WorldWideScience

Sample records for validate existing models

  1. Modeling and validation of existing VAV system components

    Energy Technology Data Exchange (ETDEWEB)

    Nassif, N.; Kajl, S.; Sabourin, R. [Ecole de Technologie Superieure, Montreal, PQ (Canada)

    2004-07-01

    The optimization of supervisory control strategies and local-loop controllers can improve the performance of HVAC (heating, ventilating, air-conditioning) systems. In this study, the component model of the fan, the damper and the cooling coil were developed and validated against monitored data of an existing variable air volume (VAV) system installed at Montreal's Ecole de Technologie Superieure. The measured variables that influence energy use in individual HVAC models included: (1) outdoor and return air temperature and relative humidity, (2) supply air and water temperatures, (3) zone airflow rates, (4) supply duct, outlet fan, mixing plenum static pressures, (5) fan speed, and (6) minimum and principal damper and cooling and heating coil valve positions. The additional variables that were considered, but not measured were: (1) fan and outdoor airflow rate, (2) inlet and outlet cooling coil relative humidity, and (3) liquid flow rate through the heating or cooling coils. The paper demonstrates the challenges of the validation process when monitored data of existing VAV systems are used. 7 refs., 11 figs.

  2. Pharmacokinetic modeling of gentamicin in treatment of infective endocarditis: Model development and validation of existing models

    Science.gov (United States)

    van der Wijk, Lars; Proost, Johannes H.; Sinha, Bhanu; Touw, Daan J.

    2017-01-01

    Gentamicin shows large variations in half-life and volume of distribution (Vd) within and between individuals. Thus, monitoring and accurately predicting serum levels are required to optimize effectiveness and minimize toxicity. Currently, two population pharmacokinetic models are applied for predicting gentamicin doses in adults. For endocarditis patients the optimal model is unknown. We aimed at: 1) creating an optimal model for endocarditis patients; and 2) assessing whether the endocarditis and existing models can accurately predict serum levels. We performed a retrospective observational two-cohort study: one cohort to parameterize the endocarditis model by iterative two-stage Bayesian analysis, and a second cohort to validate and compare all three models. The Akaike Information Criterion and the weighted sum of squares of the residuals divided by the degrees of freedom were used to select the endocarditis model. Median Prediction Error (MDPE) and Median Absolute Prediction Error (MDAPE) were used to test all models with the validation dataset. We built the endocarditis model based on data from the modeling cohort (65 patients) with a fixed 0.277 L/h/70kg metabolic clearance, 0.698 (±0.358) renal clearance as fraction of creatinine clearance, and Vd 0.312 (±0.076) L/kg corrected lean body mass. External validation with data from 14 validation cohort patients showed a similar predictive power of the endocarditis model (MDPE -1.77%, MDAPE 4.68%) as compared to the intensive-care (MDPE -1.33%, MDAPE 4.37%) and standard (MDPE -0.90%, MDAPE 4.82%) models. All models acceptably predicted pharmacokinetic parameters for gentamicin in endocarditis patients. However, these patients appear to have an increased Vd, similar to intensive care patients. Vd mainly determines the height of peak serum levels, which in turn correlate with bactericidal activity. In order to maintain simplicity, we advise to use the existing intensive-care model in clinical practice to avoid

  3. Pharmacokinetic modeling of gentamicin in treatment of infective endocarditis: Model development and validation of existing models.

    Directory of Open Access Journals (Sweden)

