WorldWideScience

Sample records for validate fundamental understanding

  1. Fundamental understanding of matter: an engineering viewpoint

    International Nuclear Information System (INIS)

    Cullingford, H.S.; Cort, G.E.

    1980-01-01

    Fundamental understanding of matter is a continuous process that should produce physical data for use by engineers and scientists in their work. Lack of fundamental property data in any engineering endeavor cannot be mitigated by theoretical work that is not confirmed by physical experiments. An engineering viewpoint will be presented to justify the need for understanding of matter. Examples will be given in the energy engineering field to outline the importance of further understanding of material and fluid properties and behavior. Cases will be cited to show the effects of various data bases in energy, mass, and momentum transfer. The status of fundamental data sources will be discussed in terms of data centers, new areas of engineering, and the progress in measurement techniques. Conclusions and recommendations will be outlined to improve the current situation faced by engineers in carrying out their work. 4 figures

  2. Necessity of fundamental education on public understanding about nuclear safety

    International Nuclear Information System (INIS)

    Haruna, Kiyoshi; Sugiyama, Ken-ichiro; Itami, Toshio; Yamagishi, Yoichi; Hirata, Fumio

    2009-01-01

    The general public doesn't have fundamental knowledge of radiation and nuclear energy. Therefore, it is not easy to judge nuclear power plants as safe systems. This study is a survey about junior high school, university, and women's junior college students. The results show that junior high school students aren't reluctant to understand radiation. (author)

  3. Tales of the quantum understanding physics' most fundamental theory

    CERN Document Server

    Hobson, Art

    2017-01-01

    Everybody has heard that we live in a world made of atoms. But far more fundamentally, we live in a universe made of quanta. Many things are not made of atoms: light, radio waves, electric current, magnetic fields, Earth's gravitational field, not to mention exotica such a neutron stars, black holes, dark energy, and dark matter. But everything, including atoms, is made of highly unified or "coherent" bundles of energy called "quanta" that (like everything else) obey certain rules. In the case of the quantum, these rules are called "quantum physics." This is a book about quanta and their unexpected, some would say peculiar, behavior--tales, if you will, of the quantum. The quantum has developed the reputation of being capricious, bewildering, even impossible to understand. The peculiar habits of quanta are certainly not what we would have expected to find at the foundation of physical reality, but these habits are not necessarily bewildering and not at all impossible or paradoxical. This book explains those h...

  4. Enhancing Cognitive Understanding to Improve Fundamental Movement Skills

    Science.gov (United States)

    Drost, Daniel K.; Todorovich, John R.

    2013-01-01

    The development of fundamental movement skills in physical education is an important contributor toward children's' lifetime interest and participation in physical activity. Physical education teachers and their curricula follow national and state standards to provide learning experiences and instruction that support the acquisition of…

  5. Fundamental understanding and rational design of high energy structural microbatteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuxing; Li, Qiuyan; Cartmell, Samuel; Li, Huidong; Mendoza, Sarah; Zhang, Ji-Guang; Deng, Zhiqun Daniel; Xiao, Jie

    2018-01-01

    Microbatteries play a critical role in determining the lifetime of downsized sensors, wearable devices and medical applications, etc. More often, structural batteries are required from the perspective of aesthetics and space utilization, which is however rarely explored. Herein, we discuss the fundamental issues associated with the rational design of practically usable high energy microbatteries. The tubular shape of the cell further allows the flexible integration of microelectronics. A functioning acoustic micro-transmitter continuously powered by this tubular battery has been successfully demonstrated. Multiple design features adopted to accommodate large mechanical stress during the rolling process are discussed providing new insights in designing the structural microbatteries for emerging technologies.

  6. Fundamental understanding and rational design of high energy structural microbatteries

    International Nuclear Information System (INIS)

    Wang, Yuxing; Li, Qiuyan; Cartmell, Samuel; Li, Huidong; Mendoza, Sarah

    2017-01-01

    We present that microbatteries play a critical role in determining the lifetime of downsized sensors, wearable devices, medical applications, and animal acoustic telemetry transmitters among others. More often, structural batteries are required from the perspective of aesthetics and space utilization, which is however rarely explored. Herein, we discuss the fundamental issues associated with the rational design of practically usable high energy microbatteries. The tubular shape of the cell further allows the flexible integration of microelectronics. A functioning acoustic micro-transmitter continuously powered by this tubular battery has been successfully demonstrated. Finally, multiple design features adopted to accommodate large mechanical stress during the rolling process are discussed providing new insights in designing the structural microbatteries for emerging technologies.

  7. A brief review: history to understand fundamentals of electrocardiography

    Directory of Open Access Journals (Sweden)

    Joseph Lindsay

    2012-04-01

    Full Text Available The last decade of the 19th century witnessed the rise of a new era in which physicians used technology along with classical history taking and physical examination for the diagnosis of heart disease. The introduction of chest x-rays and the electrocardiograph (electrocardiogram provided objective information about the structure and function of the heart. In the first half of the 20th century, a number of innovative individuals set in motion a fascinating sequence of discoveries and inventions that led to the 12-lead electrocardiogram, as we know it now. Electrocardiography, nowadays, is an essential part of the initial evaluation for patients presenting with cardiac complaints. As a first line diagnostic tool, health care providers at different levels of training and expertise frequently find it imperative to interpret electrocardiograms. It is likely that an understanding of the electrical basis of electrocardiograms would reduce the likelihood of error. An understanding of the disorders behind electrocardiographic phenomena could reduce the need for memorizing what may seem to be an endless list of patterns. In this article, we will review the important steps in the evolution of electrocardiogram. As is the case in most human endeavors, an understanding of history enables one to deal effectively with the present.

  8. Comparative Framework for Understanding Jewish and Christian Violent Fundamentalism

    Directory of Open Access Journals (Sweden)

    Arie Perliger

    2015-08-01

    Full Text Available Although most scholars agree that in the last couple of decades, religious fundamentalism has become the dominant ideological feature in the landscape of modern terrorism, many prefer to ignore the fact that this is not a development which is restricted to the Islamic world, and that other religious traditions have also experienced growth in groups which prefer to use violent strategies to promote their sacred visions. The current chapter strives to fill this gap by analyzing the emergence of violent religious groups in two distinct, non-Islamic, religious traditions. At first glance, the Christian Identity and the Religious-Zionist movements have very little in common. However, both movements served as a breeding ground for the emergence of violent fundamentalist groups aspiring to facilitate an apocalyptic/redemption scenario by engaging in illegal violent campaigns. Moreover, in both cases, the role of spiritual leaders was crucial in shaping the radicalization of the groups and their target selection, and the violence had a clear symbolic narrative. In other words, for the members of these violent groups, the violence served a clear role in the mobilization of potential supporters, and the branding and dissemination of the movement's ideology. Finally, while in general, terrorism is perceived as the weapon of the weak, in these two cases it was perpetrated by individuals/groups affiliated to communities belonging to the dominant religious framework in their respective polities (i.e., the Religious-Zionist and Christian Identity movements are perceived by their members as branches of Judaism and Christianity. Hence, by utilizing a comparative framework, the article will not just analyze the violent manifestations that emerged from these two movements, but also try to identify the unique factors that characterize and facilitate the emergence of religious groups within religious communities belonging to the dominant religious tradition in their

  9. Systemic thinking fundamentals for understanding problems and messes

    CERN Document Server

    Hester, Patrick T

    2014-01-01

    Whether you’re an academic or a practitioner, a sociologist, a manager, or an engineer, one can benefit from learning to think systemically.  Problems (and messes) are everywhere and they’re getting more complicated every day.  How we think about these problems determines whether or not we’ll be successful in understanding and addressing them.  This book presents a novel way to think about problems (and messes) necessary to attack these always-present concerns.  The approach draws from disciplines as diverse as mathematics, biology, and psychology to provide a holistic method for dealing with problems that can be applied to any discipline. This book develops the systemic thinking paradigm, and introduces practical guidelines for the deployment of a systemic thinking approach.

  10. Fundamental understanding of the Di-Air system (an alternative NO

    NARCIS (Netherlands)

    Wang, Y.; Makkee, M.

    2018-01-01

    Toyota's Di-Air DeNOx system is a promising DeNOx system to meet NOx emission requirement during the real driving, yet, a fundamental understanding largely lacks, e.g. the benefit of fast frequency fuel injection. Ceria is the main ingredient in Di-Air catalyst

  11. The Parliamentary Council's understanding of fundamental rights, and how fundamental rights are protected against nuclear power stations in operation

    International Nuclear Information System (INIS)

    Roth-Stielow, K.

    1980-01-01

    The author explains fundamentals rights in terms of protection of the individual, giving quotations from sittings of the Parliamentary Council. Fundamental rights are to be intergrated completely into Atomic Energy Law. Expert's opinions ought to be scrutinized in depth by court. Experts have to get down to the opinion of minorities. The author advocates the theory of margins. Experts' opinions or established values are nothing but referential values if they do not represent the well-balanced result obtained after considering all relevant, qualified experts' opinions including the opinions of minorities. Following precedents set by the Federal Constitutional Court, findings of a minority of natural scientists have to be considered the state of art or realized danger. (HSCH) [de

  12. Face validity and reliability of a pictorial instrument for assessing fundamental movement skill perceived competence in young children.

    Science.gov (United States)

    Barnett, Lisa M; Ridgers, Nicola D; Zask, Avigdor; Salmon, Jo

    2015-01-01

    To determine reliability and face validity of an instrument to assess young children's perceived fundamental movement skill competence. Validation and reliability study. A pictorial instrument based on the Test Gross Motor Development-2 assessed perceived locomotor (six skills) and object control (six skills) competence using the format and item structure from the physical competence subscale of the Pictorial Scale of Perceived Competence and Acceptance for Young Children. Sample 1 completed object control items in May (n=32) and locomotor items in October 2012 (n=23) at two time points seven days apart. Children were asked at the end of the test-retest their understanding of what was happening in each picture to determine face validity. Sample 2 (n=58) completed 12 items in November 2012 on a single occasion to test internal reliability only. Sample 1 children were aged 5-7 years (M=6.0, SD=0.8) at object control assessment and 5-8 years at locomotor assessment (M=6.5, SD=0.9). Sample 2 children were aged 6-8 years (M=7.2, SD=0.73). Intra-class correlations assessed in Sample 1 children were excellent for object control (intra-class correlation=0.78), locomotor (intra-class correlation=0.82) and all 12 skills (intra-class correlations=0.83). Face validity was acceptable. Internal consistency was adequate in both samples for each subscale and all 12 skills (alpha range 0.60-0.81). This study has provided preliminary evidence for instrument reliability and face validity. This enables future alignment between the measurement of perceived and actual fundamental movement skill competence in young children. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  13. Fundamental understanding and development of low-cost, high-efficiency silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

    2000-05-01

    The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

  14. The basics of information security understanding the fundamentals of InfoSec in theory and practice

    CERN Document Server

    Andress, Jason

    2014-01-01

    As part of the Syngress Basics series, The Basics of Information Security provides you with fundamental knowledge of information security in both theoretical and practical aspects. Author Jason Andress gives you the basic knowledge needed to understand the key concepts of confidentiality, integrity, and availability, and then dives into practical applications of these ideas in the areas of operational, physical, network, application, and operating system security. The Basics of Information Security gives you clear-non-technical explanations of how infosec works and how to apply these princi

  15. Improving conservation outcomes with a new paradigm for understanding species’ fundamental and realized adaptive capacity

    Science.gov (United States)

    Beever, Erik; O’Leary, John; Mengelt, Claudia; West, Jordan M.; Julius, Susan; Green, Nancy; Magness, Dawn; Petes, Laura E.; Stein, Bruce A.; Nicotra, Adrienne B; Hellmann, Jessica J; Robertson, Amanda L; Staudinger, Michelle D.; Rosenberg, Andrew A.; Babij, Eleanora; Brennan, Jean; Schuurman, Gregor W.; Hofmann, Gretchen E

    2016-01-01

    Worldwide, many species are responding to ongoing climate change with shifts in distribution, abundance, phenology, or behavior. Consequently, natural-resource managers face increasingly urgent conservation questions related to biodiversity loss, expansion of invasive species, and deteriorating ecosystem services. We argue that our ability to address these questions is hampered by the lack of explicit consideration of species’ adaptive capacity (AC). AC is the ability of a species or population to cope with climatic changes and is characterized by three fundamental components: phenotypic plasticity, dispersal ability, and genetic diversity. However, few studies simultaneously address all elements; often, AC is confused with sensitivity or omitted altogether from climate-change vulnerability assessments. Improved understanding, consistent definition, and comprehensive evaluations of AC are needed. Using classic ecological-niche theory as an analogy, we propose a new paradigm that considers fundamental and realized AC: the former reflects aspects inherent to species, whereas the latter denotes how extrinsic factors constrain AC to what is actually expressed or observed. Through this conceptualization, we identify ecological attributes contributing to AC, outline areas of research necessary to advance understanding of AC, and provide examples demonstrating how the inclusion of AC can better inform conservation and natural-resource management.

  16. POLYGON - A NEW FUNDAMENTAL MOVEMENT SKILLS TEST FOR 8 YEAR OLD CHILDREN: CONSTRUCTION AND VALIDATION

    Directory of Open Access Journals (Sweden)

    Frane Zuvela

    2011-03-01

    Full Text Available Inadequately adopted fundamental movement skills (FMS in early childhood may have a negative impact on the motor performance in later life (Gallahue and Ozmun, 2005. The need for an efficient FMS testing in Physical Education was recognized. The aim of this paper was to construct and validate a new FMS test for 8 year old children. Ninety-five 8 year old children were used for the testing. A total of 24 new FMS tasks were constructed and only the best representatives of movement areas entered into the final test product - FMS-POLYGON. The ICC showed high values for all 24 tasks (0.83-0.97 and the factorial analysis revealed the best representatives of each movement area that entered the FMS-POLYGON: tossing and catching the volleyball against a wall, running across obstacles, carrying the medicine balls, and straight running. The ICC for the FMS-POLYGON showed a very high result (0.98 and, therefore, confirmed the test's intra-rater reliability. Concurrent validity was tested with the use of the "Test of Gross Motor Development" (TGMD-2. Correlation analysis between the newly constructed FMS-POLYGON and the TGMD-2 revealed the coefficient of -0.82 which indicates a high correlation. In conclusion, the new test for FMS assessment proved to be a reliable and valid instrument for 8 year old children. Application of this test in schools is justified and could play an important factor in physical education and sport practice.

  17. Fundamentals of endoscopic surgery: creation and validation of the hands-on test.

    Science.gov (United States)

    Vassiliou, Melina C; Dunkin, Brian J; Fried, Gerald M; Mellinger, John D; Trus, Thadeus; Kaneva, Pepa; Lyons, Calvin; Korndorffer, James R; Ujiki, Michael; Velanovich, Vic; Kochman, Michael L; Tsuda, Shawn; Martinez, Jose; Scott, Daniel J; Korus, Gary; Park, Adrian; Marks, Jeffrey M

    2014-03-01

    The Fundamentals of Endoscopic Surgery™ (FES) program consists of online materials and didactic and skills-based tests. All components were designed to measure the skills and knowledge required to perform safe flexible endoscopy. The purpose of this multicenter study was to evaluate the reliability and validity of the hands-on component of the FES examination, and to establish the pass score. Expert endoscopists identified the critical skill set required for flexible endoscopy. They were then modeled in a virtual reality simulator (GI Mentor™ II, Simbionix™ Ltd., Airport City, Israel) to create five tasks and metrics. Scores were designed to measure both speed and precision. Validity evidence was assessed by correlating performance with self-reported endoscopic experience (surgeons and gastroenterologists [GIs]). Internal consistency of each test task was assessed using Cronbach's alpha. Test-retest reliability was determined by having the same participant perform the test a second time and comparing their scores. Passing scores were determined by a contrasting groups methodology and use of receiver operating characteristic curves. A total of 160 participants (17 % GIs) performed the simulator test. Scores on the five tasks showed good internal consistency reliability and all had significant correlations with endoscopic experience. Total FES scores correlated 0.73, with participants' level of endoscopic experience providing evidence of their validity, and their internal consistency reliability (Cronbach's alpha) was 0.82. Test-retest reliability was assessed in 11 participants, and the intraclass correlation was 0.85. The passing score was determined and is estimated to have a sensitivity (true positive rate) of 0.81 and a 1-specificity (false positive rate) of 0.21. The FES hands-on skills test examines the basic procedural components required to perform safe flexible endoscopy. It meets rigorous standards of reliability and validity required for high

  18. Understanding water equilibration fundamentals as a step for rational protein crystallization.

    Directory of Open Access Journals (Sweden)

    Pedro M Martins

    Full Text Available BACKGROUND: Vapor diffusion is the most widely used technique for protein crystallization and the rate of water evaporation plays a key role on the quality of the crystals. Attempts have been made in the past to solve the mass transfer problem governing the evaporation process, either analytically or by employing numerical methods. Despite these efforts, the methods used for protein crystallization remain based on trial and error techniques rather than on fundamental principles. METHODOLOGY/PRINCIPAL FINDINGS: Here we present a new theoretical model which describes the hanging drop method as a function of the different variables that are known to influence the evaporation process. The model is extensively tested against experimental data published by other authors and considering different crystallizing conditions. Aspects responsible for the discrepancies between the existing theories and the measured evaporation kinetics are especially discussed; they include the characterization of vapor-liquid equilibrium, the role of mass transfer within the evaporating droplet, and the influence of the droplet-reservoir distance. CONCLUSIONS/SIGNIFICANCE: The validation tests show that the proposed model can be used to predict the water evaporation rates under a wide range of experimental conditions used in the hanging drop vapor-diffusion method, with no parameter fitting or computational requirements. This model combined with protein solubility data is expected to become a useful tool for a priori screening of crystallization conditions.

  19. POLYGON - A New Fundamental Movement Skills Test for 8 Year Old Children: Construction and Validation.

    Science.gov (United States)

    Zuvela, Frane; Bozanic, Ana; Miletic, Durdica

    2011-01-01

    Inadequately adopted fundamental movement skills (FMS) in early childhood may have a negative impact on the motor performance in later life (Gallahue and Ozmun, 2005). The need for an efficient FMS testing in Physical Education was recognized. The aim of this paper was to construct and validate a new FMS test for 8 year old children. Ninety-five 8 year old children were used for the testing. A total of 24 new FMS tasks were constructed and only the best representatives of movement areas entered into the final test product - FMS-POLYGON. The ICC showed high values for all 24 tasks (0.83-0.97) and the factorial analysis revealed the best representatives of each movement area that entered the FMS-POLYGON: tossing and catching the volleyball against a wall, running across obstacles, carrying the medicine balls, and straight running. The ICC for the FMS-POLYGON showed a very high result (0.98) and, therefore, confirmed the test's intra-rater reliability. Concurrent validity was tested with the use of the "Test of Gross Motor Development" (TGMD-2). Correlation analysis between the newly constructed FMS-POLYGON and the TGMD-2 revealed the coefficient of -0.82 which indicates a high correlation. In conclusion, the new test for FMS assessment proved to be a reliable and valid instrument for 8 year old children. Application of this test in schools is justified and could play an important factor in physical education and sport practice. Key pointsAll 21 newly constructed tasks demonstrated high intra-rater reliability (0.83-0.97) in FMS assessment. High reliability was also noted in the FMS-POLYGON test (0.98).A high correlation was found between the FMS-POLYGON and TGMD-2 which is a confirmation of the new test's concurrent validity.The research resolved the problem of long and detailed FMS assessment by adding a new dimension using quick and effective norm-referenced approach but also covering all the most important movement areas.New and validated test can be of great use

  20. Fundamentals of Melt-Water Interfacial Transport Phenomena: Improved Understanding for Innovative Safety Technologies in ALWRs

    Energy Technology Data Exchange (ETDEWEB)

    M. Anderson; M. Corradini; K.Y. Bank; R. Bonazza; D. Cho

    2005-04-26

    The interaction and mixing of high-temperature melt and water is the important technical issue in the safety assessment of water-cooled reactors to achieve ultimate core coolability. For specific advanced light water reactor (ALWR) designs, deliberate mixing of the core-melt and water is being considered as a mitigative measure, to assure ex-vessel core coolability. The goal of this work is to provide the fundamental understanding needed for melt-water interfacial transport phenomena, thus enabling the development of innovative safety technologies for advanced LWRs that will assure ex-vessel core coolability. The work considers the ex-vessel coolability phenomena in two stages. The first stage is the melt quenching process and is being addressed by Argonne National Lab and University of Wisconsin in modified test facilities. Given a quenched melt in the form of solidified debris, the second stage is to characterize the long-term debris cooling process and is being addressed by Korean Maritime University in via test and analyses. We then address the appropriate scaling and design methodologies for reactor applications.

  1. Fundamentals of Melt-Water Interfacial Transport Phenomena: Improved Understanding for Innovative Safety Technologies in ALWRs

    International Nuclear Information System (INIS)

    Anderson, M.; Corradini, M.; Bank, K.Y.; Bonazza, R.; Cho, D.

    2005-01-01

    The interaction and mixing of high-temperature melt and water is the important technical issue in the safety assessment of water-cooled reactors to achieve ultimate core coolability. For specific advanced light water reactor (ALWR) designs, deliberate mixing of the core-melt and water is being considered as a mitigative measure, to assure ex-vessel core coolability. The goal of this work is to provide the fundamental understanding needed for melt-water interfacial transport phenomena, thus enabling the development of innovative safety technologies for advanced LWRs that will assure ex-vessel core coolability. The work considers the ex-vessel coolability phenomena in two stages. The first stage is the melt quenching process and is being addressed by Argonne National Lab and University of Wisconsin in modified test facilities. Given a quenched melt in the form of solidified debris, the second stage is to characterize the long-term debris cooling process and is being addressed by Korean Maritime University in via test and analyses. We then address the appropriate scaling and design methodologies for reactor applications

  2. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains

  3. Recent contributions of flame-sampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Nils [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Cool, Terrill A. [School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 (United States); Westmoreland, Phillip R. [Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003 (United States); Kohse-Hoeinghaus, Katharina [Department of Chemistry, Bielefeld University, D-33615 Bielefeld (Germany)

    2009-04-15

    Flame-sampling molecular-beam mass spectrometry of premixed, laminar, low-pressure flat flames has been demonstrated to be an efficient tool to study combustion chemistry. In this technique, flame gases are sampled through a small opening in a quartz probe, and after formation of a molecular beam, all flame species are separated using mass spectrometry. The present review focuses on critical aspects of the experimental approach including probe sampling effects, different ionization processes, and mass separation procedures. The capability for isomer-resolved flame species measurements, achievable by employing tunable vacuum-ultraviolet radiation for single-photon ionization, has greatly benefited flame-sampling molecular-beam mass spectrometry. This review also offers an overview of recent combustion chemistry studies of flames fueled by hydrocarbons and oxygenates. The identity of a variety of intermediates in hydrocarbon flames, including resonantly stabilized radicals and closed-shell intermediates, is described, thus establishing a more detailed understanding of the fundamentals of molecular-weight growth processes. Finally, molecular-beam mass-spectrometric studies of reaction paths in flames of alcohols, ethers, and esters, which have been performed to support the development and validation of kinetic models for bio-derived alternative fuels, are reviewed. (author)

  4. Understanding Fundamental Material Degradation Processes in High Temperature Aggressive Chemomechanical Environments

    International Nuclear Information System (INIS)

    2014-01-01

    The objective of this project is to develop a fundamental understanding of the mechanisms that limit materials durability for very high-temperature applications. Current design limitations are based on material strength and corrosion resistance. This project will characterize the interactions of high-temperature creep, fatigue, and environmental attack in structural metallic alloys of interest for the very high-temperature gas-cooled reactor (VHTR) or Next Generation Nuclear Plant (NGNP) and for the associated thermo-chemical processing systems for hydrogen generation. Each of these degradation processes presents a major materials design challenge on its own, but in combination, they can act synergistically to rapidly degrade materials and limit component lives. This research and development effort will provide experimental results to characterize creep-fatigue-environment interactions and develop predictive models to define operation limits for high-temperature structural material applications. Researchers will study individually and in combination creep-fatigue-environmental attack processes in Alloys 617, 230, and 800H, as well as in an advanced Ni-Cr oxide dispersion strengthened steel (ODS) system. For comparison, the study will also examine basic degradation processes in nichrome (Ni-20Cr), which is a basis for most high-temperature structural materials, as well as many of the superalloys. These materials are selected to represent primary candidate alloys, one advanced developmental alloy that may have superior high-temperature durability, and one model system on which basic performance and modeling efforts can be based. The research program is presented in four parts, which all complement each other. The first three are primarily experimental in nature, and the last will tie the work together in a coordinated modeling effort. The sections are (1) dynamic creep-fatigue-environment process, (2) subcritical crack processes, (3) dynamic corrosion crack

  5. Understanding Fundamental Material Degradation Processes in High Temperature Aggressive Chemomechanical Environments

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, James; Gewirth, Andrew; Sehitoglu, Huseyin; Sofronis, Petros; Robertson, Ian

    2014-01-16

    The objective of this project is to develop a fundamental understanding of the mechanisms that limit materials durability for very high-temperature applications. Current design limitations are based on material strength and corrosion resistance. This project will characterize the interactions of high-temperature creep, fatigue, and environmental attack in structural metallic alloys of interest for the very high-temperature gas-cooled reactor (VHTR) or Next–Generation Nuclear Plant (NGNP) and for the associated thermo-chemical processing systems for hydrogen generation. Each of these degradation processes presents a major materials design challenge on its own, but in combination, they can act synergistically to rapidly degrade materials and limit component lives. This research and development effort will provide experimental results to characterize creep-fatigue-environment interactions and develop predictive models to define operation limits for high-temperature structural material applications. Researchers will study individually and in combination creep-fatigue-environmental attack processes in Alloys 617, 230, and 800H, as well as in an advanced Ni-Cr oxide dispersion strengthened steel (ODS) system. For comparison, the study will also examine basic degradation processes in nichrome (Ni-20Cr), which is a basis for most high-temperature structural materials, as well as many of the superalloys. These materials are selected to represent primary candidate alloys, one advanced developmental alloy that may have superior high-temperature durability, and one model system on which basic performance and modeling efforts can be based. The research program is presented in four parts, which all complement each other. The first three are primarily experimental in nature, and the last will tie the work together in a coordinated modeling effort. The sections are (1) dynamic creep-fatigue-environment process, (2) subcritical crack processes, (3) dynamic corrosion – crack

  6. A fundamental special-relativistic theory valid for all real-valued speeds

    Directory of Open Access Journals (Sweden)

    Vedprakash Sewjathan

    1984-01-01

    Full Text Available This paper constitutes a fundamental rederivation of special relativity based on the c-invariance postulate but independent of the assumption ds′2=±ds2 (Einstein [1], Kittel et al [2], Recami [3], the equivalence principle, homogeneity of space-time, isotropy of space, group properties and linearity of space-time transformations or the coincidence of the origins of inertial space-time frames. The mathematical formalism is simpler than Einstein's [4] and Recami's [3]. Whilst Einstein's subluminal and Recami's superluminal theories are rederived in this paper by further assuming the equivalence principle and “mathematical inverses” [4,3], this paper derives (independent of these assumptions with physico-mathematical motivation an alternate singularity-free special-relativistic theory which replaces Einstein's factor [1/(1−V2/c2]12 and Recami's extended-relativistic factor [1/(V2/c2−1]12 by [(1−(V2/c2n/(1−V2/c2]12, where n equals the value of (m(V/m02 as |V|→c. In this theory both Newton's and Einstein's subluminal theories are experimentally valid on account of negligible terms. This theory implies that non-zero rest mass luxons will not be detected as ordinary non-zero rest mass bradyons because of spatial collapse, and non-zero rest mass tachyons are undetectable because they exist in another cosmos, resulting in a supercosmos of matter, with the possibility of infinitely many such supercosmoses, all moving forward in time. Furthermore this theory is not based on any assumption giving rise to the twin paradox controversy. The paper concludes with a discussion of the implications of this theory for general relativity.

  7. Atom-to-continuum methods for gaining a fundamental understanding of fracture.

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, David Lynn (Georgia Institute of Technology, Atlanta, GA); Reedy, Earl David, Jr.; Templeton, Jeremy Alan; Jones, Reese E.; Moody, Neville Reid; Zimmerman, Jonathan A.; Belytschko, Ted. (Northwestern University, Evanston, IL); Zhou, Xiao Wang; Lloyd, Jeffrey T. (Georgia Institute of Technology, Atlanta, GA); Oswald, Jay (Northwestern University, Evanston, IL); Delph, Terry J. (Lehigh University, Bethlehem, PA); Kimmer, Christopher J. (Indiana University Southeast, New Albany, IN)

    2011-08-01

    This report describes an Engineering Sciences Research Foundation (ESRF) project to characterize and understand fracture processes via molecular dynamics modeling and atom-to-continuum methods. Under this aegis we developed new theory and a number of novel techniques to describe the fracture process at the atomic scale. These developments ranged from a material-frame connection between molecular dynamics and continuum mechanics to an atomic level J integral. Each of the developments build upon each other and culminated in a cohesive zone model derived from atomic information and verified at the continuum scale. This report describes an Engineering Sciences Research Foundation (ESRF) project to characterize and understand fracture processes via molecular dynamics modeling and atom-to-continuum methods. The effort is predicated on the idea that processes and information at the atomic level are missing in engineering scale simulations of fracture, and, moreover, are necessary for these simulations to be predictive. In this project we developed considerable new theory and a number of novel techniques in order to describe the fracture process at the atomic scale. Chapter 2 gives a detailed account of the material-frame connection between molecular dynamics and continuum mechanics we constructed in order to best use atomic information from solid systems. With this framework, in Chapter 3, we were able to make a direct and elegant extension of the classical J down to simulations on the scale of nanometers with a discrete atomic lattice. The technique was applied to cracks and dislocations with equal success and displayed high fidelity with expectations from continuum theory. Then, as a prelude to extension of the atomic J to finite temperatures, we explored the quasi-harmonic models as efficient and accurate surrogates of atomic lattices undergoing thermo-elastic processes (Chapter 4). With this in hand, in Chapter 5 we provide evidence that, by using the appropriate

  8. Fundamental ecology is fundamental.

    Science.gov (United States)

    Courchamp, Franck; Dunne, Jennifer A; Le Maho, Yvon; May, Robert M; Thébaud, Christophe; Hochberg, Michael E

    2015-01-01

    The primary reasons for conducting fundamental research are satisfying curiosity, acquiring knowledge, and achieving understanding. Here we develop why we believe it is essential to promote basic ecological research, despite increased impetus for ecologists to conduct and present their research in the light of potential applications. This includes the understanding of our environment, for intellectual, economical, social, and political reasons, and as a major source of innovation. We contend that we should focus less on short-term, objective-driven research and more on creativity and exploratory analyses, quantitatively estimate the benefits of fundamental research for society, and better explain the nature and importance of fundamental ecology to students, politicians, decision makers, and the general public. Our perspective and underlying arguments should also apply to evolutionary biology and to many of the other biological and physical sciences. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Multi-satellite climatologies of fundamental atmospheric variables from Radio Occulation and their validation

    International Nuclear Information System (INIS)

    Pirscher, B.

    2010-01-01

    Monitoring of global climate change requires high quality observations not only on the Earths surface but also in the free atmosphere. Global Positioning System (GPS) Radio Occultation (RO) observations are known to have the potential to deliver very accurate, precise, and long-term stable measurements between about 8 km and 30 km altitude.This thesis investigates the suitability of RO observations to serve as climate benchmark record by validating the consistency of RO data provided by different satellites. The main focus lies on systematic differences of RO climatologies, originating from different data processing, data quality, spatio-temporal sampling, and particular orbit characteristics. Data of six RO satellite missions (including one multi-satellite constellation) are analyzed. Largest disagreements of RO climatologies are observed when comparing data provided by different processing centers. Mean absolute temperature differences between 8 km and 30 km altitude amount to 0.5 K, while climate time series of temperature changes agree much closer.Utilizing RO data from the same data center and considering space-temporal sampling yields remarkable consistency of temperature climatologies with mean differences being smaller than 0.1 K. Disagreements are found to be largest at 35 km, where they exceed 0.2 K. This results from different data quality and its utilization within the processing scheme. Climatologies, which are derived from data with the same quality agree to within 0.02 K also at high altitudes. The measurements local time, which depends on the satellites orbit, has a minor but clearly understandable influence on differences in RO climatologies. The results underline the utility of RO data for long-term monitoring of the global climate. (author) [de

  10. Do we understand children's restlessness? Constructing ecologically valid understandings through reflexive cooperation

    Directory of Open Access Journals (Sweden)

    Anna Helle-Valle

    2015-12-01

    Full Text Available Attention-deficit/hyperactivity disorder (ADHD is the most widely used children's mental health diagnosis today, but the validity of the diagnosis is controversial, for instance, because it might conceal relational and ecological dimensions of restlessness. We invited parents and professionals from one local community in western Norway to participate in cooperative group discussions on how to conceptualize and understand children's restlessness. We carried out a thematic and reflexive analysis of the cooperative group discussions on ADHD and children's restlessness, and present findings related to three ecological levels inspired by Bronfenbrenner's ecological systems model. At the level of the individual, restlessness was discussed as individual trait, as the expectation to be seen and heard, and as a result of traumatization. At the level of dyad, group or family, restlessness was discussed as a relational phenomenon and as parents' problems. At the level of community, restlessness was discussed as lack of cooperation and lack of structures or resources. Our findings show how contextualized and cooperative reflexivity can contribute to more valid understandings of children's restlessness, and how cooperative inquiry can stimulate reflections about solidarity and sustainability in relation to adult's actions.

  11. Fundamentals of risk management understanding, evaluating and implementing effective risk management

    CERN Document Server

    Hopkin, Paul

    2012-01-01

    Now more than ever, organizations must plan, response and recognize all forms of risks that they face. "Fundamentals of Risk Management", now in its second edition, provides a comprehensive introduction to the subject of commercial and business risk for anyone studying for a career in risk as well as a broad range of risk professionals. It examines the key components of risk management and its application with examples to demonstrate its benefit to organisations in the public and private sector. The second edition has been completely updated to take into account the greater influence of ISO 3100, the emergence of Governance Risk and Compliance (GRC) and the wide use of the bowtie method to illustrate risk management. In addition, there is now a chapter on the skills and competencies required by an effective risk manager.

  12. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries

    Science.gov (United States)

    Assat, Gaurav; Tarascon, Jean-Marie

    2018-05-01

    Our increasing dependence on lithium-ion batteries for energy storage calls for continual improvements in the performance of their positive electrodes, which have so far relied solely on cationic redox of transition-metal ions for driving the electrochemical reactions. Great hopes have recently been placed on the emergence of anionic redox—a transformational approach for designing positive electrodes as it leads to a near-doubling of capacity. But questions have been raised about the fundamental origins of anionic redox and whether its full potential can be realized in applications. In this Review, we discuss the underlying science that triggers a reversible and stable anionic redox activity. Furthermore, we highlight its practical limitations and outline possible approaches for improving such materials and designing new ones. We also summarize their chances for market implementation in the face of the competing nickel-based layered cathodes that are prevalent today.

  13. pH Effects in Foods: Development, Validation and Calibration of a Fundamental Model

    NARCIS (Netherlands)

    Tijskens, L.M.M.; Biekman, E.S.A.; Greiner, R.; Seyhan, F.; Barringer, S.A.

    2001-01-01

    The effects of pH observed in the activity of a number of enzymes from different origins and the degradation of green colour in blanched vegetables, was modelled based on fundamental kinetic principles by considering hydrogen ions as an integral part of the reaction mechanism. Parameters were

  14. Fundamental challenges in mechanistic enzymology: progress toward understanding the rate enhancements of enzymes.

    Science.gov (United States)

    Herschlag, Daniel; Natarajan, Aditya

    2013-03-26

    Enzymes are remarkable catalysts that lie at the heart of biology, accelerating chemical reactions to an astounding extent with extraordinary specificity. Enormous progress in understanding the chemical basis of enzymatic transformations and the basic mechanisms underlying rate enhancements over the past decades is apparent. Nevertheless, it has been difficult to achieve a quantitative understanding of how the underlying mechanisms account for the energetics of catalysis, because of the complexity of enzyme systems and the absence of underlying energetic additivity. We review case studies from our own work that illustrate the power of precisely defined and clearly articulated questions when dealing with such complex and multifaceted systems, and we also use this approach to evaluate our current ability to design enzymes. We close by highlighting a series of questions that help frame some of what remains to be understood, and we encourage the reader to define additional questions and directions that will deepen and broaden our understanding of enzymes and their catalysis.

  15. Understanding the Fundamental Properties of Dark Matter and Dark Energy in Structure formation and Cosmology

    International Nuclear Information System (INIS)

    Ellis, Richard S.

    2008-01-01

    This program is concerned with developing and verifying the validity of observational methods for constraining the properties of dark matter and dark energy in the universe. Excellent progress has been made in comparing observational projects involving weak gravitational lensing using both ground and space-based instruments, in further constraining the nature of dark matter via precise measures of its distribution in clusters of galaxies using strong gravitational lensing, in demonstrating the possible limitations of using distant supernovae in future dark energy missions, and in investigating the requirement for ground-based surveys of baryonic acoustic oscillations.

  16. SELF-DETERMINATION THE FUNDAMENTAL CATEGORY OF PERSON IN THE UNDERSTANDING OF KAROL WOJTYŁA

    Directory of Open Access Journals (Sweden)

    TADEUSZ ROSTWOROWSKI, S.J.

    2011-05-01

    Full Text Available The concept of self-determination is the central category of personin the understanding of Karol Wojtyła. He perceived and developed it thanks to the application of a phenomenological method so that in the full description of experience gained by man one arrives at the noumenal bases of man himself.

  17. Understanding Irreversible Degradation of Nb3Sn Wires with Fundamental Fracture Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yuhu [PPPL; Calzolaio, Ciro [Univ of Geneva; Senatore, Carmine [Univ of Geneva

    2014-08-01

    Irreversible performance degradation of advanced Nb3Sn superconducting wires subjected to transverse or axial mechanical loading is a critical issue for the design of large-scale fusion and accelerator magnets such as ITER and LHC. Recent SULTAN tests indicate that most cable-in-conduit conductors for ITER coils made of Nb3Sn wires processed by various fabrication techniques show similar performance degradation under cyclic loading. The irreversible degradation due to filament fracture and local strain accumulation in Nb3Sn wires cannot be described by the existing strand scaling law. Fracture mechanic modeling combined with X-ray diffraction imaging of filament micro-crack formation inside the wires under mechanical loading may reveal exciting insights to the wire degradation mechanisms. We apply fundamental fracture mechanics with a singularity approach to study influence of wire filament microstructure of initial void size and distribution to local stress concentration and potential crack propagation. We report impact of the scale and density of the void structure on stress concentration in the composite wire materials for crack initiation. These initial defects result in an irreversible degradation of the critical current beyond certain applied stress. We also discuss options to minimize stress concentration in the design of the material microstructure for enhanced wire performance for future applications.

  18. Fundamentals of critical analysis: the concept of validity and analysis essentials

    Directory of Open Access Journals (Sweden)

    Miguel Araujo Alonso

    2012-01-01

    Full Text Available Critical analysis of literature is an assessment process that allows the reader to get an idea of potential error in the results of a study, errors arising either from bias or confusion. Critical analysis attempts to establish whether the study meets expected criteria or methodological conditions. There are many checklists available that are commonly used to guide this analysis, but filling out a checklist is not tantamount to critical appraisal. Internal validity is defined as the extent to which a research finding actually represents the true relationship between exposure and outcome, considering the unique conditions in which the study was carried out. Attention must be given to the inclusion and exclusion criteria that were used, on the sampling methods, on the baseline characteristics of the patients that were enrolled in the study. External validity refers to the possibility of generalizing conclusions beyond the study sample or the study population. External validity includes population validity and ecological validity. Lastly, the article covers potential threats to external validity that must be considered when analyzing a study.

  19. Developing high-performance cross-functional teams: Understanding motivations, functional loyalties, and teaming fundamentals

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.A.

    1996-08-01

    Teamwork is the key to the future of effective technology management. Today`s technologies and markets have become too complex for individuals to work alone. Global competition, limited resources, cost consciousness, and time pressures have forced organizations and project managers to encourage teamwork. Many of these teams will be cross-functional teams that can draw on a multitude of talents and knowledge. To develop high-performing cross-functional teams, managers must understand motivations, functional loyalties, and the different backgrounds of the individual team members. To develop a better understanding of these issues, managers can learn from experience and from literature on teams and teaming concepts. When studying the literature to learn about cross-functional teaming, managers will find many good theoretical concepts, but when put into practice, these concepts have varying effects. This issue of varying effectiveness is what drives the research for this paper. The teaming concepts were studied to confirm or modify current understanding. The literature was compared with a {open_quotes}ground truth{close_quotes}, a survey of the reality of teaming practices, to examine the teaming concepts that the literature finds to be critical to the success of teams. These results are compared to existing teams to determine if such techniques apply in real-world cases.

  20. Fundamental Understanding of Ambient and High-Temperature Plasticity Phenomena in Structural Materials in Advanced Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Deo, Chaitanya; Zhu, Ting; McDowell, David

    2013-11-17

    The goal of this research project is to develop the methods and tools necessary to link unit processes analyzed using atomistic simulations involving interaction of vacancies and interstitials with dislocations, as well as dislocation mediation at sessile junctions and interfaces as affected by radiation, with cooperative influence on higher-length scale behavior of polycrystals. These tools and methods are necessary to design and enhance radiation-induced damage-tolerant alloys. The project will achieve this goal by applying atomistic simulations to characterize unit processes of: 1. Dislocation nucleation, absorption, and desorption at interfaces 2. Vacancy production, radiation-induced segregation of substitutional Cr at defect clusters (point defect sinks) in BCC Fe-Cr ferritic/martensitic steels 3. Investigation of interaction of interstitials and vacancies with impurities (V, Nb, Ta, Mo, W, Al, Si, P, S) 4. Time evolution of swelling (cluster growth) phenomena of irradiated materials 5. Energetics and kinetics of dislocation bypass of defects formed by interstitial clustering and formation of prismatic loops, informing statistical models of continuum character with regard to processes of dislocation glide, vacancy agglomeration and swelling, climb and cross slip This project will consider the Fe, Fe-C, and Fe-Cr ferritic/martensitic material system, accounting for magnetism by choosing appropriate interatomic potentials and validating with first principles calculations. For these alloys, the rate of swelling and creep enhancement is considerably lower than that of face-centered cubic (FCC) alloys and of austenitic Fe-Cr-Mo alloys. The team will confirm mechanisms, validate simulations at various time and length scales, and improve the veracity of computational models. The proposed research?s feasibility is supported by recent modeling of radiation effects in metals and alloys, interfacial dislocation transfer reactions in nano-twinned copper, and dislocation

  1. Towards a Fundamental Understanding of Short Period Eclipsing Binary Systems Using Kepler Data

    Science.gov (United States)

    Prsa, Andrej

    Kepler's ultra-high precision photometry is revolutionizing stellar astrophysics. We are seeing intrinsic phenomena on an unprecedented scale, and interpreting them is both a challenge and an exciting privilege. Eclipsing binary stars are of particular significance for stellar astrophysics because precise modeling leads to fundamental parameters of the orbiting components: masses, radii, temperatures and luminosities to better than 1-2%. On top of that, eclipsing binaries are ideal physical laboratories for studying other physical phenomena, such as asteroseismic properties, chromospheric activity, proximity effects, mass transfer in close binaries, etc. Because of the eclipses, the basic geometry is well constrained, but a follow-up spectroscopy is required to get the dynamical masses and the absolute scale of the system. A conjunction of Kepler photometry and ground- based spectroscopy is a treasure trove for eclipsing binary star astrophysics. This proposal focuses on a carefully selected set of 100 short period eclipsing binary stars. The fundamental goal of the project is to study the intrinsic astrophysical effects typical of short period binaries in great detail, utilizing Kepler photometry and follow-up spectroscopy to devise a robust and consistent set of modeling results. The complementing spectroscopy is being secured from 3 approved and fully funded programs: the NOAO 4-m echelle spectroscopy at Kitt Peak (30 nights; PI Prsa), the 10- m Hobby-Eberly Telescope high-resolution spectroscopy (PI Mahadevan), and the 2.5-m Sloan Digital Sky Survey III spectroscopy (PI Mahadevan). The targets are prioritized by the projected scientific yield. Short period detached binaries host low-mass (K- and M- type) components for which the mass-radius relationship is sparsely populated and still poorly understood, as the radii appear up to 20% larger than predicted by the population models. We demonstrate the spectroscopic detection viability in the secondary

  2. The basics of cloud computing understanding the fundamentals of cloud computing in theory and practice

    CERN Document Server

    Rountree, Derrick

    2013-01-01

    As part of the Syngress Basics series, The Basics of Cloud Computing provides readers with an overview of the cloud and how to implement cloud computing in their organizations. Cloud computing continues to grow in popularity, and while many people hear the term and use it in conversation, many are confused by it or unaware of what it really means. This book helps readers understand what the cloud is and how to work with it, even if it isn't a part of their day-to-day responsibility. Authors Derrick Rountree and Ileana Castrillo explains the concepts of cloud computing in prac

  3. Validity evidence for the Fundamentals of Laparoscopic Surgery (FLS) program as an assessment tool: a systematic review.

    Science.gov (United States)

    Zendejas, Benjamin; Ruparel, Raaj K; Cook, David A

    2016-02-01

    The Fundamentals of Laparoscopic Surgery (FLS) program uses five simulation stations (peg transfer, precision cutting, loop ligation, and suturing with extracorporeal and intracorporeal knot tying) to teach and assess laparoscopic surgery skills. We sought to summarize evidence regarding the validity of scores from the FLS assessment. We systematically searched for studies evaluating the FLS as an assessment tool (last search update February 26, 2013). We classified validity evidence using the currently standard validity framework (content, response process, internal structure, relations with other variables, and consequences). From a pool of 11,628 studies, we identified 23 studies reporting validity evidence for FLS scores. Studies involved residents (n = 19), practicing physicians (n = 17), and medical students (n = 8), in specialties of general (n = 17), gynecologic (n = 4), urologic (n = 1), and veterinary (n = 1) surgery. Evidence was most common in the form of relations with other variables (n = 22, most often expert-novice differences). Only three studies reported internal structure evidence (inter-rater or inter-station reliability), two studies reported content evidence (i.e., derivation of assessment elements), and three studies reported consequences evidence (definition of pass/fail thresholds). Evidence nearly always supported the validity of FLS total scores. However, the loop ligation task lacks discriminatory ability. Validity evidence confirms expected relations with other variables and acceptable inter-rater reliability, but other validity evidence is sparse. Given the high-stakes use of this assessment (required for board eligibility), we suggest that more validity evidence is required, especially to support its content (selection of tasks and scoring rubric) and the consequences (favorable and unfavorable impact) of assessment.

  4. Nanoparticles Stabilize Thin Polymer Films: A Fundamental Study to Understand the Phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Michael E. Mackay

    2009-03-04

    A new understanding of thermodynamics at the nanoscale resulted in a recently discovered first order phase transition that nanoparticles in a polymer film will all segregate to the supporting substrate. This is an unusual phase transition that was predicted using a modeling technique developed at Sandia National Laboratories and required the equivalent of many computational years on one computer. This project is a collaboration between Prof. Michael Mackay's group and Dr. Amalie Frischknecht (Sandia National Laboratories) where experimental observation and theoretical rationalization and prediction are brought together. Other discoveries were that this phase transition could be avoided by changing the nanoparticle properties yielding control of the assembly process at the nanoscale. In fact, the nanoparticles could be made to assemble to the supporting substrate, to the air interface or not assemble at all within a thin polymer film of order 100 nm in thickness. However, when the assembly process is present it is so robust that it is possible to make rough liquid films at the nanoscale due to nanoparticles assembling around three-dimensional objects. From this knowledge we are able to design and manufacture new coatings with particular emphasis on polymer-based solar cells. Careful control of the morphology at the nanoscale is expected to provide more efficient devices since the physics of these systems is dictated at this length scale and assembly of nanoparticles to various interfaces is critical to operation.

