Directory of Open Access Journals (Sweden)

    Matthew D. Jackson

    2012-01-01

    Full Text Available We find that the thin double layer assumption, in which the thickness of the electrical diffuse layer is assumed small compared to the radius of curvature of a pore or throat, is valid in a capillary tubes model so long as the capillary radius is >200 times the double layer thickness, while the thick double layer assumption, in which the diffuse layer is assumed to extend across the entire pore or throat, is valid so long as the capillary radius is >6 times smaller than the double layer thickness. At low surface charge density (0.5 M the validity criteria are less stringent. Our results suggest that the thin double layer assumption is valid in sandstones at low specific surface charge (<10 mC⋅m−2, but may not be valid in sandstones of moderate- to small pore-throat size at higher surface charge if the brine concentration is low (<0.001 M. The thick double layer assumption is likely to be valid in mudstones at low brine concentration (<0.1 M and surface charge (<10 mC⋅m−2, but at higher surface charge, it is likely to be valid only at low brine concentration (<0.003 M. Consequently, neither assumption may be valid in mudstones saturated with natural brines.

  1. Validation of ANSYS CFX for gas and liquid metal flows with conjugate heat transfer within the European project THINS

    Energy Technology Data Exchange (ETDEWEB)

    Papukchiev, A., E-mail: angel.papukchiev@grs.de; Buchholz, S.

    2017-02-15

    Highlights: • ANSYS CFX is validated for gas and liquid metal flows. • L-STAR and TALL-3D experiments are simulated. • Complex flow and heat transfer phenomena are modelled. • Conjugate heat transfer has to be considered in CFD analyses. - Abstract: Within the FP7 European project THINS (Thermal Hydraulics of Innovative Nuclear Systems), numerical tools for the simulation of the thermal-hydraulics of next generation rector systems were developed, applied and validated for innovative coolants. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH participated in THINS with activities related to the development and validation of computational fluid dynamics (CFD) and coupled System Thermal Hydraulics (STH) – CFD codes. High quality measurements from the L-STAR and TALL-3D experiments were used to assess the numerical results. Two-equation eddy viscosity and scale resolving turbulence models were used in the validation process of ANSYS CFX for gas and liquid metal flows with conjugate heat transfer. This paper provides a brief overview on the main results achieved at GRS within the project.

  2. X-ray Talbot interferometry with capillary plates

    International Nuclear Information System (INIS)

    Momose, Atsushi; Kawamoto, Shinya

    2006-01-01

    An X-ray Talbot interferometer consisting of two capillary plates, which were used as X-ray amplitude gratings, was evaluated for X-ray phase imaging. A theoretical aspect of capillary X-ray Talbot interferometry is presented with a preliminary operation result using synchrotron radiation. A two-dimensional X-ray Talbot effect, or self-imaging effect, which was the basis of Talbot interferometry, was observed with the capillary plate, and moire images formed by the X-ray Talbot interferometer exhibited contrasts corresponding to the differential phase shift caused by phase objects placed in front of the interferometer. Finally, the possibility of quantitative phase measurement with a fringe scanning technique is discussed. (author)

  3. Capillary Optics as an x-ray Condensing Lens An Alignment

    CERN Document Server

    Cappuccio, G

    2000-01-01

    The procedure of capillary lens alignment is described in detail. The theoretical basis of capillary optics is given in the framework of a comparative analysis of monocapillary and polycapillary optics. The results of x-ray $9 distribution scanning behind the capillary lens for various angle planes, together with the tting results, are presented. A qualitative explanation is given for the discrepancy between the expected and observed divergences of x-ray $9 beams transmitted by the capillary lens.

  4. Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE): Lunar Advanced Volatile Analysis (LAVA) Capillary Fluid Dynamic Restriction Effects on Gas Chromatography

    Science.gov (United States)

    Gonzalez, Marianne; Quinn, Jacqueline; Captain, Janine; Santiago-Bond, Josephine; Starr, Stanley

    2015-01-01

    The Resource Prospector (RP) mission with the Regolith and Environment Science and Oxygen Lunar Volatile Extraction (RESOLVE) payload aims to show the presence of water in lunar regolith, and establish a proving ground for NASAs mission to Mars. One of the analysis is performed by the Lunar Advanced Volatiles Analysis (LAVA) subsystem, which consists of a fluid network that facilitates the transport of volatile samples to a gas chromatograph and mass spectrometer (GC-MS) instrument. The understanding of fluid dynamics directed from the GC to the MS is important due to the influence of flow rates and pressures that affect the accuracy of and prevent the damage to the overall GC-MS instrument. The micro-scale capillary fluid network within the GC alone has various lengths and inner-diameters; therefore, determination of pressure differentials and flow rates are difficult to model computationally, with additional complexity from the vacuum conditions in space and lack of a lunar atmosphere. A series of tests were performed on an experimental set-up of the system where the inner diameters of the GC transfer line connecting to the MS were varied. The effect on chromatography readings were also studied by applying these lines onto a GC instrument. It was found that a smaller inner diameter transfer line resulted in a lower flow rate, as well as a lower pressure differential across the thermal conductivity detector (TCD) unit of the GC and a negligible pressure drop across the mock-up capillary column. The chromatography was affected with longer retention times and broader peak integrations. It was concluded that a 0.050 mm inner diameter line still proved most suitable for the systems flow rate preferences. In addition, it was evident that this small transfer line portrayed some expense to GC signal characteristics and the wait time for steady-state operation.

  5. Paper Capillary Enables Effective Sampling for Microfluidic Paper Analytical Devices.

    Science.gov (United States)

    Shangguan, Jin-Wen; Liu, Yu; Wang, Sha; Hou, Yun-Xuan; Xu, Bi-Yi; Xu, Jing-Juan; Chen, Hong-Yuan

    2018-06-06

    Paper capillary is introduced to enable effective sampling on microfluidic paper analytical devices. By coupling mac-roscale capillary force of paper capillary and microscale capillary forces of native paper, fluid transport can be flexibly tailored with proper design. Subsequently, a hybrid-fluid-mode paper capillary device was proposed, which enables fast and reliable sampling in an arrayed form, with less surface adsorption and bias for different components. The resulting device thus well supports high throughput, quantitative, and repeatable assays all by hands operation. With all these merits, multiplex analysis of ions, proteins, and microbe have all been realized on this platform, which has paved the way to level-up analysis on μPADs.

  6. In situ preparation of multilayer coated capillary column with HKUST-1 for separation of neutral small organic molecules by open tubular capillary electrochromatography.

    Science.gov (United States)

    Xu, Yin-Yin; Lv, Wen-Juan; Ren, Cui-Ling; Niu, Xiao-Ying; Chen, Hong-Li; Chen, Xing-Guo

    2018-01-12

    The popularity of novel nanoparticles coated capillary column has aroused widespread attention of researchers. Metal organic frameworks (MOFs) with special structure and chemical properties have received great interest in separation sciences. This work presents the investigation of HKUST-1 (Hong Kong University of Science and Technology-1, called Cu 3 (BTC) 2 or MOF-199) nanoparticles as a new type of coating material for capillary electrochromatography. For the first time, three layers coating (3-LC), five layers coating (5-LC), ten layers coating (10-LC), fifteen layers coating (15-LC), twenty layers coating(20-LC) and twenty-five layers coating (25-LC) capillary columns coated with HKUST-1 nanoparticles were synthesized by covalent bond with in situ, layer-by-layer self-assembly approach. The results of scanning electron microscopy (SEM), X-ray diffraction (XRD) and plasma atomic emission spectrometry (ICP-AES) indicated that HKUST-1 was successfully grafted on the inner wall of the capillary. The separating performances of 3-LC, 5-LC, 10-LC, 15-LC, 20-LC and 25-LC open tubular (OT) capillary columns were studied with some neutral small organic molecules. The results indicated that the neutral small organic molecules were separated successfully with 10-LC, 15-LC and 20-LC OT capillary columns because of the size selectivity of lattice aperture and hydrophobicity of organic ligands. In addition, 10-LC and 15-LC OT capillary columns showed better performance for the separation of certain phenolic compounds. Furthermore, 10-LC, 15-LC and 20-LC OT capillary columns exhibited good intra-day repeatability with the relative standard deviations (RSDs; %) of migration time and peak areas lying in the range of 0.3-1.2% and 0.5-4.2%, respectively. For inter-day reproducibility, the RSDs of the three OT capillary columns were found to be lying in the range of 0.3-5.5% and 0.3-4.5% for migration time and peak area, respectively. The RSDs of retention times for column

  7. Practical capillary electrophoresis

    CERN Document Server

    Weinberger, Robert

    2000-01-01

    In the 1980s, capillary electrophoresis (CE) joined high-performance liquid chromatography (HPLC) as the most powerful separation technique available to analytical chemists and biochemists. Published research using CE grew from 48 papers in the year of commercial introduction (1988) to 1200 in 1997. While only a dozen major pharmaceutical and biotech companies have reduced CE to routine practice, the applications market is showing real or potential growth in key areas, particularly in the DNA marketplace for genomic mapping and forensic identification. For drug development involving small molecules (including chiral separations), one CE instrument can replace 10 liquid chromatographs in terms of speed of analysis. CE also uses aqueous rather than organic solvents and is thus environmentally friendlier than HPLC. The second edition of Practical Capillary Electrophoresis has been extensively reorganized and rewritten to reflect modern usage in the field, with an emphasis on commercially available apparatus and ...

  8. Gas chromatography-mass spectrometry and high-performance liquid chromatographic analyses of thermal degradation products of common plastics

    NARCIS (Netherlands)

    Pacakova, V.; Leclercq, P.A.

    1991-01-01

    The thermo-oxidation of five commonly used materials, namely low-density polyethylene, retarded polyethylene, paper with a polyethylene foil, a milk package and filled polypropylene, was studied. Capillary gas chromatography and gas chromatography-mass spectrometry were used to analyze the volatile

  9. Laws of physics help explain capillary non-perfusion in diabetic retinopathy.

    Science.gov (United States)

    Stefánsson, E; Chan, Y K; Bek, T; Hardarson, S H; Wong, D; Wilson, D I

    2018-02-01

    The purpose is to use laws of physics to elucidate the mechanisms behind capillary non-perfusion in diabetic retinopathy. In diabetic retinopathy, loss of pericytes weakens capillary walls and the vessel dilates. A dilated capillary has reduced resistance to flow, therefore increased flow in that vessel and decreased in adjoining capillaries. A preferential shunt vessel is thus formed from the dilated capillary and the adjacent capillaries become non-perfused. We apply the laws of Laplace and Hagen-Poiseuille to better understand the phenomena that lead to capillary non-perfusion. These laws of physics can give a foundation for physical or mathematical models to further elucidate this field of study. The law of Laplace predicts that a weaker vessel wall will dilate, assuming constant transmural pressure. The Hagen-Poiseuille equation for flow and the Ostwald-de Waele relationship for viscosity predict that a dilated vessel will receive a higher portion of the fluid flow than the adjoining capillaries. Viscosity will decrease in the dilated vessel, furthering the imbalance and resulting in a patch of non-perfused capillaries next to the dilated 'preferential' shunt vessel. Physical principles support or inspire novel hypotheses to explain poorly understood phenomena in ophthalmology. This thesis of pericyte death and capillary remodelling, which was first proposed by Cogan and Kuwabara, already agrees with histological and angiographical observations in diabetic retinopathy. We have shown that it is also supported by classical laws of physics.

  10. Experimental and numerical studies of choked flow through adiabatic and diabatic capillary tubes

    International Nuclear Information System (INIS)

    Deodhar, Subodh D.; Kothadia, Hardik B.; Iyer, K.N.; Prabhu, S.V.

    2015-01-01

    Capillary tubes are extensively used in several cooling applications like refrigeration, electronic cooling etc. Local pressure variation in adiabatic straight capillary tube (mini channel) is studied experimentally and numerically with R134a as the working fluid. Experiments are performed on two straight capillary tubes. It is found that the diameter is the most sensitive design parameter of the capillary tube. Experiments are performed on five helically coiled capillary tubes to quantify the effect of pitch and curvature of helically coiled capillary tube on the pressure drop. Non dimensionalized factor to account coiling of capillary tube is derived to calculate mass flow rate in helically coiled capillary tubes. Flow visualization in adiabatic capillary tube confirms the bubbly nature of two phase flow. Numerical and experimental investigations in diabatic capillary tube suggest that the use of positive displacement pump and choking at the exit of the channel ensures flow stability. - Highlights: • Model is developed to design capillary tube in adiabatic and diabatic condition. • Effect of coil curvature on pressure drop is studied experimentally. • Correlation is developed to predict mass flow rate in helical capillary tubes. • Flow visualization is carried out to check the type of two phase flow. • Effect of choked flow on diabatic capillary tubes is studied experimentally.

  11. Ion guiding in macro-size insulating capillaries: straight, tapered, and curved shapes

    Science.gov (United States)

    Kojima, Takao M.

    2018-02-01

    When keV energy ions are injected into a tilted insulating capillary, a certain fraction of the injected ions are transported through the tilt angle of the capillary. This ion guiding phenomenon is considered to be caused by a self-organizing charge distribution, where the inner wall of the capillary becomes charged by initial incoming ions. The charge distribution, which is formed, can guide following ions toward the exit of the capillary. Since the initial discovery of this effect, studies of ion guiding by insulating capillaries have been extended to various materials, and different sizes and shapes of capillaries. In recent years, some investigations of the guiding effect of macro-size curved capillaries have also been reported. In this review, relevant studies in a history of ion guiding in curved capillaries are discussed and future directions in this field are considered.

  12. Cortical capillary dysfunction in patients suspected of Alzheimer’s disease

    DEFF Research Database (Denmark)

    Eskildsen, Simon Fristed; Gyldensted, Louise; Nagenthiraja, Kartheeban

    Vascular risk factors are suspected to play a role in the etiology of Alzheimer’s disease. Recently, a model that relates capillary dysfunction to the development of AD was proposed[1]. The model predicts that capillary dysfunction in form of increased capillary transit time heterogeneity (CTH...

  13. First report of microcephaly-capillary malformations syndrome in ...

    African Journals Online (AJOL)

    Background: Microcephaly-capillary malformation (MIC-CAP) syndrome is a newly described autosomal recessive syndrome characterized by microcephaly, multiple cutaneous capillary malformations, intractable epilepsy and profound developmental delay. We present the first description of MIC-CAP syndrome in Russia.

  14. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of semivolatile organic compounds in bottom sediment by solvent extraction, gel permeation chromatographic fractionation, and capillary-column gas chromatography/mass spectrometry

    Science.gov (United States)

    Furlong, E.T.; Vaught, D.G.; Merten, L.M.; Foreman, W.T.; Gates, Paul M.

    1996-01-01

    A method for the determination of 79 semivolatile organic compounds (SOCs) and 4 surrogate compounds in soils and bottom sediment is described. The SOCs are extracted from bottom sediment by solvent extraction, followed by partial isolation using high-performance gel permeation chromatography (GPC). The SOCs then are qualitatively identified and quantitative concentrations determined by capillary-column gas chromatography/mass spectrometry (GC/MS). This method also is designed for an optional simultaneous isolation of polychlorinated biphenyls (PCBs) and organochlorine (OC) insecticides, including toxaphene. When OCs and PCBs are determined, an additional alumina- over-silica column chromatography step follows GPC cleanup, and quantitation is by dual capillary- column gas chromatography with electron-capture detection (GC/ECD). Bottom-sediment samples are centrifuged to remove excess water and extracted overnight with dichloromethane. The extract is concentrated, centrifuged, and then filtered through a 0.2-micrometer polytetrafluoro-ethylene syringe filter. Two aliquots of the sample extract then are quantitatively injected onto two polystyrene- divinylbenzene GPC columns connected in series. The SOCs are eluted with dichloromethane, a fraction containing the SOCs is collected, and some coextracted interferences, including elemental sulfur, are separated and discarded. The SOC-containing GPC fraction then is analyzed by GC/MS. When desired, a second aliquot from GPC is further processed for OCs and PCBs by combined alumina-over-silica column chromatography. The two fractions produced in this cleanup then are analyzed by GC/ECD. This report fully describes and is limited to the determination of SOCs by GC/MS.