    Anna Gomes

    Full Text Available Gentamicin shows large variations in half-life and volume of distribution (Vd within and between individuals. Thus, monitoring and accurately predicting serum levels are required to optimize effectiveness and minimize toxicity. Currently, two population pharmacokinetic models are applied for predicting gentamicin doses in adults. For endocarditis patients the optimal model is unknown. We aimed at: 1 creating an optimal model for endocarditis patients; and 2 assessing whether the endocarditis and existing models can accurately predict serum levels. We performed a retrospective observational two-cohort study: one cohort to parameterize the endocarditis model by iterative two-stage Bayesian analysis, and a second cohort to validate and compare all three models. The Akaike Information Criterion and the weighted sum of squares of the residuals divided by the degrees of freedom were used to select the endocarditis model. Median Prediction Error (MDPE and Median Absolute Prediction Error (MDAPE were used to test all models with the validation dataset. We built the endocarditis model based on data from the modeling cohort (65 patients with a fixed 0.277 L/h/70kg metabolic clearance, 0.698 (±0.358 renal clearance as fraction of creatinine clearance, and Vd 0.312 (±0.076 L/kg corrected lean body mass. External validation with data from 14 validation cohort patients showed a similar predictive power of the endocarditis model (MDPE -1.77%, MDAPE 4.68% as compared to the intensive-care (MDPE -1.33%, MDAPE 4.37% and standard (MDPE -0.90%, MDAPE 4.82% models. All models acceptably predicted pharmacokinetic parameters for gentamicin in endocarditis patients. However, these patients appear to have an increased Vd, similar to intensive care patients. Vd mainly determines the height of peak serum levels, which in turn correlate with bactericidal activity. In order to maintain simplicity, we advise to use the existing intensive-care model in clinical practice to

  4. Model validation and calibration based on component functions of model output

    International Nuclear Information System (INIS)

    Wu, Danqing; Lu, Zhenzhou; Wang, Yanping; Cheng, Lei

    2015-01-01

    The target in this work is to validate the component functions of model output between physical observation and computational model with the area metric. Based on the theory of high dimensional model representations (HDMR) of independent input variables, conditional expectations are component functions of model output, and the conditional expectations reflect partial information of model output. Therefore, the model validation of conditional expectations tells the discrepancy between the partial information of the computational model output and that of the observations. Then a calibration of the conditional expectations is carried out to reduce the value of model validation metric. After that, a recalculation of the model validation metric of model output is taken with the calibrated model parameters, and the result shows that a reduction of the discrepancy in the conditional expectations can help decrease the difference in model output. At last, several examples are employed to demonstrate the rationality and necessity of the methodology in case of both single validation site and multiple validation sites. - Highlights: • A validation metric of conditional expectations of model output is proposed. • HDRM explains the relationship of conditional expectations and model output. • An improved approach of parameter calibration updates the computational models. • Validation and calibration process are applied at single site and multiple sites. • Validation and calibration process show a superiority than existing methods

  5. Base Flow Model Validation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is the systematic "building-block" validation of CFD/turbulence models employing a GUI driven CFD code (RPFM) and existing as well as new data sets to...

  6. Development and preliminary validation of a leadership competency instrument for existing and emerging allied health professional leaders.

    Science.gov (United States)

    Ang, Hui-Gek; Koh, Jeremy Meng-Yeow; Lee, Jeffrey; Pua, Yong-Hao

    2016-02-19

    No instruments, to our knowledge, exist to assess leadership competency in existing and emerging allied health professional (AHP) leaders. This paper describes the development and preliminary exploration of the psychometric properties of a leadership competency instrument for existing and emerging AHP leaders and examines (i) its factor structure, (ii) its convergent validity with the Leadership Practices Inventory (LPI), and (iii) its discriminative validity in AHPs with different grades. During development, we included 25 items in the AHEAD (Aspiring leaders in Healthcare-Empowering individuals, Achieving excellence, Developing talents) instrument. A cross-sectional study was then conducted in 106 high-potential AHPs from Singapore General Hospital (34 men and 72 women) of different professional grades (49 principal-grade AHPs, 41 senior-grade AHPs, and 16 junior-grade AHPs) who completed both AHEAD and LPI instruments. Exploratory factor analysis was used to test the theoretical structure of AHEAD. Spearman correlation analysis was performed to evaluate the convergent validity of AHEAD with LPI. Using proportional odds regression models, we evaluated the association of grades of AHPs with AHEAD and LPI. To assess discriminative validity, the c-statistics - a measure of discrimination - were derived from these ordinal models. As theorized, factor analysis suggested a two-factor solution, where "skills" and "values" formed separate factors. Internal consistency of AHEAD was excellent (α-values > 0.88). Total and component AHEAD and LPI scores correlated moderately (Spearman ρ-values, 0.37 to 0.58). The c-index for discriminating between AHP grades was higher for AHEAD than for the LPI (0.76 vs. 0.65). The factorial structure of AHEAD was generally supported in our study. AHEAD showed convergent validity with the LPI and outperformed the LPI in terms of discriminative validity. These results provide initial evidence for the use of AHEAD to assess leadership

  7. Evaluating Existing and New Validity Evidence for the Academic Motivation Scale

    Science.gov (United States)

    Fairchild, Amanda J.; Horst, S. Jeanne; Finney, Sara J.; Barron, Kenneth E.