  5. Modeling TH 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma.

    Science.gov (United States)

    Foster, Paul S; Maltby, Steven; Rosenberg, Helene F; Tay, Hock L; Hogan, Simon P; Collison, Adam M; Yang, Ming; Kaiko, Gerard E; Hansbro, Philip M; Kumar, Rakesh K; Mattes, Joerg

    2017-07-01

    In this review, we highlight experiments conducted in our laboratories that have elucidated functional roles for CD4 + T-helper type-2 lymphocytes (T H 2 cells), their associated cytokines, and eosinophils in the regulation of hallmark features of allergic asthma. Notably, we consider the complexity of type-2 responses and studies that have explored integrated signaling among classical T H 2 cytokines (IL-4, IL-5, and IL-13), which together with CCL11 (eotaxin-1) regulate critical aspects of eosinophil recruitment, allergic inflammation, and airway hyper-responsiveness (AHR). Among our most important findings, we have provided evidence that the initiation of T H 2 responses is regulated by airway epithelial cell-derived factors, including TRAIL and MID1, which promote T H 2 cell development via STAT6-dependent pathways. Further, we highlight studies demonstrating that microRNAs are key regulators of allergic inflammation and potential targets for anti-inflammatory therapy. On the background of T H 2 inflammation, we have demonstrated that innate immune cells (notably, airway macrophages) play essential roles in the generation of steroid-resistant inflammation and AHR secondary to allergen- and pathogen-induced exacerbations. Our work clearly indicates that understanding the diversity and spatiotemporal role of the inflammatory response and its interactions with resident airway cells is critical to advancing knowledge on asthma pathogenesis and the development of new therapeutic approaches. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Our place in the universe understanding fundamental astronomy from ancient discoveries

    CERN Document Server

    Kwok, Sun

    2017-01-01

    If you have ever wanted to understand the basic principles of astronomy and celestial movements, you should read this book. Using pictures of the sky observed from different places on Earth, as well as drawings of ancient astronomical methods and tools, Prof. Sun Kwok tells this story in an entertaining and fascinating way. Since the beginning of human civilization, people have wondered about the structure of the cosmos and our place in the Universe. More than 2,000 years ago, our ancestors knew that the seasons were unequal, the Earth was an unattached object floating in space, and stars existed that they could not see. From celestial observations, they concluded that the Earth was round. Using simple tools and mathematics, ancient astronomers accurately determined the sizes of the Earth and Moon, the distance to the Moon, and the lengths of the months and year. With a clever device called the armillary sphere, Greek astronomers could predict the times of sunrise and sunset on any day of the year, at any pla...

  7. Dosimetric validation of the anisotropic analytical algorithm for photon dose calculation: fundamental characterization in water

    International Nuclear Information System (INIS)

    Fogliata, Antonella; Nicolini, Giorgia; Vanetti, Eugenio; Clivio, Alessandro; Cozzi, Luca

    2006-01-01

    In July 2005 a new algorithm was released by Varian Medical Systems for the Eclipse planning system and installed in our institute. It is the anisotropic analytical algorithm (AAA) for photon dose calculations, a convolution/superposition model for the first time implemented in a Varian planning system. It was therefore necessary to perform validation studies at different levels with a wide investigation approach. To validate the basic performances of the AAA, a detailed analysis of data computed by the AAA configuration algorithm was carried out and data were compared against measurements. To better appraise the performance of AAA and the capability of its configuration to tailor machine-specific characteristics, data obtained from the pencil beam convolution (PBC) algorithm implemented in Eclipse were also added in the comparison. Since the purpose of the paper is to address the basic performances of the AAA and of its configuration procedures, only data relative to measurements in water will be reported. Validation was carried out for three beams: 6 MV and 15 MV from a Clinac 2100C/D and 6 MV from a Clinac 6EX. Generally AAA calculations reproduced very well measured data, and small deviations were observed, on average, for all the quantities investigated for open and wedged fields. In particular, percentage depth-dose curves showed on average differences between calculation and measurement smaller than 1% or 1 mm, and computed profiles in the flattened region matched measurements with deviations smaller than 1% for all beams, field sizes, depths and wedges. Percentage differences in output factors were observed as small as 1% on average (with a range smaller than ±2%) for all conditions. Additional tests were carried out for enhanced dynamic wedges with results comparable to previous results. The basic dosimetric validation of the AAA was therefore considered satisfactory

  8. Harmonisation and updatability based on valid fundamental data of the German electricity mix. 3. rev. ed.

    International Nuclear Information System (INIS)

    Viebahn, Peter; Patyk, Andreas; Fritsche, Uwe R.

    2008-01-01

    Almost every product requires electricity for its manufacture, and the electricity mix used for this is a point of interest in life cycle assessments. Energy-related processes play an important role in life cycle assessments, which in turn are of major significance for product valuations. The Life Cycle Data Network has now carried out a study dedicated to generating a fundamental data record on ''Germany's electricity mix'' which describes the electricity mix supplied by German public power plants. This is the first time that a standardised data record has been made available which was compiled by common accord of all players concerned, whose data stem from quality assured sources and which can be updated year by year. (orig./GL)

  9. International Workshop on Characterization and PIE Needs for Fundamental Understanding of Fuels Performance and Safety

    Energy Technology Data Exchange (ETDEWEB)

    Not Listed

    2011-12-01

    The International Workshop on Characterization and PIE Needs to Support Science-Based Development of Innovative Fuels was held June 16-17, 2011, in Paris, France. The Organization for Economic Co-operation and Development (OECD), Nuclear Energy Agency (NEA) Working Party on the Fuel Cycle (WPFC) sponsored the workshop to identify gaps in global capabilities that need to be filled to meet projected needs in the 21st century. First and foremost, the workshop brought nine countries and associated international organizations, together in support of common needs for nuclear fuels and materials testing, characterization, PIE, and modeling capabilities. Finland, France, Germany, Republic of Korea, Russian Federation, Sweden, Switzerland, United Kingdom, United States of America, IAEA, and ITU (on behalf of European Union Joint Research Centers) discussed issues and opportunities for future technical advancements and collaborations. Second, the presentations provided a base level of understanding of current international capabilities. Three main categories were covered: (1) status of facilities and near term plans, (2) PIE needs from fuels engineering and material science perspectives, and (3) novel PIE techniques being developed to meet the needs. The International presentations provided valuable data consistent with the outcome of the National Workshop held in March 2011. Finally, the panel discussion on 21st century PIE capabilities, created a unified approach for future collaborations. In conclusion, (1) existing capabilities are not sufficient to meet the needs of a science-based approach, (2) safety issues and fuels behavior during abnormal conditions will receive more focus post-Fukushima; therefore we need to adopt our techniques to those issues, and (3) International collaboration is needed in the areas of codes and standards development for the new techniques.

  10. Intermediate-Scale Experimental Study to Improve Fundamental Understanding of Attenuation Capacity for Leaking CO2 in Heterogeneous Shallow Aquifers

    Science.gov (United States)

    Plampin, Michael R.; Porter, Mark L.; Pawar, Rajesh J.; Illangasekare, Tissa H.

    2017-12-01

    To assess the risks of Geologic Carbon Sequestration (GCS), it is crucial to understand the fundamental physicochemical processes that may occur if and when stored CO2 leaks upward from a deep storage reservoir into the shallow subsurface. Intermediate-scale experiments allow for improved understanding of the multiphase evolution processes that control CO2 migration behavior in the subsurface, because the boundary conditions, initial conditions, and porous media parameters can be better controlled and monitored in the laboratory than in field settings. For this study, a large experimental test bed was designed to mimic a cross section of a shallow aquifer with layered geologic heterogeneity. As water with aqueous CO2 was injected into the system to mimic a CO2-charged water leakage scenario, the spatiotemporal evolution of the multiphase CO2 plume was monitored. Similar experiments were performed with two different sand combinations to assess the relative effects of different types of geologic facies transitions on the CO2 evolution processes. Significant CO2 attenuation was observed in both scenarios, but by fundamentally different mechanisms. When the porous media layers had very different permeabilities, attenuation was caused by local accumulation (structural trapping) and slow redissolution of gas phase CO2. When the permeability difference between the layers was relatively small, on the other hand, gas phase continually evolved over widespread areas near the leading edge of the aqueous plume, which also attenuated CO2 migration. This improved process understanding will aid in the development of models that could be used for effective risk assessment and monitoring programs for GCS projects.

  11. Fundamental validation of simulation method for thermal stratification in upper plenum of fast reactors. Analysis of sodium experiment

    International Nuclear Information System (INIS)

    Ohno, Shuji; Ohshima, Hiroyuki; Sugahara, Akihiro; Ohki, Hiroshi

    2010-01-01

    Three-dimensional thermal-hydraulic analyses have been carried out for a sodium experiment in a relatively simple axis-symmetric geometry using a commercial CFD code in order to validate simulating methods for thermal stratification behavior in an upper plenum of sodium-cooled fast reactor. Detailed comparison between simulated results and experimental measurement has demonstrated that the code reproduced fairly well the fundamental thermal stratification behaviors such as vertical temperature gradient and upward movement of a stratification interface when utilizing high-order discretization scheme and appropriate mesh size. Furthermore, the investigation has clarified the influence of RANS type turbulence models on phenomena predictability; i.e. the standard k-ε model, the RNG k-ε model and the Reynolds Stress Model. (author)

  12. Protocol for Validation of the Land Surface Reflectance Fundamental Climate Data Record using AERONET: Application to the Global MODIS and VIIRS Data Records

    Science.gov (United States)

    Roger, J. C.; Vermote, E.; Holben, B. N.

    2014-12-01

    The land surface reflectance is a fundamental climate data record at the basis of the derivation of other climate data records (Albedo, LAI/Fpar, Vegetation indices) and a key parameter in the understanding of the land-surface-climate processes. It is essential that a careful validation of its uncertainties is performed on a global and continuous basis. One approach is the direct comparison of this product with ground measurements but that approach presents several issues related to scale, the episodic nature of ground measurements and the global representativeness. An alternative is to compare the surface reflectance product to reference reflectance determined from Top of atmosphere reflectance corrected using accurate radiative transfer code and very detailed measurements of the atmosphere obtained over the AERONET sites (Vermote and al, 2014, RSE) which allows to test for a large range of aerosol characteristics; formers being important inputs for atmospheric corrections. However, the application of this method necessitates the definition of a very detailed protocol for the use of AERONET data especially as far as size distribution and absorption are concerned, so that alternative validation methods or protocols could be compared. This paper describes the protocol we have been working on based on our experience with the AERONET data and its application to the MODIS and VIIRS record.

  13. Using Content-Aligned Assessments to Identify Weaknesses in Students' Understanding of Fundamental Weather and Climate Ideas

    Science.gov (United States)

    Wertheim, J.; Willard, S.

    2011-12-01

    ). But a much more prevalent issue is that most students lack schematic knowledge for any concept tested, as demonstrated by results indicative of random guessing on items that require cognitive demands beyond declarative knowledge. For example, 83% of students know that the maximum height of the sun in the sky above a given place can change during July, but only 32% know both that it changes continuously through the month and could correctly identify if it gets higher or lower. These basic elements of an accurate mental model are needed to explain annual temperature patterns. If students do not have an accurate understanding of processes controlling key elements of the climate system, it is unsurprising that they struggle to comprehend how these elements interact within the system itself. The results of this study underscore the need to 1) ensure that fundamentals are given the necessary attention, even as our expectations for students become increasingly sophisticated; 2) define grade appropriate, coherent, functioning conceptual models for each climate idea and for each grade level; and 3) develop instructional materials that build schematic knowledge.

  14. Optimization and experimental validation of stiff porous phononic plates for widest complete bandgap of mixed fundamental guided wave modes

    Science.gov (United States)

    Hedayatrasa, Saeid; Kersemans, Mathias; Abhary, Kazem; Uddin, Mohammad; Van Paepegem, Wim

    2018-01-01

    Phononic crystal plates (PhPs) have promising application in manipulation of guided waves for design of low-loss acoustic devices and built-in acoustic metamaterial lenses in plate structures. The prominent feature of phononic crystals is the existence of frequency bandgaps over which the waves are stopped, or are resonated and guided within appropriate defects. Therefore, maximized bandgaps of PhPs are desirable to enhance their phononic controllability. Porous PhPs produced through perforation of a uniform background plate, in which the porous interfaces act as strong reflectors of wave energy, are relatively easy to produce. However, the research in optimization of porous PhPs and experimental validation of achieved topologies has been very limited and particularly focused on bandgaps of flexural (asymmetric) wave modes. In this paper, porous PhPs are optimized through an efficient multiobjective genetic algorithm for widest complete bandgap of mixed fundamental guided wave modes (symmetric and asymmetric) and maximized stiffness. The Pareto front of optimization is analyzed and variation of bandgap efficiency with respect to stiffness is presented for various optimized topologies. Selected optimized topologies from the stiff and compliant regimes of Pareto front are manufactured by water-jetting an aluminum plate and their promising bandgap efficiency is experimentally observed. An optimized Pareto topology is also chosen and manufactured by laser cutting a Plexiglas (PMMA) plate, and its performance in self-collimation and focusing of guided waves is verified as compared to calculated dispersion properties.

  15. Assessing Students' Understanding of Macroevolution: Concerns regarding the validity of the MUM

    Science.gov (United States)

    Novick, Laura R.; Catley, Kefyn M.

    2012-11-01

    In a recent article, Nadelson and Southerland (2010. Development and preliminary evaluation of the Measure of Understanding of Macroevolution: Introducing the MUM. The Journal of Experimental Education, 78, 151-190) reported on their development of a multiple-choice concept inventory intended to assess college students' understanding of macroevolutionary concepts, the Measure of Understanding Macroevolution (MUM). Given that the only existing evolution inventories assess understanding of natural selection, a microevolutionary concept, a valid assessment of students' understanding of macroevolution would be a welcome and necessary addition to the field of science education. Although the conceptual framework underlying Nadelson and Southerland's test is promising, we believe the test has serious shortcomings with respect to validity evidence for the construct being tested. We argue and provide evidence that these problems are serious enough that the MUM should not be used in its current form to measure students' understanding of macroevolution.

  16. From Fundamental Understanding To Predicting New Nanomaterials For High Capacity Hydrogen/Methane Storage and Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, Taner [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2015-03-03

    On-board hydrogen/methane storage in fuel cell-powered vehicles is a major component of the national need to achieve energy independence and protect the environment. The main obstacles in hydrogen storage are slow kinetics, poor reversibility and high dehydrogenation temperatures for the chemical hydrides; and very low desorption temperatures/energies for the physisorption materials (MOF’s, porous carbons). Similarly, the current methane storage technologies are mainly based on physisorption in porous materials but the gravimetric and volumetric storage capacities are below the target values. Finally, carbon capture, a critical component of the mitigation of CO2 emissions from industrial plants, also suffers from similar problems. The solid-absorbers such as MOFs are either not stable against real flue-gas conditions and/or do not have large enough CO2 capture capacity to be practical and cost effective. In this project, we addressed these challenges using a unique combination of computational, synthetic and experimental methods. The main scope of our research was to achieve fundamental understanding of the chemical and structural interactions governing the storage and release of hydrogen/methane and carbon capture in a wide spectrum of candidate materials. We studied the effect of scaffolding and doping of the candidate materials on their storage and dynamics properties. We reviewed current progress, challenges and prospect in closely related fields of hydrogen/methane storage and carbon capture.[1-5] For example, for physisorption based storage materials, we show that tap-densities or simply pressing MOFs into pellet forms reduce the uptake capacities by half and therefore packing MOFs is one of the most important challenges going forward. For room temperature hydrogen storage application of MOFs, we argue that MOFs are the most promising scaffold materials for Ammonia-Borane (AB) because of their unique interior active metal-centers for AB binding and well

  17. Meaningful Understanding and Systems Thinking in Organic Chemistry: Validating Measurement and Exploring Relationships

    Science.gov (United States)

    Vachliotis, Theodoros; Salta, Katerina; Tzougraki, Chryssa

    2014-01-01

    The purpose of this study was dual: First, to develop and validate assessment schemes for assessing 11th grade students' meaningful understanding of organic chemistry concepts, as well as their systems thinking skills in the domain. Second, to explore the relationship between the two constructs of interest based on students' performance…

  18. Validation of a Video-based Game-Understanding Test Procedure in Badminton.

    Science.gov (United States)

    Blomqvist, Minna T.; Luhtanen, Pekka; Laakso, Lauri; Keskinen, Esko

    2000-01-01

    Reports the development and validation of video-based game-understanding tests in badminton for elementary and secondary students. The tests included different sequences that simulated actual game situations. Players had to solve tactical problems by selecting appropriate solutions and arguments for their decisions. Results suggest that the test…

  19. Biodiversity in the City: Fundamental Questions for Understanding the Ecology of Urban Green Spaces for Biodiversity Conservation

    Science.gov (United States)

    Christopher A. Lepczyk; Myla F. J. Aronson; Karl L. Evans; Mark A. Goddard; Susannah B. Lerman; J. Scott MacIvor

    2017-01-01

    As urban areas expand, understanding how ecological processes function in cities has become increasingly important for conserving biodiversity. Urban green spaces are critical habitats to support biodiversity, but we still have a limited understanding of their ecology and how they function to conserve biodiversity at local and landscape scales across multiple taxa....

  20. Measuring striving for understanding and learning value of geometry: a validity study

    Science.gov (United States)

    Ubuz, Behiye; Aydınyer, Yurdagül

    2017-11-01

    The current study aimed to construct a questionnaire that measures students' personality traits related to striving for understanding and learning value of geometry and then examine its psychometric properties. Through the use of multiple methods on two independent samples of 402 and 521 middle school students, two studies were performed to address this issue to provide support for its validity. In Study 1, exploratory factor analysis indicated the two-factor model. In Study 2, confirmatory factor analysis indicated the better fit of two-factor model compared to one or three-factor model. Convergent and discriminant validity evidence provided insight into the distinctiveness of the two factors. Subgroup validity evidence revealed gender differences for striving for understanding geometry trait favouring girls and grade level differences for learning value of geometry trait favouring the sixth- and seventh-grade students. Predictive validity evidence demonstrated that the striving for understanding geometry trait but not learning value of geometry trait was significantly correlated with prior mathematics achievement. In both studies, each factor and the entire questionnaire showed satisfactory reliability. In conclusion, the questionnaire was psychometrically sound.

  1. Validation of virtual reality as a tool to understand and prevent child pedestrian injury.

    Science.gov (United States)

    Schwebel, David C; Gaines, Joanna; Severson, Joan

    2008-07-01

    In recent years, virtual reality has emerged as an innovative tool for health-related education and training. Among the many benefits of virtual reality is the opportunity for novice users to engage unsupervised in a safe environment when the real environment might be dangerous. Virtual environments are only useful for health-related research, however, if behavior in the virtual world validly matches behavior in the real world. This study was designed to test the validity of an immersive, interactive virtual pedestrian environment. A sample of 102 children and 74 adults was recruited to complete simulated road-crossings in both the virtual environment and the identical real environment. In both the child and adult samples, construct validity was demonstrated via significant correlations between behavior in the virtual and real worlds. Results also indicate construct validity through developmental differences in behavior; convergent validity by showing correlations between parent-reported child temperament and behavior in the virtual world; internal reliability of various measures of pedestrian safety in the virtual world; and face validity, as measured by users' self-reported perception of realism in the virtual world. We discuss issues of generalizability to other virtual environments, and the implications for application of virtual reality to understanding and preventing pediatric pedestrian injuries.

  2. Clinical Validity, Understandability, and Actionability of Online Cardiovascular Disease Risk Calculators: Systematic Review.

    Science.gov (United States)

    Bonner, Carissa; Fajardo, Michael Anthony; Hui, Samuel; Stubbs, Renee; Trevena, Lyndal

    2018-02-01

    Online health information is particularly important for cardiovascular disease (CVD) prevention, where lifestyle changes are recommended until risk becomes high enough to warrant pharmacological intervention. Online information is abundant, but the quality is often poor and many people do not have adequate health literacy to access, understand, and use it effectively. This project aimed to review and evaluate the suitability of online CVD risk calculators for use by low health literate consumers in terms of clinical validity, understandability, and actionability. This systematic review of public websites from August to November 2016 used evaluation of clinical validity based on a high-risk patient profile and assessment of understandability and actionability using Patient Education Material Evaluation Tool for Print Materials. A total of 67 unique webpages and 73 unique CVD risk calculators were identified. The same high-risk patient profile produced widely variable CVD risk estimates, ranging from as little as 3% to as high as a 43% risk of a CVD event over the next 10 years. One-quarter (25%) of risk calculators did not specify what model these estimates were based on. The most common clinical model was Framingham (44%), and most calculators (77%) provided a 10-year CVD risk estimate. The calculators scored moderately on understandability (mean score 64%) and poorly on actionability (mean score 19%). The absolute percentage risk was stated in most (but not all) calculators (79%), and only 18% included graphical formats consistent with recommended risk communication guidelines. There is a plethora of online CVD risk calculators available, but they are not readily understandable and their actionability is poor. Entering the same clinical information produces widely varying results with little explanation. Developers need to address actionability as well as clinical validity and understandability to improve usefulness to consumers with low health literacy.

  3. Assessing middle school students` understanding of science relationships and processes: Year 2 - instrument validation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schau, C.; Mattern, N.; Weber, R.; Minnick, K.

    1997-01-01

    Our overall purpose for this multi-year project was to develop an alternative assessment format measuring rural middle school students understanding of science concepts and processes and the interrelationships among them. This kind of understanding is called structural knowledge. We had 3 major interrelated goals: (1) Synthesize the existing literature and critically evaluate the actual and potential use of measures of structural knowledge in science education. (2) Develop a structural knowledge alternative assessment format. (3) Examine the validity of our structural knowledge format. We accomplished the first two goals during year 1. The structural knowledge assessment we identified and developed further was a select-and-fill-in concept map format. The goal for our year 2 work was to begin to validate this assessment approach. This final report summarizes our year 2 work.

  4. Fundamental understanding of oxygen reduction and reaction behavior and developing high performance and stable hetero-structured cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingbo [West Virginia Univ., Morgantown, WV (United States)

    2016-11-14

    New unique hetero-structured cathode has been developed in this project. La2NiO4+δ (LNO) as a surface catalyst with interstitial oxygen defects was introduced onto the state-of-the-art (La0.6Sr0.4)0.95Co0.2Fe0.8O3-δ (LSCF) cathode to enhance the surface-limited ORR kinetics on SOFC cathode. Furthermore, the hetero-structured cathode surface maintains high activity under electrode polarization with much less negative effects from surface cation segregation of Sr, which is known to cause degradation issues for conventional LSCF and LSC cathodes, thus improving the cathode long-term stability. The interface chemistry distribution and oxygen transport properties have been studied to prove the enhancement of power out and stability of LNO-infiltrated LSCF cathode. The further investigation demonstrates that CeO2 & La2-xNiO4+δ (x=0-0.2) co-infiltration is a simple and cost-effective method to improve both performance and stability of LSCF cathode by limiting nano-particles growth/delamination and further improve the surface stability. For the first time, a physical model is proposed to illustrate how unique interstitial species on hetero-structured cathode surface work to regulate the exchange rate of the incorporation reaction. Meanwhile, fundamental investigation of the surface oxygen exchange and bulk oxygen transport properties under over-potential conditions across cathode materials have been carried out in this project, which were discussed and compared to the Nernst equation that is generally applied to treat any oxide electrodes under equilibrium.

  5. Using process elicitation and validation to understand and improve chemotherapy ordering and delivery.

    Science.gov (United States)

    Mertens, Wilson C; Christov, Stefan C; Avrunin, George S; Clarke, Lori A; Osterweil, Leon J; Cassells, Lucinda J; Marquard, Jenna L

    2012-11-01

    Chemotherapy ordering and administration, in which errors have potentially severe consequences, was quantitatively and qualitatively evaluated by employing process formalism (or formal process definition), a technique derived from software engineering, to elicit and rigorously describe the process, after which validation techniques were applied to confirm the accuracy of the described process. The chemotherapy ordering and administration process, including exceptional situations and individuals' recognition of and responses to those situations, was elicited through informal, unstructured interviews with members of an interdisciplinary team. The process description (or process definition), written in a notation developed for software quality assessment purposes, guided process validation (which consisted of direct observations and semistructured interviews to confirm the elicited details for the treatment plan portion of the process). The overall process definition yielded 467 steps; 207 steps (44%) were dedicated to handling 59 exceptional situations. Validation yielded 82 unique process events (35 new expected but not yet described steps, 16 new exceptional situations, and 31 new steps in response to exceptional situations). Process participants actively altered the process as ambiguities and conflicts were discovered by the elicitation and validation components of the study. Chemotherapy error rates declined significantly during and after the project, which was conducted from October 2007 through August 2008. Each elicitation method and the subsequent validation discussions contributed uniquely to understanding the chemotherapy treatment plan review process, supporting rapid adoption of changes, improved communication regarding the process, and ensuing error reduction.

  6. Understanding Dynamic Model Validation of a Wind Turbine Generator and a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Zhang, Ying Chen; Gevorgian, Vahan; Kosterev, Dmitry

    2016-09-01

    Regional reliability organizations require power plants to validate the dynamic models that represent them to ensure that power systems studies are performed to the best representation of the components installed. In the process of validating a wind power plant (WPP), one must be cognizant of the parameter settings of the wind turbine generators (WTGs) and the operational settings of the WPP. Validating the dynamic model of a WPP is required to be performed periodically. This is because the control parameters of the WTGs and the other supporting components within a WPP may be modified to comply with new grid codes or upgrades to the WTG controller with new capabilities developed by the turbine manufacturers or requested by the plant owners or operators. The diversity within a WPP affects the way we represent it in a model. Diversity within a WPP may be found in the way the WTGs are controlled, the wind resource, the layout of the WPP (electrical diversity), and the type of WTGs used. Each group of WTGs constitutes a significant portion of the output power of the WPP, and their unique and salient behaviors should be represented individually. The objective of this paper is to illustrate the process of dynamic model validations of WTGs and WPPs, the available data recorded that must be screened before it is used for the dynamic validations, and the assumptions made in the dynamic models of the WTG and WPP that must be understood. Without understanding the correct process, the validations may lead to the wrong representations of the WTG and WPP modeled.

  7. Understanding small biomolecule-biomaterial interactions: a review of fundamental theoretical and experimental approaches for biomolecule interactions with inorganic surfaces.

    Science.gov (United States)

    Costa, Dominique; Garrain, Pierre-Alain; Baaden, Marc

    2013-04-01

    Interactions between biomolecules and inorganic surfaces play an important role in natural environments and in industry, including a wide variety of conditions: marine environment, ship hulls (fouling), water treatment, heat exchange, membrane separation, soils, mineral particles at the earth's surface, hospitals (hygiene), art and buildings (degradation and biocorrosion), paper industry (fouling) and more. To better control the first steps leading to adsorption of a biomolecule on an inorganic surface, it is mandatory to understand the adsorption mechanisms of biomolecules of several sizes at the atomic scale, that is, the nature of the chemical interaction between the biomolecule and the surface and the resulting biomolecule conformations once adsorbed at the surface. This remains a challenging and unsolved problem. Here, we review the state of art in experimental and theoretical approaches. We focus on metallic biomaterial surfaces such as TiO(2) and stainless steel, mentioning some remarkable results on hydroxyapatite. Experimental techniques include atomic force microscopy, surface plasmon resonance, quartz crystal microbalance, X-ray photoelectron spectroscopy, fluorescence microscopy, polarization modulation infrared reflection absorption spectroscopy, sum frequency generation and time of flight secondary ion mass spectroscopy. Theoretical models range from detailed quantum mechanical representations to classical forcefield-based approaches. Copyright © 2012 Wiley Periodicals, Inc.

  8. Development and validation of a method for measuring depth of understanding in constructivist learning

    Science.gov (United States)

    Guarino, Lucia Falsetti

    A method for measuring depth of understanding of students in the middle-level science classroom was developed and validated. A common theme in the literature on constructivism in science education is that constructivist pedagogy, as opposed to objectivist pedagogy, results in a greater depth of understanding. Since few instruments measuring this construct exist at the present time, the development of such a tool to measure this construct was a significant contribution to the current body of assessment technologies in science education. The author's Depth of Understanding Assessment (DUA) evolved from a writing measure originally designed as a history assessment. The study involved 230 eighth grade science students studying a chemical change unit. The main research questions were: (1) What is the relationship between the DUA and each of the following independent variables: recall, application, and questioning modalities as measured by the Cognitive Preference Test; deep, surface, achieving, and deep-achieving approaches as measured by the Learning Process Questionnaire; achievement as measured by the Chemical Change Quiz, and teacher perception of student ability to conceptualize science content? (2) Is there a difference in depth of understanding, as measured by the DUA, between students who are taught by objectivist pedagogy and students who are taught by constructivist pedagogy favoring the constructivist group? (3) Is there a gender difference in depth of understanding as measured by the DUA? (4) Do students who are taught by constructivist pedagogy perceive their learning environment as more constructivist than students who are taught by objectivist pedagogy? Six out of nine hypothesis tests supported the validity of the DUA. The results of the qualitative component of this study which consisted of student interviews substantiated the quantitative results by providing additional information and insights. There was a significant difference in depth of

  9. On the validity of language: speaking, knowing and understanding in medical geography.

    Science.gov (United States)

    Scarpaci, J L

    1993-09-01

    This essay examines methodological problems concerning the conceptualization and operationalization of phenomena central to medical geography. Its main argument is that qualitative research can be strengthened if the differences between instrumental and apparent validity are better understood than the current research in medical geography suggests. Its premise is that our definitions of key terms and concepts must be reinforced throughout the design of research should our knowledge and understanding be enhanced. In doing so, the paper aims to move the methodological debate beyond the simple dichotomies of quantitative vs qualitative approaches and logical positivism vs phenomenology. Instead, the argument is couched in a postmodernist hermeneutic sense which questions the validity of one discourse of investigation over another. The paper begins by discussing methods used in conceptualizing and operationalizing variables in quantitative and qualitative research design. Examples derive from concepts central to a geography of health-care behavior and well-being. The latter half of the essay shows the uses and misuses of validity studies in selected health services research and the current debate on national health insurance.

  10. Developing and validating a conceptual survey to assess introductory physics students’ understanding of magnetism

    Science.gov (United States)

    Li, Jing; Singh, Chandralekha

    2017-03-01

    Development of validated physics surveys on various topics is important for investigating the extent to which students master those concepts after traditional instruction and for assessing innovative curricula and pedagogies that can improve student understanding significantly. Here, we discuss the development and validation of a conceptual multiple-choice survey related to magnetism suitable for introductory physics courses. The survey was developed taking into account common students’ difficulties with magnetism concepts covered in introductory physics courses found in our investigation and the incorrect choices to the multiple-choice questions were designed based upon those common student difficulties. After the development and validation of the survey, it was administered to introductory physics students in various classes in paper-pencil format before and after traditional lecture-based instruction in relevant concepts. We compared the performance of students on the survey in the algebra-based and calculus-based introductory physics courses before and after traditional lecture-based instruction in relevant magnetism concepts. We discuss the common difficulties of introductory physics students with magnetism concepts we found via the survey. We also administered the survey to upper-level undergraduates majoring in physics and PhD students to benchmark the survey and compared their performance with those of traditionally taught introductory physics students for whom the survey is intended. A comparison with the base line data on the validated magnetism survey from traditionally taught introductory physics courses and upper-level undergraduate and PhD students discussed in this paper can help instructors assess the effectiveness of curricula and pedagogies which is especially designed to help students integrate conceptual and quantitative understanding and develop a good grasp of the concepts. In particular, if introductory physics students’ average

  11. Developing and validating a conceptual survey to assess introductory physics students’ understanding of magnetism

    International Nuclear Information System (INIS)

    Li, Jing; Singh, Chandralekha

    2017-01-01

    Development of validated physics surveys on various topics is important for investigating the extent to which students master those concepts after traditional instruction and for assessing innovative curricula and pedagogies that can improve student understanding significantly. Here, we discuss the development and validation of a conceptual multiple-choice survey related to magnetism suitable for introductory physics courses. The survey was developed taking into account common students’ difficulties with magnetism concepts covered in introductory physics courses found in our investigation and the incorrect choices to the multiple-choice questions were designed based upon those common student difficulties. After the development and validation of the survey, it was administered to introductory physics students in various classes in paper–pencil format before and after traditional lecture-based instruction in relevant concepts. We compared the performance of students on the survey in the algebra-based and calculus-based introductory physics courses before and after traditional lecture-based instruction in relevant magnetism concepts. We discuss the common difficulties of introductory physics students with magnetism concepts we found via the survey. We also administered the survey to upper-level undergraduates majoring in physics and PhD students to benchmark the survey and compared their performance with those of traditionally taught introductory physics students for whom the survey is intended. A comparison with the base line data on the validated magnetism survey from traditionally taught introductory physics courses and upper-level undergraduate and PhD students discussed in this paper can help instructors assess the effectiveness of curricula and pedagogies which is especially designed to help students integrate conceptual and quantitative understanding and develop a good grasp of the concepts. In particular, if introductory physics students’ average

  12. Fractionation of bamboo culms by autohydrolysis, organosolv delignification and extended delignification: understanding the fundamental chemistry of the lignin during the integrated process.

    Science.gov (United States)

    Wen, Jia-Long; Sun, Shao-Ni; Yuan, Tong-Qi; Xu, Feng; Sun, Run-Cang

    2013-12-01

    Bamboo (Phyllostachys pubescens) was successfully fractionated using a three-step integrated process: (1) autohydrolysis pretreatment facilitating xylooligosaccharide (XOS) production (2) organosolv delignification with organic acids to obtain high-purity lignin, and (3) extended delignification with alkaline hydrogen peroxide (AHP) to produce purified pulp. The integrated process was comprehensively evaluated by component analysis, SEM, XRD, and CP-MAS NMR techniques. Emphatically, the fundamental chemistry of the lignin fragments obtained from the integrated process was thoroughly investigated by gel permeation chromatography and solution-state NMR techniques (quantitative (13)C, 2D-HSQC, and (31)P-NMR spectroscopies). It is believed that the integrated process facilitate the production of XOS, high-purity lignin, and purified pulp. Moreover, the enhanced understanding of structural features and chemical reactivity of lignin polymers will maximize their utilizations in a future biorefinery industry. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Development and Validation of the Spanish Numeracy Understanding in Medicine Instrument.

    Science.gov (United States)

    Jacobs, Elizabeth A; Walker, Cindy M; Miller, Tamara; Fletcher, Kathlyn E; Ganschow, Pamela S; Imbert, Diana; O'Connell, Maria; Neuner, Joan M; Schapira, Marilyn M

    2016-11-01

    The Spanish-speaking population in the U.S. is large and growing and is known to have lower health literacy than the English-speaking population. Less is known about the health numeracy of this population due to a lack of health numeracy measures in Spanish. we aimed to develop and validate a short and easy to use measure of health numeracy for Spanish-speaking adults: the Spanish Numeracy Understanding in Medicine Instrument (Spanish-NUMi). Items were generated based on qualitative studies in English- and Spanish-speaking adults and translated into Spanish using a group translation and consensus process. Candidate items for the Spanish NUMi were selected from an eight-item validated English Short NUMi. Differential Item Functioning (DIF) was conducted to evaluate equivalence between English and Spanish items. Cronbach's alpha was computed as a measure of reliability and a Pearson's correlation was used to evaluate the association between test scores and the Spanish Test of Functional Health Literacy (S-TOFHLA) and education level. Two-hundred and thirty-two Spanish-speaking Chicago residents were included in the study. The study population was diverse in age, gender, and level of education and 70 % reported Mexico as their country of origin. Two items of the English eight-item Short NUMi demonstrated DIF and were dropped. The resulting six-item test had a Cronbach's alpha of 0.72, a range of difficulty using classical test statistics (percent correct: 0.48 to 0.86), and adequate discrimination (item-total score correlation: 0.34-0.49). Scores were positively correlated with print literacy as measured by the S- TOFHLA (r = 0.67; p Spanish NUMi is a reliable and valid measure of important numerical concepts used in communicating health information.

  14. Degree of Response to Homeopathic Potencies Correlates with Dipole Moment Size in Molecular Detectors: Implications for Understanding the Fundamental Nature of Serially Diluted and Succussed Solutions.

    Science.gov (United States)

    Cartwright, Steven J

    2018-02-01

     The use of solvatochromic dyes to investigate homeopathic potencies holds out the promise of understanding the nature of serially succussed and diluted solutions at a fundamental physicochemical level. Recent studies have shown that a range of different dyes interact with potencies and, moreover, the nature of the interaction is beginning to allow certain specific characteristics of potencies to be delineated.  The study reported in this article takes previous investigations further and aims to understand more about the nature of the interaction between potencies and solvatochromic dyes. To this end, the UV-visible spectra of a wide range of potential detectors of potencies have been examined using methodologies previously described.  Results presented demonstrate that solvatochromic dyes are a sub-group of a larger class of compounds capable of demonstrating interactions with potencies. In particular, amino acids containing an aromatic bridge also show marked optical changes in the presence of potencies. Several specific features of molecular detectors can now be shown to be necessary for significant interactions with homeopathic potencies. These include systems with a large dipole moment, electron delocalisation, polarizability and molecular rigidity.  Analysis of the optical changes occurring on interaction with potencies suggests that in all cases potencies increase the polarity of molecular detectors to a degree that correlates with the size of the compound's permanent or ground dipole moment. These results can be explained by inferring that potencies themselves have polarity. Possible candidates for the identity of potencies, based on these and previously reported results, are discussed. The Faculty of Homeopathy.

  15. Fundamentals of ergonomic exoskeleton robots

    NARCIS (Netherlands)

    Schiele, A.

    2008-01-01

    This thesis is the first to provide the fundamentals of ergonomic exoskeleton design. The fundamental theory as well as technology necessary to analyze and develop ergonomic wearable robots interacting with humans is established and validated by experiments and prototypes. The fundamentals are (1) a

  16. Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4-CO2-H2O) Interactions in Shale Nanopores under Reservoir Conditions.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    Shale is characterized by the predominant presence of nanometer-scale (1-100 nm) pores. The behavior of fluids in those pores directly controls shale gas storage and release in shale matrix and ultimately the wellbore production in unconventional reservoirs. Recently, it has been recognized that a fluid confined in nanopores can behave dramatically differently from the corresponding bulk phase due to nanopore confinement (Wang, 2014). CO2 and H2O, either preexisting or introduced, are two major components that coexist with shale gas (predominately CH4) during hydrofracturing and gas extraction. Note that liquid or supercritical CO2 has been suggested as an alternative fluid for subsurface fracturing such that CO2 enhanced gas recovery can also serve as a CO2 sequestration process. Limited data indicate that CO2 may preferentially adsorb in nanopores (particularly those in kerogen) and therefore displace CH4 in shale. Similarly, the presence of water moisture seems able to displace or trap CH4 in shale matrix. Therefore, fundamental understanding of CH4-CO2-H2O behavior and their interactions in shale nanopores is of great importance for gas production and the related CO2 sequestration. This project focuses on the systematic study of CH4-CO2-H2O interactions in shale nanopores under high-pressure and high temperature reservoir conditions. The proposed work will help to develop new stimulation strategies to enable efficient resource recovery from fewer and less environmentally impactful wells.

  17. Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4-CO2-H2O) Interactions in Shale Nanopores under Reservoir Conditions: Quarterly Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    Shale is characterized by the predominant presence of nanometer-scale (1-100 nm) pores. The behavior of fluids in those pores directly controls shale gas storage and release in shale matrix and ultimately the wellbore production in unconventional reservoirs. Recently, it has been recognized that a fluid confined in nanopores can behave dramatically differently from the corresponding bulk phase due to nanopore confinement (Wang, 2014). CO2 and H2O, either preexisting or introduced, are two major components that coexist with shale gas (predominately CH4) during hydrofracturing and gas extraction. Note that liquid or supercritical CO2 has been suggested as an alternative fluid for subsurface fracturing such that CO2 enhanced gas recovery can also serve as a CO2 sequestration process. Limited data indicate that CO2 may preferentially adsorb in nanopores (particularly those in kerogen) and therefore displace CH4 in shale. Similarly, the presence of water moisture seems able to displace or trap CH4 in shale matrix. Therefore, fundamental understanding of CH4-CO2-H2O behavior and their interactions in shale nanopores is of great importance for gas production and the related CO2 sequestration. This project focuses on the systematic study of CH4-CO2-H2O interactions in shale nanopores under high-pressure and high temperature reservoir conditions. The proposed work will help to develop new stimulation strategies to enable efficient resource recovery from fewer and less environmentally impactful wells.

  18. Understanding Student Teachers' Behavioural Intention to Use Technology: Technology Acceptance Model (TAM) Validation and Testing

    Science.gov (United States)

    Wong, Kung-Teck; Osman, Rosma bt; Goh, Pauline Swee Choo; Rahmat, Mohd Khairezan

    2013-01-01

    This study sets out to validate and test the Technology Acceptance Model (TAM) in the context of Malaysian student teachers' integration of their technology in teaching and learning. To establish factorial validity, data collected from 302 respondents were tested against the TAM using confirmatory factor analysis (CFA), and structural equation…

  19. The Development and Validation of an Alternative Assessment to Measure Changes in Understanding of the Longleaf Pine Ecosystem

    Science.gov (United States)

    Dentzau, Michael W.; Martínez, Alejandro José Gallard

    2016-01-01

    A drawing assessment to gauge changes in fourth grade students' understanding of the essential components of the longleaf pine ecosystem was developed to support an out-of-school environmental education program. Pre- and post-attendance drawings were scored with a rubric that was determined to have content validity and reliability among users. In…

  20. An Exploration of the Validity and Potential of Adult Ego Development for Enhancing Understandings of School Leadership

    Science.gov (United States)

    James, Chris; James, Jane; Potter, Ian

    2017-01-01

    An adult ego development (AED) perspective accepts that the way adults interpret and interact in the social world can change during their life-span. This article seeks to analyse the validity and potential of AED for enhancing understandings of educational leadership practice and development. We analysed the AED literature and interviewed 16…

  1. Fundamentals of turbomachines

    CERN Document Server

    Dick, Erik

    2015-01-01

    This book explores the working principles of all kinds of turbomachines. The same theoretical framework is used to analyse the different machine types. Fundamentals are first presented and theoretical concepts are then elaborated for particular machine types, starting with the simplest ones.For each machine type, the author strikes a balance between building basic understanding and exploring knowledge of practical aspects. Readers are invited through challenging exercises to consider how the theory applies to particular cases and how it can be generalised.   The book is primarily meant as a course book. It teaches fundamentals and explores applications. It will appeal to senior undergraduate and graduate students in mechanical engineering and to professional engineers seeking to understand the operation of turbomachines. Readers will gain a fundamental understanding of turbomachines. They will also be able to make a reasoned choice of turbomachine for a particular application and to understand its operation...

  2. Radiology fundamentals

    CERN Document Server

    Singh, Harjit

    2011-01-01

    ""Radiology Fundamentals"" is a concise introduction to the dynamic field of radiology for medical students, non-radiology house staff, physician assistants, nurse practitioners, radiology assistants, and other allied health professionals. The goal of the book is to provide readers with general examples and brief discussions of basic radiographic principles and to serve as a curriculum guide, supplementing a radiology education and providing a solid foundation for further learning. Introductory chapters provide readers with the fundamental scientific concepts underlying the medical use of imag

  3. Fundamental partial compositeness

    DEFF Research Database (Denmark)

    Sannino, Francesco; Strumia, Alessandro; Tesi, Andrea

    2016-01-01

    We construct renormalizable Standard Model extensions, valid up to the Planck scale, that give a composite Higgs from a new fundamental strong force acting on fermions and scalars. Yukawa interactions of these particles with Standard Model fermions realize the partial compositeness scenario. Unde...

  4. Information security fundamentals

    CERN Document Server

    Peltier, Thomas R

    2013-01-01

    Developing an information security program that adheres to the principle of security as a business enabler must be the first step in an enterprise's effort to build an effective security program. Following in the footsteps of its bestselling predecessor, Information Security Fundamentals, Second Edition provides information security professionals with a clear understanding of the fundamentals of security required to address the range of issues they will experience in the field.The book examines the elements of computer security, employee roles and r

  5. Fundamentals of electronics

    CERN Document Server

    Schubert, Thomas F

    2015-01-01

    This book, Electronic Devices and Circuit Application, is the first of four books of a larger work, Fundamentals of Electronics. It is comprised of four chapters describing the basic operation of each of the four fundamental building blocks of modern electronics: operational amplifiers, semiconductor diodes, bipolar junction transistors, and field effect transistors. Attention is focused on the reader obtaining a clear understanding of each of the devices when it is operated in equilibrium. Ideas fundamental to the study of electronic circuits are also developed in the book at a basic level to

  6. Understanding the Validity of Data: A Knowledge-Based Network Underlying Research Expertise in Scientific Disciplines

    Science.gov (United States)

    Roberts, Ros

    2016-01-01

    This article considers what might be taught to meet a widely held curriculum aim of students being able to understand research in a discipline. Expertise, which may appear as a "chain of practice," is widely held to be underpinned by networks of understanding. Scientific research expertise is considered from this perspective. Within…

  7. Understanding and Measuring Evaluation Capacity: A Model and Instrument Validation Study

    Science.gov (United States)

    Taylor-Ritzler, Tina; Suarez-Balcazar, Yolanda; Garcia-Iriarte, Edurne; Henry, David B.; Balcazar, Fabricio E.

    2013-01-01

    This study describes the development and validation of the Evaluation Capacity Assessment Instrument (ECAI), a measure designed to assess evaluation capacity among staff of nonprofit organizations that is based on a synthesis model of evaluation capacity. One hundred and sixty-nine staff of nonprofit organizations completed the ECAI. The 68-item…

  8. Biotechnology fundamentals

    National Research Council Canada - National Science Library

    Khan, Firdos Alam

    2012-01-01

    ... for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyrig...

  9. Fundamental Astronomy

    CERN Document Server

    Karttunen, Hannu; Oja, Heikki; Poutanen, Markku; Donner, Karl Johan

    2007-01-01

    Fundamental Astronomy gives a well-balanced and comprehensive introduction to the topics of classical and modern astronomy. While emphasizing both the astronomical concepts and the underlying physical principles, the text provides a sound basis for more profound studies in the astronomical sciences. The fifth edition of this successful undergraduate textbook has been extensively modernized and extended in the parts dealing with the Milky Way, extragalactic astronomy and cosmology as well as with extrasolar planets and the solar system (as a consequence of recent results from satellite missions and the new definition by the International Astronomical Union of planets, dwarf planets and small solar-system bodies). Furthermore a new chapter on astrobiology has been added. Long considered a standard text for physical science majors, Fundamental Astronomy is also an excellent reference and entrée for dedicated amateur astronomers.

  10. Fundamental length

    International Nuclear Information System (INIS)

    Pradhan, T.

    1975-01-01

    The concept of fundamental length was first put forward by Heisenberg from purely dimensional reasons. From a study of the observed masses of the elementary particles known at that time, it is sumrised that this length should be of the order of magnitude 1 approximately 10 -13 cm. It was Heisenberg's belief that introduction of such a fundamental length would eliminate the divergence difficulties from relativistic quantum field theory by cutting off the high energy regions of the 'proper fields'. Since the divergence difficulties arise primarily due to infinite number of degrees of freedom, one simple remedy would be the introduction of a principle that limits these degrees of freedom by removing the effectiveness of the waves with a frequency exceeding a certain limit without destroying the relativistic invariance of the theory. The principle can be stated as follows: It is in principle impossible to invent an experiment of any kind that will permit a distintion between the positions of two particles at rest, the distance between which is below a certain limit. A more elegant way of introducing fundamental length into quantum theory is through commutation relations between two position operators. In quantum field theory such as quantum electrodynamics, it can be introduced through the commutation relation between two interpolating photon fields (vector potentials). (K.B.)

  11. Understanding Student Teachers’ Behavioural Intention to Use Technology: Technology Acceptance Model (TAM Validation and Testing

    Directory of Open Access Journals (Sweden)

    Kung-Teck, Wong

    2013-01-01

    Full Text Available This study sets out to validate and test the Technology Acceptance Model (TAM in the context of Malaysian student teachers’ integration of their technology in teaching and learning. To establish factorial validity, data collected from 302 respondents were tested against the TAM using confirmatory factor analysis (CFA, and structural equation modelling (SEM was used for model comparison and hypotheses testing. The goodness-of-fit test of the analysis shows partial support of the applicability of the TAM in a Malaysian context. Overall, the TAM accounted for 37.3% of the variance in intention to use technology among student teachers and of the five hypotheses formulated, four are supported. Perceived usefulness is a significant influence on attitude towards computer use and behavioural intention. Perceived ease of use significantly influences perceived usefulness, and finally, behavioural intention is found to be influenced by attitude towards computer use. The findings of this research contribute to the literature by validating the TAM in the Malaysian context and provide several prominent implications for the research and practice of technology integration development.

  12. Fundamental safety principles. Safety fundamentals

    International Nuclear Information System (INIS)

    2006-01-01

    This publication states the fundamental safety objective and ten associated safety principles, and briefly describes their intent and purpose. The fundamental safety objective - to protect people and the environment from harmful effects of ionizing radiation - applies to all circumstances that give rise to radiation risks. The safety principles are applicable, as relevant, throughout the entire lifetime of all facilities and activities - existing and new - utilized for peaceful purposes, and to protective actions to reduce existing radiation risks. They provide the basis for requirements and measures for the protection of people and the environment against radiation risks and for the safety of facilities and activities that give rise to radiation risks, including, in particular, nuclear installations and uses of radiation and radioactive sources, the transport of radioactive material and the management of radioactive waste

  13. Fundamental safety principles. Safety fundamentals

    International Nuclear Information System (INIS)

    2007-01-01

    This publication states the fundamental safety objective and ten associated safety principles, and briefly describes their intent and purpose. The fundamental safety objective - to protect people and the environment from harmful effects of ionizing radiation - applies to all circumstances that give rise to radiation risks. The safety principles are applicable, as relevant, throughout the entire lifetime of all facilities and activities - existing and new - utilized for peaceful purposes, and to protective actions to reduce existing radiation risks. They provide the basis for requirements and measures for the protection of people and the environment against radiation risks and for the safety of facilities and activities that give rise to radiation risks, including, in particular, nuclear installations and uses of radiation and radioactive sources, the transport of radioactive material and the management of radioactive waste

  14. Marketing fundamentals.

    Science.gov (United States)

    Redmond, W H

    2001-01-01

    This chapter outlines current marketing practice from a managerial perspective. The role of marketing within an organization is discussed in relation to efficiency and adaptation to changing environments. Fundamental terms and concepts are presented in an applied context. The implementation of marketing plans is organized around the four P's of marketing: product (or service), promotion (including advertising), place of delivery, and pricing. These are the tools with which marketers seek to better serve their clients and form the basis for competing with other organizations. Basic concepts of strategic relationship management are outlined. Lastly, alternate viewpoints on the role of advertising in healthcare markets are examined.