  15. Imbibition of ``Open Capillary'': Fundamentals and Applications

    Science.gov (United States)

    Tani, Marie; Kawano, Ryuji; Kamiya, Koki; Okumura, Ko

    2015-11-01

    Control or transportation of small amount of liquid is one of the most important issues in various contexts including medical sciences or pharmaceutical industries to fuel delivery. We studied imbibition of ``open capillary'' both experimentally and theoretically, and found simple scaling laws for both statics and dynamics of the imbibition, similarly as that of imbibition of capillary tubes. Furthermore, we revealed the existence of ``precursor film,'' which developed ahead of the imbibing front, and the dynamics of it is described well by another scaling law for capillary rise in a corner. Then, to show capabilities of open capillaries, we demonstrated two experiments by fabricating micro mixing devices to achieve (1) simultaneous multi-color change of the Bromothymol blue (BTB) solution and (2) expression of the green florescent protein (GFP). This research was partly supported by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan). M. T. is supported by the Japan Society for the Promotion of Science Research Fellowships for Young Scientists.

  16. Van de Graaff generator for capillary electrophoresis.

    Science.gov (United States)

    Lee, Seung Jae; Castro, Eric R; Guijt, Rosanne M; Tarn, Mark D; Manz, Andreas

    2017-09-29

    A new approach for high voltage capillary electrophoresis (CE) is proposed, which replaces the standard high voltage power supply with a Van de Graaff generator, a low current power source. Because the Van de Graaff generator is a current-limited source (10μA), potentials exceeding 100kV can be generated for CE when the electrical resistance of the capillary is maximized. This was achieved by decreasing the capillary diameter and reducing the buffer ionic strength. Using 2mM borate buffer and a 5μm i.d. capillary, fluorescently labeled amino acids were separated with efficiencies up to 3.5 million plates; a 5.7 fold improvement in separation efficiency compared to a normal power supply (NPS) typically used in CE. This separation efficiency was realized using a simple set-up without significant Joule heating, making the Van de Graaff generator a promising alternative for applying the high potentials required for enhancing resolution in the separation and analysis of highly complex samples, for example mixtures of glycans. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. From catastrophic acceleration to deceleration of liquid plugs in prewetted capillary tubes

    Science.gov (United States)

    Magniez, Juan; Baudoin, Michael; Zoueshtiagh, Farzam; Lemac/Lics Team

    2016-11-01

    Liquid/gas flows in capillaries are involved in a multitude of systems including flow in porous media, petroleum extraction, imbibition of paper or flows in pulmonary airways in pathological conditions. Liquid plugs, witch compose the biphasic flows, can have a dramatic impact on patients with pulmonary obstructive diseases, since they considerably alter the circulation of air in the airways and thus can lead to severe breathing difficulties. Here, the dynamics of liquid plugs in prewetted capillary tube is investigated experimentally and theoretically, with a particular emphasis on the role of the prewetting films and of the driving condition (constant flow rate, constant pressure). For both driving conditions, the plugs can either experience a continuous increase or decrease of their size. While this phenomenon is regular in the case of imposed flow rate, a constant pressure head can lead to a catastrophic acceleration of the plug and eventually its rupture or a dramatic increase of the plug size. A theoretical model is proposed to explain the transition between theses two regimes. These results give a new insight on the critical pressure required for airways obstruction and reopening. IEMN, International Laboratory LEMAC/LICS, UMR CNRS 8520, University of Lille.

  18. Influence of the inner diameters of capillary on the Z-Pinch plasma of the capillary discharge soft X-ray laser

    International Nuclear Information System (INIS)

    Jiang, Shan; Zhao, Yong-peng; Cui, Huai-yu; Li, Lian-bo; Ding, Yu-jie; Zhang, Wen-hong; Li, Wei

    2015-01-01

    In this paper, the effects of inner diameters on the Z-pinch plasma of capillary discharge soft X-ray laser were investigated with the 3.2 mm and 4.0 mm inner diameter alumina capillaries. The intensities of the laser emitted from the 3.2 mm and 4.0 mm inner diameter alumina capillaries were measured under different initial pressures. To understand the underlying physics of the experimental measurements, the Z-pinch plasma simulations had been conducted with a one-dimensional cylindrical symmetry Lagrangian magneto-hydrodynamics (MHD) code. The parametric studies of Z-pinch plasma, such as the electron temperature, the electron density and the Ne-like Ar ion density, were performed with the MHD code. With the experimental and the simulated results, the discussions had been conducted on the Z-pinch plasma of Ne-like Ar 46.9 nm laser with the 3.2 mm and 4.0 mm inner diameter alumina capillaries. The analysis had been made on the difference of the gain coefficients under the optimum pressures with both capillaries. Then, the effects of inner diameters on the optimum pressure and the pressure domain were analyzed. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Recent advances of capillary electrophoresis in pharmaceutical analysis.

    Science.gov (United States)

    Suntornsuk, Leena

    2010-09-01

    This review covers recent advances of capillary electrophoresis (CE) in pharmaceutical analysis. The principle, instrumentation, and conventional modes of CE are briefly discussed. Advances in the different CE techniques (non-aqueous CE, microemulsion electrokinetic chromatography, capillary isotachophoresis, capillary electrochromatography, and immunoaffinity CE), detection techniques (mass spectrometry, light-emitting diode, fluorescence, chemiluminescence, and contactless conductivity), on-line sample pretreatment (flow injection) and chiral separation are described. Applications of CE to assay of active pharmaceutical ingredients (APIs), drug impurity testing, chiral drug separation, and determination of APIs in biological fluids published from 2008 to 2009 are tabulated.

  20. The Effect of Capillary Number on a Condensate Blockage in Gas Condensate Reservoirs

    OpenAIRE

    Saifon DAUNGKAEW; Alain C GRINGARTEN

    2004-01-01

    In the petroleum industry, gas condensate reservoirs are becoming more common as exploration targets. However, there is a lack of knowledge of the reservoir behaviour mainly due to its complexity in the near wellbore region, where two phases, i.e. reservoir gas and condensate coexist when the wellbore pressure drops below the dew point pressure. The condensation process causes a reduction of the gas productivity (1). It has been reported in the literature that there is an increasing gas mobil...

  1. Transmission of fast highly charged ions through straight and tapered glass capillaries

    International Nuclear Information System (INIS)

    Ayyad, Asma M; Keerthisinghe, D; Kayani, A; Tanis, J A; Dassanayake, B S; Ikeda, T

    2013-01-01

    The transmission of 1 and 3 MeV protons through a borosilicate straight glass capillary and a tapered glass capillary was investigated. The straight capillary had a diameter of ∼0.18 mm and a length of ∼14.4 mm, while the tapered capillary had an inlet diameter of ∼0.71 mm, an outlet diameter of ∼0.10 mm and a length of ∼28 mm. The results show that the 1 and 3 MeV protons traverse through both samples without energy loss, while the tapered capillary showed better transmission than the straight capillary. (paper)

  2. Development and validation of a full-range performance analysis model for a three-spool gas turbine with turbine cooling

    International Nuclear Information System (INIS)

    Song, Yin; Gu, Chun-wei; Ji, Xing-xing

    2015-01-01

    The performance analysis of a gas turbine is important for both its design and its operation. For modern gas turbines, the cooling flow introduces a noteworthy thermodynamic loss; thus, the determination of the cooling flow rate will clearly influence the accuracy of performance calculations. In this paper, a full-range performance analysis model is established for a three-spool gas turbine with an open-circuit convective blade cooling system. A hybrid turbine cooling model is embedded in the analysis to predict the amount of cooling air accurately and thus to remove the errors induced by the relatively arbitrary value of cooling air requirements in the previous research. The model is subsequently used to calculate the gas turbine performance; the calculation results are validated with detailed test data. Furthermore, multistage conjugate heat transfer analysis is performed for the turbine section. The results indicate that with the same coolant condition and flow rate as those in the performance analysis, the blade metal has been effectively cooled; in addition, the maximum temperature predicted by conjugate heat transfer analysis is close to the corresponding value in the cooling model. Hence, the present model provides an effective tool for analyzing the performance of a gas turbine with cooling. - Highlights: • We established a performance model for a gas turbine with convective cooling. • A hybrid turbine cooling model is embedded in the performance analysis. • The accuracy of the model is validated with detailed test data of the gas turbine. • Conjugate heat transfer analysis is performed for the turbine for verification

  3. Influence of ignored and well-known zone distortions on the separation performance of proteins in capillary free zone electrophoresis with special reference to analysis in polyacrylamide-coated fused silica capillaries in various buffers. I. Theoretical studies.

    Science.gov (United States)

    Hjertén, Stellan; Mohabbati, Sheila; Westerlund, Douglas

    2004-10-22

    the peaks become broad. Therefore, different types of buffers should be tested when high resolution is required. The relation sigma2 (the variance of the interaction between a protein and the buffer constituents) = constant x u (the mobility) seems to be valid for all proteins in the applied sample, at least when they have similar molecular masses. To facilitate the understanding of the progress of a free zone electrophoresis experiment, we have discussed in simple terms how the concentrations of the background electrolytes become rearranged during a run and why the difference between the mobilities of the proteins and the mobilities of the background electrolyte determines whether a peak exhibits fronting or tailing. A theoretical analysis of zone broadening in capillary zone electrophoresis, chromatography, and electrochromatography indicates that electrochromatography in homogeneous gels might be the only chromatographic technique which can compete in performance with free electrophoresis. Using an equation, valid not only for electrophoresis, but also for chromatography and centrifugation, the mobility of a concentration boundary has been calculated for the first time and was, as expected, low. Equations based on the Kohlrausch regulating function do not permit such calculations. Another regulating function (the H function) and some of its characteristics are briefly discussed. The theoretical discussions in this paper and the experimental studies in Part II show that high-performance electrophoresis deserves its prefix when the runs are designed to give minimum zone broadening. Some guidelines are given to facilitate this optimization. The plate numbers are so high that the resolution cannot be increased by more than 30% even if they approach the theoretically maximum values.

  4. Design and validation of a model to offer environmental consulting services to minimize oil pollution at gas stations: case study: a gas station in Costa Rica

    International Nuclear Information System (INIS)

    Calderon Hernandez, Teresita

    2016-01-01

    An environmental consulting service was designed and validated to minimize hydrocarbon contamination at gas stations, to be used by Migliore S.A. in order to strengthen and increase the number of services offered in the market niche of these companies. A matrix was synthesized with tools such as SWOT, deployment of the Quality Function Deployment (QFD) and international analysis. With the standardized protocols it will be possible to increase in a fluid way, the offer of consulting services. The final validation of the model allowed to verify the functionality of the same, through the generation of solid evaluation criteria that allowed a good knowledge of the gas station, case study, to offer a timely solution to your particular case, in a simple way and harmonious. The company providing environmental consulting services Migliore S.A. can count on a better commercial development, using the designed model [es

  5. Extraction of Capillary Non-perfusion from Fundus Fluorescein Angiogram

    Science.gov (United States)

    Sivaswamy, Jayanthi; Agarwal, Amit; Chawla, Mayank; Rani, Alka; Das, Taraprasad

    Capillary Non-Perfusion (CNP) is a condition in diabetic retinopathy where blood ceases to flow to certain parts of the retina, potentially leading to blindness. This paper presents a solution for automatically detecting and segmenting CNP regions from fundus fluorescein angiograms (FFAs). CNPs are modelled as valleys, and a novel technique based on extrema pyramid is presented for trough-based valley detection. The obtained valley points are used to segment the desired CNP regions by employing a variance-based region growing scheme. The proposed algorithm has been tested on 40 images and validated against expert-marked ground truth. In this paper, we present results of testing and validation of our algorithm against ground truth and compare the segmentation performance against two others methods.The performance of the proposed algorithm is presented as a receiver operating characteristic (ROC) curve. The area under this curve is 0.842 and the distance of ROC from the ideal point (0,1) is 0.31. The proposed method for CNP segmentation was found to outperform the watershed [1] and heat-flow [2] based methods.

  6. Vulvar Lobular Capillary Hemangioma (Pyogenic Granuloma

    Directory of Open Access Journals (Sweden)

    Kian-Mei Chong

    2005-03-01

    Conclusion: Pyogenic granuloma is considered a reactive hyperproliferative vascular response to trauma or other stimuli. The name “pyogenic granuloma” is a misnomer since the condition is not associated with pus and does not represent a granuloma histologically. There are a few cases of lobular capillary hemangioma of the glans penis but it is rare on the female genitalia. We present this case to help physicians become aware that lobular capillary hemangiomas may occur at this site.

  7. Investigating the influence of lithologic heterogeneity on gas hydrate formation and methane recycling at the base of the gas hydrate stability zone in channelized systems

    Energy Technology Data Exchange (ETDEWEB)

    Daigle, Hugh; Nole, Michael; Cook, Ann; Malinverno, Alberto

    2017-12-14

    In marine environments, gas hydrate preferentially accumulates in coarse-grained sediments. At the meso- to micro-scale, however, hydrate distribution in these coarse-grained units is often heterogeneous. We employ a methane hydrate reservoir simulator coupling heat and mass transfer as well as capillary effects to investigate how capillary controls on methane solubility affect gas and hydrate accumulations in reservoirs characterized by graded bedding and alternating sequences of coarse-grained sands and fine-grained silt and clay. Simulations bury a channelized reservoir unit encased in homogeneous, fine-grained material characterized by small pores (150 nm) and low permeability (~1 md in the absence of hydrate). Pore sizes within each reservoir bed between vary between coarse sand and fine silt. Sands have a median pore size of 35 microns and a lognormal pore size distribution. We also investigate how the amount of labile organic carbon (LOC) affects hydrate growth due to microbial methanogenesis within the sediments. In a diffusion-dominated system, methane movies into reservoir layers along spatial gradients in dissolved methane concentration. Hydrate grows in such a way as to minimize these concentration gradients by accumulating slower in finer-grained reservoir layers and faster in coarser-grained layers. Channelized, fining-upwards sediment bodies accumulate hydrate first along their outer surfaces and thence inward from top to bottom. If LOC is present in thin beds within the channel, higher saturations of hydrate will be distributed more homogeneously throughout the unit. When buried beneath the GHSZ, gas recycling can occur only if enough hydrate is present to form a connected gas phase upon dissociation. Simulations indicate that this is difficult to achieve for diffusion-dominated systems, especially those with thick GHSZs and/or small amounts of LOC. However, capillary-driven fracturing behavior may be more prevalent in settings with thick GHSZs.

  8. On-line combination of liquid chromatography and capillary gas chromatography : preconcentration and analysis of organic compounds in aqueous samples

    NARCIS (Netherlands)

    Noij, T.H.M.; Weiss, E.; Herps, T.; Cruchten, van H.; Rijks, J.A.

    1988-01-01

    This paper describes the design of a new, versatile, and low-cost on-line LC-GC interface that allows the fast and reliable introduction of large sample volumes onto a capillary GC column. The sample introduction procedure consists successively of: evaporation of the entire sample (LC fraction),

  9. ANALYSIS OF GLYCANS DERIVED FROM GLYCOCONJUGATES BY CAPILLARY ELECTROPHORESIS-MASS SPECTROMETRY

    Science.gov (United States)

    Mechref, Yehia

    2012-01-01

    The high structural variation of glycan derived from glycoconjugates, which substantially increases with the molecular size of a protein, contributes to the complexity of glycosylation patterns commonly associated with glycoconjugates. In the case of glycoproteins, such variation originates from the multiple glycosylation sites of proteins and the number of glycan structures associated with each site (microheterogeneity). The ability to comprehensively characterize highly complex mixture of glycans has been analytically stimulating and challenging. Although the most powerful mass spectrometric (MS) and tandem MS techniques are capable of providing a wealth of structural information, they are still not able to readily identify isomeric glycan structures without high order tandem MS (MSn). The analysis of isomeric glycan structures has been attained using several separation methods, including high-pH anion exchange chromatography (HPAEC), hydrophilic interaction chromatography (HILIC) and gas chromatography (GC). However, capillary electrophoresis (CE) and microfluidics capillary electrophoresis (MCE) offer high separation efficiency and resolutions, allowing the separation of closely related glycan structures. Therefore, interfacing CE and MCE to MS is a powerful analytical approach, allowing potentially comprehensive and sensitive analysis of complex glycan samples. This review describes and discusses the utility of different CE and MCE approaches in the structural characterization of glycoproteins and the feasibility of interfacing these approaches to mass spectrometry. PMID:22180203

  10. Lasing at short wavelength in a capillary discharge and in a dense Z-pinch

    International Nuclear Information System (INIS)

    Kunze, H.-J.; Glenzer, S.; Steden, C.; Wieschebrink, H. T.; Koshelev, K. N.; Uskov, D.