    2005-01-01

    The current study evaluates existing and new validity evidence for the Academic Motivation Scale (AMS; Vallerand et al., 1992). We first provide a narrative review synthesizing past research, and then conduct a validity investigation of the scores from the measure. Data analysis using a sample of 1406 American college students provided construct…

  8. Preliminary Validation of the MATRA-LMR Code Using Existing Sodium-Cooled Experimental Data

    International Nuclear Information System (INIS)

    Choi, Sun Rock; Kim, Sangji

    2014-01-01

    The main objective of the SFR prototype plant is to verify TRU metal fuel performance, reactor operation, and transmutation ability of high-level wastes. The core thermal-hydraulic design is used to ensure the safe fuel performance during the whole plant operation. The fuel design limit is highly dependent on both the maximum cladding temperature and the uncertainties of the design parameters. Therefore, an accurate temperature calculation in each subassembly is highly important to assure a safe and reliable operation of the reactor systems. The current core thermalhydraulic design is mainly performed using the SLTHEN (Steady-State LMR Thermal-Hydraulic Analysis Code Based on ENERGY Model) code, which has been already validated using the existing sodium-cooled experimental data. In addition to the SLTHEN code, a detailed analysis is performed using the MATRA-LMR (Multichannel Analyzer for Transient and steady-state in Rod Array-Liquid Metal Reactor) code. In this work, the MATRA-LMR code is validated for a single subassembly evaluation using the previous experimental data. The MATRA-LMR code has been validated using existing sodium-cooled experimental data. The results demonstrate that the design code appropriately predicts the temperature distributions compared with the experimental values. Major differences are observed in the experiments with the large pin number due to the radial-wise mixing difference

  9. Structural system identification: Structural dynamics model validation

    Energy Technology Data Exchange (ETDEWEB)

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  10. Some considerations for validation of repository performance assessment models

    International Nuclear Information System (INIS)

    Eisenberg, N.

    1991-01-01

    Validation is an important aspect of the regulatory uses of performance assessment. A substantial body of literature exists indicating the manner in which validation of models is usually pursued. Because performance models for a nuclear waste repository cannot be tested over the long time periods for which the model must make predictions, the usual avenue for model validation is precluded. Further impediments to model validation include a lack of fundamental scientific theory to describe important aspects of repository performance and an inability to easily deduce the complex, intricate structures characteristic of a natural system. A successful strategy for validation must attempt to resolve these difficulties in a direct fashion. Although some procedural aspects will be important, the main reliance of validation should be on scientific substance and logical rigor. The level of validation needed will be mandated, in part, by the uses to which these models are put, rather than by the ideal of validation of a scientific theory. Because of the importance of the validation of performance assessment models, the NRC staff has engaged in a program of research and international cooperation to seek progress in this important area. 2 figs., 16 refs

  11. A validation study for the gas migration modelling of the compacted bentonite using existing experiment data

    International Nuclear Information System (INIS)

    Tawara, Y.; Mori, K.; Tada, K.; Shimura, T.; Sato, S.; Yamamoto, S.; Hayashi, H.