  15. Furthering our Understanding of Land Surface Interactions using SVAT modelling: Results from SimSphere's Validation

    Science.gov (United States)

    North, Matt; Petropoulos, George; Ireland, Gareth; Rendal, Daisy; Carlson, Toby

    2015-04-01

    With current predicted climate change, there is an increased requirement to gain knowledge on the terrestrial biosphere, for numerous agricultural, hydrological and meteorological applications. To this end, Soil Vegetation Atmospheric Transfer (SVAT) models are quickly becoming the preferred scientific tool to monitor, at fine temporal and spatial resolutions, detailed information on numerous parameters associated with Earth system interactions. Validation of any model is critical to assess its accuracy, generality and realism to distinctive ecosystems and subsequently acts as important step before its operational distribution. In this study, the SimSphere SVAT model has been validated to fifteen different sites of the FLUXNET network, where model performance was statistically evaluated by directly comparing the model predictions vs in situ data, for cloud free days with a high energy balance closure. Specific focus is given to the models ability to simulate parameters associated with the energy balance, namely Shortwave Incoming Solar Radiation (Rg), Net Radiation (Rnet), Latent Heat (LE), Sensible Heat (H), Air Temperature at 1.3m (Tair 1.3m) and Air temperature at 50m (Tair 50m). Comparisons were performed for a number distinctive ecosystem types and for 150 days in total using in-situ data from ground observational networks acquired from the year 2011 alone. Evaluation of the models' coherence to reality was evaluated on the basis of a series of statistical parameters including RMSD, R2, Scatter, Bias, MAE , NASH index, Slope and Intercept. Results showed good to very good agreement between predicted and observed datasets, particularly so for LE, H, Tair 1.3m and Tair 50m where mean error distribution values indicated excellent model performance. Due to the systematic underestimation, poorer simulation accuracies were exhibited for Rg and Rnet, yet all values reported are still analogous to other validatory studies of its kind. In overall, the model

  16. Fundamentals of ergonomic exoskeleton robots

    OpenAIRE

    Schiele, A.

    2008-01-01

    This thesis is the first to provide the fundamentals of ergonomic exoskeleton design. The fundamental theory as well as technology necessary to analyze and develop ergonomic wearable robots interacting with humans is established and validated by experiments and prototypes. The fundamentals are (1) a new theoretical framework for analyzing physical human robot interaction (pHRI) with exoskeletons, and (2) a clear set of design rules of how to build wearable, portable exoskeletons to easily and...

  17. Understanding consumers’ acceptance of mobile payments : a theoretical model and empirical validation

    OpenAIRE

    Chen, Jiajun

    2007-01-01

    This research investigates consumer acceptance of mobile payments. Mobile payments offer an alternative payment method for consumers, and allow consumers to make point-of-sales payments through mobile devices, such as mobile phones and Personal Digital Assistants (PDAs). It aims to present a better understanding of mobile payments, developing a consumer acceptance model for mobile payments. Moreover, it offers a reference and a source of literature for the industry and academic researchers in...

  18. Fundamentals of radiological protection

    International Nuclear Information System (INIS)

    Wells, J.; Mill, A.J.; Charles, M.W.

    1978-05-01

    The basic processes of living cells which are relevant to an understanding of the interaction of ionizing radiation with man are described. Particular reference is made to cell death, cancer induction and genetic effects. This is the second of a series of reports which present the fundamentals necessary for an understanding of the bases of regulatory criteria such as those recommended by the International Commision on Radiological Protection (ICRP). Others consider basic radiation physics and the biological effects of ionizing radiation. (author)

  19. Fundamentals of Fire Phenomena

    DEFF Research Database (Denmark)

    Quintiere, James

    analyses. Fire phenomena encompass everything about the scientific principles behind fire behaviour. Combining the principles of chemistry, physics, heat and mass transfer, and fluid dynamics necessary to understand the fundamentals of fire phenomena, this book integrates the subject into a clear...

  20. Fundamental Metallurgy of Solidification

    DEFF Research Database (Denmark)

    Tiedje, Niels

    2004-01-01

    The text takes the reader through some fundamental aspects of solidification, with focus on understanding the basic physics that govern solidification in casting and welding. It is described how the first solid is formed and which factors affect nucleation. It is described how crystals grow from...

  1. Infosec management fundamentals

    CERN Document Server

    Dalziel, Henry

    2015-01-01

    Infosec Management Fundamentals is a concise overview of the Information Security management concepts and techniques, providing a foundational template for both experienced professionals and those new to the industry. This brief volume will also appeal to business executives and managers outside of infosec who want to understand the fundamental concepts of Information Security and how it impacts their business decisions and daily activities. Teaches ISO/IEC 27000 best practices on information security management Discusses risks and controls within the context of an overall information securi

  2. Pragmatic electrical engineering fundamentals

    CERN Document Server

    Eccles, William

    2011-01-01

    Pragmatic Electrical Engineering: Fundamentals introduces the fundamentals of the energy-delivery part of electrical systems. It begins with a study of basic electrical circuits and then focuses on electrical power. Three-phase power systems, transformers, induction motors, and magnetics are the major topics.All of the material in the text is illustrated with completely-worked examples to guide the student to a better understanding of the topics. This short lecture book will be of use at any level of engineering, not just electrical. Its goal is to provide the practicing engineer with a practi

  3. Development, validation, and implementation of a questionnaire assessing disease knowledge and understanding in adult cystic fibrosis patients.

    LENUS (Irish Health Repository)

    Siklosi, Karen R

    2012-02-01

    BACKGROUND: The number of adults living with cystic fibrosis (CF) is increasing, necessitating an assessment of knowledge in this growing population. METHODS: A questionnaire assessing CF knowledge was completed by 100 CF patients (median age: 26.0 years, range 17-49 years; median FEV: 57.0% predicted, range 20-127% predicted). Level of knowledge was correlated with clinical and sociodemographic characteristics. RESULTS: Questionnaire validation showed acceptable internal consistency (alpha=0.75) and test-retest reliability (0.94). Patients had fair overall understanding of CF (mean=72.4%, SD=13.1), with greater knowledge of lung and gastrointestinal topics (mean=81.6%, SD=11.6) than reproduction and genetics topics (mean=57.9%, SD=24.1). Females and those with post-secondary education scored significantly higher (p<0.05). CONCLUSIONS: This study validated a questionnaire that can be utilized to assess CF knowledge. Although CF patients understand most aspects of their disease, knowledge deficits are common - particularly regarding genetics and reproduction - and should be considered when developing CF education programs.

  4. Development and validation of a system of assimilation indices: A mixed method approach to understand change in psychotherapy.

    Science.gov (United States)

    Neto, David D; Baptista, Telmo M; Dent-Brown, Kim

    2015-06-01

    Assimilation is an important process in understanding change in psychotherapy. Similar to other psychological processes, assimilation may be traceable in the speech of clients by attending to its signs or indices. In the present research, we aimed to build a system of indices of assimilation. This research follows a mixed method design. The indices were derived through qualitative analysis, using grounded theory. Subsequently, the indices were adjusted quantitatively and applied to 30 single psychotherapy sessions of adult clients with depression and 11 therapists. Forty-two indices were found and grouped into the following five process categories of assimilation: external distress, pain, noticing, decentring and action. The indices showed good inter-rater reliability and internal consistency. Except for noticing, all process categories correlated significantly with each other according to conceptual proximity. The system of indices also showed convergent validity with an existing coding system of assimilation for two process categories. The results suggest that the system of indices is a useful approach for understanding assimilation. The consideration of assimilation in a continuous fashion through sub-processes may help to extend our knowledge of this process and provide a tool for clinical practice. Assimilation is an important process in understanding change in psychotherapy in the sense that it takes into account insight and action-related processes. Clients convey in their speech signs or indices of the assimilation process which can be observed both in the style and content of their utterances. Using these indices, therapists can continuously assess assimilation and use this information in choosing interventions. Limitations: This study follows a cross-sectional design and does not allow consideration of the predictive value of the indices. The outcome of the therapy was not taken into account, which restricts validity considerations to the comparison with

  5. Fundamentals of linear algebra

    CERN Document Server

    Dash, Rajani Ballav

    2008-01-01

    FUNDAMENTALS OF LINEAR ALGEBRA is a comprehensive Text Book, which can be used by students and teachers of All Indian Universities. The Text has easy, understandable form and covers all topics of UGC Curriculum. There are lots of worked out examples which helps the students in solving the problems without anybody's help. The Problem sets have been designed keeping in view of the questions asked in different examinations.

  6. Fundamentals of queueing theory

    CERN Document Server

    Gross, Donald; Thompson, James M; Harris, Carl M

    2013-01-01

    Praise for the Third Edition ""This is one of the best books available. Its excellent organizational structure allows quick reference to specific models and its clear presentation . . . solidifies the understanding of the concepts being presented.""-IIE Transactions on Operations Engineering Thoroughly revised and expanded to reflect the latest developments in the field, Fundamentals of Queueing Theory, Fourth Edition continues to present the basic statistical principles that are necessary to analyze the probabilistic nature of queues. Rather than pre

  7. Fundamentals of Physical Volcanology

    Science.gov (United States)

    Marsh, Bruce

    2010-04-01

    Fundamentals haunt me. Certain words ignite unavoidable trains of thought, trains that begin in a cascade, unexpectedly leaping chasm after chasm, rushing from single words to whole paragraphs to full books to men's lives. So it is with me with seeing the word “fundamental” in print. I cannot evade the euphoric excitement of thinking that someone has found something terribly original and simple, understandable by every journeyman, explaining everything.

  8. Fundamentals of radiological protection

    International Nuclear Information System (INIS)

    Mill, A.J.; Charles, M.W.; Wells, J.

    1978-04-01

    A review is presented of basic radiation physics with particular relevance to radiological protection. The processes leading to the production and absorption of ionising radiation are outlined, and the important dosimetric quantities and their units of measurements. The review is the first of a series of reports presenting the fundamentals necessary for an understanding of the basis of regulatory criteria such as those recommended by the ICRP. (author)

  9. Fundamentals of magnetism

    CERN Document Server

    Getzlaff, Mathias

    2007-01-01

    In the last decade a tremendous progress has taken place in understanding the basis of magnetism, especially in reduced dimensions. In the first part, the fundamentals of magnetism are conveyed for atoms and bulk-like solid-state systems providing a basis for the understanding of new phenomena which exclusively occur in low-dimensional systems as the giant magneto resistance. This wide field is discussed in the second part and illustrated by copious examples. This textbook is particularly suitable for graduate students in physical and materials sciences. It includes numerous examples, exercises, and references.

  10. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    1993-01-01

    The Chemistry Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. The handbook includes information on the atomic structure of matter; chemical bonding; chemical equations; chemical interactions involved with corrosion processes; water chemistry control, including the principles of water treatment; the hazards of chemicals and gases, and basic gaseous diffusion processes. This information will provide personnel with a foundation for understanding the chemical properties of materials and the way these properties can impose limitations on the operation of equipment and systems

  11. Do clinical and translational science graduate students understand linear regression? Development and early validation of the REGRESS quiz.

    Science.gov (United States)

    Enders, Felicity

    2013-12-01

    Although regression is widely used for reading and publishing in the medical literature, no instruments were previously available to assess students' understanding. The goal of this study was to design and assess such an instrument for graduate students in Clinical and Translational Science and Public Health. A 27-item REsearch on Global Regression Expectations in StatisticS (REGRESS) quiz was developed through an iterative process. Consenting students taking a course on linear regression in a Clinical and Translational Science program completed the quiz pre- and postcourse. Student results were compared to practicing statisticians with a master's or doctoral degree in statistics or a closely related field. Fifty-two students responded precourse, 59 postcourse , and 22 practicing statisticians completed the quiz. The mean (SD) score was 9.3 (4.3) for students precourse and 19.0 (3.5) postcourse (P REGRESS quiz was internally reliable (Cronbach's alpha 0.89). The initial validation is quite promising with statistically significant and meaningful differences across time and study populations. Further work is needed to validate the quiz across multiple institutions. © 2013 Wiley Periodicals, Inc.

  12. Fundamentals of electronic image processing

    CERN Document Server

    Weeks, Arthur R

    1996-01-01

    This book is directed to practicing engineers and scientists who need to understand the fundamentals of image processing theory and algorithms to perform their technical tasks. It is intended to fill the gap between existing high-level texts dedicated to specialists in the field and the need for a more practical, fundamental text on image processing. A variety of example images are used to enhance reader understanding of how particular image processing algorithms work.

  13. Analysis of the Durability of PEM FC Membrane Electrode Assemblies in Automotive Applications through the Fundamental Understanding of Membrane and MEA Degradation Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Randal L. [DuPont

    2013-10-31

    The Project focused on mitigation of degradation processes on membrane electrode assemblies. The approach was to develop a model to improve understanding of the mechanisms, and to use it to focus mitigation strategies. The detailed effects of various accelerated stress tests (ASTs) were evaluated to determine the best subset to use in model development. A combination of ASTs developed by the Fuel Cell Commercialization Conference of Japan and the Fuel Cell Tech Team were selected for use. The ASTs were compared by measuring effects on performance, running in-situ diagnostics, and performing microscopic analyses of the membrane electrode assemblies after the stress tests were complete. Nissan ran FCCJ AST protocols and performed in situ and ex-situ electrochemical testing. DuPont ran FCTT and USFCC AST protocols, performed scanning and transmission electron microscopy and ran in-situ electrochemical tests. Other ex-situ testing was performed by IIT, along with much of the data analysis and model development. These tests were then modified to generate time-dependent data of the degradation mechanisms. Three different catalyst types and four membrane variants were then used to generate data for a theoretically-based degradation model. An important part of the approach was to use commercially available materials in the electrodes and membranes made in scalable semiworks processes rather than lab-based materials. This constraint ensured all materials would be practicable for full-scale testing. The initial model for the electrode layer was tested for internal consistency and agreement with the data. A Java-based computer application was developed to analyze the time-dependent AST data using polarization curves with four different cathode gas feeds and generate model parameters. Data showed very good reproducibility and good consistency as cathode catalyst loadings were varied. At the point of termination of the project, a basic electrode model was in hand with several

  14. What is Fundamental?

    CERN Multimedia

    2004-01-01

    Discussing what is fundamental in a variety of fields, biologist Richard Dawkins, physicist Gerardus 't Hooft, and mathematician Alain Connes spoke to a packed Main Auditorium at CERN 15 October. Dawkins, Professor of the Public Understanding of Science at Oxford University, explained simply the logic behind Darwinian natural selection, and how it would seem to apply anywhere in the universe that had the right conditions. 't Hooft, winner of the 1999 Physics Nobel Prize, outlined some of the main problems in physics today, and said he thinks physics is so fundamental that even alien scientists from another planet would likely come up with the same basic principles, such as relativity and quantum mechanics. Connes, winner of the 1982 Fields Medal (often called the Nobel Prize of Mathematics), explained how physics is different from mathematics, which he described as a "factory for concepts," unfettered by connection to the physical world. On 16 October, anthropologist Sharon Traweek shared anecdotes from her ...

  15. Development of a reliable, valid measure to assess parents' and teachers' understanding of postural care for children with physical disabilities: the (UKC PostCarD) questionnaire.

    Science.gov (United States)

    Hotham, S; Hutton, E; Hamilton-West, K E

    2015-11-01

    Previous research has highlighted lack of knowledge, understanding and confidence among parents and teachers responsible for the postural care of children with physical disability. Interventions designed to improve these qualities require a reliable and validated tool to assess pre- and post-intervention levels. Currently, however, no validated measure of postural care confidence (i.e. self-efficacy) exists. Hence, the aim of this research was to develop a reliable and valid questionnaire to assess parents' and teachers' confidence, alongside knowledge and understanding of postural care - the Understanding Knowledge and Confidence in providing POSTural CARe for children with Disabilities (UKC PostCarD) questionnaire. Items were developed by a multidisciplinary team and designed to map onto the content of 'An A-to-Z of Postural Care'. Parents, teachers and therapists assessed items for face validity. Scale reliability was then assessed using Cronbach's alpha and known-group validity was assessed by comparing scores of an 'expert' group (physiotherapists and occupational therapists) with those of a 'non-expert' group (with no formal training in postural care). The total scale and all three subscales (understanding and knowledge, confidence and concerns) demonstrated adequate reliability (α > 0.83) and subscale correlations formed a logical pattern (understanding and knowledge correlated positively with confidence and negatively with concerns). Experts' (n = 111) scores were higher than non-experts' (n = 79) for the total scale and all subscales (P children with disabilities. © 2015 John Wiley & Sons Ltd.

  16. Page | 137 UNDERSTANDING THE LEGAL FUNDAMENTALS OF ...

    African Journals Online (AJOL)

    Fr. Ikenga

    In certain cases, the agreement ends up as a structured project where the .... However, for the purposes of this study, the Project Sponsor is regarded as the ..... and transfer project to the Government/public entity. The project is ... ICSID19 Rules have been made to govern such contracts and investment relations. In all, the.

  17. Fundamentals of radiological protection

    International Nuclear Information System (INIS)

    Charles, M.W.; Wells, J.; Mill, A.J.

    1978-04-01

    A brief review is presented of the early and late effects of ionising radiation on man, with particular emphasis on those aspects of importance in radiological protection. The terminology and dose response curves, are explained. Early effects on cells, tissues and whole organs are discussed. Late somatic effects considered include cancer and life-span shortening. Genetic effects are examined. The review is the third of a series of reports which present the fundamentals necessary for an understanding of the basis of regulatory criteria, such as those of the ICRP. (u.K.)

  18. Fundamentals of Project Management

    CERN Document Server

    Heagney, Joseph

    2011-01-01

    With sales of more than 160,000 copies, Fundamentals of Project Management has helped generations of project managers navigate the ins and outs of every aspect of this complex discipline. Using a simple step-by-step approach, the book is the perfect introduction to project management tools, techniques, and concepts. Readers will learn how to: ò Develop a mission statement, vision, goals, and objectives ò Plan the project ò Create the work breakdown structure ò Produce a workable schedule ò Understand earned value analysis ò Manage a project team ò Control and evaluate progress at every stage.

  19. Fundamentals of attosecond optics

    CERN Document Server

    Chang, Zenghu

    2011-01-01

    Attosecond optical pulse generation, along with the related process of high-order harmonic generation, is redefining ultrafast physics and chemistry. A practical understanding of attosecond optics requires significant background information and foundational theory to make full use of these cutting-edge lasers and advance the technology toward the next generation of ultrafast lasers. Fundamentals of Attosecond Optics provides the first focused introduction to the field. The author presents the underlying concepts and techniques required to enter the field, as well as recent research advances th

  20. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. This volume contains the following modules: reactor water chemistry (effects of radiation on water chemistry, chemistry parameters), principles of water treatment (purpose; treatment processes [ion exchange]; dissolved gases, suspended solids, and pH control; water purity), and hazards of chemicals and gases (corrosives [acids, alkalies], toxic compounds, compressed gases, flammable/combustible liquids)

  1. Fundamentals of Structural Engineering

    CERN Document Server

    Connor, Jerome J

    2013-01-01

    Fundamentals of Structural Engineering provides a balanced, seamless treatment of both classic, analytic methods and contemporary, computer-based techniques for conceptualizing and designing a structure. The book’s principle goal is to foster an intuitive understanding of structural behavior based on problem solving experience for students of civil engineering and architecture who have been exposed to the basic concepts of engineering mechanics and mechanics of materials. Making it distinct from many other undergraduate textbooks, the authors of this text recognize the notion that engineers reason about behavior using simple models and intuition they acquire through problem solving. The approach adopted in this text develops this type of intuition  by presenting extensive, realistic problems and case studies together with computer simulation, which allows rapid exploration of  how a structure responds to changes in geometry and physical parameters. This book also: Emphasizes problem-based understanding of...

  2. FUNDAMENTALS OF BIOMECHANICS

    Directory of Open Access Journals (Sweden)

    Duane Knudson

    2007-09-01

    Full Text Available DESCRIPTION This book provides a broad and in-depth theoretical and practical description of the fundamental concepts in understanding biomechanics in the qualitative analysis of human movement. PURPOSE The aim is to bring together up-to-date biomechanical knowledge with expert application knowledge. Extensive referencing for students is also provided. FEATURES This textbook is divided into 12 chapters within four parts, including a lab activities section at the end. The division is as follows: Part 1 Introduction: 1.Introduction to biomechanics of human movement; 2.Fundamentals of biomechanics and qualitative analysis; Part 2 Biological/Structural Bases: 3.Anatomical description and its limitations; 4.Mechanics of the musculoskeletal system; Part 3 Mechanical Bases: 5.Linear and angular kinematics; 6.Linear kinetics; 7.Angular kinetics; 8.Fluid mechanics; Part 4 Application of Biomechanics in Qualitative Analysis :9.Applying biomechanics in physical education; 10.Applying biomechanics in coaching; 11.Applying biomechanics in strength and conditioning; 12.Applying biomechanics in sports medicine and rehabilitation. AUDIENCE This is an important reading for both student and educators in the medicine, sport and exercise-related fields. For the researcher and lecturer it would be a helpful guide to plan and prepare more detailed experimental designs or lecture and/or laboratory classes in exercise and sport biomechanics. ASSESSMENT The text provides a constructive fundamental resource for biomechanics, exercise and sport-related students, teachers and researchers as well as anyone interested in understanding motion. It is also very useful since being clearly written and presenting several ways of examples of the application of biomechanics to help teach and apply biomechanical variables and concepts, including sport-related ones

  3. Fundamental partial compositeness

    CERN Document Server

    Sannino, Francesco

    2016-11-07

    We construct renormalizable Standard Model extensions, valid up to the Planck scale, that give a composite Higgs from a new fundamental strong force acting on fermions and scalars. Yukawa interactions of these particles with Standard Model fermions realize the partial compositeness scenario. Successful models exist because gauge quantum numbers of Standard Model fermions admit a minimal enough 'square root'. Furthermore, right-handed SM fermions have an SU(2)$_R$-like structure, yielding a custodially-protected composite Higgs. Baryon and lepton numbers arise accidentally. Standard Model fermions acquire mass at tree level, while the Higgs potential and flavor violations are generated by quantum corrections. We further discuss accidental symmetries and other dynamical features stemming from the new strongly interacting scalars. If the same phenomenology can be obtained from models without our elementary scalars, they would reappear as composite states.

  4. Fundamental partial compositeness

    International Nuclear Information System (INIS)

    Sannino, Francesco; Strumia, Alessandro; Tesi, Andrea; Vigiani, Elena

    2016-01-01

    We construct renormalizable Standard Model extensions, valid up to the Planck scale, that give a composite Higgs from a new fundamental strong force acting on fermions and scalars. Yukawa interactions of these particles with Standard Model fermions realize the partial compositeness scenario. Under certain assumptions on the dynamics of the scalars, successful models exist because gauge quantum numbers of Standard Model fermions admit a minimal enough ‘square root’. Furthermore, right-handed SM fermions have an SU(2)_R-like structure, yielding a custodially-protected composite Higgs. Baryon and lepton numbers arise accidentally. Standard Model fermions acquire mass at tree level, while the Higgs potential and flavor violations are generated by quantum corrections. We further discuss accidental symmetries and other dynamical features stemming from the new strongly interacting scalars. If the same phenomenology can be obtained from models without our elementary scalars, they would reappear as composite states.

  5. Clashing Validities in the Comparative Method? Balancing In-Depth Understanding and Generalizability in Small-N Policy Studies

    NARCIS (Netherlands)

    van der Heijden, J.

    2013-01-01

    The comparative method receives considerable attention in political science. To some a main advantage of the method is that it allows for both in-depth insights (internal validity), and generalizability beyond the cases studied (external validity). However, others consider internal and external

  6. The pursuit of understanding: A study of exemplary high school students' conceptions of knowledge validation in science and history

    Science.gov (United States)

    Boix Mansilla, Veronica Maria

    The study presented examined 16 award-winning high school students' beliefs about the criteria by which scientific theories and historical narratives are deemed trustworthy. It sought to (a) describe such beliefs as students reasoned within each discipline; (b) examine the degree to which such beliefs were organized as coherent systems of thought; and (c) explore the relationship between students' beliefs and their prior disciplinary research experience. Students were multiple-year award-winners at the Massachusetts Science Fair and the National History Day---two pre-collegiate State-level competitions. Two consecutive semi-structured interviews invited students to assess and enhance the trustworthiness of competing accounts of genetic inheritance and the Holocaust in science and history respectively. A combined qualitative and quantitative data analysis yielded the following results: (a) Students valued three standards of acceptability that were common across disciplines: e.g. empirical strength, explanatory power and formal and presentational strength. However, when reasoning within each discipline they tended to define each standard in disciplinary-specific ways. Students also valued standards of acceptability that were not shared across disciplines: i.e., external validity in science and human understanding in history. (b) In science, three distinct epistemological orientations were identified---i.e., "faith in method," "trusting the scientific community" and "working against error." In history students held two distinct epistemologies---i.e., "reproducing the past" and "organizing the past". Students' epistemological orientations tended to operate as collections of mutually supporting ideas about what renders a theory or a narrative acceptable. (c) Contrary to the standard position to date in the literature on epistemological beliefs, results revealed that students' research training in a particular discipline (e.g., science or history) was strongly related to

  7. Theory of fundamental interactions

    International Nuclear Information System (INIS)

    Pestov, A.B.

    1992-01-01

    In the present article the theory of fundamental interactions is derived in a systematic way from the first principles. In the developed theory there is no separation between space-time and internal gauge space. Main equations for basic fields are derived. In is shown that the theory satisfies the correspondence principle and gives rise to new notions in the considered region. In particular, the conclusion is made about the existence of particles which are characterized not only by the mass, spin, charge but also by the moment of inertia. These are rotating particles, the particles which represent the notion of the rigid body on the microscopical level and give the key for understanding strong interactions. The main concepts and dynamical laws for these particles are formulated. The basic principles of the theory may be examined experimentally not in the distant future. 29 refs

  8. Validity, reliability and understanding of the EORTC-C30 and EORTC-BR23, quality of life questionnaires specific for breast cancer

    Directory of Open Access Journals (Sweden)

    Fernanda Alessandra Silva Michels

    2013-06-01

    Full Text Available Objective: To validate and assess reliability and understanding of the EORTC–C30 quality of life questionnaire and its breast cancer specific module, the EORTC-BR23. Methods: This study was conducted at the AC Camargo Cancer Hospital, São Paulo, Brazil. A total of 100 women diagnosed with breast cancer were interviewed. Internal consistency, confirmatory factorial analysis, convergent validity, construct validity and degree of understanding were examined. Reliability was assessed by comparison of means at times 1 and 2, inter-class coefficient and Bland-Altman graphics. Results: Cronbach’s alpha ranged from 0.72 to 0.86 for the EORTC-C30 and from 0.78 to 0.83 for the EORTC-BR23 questionnaire. Most questions were confirmed in the confirmatory factorial analysis. In the construct validity analysis, the questionnaires were capable of differentiating patients with or without lymphedema, apart from the symptom scales of both questionnaires. Both questionnaires presented a significant correlation in most domains of the SF-36, in the convergent validity analysis. Only a few criticisms were reported concerning questions, and the mean grade of understanding was high (C30 = 4.91 and BR23 = 4.89. The questionnaires presented good rates of reliability, with the exception of the functional scale of the C30 and the symptom scale of the BR23. Conclusions: The EORTC-C30 and EORTC-BR23 quality of life questionnaires were validated, presented good rates of reliability and are easily understood, allowing them to be used in Brazil to assess quality of life among women with breast cancer.

  9. Testing Our Fundamental Assumptions

    Science.gov (United States)

    Kohler, Susanna

    2016-06-01

    Science is all about testing the things we take for granted including some of the most fundamental aspects of how we understand our universe. Is the speed of light in a vacuum the same for all photons regardless of their energy? Is the rest mass of a photon actually zero? A series of recent studies explore the possibility of using transient astrophysical sources for tests!Explaining Different Arrival TimesArtists illustration of a gamma-ray burst, another extragalactic transient, in a star-forming region. [NASA/Swift/Mary Pat Hrybyk-Keith and John Jones]Suppose you observe a distant transient astrophysical source like a gamma-ray burst, or a flare from an active nucleus and two photons of different energies arrive at your telescope at different times. This difference in arrival times could be due to several different factors, depending on how deeply you want to question some of our fundamental assumptions about physics:Intrinsic delayThe photons may simply have been emitted at two different times by the astrophysical source.Delay due to Lorentz invariance violationPerhaps the assumption that all massless particles (even two photons with different energies) move at the exact same velocity in a vacuum is incorrect.Special-relativistic delayMaybe there is a universal speed for massless particles, but the assumption that photons have zero rest mass is wrong. This, too, would cause photon velocities to be energy-dependent.Delay due to gravitational potentialPerhaps our understanding of the gravitational potential that the photons experience as they travel is incorrect, also causing different flight times for photons of different energies. This would mean that Einsteins equivalence principle, a fundamental tenet of general relativity (GR), is incorrect.If we now turn this problem around, then by measuring the arrival time delay between photons of different energies from various astrophysical sources the further away, the better we can provide constraints on these

  10. Composing Europe's Fundamental Rights Area

    DEFF Research Database (Denmark)

    Storgaard, Louise Halleskov

    2015-01-01

    The article offers a perspective on how the objective of a strong and coherent European protection standard pursued by the fundamental rights amendments of the Lisbon Treaty can be achieved, as it proposes a discursive pluralistic framework to understand and guide the relationship between the EU...

  11. Fundamentals of Biomass pellet production

    DEFF Research Database (Denmark)

    Holm, Jens Kai; Henriksen, Ulrik Birk; Hustad, Johan Einar

    2005-01-01

    Pelletizing experiments along with modelling of the pelletizing process have been carried out with the aim of understanding the fundamental physico-chemical mechanisms that control the quality and durability of biomass pellets. A small-scale California pellet mill (25 kg/h) located with the Biomass...

  12. Experimental tests of fundamental symmetries

    NARCIS (Netherlands)

    Jungmann, K. P.

    2014-01-01

    Ongoing experiments and projects to test our understanding of fundamental inter- actions and symmetries in nature have progressed significantly in the past few years. At high energies the long searched for Higgs boson has been found; tests of gravity for antimatter have come closer to reality;

  13. Understanding human behaviour in fire : validation of the use of serious gaming for research into fire safety psychonomics

    NARCIS (Netherlands)

    Kobes, M.

    2010-01-01

    Full text contains chapter 5,6,8 and 9, the other chapters are under embargo. The primary aim of the project is the validation of a behavioural assessment and research tool. The tool is a serious game that makes use of an interactive, real-time, physics-based virtual environment with realistic 3D

  14. Validation of a questionnaire to measure sexual health knowledge and understanding (Sexual Health Questionnaire) in Nepalese secondary school: A psychometric process.

    Science.gov (United States)

    Acharya, Dev Raj; Thomas, Malcolm; Cann, Rosemary

    2016-01-01

    School-based sex education has the potential to prevent unwanted pregnancy and to promote positive sexual health at the individual, family and community level. To develop and validate a sexual health questionnaire to measure young peoples' sexual health knowledge and understanding (SHQ) in Nepalese secondary school. Secondary school students (n = 259, male = 43.63%, female = 56.37%) and local experts (n = 9, male = 90%, female = 10%) were participated in this study. Evaluation processes were; content validity (>0.89), plausibility check (>95), item-total correlation (>0.3), factor loading (>0.4), principal component analysis (4 factors Kaiser's criterion), Chronbach's alpha (>0.65), face validity and internal consistency using test-retest reliability (P > 0.05). The principal component analysis revealed four factors to be extracted; sexual health norms and beliefs, source of sexual health information, sexual health knowledge and understanding, and level of sexual awareness. Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy demonstrated that the patterns of correlations are relatively compact (>0.80). Chronbach's alpha for each factors were above the cut-off point (0.65). Face validity indicated that the questions were clear to the majority of the respondent. Moreover, there were no significant differences (P > 0.05) in the responses to the items at two time points at seven weeks later. The finding suggests that SHQ is a valid and reliable instrument to be used in schools to measure sexual health knowledge and understanding. Further analysis such as structured equation modelling (SEM) and confirmatory factor analysis could make the questionnaire more robust and applicable to the wider school population.

  15. Exchange Rates and Fundamentals.

    Science.gov (United States)

    Engel, Charles; West, Kenneth D.

    2005-01-01

    We show analytically that in a rational expectations present-value model, an asset price manifests near-random walk behavior if fundamentals are I (1) and the factor for discounting future fundamentals is near one. We argue that this result helps explain the well-known puzzle that fundamental variables such as relative money supplies, outputs,…

  16. Fundamental investigations of catalyst nanoparticles

    DEFF Research Database (Denmark)

    Elkjær, Christian Fink

    and economic development in the 20th century. There is however a downside to this development and we are seeing significant pollution and pressure on resources. Catalysis therefore has an increasingly important role in limiting pollution and optimizing the use of resources. This development will depend on our...... fundamental understanding of catalytic processes and our ability to make use of that understanding. This thesis presents fundamental studies of catalyst nanoparticles with particular focus on dynamic processes. Such studies often require atomic-scale characterization, because the catalytic conversion takes...... important that we only study intrinsic structures and phenomena and not those that may be induced by the high energy electrons used to image the specimen. This requires careful consideration of the influence of the electron beam in order to understand, control and minimize that influence. I present four...

  17. Fundamentals of multicore software development

    CERN Document Server

    Pankratius, Victor; Tichy, Walter F

    2011-01-01

    With multicore processors now in every computer, server, and embedded device, the need for cost-effective, reliable parallel software has never been greater. By explaining key aspects of multicore programming, Fundamentals of Multicore Software Development helps software engineers understand parallel programming and master the multicore challenge. Accessible to newcomers to the field, the book captures the state of the art of multicore programming in computer science. It covers the fundamentals of multicore hardware, parallel design patterns, and parallel programming in C++, .NET, and Java. It

  18. Puerto Rican understandings of child disability: methods for the cultural validation of standardized measures of child health.

    Science.gov (United States)

    Gannotti, Mary E; Handwerker, W Penn

    2002-12-01

    Validating the cultural context of health is important for obtaining accurate and useful information from standardized measures of child health adapted for cross-cultural applications. This paper describes the application of ethnographic triangulation for cultural validation of a measure of childhood disability, the Pediatric Evaluation of Disability Inventory (PEDI) for use with children living in Puerto Rico. The key concepts include macro-level forces such as geography, demography, and economics, specific activities children performed and their key social interactions, beliefs, attitudes, emotions, and patterns of behavior surrounding independence in children and childhood disability, as well as the definition of childhood disability. Methods utilize principal components analysis to establish the validity of cultural concepts and multiple regression analysis to identify intracultural variation. Findings suggest culturally specific modifications to the PEDI, provide contextual information for informed interpretation of test scores, and point to the need to re-standardize normative values for use with Puerto Rican children. Without this type of information, Puerto Rican children may appear more disabled than expected for their level of impairment or not to be making improvements in functional status. The methods also allow for cultural boundaries to be quantitatively established, rather than presupposed. Copyright 2002 Elsevier Science Ltd.

  19. Understanding the fundamental mechanisms of biofilms development and dispersal: BIAM (Biofilm Intensity and Architecture Measurement), a new tool for studying biofilms as a function of their architecture and fluorescence intensity.

    Science.gov (United States)

    Baudin, Marine; Cinquin, Bertrand; Sclavi, Bianca; Pareau, Dominique; Lopes, Filipa

    2017-09-01

    Confocal laser scanning microscopy (CLSM) is one of the most relevant technologies for studying biofilms in situ. Several tools have been developed to investigate and quantify the architecture of biofilms. However, an approach to quantify correctly the evolution of intensity of a fluorescent signal as a function of the structural parameters of a biofilm is still lacking. Here we present a tool developed in the ImageJ open source software that can be used to extract both structural and fluorescence intensity from CLSM data: BIAM (Biofilm Intensity and Architecture Measurement). This is of utmost significance when studying the fundamental mechanisms of biofilm growth, differentiation and development or when aiming to understand the effect of external molecules on biofilm phenotypes. In order to provide an example of the potential of such a tool in this study we focused on biofilm dispersion. cis-2-Decenoic acid (CDA) is a molecule known to induce biofilm dispersion of multiple bacterial species. The mechanisms by which CDA induces dispersion are still poorly understood. To investigate the effects of CDA on biofilms, we used a reporter strain of Escherichia coli (E. coli) that expresses the GFPmut2 protein under control of the rrnBP1 promoter. Experiments were done in flow cells and image acquisition was made with CLSM. Analysis carried out using the new tool, BIAM, indicates that CDA affects the fluorescence intensity of the biofilm structures as well as biofilm architectures. Indeed, our results demonstrate that CDA removes more than 35% of biofilm biovolume and suggest that it results in an increase of the biofilm's mean fluorescence intensity (MFI) by more than 26% compared to the control biofilm in the absence of CDA. Copyright © 2017. Published by Elsevier B.V.

  20. Fundamentals of klystron testing

    International Nuclear Information System (INIS)

    Caldwell, J.W. Jr.

    1978-08-01

    Fundamentals of klystron testing is a text primarily intended for the indoctrination of new klystron group test stand operators. It should significantly reduce the familiarization time of a new operator, making him an asset to the group sooner than has been experienced in the past. The new employee must appreciate the mission of SLAC before he can rightfully be expected to make a meaningful contribution to the group's effort. Thus, the introductory section acquaints the reader with basic concepts of accelerators in general, then briefly describes major physical aspects of the Stanford Linear Accelerator. Only then is his attention directed to the klystron, with its auxiliary systems, and the rudiments of klystron tube performance checks. It is presumed that the reader is acquainted with basic principles of electronics and scientific notation. However, to preserve the integrity of an indoctrination guide, tedious technical discussions and mathematical analysis have been studiously avoided. It is hoped that the new operator will continue to use the text for reference long after his indoctrination period is completed. Even the more experienced operator should find that particular sections will refresh his understanding of basic principles of klystron testing

  1. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, V.

    1982-01-01

    The author of the book has had 25 years of experience at the Nuclear Chemistry of Prague Technical University. In consequence, the book is intended as a basic textbook for students of this field. Its main objectives are an easily understandable presentation of the complex subject and in spite of the uncertainty which still characterizes the definition and subjects of nuclear chemistry - a systematic classification and logical structure. Contents: 1. Introduction (history and definition); 2. General nuclear chemistry (physical fundamentals, hot atom chemistry, interaction of nuclear radiation with matter, radioactive elements, isotope effects, isotope exchange, chemistry of radioactive trace elements); 3. Methods of nuclear chemistry of nuclear chemistry (radiochemical methods, activation, separation and enrichment chemistry); 4. Preparative nuclear chemistry (isotope production, labelled compounds); 5. Analytival nuclear chemistry; 6. Applied nuclear chemistry (isotope applications in general physical and analytical chemistry). The book is supplemented by an annex with tables, a name catalogue and a subject index which will facilitate access to important information. (RB) [de

  2. Islamic fundamentalism in Indonesia

    OpenAIRE

    Nagy, Sandra L.

    1996-01-01

    This is a study of Islamic fundamentalism in Indonesia. Islamic fundamentalism is defined as the return to the foundations and principles of Islam including all movements based on the desire to create a more Islamic society. After describing the practices and beliefs of Islam, this thesis examines the three aspects of universal Islamic fundamentalism: revivalism, resurgence, and radicalism. It analyzes the role of Islam in Indonesia under Dutch colonial rule, an alien Christian imperialist po...

  3. The Children's Social Understanding Scale: construction and validation of a parent-report measure for assessing individual differences in children's theories of mind.

    Science.gov (United States)

    Tahiroglu, Deniz; Moses, Louis J; Carlson, Stephanie M; Mahy, Caitlin E V; Olofson, Eric L; Sabbagh, Mark A

    2014-11-01

    Children's theory of mind (ToM) is typically measured with laboratory assessments of performance. Although these measures have generated a wealth of informative data concerning developmental progressions in ToM, they may be less useful as the sole source of information about individual differences in ToM and their relation to other facets of development. In the current research, we aimed to expand the repertoire of methods available for measuring ToM by developing and validating a parent-report ToM measure: the Children's Social Understanding Scale (CSUS). We present 3 studies assessing the psychometric properties of the CSUS. Study 1 describes item analysis, internal consistency, test-retest reliability, and relation of the scale to children's performance on laboratory ToM tasks. Study 2 presents cross-validation data for the scale in a different sample of preschool children with a different set of ToM tasks. Study 3 presents further validation data for the scale with a slightly older age group and a more advanced ToM task, while controlling for several other relevant cognitive abilities. The findings indicate that the CSUS is a reliable and valid measure of individual differences in children's ToM that may be of great value as a complement to standard ToM tasks in many different research contexts. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  4. Fundamentals of gas dynamics

    CERN Document Server

    Babu, V

    2014-01-01

    Fundamentals of Gas Dynamics, Second Edition isa comprehensively updated new edition and now includes a chapter on the gas dynamics of steam. It covers the fundamental concepts and governing equations of different flows, and includes end of chapter exercises based on the practical applications. A number of useful tables on the thermodynamic properties of steam are also included.Fundamentals of Gas Dynamics, Second Edition begins with an introduction to compressible and incompressible flows before covering the fundamentals of one dimensional flows and normal shock wav

  5. Verification and validation benchmarks.

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, William Louis; Trucano, Timothy Guy

    2007-02-01

    Verification and validation (V&V) are the primary means to assess the accuracy and reliability of computational simulations. V&V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V&V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the level of

  6. Verification and validation benchmarks

    International Nuclear Information System (INIS)

    Oberkampf, William Louis; Trucano, Timothy Guy

    2007-01-01

    Verification and validation (V and V) are the primary means to assess the accuracy and reliability of computational simulations. V and V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V and V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the

  7. Verification and validation benchmarks

    International Nuclear Information System (INIS)

    Oberkampf, William L.; Trucano, Timothy G.

    2008-01-01

    Verification and validation (V and V) are the primary means to assess the accuracy and reliability of computational simulations. V and V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V and V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the

  8. Fundamentals of condensed matter physics

    CERN Document Server

    Cohen, Marvin L

    2016-01-01

    Based on an established course and covering the fundamentals, central areas, and contemporary topics of this diverse field, Fundamentals of Condensed Matter Physics is a much-needed textbook for graduate students. The book begins with an introduction to the modern conceptual models of a solid from the points of view of interacting atoms and elementary excitations. It then provides students with a thorough grounding in electronic structure as a starting point to understand many properties of condensed matter systems - electronic, structural, vibrational, thermal, optical, transport, magnetic and superconductivity - and methods to calculate them. Taking readers through the concepts and techniques, the text gives both theoretically and experimentally inclined students the knowledge needed for research and teaching careers in this field. It features 200 illustrations, 40 worked examples and 150 homework problems for students to test their understanding. Solutions to the problems for instructors are available at w...

  9. DOE Fundamentals Handbook: Classical Physics

    International Nuclear Information System (INIS)

    1992-06-01

    The Classical Physics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of physical forces and their properties. The handbook includes information on the units used to measure physical properties; vectors, and how they are used to show the net effect of various forces; Newton's Laws of motion, and how to use these laws in force and motion applications; and the concepts of energy, work, and power, and how to measure and calculate the energy involved in various applications. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility systems and equipment

  10. DOE fundamentals handbook: Material science

    International Nuclear Information System (INIS)

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the two modules: structure of metals (bonding, common lattic types, grain structure/boundary, polymorphis, alloys, imperfections in metals) and properties of metals (stress, strain, Young modulus, stress-strain relation, physical properties, working of metals, corrosion, hydrogen embrittlement, tritium/material compatibility)

  11. Estudo de validação de uma medida de avaliação da motivação para alunos do ensino fundamental Validation study of the valuation's measure of motivation for elementary school students

    Directory of Open Access Journals (Sweden)

    Sueli Edi Rufini

    2011-04-01

    Full Text Available O objetivo deste estudo foi elaborar e validar um instrumento de avaliação da qualidade motivacional de estudantes do ensino fundamental, tendo por referência a Teoria da Autodeterminação. Inicialmente, com o propósito de obter dados para a elaboração de itens, foram entrevistadas 20 crianças acerca dos motivos alegados para irem à escola. Com base nessas informações e em itens disponíveis na literatura, chegou-se a uma versão preliminar da escala, composta de 30 itens e aplicada para um grupo de 30 crianças. Após os ajustes, responderam à versão final da escala 1.381 estudantes do ensino fundamental do estado do Paraná. A análise fatorial exploratória resultou na exclusão de 4 itens do instrumento, ficando um total de 25. Foram aceitáveis os índices de consistência interna para as dimensões avaliadas (desmotivação α=0,85, motivação extrínseca por regulação externa α=0,67, por regulação introjetada α=0,76, por regulação identificada α=0,88 e motivação intrínseca α=0,81. Novas investigações estão em andamento.The aim of this study was to develop and validate an instrument for assessing the motivational quality of elementary school students, with reference to the Self-determination Theory. Initially, the purposes of obtaining data for the preparation of items, 20 children were interviewed about the alleged reasons for going to school. Based on this informations and items available in the literature, it reached a preliminary version of the scale included 30 items and applied to a group of 30 children. After the adjustments, they answered the final version of the 1.381 students in of Compulsive Work. The results showed that from the sociodemographic variables, only Compulsive Work. The results showed that from the sociodemographic variables, only elemetary school in the state of Parana. Factor analysis resulted in the exclusion of four items of the instrument, leaving a total of 25. It was acceptable

  12. Fundamental neutron physics

    International Nuclear Information System (INIS)

    Deslattes, R.; Dombeck, T.; Greene, G.; Ramsey, N.; Rauch, H.; Werner, S.

    1984-01-01

    Fundamental physics experiments of merit can be conducted at the proposed intense neutron sources. Areas of interest include: neutron particle properties, neutron wave properties, and fundamental physics utilizing reactor produced γ-rays. Such experiments require intense, full-time utilization of a beam station for periods ranging from several months to a year or more

  13. Couples' joint decision-making: the construction and validation of a key proxy for understanding gender relations in contemporary families

    Directory of Open Access Journals (Sweden)

    Maira Covre-Sussai

    2014-06-01

    Full Text Available Gender relations have become a key dimension in family studies, and understanding gender relations as both determining and resulting from outcome of new family configurations requires the use of specific surveys aimed at the dynamics of couples. Unfortunately, nationally representative surveys of this type are not available for Latin American countries. Nonetheless, the most recent versions of the Demographic and Health Surveys (DHS include a section called "Women's Status and Empowerment", which can provide information about gender relations as well. This study aims at assessing the construct of gender relations in terms of couples' joint decision-making for all five Brazilian geographical regions. To this end, a step-by-step multi-group confirmatory factor analysis (MGCFA was applied in order to verify whether this concept can be compared across Brazilian regions. Results show that the DHS items can be used reliably for measuring couples' joint decision-making and that this construct can be meaningfully compared over the regions. These findings will contribute to further demographic and sociological research on gender relations which can use this concept and other indicators provided by the DHS to identify the causal processes related to it.

  14. Relativities of fundamentality

    Science.gov (United States)

    McKenzie, Kerry

    2017-08-01

    S-dualities have been held to have radical implications for our metaphysics of fundamentality. In particular, it has been claimed that they make the fundamentality status of a physical object theory-relative in an important new way. But what physicists have had to say on the issue has not been clear or consistent, and in particular seems to be ambiguous between whether S-dualities demand an anti-realist interpretation of fundamentality talk or merely a revised realism. This paper is an attempt to bring some clarity to the matter. After showing that even antecedently familiar fundamentality claims are true only relative to a raft of metaphysical, physical, and mathematical assumptions, I argue that the relativity of fundamentality inherent in S-duality nevertheless represents something new, and that part of the reason for this is that it has both realist and anti-realist implications for fundamentality talk. I close by discussing the broader significance that S-dualities have for structuralist metaphysics and for fundamentality metaphysics more generally.

  15. Fundamentals of electrochemical science

    CERN Document Server

    Oldham, Keith

    1993-01-01

    Key Features* Deals comprehensively with the basic science of electrochemistry* Treats electrochemistry as a discipline in its own right and not as a branch of physical or analytical chemistry* Provides a thorough and quantitative description of electrochemical fundamentals

  16. Fundamentals of ion exchange

    International Nuclear Information System (INIS)

    Townsend, R.P.