    1995-01-01

    Results on the emission of the CVI Balmer-α transition obtained with a fast capillary discharge are summarized, and a model is discussed, which explains the observations as result of fast ions produced by a m=0 instabililty and charge exchange with CIII ions in the cold plasma region. Plasmas of large dimensions were produced in the gas-liner pinch discharge, and the emission of the 4f-3d transition has been studied in CIV, NV, OVI, and FVII. Amplification is seen on the transition in OVI and FVII

  11. Hysteretic capillary condensation of 4He on Nuclepore substrates

    International Nuclear Information System (INIS)

    Godshalk, K.M.; Smith, D.T.; Hallock, R.B.

    1987-01-01

    Measurements of the approach to capillary condensation and the hysteresis encountered in capillary condensation are reported for helium adsorbed on the polycarbonate substrate Nuclepore. (Author) (5 refs., 3 figs.)

  12. Driver-witness electron beam acceleration in dielectric mm-scale capillaries

    Science.gov (United States)

    Lekomtsev, K.; Aryshev, A.; Tishchenko, A. A.; Shevelev, M.; Lyapin, A.; Boogert, S.; Karataev, P.; Terunuma, N.; Urakawa, J.

    2018-05-01

    We investigated a corrugated mm-scale capillary as a compact accelerating structure in the driver-witness acceleration scheme, and suggested a methodology to measure the acceleration of the witness bunch. The accelerating fields produced by the driver bunch and the energy spread of the witness bunch in a corrugated capillary and in a capillary with a constant inner radius were measured and simulated for both on-axis and off-axis beam propagation. Our simulations predicted a change in the accelerating field structure for the corrugated capillary. Also, an approximately twofold increase of the witness bunch energy gain on the first accelerating cycle was expected for both capillaries for the off-axis beam propagation. These results were confirmed in the experiment, and the maximum measured acceleration of 170 keV /m at 20 pC driver beam charge was achieved for off-axis beam propagation. The driver bunch showed an increase in energy spread of up to 11%, depending on the capillary geometry and beam propagation, with a suppression of the longitudinal energy spread in the witness bunch of up to 15%.

  13. Principles of Micellar Electrokinetic Capillary Chromatography Applied in Pharmaceutical Analysis

    Directory of Open Access Journals (Sweden)

    Árpád Gyéresi

    2013-02-01

    Full Text Available Since its introduction capillary electrophoresis has shown great potential in areas where electrophoretic techniques have rarely been used before, including here the analysis of pharmaceutical substances. The large majority of pharmaceutical substances are neutral from electrophoretic point of view, consequently separations by the classic capillary zone electrophoresis; where separation is based on the differences between the own electrophoretic mobilities of the analytes; are hard to achieve. Micellar electrokinetic capillary chromatography, a hybrid method that combines chromatographic and electrophoretic separation principles, extends the applicability of capillary electrophoretic methods to neutral analytes. In micellar electrokinetic capillary chromatography, surfactants are added to the buffer solution in concentration above their critical micellar concentrations, consequently micelles are formed; micelles that undergo electrophoretic migration like any other charged particle. The separation is based on the differential partitioning of an analyte between the two-phase system: the mobile aqueous phase and micellar pseudostationary phase. The present paper aims to summarize the basic aspects regarding separation principles and practical applications of micellar electrokinetic capillary chromatography, with particular attention to those relevant in pharmaceutical analysis.

  14. Mechanisms Leading to Co-Existence of Gas Hydrate in Ocean Sediments [Part 1 of 2

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Steven; Juanes, Ruben

    2011-12-31

    In this project we have sought to explain the co-existence of gas and hydrate phases in sediments within the gas hydrate stability zone. We have focused on the gas/brine interface at the scale of individual grains in the sediment. The capillary forces associated with a gas/brine interface play a dominant role in many processes that occur in the pores of sediments and sedimentary rocks. The mechanical forces associated with the same interface can lead to fracture initiation and propagation in hydrate-bearing sediments. Thus the unifying theme of the research reported here is that pore scale phenomena are key to understanding large scale phenomena in hydrate-bearing sediments whenever a free gas phase is present. Our analysis of pore-scale phenomena in this project has delineated three regimes that govern processes in which the gas phase pressure is increasing: fracturing, capillary fingering and viscous fingering. These regimes are characterized by different morphology of the region invaded by the gas. On the other hand when the gas phase pressure is decreasing, the corresponding regimes are capillary fingering and compaction. In this project, we studied all these regimes except compaction. Many processes of interest in hydrate-bearing sediments can be better understood when placed in the context of the appropriate regime. For example, hydrate formation in sub-permafrost sediments falls in the capillary fingering regime, whereas gas invasion into ocean sediments is likely to fall into the fracturing regime. Our research provides insight into the mechanisms by which gas reservoirs are converted to hydrate as the base of the gas hydrate stability zone descends through the reservoir. If the reservoir was no longer being charged, then variation in grain size distribution within the reservoir explain hydrate saturation profiles such as that at Mt. Elbert, where sand-rich intervals containing little hydrate are interspersed between intervals containing large hydrate

  15. Mechanisms Leading to Co-Existence of Gas Hydrate in Ocean Sediments [Part 2 of 2

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Steven; Juanes, Ruben

    2011-12-31

    In this project we have sought to explain the co-existence of gas and hydrate phases in sediments within the gas hydrate stability zone. We have focused on the gas/brine interface at the scale of individual grains in the sediment. The capillary forces associated with a gas/brine interface play a dominant role in many processes that occur in the pores of sediments and sedimentary rocks. The mechanical forces associated with the same interface can lead to fracture initiation and propagation in hydrate-bearing sediments. Thus the unifying theme of the research reported here is that pore scale phenomena are key to understanding large scale phenomena in hydrate-bearing sediments whenever a free gas phase is present. Our analysis of pore-scale phenomena in this project has delineated three regimes that govern processes in which the gas phase pressure is increasing: fracturing, capillary fingering and viscous fingering. These regimes are characterized by different morphology of the region invaded by the gas. On the other hand when the gas phase pressure is decreasing, the corresponding regimes are capillary fingering and compaction. In this project, we studied all these regimes except compaction. Many processes of interest in hydrate-bearing sediments can be better understood when placed in the context of the appropriate regime. For example, hydrate formation in sub-permafrost sediments falls in the capillary fingering regime, whereas gas invasion into ocean sediments is likely to fall into the fracturing regime. Our research provides insight into the mechanisms by which gas reservoirs are converted to hydrate as the base of the gas hydrate stability zone descends through the reservoir. If the reservoir was no longer being charged, then variation in grain size distribution within the reservoir explain hydrate saturation profiles such as that at Mt. Elbert, where sand-rich intervals containing little hydrate are interspersed between intervals containing large hydrate

  16. Gas-chromatographic separation of hydrogen isotopic mixtures

    International Nuclear Information System (INIS)

    Preda, Anisoara; Bidica, Nicolae

    2005-01-01

    Full text: Gas chromatographic separation of hydrogen isotopes have been reported in the literature since late of 1950's. Gas chromatography is primarily an analytical method, but because of its properties it may be used in many other fields with excellent results. A simple method is proposed for the gas-chromatographic analysis of complex gas mixtures containing hydrogen isotopes; the method is based on the substantial difference in the thermal conductivity of these isotopes. One of the main disadvantages of the conventional gas chromatography is the long retention times required for the analysis of hydrogen gas mixtures while the column is operated at very low temperature. The method described in this paper was based on using a capillary molecular sieve 5A column operated for this kind of separation at 173 K. The carrier gas was Ne and the detector was TCD. In the paper chromatograms for various carrier flow rates and various hydrogen isotope mixtures are presented. (authors)

  17. Capillary density and capillary-to-fibre ratio in vastus lateralis muscle of untrained and trained men.

    Science.gov (United States)

    Zoladz, J A; Semik, D; Zawadowska, B; Majerczak, J; Karasinski, J; Kolodziejski, L; Duda, K; Kilarski, W M

    2005-01-01

    Muscle fibre profile area (Af), volume density (Vv), capillary-to-fibre ratio (CF) and number of capillaries per fibre square millimetre (CD) were determined from needle biopsies of vastus lateralis of twenty-four male volunteers (mean +/- SD: age 25.4+/-5.8 years, height 178.6+/-5.5 cm, body mass 72.1+/-7.7 kg) of different training background. Seven subjects were untrained students (group A), nine were national and sub-national level endurance athletes (group B) with the background of 7.8+/-2.9 years of specialised training, and eight subjects were sprint-power athletes (group C) with 12.8+/-8.7 years of specialised training. Muscle biopsies of vastus lateralis were analysed histochemically for mATPase. Capillaries were visualized and counted using CD31 antibodies against endothelial cells. There were significant differences in the Vv of type I and type II muscle fibres in both trained groups, B (51.8%; 25.6%) and C (50.5%; 26.4%). However, in untrained group A that was treated as a reference group, the difference between Vv of type I and type II fibres was less prominent, nevertheless statistically significant (42.1%; 35.1%). There was also a significant difference in CF: 1.9 in group A and 2.1 in groups B and C. The number of capillaries per mm2 (CD) was 245 (group A), 308 (group B) and 325 (group C). Significant differences (Pski-jumping, volleyball, soccer and modern dance.

  18. Optical fiber tip interferometer gas pressure sensor based on anti-resonant reflecting guidance mechanism

    Science.gov (United States)

    Yang, Y. B.; Wang, D. N.; Xu, Ben; Wang, Z. K.

    2018-05-01

    We propose and demonstrate a gas pressure sensor based on an anti-resonant reflecting guidance (ARRG) mechanism in quartz capillary tube with an open cavity. The device is simple in fabrication by only fusion splicing a segment of capillary tube with single mode fiber. It has compact size, robust structure, convenient mode of operation, and high sensitivity of 4.278 nm/MPa. Moreover, as two Faby-Perot cavities exist in the device, which create the interference spectrum with several distinct resonance dips, a simultaneous gas pressure and temperature detection can be readily achieved by tracing two dip wavelengths. The error in the measurement due to the choice of different resonant dips can be effectively reduced by using the Fourier band pass filtering method.

  19. Recent applications of nanomaterials in capillary electrophoresis.

    Science.gov (United States)

    González-Curbelo, Miguel Ángel; Varela-Martínez, Diana Angélica; Socas-Rodríguez, Bárbara; Hernández-Borges, Javier

    2017-10-01

    Nanomaterials have found an important place in Analytical Chemistry and, in particular, in Separation Science. Among them, metal-organic frameworks, magnetic and non-magnetic nanoparticles, carbon nanotubes and graphene, as well as their combinations, are the most important nanomaterials that have been used up to now. Concerning capillary electromigration techniques, these nanomaterials have also been used as both pseudostationary phases in electrokinetic chromatography (EKC) and as stationary phases in microchip capillary electrophoresis (CE) and capillary electrochromatography (CEC), as a result of their interesting and particular properties. This review article pretends to provide a general and critical revision of the most recent applications of nanomaterials in this field (period 2010-2017). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Targeted Functionalization of Nanoparticle Thin Films via Capillary Condensation

    KAUST Repository

    Gemici, Zekeriyya; Schwachulla, Patrick I.; Williamson, Erik H.; Rubner, Michael F.; Cohen, Robert E.

    2009-01-01

    Capillary condensation, an often undesired natural phenomenon in nanoporous materials, was used advantageously as a universal functionalization strategy in nanoparticle thin films assembled layer-by-layer. Judicious choice of nanoparticle (and therefore pore) size allowed targeted capillary condensation of chemical vapors of both hydrophilic and hydrophobic molecules across film thickness. Heterostructured thin films with modulated refractive index profiles produced in this manner exhibited broadband antireflection properties with an average reflectance over the visible region of the spectrum of only 0.4%. Capillary condensation was also used to modify surface chemistry and surface energy. Photosensitive capillary-condensates were UV-cross-linked in situ. Undesired adventitious condensation of humidity could be avoided by condensation of hydrophobic materials such as poly(dimethyl siloxane). © 2009 American Chemical Society.

  1. Targeted Functionalization of Nanoparticle Thin Films via Capillary Condensation

    KAUST Repository

    Gemici, Zekeriyya

    2009-03-11

    Capillary condensation, an often undesired natural phenomenon in nanoporous materials, was used advantageously as a universal functionalization strategy in nanoparticle thin films assembled layer-by-layer. Judicious choice of nanoparticle (and therefore pore) size allowed targeted capillary condensation of chemical vapors of both hydrophilic and hydrophobic molecules across film thickness. Heterostructured thin films with modulated refractive index profiles produced in this manner exhibited broadband antireflection properties with an average reflectance over the visible region of the spectrum of only 0.4%. Capillary condensation was also used to modify surface chemistry and surface energy. Photosensitive capillary-condensates were UV-cross-linked in situ. Undesired adventitious condensation of humidity could be avoided by condensation of hydrophobic materials such as poly(dimethyl siloxane). © 2009 American Chemical Society.

  2. Targeted functionalization of nanoparticle thin films via capillary condensation.

    Science.gov (United States)

    Gemici, Zekeriyya; Schwachulla, Patrick I; Williamson, Erik H; Rubner, Michael F; Cohen, Robert E

    2009-03-01

    Capillary condensation, an often undesired natural phenomenon in nanoporous materials, was used advantageously as a universal functionalization strategy in nanoparticle thin films assembled layer-by-layer. Judicious choice of nanoparticle (and therefore pore) size allowed targeted capillary condensation of chemical vapors of both hydrophilic and hydrophobic molecules across film thickness. Heterostructured thin films with modulated refractive index profiles produced in this manner exhibited broadband antireflection properties with an average reflectance over the visible region of the spectrum of only 0.4%. Capillary condensation was also used to modify surface chemistry and surface energy. Photosensitive capillary-condensates were UV-cross-linked in situ. Undesired adventitious condensation of humidity could be avoided by condensation of hydrophobic materials such as poly(dimethyl siloxane).

  3. The Phillips Laboratory capillary pumped loop test facility

    Science.gov (United States)

    Gluck, Donald F.; Kaylor, Marc C.

    1996-03-01

    An ammonia capillary pumped loop (CPL) test facility has been designed, fabricated, subject to acceptance tests, and assembled at Phillips Laboratory. Its intent is to support a wide range of Air Force programs, bringing CPL technology to flight readiness for operational systems. The facility provides a high degree of modularity and flexibility with several heating and cooling options, and capability for elevation (+/- 15 in.), tilt (+/-60°) and transport length variation. It has a 182 by 44 by 84 inch envelope, an expected heat load capability of 2500 W, and a temperature range of 0 to 50 °C. The evaporator section has two plates with four capillary pumps (CPs) each, with a starter pump on one plate. The CPs are 5/8 in., with TAG aluminum 6063-T6 casing and UHMW polyethylene wicks. The active lengths are 15 and 30 inch with both 10 and 15 micron wicks. The individual CPs have thermal and hydraulic isolation capability, and are removable. The transport section consists of stainless steel lines in a serpentine configuration, a 216 in3 free volume reservoir, and a mechanical pump. The vapor transport line contains a capillary device (which can be bypassed) for vapor blockage during startup. The condenser consists of two separately valved, parallel cold plates each with a downstream noncondensible gas trap. Cooling of up to 1500 W at -50 °C is provided by an FTS Systems chiller using Flourinert FC-72. An enclosure/exhaust system is provided for safety and emergency venting of ammonia. An ammonia charge station performs or supports the functions of proof pressure, flushing with ammonia, purging with gaseous nitrogen, evacuation of all or part of the CPL to 20 microns, and charging. Instrumentation consists of over 116 thermocouples, five of which are internal; one absolute and six differential pressure transducers; eleven watt transducers, and a reservoir load cell. The data acquisition system consists of a temperature scanner, Bernoulli drive, and two Macintosh

  4. Multiresidue determination of pesticides in malt beverages by capillary gas chromatography with mass spectrometry and selected ion monitoring.