    2010-01-01

    gas to enter the water-saturated bentonite without propagation of pressure-induced pathway. In this validation study, we have adopted here two computer codes GETFLOWS and Code B right which are based on different conceptual models, respectively. GETFLOWS is the conventional non-isothermal multi-phase fluid-flow code. However pressure-induced macroscopic pathway propagation of porous media is incorporated by changing porosity and permeability explicitly depending on the pore pressure distribution. Code B right is so called coupled THM code and can be applied to non-isothermal two-phase flow in deformable porous media. Automatic inversion code namely UCODE-2005, which was developed by U.S Geological Survey, was used with GETFLOWS. Good matching was attained reasonably between the simulated and observed flow rate in both GETFLOWS and Code-Bright. However when we neglected the pressure-induced pathway propagations, any combinations of flow parameters could not provide a reasonable match between simulated and observed results. This also means that the capillary threshold for gas entry into water-saturated bentonite exists, suggesting consideration of unconventional two phase flow. On the other hand, the identified residual water saturation eventually, which can reproduce observed behaviour well, became extremely high. When we consider long-term behaviour including the re-saturation period after closure of disposal system, it is not available directly as the parameter of the unsaturated bentonite. The identified residual water saturation is only applicable to the fully-water saturated environments. The future work will focus on the gas flow in unsaturated bentonite using experimental data from not only laboratory but also in-situ data. In addition, we are planning to develop the modelling technique of long-term water and gas migration behaviour in the EBS which includes both re-saturation and gas migration phase considering the contribution of THMC coupled phenomena

  12. A proposed best practice model validation framework for banks

    Directory of Open Access Journals (Sweden)

    Pieter J. (Riaan de Jongh

    2017-06-01

    Full Text Available Background: With the increasing use of complex quantitative models in applications throughout the financial world, model risk has become a major concern. The credit crisis of 2008–2009 provoked added concern about the use of models in finance. Measuring and managing model risk has subsequently come under scrutiny from regulators, supervisors, banks and other financial institutions. Regulatory guidance indicates that meticulous monitoring of all phases of model development and implementation is required to mitigate this risk. Considerable resources must be mobilised for this purpose. The exercise must embrace model development, assembly, implementation, validation and effective governance. Setting: Model validation practices are generally patchy, disparate and sometimes contradictory, and although the Basel Accord and some regulatory authorities have attempted to establish guiding principles, no definite set of global standards exists. Aim: Assessing the available literature for the best validation practices. Methods: This comprehensive literature study provided a background to the complexities of effective model management and focussed on model validation as a component of model risk management. Results: We propose a coherent ‘best practice’ framework for model validation. Scorecard tools are also presented to evaluate if the proposed best practice model validation framework has been adequately assembled and implemented. Conclusion: The proposed best practice model validation framework is designed to assist firms in the construction of an effective, robust and fully compliant model validation programme and comprises three principal elements: model validation governance, policy and process.

  13. Validating EHR clinical models using ontology patterns.

    Science.gov (United States)

    Martínez-Costa, Catalina; Schulz, Stefan

    2017-12-01

    Clinical models are artefacts that specify how information is structured in electronic health records (EHRs). However, the makeup of clinical models is not guided by any formal constraint beyond a semantically vague information model. We address this gap by advocating ontology design patterns as a mechanism that makes the semantics of clinical models explicit. This paper demonstrates how ontology design patterns can validate existing clinical models using SHACL. Based on the Clinical Information Modelling Initiative (CIMI), we show how ontology patterns detect both modeling and terminology binding errors in CIMI models. SHACL, a W3C constraint language for the validation of RDF graphs, builds on the concept of "Shape", a description of data in terms of expected cardinalities, datatypes and other restrictions. SHACL, as opposed to OWL, subscribes to the Closed World Assumption (CWA) and is therefore more suitable for the validation of clinical models. We have demonstrated the feasibility of the approach by manually describing the correspondences between six CIMI clinical models represented in RDF and two SHACL ontology design patterns. Using a Java-based SHACL implementation, we found at least eleven modeling and binding errors within these CIMI models. This demonstrates the usefulness of ontology design patterns not only as a modeling tool but also as a tool for validation. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Developing rural palliative care: validating a conceptual model.

    Science.gov (United States)

    Kelley, Mary Lou; Williams, Allison; DeMiglio, Lily; Mettam, Hilary

    2011-01-01

    The purpose of this research was to validate a conceptual model for developing palliative care in rural communities. This model articulates how local rural healthcare providers develop palliative care services according to four sequential phases. The model has roots in concepts of community capacity development, evolves from collaborative, generalist rural practice, and utilizes existing health services infrastructure. It addresses how rural providers manage challenges, specifically those related to: lack of resources, minimal community understanding of palliative care, health professionals' resistance, the bureaucracy of the health system, and the obstacles of providing services in rural environments. Seven semi-structured focus groups were conducted with interdisciplinary health providers in 7 rural communities in two Canadian provinces. Using a constant comparative analysis approach, focus group data were analyzed by examining participants' statements in relation to the model and comparing emerging themes in the development of rural palliative care to the elements of the model. The data validated the conceptual model as the model was able to theoretically predict and explain the experiences of the 7 rural communities that participated in the study. New emerging themes from the data elaborated existing elements in the model and informed the requirement for minor revisions. The model was validated and slightly revised, as suggested by the data. The model was confirmed as being a useful theoretical tool for conceptualizing the development of rural palliative care that is applicable in diverse rural communities.