    1993-01-01

    In this paper the fundamentals of ion exchange mechanisms and their thermodynamics are described. A range of ion exchange materials is considered and problems of communication and technology transfer between scientists working in the field are discussed. (UK)

  17. Land Prices and Fundamentals

    OpenAIRE

    Koji Nakamura; Yumi Saita

    2007-01-01

    This paper examines the long-term relationship between macro economic fundamentals and the weighted-average land price indicators, which are supposed to be more appropriate than the official land price indicators when analyzing their impacts on the macro economy. In many cases, we find the cointegrating relationships between the weighted-average land price indicators and the discounted present value of land calculated based on the macro economic fundamentals indicators. We also find that the ...

  18. Fundamentals of structural dynamics

    CERN Document Server

    Craig, Roy R

    2006-01-01

    From theory and fundamentals to the latest advances in computational and experimental modal analysis, this is the definitive, updated reference on structural dynamics.This edition updates Professor Craig's classic introduction to structural dynamics, which has been an invaluable resource for practicing engineers and a textbook for undergraduate and graduate courses in vibrations and/or structural dynamics. Along with comprehensive coverage of structural dynamics fundamentals, finite-element-based computational methods, and dynamic testing methods, this Second Edition includes new and e

  19. Religious fundamentalism and conflict

    OpenAIRE

    Muzaffer Ercan Yılmaz

    2006-01-01

    This study provides an analytical discussion for the issue of religious fundamentalism and itsrelevance to conflict, in its broader sense. It is stressed that religious fundamentalism manifests itself in twoways: nonviolent intolerance and violent intolerance. The sources of both types of intolerance and theirconnection to conflict are addressed and discussed in detail. Further research is also suggested on conditionsconnecting religion to nonviolent intolerance so as to cope with the problem...

  20. Fundamentals of statistics

    CERN Document Server

    Mulholland, Henry

    1968-01-01

    Fundamentals of Statistics covers topics on the introduction, fundamentals, and science of statistics. The book discusses the collection, organization and representation of numerical data; elementary probability; the binomial Poisson distributions; and the measures of central tendency. The text describes measures of dispersion for measuring the spread of a distribution; continuous distributions for measuring on a continuous scale; the properties and use of normal distribution; and tests involving the normal or student's 't' distributions. The use of control charts for sample means; the ranges

  1. Fundamentalism and science

    Directory of Open Access Journals (Sweden)

    Massimo Pigliucci

    2006-06-01

    Full Text Available The many facets of fundamentalism. There has been much talk about fundamentalism of late. While most people's thought on the topic go to the 9/11 attacks against the United States, or to the ongoing war in Iraq, fundamentalism is affecting science and its relationship to society in a way that may have dire long-term consequences. Of course, religious fundamentalism has always had a history of antagonism with science, and – before the birth of modern science – with philosophy, the age-old vehicle of the human attempt to exercise critical thinking and rationality to solve problems and pursue knowledge. “Fundamentalism” is defined by the Oxford Dictionary of the Social Sciences1 as “A movement that asserts the primacy of religious values in social and political life and calls for a return to a 'fundamental' or pure form of religion.” In its broadest sense, however, fundamentalism is a form of ideological intransigence which is not limited to religion, but includes political positions as well (for example, in the case of some extreme forms of “environmentalism”.

  2. Fundamentals of estuarine physical oceanography

    CERN Document Server

    Bruner de Miranda, Luiz; Kjerfve, Björn; Castro Filho, Belmiro Mendes de

    2017-01-01

    This book provides an introduction to the complex system functions, variability and human interference in ecosystem between the continent and the ocean. It focuses on circulation, transport and mixing of estuarine and coastal water masses, which is ultimately related to an understanding of the hydrographic and hydrodynamic characteristics (salinity, temperature, density and circulation), mixing processes (advection and diffusion), transport timescales such as the residence time and the exposure time. In the area of physical oceanography, experiments using these water bodies as a natural laboratory and interpreting their circulation and mixing processes using theoretical and semi-theoretical knowledge are of fundamental importance. Small-scale physical models may also be used together with analytical and numerical models. The book highlights the fact that research and theory are interactive, and the results provide the fundamentals for the development of the estuarine research.

  3. Fundamentals of Space Medicine

    Science.gov (United States)

    Clément, Gilles

    2005-03-01

    A total of more than 240 human space flights have been completed to date, involving about 450 astronauts from various countries, for a combined total presence in space of more than 70 years. The seventh long-duration expedition crew is currently in residence aboard the International Space Station, continuing a permanent presence in space that began in October 2000. During that time, investigations have been conducted on both humans and animal models to study the bone demineralization and muscle deconditioning, space motion sickness, the causes and possible treatment of postflight orthostatic intolerance, the changes in immune function, crew and crew-ground interactions, and the medical issues of living in a space environment, such as the effects of radiation or the risk of developing kidney stones. Some results of these investigations have led to fundamental discoveries about the adaptation of the human body to the space environment. Gilles Clément has been active in this research. This readable text presents the findings from the life science experiments conducted during and after space missions. Topics discussed in this book include: adaptation of sensory-motor, cardio-vascular, bone, and muscle systems to the microgravity of spaceflight; psychological and sociological issues of living in a confined, isolated, and stressful environment; operational space medicine, such as crew selection, training and in-flight health monitoring, countermeasures and support; results of space biology experiments on individual cells, plants, and animal models; and the impact of long-duration missions such as the human mission to Mars. The author also provides a detailed description of how to fly a space experiment, based on his own experience with research projects conducted onboard Salyut-7, Mir, Spacelab, and the Space Shuttle. Now is the time to look at the future of human spaceflight and what comes next. The future human exploration of Mars captures the imagination of both the

  4. Physics fundamentals for ITER

    International Nuclear Information System (INIS)

    Rosenbluth, M.N.

    1999-01-01

    be forthcoming soon. Recent results on JET and TFTR have confirmed qualitative understanding of α particle driven toroidal Alfven eigenmodes (TAEs). Present predictions for TAE effects in ITER are favourable, but require further work. The large stored energies in ITER have focused attention on disruption physics. Databases for thermal and current quenches, vertical displacement events (VDEs) and halo currents have enabled thermomechanical design. Some questions remain open as to the production, confinement and localization of runaway electrons in potentially unstable plasmas and mitigation strategies have been proposed. Other crucial ITER needs such as diagnostics, control and heating appear to have acceptable solutions. All this rich physics requires experimental validation by a reactor-scale plasma and care has been taken to provide sufficient flexibility for ITER to cover a wide range of scenarios. (author)

  5. Fundamentals of liquid crystal devices

    CERN Document Server

    Yang, Deng-Ke

    2014-01-01

    Revised throughout to cover the latest developments in the fast moving area of display technology, this 2nd edition of Fundamentals of Liquid Crystal Devices, will continue to be a valuable resource for those wishing to understand the operation of liquid crystal displays. Significant updates include new material on display components, 3D LCDs and blue-phase displays which is one of the most promising new technologies within the field of displays and it is expected that this new LC-technology will reduce the response time and the number of optical components of LC-modules. Prof. Yang is a pion

  6. DOE fundamentals handbook: Material science

    International Nuclear Information System (INIS)

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the following modules: thermal shock (thermal stress, pressurized thermal shock), brittle fracture (mechanism, minimum pressurization-temperature curves, heatup/cooldown rate limits), and plant materials (properties considered when selecting materials, fuel materials, cladding and reflectors, control materials, nuclear reactor core problems, plant material problems, atomic displacement due to irradiation, thermal and displacement spikes due to irradiation, neutron capture effect, radiation effects in organic compounds, reactor use of aluminum)

  7. Arguing against fundamentality

    Science.gov (United States)

    McKenzie, Kerry

    This paper aims to open up discussion on the relationship between fundamentality and naturalism, and in particular on the question of whether fundamentality may be denied on naturalistic grounds. A historico-inductive argument for an anti-fundamentalist conclusion, prominent within the contemporary metaphysical literature, is examined; finding it wanting, an alternative 'internal' strategy is proposed. By means of an example from the history of modern physics - namely S-matrix theory - it is demonstrated that (1) this strategy can generate similar (though not identical) anti-fundamentalist conclusions on more defensible naturalistic grounds, and (2) that fundamentality questions can be empirical questions. Some implications and limitations of the proposed approach are discussed.

  8. Fundamentals of piping design

    CERN Document Server

    Smith, Peter

    2013-01-01

    Written for the piping engineer and designer in the field, this two-part series helps to fill a void in piping literature,since the Rip Weaver books of the '90s were taken out of print at the advent of the Computer Aid Design(CAD) era. Technology may have changed, however the fundamentals of piping rules still apply in the digitalrepresentation of process piping systems. The Fundamentals of Piping Design is an introduction to the designof piping systems, various processes and the layout of pipe work connecting the major items of equipment forthe new hire, the engineering student and the vetera

  9. Homeschooling and religious fundamentalism

    Directory of Open Access Journals (Sweden)

    Robert Kunzman

    2010-10-01

    Full Text Available This article considers the relationship between homeschooling and religious fundamentalism by focusing on their intersection in the philosophies and practices of conservative Christian homeschoolers in the United States. Homeschooling provides an ideal educational setting to support several core fundamentalist principles: resistance to contemporary culture; suspicion of institutional authority and professional expertise; parental control and centrality of the family; and interweaving of faith and academics. It is important to recognize, however, that fundamentalism exists on a continuum; conservative religious homeschoolers resist liberal democratic values to varying degrees, and efforts to foster dialogue and accommodation with religious homeschoolers can ultimately help strengthen the broader civic fabric.

  10. Fundamentals of continuum mechanics

    CERN Document Server

    Rudnicki, John W

    2014-01-01

    A concise introductory course text on continuum mechanics Fundamentals of Continuum Mechanics focuses on the fundamentals of the subject and provides the background for formulation of numerical methods for large deformations and a wide range of material behaviours. It aims to provide the foundations for further study, not just of these subjects, but also the formulations for much more complex material behaviour and their implementation computationally.  This book is divided into 5 parts, covering mathematical preliminaries, stress, motion and deformation, balance of mass, momentum and energ

  11. Fundamentals of reactor chemistry

    International Nuclear Information System (INIS)

    Akatsu, Eiko

    1981-12-01

    In the Nuclear Engineering School of JAERI, many courses are presented for the people working in and around the nuclear reactors. The curricula of the courses contain also the subject material of chemistry. With reference to the foreign curricula, a plan of educational subject material of chemistry in the Nuclear Engineering School of JAERI was considered, and the fundamental part of reactor chemistry was reviewed in this report. Since the students of the Nuclear Engineering School are not chemists, the knowledge necessary in and around the nuclear reactors was emphasized in order to familiarize the students with the reactor chemistry. The teaching experience of the fundamentals of reactor chemistry is also given. (author)

  12. Fundamental requirements for petrochemical development

    International Nuclear Information System (INIS)

    Flint, G. B.

    1999-01-01

    The development of NOVA Chemicals over the past 20 years is described as an illustration of how the petrochemical industry provides markets for natural gas, natural gas liquids and the products of crude oil distillation, and functions as a conduit for upgrading products which would otherwise be sold into the fuel market. Some fundamental characteristics of the business which are foundations for competitiveness are reviewed in the process. These fundamentals help to understand why the industry locates in certain geographic regions of the world, which are often remote from end-use markets. Chief among these fundamentals is access to an adequate supply of appropriately priced feedstock; this is the single most important reason why chemical companies continue to emphasize developments in areas of the world where feedstock are advantageously priced. The cost of operations is equally significant. Cost depends not so much on location but on the scale of operations, hence the tendency towards large scale plants. Plant and product rationalization, technology and product development synergies and leverage with suppliers are all opportunities for cost reduction throughout the product supply chain. The combination of lower natural gas cost in Alberta, the lower fixed cost of extraction and the economies of scale achieved by large scale operation (five billion pounds per year of polyethylene production capacity) are the crucial factors that will enable NOVA Chemicals to maintain its competitive position and to weather the highs and lows in industry price fluctuations

  13. Fundamentals of astrodynamics

    NARCIS (Netherlands)

    Wakker, K.F.

    2015-01-01

    This book deals with the motion of the center of mass of a spacecraft; this discipline is generally called astrodynamics. The book focuses on an analytical treatment of the motion of spacecraft and provides insight into the fundamentals of spacecraft orbit dynamics. A large number of topics are

  14. Safety analysis fundamentals

    International Nuclear Information System (INIS)

    Wright, A.C.D.

    2002-01-01

    This paper discusses the safety analysis fundamentals in reactor design. This study includes safety analysis done to show consequences of postulated accidents are acceptable. Safety analysis is also used to set design of special safety systems and includes design assist analysis to support conceptual design. safety analysis is necessary for licensing a reactor, to maintain an operating license, support changes in plant operations

  15. Fundamentals and Optimal Institutions

    DEFF Research Database (Denmark)

    Gonzalez-Eiras, Martin; Harmon, Nikolaj Arpe; Rossi, Martín

    2016-01-01

    of regulatory institutions such as revenue sharing, salary caps or luxury taxes. We show, theoretically and empirically, that these large differences in adopted institutions can be rationalized as optimal responses to differences in the fundamental characteristics of the sports being played. This provides...

  16. Fundamentals of convolutional coding

    CERN Document Server

    Johannesson, Rolf

    2015-01-01

    Fundamentals of Convolutional Coding, Second Edition, regarded as a bible of convolutional coding brings you a clear and comprehensive discussion of the basic principles of this field * Two new chapters on low-density parity-check (LDPC) convolutional codes and iterative coding * Viterbi, BCJR, BEAST, list, and sequential decoding of convolutional codes * Distance properties of convolutional codes * Includes a downloadable solutions manual

  17. Industrial separation processes : fundamentals

    NARCIS (Netherlands)

    Haan, de A.B.; Bosch, Hans

    2013-01-01

    Separation processes on an industrial scale comprise well over half of the capital and operating costs. They are basic knowledge in every chemical engineering and process engineering study. This book provides comprehensive and fundamental knowledge of university teaching in this discipline,

  18. Grenoble Fundamental Research Department

    International Nuclear Information System (INIS)

    1979-01-01

    A summary of the various activities of the Fundamental Research Institute, Grenoble, France is given. The following fields are covered: Nuclear physics, solid state physics, physical chemistry, biology and advanced techniques. Fore more detailed descriptions readers are referred to scientific literature [fr

  19. Fundamentals of Diesel Engines.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the fundamentals of diesel engine mechanics. Addressed in the three individual units of the course are the following topics: basic principles of diesel mechanics; principles, mechanics, and…

  20. Introduction and fundamentals

    International Nuclear Information System (INIS)

    Thomas, R.H.

    1980-01-01

    This introduction discusses advances in the fundamental sciences which underlie the applied science of health physics and radiation protection. Risk assessments in nuclear medicine are made by defining the conditions of exposure, identification of adverse effects, relating exposure with effect, and estimation of the overall risk for ionizing radiations

  1. Fundamentals of plasma physics

    CERN Document Server

    Bittencourt, J A

    1986-01-01

    A general introduction designed to present a comprehensive, logical and unified treatment of the fundamentals of plasma physics based on statistical kinetic theory. Its clarity and completeness make it suitable for self-learning and self-paced courses. Problems are included.

  2. Fast fundamental frequency estimation

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær; Jensen, Tobias Lindstrøm; Jensen, Jesper Rindom

    2017-01-01

    Modelling signals as being periodic is common in many applications. Such periodic signals can be represented by a weighted sum of sinusoids with frequencies being an integer multiple of the fundamental frequency. Due to its widespread use, numerous methods have been proposed to estimate the funda...

  3. Fundamentals of Protein NMR Spectroscopy

    CERN Document Server

    Rule, Gordon S

    2006-01-01

    NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data pr...

  4. Fundamental Work Cost of Quantum Processes

    Science.gov (United States)

    Faist, Philippe; Renner, Renato

    2018-04-01

    Information-theoretic approaches provide a promising avenue for extending the laws of thermodynamics to the nanoscale. Here, we provide a general fundamental lower limit, valid for systems with an arbitrary Hamiltonian and in contact with any thermodynamic bath, on the work cost for the implementation of any logical process. This limit is given by a new information measure—the coherent relative entropy—which accounts for the Gibbs weight of each microstate. The coherent relative entropy enjoys a collection of natural properties justifying its interpretation as a measure of information and can be understood as a generalization of a quantum relative entropy difference. As an application, we show that the standard first and second laws of thermodynamics emerge from our microscopic picture in the macroscopic limit. Finally, our results have an impact on understanding the role of the observer in thermodynamics: Our approach may be applied at any level of knowledge—for instance, at the microscopic, mesoscopic, or macroscopic scales—thus providing a formulation of thermodynamics that is inherently relative to the observer. We obtain a precise criterion for when the laws of thermodynamics can be applied, thus making a step forward in determining the exact extent of the universality of thermodynamics and enabling a systematic treatment of Maxwell-demon-like situations.

  5. Fundamental Work Cost of Quantum Processes

    Directory of Open Access Journals (Sweden)

    Philippe Faist

    2018-04-01

    Full Text Available Information-theoretic approaches provide a promising avenue for extending the laws of thermodynamics to the nanoscale. Here, we provide a general fundamental lower limit, valid for systems with an arbitrary Hamiltonian and in contact with any thermodynamic bath, on the work cost for the implementation of any logical process. This limit is given by a new information measure—the coherent relative entropy—which accounts for the Gibbs weight of each microstate. The coherent relative entropy enjoys a collection of natural properties justifying its interpretation as a measure of information and can be understood as a generalization of a quantum relative entropy difference. As an application, we show that the standard first and second laws of thermodynamics emerge from our microscopic picture in the macroscopic limit. Finally, our results have an impact on understanding the role of the observer in thermodynamics: Our approach may be applied at any level of knowledge—for instance, at the microscopic, mesoscopic, or macroscopic scales—thus providing a formulation of thermodynamics that is inherently relative to the observer. We obtain a precise criterion for when the laws of thermodynamics can be applied, thus making a step forward in determining the exact extent of the universality of thermodynamics and enabling a systematic treatment of Maxwell-demon-like situations.

  6. Individual differences in fundamental social motives.

    Science.gov (United States)

    Neel, Rebecca; Kenrick, Douglas T; White, Andrew Edward; Neuberg, Steven L

    2016-06-01

    Motivation has long been recognized as an important component of how people both differ from, and are similar to, each other. The current research applies the biologically grounded fundamental social motives framework, which assumes that human motivational systems are functionally shaped to manage the major costs and benefits of social life, to understand individual differences in social motives. Using the Fundamental Social Motives Inventory, we explore the relations among the different fundamental social motives of Self-Protection, Disease Avoidance, Affiliation, Status, Mate Seeking, Mate Retention, and Kin Care; the relationships of the fundamental social motives to other individual difference and personality measures including the Big Five personality traits; the extent to which fundamental social motives are linked to recent life experiences; and the extent to which life history variables (e.g., age, sex, childhood environment) predict individual differences in the fundamental social motives. Results suggest that the fundamental social motives are a powerful lens through which to examine individual differences: They are grounded in theory, have explanatory value beyond that of the Big Five personality traits, and vary meaningfully with a number of life history variables. A fundamental social motives approach provides a generative framework for considering the meaning and implications of individual differences in social motivation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Fundamentals of differential beamforming

    CERN Document Server

    Benesty, Jacob; Pan, Chao

    2016-01-01

    This book provides a systematic study of the fundamental theory and methods of beamforming with differential microphone arrays (DMAs), or differential beamforming in short. It begins with a brief overview of differential beamforming and some popularly used DMA beampatterns such as the dipole, cardioid, hypercardioid, and supercardioid, before providing essential background knowledge on orthogonal functions and orthogonal polynomials, which form the basis of differential beamforming. From a physical perspective, a DMA of a given order is defined as an array that measures the differential acoustic pressure field of that order; such an array has a beampattern in the form of a polynomial whose degree is equal to the DMA order. Therefore, the fundamental and core problem of differential beamforming boils down to the design of beampatterns with orthogonal polynomials. But certain constraints also have to be considered so that the resulting beamformer does not seriously amplify the sensors’ self noise and the mism...

  8. Fundamentals of Geophysics

    Science.gov (United States)

    Frohlich, Cliff

    Choosing an intermediate-level geophysics text is always problematic: What should we teach students after they have had introductory courses in geology, math, and physics, but little else? Fundamentals of Geophysics is aimed specifically at these intermediate-level students, and the author's stated approach is to construct a text “using abundant diagrams, a simplified mathematical treatment, and equations in which the student can follow each derivation step-by-step.” Moreover, for Lowrie, the Earth is round, not flat—the “fundamentals of geophysics” here are the essential properties of our Earth the planet, rather than useful techniques for finding oil and minerals. Thus this book is comparable in both level and approach to C. M. R. Fowler's The Solid Earth (Cambridge University Press, 1990).

  9. Fundamental superstrings as holograms

    International Nuclear Information System (INIS)

    Dabholkar, A.; Murthy, S.

    2007-06-01

    The worldsheet of a macroscopic fundamental superstring in the Green-Schwarz light-cone gauge is viewed as a possible boundary hologram of the near horizon region of a small black string. For toroidally compactified strings, the hologram has global symmetries of AdS 3 x S d-1 x T 8-d ( d = 3, . . . , 8), only some of which extend to local conformal symmetries. We construct the bulk string theory in detail for the particular case of d = 3. The symmetries of the hologram are correctly reproduced from this exact worldsheet description in the bulk. Moreover, the central charge of the boundary Virasoro algebra obtained from the bulk agrees with the Wald entropy of the associated small black holes. This construction provides an exact CFT description of the near horizon region of small black holes both in Type-II and heterotic string theory arising from multiply wound fundamental superstrings. (author)

  10. Fundamental superstrings as holograms

    International Nuclear Information System (INIS)

    Dabholkar, Atish; Murthy, Sameer

    2008-01-01

    The worldsheet of a macroscopic fundamental superstring in the Green-Schwarz light-cone gauge is viewed as a possible boundary hologram of the near horizon region of a small black string. For toroidally compactified strings, the hologram has global symmetries of AdS 3 x S d-1 x T 8-d (d = 3, ..., 8), only some of which extend to local conformal symmetries. We construct the bulk string theory in detail for the particular case of d = 3. The symmetries of the hologram are correctly reproduced from this exact worldsheet description in the bulk. Moreover, the central charge of the boundary Virasoro algebra obtained from the bulk agrees with the Wald entropy of the associated small black holes. This construction provides an exact CFT description of the near horizon region of small black holes both in Type-II and heterotic string theory arising from multiply wound fundamental superstrings

  11. Fundamentals of gas counters

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1994-01-01

    The operation of gas counters used for detecting radiation is explained in terms of the four fundamental physical processes which govern their operation. These are 1) conversion of neutral radiation into charged particles, 2) ionization of the host gas by a fast charge particle 3) transport of the gas ions to the electrodes and 4) amplification of the electrons in a region of enhanced electric field. Practical implications of these are illustrated. (UK)

  12. Fundamentals of Filament Interaction

    Science.gov (United States)

    2017-05-19

    AFRL-AFOSR-VA-TR-2017-0110 FUNDAMENTALS OF FILAMENT INTERACTION Martin Richardson UNIVERSITY OF CENTRAL FLORIDA Final Report 06/02/2017 DISTRIBUTION...of Filament Interaction 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA95501110001 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Martin Richardson 5d. PROJECT...NAME OF RESPONSIBLE PERSON Martin Richardson a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code) 407-823-6819 Standard Form

  13. High voltage engineering fundamentals

    CERN Document Server

    Kuffel, E; Hammond, P

    1984-01-01

    Provides a comprehensive treatment of high voltage engineering fundamentals at the introductory and intermediate levels. It covers: techniques used for generation and measurement of high direct, alternating and surge voltages for general application in industrial testing and selected special examples found in basic research; analytical and numerical calculation of electrostatic fields in simple practical insulation system; basic ionisation and decay processes in gases and breakdown mechanisms of gaseous, liquid and solid dielectrics; partial discharges and modern discharge detectors; and over

  14. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Engineering Fundamentals, the first volume of the handbook, presents material from respected scientists with diverse backgrounds in physiological systems, biomechanics, biomaterials, bioelectric phenomena, and neuroengineering. More than three dozen specific topics are examined, including cardia

  15. Fundamentals of Monte Carlo

    International Nuclear Information System (INIS)

    Wollaber, Allan Benton

    2016-01-01

    This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating @@), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.

  16. Fundamental concepts on energy

    International Nuclear Information System (INIS)

    Rodriguez, M.H.

    1998-01-01

    The fundamental concepts on energy and the different forms in which it is manifested are presented. Since it is possible to transform energy in a way to other, the laws that govern these transformations are discussed. The energy transformation processes are an essential compound in the capacity humanizes to survive and be developed. The energy use brings important economic aspects, technical and political. Because this, any decision to administer energy system will be key for our future life

  17. Fundamentals of powder metallurgy

    International Nuclear Information System (INIS)

    Khan, I.H.; Qureshi, K.A.; Minhas, J.I.

    1988-01-01

    This book is being presented to introduce the fundamentals of technology of powder metallurgy. An attempt has been made to present an overall view of powder metallurgy technology in the first chapter, whereas chapter 2 to 8 deal with the production of metal powders. The basic commercial methods of powder production are briefly described with illustrations. Chapter 9 to 12 describes briefly metal powder characteristics and principles of testing, mixing, blending, conditioning, compaction and sintering. (orig./A.B.)

  18. Fundamentals of Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Wollaber, Allan Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-16

    This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating π), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.

  19. Fundamentals of Structural Geology

    Science.gov (United States)

    Pollard, David D.; Fletcher, Raymond C.

    2005-09-01

    Fundamentals of Structural Geology provides a new framework for the investigation of geological structures by integrating field mapping and mechanical analysis. Assuming a basic knowledge of physical geology, introductory calculus and physics, it emphasizes the observational data, modern mapping technology, principles of continuum mechanics, and the mathematical and computational skills, necessary to quantitatively map, describe, model, and explain deformation in Earth's lithosphere. By starting from the fundamental conservation laws of mass and momentum, the constitutive laws of material behavior, and the kinematic relationships for strain and rate of deformation, the authors demonstrate the relevance of solid and fluid mechanics to structural geology. This book offers a modern quantitative approach to structural geology for advanced students and researchers in structural geology and tectonics. It is supported by a website hosting images from the book, additional colour images, student exercises and MATLAB scripts. Solutions to the exercises are available to instructors. The book integrates field mapping using modern technology with the analysis of structures based on a complete mechanics MATLAB is used to visualize physical fields and analytical results and MATLAB scripts can be downloaded from the website to recreate textbook graphics and enable students to explore their choice of parameters and boundary conditions The supplementary website hosts color images of outcrop photographs used in the text, supplementary color images, and images of textbook figures for classroom presentations The textbook website also includes student exercises designed to instill the fundamental relationships, and to encourage the visualization of the evolution of geological structures; solutions are available to instructors

  20. Value of Fundamental Science

    Science.gov (United States)

    Burov, Alexey

    Fundamental science is a hard, long-term human adventure that has required high devotion and social support, especially significant in our epoch of Mega-science. The measure of this devotion and this support expresses the real value of the fundamental science in public opinion. Why does fundamental science have value? What determines its strength and what endangers it? The dominant answer is that the value of science arises out of curiosity and is supported by the technological progress. Is this really a good, astute answer? When trying to attract public support, we talk about the ``mystery of the universe''. Why do these words sound so attractive? What is implied by and what is incompatible with them? More than two centuries ago, Immanuel Kant asserted an inseparable entanglement between ethics and metaphysics. Thus, we may ask: which metaphysics supports the value of scientific cognition, and which does not? Should we continue to neglect the dependence of value of pure science on metaphysics? If not, how can this issue be addressed in the public outreach? Is the public alienated by one or another message coming from the face of science? What does it mean to be politically correct in this sort of discussion?

  1. DOE Fundamentals Handbook: Mathematics, Volume 1

    International Nuclear Information System (INIS)

    1992-06-01

    The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclear facility operations

  2. DOE Fundamentals Handbook: Mathematics, Volume 2

    International Nuclear Information System (INIS)

    1992-06-01

    The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclear facility operations

  3. DOE Fundamentals Handbook: Electrical Science, Volume 2

    International Nuclear Information System (INIS)

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment

  4. DOE Fundamentals Handbook: Electrical Science, Volume 1

    International Nuclear Information System (INIS)

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment

  5. DOE Fundamentals Handbook: Electrical Science, Volume 3

    International Nuclear Information System (INIS)

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment

  6. DOE Fundamentals Handbook: Electrical Science, Volume 4

    International Nuclear Information System (INIS)

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive transformers; and electrical test components; batteries; AC and DC voltage regulators; instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment

  7. The development and validation of a three-tier diagnostic test measuring pre-service elementary education and secondary science teachers' understanding of the water cycle

    Science.gov (United States)

    Schaffer, Dannah Lynn

    The main goal of this research study was to develop and validate a three-tier diagnostic test to determine pre-service teachers' (PSTs) conceptual knowledge of the water cycle. For a three-tier diagnostic test, the first tier assesses content knowledge; in the second tier, a reason is selected for the content answer; and the third tier allows test-takers to select how confident they are in their answers for the first two tiers. The second goal of this study was to diagnose any alternative conceptions PSTs might have about the water cycle. The Water Cycle Diagnostic Test (WCDT) was developed using the theoretical framework by Treagust (1986, 1988, and 1995), and in similar studies that developed diagnostic tests (e.g., Calean & Subramaniam, 2010a; Odom & Barrow, 2007; Pesman & Eryilmaz, 2010). The final instrument consisted of 15 items along with a demographic survey that examined PSTs' weather-related experiences that may or may not have affected the PSTs' understanding of the water cycle. The WCDT was administered to 77 PSTs enrolled in science methods courses during the fall of 2012. Among the 77 participants, 37 of the PSTs were enrolled in elementary education (EPST) and 40 in secondary science (SPST). Using exploratory factor analysis, five categories were factored out for the WCDT: Phase Change of Water; Condensation and Storage; Clouds; Global Climate Change; and Movement through the Water Cycle. Analysis of the PSTs' responses demonstrated acceptable reliability (alpha = 0.62) for the instrument, and acceptable difficulty indices and discrimination indices for 12 of the items. Analysis indicated that the majority of the PSTs had a limited understanding of the water cycle. Of the PSTs sampled, SPSTs were significantly more confident in their answers' on the WCDT than the EPSTs. Completion of an undergraduate atmospheric science and/or meteorology course, as well as a higher interest in listening and/or viewing weather-related programs, resulted in PSTs

  8. Mathematical analysis fundamentals

    CERN Document Server

    Bashirov, Agamirza

    2014-01-01

    The author's goal is a rigorous presentation of the fundamentals of analysis, starting from elementary level and moving to the advanced coursework. The curriculum of all mathematics (pure or applied) and physics programs include a compulsory course in mathematical analysis. This book will serve as can serve a main textbook of such (one semester) courses. The book can also serve as additional reading for such courses as real analysis, functional analysis, harmonic analysis etc. For non-math major students requiring math beyond calculus, this is a more friendly approach than many math-centric o

  9. Fundamentals of semiconductor devices

    CERN Document Server

    Lindmayer, Joseph

    1965-01-01

    Semiconductor properties ; semiconductor junctions or diodes ; transistor fundamentals ; inhomogeneous impurity distributions, drift or graded-base transistors ; high-frequency properties of transistors ; band structure of semiconductors ; high current densities and mechanisms of carrier transport ; transistor transient response and recombination processes ; surfaces, field-effect transistors, and composite junctions ; additional semiconductor characteristics ; additional semiconductor devices and microcircuits ; more metal, insulator, and semiconductor combinations for devices ; four-pole parameters and configuration rotation ; four-poles of combined networks and devices ; equivalent circuits ; the error function and its properties ; Fermi-Dirac statistics ; useful physical constants.

  10. Fundamental concepts of mathematics

    CERN Document Server

    Goodstein, R L

    Fundamental Concepts of Mathematics, 2nd Edition provides an account of some basic concepts in modern mathematics. The book is primarily intended for mathematics teachers and lay people who wants to improve their skills in mathematics. Among the concepts and problems presented in the book include the determination of which integral polynomials have integral solutions; sentence logic and informal set theory; and why four colors is enough to color a map. Unlike in the first edition, the second edition provides detailed solutions to exercises contained in the text. Mathematics teachers and people

  11. Fundamental composite electroweak dynamics

    DEFF Research Database (Denmark)

    Arbey, Alexandre; Cacciapaglia, Giacomo; Cai, Haiying

    2017-01-01

    Using the recent joint results from the ATLAS and CMS collaborations on the Higgs boson, we determine the current status of composite electroweak dynamics models based on the expected scalar sector. Our analysis can be used as a minimal template for a wider class of models between the two limitin...... space at the effective Lagrangian level. We show that a wide class of models of fundamental composite electroweak dynamics are still compatible with the present constraints. The results are relevant for the ongoing and future searches at the Large Hadron Collider....

  12. Fundamentals of calculus

    CERN Document Server

    Morris, Carla C

    2015-01-01

    Fundamentals of Calculus encourages students to use power, quotient, and product rules for solutions as well as stresses the importance of modeling skills.  In addition to core integral and differential calculus coverage, the book features finite calculus, which lends itself to modeling and spreadsheets.  Specifically, finite calculus is applied to marginal economic analysis, finance, growth, and decay.  Includes: Linear Equations and FunctionsThe DerivativeUsing the Derivative Exponential and Logarithmic Functions Techniques of DifferentiationIntegral CalculusIntegration TechniquesFunctions

  13. Scientific and technological fundamentals

    International Nuclear Information System (INIS)

    Roethemeyer, H.

    1991-01-01

    Specific ultimate repositories in a given geological formation have to be assessed on the basis of a safety analysis, taking into account the site specifics of the repository system 'Overall geological situation - ultimate disposal facility - waste forms'. The fundamental possibilities and limits of waste disposal are outlined. Orientation values up to about 10 6 years are derived for the isolation potential of ultimate disposal mines, and about 10 4 years for the calculation of effects of emplaced radioactive wastes also on man. (DG) [de

  14. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  15. Fundamental formulas of physics

    CERN Document Server

    1960-01-01

    The republication of this book, unabridged and corrected, fills the need for a comprehensive work on fundamental formulas of mathematical physics. It ranges from simple operations to highly sophisticated ones, all presented most lucidly with terms carefully defined and formulas given completely. In addition to basic physics, pertinent areas of chemistry, astronomy, meteorology, biology, and electronics are also included.This is no mere listing of formulas, however. Mathematics is integrated into text, for the most part, so that each chapter stands as a brief summary or even short textbook of

  16. Fundamentals of Cavitation

    CERN Document Server

    Franc, Jean-Pierre

    2005-01-01

    The present book is aimed at providing a comprehensive presentation of cavitation phenomena in liquid flows. It is further backed up by the experience, both experimental and theoretical, of the authors whose expertise has been internationally recognized. A special effort is made to place the various methods of investigation in strong relation with the fundamental physics of cavitation, enabling the reader to treat specific problems independently. Furthermore, it is hoped that a better knowledge of the cavitation phenomenon will allow engineers to create systems using it positively. Examples in the literature show the feasibility of this approach.

  17. Electronic circuits fundamentals & applications

    CERN Document Server

    Tooley, Mike

    2015-01-01

    Electronics explained in one volume, using both theoretical and practical applications.New chapter on Raspberry PiCompanion website contains free electronic tools to aid learning for students and a question bank for lecturersPractical investigations and questions within each chapter help reinforce learning Mike Tooley provides all the information required to get to grips with the fundamentals of electronics, detailing the underpinning knowledge necessary to appreciate the operation of a wide range of electronic circuits, including amplifiers, logic circuits, power supplies and oscillators. The

  18. Nanomachines fundamentals and applications

    CERN Document Server

    Wang, Joseph

    2013-01-01

    This first-hand account by one of the pioneers of nanobiotechnology brings together a wealth of valuable material in a single source. It allows fascinating insights into motion at the nanoscale, showing how the proven principles of biological nanomotors are being transferred to artificial nanodevices.As such, the author provides engineers and scientists with the fundamental knowledge surrounding the design and operation of biological and synthetic nanomotors and the latest advances in nanomachines. He addresses such topics as nanoscale propulsions, natural biomotors, molecular-scale machin

  19. Fundamentals of photonics

    CERN Document Server

    Saleh, Bahaa E A

    2007-01-01

    Now in a new full-color edition, Fundamentals of Photonics, Second Edition is a self-contained and up-to-date introductory-level textbook that thoroughly surveys this rapidly expanding area of engineering and applied physics. Featuring a logical blend of theory and applications, coverage includes detailed accounts of the primary theories of light, including ray optics, wave optics, electromagnetic optics, and photon optics, as well as the interaction of photons and atoms, and semiconductor optics. Presented at increasing levels of complexity, preliminary sections build toward more advan

  20. Fundamental studies of fusion plasmas

    International Nuclear Information System (INIS)

    Aamodt, R.E.; Catto, P.J.; D'Ippolito, D.A.; Myra, J.R.; Russell, D.A.

    1992-01-01

    The major portion of this program is devoted to critical ICH phenomena. The topics include edge physics, fast wave propagation, ICH induced high frequency instabilities, and a preliminary antenna design for Ignitor. This research was strongly coordinated with the world's experimental and design teams at JET, Culham, ORNL, and Ignitor. The results have been widely publicized at both general scientific meetings and topical workshops including the speciality workshop on ICRF design and physics sponsored by Lodestar in April 1992. The combination of theory, empirical modeling, and engineering design in this program makes this research particularly important for the design of future devices and for the understanding and performance projections of present tokamak devices. Additionally, the development of a diagnostic of runaway electrons on TEXT has proven particularly useful for the fundamental understanding of energetic electron confinement. This work has led to a better quantitative basis for quasilinear theory and the role of magnetic vs. electrostatic field fluctuations on electron transport. An APS invited talk was given on this subject and collaboration with PPPL personnel was also initiated. Ongoing research on these topics will continue for the remainder fo the contract period and the strong collaborations are expected to continue, enhancing both the relevance of the work and its immediate impact on areas needing critical understanding

  1. Fundamentals of neurogastroenterology: basic science.

    Science.gov (United States)

    Grundy, David; Al-Chaer, Elie D; Aziz, Qasim; Collins, Stephen M; Ke, Meiyun; Taché, Yvette; Wood, Jackie D

    2006-04-01

    The focus of neurogastroenterology in Rome II was the enteric nervous system (ENS). To avoid duplication with Rome II, only advances in ENS neurobiology after Rome II are reviewed together with stronger emphasis on interactions of the brain, spinal cord, and the gut in terms of relevance for abdominal pain and disordered gastrointestinal function. A committee with expertise in selective aspects of neurogastroenterology was invited to evaluate the literature and provide a consensus overview of the Fundamentals of Neurogastroenterology textbook as they relate to functional gastrointestinal disorders (FGIDs). This review is an abbreviated version of a fuller account that appears in the forthcoming book, Rome III. This report reviews current basic science understanding of visceral sensation and its modulation by inflammation and stress and advances in the neurophysiology of the ENS. Many of the concepts are derived from animal studies in which the physiologic mechanisms underlying visceral sensitivity and neural control of motility, secretion, and blood flow are examined. Impact of inflammation and stress in experimental models relative to FGIDs is reviewed as is human brain imaging, which provides a means for translating basic science to understanding FGID symptoms. Investigative evidence and emerging concepts implicate dysfunction in the nervous system as a significant factor underlying patient symptoms in FGIDs. Continued focus on neurogastroenterologic factors that underlie the development of symptoms will lead to mechanistic understanding that is expected to directly benefit the large contingent of patients and care-givers who deal with FGIDs.

  2. STEP and fundamental physics

    Science.gov (United States)

    Overduin, James; Everitt, Francis; Worden, Paul; Mester, John

    2012-09-01

    The Satellite Test of the Equivalence Principle (STEP) will advance experimental limits on violations of Einstein's equivalence principle from their present sensitivity of two parts in 1013 to one part in 1018 through multiple comparison of the motions of four pairs of test masses of different compositions in a drag-free earth-orbiting satellite. We describe the experiment, its current status and its potential implications for fundamental physics. Equivalence is at the heart of general relativity, our governing theory of gravity and violations are expected in most attempts to unify this theory with the other fundamental interactions of physics, as well as in many theoretical explanations for the phenomenon of dark energy in cosmology. Detection of such a violation would be equivalent to the discovery of a new force of nature. A null result would be almost as profound, pushing upper limits on any coupling between standard-model fields and the new light degrees of freedom generically predicted by these theories down to unnaturally small levels.

  3. STEP and fundamental physics

    International Nuclear Information System (INIS)

    Overduin, James; Everitt, Francis; Worden, Paul; Mester, John

    2012-01-01

    The Satellite Test of the Equivalence Principle (STEP) will advance experimental limits on violations of Einstein's equivalence principle from their present sensitivity of two parts in 10 13 to one part in 10 18 through multiple comparison of the motions of four pairs of test masses of different compositions in a drag-free earth-orbiting satellite. We describe the experiment, its current status and its potential implications for fundamental physics. Equivalence is at the heart of general relativity, our governing theory of gravity and violations are expected in most attempts to unify this theory with the other fundamental interactions of physics, as well as in many theoretical explanations for the phenomenon of dark energy in cosmology. Detection of such a violation would be equivalent to the discovery of a new force of nature. A null result would be almost as profound, pushing upper limits on any coupling between standard-model fields and the new light degrees of freedom generically predicted by these theories down to unnaturally small levels. (paper)

  4. Quivers, words and fundamentals

    International Nuclear Information System (INIS)

    Mattioli, Paolo; Ramgoolam, Sanjaye

    2015-01-01

    A systematic study of holomorphic gauge invariant operators in general N=1 quiver gauge theories, with unitary gauge groups and bifundamental matter fields, was recently presented in http://dx.doi.org/10.1007/JHEP04(2013)094. For large ranks a simple counting formula in terms of an infinite product was given. We extend this study to quiver gauge theories with fundamental matter fields, deriving an infinite product form for the refined counting in these cases. The infinite products are found to be obtained from substitutions in a simple building block expressed in terms of the weighted adjacency matrix of the quiver. In the case without fundamentals, it is a determinant which itself is found to have a counting interpretation in terms of words formed from partially commuting letters associated with simple closed loops in the quiver. This is a new relation between counting problems in gauge theory and the Cartier-Foata monoid. For finite ranks of the unitary gauge groups, the refined counting is given in terms of expressions involving Littlewood-Richardson coefficients.

  5. Fluid mechanics fundamentals and applications

    CERN Document Server

    Cengel, Yunus

    2013-01-01

    Cengel and Cimbala's Fluid Mechanics Fundamentals and Applications, communicates directly with tomorrow's engineers in a simple yet precise manner. The text covers the basic principles and equations of fluid mechanics in the context of numerous and diverse real-world engineering examples. The text helps students develop an intuitive understanding of fluid mechanics by emphasizing the physics, using figures, numerous photographs and visual aids to reinforce the physics. The highly visual approach enhances the learning of Fluid mechanics by students. This text distinguishes itself from others by the way the material is presented - in a progressive order from simple to more difficult, building each chapter upon foundations laid down in previous chapters. In this way, even the traditionally challenging aspects of fluid mechanics can be learned effectively. McGraw-Hill is also proud to offer ConnectPlus powered by Maple with the third edition of Cengel/Cimbabla, Fluid Mechanics. This innovative and powerful new sy...

  6. Materials Fundamentals of Gate Dielectrics

    CERN Document Server

    Demkov, Alexander A

    2006-01-01

    This book presents materials fundamentals of novel gate dielectrics that are being introduced into semiconductor manufacturing to ensure the continuous scalling of the CMOS devices. This is a very fast evolving field of research so we choose to focus on the basic understanding of the structure, thermodunamics, and electronic properties of these materials that determine their performance in device applications. Most of these materials are transition metal oxides. Ironically, the d-orbitals responsible for the high dielectric constant cause sever integration difficulties thus intrinsically limiting high-k dielectrics. Though new in the electronics industry many of these materials are wel known in the field of ceramics, and we describe this unique connection. The complexity of the structure-property relations in TM oxides makes the use of the state of the art first-principles calculations necessary. Several chapters give a detailed description of the modern theory of polarization, and heterojunction band discont...

  7. Microwave engineering concepts and fundamentals

    CERN Document Server

    Khan, Ahmad Shahid

    2014-01-01

    Detailing the active and passive aspects of microwaves, Microwave Engineering: Concepts and Fundamentals covers everything from wave propagation to reflection and refraction, guided waves, and transmission lines, providing a comprehensive understanding of the underlying principles at the core of microwave engineering. This encyclopedic text not only encompasses nearly all facets of microwave engineering, but also gives all topics—including microwave generation, measurement, and processing—equal emphasis. Packed with illustrations to aid in comprehension, the book: •Describes the mathematical theory of waveguides and ferrite devices, devoting an entire chapter to the Smith chart and its applications •Discusses different types of microwave components, antennas, tubes, transistors, diodes, and parametric devices •Examines various attributes of cavity resonators, semiconductor and RF/microwave devices, and microwave integrated circuits •Addresses scattering parameters and their properties, as well a...

  8. Fundamentals of electrical drives

    NARCIS (Netherlands)

    Veltman, A.; Pulle, D.W.J.; de Doncker, R.W.

    2016-01-01

    Comprehensive, user-friendly, color illustrated introductory text for electrical drive systems that simplifies the understanding of electrical machine principles Updated edition covers innovations in machine design, power semi-conductors, digital signal processors and simulation software Presents

  9. Updates on tetanus toxin: a fundamental approach

    Directory of Open Access Journals (Sweden)

    Md. Ahaduzzaman

    2015-03-01

    Full Text Available Clostridium tetani is an anaerobic bacterium that produces second most poisonous protein toxins than any other bacteria. Tetanus in animals is sporadic in nature but difficult to combat even by using antibiotics and antiserum. It is crucial to understand the fundamental mechanisms and signals that control toxin production for advance research and medicinal uses. This review was intended for better understanding the basic patho-physiology of tetanus and neurotoxins (TeNT among the audience of related field.

  10. Fundamental Characteristics of Industrial Variant Specification Systems

    DEFF Research Database (Denmark)

    Hansen, Benjamin Loer; Hvam, Lars

    2004-01-01

    fundamental concepts related to this task, which are relevant to understand for academia and practitioners working with the subject. This is done through a description of variant specification tasks and typical aspects of system solutions. To support the description of variant specification tasks and systems...

  11. Towards unification of the four fundamental forces

    International Nuclear Information System (INIS)

    Sivaram, C.

    1987-01-01

    An account of the principles involved and the progress made in understanding of four fundamental forces of nature, namely, gravitational force, electromagnetic force, electroweak force and electrostrong force is given. The attempts being made to unify these forces are also described. (M.G.B.)

  12. Making physics more fundamental

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1988-07-15

    The stellar death throes of supernovae have been seen and admired since time immemorial. However last year's was the first to come under the combined scrutiny of space-borne radiation detectors and underground neutrino monitors as well as terrestrial optical telescopes and even gravity wave antennae. The remarkable results underline the power of modern physics to explain and interrelate processes in the furthest reaches of the cosmos and the deep interior of nuclear particles. In recent years this common ground between 'Big Bang' cosmology and particle physics has been regularly trodden and retrodden in the light of fresh new insights and new experimental results, and thinking has steadily converged. In 1983, the first Symposium on Astronomy, Cosmology and Fundamental Physics, organized by CERN and the European Southern Observatory (ESO), was full of optimism, with new ideas ('inflation') to explain how the relatively small variations in the structure of the Universe could have arisen through the quantum structure of the initial cataclysm.

  13. Digital Fourier analysis fundamentals

    CERN Document Server

    Kido, Ken'iti

    2015-01-01

    This textbook is a thorough, accessible introduction to digital Fourier analysis for undergraduate students in the sciences. Beginning with the principles of sine/cosine decomposition, the reader walks through the principles of discrete Fourier analysis before reaching the cornerstone of signal processing: the Fast Fourier Transform. Saturated with clear, coherent illustrations, "Digital Fourier Analysis - Fundamentals" includes practice problems and thorough Appendices for the advanced reader. As a special feature, the book includes interactive applets (available online) that mirror the illustrations.  These user-friendly applets animate concepts interactively, allowing the user to experiment with the underlying mathematics. For example, a real sine signal can be treated as a sum of clockwise and counter-clockwise rotating vectors. The applet illustration included with the book animates the rotating vectors and the resulting sine signal. By changing parameters such as amplitude and frequency, the reader ca...