    Science.gov (United States)

    Wong, Jon W; Webster, Michael G; Bezabeh, Dawit Z; Hengel, Mathew J; Ngim, Kenley K; Krynitsky, Alexander J; Ebeler, Susan E

    2004-10-20

    A method was developed to determine pesticides in malt beverages using solid phase extraction on a polymeric cartridge and sample cleanup with a MgSO4-topped aminopropyl cartridge, followed by capillary gas chromatography with electron impact mass spectrometry in the selected ion monitoring mode [GC-MS(SIM)]. Three GC injections were required to analyze and identify organophosphate, organohalogen, and organonitrogen pesticides. The pesticides were identified by the retention times of peaks of the target ion and qualifier-to-target ion ratios. GC detection limits for most of the pesticides were 5-10 ng/mL, and linearity was determined from 50 to 5000 ng/mL. Fortification studies were performed at 10 ng/mL for three malt beverages that differ in properties such as alcohol content, solids, and appearance. The recoveries from the three malt beverages were greater than 70% for 85 of the 142 pesticides (including isomers) studied. The data showed that the different malt beverage matrixes had no significant effect on the recoveries. This method was then applied to the screening and analysis of malt beverages for pesticides, resulting in the detection of the insectide carbaryl and the fungicide dimethomorph in real samples. The study indicates that pesticide levels in malt beverages are significantly lower than the tolerance levels set by the United States Environmental Protection Agency for malt beverage starting ingredients. The use of the extraction/cleanup procedure and analysis by GC-MS(SIM) proved effective in screening malt beverages for a wide variety of pesticides. Copyright 2004 American Chemical Society

  5. A macrothermodynamic approach to the limit of reversible capillary condensation.

    Science.gov (United States)

    Trens, Philippe; Tanchoux, Nathalie; Galarneau, Anne; Brunel, Daniel; Fubini, Bice; Garrone, Edoardo; Fajula, François; Di Renzo, Francesco

    2005-08-30

    The threshold of reversible capillary condensation is a well-defined thermodynamic property, as evidenced by corresponding states treatment of literature and experimental data on the lowest closure point of the hysteresis loop in capillary condensation-evaporation cycles for several adsorbates. The nonhysteretical filling of small mesopores presents the properties of a first-order phase transition, confirming that the limit of condensation reversibility does not coincide with the pore critical point. The enthalpy of reversible capillary condensation can be calculated by a Clausius-Clapeyron approach and is consistently larger than the condensation heat in unconfined conditions. Calorimetric data on the capillary condensation of tert-butyl alcohol in MCM-41 silica confirm a 20% increase of condensation heat in small mesopores. This enthalpic advantage makes easier the overcoming of the adhesion forces by the capillary forces and justifies the disappearing of the hysteresis loop.

  6. A submicron synchrotron X-ray beam generated by capillary optics

    International Nuclear Information System (INIS)

    Engstroem, P.; Larsson, S.; Rindby, A.; Buttkewitz, A.; Garbe, S.; Gaul, G.; Knoechel, A.; Lechtenberg, F.; Deutsches Elektronen-Synchrotron

    1991-01-01

    A novel capillary optics technique for focusing synchrotron X-ray beams has been applied in an experiment performed at the DORIS storage ring at HASYLAB. This new technqiue, which utilizes the total reflection properties of X-rays inside small capillaries, has recently been applied to generate microbeams of X-rays, with a beam size down to about 10 μm using conventional X-ray tubes. The result from our recent experiment shows that capillary optics can also be used to generate a submicron beam of X-rays from a synchrotron light source. A description of the capillary unit, and the alignment procedure is given. The influence of the thermal load on the device caused by the intense flux of synchrotron radiation will be discussed. Future perspectives of the capillary techniques as applied to synchrotron radiation will be discussed. (orig.)

  7. Numerical simulations of capillary barrier field tests

    International Nuclear Information System (INIS)

    Morris, C.E.; Stormont, J.C.

    1997-01-01

    Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior

  8. Characteristics of a gas-jet transport system for an on-line isotope separator

    International Nuclear Information System (INIS)

    Kawade, K.; Yamamoto, H.; Amano, H.; Hanada, M.; Katoh, T.; Okano, K.; Kawase, Y.; Fujiwara, I.

    1982-01-01

    Basic characteristics of a gas-jet transport system for an on-line isotope separator have been investigated using a 252 Cf source and a 235 U fission source. The transport efficiency of fission products through a capillary has been measured to be about 60% for the 235 U fission source. The sweep-out time of fission products through a target chamber and the transit time through a capillary have been measured for He, N 2 and CO 2 gases at several pressures. The measured sweep-out times have been almost equal to the exchange over time of the gas. The transit times have been found to be reasonably predicted by calculations. The transport system has been incorporated into the KUR-ISOL and is used for the study of short-lived nuclei. (orig.)

  9. Exploring Ultimate Water Capillary Evaporation in Nanoscale Conduits.

    Science.gov (United States)

    Li, Yinxiao; Alibakhshi, Mohammad Amin; Zhao, Yihong; Duan, Chuanhua

    2017-08-09

    Capillary evaporation in nanoscale conduits is an efficient heat/mass transfer strategy that has been widely utilized by both nature and mankind. Despite its broad impact, the ultimate transport limits of capillary evaporation in nanoscale conduits, governed by the evaporation/condensation kinetics at the liquid-vapor interface, have remained poorly understood. Here we report experimental study of the kinetic limits of water capillary evaporation in two dimensional nanochannels using a novel hybrid channel design. Our results show that the kinetic-limited evaporation fluxes break down the limits predicated by the classical Hertz-Knudsen equation by an order of magnitude, reaching values up to 37.5 mm/s with corresponding heat fluxes up to 8500 W/cm 2 . The measured evaporation flux increases with decreasing channel height and relative humidity but decreases as the channel temperature decreases. Our findings have implications for further understanding evaporation at the nanoscale and developing capillary evaporation-based technologies for both energy- and bio-related applications.

  10. Gas permeability of ice-templated, unidirectional porous ceramics

    Science.gov (United States)

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.

    2016-01-01

    We investigate the gas flow behavior of unidirectional porous ceramics processed by ice-templating. The pore volume ranged between 54% and 72% and pore size between 2.9 ?m and 19.1 ?m. The maximum permeability (?? m?) was measured in samples with the highest total pore volume (72%) and pore size (19.1 ?m). However, we demonstrate that it is possible to achieve a similar permeability (?? m?) at 54% pore volume by modification of the pore shape. These results were compared with those reported and measured for isotropic porous materials processed by conventional techniques. In unidirectional porous materials tortuosity (?) is mainly controlled by pore size, unlike in isotropic porous structures where ? is linked to pore volume. Furthermore, we assessed the applicability of Ergun and capillary model in the prediction of permeability and we found that the capillary model accurately describes the gas flow behavior of unidirectional porous materials. Finally, we combined the permeability data obtained here with strength data for these materials to establish links between strength and permeability of ice-templated materials.

  11. Steady state characteristics of an adjustable hybrid gas bearing – Computational fluid dynamics, modified Reynolds equation and experimental validation

    DEFF Research Database (Denmark)

    Pierart Vásquez, Fabián Gonzalo; Santos, Ilmar

    2015-01-01

    To include the effect of external pressurization in hybrid gas bearings an extra term is added to Reynolds Equation to accommodate the gas jet. Two cases are considered: cylindrical and annular flow profiles. Validation of theoretical results obtained using the modified version of Reynolds equation....... By introducing such coefficients into the modified Reynolds equation, good agreement with experiments is achieved in terms of journal equilibrium position and resulting aerodynamic forces....

  12. A rapid and simple procedure for monitoring valproic acid by gas chromatography

    Directory of Open Access Journals (Sweden)

    Mohamed Said Mostafa

    2018-02-01

    Full Text Available Valproic acid (VPA, a widely used antiepileptic drug, has a narrow therapeutic range of 50-100 μg/mL and shows large individual variability. It is very important to monitor the trough VPA concentration using a reliable method. The aim of this study was to develop and validate a rapid gas chromatographic (GC technique for VPA quantification in human plasma and to compare it with the traditional immunoassay method. VPA extraction from human serum was efficient by dichloromethane and hydrochloric acid using octanoic acid as an internal standard. GC analysis was performed using a gas-chromatograph equipped with a flame ionization detector (GC/FID. VPA detection and quantification were accomplished isothermally at 135°C on a Gs-BP 100% dimethylpolysiloxane capillary column (10 m×0.53 mm ID, 2.65 μm film thickness, Supelco, Bellefonte, PA. Injection port and detector temperature were 280°C. Retention times of VPA and internal standard were 1.83 min and 2.33 min, respectively. The calibration curve was linear over the concentration range of 5-320 μg/mL, with a lower limit of detection of 1.25 μg/mL. The internal and inter-day precision was less than 5.3% and 6.1%, respectively, and the accuracy was below 2.8%. VPA recovery was 94.6%. A quick and accurate method for VPA determination in human plasma was developed and validated. It resulted sufficiently selective and sensitive.

  13. Gas chromatography in blood carbon monoxide monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Drasche, H.; Funk, L.; Herbolsheimer, R.

    1975-05-01

    A description of a gas chromatography method for monitoring blood carboxyhaemoglobin (HbCO) levels in a very small quantity (100 mcl) of capillary blood: reagents and apparatus, procedures, calculation of results. To calculate HbCO content, an aliquot portion of water-diluted blood is saturated with CO; this saturation obviates the need to determine the haemoglobin or iron blood levels.

  14. Modeling aerobic biodegradation in the capillary fringe.

    Science.gov (United States)

    Luo, Jian; Kurt, Zohre; Hou, Deyi; Spain, Jim C

    2015-02-03

    Vapor intrusion from volatile subsurface contaminants can be mitigated by aerobic biodegradation. Laboratory column studies with contaminant sources of chlorobenzene and a mixture of chlorobenzene, 1,2-dichlorobenzene, and 1,4-dichlorobenzene showed that contaminants were rapidly degraded in thin reactive zones with high biomass and low substrate concentrations in the vicinity of the capillary fringe. Such behavior was well characterized by a model that includes oxygen-, substrate-, and biomass-dependent biodegradation kinetics along with diffusive transport processes. An analytical solution was derived to provide theoretical support for the simplification of reaction kinetics and the approximation of reactive zone location and mass flux relationships at steady state. Results demonstrate the potential of aerobic natural attenuation in the capillary fringe for preventing contaminant migration in the unsaturated zone. The solution indicates that increasing contaminant mass flux into the column creates a thinner reactive zone and pushes it toward the oxygen boundary, resulting in a shorter distance to the oxygen source and a larger oxygen mass flux that balances the contaminant mass flux. As a consequence, the aerobic biodegradation can reduce high contaminant concentrations to low levels within the capillary fringe and unsaturated zone. The results are consistent with the observations of thin reactive layers at the interface in unsaturated zones. The model considers biomass while including biodegradation in the capillary fringe and unsaturated zone and clearly demonstrates that microbial communities capable of using the contaminants as electron donors may lead to instantaneous degradation kinetics in the capillary fringe and unsaturated zone.

  15. Validation of an analytical method for simultaneous high-precision measurements of greenhouse gas emissions from wastewater treatment plants using a gas chromatography-barrier discharge detector system.

    Science.gov (United States)

    Pascale, Raffaella; Caivano, Marianna; Buchicchio, Alessandro; Mancini, Ignazio M; Bianco, Giuliana; Caniani, Donatella

    2017-01-13

    Wastewater treatment plants (WWTPs) emit CO 2 and N 2 O, which may lead to climate change and global warming. Over the last few years, awareness of greenhouse gas (GHG) emissions from WWTPs has increased. Moreover, the development of valid, reliable, and high-throughput analytical methods for simultaneous gas analysis is an essential requirement for environmental applications. In the present study, an analytical method based on a gas chromatograph (GC) equipped with a barrier ionization discharge (BID) detector was developed for the first time. This new method simultaneously analyses CO 2 and N 2 O and has a precision, measured in terms of relative standard of variation RSD%, equal to or less than 6.6% and 5.1%, respectively. The method's detection limits are 5.3ppm v for CO 2 and 62.0ppb v for N 2 O. The method's selectivity, linearity, accuracy, repeatability, intermediate precision, limit of detection and limit of quantification were good at trace concentration levels. After validation, the method was applied to a real case of N 2 O and CO 2 emissions from a WWTP, confirming its suitability as a standard procedure for simultaneous GHG analysis in environmental samples containing CO 2 levels less than 12,000mg/L. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Tunable secondary dimension selectivity in comprehensive two-dimensional gas chromatography

    NARCIS (Netherlands)

    Mommers, J.; Pluimakers, G.; Knooren, J.; Dutriez, T.; van der Wal, S.

    2013-01-01

    In this paper two tunable two-dimensional gas chromatography setups are compared and described in which the secondary dimension consists of two different capillary columns coupled in series. In the first setup the selectivity of the second dimension can be tuned by adjusting the effective column

  17. 21 CFR 864.6150 - Capillary blood collection tube.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Capillary blood collection tube. 864.6150 Section 864.6150 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6150 Capillary...

  18. Capillary sieving electrophoresis and micellar electrokinetic capillary chromatography produce highly correlated separation of tryptic digests

    Science.gov (United States)

    Dickerson, Jane A.; Dovichi, Norman J.

    2011-01-01

    We perform two-dimensional capillary electrophoresis on fluorescently labeled proteins and peptides. Capillary sieving electrophoresis was performed in the first dimension and micellar electrokinetic capillary chromatography was performed in the second. A cellular homogenate was labeled with the fluorogenic reagent FQ and separated using the system. This homogenate generated a pair of ridges; the first had essentially constant migration time in the CSE dimension, while the second had essentially constant migration time in the MEKC dimension. In addition a few spots were scattered through the electropherogram. The same homogenate was digested using trypsin, and then labeled and subjected to the two dimensional separation. In this case, the two ridges observed from the original two-dimensional separation disappeared, and were replaced by a set of spots that fell along the diagonal. Those spots were identified using a local-maximum algorithm and each was fit using a two-dimensional Gaussian surface by an unsupervised nonlinear least squares regression algorithm. The migration times of the tryptic digest components were highly correlated (r = 0.862). When the slowest migrating components were eliminated from the analysis, the correlation coefficient improved to r = 0.956. PMID:20564272

  19. Field-amplified sample stacking-sweeping of vitamins B determination in capillary electrophoresis.

    Science.gov (United States)

    Dziomba, Szymon; Kowalski, Piotr; Bączek, Tomasz

    2012-12-07

    A capillary electrophoretic method for determination of five water soluble vitamins B along with baclofen as an internal standard has been developed and assessed in context of precision, accuracy, sensitivity, freedom from interference, linearity, detection and quantification limits. On-line preconcentration technique, namely field-amplified sample stacking (FASS)-sweeping, has been employed in respect to obtain more sensitive analysis. Separation conditions received after optimization procedure were as following background electrolyte (BGE), 10 mM NaH(2)PO(4), 80 mM SDS, (pH 7.25); sample matrix (SM), 10 mM NaH(2)PO(4) (pH 4.60); uncoated fused silica capillary (50 μm i.d. × 67 cm length); UV spectrophotometric detection at 200 nm; injection times: 10s and 30s at 3.45 kPa; applied voltage 22 kV; temperature 22°C. Validation parameters, namely precision, accuracy and linearity, were considered as satisfactory. Under the optimized conditions, it has been also successfully applied for vitamins B determination in bacterial growth medium and commercially available Ilex paraguariensis leaves. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Identification of chemical warfare agents from vapor samples using a field-portable capillary gas chromatography/membrane-interfaced electron ionization quadrupole mass spectrometry instrument with Tri-Bed concentrator.

    Science.gov (United States)

    Nagashima, Hisayuki; Kondo, Tomohide; Nagoya, Tomoki; Ikeda, Toru; Kurimata, Naoko; Unoke, Shohei; Seto, Yasuo

    2015-08-07

    A field-portable gas chromatograph-mass spectrometer (Hapsite ER system) was evaluated for the detection of chemical warfare agents (CWAs) in the vapor phase. The system consisted of Tri-Bed concentrator gas sampler (trapping time: 3s(-1)min), a nonpolar low thermal-mass capillary gas chromatography column capable of raising temperatures up to 200°C, a hydrophobic membrane-interfaced electron ionization quadrupole mass spectrometer evacuated by a non-evaporative getter pump for data acquisition, and a personal computer for data analysis. Sample vapors containing as little as 22μg sarin (GB), 100μg soman (GD), 210μg tabun (GA), 55μg cyclohexylsarin (GF), 4.8μg sulfur mustard, 390μg nitrogen mustard 1, 140μg of nitrogen mustard 2, 130μg nitrogen mustard 3, 120μg of 2-chloroacetophenone and 990μg of chloropicrin per cubic meter could be confirmed after Tri-Bed micro-concentration (for 1min) and automated AMDIS search within 12min. Using manual deconvolution by background subtraction of neighboring regions on the extracted ion chromatograms, the above-mentioned CWAs could be confirmed at lower concentration levels. The memory effects were also examined and we found that blister agents showed significantly more carry-over than nerve agents. Gasoline vapor was found to interfere with the detection of GB and GD, raising the concentration limits for confirmation in the presence of gasoline by both AMDIS search and manual deconvolution; however, GA and GF were not subject to interference by gasoline. Lewisite 1, and o-chlorobenzylidene malononitrile could also be confirmed by gas chromatography, but it was hard to quantify them. Vapors of phosgene, chlorine, and cyanogen chloride could be confirmed by direct mass spectrometric detection at concentration levels higher than 2, 140, and 10mg/m(3) respectively, by bypassing the micro-concentration trap and gas chromatographic separation. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Trace Level Determination of Mesityl Oxide and Diacetone Alcohol in Atazanavir Sulfate Drug Substance by a Gas Chromatography Method.