  15. Groundwater Model Validation

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed E. Hassan

    2006-01-24

    Models have an inherent uncertainty. The difficulty in fully characterizing the subsurface environment makes uncertainty an integral component of groundwater flow and transport models, which dictates the need for continuous monitoring and improvement. Building and sustaining confidence in closure decisions and monitoring networks based on models of subsurface conditions require developing confidence in the models through an iterative process. The definition of model validation is postulated as a confidence building and long-term iterative process (Hassan, 2004a). Model validation should be viewed as a process not an end result. Following Hassan (2004b), an approach is proposed for the validation process of stochastic groundwater models. The approach is briefly summarized herein and detailed analyses of acceptance criteria for stochastic realizations and of using validation data to reduce input parameter uncertainty are presented and applied to two case studies. During the validation process for stochastic models, a question arises as to the sufficiency of the number of acceptable model realizations (in terms of conformity with validation data). Using a hierarchical approach to make this determination is proposed. This approach is based on computing five measures or metrics and following a decision tree to determine if a sufficient number of realizations attain satisfactory scores regarding how they represent the field data used for calibration (old) and used for validation (new). The first two of these measures are applied to hypothetical scenarios using the first case study and assuming field data consistent with the model or significantly different from the model results. In both cases it is shown how the two measures would lead to the appropriate decision about the model performance. Standard statistical tests are used to evaluate these measures with the results indicating they are appropriate measures for evaluating model realizations. The use of validation

  16. Model Validation Status Review

    International Nuclear Information System (INIS)

    E.L. Hardin

    2001-01-01

    The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified, and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M and O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural and

  17. Model Validation Status Review

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2001-11-28

    The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified, and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M&O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural and

  18. Advanced training simulator models. Implementation and validation

    International Nuclear Information System (INIS)

    Borkowsky, Jeffrey; Judd, Jerry; Belblidia, Lotfi; O'farrell, David; Andersen, Peter

    2008-01-01

    Modern training simulators are required to replicate plant data for both thermal-hydraulic and neutronic response. Replication is required such that reactivity manipulation on the simulator properly trains the operator for reactivity manipulation at the plant. This paper discusses advanced models which perform this function in real-time using the coupled code system THOR/S3R. This code system models the all fluids systems in detail using an advanced, two-phase thermal-hydraulic a model. The nuclear core is modeled using an advanced, three-dimensional nodal method and also by using cycle-specific nuclear data. These models are configured to run interactively from a graphical instructor station or handware operation panels. The simulator models are theoretically rigorous and are expected to replicate the physics of the plant. However, to verify replication, the models must be independently assessed. Plant data is the preferred validation method, but plant data is often not available for many important training scenarios. In the absence of data, validation may be obtained by slower-than-real-time transient analysis. This analysis can be performed by coupling a safety analysis code and a core design code. Such a coupling exists between the codes RELAP5 and SIMULATE-3K (S3K). RELAP5/S3K is used to validate the real-time model for several postulated plant events. (author)

  19. Validation of HEDR models

    International Nuclear Information System (INIS)

    Napier, B.A.; Simpson, J.C.; Eslinger, P.W.; Ramsdell, J.V. Jr.; Thiede, M.E.; Walters, W.H.