  14. Fundamentals of sustainable neighbourhoods

    CERN Document Server

    Friedman, Avi

    2015-01-01

    This book introduces architects, engineers, builders, and urban planners to a range of design principles of sustainable communities and illustrates them with outstanding case studies. Drawing on the author’s experience as well as local and international case studies, Fundamentals of Sustainable Neighbourhoods presents planning concepts that minimize developments' carbon footprint through compact communities, adaptable and expandable dwellings, adaptable landscapes, and smaller-sized yet quality-designed housing. This book also: Examines in-depth global strategies for minimizing the residential carbon footprint, including district heating, passive solar gain, net-zero residences, as well as preserving the communities' natural assets Reconsiders conceptual approaches in building design and urban planning to promote a better connection between communities and nature Demonstrates practical applications of green architecture Focuses on innovative living spaces in urban environments

  15. Fundamentals of Geophysics

    Science.gov (United States)

    Lowrie, William

    1997-10-01

    This unique textbook presents a comprehensive overview of the fundamental principles of geophysics. Unlike most geophysics textbooks, it combines both the applied and theoretical aspects to the subject. The author explains complex geophysical concepts using abundant diagrams, a simplified mathematical treatment, and easy-to-follow equations. After placing the Earth in the context of the solar system, he describes each major branch of geophysics: gravitation, seismology, dating, thermal and electrical properties, geomagnetism, paleomagnetism and geodynamics. Each chapter begins with a summary of the basic physical principles, and a brief account of each topic's historical evolution. The book will satisfy the needs of intermediate-level earth science students from a variety of backgrounds, while at the same time preparing geophysics majors for continued study at a higher level.

  16. Fundamentals of PIXE analysis

    International Nuclear Information System (INIS)

    Ishii, Keizo

    1997-01-01

    Elemental analysis based on the particle induced x-ray emission (PIXE) is a novel technique to analyze trace elements. It is a very simple method, its sensitivity is very high, multiple elements in a sample can be simultaneously analyzed and a few 10 μg of a sample is enough to be analyzed. Owing to these characteristics, the PIXE analysis is now used in many fields (e.g. biology, medicine, dentistry, environmental pollution, archaeology, culture assets etc.). Fundamentals of the PIXE analysis are described here: the production of characteristic x-rays and inner shell ionization by heavy charged particles, the continuous background in PIXE spectrum, quantitative formulae of the PIXE analysis, the detection limit of PIXE analysis, etc. (author)

  17. Automotive electronics design fundamentals

    CERN Document Server

    Zaman, Najamuz

    2015-01-01

    This book explains the topology behind automotive electronics architectures and examines how they can be profoundly augmented with embedded controllers. These controllers serve as the core building blocks of today’s vehicle electronics. Rather than simply teaching electrical basics, this unique resource focuses on the fundamental concepts of vehicle electronics architecture, and details the wide variety of Electronic Control Modules (ECMs) that enable the increasingly sophisticated "bells & whistles" of modern designs.  A must-have for automotive design engineers, technicians working in automotive electronics repair centers and students taking automotive electronics courses, this guide bridges the gap between academic instruction and industry practice with clear, concise advice on how to design and optimize automotive electronics with embedded controllers.

  18. Fundamentals of quantum mechanics

    CERN Document Server

    House, J E

    2017-01-01

    Fundamentals of Quantum Mechanics, Third Edition is a clear and detailed introduction to quantum mechanics and its applications in chemistry and physics. All required math is clearly explained, including intermediate steps in derivations, and concise review of the math is included in the text at appropriate points. Most of the elementary quantum mechanical models-including particles in boxes, rigid rotor, harmonic oscillator, barrier penetration, hydrogen atom-are clearly and completely presented. Applications of these models to selected “real world” topics are also included. This new edition includes many new topics such as band theory and heat capacity of solids, spectroscopy of molecules and complexes (including applications to ligand field theory), and small molecules of astrophysical interest.

  19. Fundamentals of phosphors

    CERN Document Server

    Yen, William M; Yamamoto, Hajime

    2006-01-01

    Drawing from the second edition of the best-selling Handbook of Phosphors, Fundamentals of Phosphors covers the principles and mechanisms of luminescence in detail and surveys the primary phosphor materials as well as their optical properties. The book addresses cutting-edge developments in phosphor science and technology including oxynitride phosphors and the impact of lanthanide level location on phosphor performance.Beginning with an explanation of the physics underlying luminescence mechanisms in solids, the book goes on to interpret various luminescence phenomena in inorganic and organic materials. This includes the interpretation of the luminescence of recently developed low-dimensional systems, such as quantum wells and dots. The book also discusses the excitation mechanisms by cathode-ray and ionizing radiation and by electric fields to produce electroluminescence. The book classifies phosphor materials according to the type of luminescence centers employed or the class of host materials used and inte...

  20. Fundamentals of thinking, patterns

    Science.gov (United States)

    Gafurov, O. M.; Gafurov, D. O.; Syryamkin, V. I.

    2018-05-01

    The authors analyze the fundamentals of thinking and propose to consider a model of the brain based on the presence of magnetic properties of gliacytes (Schwann cells) because of their oxygen saturation (oxygen has paramagnetic properties). The authors also propose to take into account the motion of electrical discharges through synapses causing electric and magnetic fields as well as additional effects such as paramagnetic resonance, which allows combining multisensory object-related information located in different parts of the brain. Therefore, the events of the surrounding world are reflected and remembered in the cortex columns, thus, creating isolated subnets with altered magnetic properties (patterns) and subsequently participate in recognition of objects, form a memory, and so on. The possibilities for the pattern-based thinking are based on the practical experience of applying methods and technologies of artificial neural networks in the form of a neuroemulator and neuromorphic computing devices.

  1. Fundamentals of nuclear physics

    International Nuclear Information System (INIS)

    Jelley, N.A.

    1990-01-01

    The book is aimed at undergraduates in their final year, to give the student a thorough understanding of the principal features of nuclei, nuclear decays and nuclear reactions. Several models are described and used to explain nuclear properties with many illustrative examples. Sections follow on α-, β- and γ-decay, fission, thermonuclear fusion, reactions, nuclear forces and nuclear collective motion. (author)

  2. Fundamentals of Creativity

    Science.gov (United States)

    Beghetto, Ronald A.; Kaufman, James C.

    2013-01-01

    Creativity has become a hot topic in education. From President Barack Obama to Amazon's Jeff Bezos to "Newsweek" magazine, business leaders, major media outlets, government officials, and education policy makers are increasingly advocating including student creativity in the curriculum. But without a clear understanding of the nature of creativity…

  3. Fundamental Physics with Antihydrogen

    Science.gov (United States)

    Hangst, J. S.

    Antihydrogen—the antimatter equivalent of the hydrogen atom—is of fundamental interest as a test bed for universal symmetries—such as CPT and the Weak Equivalence Principle for gravitation. Invariance under CPT requires that hydrogen and antihydrogen have the same spectrum. Antimatter is of course intriguing because of the observed baryon asymmetry in the universe—currently unexplained by the Standard Model. At the CERN Antiproton Decelerator (AD) [1], several groups have been working diligently since 1999 to produce, trap, and study the structure and behaviour of the antihydrogen atom. One of the main thrusts of the AD experimental program is to apply precision techniques from atomic physics to the study of antimatter. Such experiments complement the high-energy searches for physics beyond the Standard Model. Antihydrogen is the only atom of antimatter to be produced in the laboratory. This is not so unfortunate, as its matter equivalent, hydrogen, is one of the most well-understood and accurately measured systems in all of physics. It is thus very compelling to undertake experimental examinations of the structure of antihydrogen. As experimental spectroscopy of antihydrogen has yet to begin in earnest, I will give here a brief introduction to some of the ion and atom trap developments necessary for synthesizing and trapping antihydrogen, so that it can be studied.

  4. Strings and fundamental physics

    International Nuclear Information System (INIS)

    Baumgartl, Marco; Brunner, Ilka; Haack, Michael

    2012-01-01

    The basic idea, simple and revolutionary at the same time, to replace the concept of a point particle with a one-dimensional string, has opened up a whole new field of research. Even today, four decades later, its multifaceted consequences are still not fully conceivable. Up to now string theory has offered a new way to view particles as different excitations of the same fundamental object. It has celebrated success in discovering the graviton in its spectrum, and it has naturally led scientists to posit space-times with more than four dimensions - which in turn has triggered numerous interesting developments in fields as varied as condensed matter physics and pure mathematics. This book collects pedagogical lectures by leading experts in string theory, introducing the non-specialist reader to some of the newest developments in the field. The carefully selected topics are at the cutting edge of research in string theory and include new developments in topological strings, AdS/CFT dualities, as well as newly emerging subfields such as doubled field theory and holography in the hydrodynamic regime. The contributions to this book have been selected and arranged in such a way as to form a self-contained, graduate level textbook. (orig.)

  5. Fundamentals of precision medicine

    Science.gov (United States)

    Divaris, Kimon

    2018-01-01

    Imagine a world where clinicians make accurate diagnoses and provide targeted therapies to their patients according to well-defined, biologically-informed disease subtypes, accounting for individual differences in genetic make-up, behaviors, cultures, lifestyles and the environment. This is not as utopic as it may seem. Relatively recent advances in science and technology have led to an explosion of new information on what underlies health and what constitutes disease. These novel insights emanate from studies of the human genome and microbiome, their associated transcriptomes, proteomes and metabolomes, as well as epigenomics and exposomics—such ‘omics data can now be generated at unprecedented depth and scale, and at rapidly decreasing cost. Making sense and integrating these fundamental information domains to transform health care and improve health remains a challenge—an ambitious, laudable and high-yield goal. Precision dentistry is no longer a distant vision; it is becoming part of the rapidly evolving present. Insights from studies of the human genome and microbiome, their associated transcriptomes, proteomes and metabolomes, and epigenomics and exposomics have reached an unprecedented depth and scale. Much more needs to be done, however, for the realization of precision medicine in the oral health domain. PMID:29227115

  6. Strings and fundamental physics

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartl, Marco [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Brunner, Ilka; Haack, Michael (eds.) [Muenchen Univ. (Germany). Fakultaet fuer Physik

    2012-07-01

    The basic idea, simple and revolutionary at the same time, to replace the concept of a point particle with a one-dimensional string, has opened up a whole new field of research. Even today, four decades later, its multifaceted consequences are still not fully conceivable. Up to now string theory has offered a new way to view particles as different excitations of the same fundamental object. It has celebrated success in discovering the graviton in its spectrum, and it has naturally led scientists to posit space-times with more than four dimensions - which in turn has triggered numerous interesting developments in fields as varied as condensed matter physics and pure mathematics. This book collects pedagogical lectures by leading experts in string theory, introducing the non-specialist reader to some of the newest developments in the field. The carefully selected topics are at the cutting edge of research in string theory and include new developments in topological strings, AdS/CFT dualities, as well as newly emerging subfields such as doubled field theory and holography in the hydrodynamic regime. The contributions to this book have been selected and arranged in such a way as to form a self-contained, graduate level textbook. (orig.)

  7. Making physics more fundamental

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The stellar death throes of supernovae have been seen and admired since time immemorial. However last year's was the first to come under the combined scrutiny of space-borne radiation detectors and underground neutrino monitors as well as terrestrial optical telescopes and even gravity wave antennae. The remarkable results underline the power of modern physics to explain and interrelate processes in the furthest reaches of the cosmos and the deep interior of nuclear particles. In recent years this common ground between 'Big Bang' cosmology and particle physics has been regularly trodden and retrodden in the light of fresh new insights and new experimental results, and thinking has steadily converged. In 1983, the first Symposium on Astronomy, Cosmology and Fundamental Physics, organized by CERN and the European Southern Observatory (ESO), was full of optimism, with new ideas ('inflation') to explain how the relatively small variations in the structure of the Universe could have arisen through the quantum structure of the initial cataclysm

  8. Fundamental Safety Principles

    International Nuclear Information System (INIS)

    Abdelmalik, W.E.Y.

    2011-01-01

    This work presents a summary of the IAEA Safety Standards Series publication No. SF-1 entitled F UDAMENTAL Safety PRINCIPLES p ublished on 2006. This publication states the fundamental safety objective and ten associated safety principles, and briefly describes their intent and purposes. Safety measures and security measures have in common the aim of protecting human life and health and the environment. These safety principles are: 1) Responsibility for safety, 2) Role of the government, 3) Leadership and management for safety, 4) Justification of facilities and activities, 5) Optimization of protection, 6) Limitation of risks to individuals, 7) Protection of present and future generations, 8) Prevention of accidents, 9)Emergency preparedness and response and 10) Protective action to reduce existing or unregulated radiation risks. The safety principles concern the security of facilities and activities to the extent that they apply to measures that contribute to both safety and security. Safety measures and security measures must be designed and implemented in an integrated manner so that security measures do not compromise safety and safety measures do not compromise security.

  9. Fundamentals of Quantum Mechanics

    Science.gov (United States)

    Tang, C. L.

    2005-06-01

    Quantum mechanics has evolved from a subject of study in pure physics to one with a wide range of applications in many diverse fields. The basic concepts of quantum mechanics are explained in this book in a concise and easy-to-read manner emphasising applications in solid state electronics and modern optics. Following a logical sequence, the book is focused on the key ideas and is conceptually and mathematically self-contained. The fundamental principles of quantum mechanics are illustrated by showing their application to systems such as the hydrogen atom, multi-electron ions and atoms, the formation of simple organic molecules and crystalline solids of practical importance. It leads on from these basic concepts to discuss some of the most important applications in modern semiconductor electronics and optics. Containing many homework problems and worked examples, the book is suitable for senior-level undergraduate and graduate level students in electrical engineering, materials science and applied physics. Clear exposition of quantum mechanics written in a concise and accessible style Precise physical interpretation of the mathematical foundations of quantum mechanics Illustrates the important concepts and results by reference to real-world examples in electronics and optoelectronics Contains homeworks and worked examples, with solutions available for instructors

  10. Fundamentals of Pharmacogenetics in Personalized, Precision Medicine.

    Science.gov (United States)

    Valdes, Roland; Yin, DeLu Tyler

    2016-09-01

    This article introduces fundamental principles of pharmacogenetics as applied to personalized and precision medicine. Pharmacogenetics establishes relationships between pharmacology and genetics by connecting phenotypes and genotypes in predicting the response of therapeutics in individual patients. We describe differences between precision and personalized medicine and relate principles of pharmacokinetics and pharmacodynamics to applications in laboratory medicine. We also review basic principles of pharmacogenetics, including its evolution, how it enables the practice of personalized therapeutics, and the role of the clinical laboratory. These fundamentals are a segue for understanding specific clinical applications of pharmacogenetics described in subsequent articles in this issue. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Fundamentals of semiconductor lasers

    CERN Document Server

    Numai, Takahiro

    2015-01-01

    This book explains physics under the operating principles of semiconductor lasers in detail based on the experience of the author, dealing with the first manufacturing of phase-shifted DFB-LDs and recent research on transverse modes.   The book also bridges a wide gap between journal papers and textbooks, requiring only an undergraduate-level knowledge of electromagnetism and quantum mechanics, and helps readers to understand journal papers where definitions of some technical terms vary, depending on the paper. Two definitions of the photon density in the rate equations and two definitions of the phase-shift in the phase-shifted DFB-LD are explained, and differences in the calculated results are indicated, depending on the definitions.    Readers can understand the physics of semiconductor lasers and analytical tools for Fabry-Perot LDs, DFB-LDs, and VCSELs and will be stimulated to develop semiconductor lasers themselves.

  12. Is animal experimentation fundamental?

    Science.gov (United States)

    d'Acampora, Armando José; Rossi, Lucas Félix; Ely, Jorge Bins; de Vasconcellos, Zulmar Acciolli

    2009-01-01

    The understanding about the utilization of experimental animals in scientific research and in teaching is many times a complex issue. Special attention needs to be paid to attain the understanding by the general public of the importance of animal experimentation in experimental research and in undergraduate medical teaching. Experimental teaching and research based on the availability of animals for experimentation is important and necessary for the personal and scientific development of the physician-to-be. The technological arsenal which intends to mimic experimentation animals and thus fully replace their use many times does not prove to be compatible with the reality of the living animal. The purpose of this paper is to discuss aspects concerning this topic, bringing up an issue which is complex and likely to arouse in-depth reflections.

  13. Fundamentals of microelectronics

    CERN Document Server

    Razavi, Behzad

    2008-01-01

    Designed to build a strong foundation in both design and analysis of electronic circuits, Razavi teaches conceptual understanding and mastery of the material by using modern examples to motivate and prepare students for advanced courses and their careers. Razavi's unique problem-solving framework enables students to deconstruct complex problems into components that they are familiar with which builds the confidence and intuitive skills needed for success.

  14. Fundamentals and Techniques of Nonimaging

    Energy Technology Data Exchange (ETDEWEB)

    O' Gallagher, J. J.; Winston, R.

    2003-07-10

    This is the final report describing a long term basic research program in nonimaging optics that has led to major advances in important areas, including solar energy, fiber optics, illumination techniques, light detectors, and a great many other applications. The term ''nonimaging optics'' refers to the optics of extended sources in systems for which image forming is not important, but effective and efficient collection, concentration, transport, and distribution of light energy is. Although some of the most widely known developments of the early concepts have been in the field of solar energy, a broad variety of other uses have emerged. Most important, under the auspices of this program in fundamental research in nonimaging optics established at the University of Chicago with support from the Office of Basic Energy Sciences at the Department of Energy, the field has become very dynamic, with new ideas and concepts continuing to develop, while applications of the early concepts continue to be pursued. While the subject began as part of classical geometrical optics, it has been extended subsequently to the wave optics domain. Particularly relevant to potential new research directions are recent developments in the formalism of statistical and wave optics, which may be important in understanding energy transport on the nanoscale. Nonimaging optics permits the design of optical systems that achieve the maximum possible concentration allowed by physical conservation laws. The earliest designs were constructed by optimizing the collection of the extreme rays from a source to the desired target: the so-called ''edge-ray'' principle. Later, new concentrator types were generated by placing reflectors along the flow lines of the ''vector flux'' emanating from lambertian emitters in various geometries. A few years ago, a new development occurred with the discovery that making the design edge-ray a functional of some

  15. Fundamentals - longitudinal motion

    International Nuclear Information System (INIS)

    Weng, W.T.

    1989-01-01

    There are many ways to accelerate charged particles to high energy for physics research. Each has served its purpose but eventually has encountered fundamental limitations of one kind or another. Looking at the famous Livingston curve, the initial birth and final level-off of all types of accelerators is seen. In fact, in the mid-80s we personally witnessed the creation of a new type of collider - the Stanford Linear Collider. Also witnessed, was the resurgence of study into novel methods of acceleration. This paper will cover acceleration and longitudinal motion in a synchrotron. A synchrotron is a circular accelerator with the following three characteristics: (1) Magnetic guiding (dipole) and confinement (quadrupole) components are placed in a small neighborhood around the equilibrium orbit. (2) Particles are kept in resonance with the radio-frequency electric field indefinitely to achieve acceleration to higher energies. (3) Magnetic fields are varied adiabatically with the energy of the particle. D. Edwards described the transverse oscillations of particles in a synchrotron. Here the author talks about the longitudinal oscillations of particles. The phase stability principle was invented by V. Veksler and E. McMillan independently in 1945. The phase stability and strong focusing principle, invented by Courant and Livingston in 1952, enabled the steady energy gain of accelerators and storage rings witnessed during the past 30 years. This paper is a unified overview of the related rf subjects in an accelerator and a close coupling between accelerator physics and engineering practices, which is essential for the major progress in areas such as high intensity synchrotrons, a multistage accelerator complex, and anti-proton production and cooling, made possible in the past 20 years

  16. Beta particle measurement fundamentals

    International Nuclear Information System (INIS)

    Alvarez, J.L.

    1986-01-01

    The necessary concepts for understanding beta particle behavior are stopping power, range, and scattering. Dose as a consequence of beta particle interaction with tissue can be derived and explained by these concepts. Any calculations of dose, however, assume or require detailed knowledge of the beta spectrum at the tissue depth of calculation. A rudimentary knowledge of the incident spectrum can be of use in estimating dose, interpretating dose measuring devices and designing protection. The stopping power and range based on the csda will give a conservative estimate in cases of protection design, as scattering will reduce the range. Estimates of dose may be low because scattering effects were neglected

  17. Maximum Entropy Fundamentals

    Directory of Open Access Journals (Sweden)

    F. Topsøe

    2001-09-01

    Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over

  18. Fundamentals of nanomechanical resonators

    CERN Document Server

    Schmid, Silvan; Roukes, Michael Lee

    2016-01-01

    This authoritative book introduces and summarizes the latest models and skills required to design and optimize nanomechanical resonators, taking a top-down approach that uses macroscopic formulas to model the devices. The authors cover the electrical and mechanical aspects of nano electromechanical system (NEMS) devices. The introduced mechanical models are also key to the understanding and optimization of nanomechanical resonators used e.g. in optomechanics. Five comprehensive chapters address: The eigenmodes derived for the most common continuum mechanical structures used as nanomechanical resonators; The main sources of energy loss in nanomechanical resonators; The responsiveness of micro and nanomechanical resonators to mass, forces, and temperature; The most common underlying physical transduction mechanisms; The measurement basics, including amplitude and frequency noise. The applied approach found in this book is appropriate for engineering students and researchers working with micro and nanomechanical...

  19. FUNDAMENTALS OF CHANGE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Alexandra Patricia Braica

    2013-12-01

    Full Text Available To understand the mechanisms of change within an organization, as well as those of innovation, one must consider the constructed character of change. Change is not a natural phenomenon, it is an issue that requires research. However, change should not be understood as a crisis, or even as a mere process of adaptation or development, but rather as a manifestation of a multitude of mutations within institutions. The main subject of study in change management is organization. The exercise of management functions in processes of change comprises diverse activities starting at the moment of realizing the need for change, and up until the moment of transformations imposed by the implementation of these changes.

  20. Distributed Low Temperature Combustion: Fundamental Understanding of Combustion Regime Transitions

    Science.gov (United States)

    2016-09-07

    behaviour as compared to ethanol. The latter fuel has also been considered along with methane. Work has also been performed on the further assessment of... behaviour as compared to ethanol. The latter fuel has also been considered along with methane. Work has also been performed on the further assess- ment of...identification of various combustion gas states. A range of Damköhler numbers (Da) from the conventional propagating flamelet regime well into the distributed

  1. Recent advances in the fundamental understanding of railway vehicle dynamics

    DEFF Research Database (Denmark)

    True, Hans

    2006-01-01

    The topic of this article is the calculation of the critical speed for railway vehicles. It is emphasised that it is misleading to formulate the mathematical problem as a stability problem. It must correctly be formulated as a problem of existence of coexisting solutions to the full non-linear dy......The topic of this article is the calculation of the critical speed for railway vehicles. It is emphasised that it is misleading to formulate the mathematical problem as a stability problem. It must correctly be formulated as a problem of existence of coexisting solutions to the full non......-linear dynamical problem. The lowest speed at which there exist more critical speed in road tests. A couple of examples show applications of the method to various dynamical models of railway vehicles. Freight wagons are treated in the end of the article because the dry friction damping with stick-slip and end...

  2. Communication technology update and fundamentals

    CERN Document Server

    Grant, August E

    2010-01-01

    New communication technologies are being introduced at an astonishing rate. Making sense of these technologies is increasingly difficult. Communication Technology Update and Fundamentals is the single best source for the latest developments, trends, and issues in communication technology. Featuring the fundamental framework along with the history and background of communication technologies, Communication Technology Update and Fundamentals, 12th edition helps you stay ahead of these ever-changing and emerging technologies.As always, every chapter ha

  3. The Development and Validation of a Three-Tier Diagnostic Test Measuring Pre-Service Elementary Education and Secondary Science Teachers' Understanding of the Water Cycle

    Science.gov (United States)

    Schaffer, Dannah Lynn

    2013-01-01

    The main goal of this research study was to develop and validate a three-tier diagnostic test to determine pre-service teachers' (PSTs) conceptual knowledge of the water cycle. For a three-tier diagnostic test, the first tier assesses content knowledge; in the second tier, a reason is selected for the content answer; and the third tier allows…

  4. Teaching Teaching & Understanding Understanding

    DEFF Research Database (Denmark)

    2006-01-01

    "Teaching Teaching & Understanding Understanding" is a 19-minute award-winning short-film about teaching at university and higher-level educational institutions. It is based on the "Constructive Alignment" theory developed by Prof. John Biggs. The film delivers a foundation for understanding what...

  5. Fundamental volatility is regime specific

    NARCIS (Netherlands)

    Arnold, I.J.M.; MacDonald, R.; Vries, de C.G.

    2006-01-01

    A widely held notion holds that freely floating exchange rates are excessively volatile when judged against fundamentals and when moving from fixed to floating exchange rates. We re-examine the data and conclude that the disparity between the fundamentals and exchange rate volatility is more

  6. DOE Fundamentals Handbook: Instrumentation and Control, Volume 1

    International Nuclear Information System (INIS)

    1992-06-01

    The Instrumentation and Control Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of instrumentation and control systems. The handbook includes information on temperature, pressure, flow, and level detection systems; position indication systems; process control systems; and radiation detection principles. This information will provide personnel with an understanding of the basic operation of various types of DOE nuclear facility instrumentation and control systems

  7. DOE Fundamentals Handbook: Instrumentation and Control, Volume 2

    International Nuclear Information System (INIS)

    1992-06-01

    The Instrumentation and Control Fundamentals Handbook personnel, and the technical staff facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of instrumentation and control systems. The handbook includes information on temperature, pressure, flow, and level detection systems; position indication systems; process control systems; and radiation detection principles. This information will provide personnel with an understanding of the basic operation of various types of DOE nuclear facility instrumentation and control systems

  8. DOE Fundamentals Handbook: Instrumentation and Control, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    The Instrumentation and Control Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of instrumentation and control systems. The handbook includes information on temperature, pressure, flow, and level detection systems; position indication systems; process control systems; and radiation detection principles. This information will provide personnel with an understanding of the basic operation of various types of DOE nuclear facility instrumentation and control systems.

  9. Fundamental principles of heat transfer

    CERN Document Server

    Whitaker, Stephen

    1977-01-01

    Fundamental Principles of Heat Transfer introduces the fundamental concepts of heat transfer: conduction, convection, and radiation. It presents theoretical developments and example and design problems and illustrates the practical applications of fundamental principles. The chapters in this book cover various topics such as one-dimensional and transient heat conduction, energy and turbulent transport, forced convection, thermal radiation, and radiant energy exchange. There are example problems and solutions at the end of every chapter dealing with design problems. This book is a valuable int

  10. Fundamental number theory with applications

    CERN Document Server

    Mollin, Richard A

    2008-01-01

    An update of the most accessible introductory number theory text available, Fundamental Number Theory with Applications, Second Edition presents a mathematically rigorous yet easy-to-follow treatment of the fundamentals and applications of the subject. The substantial amount of reorganizing makes this edition clearer and more elementary in its coverage. New to the Second Edition           Removal of all advanced material to be even more accessible in scope           New fundamental material, including partition theory, generating functions, and combinatorial number theory           Expa

  11. Assessing student understanding of measurement and uncertainty

    Science.gov (United States)

    Jirungnimitsakul, S.; Wattanakasiwich, P.

    2017-09-01

    The objectives of this study were to develop and assess student understanding of measurement and uncertainty. A test has been adapted and translated from the Laboratory Data Analysis Instrument (LDAI) test, consists of 25 questions focused on three topics including measures of central tendency, experimental errors and uncertainties, and fitting regression lines. The test was evaluated its content validity by three physics experts in teaching physics laboratory. In the pilot study, Thai LDAI was administered to 93 freshmen enrolled in a fundamental physics laboratory course. The final draft of the test was administered to three groups—45 freshmen taking fundamental physics laboratory, 16 sophomores taking intermediated physics laboratory and 21 juniors taking advanced physics laboratory at Chiang Mai University. As results, we found that the freshmen had difficulties in experimental errors and uncertainties. Most students had problems with fitting regression lines. These results will be used to improve teaching and learning physics laboratory for physics students in the department.

  12. Imitation and Action Understanding in Autistic Spectrum Disorders: How Valid Is the Hypothesis of a Deficit in the Mirror Neuron System?

    Science.gov (United States)

    Hamilton, Antonia F. de C.; Brindley, Rachel M.; Frith, Uta

    2007-01-01

    The motor mirror neuron system supports imitation and goal understanding in typical adults. Recently, it has been proposed that a deficit in this mirror neuron system might contribute to poor imitation performance in children with autistic spectrum disorders (ASD) and might be a cause of poor social abilities in these children. We aimed to test…

  13. Quantum mechanics I the fundamentals

    CERN Document Server

    Rajasekar, S

    2015-01-01

    Quantum Mechanics I: The Fundamentals provides a graduate-level account of the behavior of matter and energy at the molecular, atomic, nuclear, and sub-nuclear levels. It covers basic concepts, mathematical formalism, and applications to physically important systems.

  14. Are fundamental constants really constant

    International Nuclear Information System (INIS)

    Norman, E.B.

    1986-01-01

    Reasons for suspecting that fundamental constants might change with time are reviewed. Possible consequences of such variations are examined. The present status of experimental tests of these ideas is discussed

  15. Fundamentals of modern unsteady aerodynamics

    CERN Document Server

    Gülçat, Ülgen

    2010-01-01

    This introduction to the principles of unsteady aerodynamics covers all the core concepts, provides readers with a review of the fundamental physics, terminology and basic equations, and covers hot new topics such as the use of flapping wings for propulsion.

  16. Qualitative insights on fundamental mechanics

    OpenAIRE

    Mardari, G. N.

    2002-01-01

    The gap between classical mechanics and quantum mechanics has an important interpretive implication: the Universe must have an irreducible fundamental level, which determines the properties of matter at higher levels of organization. We show that the main parameters of any fundamental model must be theory-independent. They cannot be predicted, because they cannot have internal causes. However, it is possible to describe them in the language of classical mechanics. We invoke philosophical reas...

  17. Fundamentals and advanced techniques in derivatives hedging

    CERN Document Server

    Bouchard, Bruno

    2016-01-01

    This book covers the theory of derivatives pricing and hedging as well as techniques used in mathematical finance. The authors use a top-down approach, starting with fundamentals before moving to applications, and present theoretical developments alongside various exercises, providing many examples of practical interest. A large spectrum of concepts and mathematical tools that are usually found in separate monographs are presented here. In addition to the no-arbitrage theory in full generality, this book also explores models and practical hedging and pricing issues. Fundamentals and Advanced Techniques in Derivatives Hedging further introduces advanced methods in probability and analysis, including Malliavin calculus and the theory of viscosity solutions, as well as the recent theory of stochastic targets and its use in risk management, making it the first textbook covering this topic. Graduate students in applied mathematics with an understanding of probability theory and stochastic calculus will find this b...

  18. Free electron laser and fundamental physics

    Science.gov (United States)

    Dattoli, Giuseppe; Nguyen, Federico

    2018-03-01

    This review paper is devoted to the understanding of free-electron lasers (FEL) as devices for fundamental physics (FP) studies. After clarifying what FP stands for, we select some aspects of the FEL physics which can be viewed as fundamental. Furthermore, we discuss the perspective uses of the FEL in FP experiments. Regarding the FP aspects of the FEL, we analyze the quantum electrodynamics (QED) nature of the underlying laser mechanism. We look for the truly quantum signature in a process whose phenomenology is dominated by classical effects. As to the use of FEL as a tool for FP experiments we discuss the realization of a device dedicated to the study of non-linear effects in QED such as photon-photon scattering and shining-through-the-wall experiments planned to search for dark matter candidates like axions.

  19. Understanding ayurveda.

    Science.gov (United States)

    Gadgil, Vaidya Dilip

    2010-01-01

    Ayurveda needs to achieve its full potential both in India and globally. This requires imparting to its students full appreciation of Ayurveda's power and strength, particularly proper understanding of the advantages of applying it to treat chronic and acute diseases. To this end, we explain the necessity of learning Sanskrit as a medium of study, and the advantages of learning the Texts in the traditional way, rather than relying on translations with all the loss of meaning and precision, which that entails. We emphasize the use of Triskandhakosha as a means to fully understand Ayurveda fundamental concepts and technical terms, so that all their shades of meaning are fully understood, and all their usages given in different places in the texts. Only by such methods can full appreciation of Ayurvedic wisdom be achieved, and the full depth and power of its knowledge be applied. Only then will its true status among systems of medicine come to be appreciated, either in India or more widely in the world as a whole.

  20. Understanding Ayurveda

    Directory of Open Access Journals (Sweden)

    Vaidya Dilip Gadgil

    2010-01-01

    Full Text Available Ayurveda needs to achieve its full potential both in India and globally. This requires imparting to its students full appreciation of Ayurveda′s power and strength, particularly proper understanding of the advantages of applying it to treat chronic and acute diseases. To this end, we explain the necessity of learning Sanskrit as a medium of study, and the advantages of learning the Texts in the traditional way, rather than relying on translations with all the loss of meaning and precision, which that entails. We emphasize the use of Triskandhakosha as a means to fully understand Ayurveda fundamental concepts and technical terms, so that all their shades of meaning are fully understood, and all their usages given in different places in the texts. Only by such methods can full appreciation of Ayurvedic wisdom be achieved, and the full depth and power of its knowledge be applied. Only then will its true status among systems of medicine come to be appreciated, either in India or more widely in the world as a whole.

  1. Northern Territory perspectives on heart failure with comorbidities – understanding trial validity and exploring collaborative opportunities to broaden the evidence base.

    Science.gov (United States)

    Iyngkaran, P; Majoni, W; Cass, A; Sanders, Prashanthan; Ronco, C; Brady, S; Kangaharan, N; Ilton, M; Hare, D L; Thomas, M C

    2015-06-01

    Congestive Heart Failure (CHF) is an ambulatory care sensitive condition, associated with significant morbidity and mortality, rarely with cure. Outpatient based pharmacological management represents the main and most important aspect of care, and is usually lifelong. This narrative styled opinion review looks at the pharmacological agents recommended in the guidelines in context of the Northern Territory (NT) of Australia. We explore the concept of validity, a term used to describe the basis of standardising a particular trial or study and the population to which it is applicable. We aim to highlight the problems of the current guidelines based approach. We also present alternatives that could utilise the core principles from major trials, while incorporating regional considerations, which could benefit clients living in the NT and remote Australia. Copyright © 2015 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  2. Understanding latent structures of clinical information logistics: A bottom-up approach for model building and validating the workflow composite score.

    Science.gov (United States)

    Esdar, Moritz; Hübner, Ursula; Liebe, Jan-David; Hüsers, Jens; Thye, Johannes

    2017-01-01

    Clinical information logistics is a construct that aims to describe and explain various phenomena of information provision to drive clinical processes. It can be measured by the workflow composite score, an aggregated indicator of the degree of IT support in clinical processes. This study primarily aimed to investigate the yet unknown empirical patterns constituting this construct. The second goal was to derive a data-driven weighting scheme for the constituents of the workflow composite score and to contrast this scheme with a literature based, top-down procedure. This approach should finally test the validity and robustness of the workflow composite score. Based on secondary data from 183 German hospitals, a tiered factor analytic approach (confirmatory and subsequent exploratory factor analysis) was pursued. A weighting scheme, which was based on factor loadings obtained in the analyses, was put into practice. We were able to identify five statistically significant factors of clinical information logistics that accounted for 63% of the overall variance. These factors were "flow of data and information", "mobility", "clinical decision support and patient safety", "electronic patient record" and "integration and distribution". The system of weights derived from the factor loadings resulted in values for the workflow composite score that differed only slightly from the score values that had been previously published based on a top-down approach. Our findings give insight into the internal composition of clinical information logistics both in terms of factors and weights. They also allowed us to propose a coherent model of clinical information logistics from a technical perspective that joins empirical findings with theoretical knowledge. Despite the new scheme of weights applied to the calculation of the workflow composite score, the score behaved robustly, which is yet another hint of its validity and therefore its usefulness. Copyright © 2016 Elsevier Ireland

  3. Heat propagation in waters - physical fundamentals

    Energy Technology Data Exchange (ETDEWEB)

    Haeuser, J

    1978-01-01

    The physical fundamentals necessary to understand mathematical models of the environment are given. It was found that considerable mathematical and physical efforts are necessary to achieve sufficient accuracy in the calculation of temperature, flow rate, etc. The so-called eco- and transport models are less accurate than purely physical models, due to the fact that they are essentially a quantitative formulation of biological processes. With regard to the given numerical methods of solution, it is interesting to note that a partial differential equation is reduced here to a coupled system of normal first order differential equations.

  4. Fundamental concepts in Particle Physics course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    The course will provide an introduction to some of the basic theoretical techniques used to describe the fundamental particles and their interactions. Of central importance to our understanding of these forces are the underlying symmetries of nature and I will review the nature of these symmetries and how they are used to build a predictive theory. I discuss how the combination of quantum mechanics and relativity leads to the quantum field theory (QFT) description of the states of matter and their interactions. The Feynman rules used to determine the QFT predictions for experimentally measurable processes are derived and applied to the calculation of decay widths and cross sections.

  5. Heat propagation in waters - physical fundamentals

    International Nuclear Information System (INIS)

    Haeuser, J.

    1978-01-01

    The physical fundamentals necessary to understand mathematical models of the environment are given. It was found that considerable mathematical and physical effforts are necessary to achieve sufficient accuracy in the calculation of temperature, flow rate, etc. The so-called eco- and transport models are less accurate than purely physical models, due to the fact that they are essentially a quantitative formulation of biological processes. With regard to the given numerical methods of solution, it is interesting to note that a partial differential equation is reduced here to a coupled system of normal first order differential equations. (orig.) [de

  6. Fundamentals of electromagnetics 2 quasistatics and waves

    CERN Document Server

    Voltmer, David

    2007-01-01

    This book is the second of two volumes which have been created to provide an understanding of the basic principles and applications of electromagnetic fields for electrical engineering students. Fundamentals of Electromagnetics Vol 2: Quasistatics and Waves examines how the low-frequency models of lumped elements are modified to include parasitic elements. For even higher frequencies, wave behavior in space and on transmission lines is explained. Finally, the textbook concludes with details of transmission line properties and applications. Upon completion of this book and its companion Fundame

  7. Amorphous Phase Mediated Crystallization: Fundamentals of Biomineralization

    Directory of Open Access Journals (Sweden)

    Wenjing Jin

    2018-01-01

    Full Text Available Many biomineralization systems start from transient amorphous precursor phases, but the exact crystallization pathways and mechanisms remain largely unknown. The study of a well-defined biomimetic crystallization system is key for elucidating the possible mechanisms of biomineralization and monitoring the detailed crystallization pathways. In this review, we focus on amorphous phase mediated crystallization (APMC pathways and their crystallization mechanisms in bio- and biomimetic-mineralization systems. The fundamental questions of biomineralization as well as the advantages and limitations of biomimetic model systems are discussed. This review could provide a full landscape of APMC systems for biomineralization and inspire new experiments aimed at some unresolved issues for understanding biomineralization.

  8. Fundamental physics in particle traps

    International Nuclear Information System (INIS)

    Quint, Wolfgang; Vogel, Manuel

    2014-01-01

    The individual topics are covered by leading experts in the respective fields of research. Provides readers with present theory and experiments in this field. A useful reference for researchers. This volume provides detailed insight into the field of precision spectroscopy and fundamental physics with particles confined in traps. It comprises experiments with electrons and positrons, protons and antiprotons, antimatter and highly charged ions, together with corresponding theoretical background. Such investigations represent stringent tests of quantum electrodynamics and the Standard model, antiparticle and antimatter research, test of fundamental symmetries, constants, and their possible variations with time and space. They are key to various aspects within metrology such as mass measurements and time standards, as well as promising to further developments in quantum information processing. The reader obtains a valuable source of information suited for beginners and experts with an interest in fundamental studies using particle traps.

  9. RFID design fundamentals and applications

    CERN Document Server

    Lozano-Nieto, Albert

    2010-01-01

    RFID is an increasingly pervasive tool that is now used in a wide range of fields. It is employed to substantiate adherence to food preservation and safety standards, combat the circulation of counterfeit pharmaceuticals, and verify authenticity and history of critical parts used in aircraft and other machinery-and these are just a few of its uses. Goes beyond deployment, focusing on exactly how RFID actually worksRFID Design Fundamentals and Applications systematically explores the fundamental principles involved in the design and characterization of RFID technologies. The RFID market is expl

  10. Qualitative insights on fundamental mechanics

    International Nuclear Information System (INIS)

    Mardari, Ghenadie N

    2007-01-01

    The gap between classical mechanics and quantum mechanics has an important interpretive implication: the Universe must have an irreducible fundamental level, which determines the properties of matter at higher levels of organization. We show that the main parameters of any fundamental model must be theory-independent. Moreover, such models must also contain discrete identical entities with constant properties. These conclusions appear to support the work of Kaniadakis on subquantum mechanics. A qualitative analysis is offered to suggest compatibility with relevant phenomena, as well as to propose new means for verification

  11. Astrophysical probes of fundamental physics

    International Nuclear Information System (INIS)

    Martins, C.J.A.P.

    2009-01-01

    I review the motivation for varying fundamental couplings and discuss how these measurements can be used to constrain fundamental physics scenarios that would otherwise be inaccessible to experiment. I highlight the current controversial evidence for varying couplings and present some new results. Finally I focus on the relation between varying couplings and dark energy, and explain how varying coupling measurements might be used to probe the nature of dark energy, with some advantages over standard methods. In particular I discuss what can be achieved with future spectrographs such as ESPRESSO and CODEX.

  12. Astrophysical probes of fundamental physics

    Energy Technology Data Exchange (ETDEWEB)

    Martins, C.J.A.P. [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2009-10-15

    I review the motivation for varying fundamental couplings and discuss how these measurements can be used to constrain fundamental physics scenarios that would otherwise be inaccessible to experiment. I highlight the current controversial evidence for varying couplings and present some new results. Finally I focus on the relation between varying couplings and dark energy, and explain how varying coupling measurements might be used to probe the nature of dark energy, with some advantages over standard methods. In particular I discuss what can be achieved with future spectrographs such as ESPRESSO and CODEX.

  13. The fundamentals of mathematical analysis

    CERN Document Server

    Fikhtengol'ts, G M

    1965-01-01

    The Fundamentals of Mathematical Analysis, Volume 1 is a textbook that provides a systematic and rigorous treatment of the fundamentals of mathematical analysis. Emphasis is placed on the concept of limit which plays a principal role in mathematical analysis. Examples of the application of mathematical analysis to geometry, mechanics, physics, and engineering are given. This volume is comprised of 14 chapters and begins with a discussion on real numbers, their properties and applications, and arithmetical operations over real numbers. The reader is then introduced to the concept of function, i

  14. The fundamental interactions of matter

    International Nuclear Information System (INIS)

    Falla, D.F.

    1977-01-01

    Elementary particles are here discussed, in the context of the extent to which the fundamental interactions are related to the elementary constituents of matter. The field quanta related to the four fundamental interactions (electromagnetic, strong,weak and gravitational) are discussed within an historical context beginning with the conception of the photon. The discovery of the mesons and discoveries relevant to the nature of the heavy vector boson are considered. Finally a few recent speculations on the properties of the graviton are examined. (U.K.)

  15. Fundamental Processes in Plasmas. Final report

    International Nuclear Information System (INIS)

    O'Neil, Thomas M.; Driscoll, C. Fred

    2009-01-01

    This research focuses on fundamental processes in plasmas, and emphasizes problems for which precise experimental tests of theory can be obtained. Experiments are performed on non-neutral plasmas, utilizing three electron traps and one ion trap with a broad range of operating regimes and diagnostics. Theory is focused on fundamental plasma and fluid processes underlying collisional transport and fluid turbulence, using both analytic techniques and medium-scale numerical simulations. The simplicity of these systems allows a depth of understanding and a precision of comparison between theory and experiment which is rarely possible for neutral plasmas in complex geometry. The recent work has focused on three areas in basic plasma physics. First, experiments and theory have probed fundamental characteristics of plasma waves: from the low-amplitude thermal regime, to inviscid damping and fluid echoes, to cold fluid waves in cryogenic ion plasmas. Second, the wide-ranging effects of dissipative separatrices have been studied experimentally and theoretically, finding novel wave damping and coupling effects and important plasma transport effects. Finally, correlated systems have been investigated experimentally and theoretically: UCSD experients have now measured the Salpeter correlation enhancement, and theory work has characterized the 'guiding center atoms of antihydrogen created at CERN

  16. Emergence of an urban traffic macroscopic fundamental diagram

    DEFF Research Database (Denmark)

    Ranjan, Abhishek; Fosgerau, Mogens; Jenelius, Erik

    2016-01-01

    This paper examines mild conditions under which a macroscopic fundamental diagram (MFD) emerges, relating space-averaged speed to occupancy in some area. These conditions are validated against empirical data. We allow local speedoccupancy relationships and, in particular, require no equilibrating...

  17. Another argument against fundamental scalars

    International Nuclear Information System (INIS)

    Joglekar, S.D.

    1990-01-01

    An argument, perhaps not as strong, which is based on the inclusion of interaction with external gravity into a theory describing strong, electromagnetic and weak interactions is presented. The argument is related to the basis of the common belief which favours a renormalizable action against a non-renormalizable action as a candidate for a fundamental theory. (author). 12 refs

  18. Fundamentals of Welding. Teacher Edition.

    Science.gov (United States)

    Fortney, Clarence; And Others

    These instructional materials assist teachers in improving instruction on the fundamentals of welding. The following introductory information is included: use of this publication; competency profile; instructional/task analysis; related academic and workplace skills list; tools, materials, and equipment list; and 27 references. Seven units of…

  19. Summary: fundamental interactions and processes

    International Nuclear Information System (INIS)

    Koltun, D.S.

    1982-01-01

    The subjects of the talks of the first day of the workshop are discussed in terms of fundamental interactions, dynamical theory, and relevant degrees of freedom. Some general considerations are introduced and are used to confront the various approaches taken in the earlier talks

  20. Fundamental Composite (Goldstone) Higgs Dynamics

    DEFF Research Database (Denmark)

    Cacciapaglia, G.; Sannino, Francesco

    2014-01-01

    We provide a unified description, both at the effective and fundamental Lagrangian level, of models of composite Higgs dynamics where the Higgs itself can emerge, depending on the way the electroweak symmetry is embedded, either as a pseudo-Goldstone boson or as a massive excitation of the conden...... searches of new physics at the Large Hadron Collider....

  1. Energy informatics: Fundamentals and standardization

    Directory of Open Access Journals (Sweden)

    Biyao Huang

    2017-06-01

    Full Text Available Based on international standardization and power utility practices, this paper presents a preliminary and systematic study on the field of energy informatics and analyzes boundary expansion of information and energy system, and the convergence of energy system and ICT. A comprehensive introduction of the fundamentals and standardization of energy informatics is provided, and several key open issues are identified.

  2. Experiments in Fundamental Neutron Physics

    OpenAIRE

    Nico, J. S.; Snow, W. M.

    2006-01-01

    Experiments using slow neutrons address a growing range of scientific issues spanning nuclear physics, particle physics, astrophysics, and cosmology. The field of fundamental physics using neutrons has experienced a significant increase in activity over the last two decades. This review summarizes some of the recent developments in the field and outlines some of the prospects for future research.

  3. Brake Fundamentals. Automotive Articulation Project.

    Science.gov (United States)

    Cunningham, Larry; And Others

    Designed for secondary and postsecondary auto mechanics programs, this curriculum guide contains learning exercises in seven areas: (1) brake fundamentals; (2) brake lines, fluid, and hoses; (3) drum brakes; (4) disc brake system and service; (5) master cylinder, power boost, and control valves; (6) parking brakes; and (7) trouble shooting. Each…

  4. FUNdamental Movement in Early Childhood.

    Science.gov (United States)

    Campbell, Linley

    2001-01-01

    Noting that the development of fundamental movement skills is basic to children's motor development, this booklet provides a guide for early childhood educators in planning movement experiences for children between 4 and 8 years. The booklet introduces a wide variety of appropriate practices to promote movement skill acquisition and increased…

  5. Fundamentals: IVC and Computer Science

    NARCIS (Netherlands)

    Gozalvez, Javier; Haerri, Jerome; Hartenstein, Hannes; Heijenk, Geert; Kargl, Frank; Petit, Jonathan; Scheuermann, Björn; Tieler, Tessa; Altintas, O.; Dressler, F.; Hartenstein, H.; Tonguz, O.K.

    The working group on “Fundamentals: IVC and Computer Science‿ discussed the lasting value of achieved research results as well as potential future directions in the field of inter- vehicular communication. Two major themes ‘with variations’ were the dependence on a specific technology (particularly

  6. Different Variants of Fundamental Portfolio

    Directory of Open Access Journals (Sweden)

    Tarczyński Waldemar

    2014-06-01

    Full Text Available The paper proposes the fundamental portfolio of securities. This portfolio is an alternative for the classic Markowitz model, which combines fundamental analysis with portfolio analysis. The method’s main idea is based on the use of the TMAI1 synthetic measure and, in limiting conditions, the use of risk and the portfolio’s rate of return in the objective function. Different variants of fundamental portfolio have been considered under an empirical study. The effectiveness of the proposed solutions has been related to the classic portfolio constructed with the help of the Markowitz model and the WIG20 market index’s rate of return. All portfolios were constructed with data on rates of return for 2005. Their effectiveness in 2006- 2013 was then evaluated. The studied period comprises the end of the bull market, the 2007-2009 crisis, the 2010 bull market and the 2011 crisis. This allows for the evaluation of the solutions’ flexibility in various extreme situations. For the construction of the fundamental portfolio’s objective function and the TMAI, the study made use of financial and economic data on selected indicators retrieved from Notoria Serwis for 2005.