    Science.gov (United States)

    Raju, K V S N; Pavan Kumar, K S R; Siva Krishna, N; Madhava Reddy, P; Sreenivas, N; Kumar Sharma, Hemant; Himabindu, G; Annapurna, N

    2016-01-01

    A capillary gas chromatography method with a short run time, using a flame ionization detector, has been developed for the quantitative determination of trace level analysis of mesityl oxide and diacetone alcohol in the atazanavir sulfate drug substance. The chromatographic method was achieved on a fused silica capillary column coated with 5% diphenyl and 95% dimethyl polysiloxane stationary phase (Rtx-5, 30 m x 0.53 mm x 5.0 µm). The run time was 20 min employing programmed temperature with a split mode (1:5) and was validated for specificity, sensitivity, precision, linearity, and accuracy. The detection and quantitation limits obtained for mesityl oxide and diacetone alcohol were 5 µg/g and 10 µg/g, respectively, for both of the analytes. The method was found to be linear in the range between 10 µg/g and 150 µg/g with a correlation coefficient greater than 0.999, and the average recoveries obtained in atazanavir sulfate were between 102.0% and 103.7%, respectively, for mesityl oxide and diacetone alcohol. The developed method was found to be robust and rugged. The detailed experimental results are discussed in this research paper.

  2. Two-Dimensional Capillary Electrophoresis with On-Line Sample Preparation and Cyclodextrin Separation Environment for Direct Determination of Serotonin in Human Urine.

    Science.gov (United States)

    Piešťanský, Juraj; Maráková, Katarína; Mikuš, Peter

    2017-10-07

    An advanced two-dimensional capillary electrophoresis method, based on on-line combination of capillary isotachophoresis and capillary zone electrophoresis with cyclodextrin additive in background electrolyte, was developed for effective determination of serotonin in human urine. Hydrodynamically closed separation system and large bore capillaries (300-800 µm) were chosen for the possibility to enhance the sample load capacity, and, by that, to decrease limit of detection. Isotachophoresis served for the sample preseparation, defined elimination of sample matrix constituents (sample clean up), and preconcentration of the analyte. Cyclodextrin separation environment enhanced separation selectivity of capillary zone electrophoresis. In this way, serotonin could be successfully separated from the rest of the sample matrix constituents migrating in capillary zone electrophoresis step so that human urine could be directly (i.e., without any external sample preparation) injected into the analyzer. The proposed method was successfully validated, showing favorable parameters of sensitivity (limit of detection for serotonin was 2.32 ng·mL -1 ), linearity (regression coefficient higher than 0.99), precision (repeatability of the migration time and peak area were in the range of 0.02-1.17% and 5.25-7.88%, respectively), and recovery (ranging in the interval of 90.0-93.6%). The developed method was applied for the assay of the human urine samples obtained from healthy volunteers. The determined concentrations of serotonin in such samples were in the range of 12.4-491.2 ng·mL -1 that was in good agreement with literature data. This advanced method represents a highly effective, reliable, and low-cost alternative for the routine determination of serotonin as a biomarker in human urine.

  3. Reducing the Edge Chipping for Capillary End Face Grinding and Polishing

    Directory of Open Access Journals (Sweden)

    Hošek J.

    2013-05-01

    Full Text Available This paper presents results of glass capillary end face grinding and polishing by approach that reduces the edge chipping. Brittle materials have natural tendency for edge chipping what leads to beveling the sharp edges. Not beveled sharp edges on glass capillary are important for special applications like surface tension measurement of small liquid samples. We use common grinding and polishing process for capillary end face machining modified with gradual decreasing of grinding load based on the relation of the critical chipping load. Achieved surface roughness is measured using atomic force microscopy (AFM. Capillary inner edge quality is checked both with optical microscopes and electron microscope too. We achieved a non-chipped capillary inner edge with radius down to 100 nm.

  4. Characterisation of aqueous waste produced during the clandestine production of amphetamine following the Leuckart route utilising solid-phase extraction gas chromatography-mass spectrometry and capillary electrophoresis with contactless conductivity detection.

    Science.gov (United States)

    Hauser, Frank M; Hulshof, Janneke W; Rößler, Thorsten; Zimmermann, Ralf; Pütz, Michael

    2018-04-18

    Chemical waste from the clandestine production of amphetamine is of forensic and environmental importance due to its illegal nature which often leads to dumping into the environment. In this study, 27 aqueous amphetamine waste samples from controlled Leuckart reactions performed in Germany, the Netherlands, and Poland were characterised to increase knowledge about the chemical composition and physicochemical characteristics of such waste. Aqueous waste samples from different reaction steps were analysed to determine characteristic patterns which could be used for classification. Conductivity, pH, density, ionic load, and organic compounds were determined using different analytical methods. Conductivity values ranged from 1 to over 200 mS/cm, pH values from 0 to 14, and densities from 1.0 to 1.3 g/cm 3 . A capillary electrophoresis method with contactless conductivity detection (CE-C 4 D) was developed and validated to quantify chloride, sulphate, formate, ammonium, and sodium ions which were the most abundant ions in the investigated waste samples. A solid-phase extraction sample preparation was used prior to gas chromatography-mass spectrometry analysis to determine the organic compounds. Using the characterisation data of the known samples, it was possible to assign 16 seized clandestine waste samples from an amphetamine production to the corresponding synthesis step. The data also allowed us to draw conclusions about the synthesis procedure and used chemicals. The presented data and methods could support forensic investigations by showing the probative value of synthesis waste when investigating the illegal production of amphetamine. It can also act as starting point to develop new approaches to tackle the problem of clandestine waste dumping. Copyright © 2018 John Wiley & Sons, Ltd.

  5. On the performance of capillary barriers as landfill cover

    Science.gov (United States)

    Kämpf, M.; Montenegro, H.

    Landfills and waste heaps require an engineered surface cover upon closure. The capping system can vary from a simple soil cover to multiple layers of earth and geosynthetic materials. Conventional design features a compacted soil layer, which suffers from drying out and cracking, as well as root and animal intrusion. Capillary barriers consisting of inclined fine-over-coarse soil layers are investigated as an alternative cover system. Under unsaturated conditions, the textural contrast delays vertical drainage by capillary forces. The moisture that builds up above the contact will flow downdip along the interface of the layers. Theoretical studies of capillary barriers have identified the hydraulic properties of the layers, the inclination angle, the length of the field and the infiltration rate as the fundamental characteristics of the system. However, it is unclear how these findings can lead to design criteria for capillary barriers. To assess the uncertainty involved in such approaches, experiments have been carried out in a 8 m long flume and on large scale test sites (40 m x 15 m). In addition, the ability of a numerical model to represent the relevant flow processes in capillary barriers has been examined.

  6. On the performance of capillary barriers as landfill cover

    Directory of Open Access Journals (Sweden)

    M. Kämpf

    1997-01-01

    Full Text Available Landfills and waste heaps require an engineered surface cover upon closure. The capping system can vary from a simple soil cover to multiple layers of earth and geosynthetic materials. Conventional design features a compacted soil layer, which suffers from drying out and cracking, as well as root and animal intrusion. Capillary barriers consisting of inclined fine-over-coarse soil layers are investigated as an alternative cover system. Under unsaturated conditions, the textural contrast delays vertical drainage by capillary forces. The moisture that builds up above the contact will flow downdip along the interface of the layers. Theoretical studies of capillary barriers have identified the hydraulic properties of the layers, the inclination angle, the length of the field and the infiltration rate as the fundamental characteristics of the system. However, it is unclear how these findings can lead to design criteria for capillary barriers. To assess the uncertainty involved in such approaches, experiments have been carried out in a 8 m long flume and on large scale test sites (40 m x 15 m. In addition, the ability of a numerical model to represent the relevant flow processes in capillary barriers has been examined.

  7. Capillary electrophoresis and nanomaterials - Part I: Capillary electrophoresis of nanomaterials.

    Science.gov (United States)

    Adam, Vojtech; Vaculovicova, Marketa

    2017-10-01

    Nanomaterials are in analytical science used for a broad range of purposes, covering the area of sample pretreatment as well as separation, detection, and identification of target molecules. This part of the review covers capillary electrophoresis (CE) of nanomaterials and focuses on the application of CE as a method for characterization used during nanomaterial synthesis and modification as well as the monitoring of their properties and interactions with other molecules. The heterogeneity of the nanomaterial family is extremely large. Depending on different definitions of the term Nanomaterial/Nanoparticle, the group may cover metal and polymeric nanoparticles, carbon nanomaterials, liposomes and even dendrimers. Moreover, these nanomaterials are usually subjected to some kind of surface modification or functionalization, which broadens the diversity even more. Not only for purposes of verification of nanomaterial synthesis and batch-to-batch quality check, but also for determination the polydispersity and for functionality characterization on the nanoparticle surface, has CE offered very beneficial capabilities. Finally, the monitoring of interactions between nanomaterials and other (bio)molecules is easily performed by some kind of capillary electromigration technique. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Simulation and application of micro X-ray fluorescence based on an ellipsoidal capillary

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jing; Li, Yude; Wang, Xingyi; Zhang, Xiaoyun; Lin, Xiaoyan, E-mail: yangjing_928@126.com

    2017-06-15

    Highlights: • A micro X-ray fluorescence setup based on an ellipsoidal capillary was presented. • The optimal parameters of ellipsoidal capillary were designed. • The 2D mapping image of biological sample was obtained. - Abstract: A micro X-ray fluorescence setup was presented, based on an ellipsoidal capillary and a traditional laboratorial X-ray source. Using Ray-tracing principle, we have simulated the transmission path of X-ray beam in the ellipsoidal capillary and designed the optimal parameters of the ellipsoidal capillary for the micro X-ray fluorescence setup. We demonstrate that ellipsoidal capillary is well suited as condenser for the micro X-ray fluorescence based on traditional laboratorial X-ray source. Furthermore, we obtain the 2D mapping image of the leaf blade sample by using the ellipsoidal capillary we designed.

  9. Pulmonary capillary haemangiomatosis: a rare cause of pulmonary hypertension.

    Science.gov (United States)

    Babu, K Anand; Supraja, K; Singh, Raj B

    2014-01-01

    Pulmonary capillary haemangiomatosis (PCH) is a rare disorder of unknown aetiology, characterised by proliferating capillaries that invade the pulmonary interstitium, alveolar septae and the pulmonary vasculature. It is often mis-diagnosed as primary pulmonary hypertension and pulmonary veno-occlusive disease. Pulmonary capillary haemangiomatosis is a locally aggressive benign vascular neoplasm of the lung. We report the case of a 19-year-old female who was referred to us in the early post-partum period with severe pulmonary artery hypertension, which was diagnosed as PCH by open lung biopsy.

  10. Capillary electrophoresis in a fused-silica capillary with surface roughness gradient

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Šlais, Karel; Karásek, Pavel; Růžička, F.; Šalplachta, Jiří; Šesták, Jozef; Kahle, Vladislav; Roth, Michal

    2016-01-01

    Roč. 39, č. 19 (2016), s. 3827-3834 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA16-03749S; GA MZd(CZ) NV16-29916A Institutional support: RVO:68081715 Keywords : capillary electrophoresis * supercritical water * surface roughness gradient Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 2.557, year: 2016

  11. Capillary electrophoresis in a fused-silica capillary with surface roughness gradient

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Šlais, Karel; Karásek, Pavel; Růžička, F.; Šalplachta, Jiří; Šesták, Jozef; Kahle, Vladislav; Roth, Michal

    2016-01-01

    Roč. 39, č. 19 (2016), s. 3827-3834 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA16-03749S; GA MZd(CZ) NV16-29916A Institutional support: RVO:68081715 Keywords : capillary electrophoresis * supercritical water * surface roughness gradient Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.557, year: 2016

  12. Managment of superficial infantile capillary hemangiomas with topical timolol maleate solution.

    Science.gov (United States)

    Rizvi, Syed Ali Raza; Yusuf, Faraz; Sharma, Rajeev; Rizvi, Syed Wajahat Ali

    2015-01-01

    Capillary hemangioma is the most common benign tumor of eyelids and orbit in children. Recently, a topical beta blocker has been reported as an effective treatment for superficial capillary hemangiomas. We present a case report of two children having large capillary hemangiomas who responded well to topical treatment by 0.5% timolol maleate solution. After 12 months of treatment, the lesion has significantly reduced in size, thickness, and color in both cases. Thus, we conclude that long-term use of topical 0.5% timolol maleate solution is safe and effective in treating superficial capillary hemangiomas.

  13. Single-step reinforced microextraction of polycyclic aromatic hydrocarbons from soil samples using an inside needle capillary adsorption trap with electropolymerized aniline/multi-walled carbon nanotube sorbent.

    Science.gov (United States)

    Ghiasvand, Ali Reza; Yazdankhah, Fatemeh

    2017-03-03

    A polyaniline/multi-wall carbon nanotubes (PANI/MWCNT) composite was electrodeposited on the interior surface of a platinized stainless steel capillary needle and used to prepare an inside needle capillary adsorption trap (INCAT) device. The platinization expanded the interior adsorbing surface of the needle and made it more porous and cohesive for nanocomposite film. The nanocomposite was characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The fabricated INCAT was fixed into a cooling capsule to fabricate a cooling-assisted INCAT (CA-INCAT) system. The CA-INCAT device was used to extract polycyclic aromatic hydrocarbons (PAHs) from solid samples followed by gas chromatography-flame ionization detection (GC-FID) determination. To obtain the best extraction efficiency, the important experimental variables were studied and optimized. Under the optimal conditions, the limits of detection (LODs) for the studied PAHs were in the range of 0.002-0.02ngg -1 . Linear dynamic ranges (LDRs) for the calibration curves were found to be 0.1-30,000ngg -1 . Relative standard deviations (RSDs%) for six replicated analysis of 1ngg -1 PAHs were obtained 7.7-11%. The CA-INCAT-GC-FID method was successfully applied for the extraction and determination of PAHs in contaminated soil samples. The results were in agreement with those obtained by a validated ultrasound-assisted solvent extraction (UA-SE) method. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. High resolution gas volume change sensor

    International Nuclear Information System (INIS)

    Dirckx, Joris J. J.; Aernouts, Jef E. F.; Aerts, Johan R. M.

    2007-01-01

    Changes of gas quantity in a system can be measured either by measuring pressure changes or by measuring volume changes. As sensitive pressure sensors are readily available, pressure change is the commonly used technique. In many physiologic systems, however, buildup of pressure influences the gas exchange mechanisms, thus changing the gas quantity change rate. If one wants to study the gas flow in or out of a biological gas pocket, measurements need to be done at constant pressure. In this article we present a highly sensitive sensor for quantitative measurements of gas volume change at constant pressure. The sensor is based on optical detection of the movement of a droplet of fluid enclosed in a capillary. The device is easy to use and delivers gas volume data at a rate of more than 15 measurements/s and a resolution better than 0.06 μl. At the onset of a gas quantity change the sensor shows a small pressure artifact of less than 15 Pa, and at constant change rates the pressure artifact is smaller than 10 Pa or 0.01% of ambient pressure

  15. Factors affecting the separation performance of proteins in capillary electrophoresis.

    Science.gov (United States)

    Zhu, Yueping; Li, Zhenqing; Wang, Ping; Shen, Lisong; Zhang, Dawei; Yamaguchi, Yoshinori

    2018-04-15

    Capillary electrophoresis (CE) is an effective tool for protein separation and analysis. Compared with capillary gel electrophoresis (CGE), non-gel sieving capillary electrophoresis (NGSCE) processes the superiority on operation, repeatability and automaticity. Herein, we investigated the effect of polymer molecular weight and concentration, electric field strength, and the effective length of the capillary on the separation performance of proteins, and find that (1) polymer with high molecular weight and concentration favors the separation of proteins, although concentrated polymer hinders its injection into the channel of the capillary due to its high viscosity. (2) The resolution between the adjacent proteins decreases with the increase of electric field strength. (3) When the effective length of the capillary is long, the separation performance improves at the cost of separation time. (4) 1.4% (w/v) hydroxyethyl cellulose (HEC), 100 V/cm voltage and 12 cm effective length offers the best separation for the proteins with molecular weight from 14,400 Da to 97,400 Da. Finally, we employed the optimal electrophoretic conditions to resolve Lysozyme, Ovalbumin, BSA and their mixtures, and found that they were baseline resolved within 15 min. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Numerical study on flow rate limitation of open capillary channel flow through a wedge

    Directory of Open Access Journals (Sweden)

    Ting-Ting Zhang

    2016-04-01

    Full Text Available The flow characteristics of slender-column flow in wedge-shaped channel under microgravity condition are investigated in this work. The one-dimensional theoretical model is applied to predict the critical flow rate and surface contour of stable flow. However, the one-dimensional model overestimates the critical flow rate for not considering the extra pressure loss. Then, we develop a three-dimensional simulation method with OpenFOAM, a computational fluid dynamics tool, to simulate various phenomena in wedge channels with different lengths. The numerical results are verified with the capillary channel flow experimental data on the International Space Station. We find that the three-dimensional simulation perfectly predicts the critical flow rates and surface contours under various flow conditions. Meanwhile, the general behaviors in subcritical, critical, and supercritical flow are studied in three-dimensional simulation considering variations of flow rate and open channel length. The numerical techniques for three-dimensional simulation is validated for a wide range of configurations and is hopeful to provide valuable guidance for capillary channel flow experiment and efficient liquid management in space.