    1994-05-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project has developed a set of computer models for estimating the possible radiation doses that individuals may have received from past Hanford Site operations. This document describes the validation of these models. In the HEDR Project, the model validation exercise consisted of comparing computational model estimates with limited historical field measurements and experimental measurements that are independent of those used to develop the models. The results of any one test do not mean that a model is valid. Rather, the collection of tests together provide a level of confidence that the HEDR models are valid

  20. Thermodynamic Modeling of a Solid Oxide Fuel Cell to Couple with an Existing Gas Turbine Engine Model

    Science.gov (United States)

    Brinson, Thomas E.; Kopasakis, George

    2004-01-01

    The Controls and Dynamics Technology Branch at NASA Glenn Research Center are interested in combining a solid oxide fuel cell (SOFC) to operate in conjunction with a gas turbine engine. A detailed engine model currently exists in the Matlab/Simulink environment. The idea is to incorporate a SOFC model within the turbine engine simulation and observe the hybrid system's performance. The fuel cell will be heated to its appropriate operating condition by the engine s combustor. Once the fuel cell is operating at its steady-state temperature, the gas burner will back down slowly until the engine is fully operating on the hot gases exhausted from the SOFC. The SOFC code is based on a steady-state model developed by The U.S. Department of Energy (DOE). In its current form, the DOE SOFC model exists in Microsoft Excel and uses Visual Basics to create an I-V (current-voltage) profile. For the project's application, the main issue with this model is that the gas path flow and fuel flow temperatures are used as input parameters instead of outputs. The objective is to create a SOFC model based on the DOE model that inputs the fuel cells flow rates and outputs temperature of the flow streams; therefore, creating a temperature profile as a function of fuel flow rate. This will be done by applying the First Law of Thermodynamics for a flow system to the fuel cell. Validation of this model will be done in two procedures. First, for a given flow rate the exit stream temperature will be calculated and compared to DOE SOFC temperature as a point comparison. Next, an I-V curve and temperature curve will be generated where the I-V curve will be compared with the DOE SOFC I-V curve. Matching I-V curves will suggest validation of the temperature curve because voltage is a function of temperature. Once the temperature profile is created and validated, the model will then be placed into the turbine engine simulation for system analysis.

  1. Results from the Savannah River Laboratory model validation workshop

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1981-01-01

    To evaluate existing and newly developed air pollution models used in DOE-funded laboratories, the Savannah River Laboratory sponsored a model validation workshop. The workshop used Kr-85 measurements and meteorology data obtained at SRL during 1975 to 1977. Individual laboratories used models to calculate daily, weekly, monthly or annual test periods. Cumulative integrated air concentrations were reported at each grid point and at each of the eight sampler locations

  2. Prospective validation of pathologic complete response models in rectal cancer: Transferability and reproducibility.

    Science.gov (United States)

    van Soest, Johan; Meldolesi, Elisa; van Stiphout, Ruud; Gatta, Roberto; Damiani, Andrea; Valentini, Vincenzo; Lambin, Philippe; Dekker, Andre

    2017-09-01

    Multiple models have been developed to predict pathologic complete response (pCR) in locally advanced rectal cancer patients. Unfortunately, validation of these models normally omit the implications of cohort differences on prediction model performance. In this work, we will perform a prospective validation of three pCR models, including information whether this validation will target transferability or reproducibility (cohort differences) of the given models. We applied a novel methodology, the cohort differences model, to predict whether a patient belongs to the training or to the validation cohort. If the cohort differences model performs well, it would suggest a large difference in cohort characteristics meaning we would validate the transferability of the model rather than reproducibility. We tested our method in a prospective validation of three existing models for pCR prediction in 154 patients. Our results showed a large difference between training and validation cohort for one of the three tested models [Area under the Receiver Operating Curve (AUC) cohort differences model: 0.85], signaling the validation leans towards transferability. Two out of three models had a lower AUC for validation (0.66 and 0.58), one model showed a higher AUC in the validation cohort (0.70). We have successfully applied a new methodology in the validation of three prediction models, which allows us to indicate if a validation targeted transferability (large differences between training/validation cohort) or reproducibility (small cohort differences). © 2017 American Association of Physicists in Medicine.