  7. Credit cycles and macro fundamentals

    NARCIS (Netherlands)

    Koopman, S.J.; Kraeussl, R.G.W.; Lucas, A.; Monteiro, A.

    2009-01-01

    We use an intensity-based framework to study the relation between macroeconomic fundamentals and cycles in defaults and rating activity. Using Standard and Poor's U.S. corporate rating transition and default data over the period 1980-2005, we directly estimate the default and rating cycle from micro

  8. Fundamental length and relativistic length

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1988-01-01

    It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem

  9. Escola de ensino fundamental(s em movimento – movimento na escola de ensino fundamental

    Directory of Open Access Journals (Sweden)

    Reiner Hildebrandt-Stramann

    2007-12-01

    Full Text Available A escola de ensino fundamental na Alemanha sofreu movimento nos últimos 15 anos, porque, entre outros motivos, entrou movimento nessas escolas. Esse jogo de palavras chama atenção a duas linhas de trabalho que determinam a discussão na atual pedagogia escolar. O presente trabalho revela essas duas perspectivas. Uma das linhas está relacionada ao atual processo de mudança na pedagogia escolar. Essa prediz que a escola de ensino fundamental deve ser um lugar de aprendizagem e de vivência para as crianças. A outra linha tem a ver com o jogo de palavras ancorado a esses processos da pedagogia do movimento, a qual ganha cada vez maiores dimensões. A escola de ensino fundamental deve ser vista sob a perspectiva do movimento e transformada em um lugar de movimento.

  10. The finite element method its basis and fundamentals

    CERN Document Server

    Zienkiewicz, Olek C; Zhu, JZ

    2013-01-01

    The Finite Element Method: Its Basis and Fundamentals offers a complete introduction to the basis of the finite element method, covering fundamental theory and worked examples in the detail required for readers to apply the knowledge to their own engineering problems and understand more advanced applications. This edition sees a significant rearrangement of the book's content to enable clearer development of the finite element method, with major new chapters and sections added to cover: Weak forms Variational forms Multi-dimensional field prob

  11. Ultrathin magnetic structures III fundamentals of nanomagnetism

    CERN Document Server

    Bland, JAC

    2004-01-01

    The ability to understand and control the unique properties of interfaces has created an entirely new field of magnetism which already has a profound impact in technology and is providing the basis for a revolution in electronics. The last decade has seen dramatic progress in the development of magnetic devices for information technology but also in the basic understanding of the physics of magnetic nanostructures. This volume describes thin film magnetic properties and methods for characterising thin film structure topics that underpin the present 'spintronics' revolution in which devices are based on combined magnetic materials and semiconductors. Volume IV deals with the fundamentals of spintronics: magnetoelectronic materials, spin injection and detection, micromagnetics and the development of magnetic random access memory based on GMR and tunnel junction devices. Together these books provide readers with a comprehensive account of an exciting and rapidly developing field. The treatment is designed to be ...

  12. Microelectronics from fundamentals to applied design

    CERN Document Server

    Di Paolo Emilio, Maurizio

    2016-01-01

    This book serves as a practical guide for practicing engineers who need to design analog circuits for microelectronics.  Readers will develop a comprehensive understanding of the basic techniques of analog modern electronic circuit design, discrete and integrated, application as sensors and control and data acquisition systems,and techniques of PCB design.  ·         Describes fundamentals of microelectronics design in an accessible manner; ·         Takes a problem-solving approach to the topic, offering a hands-on guide for practicing engineers; ·         Provides realistic examples to inspire a thorough understanding of system-level issues, before going into the detail of components and devices; ·         Uses a new approach and provides several skills that help engineers and designers retain key and advanced concepts.

  13. Understanding land administration systems

    DEFF Research Database (Denmark)

    P. Williamson, Ian; Enemark, Stig; Wallace, Judy

    2008-01-01

    This paper introduces basic land administration theory and highlights four key concepts that are fundamental to understanding modern land administration systems. Readers may recall the first part of the paper in October issue of Coordinates. Here is the concluding part that focuses on the changing...

  14. Early Understanding of Equality

    Science.gov (United States)

    Leavy, Aisling; Hourigan, Mairéad; McMahon, Áine

    2013-01-01

    Quite a bit of the arithmetic in elementary school contains elements of algebraic reasoning. After researching and testing a number of instructional strategies with Irish third graders, these authors found effective methods for cultivating a relational concept of equality in third-grade students. Understanding equality is fundamental to algebraic…

  15. Protection of fundamental rights today

    International Nuclear Information System (INIS)

    Meyer-Abich, K.M.

    1984-01-01

    Technical developments can both change the methods of dealing with existing conflicts, and cause new conflicts. Meyer-Abich analyzes five conflicts caused by the technological development in the solution of which the constitutional, liberal, and democratic protection of fundamental rights is not at all guaranteed. Meyer-Abich thinks that these new conflicts can be solved in the framework of the liberal constitutional state, if legal and political consequences are taken in order to guarantee the uncharged protection of fundamental rights under changing conditions. The necessary reforms can, however, only be realized if the way how state and science see themselves changes. Both have to give up their one-sidedness into which have been pushed by conflict which havbe been caused by the scientific and technical development. Only then it will be possible to solve the jemerging conflicts without eopardizing the integritiy of the society. (orig.) [de

  16. THE FUNDAMENTS OF EXPLANATORY CAUSES

    Directory of Open Access Journals (Sweden)

    Lavinia Mihaela VLĂDILĂ

    2015-07-01

    Full Text Available The new Criminal Code in the specter of the legal life the division of causes removing the criminal feature of the offence in explanatory causes and non-attributable causes. This dichotomy is not without legal and factual fundaments and has been subjected to doctrinaire debates even since the period when the Criminal Code of 1969 was still in force. From our perspective, one of the possible legal fundaments of the explanatory causes results from that the offence committed is based on the protection of a right at least equal with the one prejudiced by the action of aggression, salvation, by the legal obligation imposed or by the victim’s consent.

  17. Modern measurements fundamentals and applications

    CERN Document Server

    Petri, D; Carbone, P; Catelani, M

    2015-01-01

    This book explores the modern role of measurement science for both the technically most advanced applications and in everyday and will help readers gain the necessary skills to specialize their knowledge for a specific field in measurement. Modern Measurements is divided into two parts. Part I (Fundamentals) presents a model of the modern measurement activity and the already recalled fundamental bricks. It starts with a general description that introduces these bricks and the uncertainty concept. The next chapters provide an overview of these bricks and finishes (Chapter 7) with a more general and complex model that encompasses both traditional (hard) measurements and (soft) measurements, aimed at quantifying non-physical concepts, such as quality, satisfaction, comfort, etc. Part II (Applications) is aimed at showing how the concepts presented in Part I can be usefully applied to design and implement measurements in some very impor ant and broad fields. The editors cover System Identification (Chapter 8...

  18. Fundamentals of electronic systems design

    CERN Document Server

    Lienig, Jens

    2017-01-01

    This textbook covers the design of electronic systems from the ground up, from drawing and CAD essentials to recycling requirements. Chapter by chapter, it deals with the challenges any modern system designer faces: the design process and its fundamentals, such as technical drawings and CAD, electronic system levels, assembly and packaging issues and appliance protection classes, reliability analysis, thermal management and cooling, electromagnetic compatibility (EMC), all the way to recycling requirements and environmental-friendly design principles. Enables readers to face various challenges of designing electronic systems, including coverage from various engineering disciplines; Written to be accessible to readers of varying backgrounds; Uses illustrations extensively to reinforce fundamental concepts; Organized to follow essential design process, although chapters are self-contained and can be read in any order.

  19. Fundamental research in developing countries

    International Nuclear Information System (INIS)

    Moravesik, M.J.

    1964-01-01

    Technical assistance is today a widespread activity. Large numbers of persons with special qualifications in the applied sciences go to the developing countries to work on specific research and development projects, as do educationists on Fulbright or other programmes - usually to teach elementary or intermediate courses. But I believe that until now it has been rare for a person primarily interested in fundamental research to go to one of these countries to help build up advanced education and pure research work. Having recently returned from such an assignment, and having found it a most stimulating and enlightening experience, I feel moved to urge strongly upon others who may be in a position to do so that they should seek similar experience themselves. The first step is to show that advanced education and fundamental research are badly needed in the under-developed countries.

  20. Fundamentals of plastic optical fibers

    CERN Document Server

    Koike, Yasuhiro

    2014-01-01

    Polymer photonics is an interdisciplinary field which demands excellence both in optics (photonics) and materials science (polymer). However, theses disciplines have developed independently, and therefore the demand for a comprehensive work featuring the fundamentals of photonic polymers is greater than ever.This volume focuses on Polymer Optical Fiber and their applications. The first part of the book introduces typical optical fibers according to their classifications of material, propagating mode, and structure. Optical properties, the high bandwidth POF and transmission loss are discussed,

  1. Proof of the fundamental BCJ relations for QCD amplitudes

    International Nuclear Information System (INIS)

    Cruz, Leonardo de la; Kniss, Alexander; Weinzierl, Stefan

    2015-01-01

    The fundamental BCJ-relation is a linear relation between primitive tree amplitudes with different cyclic orderings. The cyclic orderings differ by the insertion place of one gluon. The coefficients of the fundamental BCJ-relation are linear in the Lorentz invariants 2p_ip_j. The BCJ-relations are well established for pure gluonic amplitudes as well as for amplitudes in N=4 super-Yang-Mills theory. Recently, it has been conjectured that the BCJ-relations hold also for QCD amplitudes. In this paper we give a proof of this conjecture. The proof is valid for massless and massive quarks.

  2. Fundamental solutions of singular SPDEs

    International Nuclear Information System (INIS)

    Selesi, Dora

    2011-01-01

    Highlights: → Fundamental solutions of linear SPDEs are constructed. → Wick-convolution product is introduced for the first time. → Fourier transformation maps Wick-convolution into Wick product. → Solutions of linear SPDEs are expressed via Wick-convolution with fundamental solutions. → Stochastic Helmholtz equation is solved. - Abstract: This paper deals with some models of mathematical physics, where random fluctuations are modeled by white noise or other singular Gaussian generalized processes. White noise, as the distributional derivative od Brownian motion, which is the most important case of a Levy process, is defined in the framework of Hida distribution spaces. The Fourier transformation in the framework of singular generalized stochastic processes is introduced and its applications to solving stochastic differential equations involving Wick products and singularities such as the Dirac delta distribution are presented. Explicit solutions are obtained in form of a chaos expansion in the Kondratiev white noise space, while the coefficients of the expansion are tempered distributions. Stochastic differential equations of the form P(ω, D) ◊ u(x, ω) = A(x, ω) are considered, where A is a singular generalized stochastic process and P(ω, D) is a partial differential operator with random coefficients. We introduce the Wick-convolution operator * which enables us to express the solution as u = s*A ◊ I ◊(-1) , where s denotes the fundamental solution and I is the unit random variable. In particular, the stochastic Helmholtz equation is solved, which in physical interpretation describes waves propagating with a random speed from randomly appearing point sources.

  3. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-09-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicted on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction

  4. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-01-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicated on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction. 43 refs

  5. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-01-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicted on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction

  6. Communication technology update and fundamentals

    CERN Document Server

    Grant, August E

    2014-01-01

    A classic now in its 14th edition, Communication Technology Update and Fundamentals is the single best resource for students and professionals looking to brush up on how these technologies have developed, grown, and converged, as well as what's in store for the future. It begins by developing the communication technology framework-the history, ecosystem, and structure-then delves into each type of technology, including everything from mass media, to computers and consumer electronics, to networking technologies. Each chapter is written by faculty and industry experts who p

  7. Quantum Uncertainty and Fundamental Interactions

    Directory of Open Access Journals (Sweden)

    Tosto S.

    2013-04-01

    Full Text Available The paper proposes a simplified theoretical approach to infer some essential concepts on the fundamental interactions between charged particles and their relative strengths at comparable energies by exploiting the quantum uncertainty only. The worth of the present approach relies on the way of obtaining the results, rather than on the results themselves: concepts today acknowledged as fingerprints of the electroweak and strong interactions appear indeed rooted in the same theoretical frame including also the basic principles of special and general relativity along with the gravity force.

  8. Photovoltaics fundamentals, technology and practice

    CERN Document Server

    Mertens, Konrad

    2013-01-01

    Concise introduction to the basic principles of solar energy, photovoltaic systems, photovoltaic cells, photovoltaic measurement techniques, and grid connected systems, overviewing the potential of photovoltaic electricity for students and engineers new to the topic After a brief introduction to the topic of photovoltaics' history and the most important facts, Chapter 1 presents the subject of radiation, covering properties of solar radiation, radiation offer, and world energy consumption. Chapter 2 looks at the fundamentals of semiconductor physics. It discusses the build-up of semiconducto

  9. Plasma expansion: fundamentals and applications

    International Nuclear Information System (INIS)

    Engeln, R; Mazouffre, S; Vankan, P; Bakker, I; Schram, D C

    2002-01-01

    The study of plasma expansion is interesting from a fundamental point of view as well as from a more applied point of view. We here give a short overview of the way properties like density, velocity and temperature behave in an expanding thermal plasma. Experimental data show that the basic phenomena of plasma expansion are to some extent similar to those of the expansion of a hot neutral gas. From the application point of view, we present first results on the use of an expanding thermal plasma in the plasma-activated catalysis of ammonia, from N 2 -H 2 mixtures

  10. Fundamentals of gas particle flow

    CERN Document Server

    Rudinger, G

    1980-01-01

    Fundamentals of Gas-Particle Flow is an edited, updated, and expanded version of a number of lectures presented on the "Gas-Solid Suspensions” course organized by the von Karman Institute for Fluid Dynamics. Materials presented in this book are mostly analytical in nature, but some experimental techniques are included. The book focuses on relaxation processes, including the viscous drag of single particles, drag in gas-particles flow, gas-particle heat transfer, equilibrium, and frozen flow. It also discusses the dynamics of single particles, such as particles in an arbitrary flow, in a r

  11. Testing Fundamental Gravitation in Space

    Energy Technology Data Exchange (ETDEWEB)

    Turyshev, Slava G.

    2013-10-15

    General theory of relativity is a standard theory of gravitation; as such, it is used to describe gravity when the problems in astronomy, astrophysics, cosmology, and fundamental physics are concerned. The theory is also relied upon in many modern applications involving spacecraft navigation, geodesy, and time transfer. Here we review the foundations of general relativity and discuss its current empirical status. We describe both the theoretical motivation and the scientific progress that may result from the new generation of high-precision tests that are anticipated in the near future.

  12. Current challenges in fundamental physics

    Science.gov (United States)

    Egana Ugrinovic, Daniel

    The discovery of the Higgs boson at the Large Hadron Collider completed the Standard Model of particle physics. The Standard Model is a remarkably successful theory of fundamental physics, but it suffers from severe problems. It does not provide an explanation for the origin or stability of the electroweak scale nor for the origin and structure of flavor and CP violation. It predicts vanishing neutrino masses, in disagreement with experimental observations. It also fails to explain the matter-antimatter asymmetry of the universe, and it does not provide a particle candidate for dark matter. In this thesis we provide experimentally testable solutions for most of these problems and we study their phenomenology.

  13. Short-range fundamental forces

    International Nuclear Information System (INIS)

    Antoniadis, I.; Baessler, S.; Buchner, M.; Fedorov, V.V.; Hoedl, S.; Nesvizhevsky, V.V.; Pignol, G.; Protasov, K.V.; Lambrecht, A.; Reynaud, S.; Sobolev, Y.

    2010-01-01

    We consider theoretical motivations to search for extra short-range fundamental forces as well as experiments constraining their parameters. The forces could be of two types: 1) spin-independent forces; 2) spin-dependent axion-like forces. Different experimental techniques are sensitive in respective ranges of characteristic distances. The techniques include measurements of gravity at short distances, searches for extra interactions on top of the Casimir force, precision atomic and neutron experiments. We focus on neutron constraints, thus the range of characteristic distances considered here corresponds to the range accessible for neutron experiments

  14. Fundamentals of affinity cell separations.

    Science.gov (United States)

    Zhang, Ye; Lyons, Veronica; Pappas, Dimitri

    2018-03-01

    Cell separations using affinity methods continue to be an enabling science for a wide variety of applications. In this review, we discuss the fundamental aspects of affinity separation, including the competing forces for cell capture and elution, cell-surface interactions, and models for cell adhesion. Factors affecting separation performance such as bond affinity, contact area, and temperature are presented. We also discuss and demonstrate the effects of nonspecific binding on separation performance. Metrics for evaluating cell separations are presented, along with methods of comparing separation techniques for cell isolation using affinity capture. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fundamental Vibration of Molecular Hydrogen

    Science.gov (United States)

    Dickenson, G. D.; Niu, M. L.; Salumbides, E. J.; Komasa, J.; Eikema, K. S. E.; Pachucki, K.; Ubachs, W.

    2013-05-01

    The fundamental ground tone vibration of H2, HD, and D2 is determined to an accuracy of 2×10-4cm-1 from Doppler-free laser spectroscopy in the collisionless environment of a molecular beam. This rotationless vibrational splitting is derived from the combination difference between electronic excitation from the X1Σg+, v=0, and v=1 levels to a common EF1Σg+, v=0 level. Agreement within 1σ between the experimental result and a full ab initio calculation provides a stringent test of quantum electrodynamics in a chemically bound system.

  16. Foam engineering fundamentals and applications

    CERN Document Server

    2012-01-01

    Containing contributions from leading academic and industrial researchers, this book provides a much needed update of foam science research. The first section of the book presents an accessible summary of the theory and fundamentals of foams. This includes chapters on morphology, drainage, Ostwald ripening, coalescence, rheology, and pneumatic foams. The second section demonstrates how this theory is used in a wide range of industrial applications, including foam fractionation, froth flotation and foam mitigation. It includes chapters on suprafroths, flotation of oil sands, foams in enhancing petroleum recovery, Gas-liquid Mass Transfer in foam, foams in glass manufacturing, fire-fighting foam technology and consumer product foams.

  17. Fundamental aspects of cathodic sputtering

    International Nuclear Information System (INIS)

    Harman, R.

    1979-01-01

    The main fundamental aspects and problems of cathodic sputtering used mainly for thin film deposition and sputter etching are discussed. Among many types of known sputtering techniques the radiofrequency /RF/ diode sputtering is the most universal one and is used for deposition of metals, alloys, metallic compounds, semiconductors and insulators. It seems that nowadays the largest number of working sputtering systems is of diode type. Sometimes also the dc or rf triode sputtering systems are used. The problems in these processes are practically equivalent and comparable with the problems in the diode method and therefore our discussion will be, in most cases applicable for both, the diode and triode methods

  18. Computing fundamentals digital literacy edition

    CERN Document Server

    Wempen, Faithe

    2014-01-01

    Computing Fundamentals has been tailor made to help you get up to speed on your Computing Basics and help you get proficient in entry level computing skills. Covering all the key topics, it starts at the beginning and takes you through basic set-up so that you'll be competent on a computer in no time.You'll cover: Computer Basics & HardwareSoftwareIntroduction to Windows 7Microsoft OfficeWord processing with Microsoft Word 2010Creating Spreadsheets with Microsoft ExcelCreating Presentation Graphics with PowerPointConnectivity and CommunicationWeb BasicsNetwork and Internet Privacy and Securit

  19. Fundamentals of ultrasonic phased arrays

    CERN Document Server

    Schmerr, Lester W

    2014-01-01

    This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and

  20. Fundamental principles of quantum theory

    International Nuclear Information System (INIS)

    Bugajski, S.

    1980-01-01

    After introducing general versions of three fundamental quantum postulates - the superposition principle, the uncertainty principle and the complementarity principle - the question of whether the three principles are sufficiently strong to restrict the general Mackey description of quantum systems to the standard Hilbert-space quantum theory is discussed. An example which shows that the answer must be negative is constructed. An abstract version of the projection postulate is introduced and it is demonstrated that it could serve as the missing physical link between the general Mackey description and the standard quantum theory. (author)

  1. Macroscopic fundamental strings in cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Aharonov, Y; Englert, F; Orloff, J

    1987-12-24

    We show that, when D greater than or equal to 4, theories of closed strings of closed strings in D, non-compact space-time dimensions exhibit a phase transition. The high-temperature phase is characterized by a condensate of arbitrarily long strings with Hausdorff dimension two (area filling curves). We suggest that this stringy phase is the ancestor of the adiabatic era. Fundamental strings could then both drive the inflation and seed, in a way reminiscent of the cosmic string mechanism, the large structures in the universe.

  2. Fundamental Properties of the SHIELD Galaxies

    Science.gov (United States)

    Cannon, John; Adams, Betsey; Giovanelli, Riccardo; Haynes, Martha; Jones, Michael; McQuinn, Kristen; Rhode, Katherine; Salzer, John; Skillman, Evan

    2018-05-01

    The ALFALFA survey has significantly advanced our knowledge of the HI mass function (HIMF), particularly at the low mass end. From the ALFALFA survey, we have constructed a sample of all of the galaxies with HI masses less than 20 million solar masses. Observations of this 82 galaxy sample allow, for the first time, a characterization of the lowest HI mass galaxies at redshift zero. Specifically, this sample can be used to determine the low HI-mass ends of various fundamental scaling relations, including the critical baryonic Tully Fisher relation (BTFR) and the mass-metallicity (M-Z) relation. The M-Z relation and the BTFR are cosmologically important, but current samples leave the low-mass parameter spaces severely underpopulated. A full understanding of these relationships depends critically on accurate stellar masses of this complete sample of uniformly-selected galaxies. Here, we request imaging of the 70 galaxies in our sample that have not been observed with Spitzer. The proposed imaging will allow us to measure stellar masses and inclinations of the sample galaxies using a uniform observational approach. Comparison with (existing and in progress) interferometric HI imaging and with ground-based optical imaging and spectroscopy will enable a robust mass decomposition in each galaxy and accurate placements on the aforementioned scaling relationships. The observations proposed here will allow us to populate the mass continuum between mini-halos and bona fide dwarf galaxies, and to address a range of fundamental questions in galaxy formation and near-field cosmology.

  3. Fundamentals of boiling water reactor (BWR)

    International Nuclear Information System (INIS)

    Bozzola, S.

    1982-01-01

    These lectures on fundamentals of BWR reactor physics are a synthesis of known and established concepts. These lectures are intended to be a comprehensive (even though descriptive in nature) presentation, which would give the basis for a fair understanding of power operation, fuel cycle and safety aspects of the boiling water reactor. The fundamentals of BWR reactor physics are oriented to design and operation. In the first lecture general description of BWR is presented, with emphasis on the reactor physics aspects. A survey of methods applied in fuel and core design and operation is presented in the second lecture in order to indicate the main features of the calculational tools. The third and fourth lectures are devoted to review of BWR design bases, reactivity requirements, reactivity and power control, fuel loading patterns. Moreover, operating limits are reviewed, as the actual limits during power operation and constraints for reactor physics analyses (design and operation). The basic elements of core management are also presented. The constraints on control rod movements during the achieving of criticality and low power operation are illustrated in the fifth lecture. Some considerations on plant transient analyses are also presented in the fifth lecture, in order to show the impact between core and fuel performance and plant/system performance. The last (sixth) lecture is devoted to the open vessel testing during the startup of a commercial BWR. A control rod calibration is also illustrated. (author)

  4. Fundamental care and knowledge interests: Implications for nursing science.

    Science.gov (United States)

    Granero-Molina, José; Fernández-Sola, Cayetano; Mateo-Aguilar, Ester; Aranda-Torres, Cayetano; Román-López, Pablo; Hernández-Padilla, José Manuel

    2017-11-09

    To characterise the intratheoretical interests of knowledge in nursing science as an epistemological framework for fundamental care. For Jürgen Habermas, theory does not separate knowledge interests from life. All knowledge, understanding and human research is always interested. Habermas formulated the knowledge interests in empirical-analytical, historical-hermeneutic and critical social sciences; but said nothing about health sciences and nursing science. Discursive paper. The article is organised into five sections that develop our argument about the implications of the Habermasian intratheoretical interests in nursing science and fundamental care: the persistence of a technical interest, the predominance of a practical interest, the importance of an emancipatory interest, "being there" to understand individuals' experience and an "existential crisis" that uncovers the individual's subjectivity. The nursing discipline can take on practical and emancipatory interests (together with a technical interest) as its fundamental knowledge interests. Nurses' privileged position in the delivery of fundamental care gives them the opportunity to gain a deep understanding of the patient's experience and illness process through physical contact and empathic communication. In clinical, academic and research environments, nurses should highlight the importance of fundamental care, showcasing the value of practical and emancipatory knowledge. This process could help to improve nursing science's leadership, social visibility and idiosyncrasy. © 2017 John Wiley & Sons Ltd.

  5. A laboratory scale fundamental time?

    International Nuclear Information System (INIS)

    Mendes, R.V.

    2012-01-01

    The existence of a fundamental time (or fundamental length) has been conjectured in many contexts. However, the ''stability of physical theories principle'' seems to be the one that provides, through the tools of algebraic deformation theory, an unambiguous derivation of the stable structures that Nature might have chosen for its algebraic framework. It is well-known that c and ℎ are the deformation parameters that stabilize the Galilean and the Poisson algebra. When the stability principle is applied to the Poincare-Heisenberg algebra, two deformation parameters emerge which define two time (or length) scales. In addition there are, for each of them, a plus or minus sign possibility in the relevant commutators. One of the deformation length scales, related to non-commutativity of momenta, is probably related to the Planck length scale but the other might be much larger and already detectable in laboratory experiments. In this paper, this is used as a working hypothesis to look for physical effects that might settle this question. Phase-space modifications, resonances, interference, electron spin resonance and non-commutative QED are considered. (orig.)

  6. Spectroscopic instrumentation fundamentals and guidelines for astronomers

    CERN Document Server

    Eversberg, Thomas

    2015-01-01

    In order to analyze the light of cosmic objects, particularly at extremely great distances, spectroscopy is the workhorse of astronomy. In the era of very large telescopes, long-term investigations are mainly performed with small professional instruments. Today they can be done using self-designed spectrographs and highly efficient CCD cameras, without the need for large financial investments.   This book explains the basic principles of spectroscopy, including the fundamental optical constraints and all mathematical aspects needed to understand the working principles in detail. It covers the complete theoretical and practical design of standard and Echelle spectrographs. Readers are guided through all necessary calculations, enabling them to engage in spectrograph design. The book also examines data acquisition with CCD cameras and fiber optics, as well as the constraints of specific data reduction and possible sources of error. In closing it briefly highlights some main aspects of the research on massive s...

  7. Fundamentals of tribology at the atomic level

    Science.gov (United States)

    Ferrante, John; Pepper, Stephen V.

    1989-01-01

    Tribology, the science and engineering of solid surfaces in moving contact, is a field that encompasses many disciplines: solid state physics, chemistry, materials science, and mechanical engineering. In spite of the practical importance and maturity of the field, the fundamental understanding of basic phenomena has only recently been attacked. An attempt to define some of these problems and indicate some profitable directions for future research is presented. There are three broad classifications: (1) fluid properties (compression, rheology, additives and particulates); (2) material properties of the solids (deformation, defect formation and energy loss mechanisms); and (3) interfacial properties (adhesion, friction chemical reactions, and boundary films). Research in the categories has traditionally been approached by considering macroscopic material properties. Recent activity has shown that some issues can be approached at the atomic level: the atoms in the materials can be manipulated both experimentally and theoretically, and can produce results related to macroscopic phenomena.

  8. Plasma Astrophysics, Part I Fundamentals and Practice

    CERN Document Server

    Somov, Boris V

    2006-01-01

    This well-illustrated monograph is devoted to classic fundamentals, current practice, and perspectives of modern plasma astrophysics. The first part is unique in covering all the basic principles and practical tools required for understanding and working in plasma astrophysics. The second part presents the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas within the solar system; single and double stars, relativistic objects, accretion disks, and their coronae are also covered. This book is designed mainly for professional researchers in astrophysics. However, it will also be interesting and useful to graduate students in space sciences, geophysics, as well as advanced students in applied physics and mathematics seeking a unified view of plasma physics and fluid mechanics.

  9. Limits on fundamental limits to computation.

    Science.gov (United States)

    Markov, Igor L

    2014-08-14

    An indispensable part of our personal and working lives, computing has also become essential to industries and governments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in integrated circuits over the past fifty years. Such Moore scaling now requires ever-increasing efforts, stimulating research in alternative hardware and stirring controversy. To help evaluate emerging technologies and increase our understanding of integrated-circuit scaling, here I review fundamental limits to computation in the areas of manufacturing, energy, physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, I recapitulate how some limits were circumvented, and compare loose and tight limits. Engineering difficulties encountered by emerging technologies may indicate yet unknown limits.

  10. Fundamentals of semiconductors physics and materials properties

    CERN Document Server

    Yu, Peter Y

    2010-01-01

    This fourth edition of the well-established Fundamentals of Semiconductors serves to fill the gap between a general solid-state physics textbook and research articles by providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors. The approach is physical and intuitive rather than formal and pedantic. Theories are presented to explain experimental results. This textbook has been written with both students and researchers in mind. Its emphasis is on understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors. The explanations are based on physical insights. Each chapter is enriched by an extensive collection of tables of material parameters, figures, and problems. Many of these problems "lead the student by the hand" to arrive at the results. The major changes made in the fourth edition include: an extensive appendix about the important and by now well-established deep center known as the DX center, additional problems...

  11. Atomic energy, fundamental project, 1990, Japan

    International Nuclear Information System (INIS)

    1990-01-01

    The project is composed of the following items: 1. Synthetic strengthening countermeasure for guanrantee of safety. (1) Completion of administration for regulation, (2) promotion of research, (3) disaster prevention. 2. Promotion of nuclear power generation. 3. Establishment of nuclear fuel cycle. (1) Secure the uran-resources, (2) domestic uran-concentration, (3) reprocessing of spent fuel and utilization of recovered uran, (4) radioactive waste disposal. 4. Development of new type power reactors and utilization of plutonium (1) FBR, (2) ATR, (3) plutonium fuel processing technology. 5. Promotion of leading projects. (1) Research of nuclear fusion, (2) radiation utilization, (3) R and D of nuclear ship, (4) high temperature technology testing research. 6. Promotion of fundamental technology development, etc. 7. Subjective and active international contribution. 8. Understanding and cooperation of the nation. (M.T.)

  12. Fundamental Studies on Phase Transformations and Mechanical Properties of Fusion Welds in Advanced Naval Steels

    Science.gov (United States)

    2017-07-31

    naval and structural applications. However, prior to this research project, a fundamental understanding of the phase transformation behavior under the...prior to this research project, a fundamental understanding of the phase transformation behavior under the high heating and cooling rates associated...HAZ mechanical properties. Such a treatment is expensive, time consuming , and cannot be practically applied to large structures. However, the absence

  13. Major advances in fundamental dairy cattle nutrition.

    Science.gov (United States)

    Drackley, J K; Donkin, S S; Reynolds, C K

    2006-04-01

    Fundamental nutrition seeks to describe the complex biochemical reactions involved in assimilation and processing of nutrients by various tissues and organs, and to quantify nutrient movement (flux) through those processes. Over the last 25 yr, considerable progress has been made in increasing our understanding of metabolism in dairy cattle. Major advances have been made at all levels of biological organization, including the whole animal, organ systems, tissues, cells, and molecules. At the whole-animal level, progress has been made in delineating metabolism during late pregnancy and the transition to lactation, as well as in whole-body use of energy-yielding substrates and amino acids for growth in young calves. An explosion of research using multicatheterization techniques has led to better quantitative descriptions of nutrient use by tissues of the portal-drained viscera (digestive tract, pancreas, and associated adipose tissues) and liver. Isolated tissue preparations have provided important information on the interrelationships among glucose, fatty acid, and amino acid metabolism in liver, adipose tissue, and mammary gland, as well as the regulation of these pathways during different physiological states. Finally, the last 25 yr has witnessed the birth of "molecular biology" approaches to understanding fundamental nutrition. Although measurements of mRNA abundance for proteins of interest already have provided new insights into regulation of metabolism, the next 25 yr will likely see remarkable advances as these techniques continue to be applied to problems of dairy cattle biology. Integration of the "omics" technologies (functional genomics, proteomics, and metabolomics) with measurements of tissue metabolism obtained by other methods is a particularly exciting prospect for the future. The result should be improved animal health and well being, more efficient dairy production, and better models to predict nutritional requirements and provide rations to meet

  14. Fundamental Elements and Interactions of Nature: A Classical Unification Theory

    Directory of Open Access Journals (Sweden)

    Tianxi Zhang

    2010-04-01

    Full Text Available A classical unification theory that completely unifies all the fundamental interactions of nature is developed. First, the nature is suggested to be composed of the following four fundamental elements: mass, radiation, electric charge, and color charge. All known types of matter or particles are a combination of one or more of the four fundamental elements. Photons are radiation; neutrons have only mass; protons have both mass and electric charge; and quarks contain mass, electric charge, and color charge. The nature fundamental interactions are interactions among these nature fundamental elements. Mass and radiation are two forms of real energy. Electric and color charges are considered as two forms of imaginary energy. All the fundamental interactions of nature are therefore unified as a single interaction between complex energies. The interaction between real energies is the gravitational force, which has three types: mass-mass, mass-radiation, and radiation-radiation interactions. Calculating the work done by the mass-radiation interaction on a photon derives the Einsteinian gravitational redshift. Calculating the work done on a photon by the radiation-radiation interaction derives a radiation redshift, which is much smaller than the gravitational redshift. The interaction between imaginary energies is the electromagnetic (between electric charges, weak (between electric and color charges, and strong (between color charges interactions. In addition, we have four imaginary forces between real and imaginary energies, which are mass-electric charge, radiation-electric charge, mass-color charge, and radiation-color charge interactions. Among the four fundamental elements, there are ten (six real and four imaginary fundamental interactions. This classical unification theory deepens our understanding of the nature fundamental elements and interactions, develops a new concept of imaginary energy for electric and color charges, and provides a

  15. Fundamental Elements and Interactions of Nature: A Classical Unification Theory

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2010-04-01

    Full Text Available A classical unification theory that completely unifies all the fundamental interactions of nature is developed. First, the nature is suggested to be composed of the following four fundamental elements: mass, radiation, electric charge, and color charge. All known types of matter or particles are a combination of one or more of the four fundamental elements. Photons are radiation; neutrons have only mass; protons have both mass and electric charge; and quarks contain mass, electric charge, and color charge. The nature fundamental interactions are interactions among these nature fundamental elements. Mass and radiation are two forms of real energy. Electric and color charges are con- sidered as two forms of imaginary energy. All the fundamental interactions of nature are therefore unified as a single interaction between complex energies. The interac- tion between real energies is the gravitational force, which has three types: mass-mass, mass-radiation, and radiation-radiation interactions. Calculating the work done by the mass-radiation interaction on a photon derives the Einsteinian gravitational redshift. Calculating the work done on a photon by the radiation-radiation interaction derives a radiation redshift, which is much smaller than the gravitational redshift. The interaction between imaginary energies is the electromagnetic (between electric charges, weak (between electric and color charges, and strong (between color charges interactions. In addition, we have four imaginary forces between real and imaginary energies, which are mass-electric charge, radiation-electric charge, mass-color charge, and radiation- color charge interactions. Among the four fundamental elements, there are ten (six real and four imaginary fundamental interactions. This classical unification theory deep- ens our understanding of the nature fundamental elements and interactions, develops a new concept of imaginary energy for electric and color charges, and provides a

  16. Fundamentals of Atomic and Nuclear Physics. Chapter 1

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K. -H. [University of Malaya, Kuala Lumpur (Malaysia); Dance, D. R. [Royal Surrey County Hospital, Guildford (United Kingdom)

    2014-09-15

    Knowledge of the structure of the atom, elementary nuclear physics, the nature of electromagnetic radiation and the production of X rays is fundamental to the understanding of the physics of medical imaging and radiation protection. This, the first chapter of the handbook, summarizes those aspects of these areas which, being part of the foundation of modern physics, underpin the remainder of the book.

  17. Fundamentals for a terahertz-driven electron gun

    DEFF Research Database (Denmark)

    Lange, Simon Lehnskov; Olsen, Filip D.; Iwaszczuk, Krzysztof

    2017-01-01

    dipoles placed with a small gap in between. We conclude that it is possible to make ultra-bright electron bunches shorter than 1 ps and accelerate them to the low keV range over 15 mu m using only a single THz transient. Our results are fundamental to understand and build a THz-driven electron gun....

  18. Macroscopic Fundamental Diagram for pedestrian networks : Theory and applications

    NARCIS (Netherlands)

    Hoogendoorn, S.P.; Daamen, W.; Knoop, V.L.; Steenbakkers, Jeroen; Sarvi, Majid

    2017-01-01

    The Macroscopic Fundamental diagram (MFD) has proven to be a powerful concept in understanding and managing vehicular network dynamics, both from a theoretical angle and from a more application-oriented perspective. In this contribution, we explore the existence and the characteristics of the

  19. Revisiting the fundamentals of single point incremental forming by

    DEFF Research Database (Denmark)

    Silva, Beatriz; Skjødt, Martin; Martins, Paulo A.F.

    2008-01-01

    Knowledge of the physics behind the fracture of material at the transition between the inclined wall and the corner radius of the sheet is of great importance for understanding the fundamentals of single point incremental forming (SPIF). How the material fractures, what is the state of strain...

  20. Fundamental processes in ion plating

    International Nuclear Information System (INIS)

    Mattox, D.M.

    1980-01-01

    Ion plating is a generic term applied to film deposition processes in which the substrate surface and/or the depositing film is subjected to a flux of high energy particles sufficient to cause changes in the interfacial region of film properties compared to a nonbombarded deposition. Ion plating is being accepted as an alternative coating technique to sputter deposition, vacuum evaporation and electroplating. In order to intelligently choose between the various deposition techniques, the fundamental mechanisms, relating to ion plating, must be understood. This paper reviews the effects of low energy ion bombardment on surfaces, interface formation and film development as they apply to ion plating and the implementation and applications of the ion plating process

  1. Silicon photonics fundamentals and devices

    CERN Document Server

    Deen, M Jamal

    2012-01-01

    The creation of affordable high speed optical communications using standard semiconductor manufacturing technology is a principal aim of silicon photonics research. This would involve replacing copper connections with optical fibres or waveguides, and electrons with photons. With applications such as telecommunications and information processing, light detection, spectroscopy, holography and robotics, silicon photonics has the potential to revolutionise electronic-only systems. Providing an overview of the physics, technology and device operation of photonic devices using exclusively silicon and related alloys, the book includes: * Basic Properties of Silicon * Quantum Wells, Wires, Dots and Superlattices * Absorption Processes in Semiconductors * Light Emitters in Silicon * Photodetectors , Photodiodes and Phototransistors * Raman Lasers including Raman Scattering * Guided Lightwaves * Planar Waveguide Devices * Fabrication Techniques and Material Systems Silicon Photonics: Fundamentals and Devices outlines ...

  2. Fundamental Laser Welding Process Investigations

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove

    1998-01-01

    In a number of systematic laboratory investigations the fundamental behavior of the laser welding process was analyzed by the use of normal video (30 Hz), high speed video (100 and 400 Hz) and photo diodes. Sensors were positioned to monitor the welding process from both the top side and the rear...... side of the specimen.Special attention has been given to the dynamic nature of the laser welding process, especially during unstable welding conditions. In one series of experiments, the stability of the process has been varied by changing the gap distance in lap welding. In another series...... video pictures (400 Hz), a clear impact on the seam characteristics has been identified when a hump occurs.Finally, a clear correlation between the position of the focus point, the resultant process type and the corresponding signal intensity and signal variation has been found for sheets welded...

  3. Queueing networks a fundamental approach

    CERN Document Server

    Dijk, Nico

    2011-01-01

    This handbook aims to highlight fundamental, methodological and computational aspects of networks of queues to provide insights and to unify results that can be applied in a more general manner.  The handbook is organized into five parts: Part 1 considers exact analytical results such as of product form type. Topics include characterization of product forms by physical balance concepts and simple traffic flow equations, classes of service and queue disciplines that allow a product form, a unified description of product forms for discrete time queueing networks, insights for insensitivity, and aggregation and decomposition results that allow subnetworks to be aggregated into single nodes to reduce computational burden. Part 2 looks at monotonicity and comparison results such as for computational simplification by either of two approaches: stochastic monotonicity and ordering results based on the ordering of the proces generators, and comparison results and explicit error bounds based on an underlying Markov r...

  4. The fundamentals of stellar astrophysics

    International Nuclear Information System (INIS)

    Collins, G.W. II.

    1989-01-01

    A broad overview of theoretical stellar astrophysics is presented in a textbook intended for graduate students. Chapters are devoted to fundamental principles, assumptions, theorems, and polytropes; energy sources and sinks; the flow of energy through the star and the construction of stellar models; the theory of stellar evolution; relativistic stellar structure; the structure of distorted stars; stellar pulsation and oscillation. Also discussed are the flow of radiation through the stellar atmosphere, the solution of the radiative-transfer equation, the environment of the radiation field, the construction of a stellar model atmosphere, the formation and shape of spectral lines, LTE breakdown, illuminated and extended stellar atmospheres, and the transfer of polarized radiation. Diagrams, graphs, and sample problems are provided. 164 refs

  5. Fundamental Travel Demand Model Example

    Science.gov (United States)

    Hanssen, Joel

    2010-01-01

    Instances of transportation models are abundant and detailed "how to" instruction is available in the form of transportation software help documentation. The purpose of this paper is to look at the fundamental inputs required to build a transportation model by developing an example passenger travel demand model. The example model reduces the scale to a manageable size for the purpose of illustrating the data collection and analysis required before the first step of the model begins. This aspect of the model development would not reasonably be discussed in software help documentation (it is assumed the model developer comes prepared). Recommendations are derived from the example passenger travel demand model to suggest future work regarding the data collection and analysis required for a freight travel demand model.

  6. Molecular imaging. Fundamentals and applications

    International Nuclear Information System (INIS)

    Tian, Jie

    2013-01-01

    Covers a wide range of new theory, new techniques and new applications. Contributed by many experts in China. The editor has obtained the National Science and Technology Progress Award twice. ''Molecular Imaging: Fundamentals and Applications'' is a comprehensive monograph which describes not only the theory of the underlying algorithms and key technologies but also introduces a prototype system and its applications, bringing together theory, technology and applications. By explaining the basic concepts and principles of molecular imaging, imaging techniques, as well as research and applications in detail, the book provides both detailed theoretical background information and technical methods for researchers working in medical imaging and the life sciences. Clinical doctors and graduate students will also benefit from this book.

  7. Fundamentals of thermophotovoltaic energy conversion

    CERN Document Server

    Chubb, Donald L

    2007-01-01

    This is a text book presenting the fundamentals of thermophotovoltaic(TPV) energy conversion suitable for an upper undergraduate or first year graduate course. In addition it can serve as a reference or design aid for engineers developing TPV systems. Mathematica design programs for interference filters and a planar TPV system are included on a CD-Rom disk. Each chapter includes a summary and concludes with a set of problems. The first chapter presents the electromagnetic theory and radiation transfer theory necessary to calculate the optical properties of the components in a TPV optical cavity. Using a simplified model, Chapter 2 develops expressions for the maximum efficiency and power density for an ideal TPV system. The next three chapters consider the three major components in a TPV system; the emitter, filter and photovoltaic(PV) array. Chapter 3 applies the electromagnetic theory and radiation transfer theory presented in Chapter 1 in the calculation of spectral emittance. From the spectral emittance t...

  8. Fundamentals of modern unsteady aerodynamics

    CERN Document Server

    Gülçat, Ülgen

    2016-01-01

    In this book, the author introduces the concept of unsteady aerodynamics and its underlying principles. He provides the readers with a comprehensive review of the fundamental physics of free and forced unsteadiness, the terminology and basic equations of aerodynamics ranging from incompressible flow to hypersonics. The book also covers modern topics related to the developments made in recent years, especially in relation to wing flapping for propulsion. The book is written for graduate and senior year undergraduate students in aerodynamics and also serves as a reference for experienced researchers. Each chapter includes ample examples, questions, problems and relevant references.   The treatment of these modern topics has been completely revised end expanded for the new edition. It now includes new numerical examples, a section on the ground effect, and state-space representation.

  9. Fundamental aspects of quantum theory

    International Nuclear Information System (INIS)

    Gorini, V.; Frigerio, A.

    1986-01-01

    This book presents information on the following topics: general problems and crucial experiments; the classical behavior of measuring instruments; quantum interference effect for two atoms radiating a single photon; quantization and stochastic processes; quantum Markov processes driven by Bose noise; chaotic behavior in quantum mechanics; quantum ergodicity and chaos; microscopic and macroscopic levels of description; fundamental properties of the ground state of atoms and molecules; n-level systems interacting with Bosons - semiclassical limits; general aspects of gauge theories; adiabatic phase shifts for neutrons and photons; the spins of cyons and dyons; round-table discussion the the Aharonov-Bohm effect; gravity in quantum mechanics; the gravitational phase transition; anomalies and their cancellation; a new gauge without any ghost for Yang-Mills Theory; and energy density and roughening in the 3-D Ising ferromagnet

  10. Green Manufacturing Fundamentals and Applications

    CERN Document Server

    2013-01-01

    Green Manufacturing: Fundamentals and Applications introduces the basic definitions and issues surrounding green manufacturing at the process, machine and system (including supply chain) levels. It also shows, by way of several examples from different industry sectors, the potential for substantial improvement and the paths to achieve the improvement. Additionally, this book discusses regulatory and government motivations for green manufacturing and outlines the path for making manufacturing more green as well as making production more sustainable. This book also: • Discusses new engineering approaches for manufacturing and provides a path from traditional manufacturing to green manufacturing • Addresses regulatory and economic issues surrounding green manufacturing • Details new supply chains that need to be in place before going green • Includes state-of-the-art case studies in the areas of automotive, semiconductor and medical areas as well as in the supply chain and packaging areas Green Manufactu...

  11. Phononic crystals fundamentals and applications

    CERN Document Server

    Adibi, Ali

    2016-01-01

    This book provides an in-depth analysis as well as an overview of phononic crystals. This book discusses numerous techniques for the analysis of phononic crystals and covers, among other material, sonic and ultrasonic structures, hypersonic planar structures and their characterization, and novel applications of phononic crystals. This is an ideal book for those working with micro and nanotechnology, MEMS (microelectromechanical systems), and acoustic devices. This book also: Presents an introduction to the fundamentals and properties of phononic crystals Covers simulation techniques for the analysis of phononic crystals Discusses sonic and ultrasonic, hypersonic and planar, and three-dimensional phononic crystal structures Illustrates how phononic crystal structures are being deployed in communication systems and sensing systems.

  12. Multiphase flow dynamics 1 fundamentals

    CERN Document Server

    Kolev, Nikolay Ivanov

    2004-01-01

    Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its third extended edition this monograph contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations, providing a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present first volume the fundamentals of multiphase dynamics are provided. This third edition includes various updates, extensions and improvements in all book chapters.

  13. Fundamentals of reversible flowchart languages

    DEFF Research Database (Denmark)

    Yokoyama, Tetsuo; Axelsen, Holger Bock; Glück, Robert

    2016-01-01

    Abstract This paper presents the fundamentals of reversible flowcharts. They are intended to naturally represent the structure and control flow of reversible (imperative) programming languages in a simple computation model, in the same way classical flowcharts do for conventional languages......, structured reversible flowcharts are as expressive as unstructured ones, as shown by a reversible version of the classic Structured Program Theorem. We illustrate how reversible flowcharts can be concretized with two example programming languages, complete with syntax and semantics: a low-level unstructured...... language and a high-level structured language. We introduce concrete tools such as program inverters and translators for both languages, which follow the structure suggested by the flowchart model. To further illustrate the different concepts and tools brought together in this paper, we present two major...

  14. Islamic Fundamentalism in Modern Russia

    Directory of Open Access Journals (Sweden)

    Elena F. Parubochaya

    2017-09-01

    Full Text Available Nowadays Islam takes the stage of recovery associated with the peculiar issues associated with the Muslim society. These characteristics are expressed in the spread of ideas of Islamic fundamentalism and its supporters’ confrontation with the rest of the world. This process has affected the Russian Muslims as well, the trend developed after the collapse of the Soviet Union when the post soviet muslims began to realize themselves as part of one of the Muslim Ummah, coming into conflict with the secular law of the Russian Federation. After the Soviet Union’s disintegration, the radical Islamic ideas have begun to appear in Russia, in the conditions of the growth of nationalism these thoughts found a fertile ground. One of these ideas was associated with the construction of Sharia state in the Muslim autonomous republics of the Russian Federation and their subsequent withdrawal from Russian’s membership. The situation for the Russian state in the Muslim republics aggravated the war in Chechnya. Through Chechnya mercenaries from Arab countries started to penetrate to the Russian territory, they also brought the money for the destabilization of the internal situation in Russia. Nevertheless, separatism did not find the mass support in neighboring regions such as Dagestan, Kabardino-Balkaria, Karachay-Cherkessia and Ingushetia. It is evidently that international Jihad ideas were supported financially from abroad. The issue of funding is a key part of the development of Islamic fundamentalism in Russia, the international Islamic funds and organizations gave huge financial assistance to them. At the present moment Russian authorities lead a fruitful and a successful fight against terrorism. In the future, after the completion of the antiterrorist operation in the Middle East hundreds of terrorists may return to Russia with huge experience that can threaten the security of the Russian state.