  17. Capillary condensation of short-chain molecules.

    Science.gov (United States)

    Bryk, Paweł; Pizio, Orest; Sokolowski, Stefan

    2005-05-15

    A density-functional study of capillary condensation of fluids of short-chain molecules confined to slitlike pores is presented. The molecules are modeled as freely jointed tangent spherical segments with a hard core and with short-range attractive interaction between all the segments. We investigate how the critical parameters of capillary condensation of the fluid change when the pore width decreases and eventually becomes smaller than the nominal linear dimension of the single-chain molecule. We find that the dependence of critical parameters for a fluid of dimers and of tetramers on pore width is similar to that of the monomer fluid. On the other hand, for a fluid of chains consisting of a larger number of segments we observe an inversion effect. Namely, the critical temperature of capillary condensation decreases with increasing pore width for a certain interval of values of the pore width. This anomalous behavior is also influenced by the interaction between molecules and pore walls. We attribute this behavior to the effect of conformational changes of molecules upon confinement.

  18. Separation of oligopeptides, nucleobases, nucleosides and nucleotides using capillary electrophoresis/electrochromatography with sol–gel modified inner capillary wall

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Jana; Kofroňová, Olga; Benada, Oldřich; Král, V.; Mikšík, Ivan

    2017-01-01

    Roč. 1517, Sep 29 (2017), s. 185-194 ISSN 0021-9673 R&D Projects: GA ČR(CZ) GA15-01948S; GA MŠk(CZ) LO1509 Institutional support: RVO:67985823 ; RVO:61388971 Keywords : capillary electrochromatography (CEC) * open-tubular capillary electrochromatography (OT-CEC) * nucleo-compounds * oligopeptides * sol–gel methods * Porphyrin * scanning electron microscopy (SEM) Subject RIV: CB - Analytical Chemistry, Separation; CE - Biochemistry (MBU-M) OBOR OECD: Analytical chemistry; Biochemistry and molecular biology (MBU-M) Impact factor: 3.981, year: 2016

  19. Modeling capillary bridge dynamics and crack healing between surfaces of nanoscale roughness

    Science.gov (United States)

    Soylemez, Emrecan; de Boer, Maarten P.

    2017-12-01

    Capillary bridge formation between adjacent surfaces in humid environments is a ubiquitous phenomenon. It strongly influences tribological performance with respect to adhesion, friction and wear. Only a few studies, however, assess effects due to capillary dynamics. Here we focus on how capillary bridge evolution influences crack healing rates. Experimental results indicated a logarithmic decrease in average crack healing velocity as the energy release rate increases. Our objective is to model that trend. We assume that capillary dynamics involve two mechanisms: capillary bridge growth and subsequently nucleation followed by growth. We show that by incorporating interface roughness details and the presence of an adsorbed water layer, the behavior of capillary force dynamics can be understood quantitatively. We identify three important regimes that control the healing process, namely bridge growth, combined bridge growth and nucleation, and finally bridge nucleation. To fully capture the results, however, the theoretical model for nucleation time required an empirical modification. Our model enables significant insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism.

  20. Capillary pressure across a pore throat in the presence of surfactants

    KAUST Repository

    Jang, Junbong

    2016-11-22

    Capillarity controls the distribution and transport of multiphase and immiscible fluids in soils and fractured rocks; therefore, capillarity affects the migration of nonaqueous contaminants and remediation strategies for both LNAPLs and DNAPLs, constrains gas and oil recovery, and regulates CO2 injection and geological storage. Surfactants alter interfacial tension and modify the invasion of pores by immiscible fluids. Experiments are conducted to explore the propagation of fluid interfaces along cylindrical capillary tubes and across pore constrictions in the presence of surfactants. Measured pressure signatures reflect the interaction between surface tension, contact angle, and the pore geometry. Various instabilities occur as the interface traverses the pore constriction, consequently, measured pressure signatures differ from theoretical trends predicted from geometry, lower capillary pressures are generated in advancing wetting fronts, and jumps are prone to under-sampling. Contact angle and instabilities are responsible for pronounced differences between pressure signatures recorded during advancing and receding tests. Pressure signatures gathered with surfactant solutions suggest changes in interfacial tension at the constriction; the transient surface tension is significantly lower than the value measured in quasi-static conditions. Interface stiffening is observed during receding fronts for solutions near the critical micelle concentration. Wetting liquids tend to form plugs at pore constrictions after the invasion of a nonwetting fluid; plugs split the nonwetting fluid into isolated globules and add resistance against fluid flow.

  1. Improving methane gas sensing properties of multi-walled carbonnanotubes by vanadium oxide filling

    CSIR Research Space (South Africa)

    Chimowa, George

    2017-08-01

    Full Text Available Manipulation of electrical properties and hence gas sensing properties of multi-walled carbon nanotubes (MWNTs) by filling the inner wall with vanadium oxide is presented. Using a simple capillary technique, MWNTs are filled with vanadium metal...

  2. Viscoelastic capillary flow: the case of whole blood

    Directory of Open Access Journals (Sweden)

    David Rabaud

    2016-07-01

    Full Text Available The dynamics of spontaneous capillary flow of Newtonian fluids is well-known and can be predicted by the Lucas-Washburn-Rideal (LWR law. However a wide variety of viscoelastic fluids such as alginate, xanthan and blood, does not exhibit the same Newtonian behavior.In this work we consider the Herschel-Bulkley (HB rheological model and Navier-Stokes equation to derive a generic expression that predicts the capillary flow of non-Newtonian fluids. The Herschel-Bulkley rheological model encompasses a wide variety of fluids, including the Power-law fluids (also called Ostwald fluids, the Bingham fluids and the Newtonian fluids. It will be shown that the proposed equation reduces to the Lucas-Washburn-Rideal law for Newtonian fluids and to the Weissenberg-Rabinowitsch-Mooney (WRM law for power-law fluids. Although HB model cannot reduce to Casson’s law, which is often used to model whole blood rheology, HB model can fit the whole blood rheology with the same accuracy.Our generalized expression for the capillary flow of non-Newtonian fluid was used to accurately fit capillary flow of whole blood. The capillary filling of a cylindrical microchannel by whole blood was monitored. The blood first exhibited a Newtonian behavior, then after 7 cm low shear stress and rouleaux formation made LWR fails to fit the data: the blood could not be considered as Newtonian anymore. This non-Newtonian behavior was successfully fit by the proposed equation.

  3. Acetylcholinesterase immobilized capillary reactors coupled to protein coated magnetic beads: A new tool for plant extract ligand screening

    Science.gov (United States)

    Vanzolini, Kenia Lourenço; Jiang, Zhengjin; Zhang, Xiaoqi; Vieira, Lucas Campos Curcino; Corrêa, Arlene Gonçalvez; Cardoso, Carmen Lucia; Cass, Quezia Bezerra; Moaddel, Ruin

    2013-01-01

    The use of immobilized capillary enzyme reactors (ICERs) and enzymes coated to magnetic beads ((NT or CT)-MB) for ligand screening has been adopted as a new technique of high throughput screening (HTS). In this work the selected target was the enzyme acetylcholinesterase (AChE), which acts on the central nervous system and is a validated target for the treatment of Alzheimer’s disease, as well as for new insecticides. A new approach for the screening of plant extracts was developed based on the ligand fishing experiments and zonal chromatography. For that, the magnetic beads were used for the ligand fishing experiments and capillary bioreactors for the activity assays. The latter was employed also under non-linear conditions to determine the affinity constants of known ligands, for the first time, as well as for the active fished ligand. PMID:24148457

  4. Intramuscular capillary-type hemangioma: radiologic-pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Sabri; Alomari, Ahmad I.; Chaudry, Gulraiz [Boston Children' s Hospital and Harvard Medical School, Vascular Anomalies Center, Boston, MA (United States); Boston Children' s Hospital and Harvard Medical School, Division of Vascular and Interventional Radiology, Boston, MA (United States); Kozakewich, Harry P. [Boston Children' s Hospital and Harvard Medical School, Vascular Anomalies Center, Boston, MA (United States); Boston Children' s Hospital and Harvard Medical School, Department of Pathology, Boston, MA (United States); Fishman, Steven J. [Boston Children' s Hospital and Harvard Medical School, Vascular Anomalies Center, Boston, MA (United States); Boston Children' s Hospital and Harvard Medical School, Department of Surgery, Boston, MA (United States); Mulliken, John B. [Boston Children' s Hospital and Harvard Medical School, Vascular Anomalies Center, Boston, MA (United States); Boston Children' s Hospital and Harvard Medical School, Department of Plastic and Oral Surgery, Boston, MA (United States)

    2014-05-15

    Infantile hemangiomas demonstrate a pattern of proliferative growth in infancy followed by a slow phase of involution. In contrast a rare type of vascular tumor, intramuscular capillary-type hemangioma, usually presents beyond the period of infancy with nonspecific symptoms and no evidence of involution. The purpose of this study was to characterize the clinical, imaging, histopathological characteristics and management of intramuscular capillary-type hemangioma. We performed a retrospective review of a 20-year period to identify children diagnosed with intramuscular capillary-type hemangioma. Patient demographics, imaging and histopathological findings were recorded. We included 18 children (10 boys, 8 girls) with histologically proven intramuscular capillary-type hemangioma - and adequate imaging. The mean age at presentation was 8.1 years (range 1 day to 19 years). Twelve lesions involved muscles of the extremities, 4 were located in the trunk and 2 were in the head and neck. MRI had been performed in all children and demonstrated a soft-tissue mass with flow voids, consistent with fast flow. The lesion was well-circumscribed in 16 children and intralesional fat was seen in 14. Doppler US demonstrated a heterogeneous lesion, predominantly isoechoic to surrounding muscle, with enlarged arterial feeders. Enlarged feeding arteries, inhomogeneous blush and lack of arteriovenous shunting were noted on angiography (n = 5). The most common histopathological findings were lobules of capillaries with plump endothelium and at least some adipose tissue. The lesions were excised in six children. Two children were lost to follow-up. In the remaining 10, follow-up MRI studies ranging from 3 months to 10 years showed that the lesion enlarged in proportion to the child (n = 7), demonstrated slow growth (n = 2) or remained stable (n = 1). There was no change in imaging characteristics on follow-up. Intramuscular capillary-type hemangioma is a rare benign vascular tumor of

  5. Multiphase flow and transport caused by spontaneous gas phase growth in the presence of dense non-aqueous phase liquid.

    Science.gov (United States)

    Roy, James W; Smith, James E

    2007-01-30

    Disconnected bubbles or ganglia of trapped gas may occur below the top of the capillary fringe through a number of mechanisms. In the presence of dense non-aqueous phase liquid (DNAPL), the disconnected gas phase experiences mass transfer of dissolved gases, including volatile components from the DNAPL. The properties of the gas phase interface can also change. This work shows for the first time that when seed gas bubbles exist spontaneous gas phase growth can be expected to occur and can significantly affect water-gas-DNAPL distributions, fluid flow, and mass transfer. Source zone behaviour was observed in three different experiments performed in a 2-dimensional flow cell. In each case, a DNAPL pool was created in a zone of larger glass beads over smaller glass beads, which served as a capillary barrier. In one experiment effluent water samples were analyzed to determine the vertical concentration profile of the plume above the pool. The experiments effectively demonstrated a) a cycle of spontaneous gas phase expansion and vertical advective mobilization of gas bubbles and ganglia above the DNAPL source zone, b) DNAPL redistribution caused by gas phase growth and mobilization, and c) that these processes can significantly affect mass transport from a NAPL source zone.

  6. Evaluation of Tillandsia capillaris Ruiz amd Pav. f. capillaris as biomonitor of atmospheric pollution in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Pignata, M.L. [Univ. Nacional de Cordoba, Cordoba (Argentina). Facultad de Ciencias Exactas, Fisicas y Naturales]|[Instituto Multidisciplinario de Biologia Vegetal (IMBIV-UNC), Cordoba (Argentina); Wannaz, E.D.; Martinez, M.S.; Caminotti, G. [Univ. Nacional de Cordoba, Cordoba (Argentina). Facultad de Ciencias Exactas, Fisicas y Naturales

    2002-07-01

    The behaviour of Tillandsia capillaris Ruiz and Pav. f. capillaris, when exposed to atmospheric pollutants, was assessed by measuring chemical parameters indicating foliar damage and the contents of some heavy metals. Samples were transplanted to three sites in the City of Cordoba and were collected back after 15, 30, 60 and 90 days of exposure. At the same time, samples coming from the collection site were analyzed for each of said exposure times. Chlorophylls, hydroperoxy conjugated dienes, water contents, malondialdehyde, sulfur, Cu, Pb, Ni, Co, Mn, Zn and Fe were measured in the samples. A Foliar Damage Index was calculated from some of these parameters. (orig.)

  7. Intracerebral Capillary Hemangioma: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Youn, In Young; Kim, Jae Kyun; Byun, Jun Soo [Dept. of Radiology, Chung Ang University Medical Center, Chung Ang University College of Medicine, Seoul (Korea, Republic of); Park, Eon Sub [Dept. of Radiology, Chung Ang University Medical Center, Chung Ang University College of Medicine, Seoul (Korea, Republic of)

    2012-01-15

    Intracerebral capillary hemangiomas are very rare benign vascular tumors that mostly occur during infancy. We described a 69-year-old man with generalized tonic-clonic seizures who was diagnosed with an intracranial mass. Multidetector computed tomography, magnetic resonance imaging and digital subtraction angiography studies were performed for evaluation of brain, and there was a well-enhancing mass found in the right temporal lobe without a definite feeding vessel. The patient underwent surgery and the pathologic examination demonstrated marked proliferation of small vessels with a lobular pattern in the brain parenchyma, which was confirmed to be capillary hemangioma.

  8. Potential of capillary electrophoresis for the profiling of propolis

    NARCIS (Netherlands)

    Hilhorst, M.J; Somsen, G.W; de Jong, G.J.

    1998-01-01

    The usefulness of capillary electrophoresis (CE) with diode array detection for the profiling of Propolis, a hive product, is investigated. Water extracts of Propolis were analyzed with both capillary zone electrophoresis (CZE) at pH 7.0 and 9.3, and micellar electrokinetic chromatography (MEKC)

  9. Mixed Capillary Venous Retroperitoneal Hemangioma

    Directory of Open Access Journals (Sweden)

    Mohit Godar

    2013-01-01

    Full Text Available We report a case of mixed capillary venous hemangioma of the retroperitoneum in a 61-year-old man. Abdominal ultrasonography showed a mass to be hypoechoic with increased flow in color Doppler imaging. Dynamic contrast-enhanced computed tomography revealed a centripetal filling-in of the mass, located anterior to the left psoas muscle at the level of sacroiliac joint. On the basis of imaging features, preoperative diagnosis of hemangioma was considered and the mass was excised by laparoscopic method. Immunohistochemical studies were strongly positive for CD31 and CD34, and negative for calretinin, EMA, WT1, HMB45, Ki67, synaptophysin, and lymphatic endothelial cell marker D2–40. Histologically, the neoplasm was diagnosed as mixed capillary venous hemangioma.