  15. Fundamental concepts in heterogeneous catalysis

    CERN Document Server

    Norskov, Jens K; Abild-Pedersen, Frank; Bligaard, Thomas

    2014-01-01

    This book is based on a graduate course and suitable as a primer for any newcomer to the field, this book is a detailed introduction to the experimental and computational methods that are used to study how solid surfaces act as catalysts.   Features include:First comprehensive description of modern theory of heterogeneous catalysisBasis for understanding and designing experiments in the field   Allows reader to understand catalyst design principlesIntroduction to important elements of energy transformation technologyTest driven at Stanford University over several semesters

  16. Fundamental Physics with Electroweak Probes of Nuclei

    Science.gov (United States)

    Pastore, Saori

    2018-02-01

    The past decade has witnessed tremendous progress in the theoretical and computational tools that produce our understanding of nuclei. A number of microscopic calculations of nuclear electroweak structure and reactions have successfully explained the available experimental data, yielding a complex picture of the way nuclei interact with electroweak probes. This achievement is of great interest from the pure nuclear-physics point of view. But it is of much broader interest too, because the level of accuracy and confidence reached by these calculations opens up the concrete possibility of using nuclei to address open questions in other sub-fields of physics, such as, understanding the fundamental properties of neutrinos, or the particle nature of dark matter. In this talk, I will review recent progress in microscopic calculations of electroweak properties of light nuclei, including electromagnetic moments, form factors and transitions in between lowlying nuclear states along with preliminary studies for single- and double-beta decay rates. I will illustrate the key dynamical features required to explain the available experimental data, and, if time permits, present a novel framework to calculate neutrino-nucleus cross sections for A > 12 nuclei.

  17. Fundamentals of nonlinear optical materials

    Indian Academy of Sciences (India)

    Nonlinear optics; nonlinear polarization; optical fiber communication; optical switch- ing. PACS Nos 42.65Tg; ... The importance of nonlinear optics is to understand the nonlinear behavior in the induced polarization and to ..... but much work in material development and characterization remains to be done. 16. Conclusion.

  18. The Fundamental Ontology of Study

    Science.gov (United States)

    Lewis, Tyson E.

    2014-01-01

    In an effort to disrupt the hegemonic dominance of learning theory, in this article Tyson Lewis explores the unique educational logic of studying. Drawing on the work of Giorgio Agamben, we can understand the operation of study as one of suspension through three modes: preferring not; no longer, not yet; and as not. But the relationship between…

  19. Virtual and composite fundamentals in the ERM

    NARCIS (Netherlands)

    Knot, KHW; Sturm, JE

    1999-01-01

    A latent-variable approach is applied to identify the appropriate driving process for fundamental exchange rates in the ERM. From the time-series characteristics of so-called "virtual fundamentals" and "composite fundamentals", a significant degree of mean reversion can be asserted. The relative

  20. Teaching the Politics of Islamic Fundamentalism.

    Science.gov (United States)

    Kazemzadeh, Masoud

    1998-01-01

    Argues that the rise of Islamic fundamentalism since the Iranian Revolution has generated a number of issues of analytical significance for political science. Describes three main models in teaching and research on Islamic fundamentalism: Islamic exceptionalism, comparative fundamentalisms, and class analysis. Discusses the construction of a…

  1. Gasoline Combustion Fundamentals DOE FY17 Report

    Energy Technology Data Exchange (ETDEWEB)

    Ekoto, Isaac W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-11-01

    Advanced automotive gasoline engines that leverage a combination of reduced heat transfer, throttling, and mechanical losses; shorter combustion durations; and higher compression and mixture specific heat ratios are needed to meet aggressive DOE VTP fuel economy and pollutant emission targets. Central challenges include poor combustion stability at low-power conditions when large amounts of charge dilution are introduced and high sensitivity of conventional inductive coil ignition systems to elevated charge motion and density for boosted high-load operation. For conventional spark ignited operation, novel low-temperature plasma (LTP) or pre-chamber based ignition systems can improve dilution tolerances while maintaining good performance characteristics at elevated charge densities. Moreover, these igniters can improve the control of advanced compression ignition (ACI) strategies for gasoline at low to moderate loads. The overarching research objective of the Gasoline Combustion Fundamentals project is to investigate phenomenological aspects related to enhanced ignition. The objective is accomplished through targeted experiments performed in a single-cylinder optically accessible research engine or an in-house developed optically accessible spark calorimeter (OASC). In situ optical diagnostics and ex situ gas sampling measurements are performed to elucidate important details of ignition and combustion processes. Measurements are further used to develop and validate complementary high-fidelity ignition simulations. The primary project audience is automotive manufacturers, Tier 1 suppliers, and technology startups—close cooperation has resulted in the development and execution of project objectives that address crucial mid- to long-range research challenges.

  2. Stem cell bioprocessing: fundamentals and principles.

    Science.gov (United States)

    Placzek, Mark R; Chung, I-Ming; Macedo, Hugo M; Ismail, Siti; Mortera Blanco, Teresa; Lim, Mayasari; Cha, Jae Min; Fauzi, Iliana; Kang, Yunyi; Yeo, David C L; Ma, Chi Yip Joan; Polak, Julia M; Panoskaltsis, Nicki; Mantalaris, Athanasios

    2009-03-06

    In recent years, the potential of stem cell research for tissue engineering-based therapies and regenerative medicine clinical applications has become well established. In 2006, Chung pioneered the first entire organ transplant using adult stem cells and a scaffold for clinical evaluation. With this a new milestone was achieved, with seven patients with myelomeningocele receiving stem cell-derived bladder transplants resulting in substantial improvements in their quality of life. While a bladder is a relatively simple organ, the breakthrough highlights the incredible benefits that can be gained from the cross-disciplinary nature of tissue engineering and regenerative medicine (TERM) that encompasses stem cell research and stem cell bioprocessing. Unquestionably, the development of bioprocess technologies for the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic as therapeutics necessitates the application of engineering principles and practices to achieve control, reproducibility, automation, validation and safety of the process and the product. The successful translation will require contributions from fundamental research (from developmental biology to the 'omics' technologies and advances in immunology) and from existing industrial practice (biologics), especially on automation, quality assurance and regulation. The timely development, integration and execution of various components will be critical-failures of the past (such as in the commercialization of skin equivalents) on marketing, pricing, production and advertising should not be repeated. This review aims to address the principles required for successful stem cell bioprocessing so that they can be applied deftly to clinical applications.

  3. PREFACE: Fundamental Constants in Physics and Metrology

    Science.gov (United States)

    Klose, Volkmar; Kramer, Bernhard

    1986-01-01

    This volume contains the papers presented at the 70th PTB Seminar which, the second on the subject "Fundamental Constants in Physics and Metrology", was held at the Physikalisch-Technische Bundesanstalt in Braunschweig from October 21 to 22, 1985. About 100 participants from the universities and various research institutes of the Federal Republic of Germany participated in the meeting. Besides a number of review lectures on various broader subjects there was a poster session which contained a variety of topical contributed papers ranging from the theory of the quantum Hall effect to reports on the status of the metrological experiments at the PTB. In addition, the participants were also offered the possibility to visit the PTB laboratories during the course of the seminar. During the preparation of the meeting we noticed that even most of the general subjects which were going to be discussed in the lectures are of great importance in connection with metrological experiments and should be made accessible to the scientific community. This eventually resulted in the idea of the publication of the papers in a regular journal. We are grateful to the editor of Metrologia for providing this opportunity. We have included quite a number of papers from basic physical research. For example, certain aspects of high-energy physics and quantum optics, as well as the many-faceted role of Sommerfeld's fine-structure constant, are covered. We think that questions such as "What are the intrinsic fundamental parameters of nature?" or "What are we doing when we perform an experiment?" can shed new light on the art of metrology, and do, potentially, lead to new ideas. This appears to be especially necessary when we notice the increasing importance of the role of the fundamental constants and macroscopic quantum effects for the definition and the realization of the physical units. In some cases we have reached a point where the limitations of our knowledge of a fundamental constant and

  4. Fundamentals of the DIGES code

    Energy Technology Data Exchange (ETDEWEB)

    Simos, N.; Philippacopoulos, A.J.

    1994-08-01

    Recently the authors have completed the development of the DIGES code (Direct GEneration of Spectra) for the US Nuclear Regulatory Commission. This paper presents the fundamental theoretical aspects of the code. The basic modeling involves a representation of typical building-foundation configurations as multi degree-of-freedom dynamic which are subjected to dynamic inputs in the form of applied forces or pressure at the superstructure or in the form of ground motions. Both the deterministic as well as the probabilistic aspects of DIGES are described. Alternate ways of defining the seismic input for the estimation of in-structure spectra and their consequences in terms of realistically appraising the variability of the structural response is discussed in detaiL These include definitions of the seismic input by ground acceleration time histories, ground response spectra, Fourier amplitude spectra or power spectral densities. Conversions of one of these forms to another due to requirements imposed by certain analysis techniques have been shown to lead, in certain cases, in controversial results. Further considerations include the definition of the seismic input as the excitation which is directly applied at the foundation of a structure or as the ground motion of the site of interest at a given point. In the latter case issues related to the transferring of this motion to the foundation through convolution/deconvolution and generally through kinematic interaction approaches are considered.

  5. Gas cell neutralizers (Fundamental principles)

    International Nuclear Information System (INIS)

    Fuehrer, B.

    1985-06-01

    Neutralizing an ion-beam of the size and energy levels involved in the neutral-particle-beam program represents a considerable extension of the state-of-the-art of neutralizer technology. Many different mediums (e.g., solid, liquid, gas, plasma, photons) can be used to strip the hydrogen ion of its extra electron. A large, multidisciplinary R and D effort will no doubt be required to sort out all of the ''pros and cons'' of these various techniques. The purpose of this particular presentation is to discuss some basic configurations and fundamental principles of the gas type of neutralizer cell. Particular emphasis is placed on the ''Gasdynamic Free-Jet'' neutralizer since this configuration has the potential of being much shorter than other type of gas cells (in the beam direction) and it could operate in nearly a continuous mode (CW) if necessary. These were important considerations in the ATSU design which is discussed in some detail in the second presentation entitled ''ATSU Point Design''

  6. Levitated Optomechanics for Fundamental Physics

    Science.gov (United States)

    Rashid, Muddassar; Bateman, James; Vovrosh, Jamie; Hempston, David; Ulbricht, Hendrik

    2015-05-01

    Optomechanics with levitated nano- and microparticles is believed to form a platform for testing fundamental principles of quantum physics, as well as find applications in sensing. We will report on a new scheme to trap nanoparticles, which is based on a parabolic mirror with a numerical aperture of 1. Combined with achromatic focussing, the setup is a cheap and readily straightforward solution to trapping nanoparticles for further study. Here, we report on the latest progress made in experimentation with levitated nanoparticles; these include the trapping of 100 nm nanodiamonds (with NV-centres) down to 1 mbar as well as the trapping of 50 nm Silica spheres down to 10?4 mbar without any form of feedback cooling. We will also report on the progress to implement feedback stabilisation of the centre of mass motion of the trapped particle using digital electronics. Finally, we argue that such a stabilised particle trap can be the particle source for a nanoparticle matterwave interferometer. We will present our Talbot interferometer scheme, which holds promise to test the quantum superposition principle in the new mass range of 106 amu. EPSRC, John Templeton Foundation.

  7. Nanostructured metals. Fundamentals to applications

    International Nuclear Information System (INIS)

    Grivel, J.-C.; Hansen, N.; Huang, X.; Juul Jensen, D.; Mishin, O.V.; Nielsen, S.F.; Pantleon, W.; Toftegaard, H.; Winther, G.; Yu, T.

    2009-01-01

    In the today's world, materials science and engineering must as other technical fields focus on sustainability. Raw materials and energy have to be conserved and metals with improved or new structural and functional properties must be invented, developed and brought to application. In this endeavour a very promising route is to reduce the structural scale of metallic materials, thereby bridging industrial metals of today with emerging nanometals of tomorrow, i.e. structural scales ranging from a few micrometres to the nanometre regime. While taking a focus on metals with structures in this scale regime the symposium spans from fundamental aspects towards applications, uniting materials scientists and technologists. A holistic approach characterizes the themes of the symposium encompassing synthesis, characterization, modelling and performance where in each area significant progress has been made in recent years. Synthesis now covers top-down processes, e.g. plastic deformation, and bottom-up processes, e.g. chemical and physical synthesis. In the area of structural and mechanical characterization advanced techniques are now widely applied and in-situ techniques for structural characterization under mechanical or thermal loading are under rapid development in both 2D and 3D. Progress in characterization techniques has led to a precise description of different boundaries (grain, dislocation, twin, phase), and of how they form and evolve, also including theoretical modelling and simulations of structures, properties and performance. (au)

  8. The water, fundamental ecological base?

    International Nuclear Information System (INIS)

    Bolivar, Luis Humberto

    1994-01-01

    To speak of ecology and the man's interaction with the environment takes, in fact implicit many elements that, actuating harmoniously generates a conducive entropy to a better to be, however it is necessary to hierarchy the importance of these elements, finding that the water, not alone to constitute sixty five percent of the total volume of the planet, or sixty percent of the human body, but to be the well called molecule of the life, it is constituted in the main element to consider in the study of the ecology. The water circulates continually through the endless hydrological cycle of condensation, precipitation, filtration, retention, evaporation, precipitation and so forth; however, due to the quick growth of the cities, its expansion of the green areas or its border lands, result of a demographic behavior and of inadequate social establishment; or of the advance industrial excessive, they produce irreparable alterations in the continuous processes of the water production, for this reason it is fundamental to know some inherent problems to the sources of water. The water, the most important in the renewable natural resources, essential for the life and for the achievement of good part of the man's goals in their productive function, it is direct or indirectly the natural resource more threatened by the human action

  9. The Siren song of vocal fundamental frequency for romantic relationships

    Directory of Open Access Journals (Sweden)

    Sarah eWeusthoff

    2013-07-01

    Full Text Available A multitude of factors contribute to why and how romantic relationships are formed as well as whether they ultimately succeed or fail. Drawing on evolutionary models of attraction and speech production as well as integrative models of relationship functioning, this review argues that paralinguistic cues (more specifically the fundamental frequency of the voice that are initially a strong source of attraction also increase couples’ risk for relationship failure. Conceptual similarities and differences between the multiple operationalizations and interpretations of vocal fundamental frequency are discussed and guidelines are presented for understanding both convergent and non-convergent findings. Implications for clinical practice and future research are discussed.

  10. The siren song of vocal fundamental frequency for romantic relationships.

    Science.gov (United States)

    Weusthoff, Sarah; Baucom, Brian R; Hahlweg, Kurt

    2013-01-01

    A multitude of factors contribute to why and how romantic relationships are formed as well as whether they ultimately succeed or fail. Drawing on evolutionary models of attraction and speech production as well as integrative models of relationship functioning, this review argues that paralinguistic cues (more specifically the fundamental frequency of the voice) that are initially a strong source of attraction also increase couples' risk for relationship failure. Conceptual similarities and differences between the multiple operationalizations and interpretations of vocal fundamental frequency are discussed and guidelines are presented for understanding both convergent and non-convergent findings. Implications for clinical practice and future research are discussed.

  11. OCA Oracle Database 11g SQL Fundamentals I

    CERN Document Server

    Ries, Steve

    2011-01-01

    This book is packed with real word examples. Each major certification topic is covered in a separate chapter, which helps to make understanding of concepts easier. At the end of each chapter, you will find a variety of practice questions to strengthen and test your learning. You will get a feel for the actual SQL Fundamentals I exam by solving practice papers modeled on it. This book is for anyone who needs the essential skills to pass the Oracle Database SQL Fundamentals I exam and use those skills in daily life as an SQL developer or database administrator.

  12. Fundamental Structure of Loop Quantum Gravity

    Science.gov (United States)

    Han, Muxin; Ma, Yongge; Huang, Weiming

    In the recent twenty years, loop quantum gravity, a background independent approach to unify general relativity and quantum mechanics, has been widely investigated. The aim of loop quantum gravity is to construct a mathematically rigorous, background independent, non-perturbative quantum theory for a Lorentzian gravitational field on a four-dimensional manifold. In the approach, the principles of quantum mechanics are combined with those of general relativity naturally. Such a combination provides us a picture of, so-called, quantum Riemannian geometry, which is discrete on the fundamental scale. Imposing the quantum constraints in analogy from the classical ones, the quantum dynamics of gravity is being studied as one of the most important issues in loop quantum gravity. On the other hand, the semi-classical analysis is being carried out to test the classical limit of the quantum theory. In this review, the fundamental structure of loop quantum gravity is presented pedagogically. Our main aim is to help non-experts to understand the motivations, basic structures, as well as general results. It may also be beneficial to practitioners to gain insights from different perspectives on the theory. We will focus on the theoretical framework itself, rather than its applications, and do our best to write it in modern and precise langauge while keeping the presentation accessible for beginners. After reviewing the classical connection dynamical formalism of general relativity, as a foundation, the construction of the kinematical Ashtekar-Isham-Lewandowski representation is introduced in the content of quantum kinematics. The algebraic structure of quantum kinematics is also discussed. In the content of quantum dynamics, we mainly introduce the construction of a Hamiltonian constraint operator and the master constraint project. At last, some applications and recent advances are outlined. It should be noted that this strategy of quantizing gravity can also be extended to

  13. BOOK REVIEWS: Quantum Mechanics: Fundamentals

    Science.gov (United States)

    Whitaker, A.

    2004-02-01

    mechanics, which is assumed, but to examine whether it gives a consistent account of measurement. The conclusion is that after a measurement, interference terms are ‘effectively’ absent; the set of ‘one-to-one correlations between states of the apparatus and the object’ has the same form as that of everyday statistics and is thus a probability distribution. This probability distribution refers to potentialities, only one of which is actually realized in any one trial. Opinions may differ on whether their treatment is any less vulnerable to criticisms such as those of Bell. To sum up, Gottfried and Yan’s book contains a vast amount of knowledge and understanding. As well as explaining the way in which quantum theory works, it attempts to illuminate fundamental aspects of the theory. A typical example is the ‘fable’ elaborated in Gottfried’s article in Nature cited above, that if Newton were shown Maxwell’s equations and the Lorentz force law, he could deduce the meaning of E and B, but if Maxwell were shown Schrödinger’s equation, he could not deduce the meaning of Psi. For use with a well-constructed course (and, of course, this is the avowed purpose of the book; a useful range of problems is provided for each chapter), or for the relative expert getting to grips with particular aspects of the subject or aiming for a deeper understanding, the book is certainly ideal. It might be suggested, though, that, even compared to the first edition, the isolated learner might find the wide range of topics, and the very large number of mathematical and conceptual techniques, introduced in necessarily limited space, somewhat overwhelming. The second book under consideration, that of Schwabl, contains ‘Advanced’ elements of quantum theory; it is designed for a course following on from one for which Gottfried and Yan, or Schwabl’s own `Quantum Mechanics' might be recommended. It is the second edition in English, and is a translation of the third German edition

  14. Quantum mechanics a fundamental approach

    CERN Document Server

    Wan, K Kong

    2018-01-01

    The mathematical formalism of quantum theory in terms of vectors and operators in infinite-dimensional complex vector spaces is very abstract. The definitions of many mathematical quantities used do not seem to have an intuitive meaning. This makes it difficult to appreciate the mathematical formalism and hampers the understanding of quantum mechanics. This book provides intuition and motivation to the mathematics of quantum theory, introducing the mathematics in its simplest and familiar form, for instance, with three-dimensional vectors and operators, which can be readily understood. Feeling confident about and comfortable with the mathematics used helps readers appreciate and understand the concepts and formalism of quantum mechanics. Quantum mechanics is presented in six groups of postulates. A chapter is devoted to each group of postulates with a detailed discussion. Systems with superselection rules, and some conceptual issues such as quantum paradoxes and measurement, are also discussed. The book conc...

  15. Understanding thermodynamics

    CERN Document Server

    Ness, H C van

    1983-01-01

    Clearly written treament elucidates fundamental concepts and demonstrates their plausibility and usefulness. Language is informal, examples are vivid and lively, and the perspectivie is fresh. Based on lectures delivered to engineering students, this work will also be valued by scientists, engineers, technicians, businessmen, anyone facing energy challenges of the future.

  16. Compreensão sobre sexualidade e sexo nas escolas segundo professores do ensino fundamental Comprensión del sexo y la sexualidad en las escuelas, de acuerdo a la visión de profesores de enseñanza primaria Understanding sexuality and sex in schools according to primary education teachers

    Directory of Open Access Journals (Sweden)

    Julieta Seixas Moizés

    2010-03-01

    Full Text Available Com o objetivo de identificarmos a forma pela qual professores de Ensino Fundamental compreendem a sexualidade/sexo na escola, procuramos levantar dados relativos a estas questões no cotidiano escolar, verificando a posição da escola e como lidam com isto. Trata-se de uma pesquisa qualitativa, humanista, por meio de pesquisa-ação. A coleta dos dados foi realizada por meio da observação participante e entrevista individual, usando um questionário com questões norteadoras. Os dados levantados foram organizados em categorias. A análise possibilitou apreender que a maioria dos professores valoriza o diálogo como meio de orientação aos alunos. Destacam a necessidade de obterem apoio de profissionais qualificados sobre a temática, e dão relevância à participação da família no processo de orientação. Neste processo, a Escola pode ser o recurso para ajudar familiares, professores e escolares a compreenderem melhor os pressupostos da educação sexual e profissionais da saúde são grandes aliados, no sentido de conscientizá-los e orientá-los. Baseando-se nos achados, desenvolveram-se ações/intervenções educativas junto aos professores, visando prepará-los para atuarem como agentes multiplicadores no cotidiano escolar. Os professores sugerem a busca de parcerias e a elaboração de estratégias de orientação sexual.Con el objetivo de identificar el modo por el cual los profesores de Educación Primaria comprenden la sexualidad y el sexo en la escuela, buscamos recolectar datos relativos a estas cuestiones en el devenir escolar cotidiano., verificando la posición de la escuela y la manera en que se trabaja la temática. Esta investigación se trata de una encuesta cualitativa y humanista, en la que se utilizó el método de pesquisa-acción. La recolección de datos fue realizada a través de la observación con participación y la entrevista individual, utilizándose un cuestionario con preguntas orientadoras. Los datos

  17. Explicating Validity

    Science.gov (United States)

    Kane, Michael T.

    2016-01-01

    How we choose to use a term depends on what we want to do with it. If "validity" is to be used to support a score interpretation, validation would require an analysis of the plausibility of that interpretation. If validity is to be used to support score uses, validation would require an analysis of the appropriateness of the proposed…

  18. Neutrino properties and fundamental symmetries

    International Nuclear Information System (INIS)

    Bowles, T.J.

    1996-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). There are two components to this work. The first is a development of a new detection scheme for neutrinos. The observed deficit of neutrinos from the Sun may be due to either a lack of understanding of physical processes in the Sun or may be due to neutrinos oscillating from one type to another during their transit from the Sun to the Earth. The Sudbury Neutrino Observatory (SNO) is designed to use a water Cerenkov detector employing one thousand tonnes of heavy water to resolve this question. The ability to distinguish muon and tau neutrinos from electron neutrinos is crucial in order to carry out a model-independent test of neutrino oscillations. We describe a developmental exploration of a novel technique to do this using 3 He proportional counters. Such a method offers considerable advantages over the initially proposed method of using Cerenkov light from capture on NaCl in the SNO. The second component of this work is an exploration of optimal detector geometry for a time-reversal invariance experiment. The question of why time moves only in the forward direction is one of the most puzzling problems in modern physics. We know from particle physics measurements of the decay of kaons that there is a charge-parity symmetry that is violated in nature, implying time-reversal invariance violation. Yet, we do not understand the origin of the violation of this symmetry. To promote such an understanding, we are developing concepts and prototype apparatus for a new, highly sensitive technique to search for time-reversal-invariance violation in the beta decay of the free neutron. The optimized detector geometry is seven times more sensitive than that in previous experiments. 15 refs

  19. Fundamentals of applied multidimensional scaling for educational and psychological research

    CERN Document Server

    Ding, Cody S

    2018-01-01

    This book explores the fundamentals of multidimensional scaling (MDS) and how this analytic method can be used in applied setting for educational and psychological research. The book tries to make MDS more accessible to a wider audience in terms of the language and examples that are more relevant to educational and psychological research and less technical so that the readers are not overwhelmed by equations. The goal is for readers to learn the methods described in this book and immediately start using MDS via available software programs. The book also examines new applications that have previously not been discussed in MDS literature. It should be an ideal book for graduate students and researchers to better understand MDS. Fundamentals of Applied Multidimensional Scaling for Educational and Psychological Research is divided into three parts. Part I covers the basic and fundamental features of MDS models pertaining to applied research applications. Chapters in this section cover the essential features of da...

  20. Color imaging fundamentals and applications

    CERN Document Server

    Reinhard, Erik; Oguz Akyuz, Ahmet; Johnson, Garrett

    2008-01-01

    This book provides the reader with an understanding of what color is, where color comes from, and how color can be used correctly in many different applications. The authors first treat the physics of light and its interaction with matter at the atomic level, so that the origins of color can be appreciated. The intimate relationship between energy levels, orbital states, and electromagnetic waves helps to explain why diamonds shimmer, rubies are red, and the feathers of the Blue Jay are blue. Then, color theory is explained from its origin to the current state of the art, including image captu

  1. Network Coding Fundamentals and Applications

    CERN Document Server

    Medard, Muriel

    2011-01-01

    Network coding is a field of information and coding theory and is a method of attaining maximum information flow in a network. This book is an ideal introduction for the communications and network engineer, working in research and development, who needs an intuitive introduction to network coding and to the increased performance and reliability it offers in many applications. This book is an ideal introduction for the research and development communications and network engineer who needs an intuitive introduction to the theory and wishes to understand the increased performance and reliabil

  2. Computing fundamentals IC3 edition

    CERN Document Server

    Wempen, Faithe

    2014-01-01

    Kick start your journey into computing and prepare for your IC3 certification With this essential course book you'll be sending e-mails, surfing the web and understanding the basics of computing in no time. Written by Faithe Wempen, a Microsoft Office Master Instructor and author of more than 120 books, this complete guide to the basics has been tailored to provide comprehensive instruction on the full range of entry-level computing skills. It is a must for students looking to move into almost any profession, as entry-level computing courses have become a compulsory requirement in the modern w

  3. Astronomia Motivadora no Ensino Fundamental

    Science.gov (United States)

    Melo, J.; Voelzke, M. R.

    2008-09-01

    O objetivo principal deste trabalho é procurar desenvolver o interesse dos alunos pelas ciências através da Astronomia. Uma pesquisa com perguntas sobre Astronomia foi realizada junto a 161 alunos do Ensino Fundamental, com o intuito de descobrir conhecimentos prévios dos alunos sobre o assunto. Constatou-se, por exemplo, que 29,3% da 6ª série responderam corretamente o que é eclipse, 30,0% da 8ª série acertaram o que a Astronomia estuda, enquanto 42,3% dos alunos da 5ª série souberam definir o Sol. Pretende-se ampliar as turmas participantes e trabalhar, principalmente de forma prática com: dimensões e escalas no Sistema Solar, construção de luneta, questões como dia e noite, estações do ano e eclipses. Busca-se abordar, também, outros conteúdos de Física tais como a óptica na construção da luneta, e a mecânica no trabalho com escalas e medidas, e ao utilizar uma luminária para representar o Sol na questão do eclipse, e de outras disciplinas como a Matemática na transformação de unidades, regras de três; Artes na modelagem ou desenho dos planetas; a própria História com relação à busca pela origem do universo, e a Informática que possibilita a busca mais rápida por informações, além de permitir simulações e visualizações de imagens importantes. Acredita-se que a Astronomia é importante no processo ensino aprendizagem, pois permite a discussão de temas curiosos como, por exemplo, a origem do universo, viagens espaciais a existência ou não de vida em outros planetas, além de temas atuais como as novas tecnologias.

  4. Statistical competencies for medical research learners: What is fundamental?

    Science.gov (United States)

    Enders, Felicity T; Lindsell, Christopher J; Welty, Leah J; Benn, Emma K T; Perkins, Susan M; Mayo, Matthew S; Rahbar, Mohammad H; Kidwell, Kelley M; Thurston, Sally W; Spratt, Heidi; Grambow, Steven C; Larson, Joseph; Carter, Rickey E; Pollock, Brad H; Oster, Robert A

    2017-06-01

    It is increasingly essential for medical researchers to be literate in statistics, but the requisite degree of literacy is not the same for every statistical competency in translational research. Statistical competency can range from 'fundamental' (necessary for all) to 'specialized' (necessary for only some). In this study, we determine the degree to which each competency is fundamental or specialized. We surveyed members of 4 professional organizations, targeting doctorally trained biostatisticians and epidemiologists who taught statistics to medical research learners in the past 5 years. Respondents rated 24 educational competencies on a 5-point Likert scale anchored by 'fundamental' and 'specialized.' There were 112 responses. Nineteen of 24 competencies were fundamental. The competencies considered most fundamental were assessing sources of bias and variation (95%), recognizing one's own limits with regard to statistics (93%), identifying the strengths, and limitations of study designs (93%). The least endorsed items were meta-analysis (34%) and stopping rules (18%). We have identified the statistical competencies needed by all medical researchers. These competencies should be considered when designing statistical curricula for medical researchers and should inform which topics are taught in graduate programs and evidence-based medicine courses where learners need to read and understand the medical research literature.

  5. Recrystallization - Fundamental aspects and relations to deformation microstructure

    International Nuclear Information System (INIS)

    Hansen, N.; Huang, X.; Juul Jensen, D.; Lauridsen, E.M.; Leffers, T.; Pantleon, W.; Sabin, T.J.; Wert, J.A.

    2000-01-01

    This Symposium, and hence this proceedings volume, is concerned with the mechanisms that control recrystallization of deformed metals and alloys. Central themes are the fundamental microstructural, orientational, and kinetic aspects of the recrystallization process; especially as they relate to the nature of the deformed state, to nucleation and growth of recrystallizing grains, and to models based on experimental observations. In recent years, significant progress has been made using a plethora of advanced techniques to characterize the morphology and local orientations in deformed metals and alloys. Thus, a key topic of the Symposium is enhanced insight into the characteristics of the deformation substructure, and into modification of the substructure by recovery, which is essential for understanding fundamental recrystallization mechanisms. Microstructures in highly strained materials will be a topic of special interest. Elucidation of the deformation substructure, and thus the local distribution of stored energy, sets the stage for progress in understanding nucleation of recrystallizing grains. It also provides a basis for new insights into the growth of nuclei, in particular concerning the means by which the deformation substructure is absorbed by and becomes incorporated into the recrystallization interface. Aspects of recrystallization of relevance to this symposium span the range from experimental and model exploration of fundamental mechanisms to methods that link scientific understanding to industrial practice. Models developed by considering the physical mechanisms elucidated by experimental studies will be addressed, as will models that enable industrial exploitation of the fundamental knowledge. Altogether, one of the significant aims of the symposium is to enhance the exploitation of the expanding knowledge of fundamental recrystallization mechanisms in industrial practice (au)

  6. Granular flows: fundamentals and applications

    Science.gov (United States)

    Cleary, Paul W.

    DEM allows the prediction of complex industrial and geophysical particle flows. The importance of particle shape is demonstrated through a series of simple examples. Shape controls resistance to shear, the magnitude of collision stress, dilation and the angle of repose. We use a periodic flow of a bed of particles to demonstrate the different states of granular matter, the generation of dilute granular flow when granular temperature is high and the flow dependent nature of the granular thermodynamic boundary conditions. A series of industrial case studies examines how DEM can be used to understand and improve processes such as separation, mixing, grinding, excavation, hopper discharge, metering and conveyor interchange. Finally, an example of landslide motion over real topography is presented.

  7. Fundamentals of semiconductor processing technology

    CERN Document Server

    El-Kareh, Badih

    1995-01-01

    The drive toward new semiconductor technologies is intricately related to market demands for cheaper, smaller, faster, and more reliable circuits with lower power consumption. The development of new processing tools and technologies is aimed at optimizing one or more of these requirements. This goal can, however, only be achieved by a concerted effort between scientists, engineers, technicians, and operators in research, development, and manufac­ turing. It is therefore important that experts in specific disciplines, such as device and circuit design, understand the principle, capabil­ ities, and limitations of tools and processing technologies. It is also important that those working on specific unit processes, such as lithography or hot processes, be familiar with other unit processes used to manufacture the product. Several excellent books have been published on the subject of process technologies. These texts, however, cover subjects in too much detail, or do not cover topics important to modem tech­ n...

  8. Fundamental Studies of Recombinant Hydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael W. [Univ. of Georgia, Athens, GA (United States)

    2014-01-25

    This research addressed the long term goals of understanding the assembly and organization of hydrogenase enzymes, of reducing them in size and complexity, of determining structure/function relationships, including energy conservation via charge separation across membranes, and in screening for novel H2 catalysts. A key overall goal of the proposed research was to define and characterize minimal hydrogenases that are produced in high yields and are oxygen-resistant. Remarkably, in spite of decades of research carried out on hydrogenases, it is not possible to readily manipulate or design the enzyme using molecular biology approaches since a recombinant form produced in a suitable host is not available. Such resources are essential if we are to understand what constitutes a “minimal” hydrogenase and design such catalysts with certain properties, such as resistance to oxygen, extreme stability and specificity for a given electron donor. The model system for our studies is Pyrococcus furiosus, a hyperthermophile that grows optimally at 100°C, which contains three different nickel-iron [NiFe-] containing hydrogenases. Hydrogenases I and II are cytoplasmic while the other, MBH, is an integral membrane protein that functions to both evolve H2 and pump protons. Three important breakthroughs were made during the funding period with P. furiosus soluble hydrogenase I (SHI). First, we produced an active recombinant form of SHI in E. coli by the co-expression of sixteen genes using anaerobically-induced promoters. Second, we genetically-engineered P. furiosus to overexpress SHI by an order of magnitude compared to the wild type strain. Third, we generated the first ‘minimal’ form of SHI, one that contained two rather than four subunits. This dimeric form was stable and active, and directly interacted with a pyruvate-oxidizing enzyme with any intermediate electron carrier. The research resulted in five peer-reviewed publications.

  9. Fundamental matters on radiation risk communication

    International Nuclear Information System (INIS)

    Shinohara, Kunihiko; Nagai, Hiroyuki; Yonezawa, Rika; Ohuchi, Hiroko; Chikamoto, Kazuhiko; Taniguchi, Kazufumi; Morimoto, Eriko

    2009-01-01

    In the field of atomic energy and radiation utilization, radiation risk is considered as one of the social uneasy factors. About the perception of risks, there is a gap between experts and general public (non-experts). It is said that the general public tends to be going to judge risk from intuitive fear and a visible concrete instance whereas the experts judge it scientifically. A company, an administration or experts should disclose relating information about the risks and communicate interactively with the stakeholders to find the way to solve the problem with thinking together. This process is called 'risk communication'. The role of the expert is important on enforcement of risk communication. They should be required to explain the information on the risks with plain words to help stakeholders understand the risks properly. The Japan Health Physics Society (JHPS) is the largest academic society for radiation protection professionals in Japan, and one of its missions is supposed to convey accurate and trustworthy information about the radiation risk to the general public. The expert group on risk communication of ionizing radiation of the JHPS has worked for the purpose of summarizing the fundamental matters on radiation risk communication. 'Lecture on risk communication for the members of the JHPS.' which has been up on the JHPS web-site, and the symposium of 'For better understanding of radiation risk.' are a part of the activities. The expert group proposes that the JHPS should enlighten the members continuously for being interested in and practicing risk communication of radiation. (author)

  10. The impact of fundamental Physics on Medicine

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Lecture in English, with simultaneous interpreting into French It is clear to anybody who visits a hospital that Physics applications are everywhere. Medical doctors use Physics when they measure blood pressure, when they perform an ultrasound scan to determine the sex of an unborn child, when they take a radiography or a CT scan. Fundamental physics, which aims at understanding how particles and forces act in the subatomic world and are organized to form everything we observe around us, has numerous medical applications. Everything started in 1895 with the discovery of X-rays by Roentgen, who was using the best particle accelerator of the time. In the lecture the theme of the title will be presented by following the 120 years long story of particle accelerators used to cure tumours. The time is well chosen because the year 2014 marks the 60th anniversary of CERN, the largest particle Physics laboratory in the world, and of the first cancer treatment with protons done at Berkeley. ------ Conférence en...

  11. Explaining crude oil prices using fundamental measures

    International Nuclear Information System (INIS)

    Coleman, Les

    2012-01-01

    Oil is the world's most important commodity, and improving the understanding of drivers of its price is a longstanding research objective. This article analyses real oil prices during 1984–2007 using a monthly dataset of fundamental and market parameters that cover financial markets, global economic growth, demand and supply of oil, and geopolitical measures. The innovation is to incorporate proxies for speculative and terrorist activity and dummies for major industry events, and quantify price impacts of each. New findings are positive links between oil prices and speculative activity, bond yields, an interaction term incorporating OPEC market share and OECD import dependence, and the number of US troops and frequency of terrorist attacks in the Middle East. Shocks also prove significant with a $6–18 per barrel impact on price for several months. - Highlights: ► Article introduces new variables to the study of oil prices. ► New variables are terrorist incidents and military activity, and oil futures market size. ► Shocks prove important affecting prices by $6–18 per barrel for several months. ► OPEC market influence rises with OECD import dependence.

  12. Fundamental geosciences program. Annual report, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, P.A.; Apps, J.A.

    1977-01-01

    The geoscience program relating to geothermal energy consists of four projects. In the project on reservoir dynamics, sophisticated codes have been written to simulate the dynamics of heat flow in geothermal reservoir systems. These codes have also been applied to the investigations of natural aquifers as a storage system for thermal energy. In the second project, core samples are studied to determine the high temperature and high pressure behavior of aquifers in the presence of saturating fluids. The third project covers the systematic evaluation of the thermodynamic properties of electrolytes in order to interpret the behavior of geothermal fluids. The fourth project involves hydrothermal solubility measurements of various minerals to elucidate the chemistry and mass transfer in geothermal systems. The second major program includes four projects which involve precise measurements and analysis of physical and chemical properties of geologic materials. These include measurements of the thermodynamic properties (viscosity, density and heat capacity) of silicate materials to help understand magma genesis and evolution, high-precision neutron activation analysis of rare and trace elements in magmatic materials, and the precise measurement of seismic wave velocities near geological faults, in order to determine the buildup of stress in the earth's crust. Third, the development program in fundamental geosciences includes six innovative projects. These projects include research in the in situ leaching of uranium ore, properties of magmas, removal of pyrite from coal, properties of soils and soft rocks, stress flow behavior of fractured rock systems, and high-precision mass spectrometry.

  13. Fundamentals of colour awareness: a literature review

    Directory of Open Access Journals (Sweden)

    A. Rubin

    2005-12-01

    Full Text Available A description of some of the basic or funda-mental aspects of the colour sensory mechanism will be provided here, based on modern ideas and literature, with reference specifically to the likely origins and evolution of colour vision.  The mo-lecular basis for colour awareness and the human colour pathway will also be considered in some detail. This paper intends to provide the theoreti-cal and philosophical basis for further papers that will introduce a modern and original computer- based  method  for  more  comprehensive  colour vision  assessment.    This  new  approach,  to  be fully described in later manuscripts, may contrib-ute towards improvements in understanding and knowledge of human colour perception and its measurement, still perhaps a relatively under-ex-plored or neglected field of study within optom-etry and ophthalmology.

  14. MDL, Collineations and the Fundamental Matrix

    OpenAIRE

    Maybank , Steve; Sturm , Peter

    1999-01-01

    International audience; Scene geometry can be inferred from point correspondences between two images. The inference process includes the selection of a model. Four models are considered: background (or null), collineation, affine fundamental matrix and fundamental matrix. It is shown how Minimum Description Length (MDL) can be used to compare the different models. The main result is that there is little reason for preferring the fundamental matrix model over the collineation model, even when ...

  15. Arithmetic fundamental groups and moduli of curves

    International Nuclear Information System (INIS)

    Makoto Matsumoto

    2000-01-01

    This is a short note on the algebraic (or sometimes called arithmetic) fundamental groups of an algebraic variety, which connects classical fundamental groups with Galois groups of fields. A large part of this note describes the algebraic fundamental groups in a concrete manner. This note gives only a sketch of the fundamental groups of the algebraic stack of moduli of curves. Some application to a purely topological statement, i.e., an obstruction to the subjectivity of Johnson homomorphisms in the mapping class groups, which comes from Galois group of Q, is explained. (author)

  16. Proposed experiment to test fundamentally binary theories

    Science.gov (United States)

    Kleinmann, Matthias; Vértesi, Tamás; Cabello, Adán

    2017-09-01

    Fundamentally binary theories are nonsignaling theories in which measurements of many outcomes are constructed by selecting from binary measurements. They constitute a sensible alternative to quantum theory and have never been directly falsified by any experiment. Here we show that fundamentally binary theories are experimentally testable with current technology. For that, we identify a feasible Bell-type experiment on pairs of entangled qutrits. In addition, we prove that, for any n , quantum n -ary correlations are not fundamentally (n -1 ) -ary. For that, we introduce a family of inequalities that hold for fundamentally (n -1 ) -ary theories but are violated by quantum n -ary correlations.

  17. Constant physics and characteristics of fundamental constant

    International Nuclear Information System (INIS)

    Tarrach, R.

    1998-01-01

    We present some evidence which supports a surprising physical interpretation of the fundamental constants. First, we relate two of them through the renormalization group. This leaves as many fundamental constants as base units. Second, we introduce and a dimensional system of units without fundamental constants. Third, and most important, we find, while interpreting the units of the a dimensional system, that is all cases accessible to experimentation the fundamental constants indicate either discretization at small values or boundedness at large values of the corresponding physical quantity. (Author) 12 refs

  18. Damage analysis and fundamental studies for fusion reactor materials development

    International Nuclear Information System (INIS)

    Odette, G.R.; Lucas, G.E.

    1991-09-01

    The philosophy of the program at the University of California Santa Barbara has been to develop a fundamental understanding of both the basic damage processes and microstructural evolution that take place in a material during neutron irradiation and the consequent dimensional and mechanical property changes. This fundamental understanding can be used in conjunction with empirical data obtained from a variety of irradiation facilities to develop physically-based models of neutron irradiation effects in structural materials. The models in turn can be used to guide alloy development and to help extrapolate the irradiation data base (expected to be largely fission reactor based) to the fusion reactor regime. This philosophy is consistent with that of the national and international programs for developing structural materials for fusion reactors

  19. Fundamental radiation effects studies in the fusion materials program

    International Nuclear Information System (INIS)

    Doran, D.G.

    1982-01-01

    Fundamental radiation effects studies in the US Fusion Materials Program generally fall under the aegis of the Damage Analysis and Fundamental Studies (DAFS) Program. In a narrow sense, the problem addressed by the DAFS program is the prediction of radiation effects in fusion devices using data obtained in non-representative environments. From the onset, the program has had near-term and long-term components. The premise for the latter is that there will be large economic penalties for uncertainties in predictive capability. Fusion devices are expected to be large and complex and unanticipated maintenance will be costly. It is important that predictions are based on a maximum of understanding and a minimum of empiricism. Gaining this understanding is the thrust of the long-term component. (orig.)

  20. Fundamental studies of fusion plasmas

    International Nuclear Information System (INIS)

    Aamodt, R.E.; Catto, P.J.; D'Ippolito, D.A.; Myra, J.R.; Russell, D.A.

    1993-01-01

    Work on ICRF interaction with the edge plasma is reported. ICRF generated convective cells have been established as an important mechanism for influencing edge transport and interaction with the H-mode, and for controlling profiles in the tokamak scrape-off-layer. Power dissipation by rf sheaths has been shown to be significant for some misaligned ICRF and IIBW antenna systems. Near-field antenna sheath work has been extended to the far-field case, important for experiments with low single pass absorption. Impurity modeling and Faraday screen design support has been provided for the ICRF community. In the area of core-ICRF physics, the kinetic theory of heating by applied ICRF waves has been extended to retain important geometrical effects relevant to modeling minority heated tokamak plasmas, thereby improving on the physics base that is standard in presently employed codes. Both the quasilinear theory of ion heating, and the plasma response function important in wave codes have been addressed. In separate studies, it has been shown that highly anisotropic minority heated plasmas can give rise to unstable field fluctuations in some situations. A completely separate series of studies have contributed to the understanding of tokamak confinement physics. Additionally, a diffraction formalism has been produced which will be used to access the focusability of lower hybrid, ECH, and gyrotron scattering antennas in dynamic plasma configurations

  1. Rethinking fundamentals of enzyme action.

    Science.gov (United States)

    Northrop, D B

    1999-01-01

    Despite certain limitations, investigators continue to gainfully employ concepts rooted in steady-state kinetics in efforts to draw mechanistically relevant inferences about enzyme catalysis. By reconsidering steady-state enzyme kinetic behavior, this review develops ideas that allow one to arrive at the following new definitions: (a) V/K, the ratio of the maximal initial velocity divided by the Michaelis-Menten constant, is the apparent rate constant for the capture of substrate into enzyme complexes that are destined to yield product(s) at some later point in time; (b) the maximal velocity V is the apparent rate constant for the release of substrate from captured complexes in the form of free product(s); and (c) the Michaelis-Menten constant K is the ratio of the apparent rate constants for release and capture. The physiologic significance of V/K is also explored to illuminate aspects of antibiotic resistance, the concept of "perfection" in enzyme catalysis, and catalytic proficiency. The conceptual basis of congruent thermodynamic cycles is also considered in an attempt to achieve an unambiguous way for comparing an enzyme-catalyzed reaction with its uncatalyzed reference reaction. Such efforts promise a deeper understanding of the origins of catalytic power, as it relates to stabilization of the reactant ground state, stabilization of the transition state, and reciprocal stabilizations of ground and transition states.

  2. Damage analysis and fundamental studies

    International Nuclear Information System (INIS)

    1981-02-01

    As a planning activity, the objectives of the workshop were to list, prioritize and milestone the activities necessary to understand, interpret and control the mechanical behavior of candidate fusion reactor alloys. Emphasis was placed on flow and fracture processes which are unique to the fusion environment since the national fusion materials program must evaluate these effects without assistance from other reactor programs. The working group on flow processes and properties was concerned with the time-dependent and independent flow. This included radiation hardening and steady state and cyclic creep. The working group on the effect of flow on fracture was concerned with the relationships between the unique flow properties of irradiated materials, such as dislocation channeling, and the fracture properties of these materials. The working group on time-dependent fracture was concerned with high-temperature, time-dependent fracture, such as stress-rupture and fatigue fracture, while also being concerned with time-dependent environmental effects on fracture. The working group on radiation-induced or enhanced embrittlement was concerned primarily with time-independent fracture of materials for near-term fusion device applications

  3. The fundamentals of power purchasing

    International Nuclear Information System (INIS)

    Walker, S.A.

    1999-01-01

    The challenges facing Ontario consumers in the year 2000 regarding the purchase of electricity are the focus of this paper. As Ontario's electric power industry changes from a monopoly based public service to a competition-driven supply and demand marketplace, consumers in the province will be faced with the complex and difficult task of buying electricity in an open market. Electricity products will be available as commodities in a desegregated state. That is, consumers will be able to buy electricity from a power generator, as well as arranging its transportation and distribution. Consumers will have to understand the cost factors involved and the components which factor into the pricing of electricity. In this context, the paper defines electricity as a commodity and discusses issues such as supply and demand (given that electricity cannot be stored), energy losses, regional markets, impact of externalities, demand elasticity, and hourly pricing. Non-commodity cost factors such as stranded debt, ancillary services, infrastructure and personnel, metering, electricity trading and futures contracts are also reviewed. 19 refs., 2 figs

  4. Migration of radionuclides in geologic media: Fundamental research needs

    International Nuclear Information System (INIS)

    Reed, D.T.; Zachara, J.M.; Wildung, R.E.; Wobber, F.J.

    1990-01-01

    An assessment of the fundamental research needs in understanding and predicting the migration of radionuclides in the subsurface is provided. Emphasis is on the following three technical areas: (1) aqueous speciation of radionuclides, (2) the interaction of radionuclides with substrates, and (3) intermediate-scale interaction studies. This research relates to important issues associated with environmental restoration and remediation of DOE sites contaminated with mixed radionuclide-organic wastes. 64 refs., 1 fig., 1 tab

  5. A systems approach to theoretical fluid mechanics: Fundamentals

    Science.gov (United States)

    Anyiwo, J. C.