  10. Data supporting the validation of a simulation model for multi-component gas separation in polymeric membranes

    Directory of Open Access Journals (Sweden)

    Lorena Giordano

    2016-12-01

    The data were obtained using a model for simulating gas separation, described in the research article entitled “Interplay of inlet temperature and humidity on energy penalty for CO2 post-combustion capture: rigorous analysis and simulation of a single stage gas permeation process” (L. Giordano, D. Roizard, R. Bounaceur, E. Favre, 2016 [1]. The data were used to validate the model by comparison with literature results. Considering a membrane system based on feed compression only, data from the model proposed and that from literature were compared with respect to the molar composition of permeate stream, the membrane area and specific energy requirement, varying the feed pressure and the CO2 separation degree.

  11. Speciation of organotin compounds in waters and marine sediments using purge-and-trap capillary gas chromatography with atomic emission detection

    International Nuclear Information System (INIS)

    Campillo, Natalia; Aguinaga, Nerea; Vin-tilde as, Pilar; Lopez-Garcia, Ignacio; Hernandez-Cordoba, Manuel

    2004-01-01

    A procedure for the simultaneous determination of six organotin compounds, including methyl-, butyl- and phenyltins, in waters and marine sediments is developed. The analytes were leached from the solid samples into an acetic acid:methanol mixture by using an ultrasonic probe. The organotins were derivatized with sodium tetraethylborate (NaBEt 4 ) in the aqueous phase, stripped by a flow of helium, pre-concentrated in a trap and thermally desorbed. This was followed by capillary gas chromatography with microwave-induced plasma atomic emission spectrometry as the detection system (GC-AED). Each chromatographic run took 22 min, including the purge time. Calibration curves were obtained by plotting peak area versus concentration and the correlation coefficients for linear calibration were at least 0.9991. Detection limits ranged from 11 to 50 ng Sn l -1 for tributyltin and tetramethyltin, respectively. The seawater samples analyzed contained variable concentrations of mono-, di- and tributyl- and monophenyltin, ranging from 0.05 to 0.48 μg Sn l -1 , depending on the compound. Some of the sediments analyzed contained concentrations of dibutyl- and tributyltin of between 6.0 and 13.0 ng Sn g -1 . Analysis of the certified reference material PACS-2, as well as of spiked water and sediment samples showed the accuracy of the method. The proposed method is selective and reproducible, and is considered suitable for monitoring organotin compounds in water and sediment samples

  12. Speciation of organotin compounds in waters and marine sediments using purge-and-trap capillary gas chromatography with atomic emission detection

    Energy Technology Data Exchange (ETDEWEB)

    Campillo, Natalia [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain); Aguinaga, Nerea [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain); Vin-tilde as, Pilar [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain); Lopez-Garcia, Ignacio [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain); Hernandez-Cordoba, Manuel [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain)]. E-mail: hcordoba@um.es

    2004-11-08

    A procedure for the simultaneous determination of six organotin compounds, including methyl-, butyl- and phenyltins, in waters and marine sediments is developed. The analytes were leached from the solid samples into an acetic acid:methanol mixture by using an ultrasonic probe. The organotins were derivatized with sodium tetraethylborate (NaBEt{sub 4}) in the aqueous phase, stripped by a flow of helium, pre-concentrated in a trap and thermally desorbed. This was followed by capillary gas chromatography with microwave-induced plasma atomic emission spectrometry as the detection system (GC-AED). Each chromatographic run took 22 min, including the purge time. Calibration curves were obtained by plotting peak area versus concentration and the correlation coefficients for linear calibration were at least 0.9991. Detection limits ranged from 11 to 50 ng Sn l{sup -1} for tributyltin and tetramethyltin, respectively. The seawater samples analyzed contained variable concentrations of mono-, di- and tributyl- and monophenyltin, ranging from 0.05 to 0.48 {mu}g Sn l{sup -1}, depending on the compound. Some of the sediments analyzed contained concentrations of dibutyl- and tributyltin of between 6.0 and 13.0 ng Sn g{sup -1}. Analysis of the certified reference material PACS-2, as well as of spiked water and sediment samples showed the accuracy of the method. The proposed method is selective and reproducible, and is considered suitable for monitoring organotin compounds in water and sediment samples.

  13. Delayed post-traumatic capillary haemangioma of the spine.

    Science.gov (United States)

    Shilton, Hamish; Goldschlager, Tony; Kelman, Anthony; Xenos, Chris

    2011-11-01

    Capillary haemangiomas are well-circumscribed aggregates of closely packed, thin-walled capillaries separated by connective tissue stroma. In subcutaneous tissue they are termed pyogenic granuloma and commonly follow trauma. They rarely occur in the spine. We present a 43-year-old woman with a 6-week history of thoracic myelopathy and back pain on a background of T7 and T8 vertebral compression fractures from a motor vehicle accident 10 years previously. MRI demonstrated a posteriorly based extradural homogeneously enhancing mass at this level. The lesion was resected and diagnosed histopathologically as a capillary haemangioma. The patient's symptoms resolved and she made an uneventful recovery. The literature is reviewed and the possible pathogenesis is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. The Effect of Ion Motion on Laser-Driven Plasma Wake in Capillary

    International Nuclear Information System (INIS)

    Zhou Suyun; Li Yanfang; Chen Hui

    2016-01-01

    The effect of ion motion in capillary-guided laser-driven plasma wake is investigated through rebuilding a two-dimensional analytical model. It is shown that laser pulse with the same power can excite more intense wakefield in the capillary of a smaller radius. When laser intensity exceeds a critical value, the effect of ion motion reducing the wakefield rises, which becomes significant with a decrease of capillary radius. This phenomenon can be attributed to plasma ions in smaller capillary obtaining more energy from the plasma wake. The dependence of the difference value between maximal scalar potential of wake for two cases of ion rest and ion motion on the radius of the capillary is discussed. (paper)

  15. On-line gas mixing and multi-channel distribution system

    International Nuclear Information System (INIS)

    Kalmani, S.D.; Mondal, N.K.; Satyanarayana, B.; Verma, P.; Joshi, Avinash

    2009-01-01

    In this presentation, we describe a mass-flow controller based on-line gas mixing unit with the multi-channel distribution system. We highlight different aspects such as requirement, design, calibration, control and operation of this system. This unit has the capability to mix up to four different input gases and distribute over 16 output channels. Output in individual channels is controlled accurately by using capillary-based system. At present, we are using this gas mixing unit for prototype of iron calorimeter (ICAL) detector of India-based Neutrino Observatory (INO).

  16. New type of capillary for use as ion beam collimator and air-vacuum interface

    Energy Technology Data Exchange (ETDEWEB)

    Stoytschew, V., E-mail: valostoytschew@hotmail.com [Ruđer Bošković Institute, Bijenicka Cesta 54, 10000 Zagreb (Croatia); Schulte-Borchers, M. [Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, CH-8093 Zurich (Switzerland); Božičević Mihalića, Iva [Ruđer Bošković Institute, Bijenicka Cesta 54, 10000 Zagreb (Croatia); Perez, R.D. [FaMAF, Universidad Nacional de Córdoba, (5000) Ciudad Universitaria, Córdoba (Argentina)

    2016-08-01

    Glass capillaries offer a unique way to combine small diameter ion beam collimation with an air-vacuum interface for ambient pressure ion beam applications. Usually they have an opening diameter of a few microns, limiting the air inflow sufficiently to maintain stable conditions on the vacuum side. As the glass capillaries generally are quite thin and fragile, handling of the capillary in the experiment becomes difficult. They also introduce an X-ray background produced by the capillary wall material, which has to be shielded or subtracted from the data for Particle Induced X-ray Emission (PIXE) applications. To overcome both drawbacks, a new type of conical glass capillary has been developed. It has a higher wall thickness eliminating the low energy X-ray background produced by common capillaries and leading to a more robust lens. The results obtained in first tests show, that this new capillary is suitable for ion beam collimation and encourage further work on the capillary production process to provide thick wall capillaries with an outlet diameter in the single digit micro- or even nanometre range.

  17. Determination of the R-enantiomer of valsartan in pharmaceutical formulation by capillary electrophoresis.

    Science.gov (United States)

    Lee, Kyung Ran; Nguyen, NgocVan Thi; Lee, Yong Jae; Choi, Seungho; Kang, Jong Seong; Mar, Woongchon; Kim, Kyeong Ho

    2015-01-01

    Capillary zone electrophoresis was successfully applied to the enantiomeric purity determination of valsartan using acetyl-β-cyclodextrin (A-β-CD) as a chiral selector. Separations were carried out in a 50 µm, 64/56 cm fused-silica capillary. The optimized conditions included 25 mM phosphate buffer, pH 8.0, containing 10 mM A-β-CD as background electrolyte, an applied voltage of +30 kV and a temperature of 30 °C. Ibuprofen was used as an internal standard. The assay was validated for the R-enantiomer of valsartan in the range of 0.05-3.0%. The limit of detection was 0.01%, the limit of quantitation was 0.05%, relative to a concentration of valsartan of 1 mg/ml. Intra-day precision varied between 2.57 and 5.60%. Relative standard deviations of inter-day precision ranged between 4.46 and 6.76% for peak area ratio. The percentage recovery of the R-enantiomer of valsartan ranged between 97.0 and 99.6% in valsartan product. The assay was applied to the determination of the chiral purity of valsartan tablets and R-enantiomer of valsartan was found as an impurity.

  18. Validation of a method to determine methylmercury in fish tissues using gas chromatography

    International Nuclear Information System (INIS)

    Vega Bolannos, Luisa O.; Arias Verdes, Jose A.; Beltran Llerandi, Gilberto; Castro Diaz, Odalys; Moreno Tellez, Olga L.

    2000-01-01

    We validated a method to determine methylmercury in fish tissues using gas chromatography with an electron capture detector as described by the Association of Official Analytical Chemist (AOAC) International. The linear curve range was 0.02 to 1 g/ml and linear correlation coefficient was 0.9979. A 1 mg/kg methylmercury-contaminated fish sample was analyzed 20 times to determine repeatability of the method. The quantification limit was 0.16 mg/kg and detection limit was 0.06 ppm. Fish samples contaminated with 0.2 to 10 mg/kg methylmercury showed recovery indexes from 94.66 to 108.8%

  19. Capillary-induced crack healing between surfaces of nanoscale roughness.

    Science.gov (United States)

    Soylemez, Emrecan; de Boer, Maarten P

    2014-10-07

    Capillary forces are important in nature (granular materials, insect locomotion) and in technology (disk drives, adhesion). Although well studied in equilibrium state, the dynamics of capillary formation merit further investigation. Here, we show that microcantilever crack healing experiments are a viable experimental technique for investigating the influence of capillary nucleation on crack healing between rough surfaces. The average crack healing velocity, v̅, between clean hydrophilic polycrystalline silicon surfaces of nanoscale roughness is measured. A plot of v̅ versus energy release rate, G, reveals log-linear behavior, while the slope |d[log(v̅)]/dG| decreases with increasing relative humidity. A simplified interface model that accounts for the nucleation time of water bridges by an activated process is developed to gain insight into the crack healing trends. This methodology enables us to gain insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism.

  20. In Vivo Microscopy Reveals Extensive Embedding of Capillaries within the Sarcolemma of Skeletal Muscle Fibers

    Science.gov (United States)

    Glancy, Brian; Hsu, Li-Yueh; Dao, Lam; Bakalar, Matthew; French, Stephanie; Chess, David J.; Taylor, Joni L.; Picard, Martin; Aponte, Angel; Daniels, Mathew P.; Esfahani, Shervin; Cushman, Samuel; Balaban, Robert S.

    2013-01-01

    Objective To provide insight into mitochondrial function in vivo, we evaluated the 3D spatial relationship between capillaries, mitochondria, and muscle fibers in live mice. Methods 3D volumes of in vivo murine Tibialis anterior muscles were imaged by multi-photon microscopy (MPM). Muscle fiber type, mitochondrial distribution, number of capillaries, and capillary-to-fiber contact were assessed. The role of myoglobin-facilitated diffusion was examined in myoglobin knockout mice. Distribution of GLUT4 was also evaluated in the context of the capillary and mitochondrial network. Results MPM revealed that 43.6 ± 3.3% of oxidative fiber capillaries had ≥ 50% of their circumference embedded in a groove in the sarcolemma, in vivo. Embedded capillaries were tightly associated with dense mitochondrial populations lateral to capillary grooves and nearly absent below the groove. Mitochondrial distribution, number of embedded capillaries, and capillary-to-fiber contact were proportional to fiber oxidative capacity and unaffected by myoglobin knockout. GLUT4 did not preferentially localize to embedded capillaries. Conclusions Embedding capillaries in the sarcolemma may provide a regulatory mechanism to optimize delivery of oxygen to heterogeneous groups of muscle fibers. We hypothesize that mitochondria locate to paravascular regions due to myofibril voids created by embedded capillaries, not to enhance the delivery of oxygen to the mitochondria. PMID:25279425

  1. Influence of the capillary on the ignition of the transient spark discharge

    International Nuclear Information System (INIS)

    Gerling, T; Hoder, T; Brandenburg, R; Bussiahn, R; Weltmann, K-D

    2013-01-01

    A self-pulsing negative dc discharge in argon generated in a needle-to-plane geometry at open atmosphere is investigated. Additionally, the needle electrode can be surrounded by a quartz capillary. It is shown that the relative position of the capillary end to the needle tip strongly influences the discharge inception and its spatio-temporal dynamics. Without the capillary for the selected working parameters a streamer corona is ignited, but when the capillary surrounds the needle, the transient spark (TS) discharge is ignited after a pre-streamer (PS) occurs. The time between PS and TS discharge depends on the relative capillary end position. The existence of the PS is confirmed by electro-optical characterization. Furthermore, spectrally and spatio-temporally resolved cross-correlation spectroscopy is applied to show the most active region of pre-phase emission activity as indicators for high local electric field strength. The results indicate that with a capillary in place, the necessary energy input of the pre-phase into the system is mainly reduced by additional electrical fields at the capillary edge. Even such a small change as a shift of dielectric surface close to the plasma largely changes the energy balance in the system. (paper)

  2. Determination of insecticides malathion and lambda-cyhalothrin residues in zucchini by gas chromatography

    OpenAIRE

    Lofty, Hayam M.; Abd El-Aleem, Abd El-Aziz A.; Monir, Hany H.

    2013-01-01

    A sensitive gas chromatographic method has been developed for the determination of malathion and lambda-cyhalothrin (λ-cyhalothrin) insecticide residues in zucchini. The developed method consists of extraction with acetone, purification and partitioning with methylene chloride, column chromatographic clean-up, and finally capillary gas chromatographic determination of the insecticides. The recoveries of method were greater than 90% and limit of determination was 0.001 ppm for both insecticide...

  3. Multi-capillary column-ion mobility spectrometry: a potential screening system to differentiate virgin olive oils.

    Science.gov (United States)

    Garrido-Delgado, Rocío; Arce, Lourdes; Valcárcel, Miguel

    2012-01-01

    The potential of a headspace device coupled to multi-capillary column-ion mobility spectrometry has been studied as a screening system to differentiate virgin olive oils ("lampante," "virgin," and "extra virgin" olive oil). The last two types are virgin olive oil samples of very similar characteristics, which were very difficult to distinguish with the existing analytical method. The procedure involves the direct introduction of the virgin olive oil sample into a vial, headspace generation, and automatic injection of the volatiles into a gas chromatograph-ion mobility spectrometer. The data obtained after the analysis by duplicate of 98 samples of three different categories of virgin olive oils, were preprocessed and submitted to a detailed chemometric treatment to classify the virgin olive oil samples according to their sensory quality. The same virgin olive oil samples were also analyzed by an expert's panel to establish their category and use these data as reference values to check the potential of this new screening system. This comparison confirms the potential of the results presented here. The model was able to classify 97% of virgin olive oil samples in their corresponding group. Finally, the chemometric method was validated obtaining a percentage of prediction of 87%. These results provide promising perspectives for the use of ion mobility spectrometry to differentiate virgin olive oil samples according to their quality instead of using the classical analytical procedure.

  4. Evaluation and management of Periocular Capillary Hemangioma: A review

    International Nuclear Information System (INIS)

    Al-Motowa, Saeed A.; Chaudhry, Imtiaz A.

    2006-01-01

    To review the salient features of periocular capillary hemangioma, provide the ophthalmologist with clinical, diagnostic and histological features characteristic of the tumor and discuss various methods of management. Methods were literature review of periocular capillary hemangioma, diagnostic evaluation with emphasis on treatment through the presentation of illustrative clinical cases. Capillary hemangioma is the most common benign vascular tumor found on the head and neck area including eyelids and orbit. The lesion typically manifests within the first few weeks of life, grows rapidly in the first year during the proliferative phase, then invariably and slowly regresses over the next 4 to 5 years during the involutional phase. The lesion may resolve without leaving any significant cosmetic sequelae in vast majority of patients, however, the functional defects in the form of amblyopia, squint, facial disfigurement and rarely optic atrophy may persist long after complete resolution of the tumor. The diagnosis of the capillary hemangioma requires a combination of clinical and imaging studies such as ultrasonography, computerized tomography, magnetic resonance imaging and angiography in selected cases. With the advent of less invasive diagnostic techniques, the need for biopsy in capillary hemangioma has decreased. Nevertheless, it should be differentiated from other periocular tumors such as rhabdomyosarcoma, lymphangioma, chloroma, neuroblastoma, orbital cyst, and orbital cellulites. Treatment is indicated to prevent amblyopia or cosmetic disfigurement. If indicated, intra-lesional corticosteroids may be used to enhance resolution of the tumor. Other forms of treatment tried with variable success include systematic and topical corticosteroids, radiation, surgical excision and intravenous embolization of the tumor. Indecent years, laser ablation of the tumor has been found effective in some cases. Interferon-u has been utilized effectively in cases of capillary

  5. Self-Assembly of Microscale Parts through Magnetic and Capillary Interactions

    Directory of Open Access Journals (Sweden)

    Madan Dubey

    2011-03-01

    Full Text Available Self-assembly is a promising technique to overcome fundamental limitations with integrating, packaging, and general handling of individual electronic-related components with characteristic lengths significantly smaller than 1 mm. Here we describe the use of magnetic and capillary forces to self-assemble 280 µm sized silicon building blocks into interconnected structures which approach a three-dimensional crystalline configuration. Integrated permanent magnet microstructures provided magnetic forces, while a low-melting-point solder alloy provided capillary forces. A finite element model of forces between the magnetic features demonstrated the utility of magnetic forces at this size scale. Despite a slight departure from designed dimensions in the actual fabricated parts, the combination of magnetic and capillary forces improved the assembly yield to 8%, over approximately 0.1% achieved previously with capillary forces alone.

  6. Indirect Determination of Vapor Pressures by Capillary Gas-Liquid Chromatography: Analysis of the Reference Vapor-Pressure Data and Their Treatment

    Czech Academy of Sciences Publication Activity Database

    Růžička, K.; Koutek, Bohumír; Fulem, M.; Hoskovec, Michal

    2012-01-01

    Roč. 57, č. 5 (2012), s. 1349-1368 ISSN 0021-9568 R&D Projects: GA ČR GA203/09/1327 Institutional research plan: CEZ:AV0Z40550506 Keywords : vapor pressures * capillary gas–liquid chromatography * reference data * relative retention time Subject RIV: CC - Organic Chemistry Impact factor: 2.004, year: 2012

  7. Large-volume injection in gas chromatographic trace analysis using temperature-programmable (PTV) injectors

    NARCIS (Netherlands)

    Mol, J.G.J.; Janssen, J.G.M.; Cramers, C.A.M.G.; Brinkman, U.A.T.

    1996-01-01

    The use of programmed-temperature vaporising (PTV) injectors for large-volume injection in capillary gas chromatography is briefly reviewed. The principles and optimisation of large-volume PTV injection are discussed. Guidelines are given for selection of the PTV conditions and injection mode for

  8. Simulation and application of micro X-ray fluorescence based on an ellipsoidal capillary

    Science.gov (United States)

    Yang, Jing; Li, Yude; Wang, Xingyi; Zhang, Xiaoyun; Lin, Xiaoyan

    2017-06-01

    A micro X-ray fluorescence setup was presented, based on an ellipsoidal capillary and a traditional laboratorial X-ray source. Using Ray-tracing principle, we have simulated the transmission path of X-ray beam in the ellipsoidal capillary and designed the optimal parameters of the ellipsoidal capillary for the micro X-ray fluorescence setup. We demonstrate that ellipsoidal capillary is well suited as condenser for the micro X-ray fluorescence based on traditional laboratorial X-ray source. Furthermore, we obtain the 2D mapping image of the leaf blade sample by using the ellipsoidal capillary we designed.

  9. Quantitative analysis by microchip capillary electrophoresis – current limitations and problem-solving strategies

    NARCIS (Netherlands)

    Revermann, T.; Götz, S.; Künnemeyer, Jens; Karst, U.

    2008-01-01

    Obstacles and possible solutions for the application of microchip capillary electrophoresis in quantitative analysis are described and critically discussed. Differences between the phenomena occurring during conventional capillary electrophoresis and microchip-based capillary electrophoresis are

  10. Damage-free plasma etching of porous organo-silicate low-k using micro-capillary condensation above -50 °C.

    Science.gov (United States)

    Chanson, R; Zhang, L; Naumov, S; Mankelevich, Yu A; Tillocher, T; Lefaucheux, P; Dussart, R; Gendt, S De; Marneffe, J-F de

    2018-01-30

    The micro-capillary condensation of a new high boiling point organic reagent (HBPO), is studied in a periodic mesoporous oxide (PMO) with ∼34 % porosity and k-value ∼2.3. At a partial pressure of 3 mT, the onset of micro-capillary condensation occurs around +20 °C and the low-k matrix is filled at -20 °C. The condensed phase shows high stability from -50 < T ≤-35 °C, and persists in the pores when the low-k is exposed to a SF 6 -based plasma discharge. The etching properties of a SF 6 -based 150W-biased plasma discharge, using as additive this new HBPO gas, shows that negligible damage can be achieved at -50 °C, with acceptable etch rates. The evolution of the damage depth as a function of time was studied without bias and indicates that Si-CH 3 loss occurs principally through Si-C dissociation by VUV photons.

  11. Liquid water transport mechanism in the gas diffusion layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, P.; Wu, C.W. [State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024 (China)

    2010-03-01

    We developed an equivalent capillary model of a microscale fiber-fence structure to study the microscale evolution and transport of liquid in a porous media and to reveal the basic principles of water transport in gas diffusion layer (GDL). Analytical solutions using the model show that a positive hydraulic pressure is needed to drive the liquid water to penetrate through the porous GDL even consisting of the hydrophilic fibers. Several possible contributions for the water configuration, such as capillary pressure, gravity, vapor condensation, wettability and microstructures of the GDL, are discussed using the lattice Boltzmann method (LBM). It is found that the distribution manners of the fibers and the spatial mixed-wettability in the GDL also play an important role in the transport of liquid water. (author)

  12. The multi-mode modulator: A versatile fluidic device for two-dimensional gas chromatography.

    Science.gov (United States)

    Seeley, John V; Schimmel, Nicolaas E; Seeley, Stacy K

    2018-02-09

    A fluidic device called the multi-mode modulator (MMM) has been developed for use as a comprehensive two-dimensional gas chromatography (GC x GC) modulator. The MMM can be employed in a wide range of capacities including as a traditional heart-cutting device, a low duty cycle GC x GC modulator, and a full transfer GC x GC modulator. The MMM is capable of producing narrow component pulses (widths <50ms) while operating at flows compatible with high resolution chromatography. The sample path of modulated components is confined to the interior of a joining capillary. The joining capillary dimensions and the position of the columns within the joining capillary can be optimized for the selected modulation mode. Furthermore, the joining capillary can be replaced easily and inexpensively if it becomes fouled due to sample matrix components or column bleed. The principles of operation of the MMM are described and its efficacy is demonstrated as a heart-cutting device and as a GC x GC modulator. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Evaluation of laser Doppler flowmetry for measurement of capillary blood flow in the stomach wall of dogs during gastric dilatation-volvulus.

    Science.gov (United States)

    Monnet, Eric; Pelsue, Davyd; MacPhail, Catriona

    2006-02-01

    To validate laser doppler flowmetry (LDF) for measurement of blood flow in the stomach wall of dogs with gastric dilatation-volvulus (GDV). Six purpose-bred dogs and 24 dogs with naturally occurring GDV. Experimental and clinical. Capillary blood flow in the body of the stomach and pyloric antrum was measured with LDF (tissue perfusion unit (TPU) before and after induction of portal hypertension (PH) and after PH plus gastric ischemia (GI; PH + GI) and compared with flow measured by colored microsphere technique. Capillary flow was measured by LDF in the stomach wall of dogs with GDV. PH and PH+GI induced a significant reduction in blood flow in the body of the stomach (P = .019). A significant positive correlation was present between percent changes in capillary blood flow measured by LDF and colored microspheres after induction of PH + GI in the body of the stomach (r = 0.94, P = .014) and in the pyloric antrum (r = 0.95, P = .049). Capillary blood flow measured in the body of the stomach of 6 dogs that required partial gastrectomy (5.00+/-3.30 TPU) was significantly lower than in dogs that did not (28.00+/-14.40 TPU, P = .013). LDF can detect variations in blood flow in the stomach wall of dogs. LDF may have application for evaluation of stomach wall viability during surgery in dogs with GDV.

  14. Qualitative and quantitative assessment of nailfold capillaries by capillaroscopy in healthy volunteers.

    Science.gov (United States)

    Hoerth, Christian; Kundi, Michael; Katzenschlager, Reinhold; Hirschl, Mirko

    2012-01-01

    Nailfold capillaroscopy (NVC) is a diagnostic tool particularly useful in the differential diagnosis of rheumatic and connective tissue diseases. Although successfully applied since many years, little is known about prevalence and distribution of NVC changes in healthy individuals. NVC was performed in 120 individuals (57 men and 63 women; age 18 to 70 years) randomly selected according to predefined age and sex strata. Diseases associated with NVC changes were excluded. The nailfolds of eight fingers were assessed according to standardized procedures. A scoring system was developed based on the distribution of the number of morphologically deviating capillaries, microhaemorrhages, and capillary density. Only 18 individuals (15 %) had no deviation in morphology, haemorrhages, or capillary density on any finger. Overall 67 % had morphological changes, 48 % had microhaemorrhages, and 40 % of volunteers below 40 years of age and 18 % above age 40 had less than 8 capillaries/mm. Among morphological changes tortous (43 %), ramified (47 %), and bushy capillaries (27 %) were the most frequently altered capillary types. A semiquantitative scoring system was developed in such a way that a score above 1 indicates an extreme position (above the 90th percentile) in the distribution of scores among healthy individuals. Altered capillaries occur frequently among healthy individuals and should be interpreted as normal unless a suspicious increase in their frequency is determined by reference to the scoring system. Megacapillaries and diffuse loss of capillaries were not found and seem to be of specific diagnostic value.

  15. Capillary waves with surface viscosity

    Science.gov (United States)

    Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele

    2017-11-01

    Experiments over the last 50 years have suggested a correlation between the surface (shear) viscosity and the stability of a foam or emulsion. With recent techniques allowing more accurate measurements of the elusive surface viscosity, we examine this link theoretically using small-amplitude capillary waves in the presence of the Marangoni effect and surface viscosity modelled via the Boussinesq-Scriven model. The surface viscosity effect is found to contribute a damping effect on the amplitude of the capillary wave with subtle differences to the effect of the convective-diffusive Marangoni transport. The general wave dispersion is augmented to take into account the Marangoni and surface viscosity effects, and a first-order correction to the critical damping wavelength is derived. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.

  16. Use of Plastic Capillaries for Macromolecular Crystallization

    Science.gov (United States)

    Potter, Rachel R.; Hong, Young-Soo; Ciszak, Ewa M.

    2003-01-01

    Methods of crystallization of biomolecules in plastic capillaries (Nalgene 870 PFA tubing) are presented. These crystallization methods used batch, free-interface liquid- liquid diffusion alone, or a combination with vapor diffusion. Results demonstrated growth of crystals of test proteins such as thaumatin and glucose isomerase, as well as protein studied in our laboratory such dihydrolipoamide dehydrogenase. Once the solutions were loaded in capillaries, they were stored in the tubes in frozen state at cryogenic temperatures until the desired time of activation of crystallization experiments.

  17. An immobilized graphene oxide stationary phase for open-tubular capillary electrochromatography.

    Science.gov (United States)

    Wang, Chun; de Rooy, Sergio; Lu, Cheng-Fei; Fernand, Vivian; Moore, Leonard; Berton, Paula; Warner, Isiah M

    2013-04-01

    The research literature currently abounds with studies of graphene-related materials as a result of the extraordinary properties of such materials. On the basis of these citations, it is clear that the range of applications for such materials is substantial. In this manuscript, we report the immobilization of graphene oxide (GO) onto a fused-silica capillary to form a potential stationary phase for use in open-tubular CEC. We successfully incorporated GO through an in situ condensation reaction with (3-aminopropyl)triethoxysilane after silanization with (3-aminopropyl)triethoxysilane on the inner surface of the capillary. This GO-incorporated capillary was then characterized by use of SEM, infrared spectroscopy, and measurements of EOF. The electrochromatographic features of this stationary phase have also been investigated. Evaluation of acquired data indicates high electrochromatographic resolution and good capillary efficiency. Highly reproducible results between runs, days, and capillaries were also obtained. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Fast capillary discharge facility CAPEX-U as a source of the soft X-ray radiation

    Czech Academy of Sciences Publication Activity Database

    Frolov, Oleksandr; Koláček, Karel; Schmidt, Jiří; Štraus, Jaroslav; Prukner, Václav

    2007-01-01

    Roč. 52, č. 16 (2007), s. 295-295 ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics/49th./. Orlando , Florida, 12.11.2007-16.11.2007] R&D Projects: GA ČR GA202/06/1324; GA AV ČR KJB100430702; GA AV ČR KAN300100702; GA MŠk 1P04LA235 Institutional research plan: CEZ:AV0Z20430508 Keywords : Capillary discharge * x-ray * laser * laser-triggered * spark gap * breakdown * plasma Subject RIV: BL - Plasma and Gas Discharge Physics http://meetings.aps.org/Meeting/DPP07/Content/901

  19. Effect of hypothermic pulmonary artery flushing on capillary filtration coefficient.

    Science.gov (United States)

    Andrade, R S; Wangensteen, O D; Jo, J K; Tsai, M Y; Bolman, R M

    2000-07-27

    We previously demonstrated that surfactant dilution and inhibition occur immediately after pulmonary artery flushing with hypothermic modified Euro-Collins solution. Consequently, we speculated that increased capillary permeability contributed to these surfactant changes. To test this hypothesis, we evaluated the effects of hypothermic pulmonary artery flushing on the pulmonary capillary filtration coefficient (Kfc), and additionally performed a biochemical analysis of surfactant. We used a murine isolated, perfused lung model to measure the pulmonary capillary filtration coefficient and hemodynamic parameters, to determine the wet to dry weight ratio, and to evaluate surfactant by biochemical analysis of lung lavage fluid. We defined three study groups. In group I (controls), we harvested lungs without hypothermic pulmonary artery flushing, and measured Kfc immediately. In group II (in situ flush), we harvested lungs after hypothermic pulmonary artery flushing with modified Euro-Collins solution, and then measured Kfc. Experiments in groups I and II were designed to evaluate persistent changes in Kfc after pulmonary artery flushing. In group III (ex vivo flush), we flushed lungs ex vivo to evaluate transient changes in Kfc during hypothermic pulmonary artery flushing. Groups I and II did not differ significantly in capillary filtration coefficient and hemodynamics. Group II showed significant alterations on biochemical surfactant analysis and a significant increase in wet-to-dry weight ratio, when compared with group I. In group III, we observed a significant transient increase in capillary filtration coefficient during pulmonary artery flushing. Hypothermic pulmonary artery flushing transiently increases the capillary filtration coefficient, leads to an increase in the wet to dry weight ratio, and induces biochemical surfactant changes. These findings could be explained by the effects of hypothermic modified Euro-Collins solution on pulmonary capillary

  20. Gas evolution and migration in repositories: current status

    International Nuclear Information System (INIS)

    Rees, J.H.; Rodwell, W.R.

    1988-04-01

    Considerable volumes of gas may be formed in a repository due to corrosion of metallic wastes and microbial degradation of certain organic wastes. The requirements for data and models to help understand the rate of formation of gases and their migration are described. The Nirex research programme in the area complements existing knowledge and takes additional priorities from the outcome of site assessments. Key areas currently being studied include: the rate of evolution of hydrogen from steel under anaerobic conditions; and of carbon dioxide and methane from cellulosic materials; characterisation of near- and far-field materials with respect to gas transport (permeabilities, capillary pressures, etc); and development of a comprehensive series of models covering gas evolution and migration in the near and far fields. (author)