    1978-01-01

    A preliminary application of the underlying principles of the investigator's general system theory to the description and analyses of the fluid flow system is presented. An attempt is made to establish practical models, or elements of the general fluid flow system from the point of view of the general system theory fundamental principles. Results obtained are applied to a simple experimental fluid flow system, as test case, with particular emphasis on the understanding of fluid flow instability, transition and turbulence.

  6. Brazilian Constitution and the Fundamental Right to Sanitation

    OpenAIRE

    Michely Vargas Delpupo; José Geraldo Romanello Bueno

    2015-01-01

    The right to basic sanitation, was elevated to the category of fundamental right by the Constitution of 1988 to protect the ecologically balanced environment, ensuring social rights to health and adequate housing and put the dignity of the human person as the foundation of the Brazilian Democratic State. Before their essentiality to humans, this article seeks to understand why universal access to basic sanitation is a goal so difficult to achieve in Brazil. Therefore, thi...

  7. Fundamental aspects of solid dispersion technology for poorly soluble drugs

    Directory of Open Access Journals (Sweden)

    Yanbin Huang

    2014-02-01

    Full Text Available The solid dispersion has become an established solubilization technology for poorly water soluble drugs. Since a solid dispersion is basically a drug–polymer two-component system, the drug–polymer interaction is the determining factor in its design and performance. In this review, we summarize our current understanding of solid dispersions both in the solid state and in dissolution, emphasizing the fundamental aspects of this important technology.

  8. Ergonomics: A bridge between fundamentals and applied research

    OpenAIRE

    Ghosh, Subrata; Bagchi, Anandi; Sen, Devashish; Bandyopadhyay, Pathikrit

    2011-01-01

    Ergonomics is becoming a subject of applying fundamentals on anthropocentric dimensions for holistic welfare. The so-called conflict between Basic science and Applied research finds one of its edges in Ergonomics. Be it cutting-edge technology or frontiers of scientific innovation-all start from understanding basic scientific aptitude and skill, and the best way to get familiar with the situation is practicing basic science again and again at a regular basis. Ergonomics is diversified in such...

  9. Hybrid Fundamental Solution Based Finite Element Method: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Changyong Cao

    2015-01-01

    Full Text Available An overview on the development of hybrid fundamental solution based finite element method (HFS-FEM and its application in engineering problems is presented in this paper. The framework and formulations of HFS-FEM for potential problem, plane elasticity, three-dimensional elasticity, thermoelasticity, anisotropic elasticity, and plane piezoelectricity are presented. In this method, two independent assumed fields (intraelement filed and auxiliary frame field are employed. The formulations for all cases are derived from the modified variational functionals and the fundamental solutions to a given problem. Generation of elemental stiffness equations from the modified variational principle is also described. Typical numerical examples are given to demonstrate the validity and performance of the HFS-FEM. Finally, a brief summary of the approach is provided and future trends in this field are identified.

  10. Developments in surface contamination and cleaning fundamentals and applied aspects

    CERN Document Server

    Kohli, Rajiv

    2015-01-01

    Developments in Surface Contamination and Cleaning, Vol. 1: Fundamentals and Applied Aspects, Second Edition, provides an excellent source of information on alternative cleaning techniques and methods for characterization of surface contamination and validation. Each volume in this series contains a particular topical focus, covering the key techniques and recent developments in the area. This volume forms the heart of the series, covering the fundamentals and application aspects, characterization of surface contaminants, and methods for removal of surface contamination. In addition, new cleaning techniques effective at smaller scales are considered and employed for removal where conventional cleaning techniques fail, along with new cleaning techniques for molecular contaminants. The Volume is edited by the leading experts in small particle surface contamination and cleaning, providing an invaluable reference for researchers and engineers in R&D, manufacturing, quality control, and procurement specific...

  11. Modeling, Measurements, and Fundamental Database Development for Nonequilibrium Hypersonic Aerothermodynamics

    Science.gov (United States)

    Bose, Deepak

    2012-01-01

    The design of entry vehicles requires predictions of aerothermal environment during the hypersonic phase of their flight trajectories. These predictions are made using computational fluid dynamics (CFD) codes that often rely on physics and chemistry models of nonequilibrium processes. The primary processes of interest are gas phase chemistry, internal energy relaxation, electronic excitation, nonequilibrium emission and absorption of radiation, and gas-surface interaction leading to surface recession and catalytic recombination. NASAs Hypersonics Project is advancing the state-of-the-art in modeling of nonequilibrium phenomena by making detailed spectroscopic measurements in shock tube and arcjets, using ab-initio quantum mechanical techniques develop fundamental chemistry and spectroscopic databases, making fundamental measurements of finite-rate gas surface interactions, implementing of detailed mechanisms in the state-of-the-art CFD codes, The development of new models is based on validation with relevant experiments. We will present the latest developments and a roadmap for the technical areas mentioned above

  12. DOE fundamentals handbook: Nuclear physics and reactor theory

    International Nuclear Information System (INIS)

    1993-01-01

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance

  13. Fundamentals of EMS, NMS and OSS/BSS

    CERN Document Server

    Sathyan, Jithesh

    2011-01-01

    In this era where data and voice services are available at a push of a button, service providers have virtually limitless options for reaching their customers with value-added services. The changes in services and underlying networks that this always-on culture creates make it essential for service providers to understand the evolving business logic and appropriate support systems for service delivery, billing, and revenue assurance. Supplying an end-to-end understanding of telecom management layers, Fundamentals of EMS, NMS and OSS/BSS is a complete guide to telecom resource and service manag

  14. Fundamental Perspectives on Supply Chain Management

    NARCIS (Netherlands)

    Omta, S.W.F.; Hoenen, S.J.

    2012-01-01

    The aim of the present literature study is to find the fundamental perspectives/models in the realm of supply chain management and to investigate whether they can be extended based on recent literature findings. The fundamental perspectives were found using a two-tier snowball collection method,

  15. EU criminal law and fundamental rights

    NARCIS (Netherlands)

    de Hert, Paul; Mitsilegas, V.; Bergström, M.; Konstadinides, Th.

    2016-01-01

    The chapter first offers a background analysis to EU fundamental rights law, recalling the historical affirmation of the protection of fundamental rights as a EU concern, and the important innovation brought about by the Lisbon Treaty (section 2) and the multiplicity of actors involved in the system

  16. Fundamental symmetries and interactions-selected topics

    NARCIS (Netherlands)

    Jungmann, Klaus P.

    2015-01-01

    In the field of fundamental interactions and symmetries numerous experiments are underway or planned in order to verify the standard model in particle physics, to search for possible extensions to it or to exploit the standard model for extracting most precise values for fundamental constants. We

  17. Fundamental study on dynamic behaviors of fuel debris bed. Research report in 2007 (Joint research)

    International Nuclear Information System (INIS)

    Morita, Koji; Fukuda, Kenji; Matsumoto, Tatsuya; Tobita, Yoshiharu; Suzuki, Tohru; Yamano, Hidemasa

    2009-05-01

    It is important to make a reasonable evaluation of coolability of debris bed with decay heat source in assessing post accident heat removal of a liquid metal cooled fast reactor. In general, the coolability of fuel debris depends on coolant convection, boiling and debris bed movement. In the present study, to understand fundamental characteristics of debris movement, self-leveling behavior caused by the coolant boiling was investigated experimentally using simulant materials. The present experiments employed depressurization boiling of water to simulate void distribution in a debris bed, which consists of solid particles of alumina. A rough estimation model of self-leveling occurrence was proposed and compared with the experimental results. Its extrapolation to reactor accident conditions was also discussed. In addition, solid-liquid flow experiments, which are relevant to debris bed movement behaviors, were analyzed to verify the validity of multiphase flow models employed in a safety analysis code. In the present verification study, basic validity of the code was demonstrated by analyzing experiments of water-column sloshing with solid particles. (author)

  18. Fundamental Studies on the Mechanical Behavior and Fracture Characteristics of Metal-Ceramic Interfaces

    National Research Council Canada - National Science Library

    Mukai, K

    1995-01-01

    .... There is need for a fundamental level of understanding of the strength characteristics and the origin of failure of the interface since it is the means by which load is transferred from the matrix to reinforcement...

  19. Country Fundamentals and Currency Excess Returns

    Directory of Open Access Journals (Sweden)

    Daehwan Kim

    2014-06-01

    Full Text Available We examine whether country fundamentals help explain the cross-section of currency excess returns. For this purpose, we consider fundamental variables such as default risk, foreign exchange rate regime, capital control as well as interest rate in the multi-factor model framework. Our empirical results show that fundamental factors explain a large part of the cross-section of currency excess returns. The zero-intercept restriction of the factor model is not rejected for most currencies. They also reveal that our factor model with country fundamentals performs better than a factor model with usual investment-style factors. Our main empirical results are based on 2001-2010 balanced panel data of 19 major currencies. This paper may fill the gap between country fundamentals and practitioners' strategies on currency investment.

  20. Fundamental-mode sources in approach to critical experiments

    International Nuclear Information System (INIS)

    Goda, J.; Busch, R.

    2000-01-01

    An equivalent fundamental-mode source is an imaginary source that is distributed identically in space, energy, and angle to the fundamental-mode fission source. Therefore, it produces the same neutron multiplication as the fundamental-mode fission source. Even if two source distributions produce the same number of spontaneous fission neutrons, they will not necessarily contribute equally toward the multiplication of a given system. A method of comparing the relative importance of source distributions is needed. A factor, denoted as g* and defined as the ratio of the fixed-source multiplication to the fundamental-mode multiplication, is used to convert a given source strength to its equivalent fundamental-mode source strength. This factor is of interest to criticality safety as it relates to the 1/M method of approach to critical. Ideally, a plot of 1/M versus κ eff is linear. However, since 1/M = (1 minus κ eff )/g*, the plot will be linear only if g* is constant with κ eff . When g* increases with κ eff , the 1/M plot is said to be conservative because the critical mass is underestimated. However, it is possible for g* to decrease with κ eff yielding a nonconservative 1/M plot. A better understanding of g* would help predict whether a given approach to critical will be conservative or nonconservative. The equivalent fundamental-mode source strength g*S can be predicted by experiment. The experimental method was tested on the XIX-1 core on the Fast Critical Assembly at the Japan Atomic Energy Research Institute. The results showed a 30% difference between measured and calculated values. However, the XIX-1 reactor had significant intermediate-energy neutrons. The presence of intermediate-energy neutrons may have made the cross-section set used for predicted values less than ideal for the system

  1. Understanding community traits - understanding public concerns

    International Nuclear Information System (INIS)

    Wlodarczyk, T.

    2003-01-01

    No two communities are alike. Therefore, one should not expect that public concerns and socio-economic effects of a proposed undertaking would be the same everywhere. Public concerns and the potential for social and economic effects of nuclear waste management facilities in one community will be different from those in another because communities differ in their fundamental sociological and economic traits. Research and experience with various types of nuclear and hazardous waste management facilities, generating stations and other energy developments across Canada and the United States indicate that an analysis of only a few key community traits can yield a more thorough understanding of the ways in which a community might perceive and respond to a project, the kinds of concerns that might dominate the public agenda, and the types of socio-economic effects that will be of primary concern. (author)

  2. Understanding land administration systems

    DEFF Research Database (Denmark)

    P. Williamson, Ian; Enemark, Stig; Wallace, Judy

    2008-01-01

    This paper introduces basic land administration theory and highlights four key concepts that are fundamental to understanding modern land administration systems - firstly the land management paradigm and its influence on the land administration framework, secondly the role that the cadastre plays...... in contributing to sustainable development, thirdly the changing nature of ownership and the role of land markets, and lastly a land management vision that promotes land administration in support of sustainable development and spatial enablement of society. We present here the first part of the paper. The second...

  3. Understanding Alzheimer's

    Science.gov (United States)

    ... Navigation Bar Home Current Issue Past Issues Understanding Alzheimer's Past Issues / Fall 2007 Table of Contents For ... and brain scans. No treatment so far stops Alzheimer's. However, for some in the disease's early and ...

  4. Default Bayesian Estimation of the Fundamental Frequency

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær; Christensen, Mads Græsbøll; Jensen, Søren Holdt

    2013-01-01

    Joint fundamental frequency and model order esti- mation is an important problem in several applications. In this paper, a default estimation algorithm based on a minimum of prior information is presented. The algorithm is developed in a Bayesian framework, and it can be applied to both real....... Moreover, several approximations of the posterior distributions on the fundamental frequency and the model order are derived, and one of the state-of-the-art joint fundamental frequency and model order estimators is demonstrated to be a special case of one of these approximations. The performance...

  5. Ion beam analysis fundamentals and applications

    CERN Document Server

    Nastasi, Michael; Wang, Yongqiang

    2015-01-01

    Ion Beam Analysis: Fundamentals and Applications explains the basic characteristics of ion beams as applied to the analysis of materials, as well as ion beam analysis (IBA) of art/archaeological objects. It focuses on the fundamentals and applications of ion beam methods of materials characterization.The book explains how ions interact with solids and describes what information can be gained. It starts by covering the fundamentals of ion beam analysis, including kinematics, ion stopping, Rutherford backscattering, channeling, elastic recoil detection, particle induced x-ray emission, and nucle

  6. Design of impact limiters of a bulk type B (U) . Trials of fall and validation of the analytical model In the design of a container for transportation of spent fuel, the impact limiters are a fundamental part for compliance with regulatory requirements; Diseno de los Limitadores de impacto de un Bulto Tipo B(U). Ensayos de Caida y validacion del Modelo Analitico

    Energy Technology Data Exchange (ETDEWEB)

    Garrido Quevedo, D.

    2013-07-01

    The aim is to confirm through real trials that the design and the results obtained through simulation conform to reality with a high degree of confidence... The combination of tests on scale models and the validation of the methods of calculation are necessary tools for the design of limiters impact a container of spent fuel transport.

  7. FACTAR validation

    International Nuclear Information System (INIS)

    Middleton, P.B.; Wadsworth, S.L.; Rock, R.C.; Sills, H.E.; Langman, V.J.

    1995-01-01

    A detailed strategy to validate fuel channel thermal mechanical behaviour codes for use of current power reactor safety analysis is presented. The strategy is derived from a validation process that has been recently adopted industry wide. Focus of the discussion is on the validation plan for a code, FACTAR, for application in assessing fuel channel integrity safety concerns during a large break loss of coolant accident (LOCA). (author)

  8. Embodied Understanding

    Directory of Open Access Journals (Sweden)

    Mark Leonard Johnson

    2015-06-01

    Full Text Available Western culture has inherited a view of understanding as an intellectual cognitive operation of grasping of concepts and their relations. However, cognitive science research has shown that this received intellectualist conception is substantially out of touch with how humans actually make and experience meaning. The view emerging from the mind sciences recognizes that understanding is profoundly embodied, insofar as our conceptualization and reasoning recruit sensory, motor, and affective patterns and processes to structure our understanding of, and engagement with, our world. A psychologically realistic account of understanding must begin with the patterns of ongoing interaction between an organism and its physical and cultural environments and must include both our emotional responses to changes in our body and environment, and also the actions by which we continuously transform our experience. Consequently, embodied understanding is not merely a conceptual/propositional activity of thought, but rather constitutes our most basic way of being in, and engaging with, our surroundings in a deep visceral manner.

  9. O sofrimento psíquico na perspectiva da psicopatologia fundamental Psychic suffering from the fundamental psychopathology perspective

    Directory of Open Access Journals (Sweden)

    Paulo Ceccarelli

    2005-12-01

    Full Text Available Partindo da palavra PSICOPATOLOGIA, o autor mostra, de forma resumida, como cada contexto histórico tentou "decompor" o sofrimento psíquico em seus elementos de base para classificá-lo, estudá-lo e tratá-lo. Após uma breve apresentação da psicopatologia na contemporaneidade, o autor introduz os pressupostos da Psicopatologia Fundamental e suas contribuições na compreensão do sofrimento psíquico. Ainda que não seja objetivo do texto participar do debate atual sobre as diretrizes curriculares que norteiam a formação do psicólogo, o autor toma o estudo do conhecimento (logos da alma (psyché - a psicologia - como exemplo de um dos campos de aplicação da Psicopatologia Fundamental.From the word PSYCHOPATHOLOGY the author briefly shows how each historical context had its own way to decompose psychic suffering in order to classify, study and search for its cure. After a short discussion about psychopathology in contemporaneity the author introduces the theoretical bases of Fundamental Psychopathology and its contributions to understanding psychic suffering. Although this text does not claim to participate in the debate about psychology students training, the author exemplifies through the study of the soul (psyche knowledge (logos one of the applications of Fundamental Psychopathology.

  10. Accounting Fundamentals for Non-Accountants

    Science.gov (United States)

    The purpose of this module is to provide an introduction and overview of accounting fundamentals for non-accountants. The module also covers important topics such as communication, internal controls, documentation and recordkeeping.

  11. Fundamental physics with low-energy neutrons

    International Nuclear Information System (INIS)

    Barrón-Palos, Libertad

    2016-01-01

    Low-energy neutrons are playing a prominent role in a growing number of fundamental physics studies. This paper provides a brief description of the physics that some of the experiments in the area are addressing. (paper)

  12. Fundamentals of bladder tissue engineering | Mahfouz | African ...

    African Journals Online (AJOL)

    Fundamentals of bladder tissue engineering. ... could affect the bladder and lead to eventual loss of its integrity, with the need for replacement or repair. ... Tissue engineering relies upon three essential pillars; the scaffold, the cells seeded on ...

  13. PRINCIPLES, BASES, AND LAWS OF FUNDAMENTAL INFORMATICS

    Directory of Open Access Journals (Sweden)

    Gennady N. Zverev

    2013-01-01

    Full Text Available This paper defines the goals and problems of fundamental informatics, formulates principal laws of information universe and constructive bases of information objects and processes. The classification of semantics types of knowledge and skills is presented. 

  14. A fundamental equation in quantum mechanics

    International Nuclear Information System (INIS)

    Mackinnon, L.

    1981-01-01

    It is pointed out that the nondispersive de Broglie wave packet has a zero d'Alembertian, suggesting the possible reality of de Broglie waves and also that the field wave equation may be fundamental to Quantum Mechanics. (author)

  15. Fundamentals of evaporation and condensation phenomena

    International Nuclear Information System (INIS)

    Munir, Z.A.

    1979-01-01

    Fundamental relationships governing evaporation and condensation processes are reviewed. The terrace-ledge-kink (TLK) model is discussed in terms of atomic steps comprising growth and evaporation of crystals. Recent results in the field are described

  16. Fundamentals of Friction and Vapor Phase Lubrication

    National Research Council Canada - National Science Library

    Gellman, Andrew

    2004-01-01

    This is the final report for the three year research program on "Fundamentals of Friction and Vapor Phase Lubrication" conducted at Carnegie Mellon with support from AFOSR grant number F49630-01-1-0069...

  17. Search for fundamental 'God Particle' speeds up

    CERN Multimedia

    Spotts, P N

    2000-01-01

    This month researchers at CERN are driving the accelerator to its limits and beyond to find the missing Higgs boson. Finding it would confirm a 30-yr-old theory about why matter's most fundamental particles have mass (1 page).

  18. Journal of Fundamental and Applied Sciences

    African Journals Online (AJOL)

    Blending the most fundamental Remote-Sensing principles (RS) with the most functional spatial knowledge (GIS) with the objective of the determination of the accident-prone palms and points (case study: Tehran-Hamadan Highway on Saveh Superhighway)

  19. Fundamentally Flawed: Extension Administrative Practice (Part 1).

    Science.gov (United States)

    Patterson, Thomas F., Jr.

    1997-01-01

    Extension's current administrative techniques are based on the assumptions of classical management from the early 20th century. They are fundamentally flawed and inappropriate for the contemporary workplace. (SK)

  20. Strategic Information Resources Management: Fundamental Practices.

    Science.gov (United States)

    Caudle, Sharon L.

    1996-01-01

    Discusses six fundamental information resources management (IRM) practices in successful organizations that can improve government service delivery performance. Highlights include directing changes, integrating IRM decision making into a strategic management process, performance management, maintaining an investment philosophy, using business…

  1. Journal of Fundamental and Applied Sciences: Submissions

    African Journals Online (AJOL)

    The journal of fundamental and applied sciences receives and publishes ... and applied science which the results of studies may interest all researchers. ... the references are sorted in ascending order, according to the examples below.

  2. Understanding Maple

    CERN Document Server

    Thompson, Ian

    2016-01-01

    Maple is a powerful symbolic computation system that is widely used in universities around the world. This short introduction gives readers an insight into the rules that control how the system works, and how to understand, fix, and avoid common problems. Topics covered include algebra, calculus, linear algebra, graphics, programming, and procedures. Each chapter contains numerous illustrative examples, using mathematics that does not extend beyond first-year undergraduate material. Maple worksheets containing these examples are available for download from the author's personal website. The book is suitable for new users, but where advanced topics are central to understanding Maple they are tackled head-on. Many concepts which are absent from introductory books and manuals are described in detail. With this book, students, teachers and researchers will gain a solid understanding of Maple and how to use it to solve complex mathematical problems in a simple and efficient way.

  3. SU (2) with fundamental fermions and scalars

    DEFF Research Database (Denmark)

    Hansen, Martin; Janowski, Tadeusz; Pica, Claudio

    2018-01-01

    We present preliminary results on the lattice simulation of an SU(2) gauge theory with two fermion flavors and one strongly interacting scalar field, all in the fundamental representation of SU(2). The motivation for this study comes from the recent proposal of "fundamental" partial compositeness...... the properties of light meson resonances previously obtained for the SU(2) model. Preprint: CP3-Origins-2017-047 DNRF90...

  4. Fundamentals, Misvaluation, and Investment: The Real Story

    OpenAIRE

    Chirinko, Robert S.; Schaller, Huntley

    2006-01-01

    Abstract: Is real investment fully determined by fundamentals or is it sometimes affected by stockmarket misvaluation? We introduce three new tests that: measure the reaction of investment to sales shocks for firms that may be overvalued; use Fama-MacBeth regressions to determine whether "overinvestment" affects subsequent returns; and analyze the time path of the marginal product of capital in reaction to fundamental and misvaluation shocks. Besides these qualitative tests, we introduce a me...

  5. Lasers and optoelectronics fundamentals, devices and applications

    CERN Document Server

    Maini, Anil K

    2013-01-01

    With emphasis on the physical and engineering principles, this book provides a comprehensive and highly accessible treatment of modern lasers and optoelectronics. Divided into four parts, it explains laser fundamentals, types of lasers, laser electronics & optoelectronics, and laser applications, covering each of the topics in their entirety, from basic fundamentals to advanced concepts. Key features include: exploration of technological and application-related aspects of lasers and optoelectronics, detailing both existing and emerging applications in industry, medical diag

  6. Understanding physics

    CERN Document Server

    Mansfield, Michael

    2011-01-01

    Understanding Physics - Second edition is a comprehensive, yet compact, introductory physics textbook aimed at physics undergraduates and also at engineers and other scientists taking a general physics course. Written with today's students in mind, this text covers the core material required by an introductory course in a clear and refreshing way. A second colour is used throughout to enhance learning and understanding. Each topic is introduced from first principles so that the text is suitable for students without a prior background in physics. At the same time the book is designed to enable

  7. Understanding Health-related Quality of Life in Caregivers of Civilians and Service Members/Veterans with Traumatic Brain Injury: Establishing the Reliability and Validity of PROMIS Mental Health Measures.

    Science.gov (United States)

    Carlozzi, Noelle E; Hanks, Robin; Lange, Rael T; Brickell D Psych, Tracey A; Ianni, Phillip A; Miner, Jennifer A; French Psy D, Louis M; Kallen, Michael A; Sander, Angelle M

    2018-06-19

    To provide important reliability and validity data to support the use of the PROMIS Mental Health measures in caregivers of civilians or service members/veterans with traumatic brain injury (TBI). Patient-reported outcomes surveys administered through an electronic data collection platform. Three TBI Model Systems rehabilitation hospitals, an academic medical center, and a military medical treatment facility. 560 caregivers of individuals with a documented TBI (344 civilians and 216 military) INTERVENTION: Not Applicable MAIN OUTCOME MEASURES: PROMIS Anxiety, Depression, and Anger Item Banks RESULTS: Internal consistency for all of the PROMIS Mental Health item banks was very good (all α > .86) and three-week test retest reliability was good to adequate (ranged from .65 to .85). Convergent validity and discriminant validity of the PROMIS measures was also supported. Caregivers of individuals that were low functioning had worse emotional HRQOL (as measured by the three PROMIS measures) than caregivers of high functioning individuals, supporting known groups validity. Finally, levels of distress, as measured by the PROMIS measures, were elevated for those caring for low-functioning individuals in both samples (rates ranged from 26.2% to 43.6% for caregivers of low-functioning individuals). Results support the reliability and validity of the PROMIS Anxiety, Depression, and Anger item banks in caregivers of civilians and service members/veterans with TBI. Ultimately, these measures can be used to provide a standardized assessment of HRQOL as it relates to mental health in these caregivers. Copyright © 2018. Published by Elsevier Inc.

  8. Investigation of fundamental limits to beam brightness available from photoinjectors

    International Nuclear Information System (INIS)

    Bazarov, Ivan

    2015-01-01

    The goal of this project was investigation of fundamental limits to beam brightness available from photoinjectors. This basic research in accelerator physics spanned over 5 years aiming to extend the fundamental understanding of high average current, low emittance sources of relativistic electrons based on photoemission guns, a necessary prerequisite for a new generation of coherent X-ray synchrotron radiation facilities based on continuous duty superconducting linacs. The program focused on two areas critical to making advances in the electron source performance: 1) the physics of photocathodes for the production of low emittance electrons and 2) control of space charge forces in the immediate vicinity to the cathode via 3D laser pulse shaping.

  9. Why Do We Need to Study the Fundamentals of Care?

    Science.gov (United States)

    Kitson, Alison

    2016-01-01

    This paper makes the case for revisiting our understanding and valuing of basic or fundamental nursing care. Despite the interest in movements such as the person-centred or patient-centred care agenda, there continues to be concern about patient safety, quality of experience and getting the simple things right. Part of this debate is around whether meeting patients' fundamental care needs (such as personal hygiene, elimination and eating and drinking) within acute care settings constitutes legitimate nursing responsibilities or whether these needs ought to become part of "hotel services" executed by care assistants with elementary training or, as in many lower-income health systems, undertaken by relatives. Copyright © 2016 Longwoods Publishing.

  10. Investigation of fundamental limits to beam brightness available from photoinjectors

    Energy Technology Data Exchange (ETDEWEB)

    Bazarov, Ivan [Cornell Univ., Ithaca, NY (United States)

    2015-07-09

    The goal of this project was investigation of fundamental limits to beam brightness available from photoinjectors. This basic research in accelerator physics spanned over 5 years aiming to extend the fundamental understanding of high average current, low emittance sources of relativistic electrons based on photoemission guns, a necessary prerequisite for a new generation of coherent X-ray synchrotron radiation facilities based on continuous duty superconducting linacs. The program focused on two areas critical to making advances in the electron source performance: 1) the physics of photocathodes for the production of low emittance electrons and 2) control of space charge forces in the immediate vicinity to the cathode via 3D laser pulse shaping.

  11. Fundamentals of Counting Statistics in Digital PCR: I Just Measured Two Target Copies-What Does It Mean?

    Science.gov (United States)

    Tzonev, Svilen

    2018-01-01

    Current commercially available digital PCR (dPCR) systems and assays are capable of detecting individual target molecules with considerable reliability. As tests are developed and validated for use on clinical samples, the need to understand and develop robust statistical analysis routines increases. This chapter covers the fundamental processes and limitations of detecting and reporting on single molecule detection. We cover the basics of quantification of targets and sources of imprecision. We describe the basic test concepts: sensitivity, specificity, limit of blank, limit of detection, and limit of quantification in the context of dPCR. We provide basic guidelines how to determine those, how to choose and interpret the operating point, and what factors may influence overall test performance in practice.

  12. The Chimera of Validity

    Science.gov (United States)

    Baker, Eva L.

    2013-01-01

    Background/Context: Education policy over the past 40 years has focused on the importance of accountability in school improvement. Although much of the scholarly discourse around testing and assessment is technical and statistical, understanding of validity by a non-specialist audience is essential as long as test results drive our educational…

  13. Understanding Federalism.

    Science.gov (United States)

    Hickok, Eugene W., Jr.

    1990-01-01

    Urges returning to the original federalist debates to understand contemporary federalism. Reviews "The Federalist Papers," how federalism has evolved, and the centralization of the national government through acts of Congress and Supreme Court decisions. Recommends teaching about federalism as part of teaching about U.S. government…

  14. Understanding Energy

    Science.gov (United States)

    Menon, Deepika; Shelby, Blake; Mattingly, Christine

    2016-01-01

    "Energy" is a term often used in everyday language. Even young children associate energy with the food they eat, feeling tired after playing soccer, or when asked to turn the lights off to save light energy. However, they may not have the scientific conceptual understanding of energy at this age. Teaching energy and matter could be…

  15. Understanding health-related quality of life in caregivers of civilians and service members/veterans with traumatic brain injury: Establishing the reliability and validity of PROMIS Fatigue and Sleep Disturbance item banks.

    Science.gov (United States)

    Carlozzi, Noelle E; Ianni, Phillip A; Tulsky, David S; Brickell, Tracey A; Lange, Rael T; French, Louis M; Cella, David; Kallen, Michael A; Miner, Jennifer A; Kratz, Anna L

    2018-06-19

    To examine the reliability and validity of Patient Reported Outcomes Measurement Information System (PROMIS) measures of sleep disturbance and fatigue in TBI caregivers and to determine the severity of fatigue and sleep disturbance in these caregivers. Cross-sectional survey data collected through an online data capture platform. Four rehabilitation hospitals and Walter Reed National Military Medical Center. Caregivers (N=560) of civilians (n=344) and service member/veterans (n=216) with TBI. Not Applicable MAIN OUTCOME MEASURES: PROMIS sleep and fatigue measures administered as both computerized adaptive tests (CATs) and 4-item short forms (SFs). For both samples, floor and ceiling effects for the PROMIS measures were low (internal consistency was very good (all alphas ≥0.80), and test-retest reliability was acceptable (all r≥0.70 except for the fatigue CAT in the service member/veteran sample r=0.63). Convergent validity was supported by moderate correlations between the PROMIS and related measures. Discriminant validity was supported by low correlations between PROMIS measures and measures of dissimilar constructs. PROMIS scores indicated significantly worse sleep and fatigue for those caring for someone with high levels versus low levels of impairment. Findings support the reliability and validity of the PROMIS CAT and SF measures of sleep disturbance and fatigue in caregivers of civilians and service members/veterans with TBI. Copyright © 2018. Published by Elsevier Inc.

  16. Validation for chromatographic and electrophoretic methods

    OpenAIRE

    Ribani, Marcelo; Bottoli, Carla Beatriz Grespan; Collins, Carol H.; Jardim, Isabel Cristina Sales Fontes; Melo, Lúcio Flávio Costa

    2004-01-01

    The validation of an analytical method is fundamental to implementing a quality control system in any analytical laboratory. As the separation techniques, GC, HPLC and CE, are often the principal tools used in such determinations, procedure validation is a necessity. The objective of this review is to describe the main aspects of validation in chromatographic and electrophoretic analysis, showing, in a general way, the similarities and differences between the guidelines established by the dif...

  17. Understanding Translation

    DEFF Research Database (Denmark)

    Schjoldager, Anne Gram; Gottlieb, Henrik; Klitgård, Ida

    Understanding Translation is designed as a textbook for courses on the theory and practice of translation in general and of particular types of translation - such as interpreting, screen translation and literary translation. The aim of the book is to help you gain an in-depth understanding...... of the phenomenon of translation and to provide you with a conceptual framework for the analysis of various aspects of professional translation. Intended readers are students of translation and languages, but the book will also be relevant for others who are interested in the theory and practice of translation...... - translators, language teachers, translation users and literary, TV and film critics, for instance. Discussions focus on translation between Danish and English....

  18. Understanding Resilience

    Directory of Open Access Journals (Sweden)

    Gang eWu

    2013-02-01

    Full Text Available Resilience is the ability to adapt successfully in the face of stress and adversity. Stressful life events, trauma and chronic adversity can have a substantial impact on brain function and structure, and can result in the development of PTSD, depression and other psychiatric disorders. However, most individuals do not develop such illnesses after experiencing stressful life events, and are thus thought to be resilient. Resilience as successful adaptation relies on effective responses to environmental challenges and ultimate resistance to the deleterious effects of stress, therefore a greater understanding of the factors that promote such effects is of great relevance. This review focuses on recent findings regarding genetic, epigenetic, developmental, psychosocial and neurochemical factors that are considered essential contributors to the development of resilience. Neural circuits and pathways involved in mediating resilience are also discussed. The growing understanding of resilience factors will hopefully lead to the development of new pharmacological and psychological interventions for enhancing resilience and mitigating the untoward consequences.

  19. Understand electronics

    CERN Document Server

    Bishop, Owen

    2013-01-01

    Understand Electronics provides a readable introduction to the exciting world of electronics for the student or enthusiast with little previous knowledge. The subject is treated with the minimum of mathematics and the book is extensively illustrated.This is an essential guide for the newcomer to electronics, and replaces the author's best-selling Beginner's Guide to Electronics.The step-by-step approach makes this book ideal for introductory courses such as the Intermediate GNVQ.

  20. Understanding unemployment

    OpenAIRE

    Guillaume Rocheteau

    2006-01-01

    Modern economists have built models of the labor market, which isolate the market’s key drivers and describe the way these interact to produce particular levels of unemployment. One of the most popular models used by macroeconomists today is the search-matching model of equilibrium unemployment. We explain this model, and show how it can be applied to understand the way various policies, such as unemployment benefits, taxes, or technological changes, can affect the unemployment rate.

  1. Understanding Technology?

    Directory of Open Access Journals (Sweden)

    Erik Bendtsen

    2016-11-01

    Full Text Available We are facing radical changes in our ways of living in the nearest future. Not necessarily of our own choice, but because tchnological development is moving so fast, that it will have still greater impact on many aspects of our lives. We have seen the beginnings of that change within the latest 35 years or so, but according to newest research that change will speed up immensely in the nearest years to come. The impact of that change or these changes will affect our working life immensely as a consequence of automation. How these changes are brought about and which are their consequences in a broad sense is being attempted to be understood and guessed by researchers. No one knows for sure, but specific patterns are visible. This paper will not try to guess, what will come, but will rather try to understand the deepest ”nature” of technology in order to understand the driving factors in this development: the genesis of technology in a broad sense in order to contibute to the understanding of the basis for the expected development.

  2. Fundamental arthroscopic skill differentiation with virtual reality simulation.

    Science.gov (United States)

    Rose, Kelsey; Pedowitz, Robert

    2015-02-01

    The purpose of this study was to investigate the use and validity of virtual reality modules as part of the educational approach to mastering arthroscopy in a safe environment by assessing the ability to distinguish between experience levels. Additionally, the study aimed to evaluate whether experts have greater ambidexterity than do novices. Three virtual reality modules (Swemac/Augmented Reality Systems, Linkoping, Sweden) were created to test fundamental arthroscopic skills. Thirty participants-10 experts consisting of faculty, 10 intermediate participants consisting of orthopaedic residents, and 10 novices consisting of medical students-performed each exercise. Steady and Telescope was designed to train centering and image stability. Steady and Probe was designed to train basic triangulation. Track and Moving Target was designed to train coordinated motions of arthroscope and probe. Metrics reflecting speed, accuracy, and efficiency of motion were used to measure construct validity. Steady and Probe and Track a Moving Target both exhibited construct validity, with better performance by experts and intermediate participants than by novices (P virtual reality modules developed through task deconstruction. Participants with the most arthroscopic experience performed better and were more consistent than novices on all 3 virtual reality modules. Greater arthroscopic experience correlates with more symmetry of ambidextrous performance. However, further adjustment of the modules may better simulate fundamental arthroscopic skills and discriminate between experience levels. Arthroscopy training is a critical element of orthopaedic surgery resident training. Developing techniques to safely and effectively train these skills is critical for patient safety and resident education. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  3. Understanding Magnitudes to Understand Fractions

    Science.gov (United States)

    Gabriel, Florence

    2016-01-01

    Fractions are known to be difficult to learn and difficult to teach, yet they are vital for students to have access to further mathematical concepts. This article uses evidence to support teachers employing teaching methods that focus on the conceptual understanding of the magnitude of fractions.

  4. Testing Understanding and Understanding Testing.

    Science.gov (United States)

    Pedersen, Jean; Ross, Peter

    1985-01-01

    Provides examples in which graphs are used in the statements of problems or in their solutions as a means of testing understanding of mathematical concepts. Examples (appropriate for a beginning course in calculus and analytic geometry) include slopes of lines and curves, quadratic formula, properties of the definite integral, and others. (JN)

  5. Fundamental studies of bloodstain formation and characteristics.

    Science.gov (United States)

    Adam, Craig D

    2012-06-10

    A detailed understanding of blood droplet impact dynamics and stain formation is an essential prerequisite to the interpretation of both individual bloodstains and spatter patterns. The current literature on theoretical models for the spreading and splashing of liquid drops on surfaces relevant to the forensic context of bloodstain formation has been reviewed. These models have been evaluated for a paper substrate using experimental data obtained as function of droplet size, impact velocity and angle. It is shown that for perpendicular impact there are fairly simple mathematical models for the spreading diameter and the number of scallops or spines formed around the stain though these have quite limited ranges of validity in their basic form. In particular, predictions for the diameter are best for small droplets impacting at high velocity and the number of spines saturates for higher impact velocities. In the case of spreading, a modification to the energy conservation model is found to provide excellent agreement with experimental stain diameters across a wide range of impact velocities. For non-perpendicular impact, the width of stains is found to depend principally on the normal component of impact velocity and may be predicted by an appropriate modification to the expression for the perpendicular case. Limitations in the calculation of impact angle from the stain aspect ratio are identified and a theoretical basis for the prediction of spines around an elliptical stain is proposed. Some key issues for future research are identified which include a systematic, quantitative study of the effect of surface properties on bloodstain formation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Fundamental volatility and stock returns : does fundamental volatility explain stock returns?

    OpenAIRE

    Selboe, Guner K.; Virdee, Jaspal Singh

    2017-01-01

    In this thesis, we investigate whether the fundamental uncertainty can explain the crosssection of stock returns. To measure the fundamental uncertainty, we estimate rolling standard deviations and accounting betas of four different fundamentals: revenues, gross profit, earnings and cash flows. The standard deviation and the beta of revenues significantly explain returns in the Fama-Macbeth procedure, but only appears significant among smaller stocks in the portfolio formation ...

  7. Perspective: Fundamental aspects of time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Maitra, Neepa T. [Department of Physics and Astronomy, Hunter College and the Physics Program at the Graduate Center of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States)

    2016-06-14

    In the thirty-two years since the birth of the foundational theorems, time-dependent density functional theory has had a tremendous impact on calculations of electronic spectra and dynamics in chemistry, biology, solid-state physics, and materials science. Alongside the wide-ranging applications, there has been much progress in understanding fundamental aspects of the functionals and the theory itself. This Perspective looks back to some of these developments, reports on some recent progress and current challenges for functionals, and speculates on future directions to improve the accuracy of approximations used in this relatively young theory.

  8. The John Zink Hamworthy combustion handbook, v.1 fundamentals

    CERN Document Server

    Baukal, Charles E

    2012-01-01

    Despite the length of time it has been around, its importance, and vast amounts of research, combustion is still far from being completely understood. Environmental, cost, and fuel consumption issues add further complexity, particularly in the process and power generation industries. Dedicated to advancing the art and science of industrial combustion, The John Zink Hamworthy Combustion Handbook, Second Edition: Volume One - Fundamentals gives you a strong understanding of the basic concepts and theory. Under the leadership of Charles E. Baukal, Jr., top combustion engineers and technologists f

  9. Fundamental geodesic deformations in spaces of treelike shapes

    DEFF Research Database (Denmark)

    Feragen, Aasa; Lauze, Francois Bernard; Nielsen, Mads

    2010-01-01

    This paper presents a new geometric framework for analysis of planar treelike shapes for applications such as shape matching, recognition and morphology, using the geometry of the space of treelike shapes. Mathematically, the shape space is given the structure of a stratified set which...... is a quotient of a normed vector space with a metric inherited from the vector space norm. We give examples of geodesic paths in tree-space corresponding to fundamental deformations of small trees, and discuss how these deformations are key building blocks for understanding deformations between larger trees....

  10. Diffuse scattering and the fundamental properties of materials

    CERN Document Server

    EIce, Gene; Barabash, Rozaliya

    2009-01-01

    Diffuse Scattering-the use of off-specular X-Rays and neutrons from surfaces and interfaces-has grown rapidly as a tool for characterizing the surface properties of materials and related fundamental structural properties. It has proven to be especially useful in the understanding of local properties within materials. This book reflects the efforts of physicists and materials scientists around the world who have helped to refine the techniques and applications of diffuse scattering. Major topics specifically covered include: -- Scattering in Low Dimensions -- Elastic and Thermal Diffuse Scattering from Alloys -- Scattering from Complex and Disordered Materials -- Scattering from Distorted Crystals.

  11. Fundamentals of electromagnetics 1 internal behavior of lumped elements

    CERN Document Server

    Voltmer, David

    2007-01-01

    This book is the first of two volumes which have been created to provide an understanding of the basic principles and applications of electromagnetic fields for electrical engineering students. Fundamentals of Electromagnetics Vol 1: Internal Behavior of Lumped Elements focuses upon the DC and low-frequency behavior of electromagnetic fields within lumped elements. The properties of electromagnetic fields provide the basis for predicting the terminal characteristics of resistors, capacitors, and inductors. The properties of magnetic circuits are included as well. For slightly higher frequencie

  12. Geometric theory of fundamental interactions. Foundations of unified physics

    International Nuclear Information System (INIS)

    Pestov, A.B.

    2012-01-01

    We put forward an idea that regularities of unified physics are in a simple relation: everything in the concept of space and the concept of space in everything. With this hypothesis as a ground, a conceptual structure of a unified geometrical theory of fundamental interactions is created and deductive derivation of its main equations is produced. The formulated theory gives solution of the actual problems, provides opportunity to understand the origin and nature of physical fields, local internal symmetry, time, energy, spin, charge, confinement, dark energy and dark matter, thus conforming the existence of new physics in its unity

  13. Time series analysis in the social sciences the fundamentals

    CERN Document Server

    Shin, Youseop

    2017-01-01

    Times Series Analysis in the Social Sciences is a practical and highly readable introduction written exclusively for students and researchers whose mathematical background is limited to basic algebra. The book focuses on fundamental elements of time series analysis that social scientists need to understand so they can employ time series analysis for their research and practice. Through step-by-step explanations and using monthly violent crime rates as case studies, this book explains univariate time series from the preliminary visual analysis through the modeling of seasonality, trends, and re

  14. Automatic Parallelization An Overview of Fundamental Compiler Techniques

    CERN Document Server

    Midkiff, Samuel P

    2012-01-01

    Compiling for parallelism is a longstanding topic of compiler research. This book describes the fundamental principles of compiling "regular" numerical programs for parallelism. We begin with an explanation of analyses that allow a compiler to understand the interaction of data reads and writes in different statements and loop iterations during program execution. These analyses include dependence analysis, use-def analysis and pointer analysis. Next, we describe how the results of these analyses are used to enable transformations that make loops more amenable to parallelization, and

  15. A new fundamental type of conformational isomerism

    Science.gov (United States)

    Canfield, Peter J.; Blake, Iain M.; Cai, Zheng-Li; Luck, Ian J.; Krausz, Elmars; Kobayashi, Rika; Reimers, Jeffrey R.; Crossley, Maxwell J.

    2018-06-01

    Isomerism is a fundamental chemical concept, reflecting the fact that the arrangement of atoms in a molecular entity has a profound influence on its chemical and physical properties. Here we describe a previously unclassified fundamental form of conformational isomerism through four resolved stereoisomers of a transoid (BF)O(BF)-quinoxalinoporphyrin. These comprise two pairs of enantiomers that manifest structural relationships not describable within existing IUPAC nomenclature and terminology. They undergo thermal diastereomeric interconversion over a barrier of 104 ± 2 kJ mol-1, which we term `akamptisomerization'. Feasible interconversion processes between conceivable synthesis products and reaction intermediates were mapped out by density functional theory calculations, identifying bond-angle inversion (BAI) at a singly bonded atom as the reaction mechanism. We also introduce the necessary BAI stereodescriptors parvo and amplo. Based on an extended polytope formalism of molecular structure and stereoisomerization, BAI-driven akamptisomerization is shown to be the final fundamental type of conformational isomerization.

  16. Fundamental Concepts in Biophysics Volume 1

    CERN Document Server

    Jue, Thomas

    2009-01-01

    HANDBOOK OF MODERN BIOPHYSICS Series Editor Thomas Jue, PhD Handbook of Modern Biophysics brings current biophysics topics into focus, so that biology, medical, engineering, mathematics, and physical-science students or researchers can learn fundamental concepts and the application of new techniques in addressing biomedical challenges. Chapters explicate the conceptual framework of the physics formalism and illustrate the biomedical applications. With the addition of problem sets, guides to further study, and references, the interested reader can continue to explore independently the ideas presented. Volume I: Fundamental Concepts in Biophysics Editor Thomas Jue, PhD In Fundamental Concepts in Biophysics, prominent professors have established a foundation for the study of biophysics related to the following topics: Mathematical Methods in Biophysics Quantum Mechanics Basic to Biophysical Methods Computational Modeling of Receptor–Ligand Binding and Cellular Signaling Processes Fluorescence Spectroscopy Elec...

  17. Sensors, Volume 1, Fundamentals and General Aspects

    Science.gov (United States)

    Grandke, Thomas; Ko, Wen H.

    1996-12-01

    'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This volume deals with the fundamentals and common principles of sensors and covers the wide areas of principles, technologies, signal processing, and applications. Contents include: Sensor Fundamentals, e.g. Sensor Parameters, Modeling, Design and Packaging; Basic Sensor Technologies, e.g. Thin and Thick Films, Integrated Magnetic Sensors, Optical Fibres and Intergrated Optics, Ceramics and Oxides; Sensor Interfaces, e.g. Signal Processing, Multisensor Signal Processing, Smart Sensors, Interface Systems; Sensor Applications, e.g. Automotive: On-board Sensors, Traffic Surveillance and Control, Home Appliances, Environmental Monitoring, etc. This volume is an indispensable reference work and text book for both specialits and newcomers, researchers and developers.

  18. Development of Computer-Based Training to Supplement Lessons in Fundamentals of Electronics

    Directory of Open Access Journals (Sweden)

    Ian P. Benitez

    2016-05-01

    Full Text Available Teaching Fundamentals of Electronics allow students to familiarize with basic electronics concepts, acquire skills in the use of multi-meter test instrument, and develop mastery in testing basic electronic components. Actual teaching and doing observations during practical activities on components pin identification and testing showed that the lack of skills of new students in testing components can lead to incorrect fault diagnosis and wrong pin connection during in-circuit replacement of the defective parts. With the aim of reinforcing students with concrete understanding of the concepts of components applied in the actual test and measurement, a Computer-Based Training was developed. The proponent developed the learning modules (courseware utilizing concept mapping and storyboarding instructional design. Developing a courseware as simulated, activity-based and interactive as possible was the primary goal to resemble the real-world process. A Local area network (LAN-based learning management system was also developed to use in administering the learning modules. The Paired Sample T-Test based on the pretest and post-test result was used to determine whether the students achieved learning after taking the courseware. The result revealed that there is a significant achievement of the students after studying the learning module. The E-learning content was validated by the instructors in terms of contents, activities, assessment and format with a grand weighted mean of 4.35 interpreted as Sufficient. Based from the evaluation result, supplementing with the proposed computer-based training can enhance the teachinglearning process in electronic fundamentals.

  19. Understanding uncertainty

    CERN Document Server

    Lindley, Dennis V

    2013-01-01

    Praise for the First Edition ""...a reference for everyone who is interested in knowing and handling uncertainty.""-Journal of Applied Statistics The critically acclaimed First Edition of Understanding Uncertainty provided a study of uncertainty addressed to scholars in all fields, showing that uncertainty could be measured by probability, and that probability obeyed three basic rules that enabled uncertainty to be handled sensibly in everyday life. These ideas were extended to embrace the scientific method and to show how decisions, containing an uncertain element, could be rationally made.

  20. Fundamental gravitational limitations to quantum computing

    International Nuclear Information System (INIS)

    Gambini, R.; Porto, A.; Pullin, J.

    2006-01-01

    Lloyd has considered the ultimate limitations the fundamental laws of physics place on quantum computers. He concludes in particular that for an 'ultimate laptop' (a computer of one liter of volume and one kilogram of mass) the maximum number of operations per second is bounded by 10 51 . The limit is derived considering ordinary quantum mechanics. Here we consider additional limits that are placed by quantum gravity ideas, namely the use of a relational notion of time and fundamental gravitational limits that exist on time measurements. We then particularize for the case of an ultimate laptop and show that the maximum number of operations is further constrained to 10 47 per second. (authors)