  3. The concept of validation of numerical models for consequence analysis

    International Nuclear Information System (INIS)

    Borg, Audun; Paulsen Husted, Bjarne; Njå, Ove

    2014-01-01

    Numerical models such as computational fluid dynamics (CFD) models are increasingly used in life safety studies and other types of analyses to calculate the effects of fire and explosions. The validity of these models is usually established by benchmark testing. This is done to quantitatively measure the agreement between the predictions provided by the model and the real world represented by observations in experiments. This approach assumes that all variables in the real world relevant for the specific study are adequately measured in the experiments and in the predictions made by the model. In this paper the various definitions of validation for CFD models used for hazard prediction are investigated to assess their implication for consequence analysis in a design phase. In other words, how is uncertainty in the prediction of future events reflected in the validation process? The sources of uncertainty are viewed from the perspective of the safety engineer. An example of the use of a CFD model is included to illustrate the assumptions the analyst must make and how these affect the prediction made by the model. The assessments presented in this paper are based on a review of standards and best practice guides for CFD modeling and the documentation from two existing CFD programs. Our main thrust has been to assess how validation work is performed and communicated in practice. We conclude that the concept of validation adopted for numerical models is adequate in terms of model performance. However, it does not address the main sources of uncertainty from the perspective of the safety engineer. Uncertainty in the input quantities describing future events, which are determined by the model user, outweighs the inaccuracies in the model as reported in validation studies. - Highlights: • Examine the basic concept of validation applied to models for consequence analysis. • Review standards and guides for validation of numerical models. • Comparison of the validation

  4. PEMFC modeling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, J.V.C. [Federal University of Parana (UFPR), Curitiba, PR (Brazil). Dept. of Mechanical Engineering], E-mail: jvargas@demec.ufpr.br; Ordonez, J.C.; Martins, L.S. [Florida State University, Tallahassee, FL (United States). Center for Advanced Power Systems], Emails: ordonez@caps.fsu.edu, martins@caps.fsu.edu

    2009-07-01

    In this paper, a simplified and comprehensive PEMFC mathematical model introduced in previous studies is experimentally validated. Numerical results are obtained for an existing set of commercial unit PEM fuel cells. The model accounts for pressure drops in the gas channels, and for temperature gradients with respect to space in the flow direction, that are investigated by direct infrared imaging, showing that even at low current operation such gradients are present in fuel cell operation, and therefore should be considered by a PEMFC model, since large coolant flow rates are limited due to induced high pressure drops in the cooling channels. The computed polarization and power curves are directly compared to the experimentally measured ones with good qualitative and quantitative agreement. The combination of accuracy and low computational time allow for the future utilization of the model as a reliable tool for PEMFC simulation, control, design and optimization purposes. (author)

  5. Modeling the Static Force of a Festo Pneumatic Muscle Actuator: A New Approach and a Comparison to Existing Models

    Directory of Open Access Journals (Sweden)

    Mirco Martens

    2017-11-01

    Full Text Available In this paper, a new approach for modeling the static force characteristic of Festo pneumatic muscle actuators (PMAs will be presented. The model is physically motivated and therefore gives a deeper understanding of the Festo PMA. After introducing the new model, it will be validated through a comparison to a measured force map of a Festo DMSP-10-250 and a DMSP-20-300, respectively. It will be shown that the error between the new model and the measured data is below 4.4% for the DMSP-10-250 and below 2.35% for the DMSP-20-300. In addition, the quality of the presented model will be compared to the quality of existing models by comparing the maximum error. It can be seen that the newly introduced model is closer to the measured force characteristic of a Festo PMA than any existing model.

  6. Implementation and automated validation of the minimal Z' model in FeynRules

    International Nuclear Information System (INIS)

    Basso, L.; Christensen, N.D.; Duhr, C.; Fuks, B.; Speckner, C.

    2012-01-01

    We describe the implementation of a well-known class of U(1) gauge models, the 'minimal' Z' models, in FeynRules. We also describe a new automated validation tool for FeynRules models which is controlled by a web interface and allows the user to run a complete set of 2 → 2 processes on different matrix element generators, different gauges, and compare between them all. If existing, the comparison with independent implementations is also possible. This tool has been used to validate our implementation of the 'minimal' Z' models. (authors)

  7. Validation of models that predict Cesarean section after induction of labor

    NARCIS (Netherlands)

    Verhoeven, C. J. M.; Oudenaarden, A.; Hermus, M. A. A.; Porath, M. M.; Oei, S. G.; Mol, B. W. J.

    2009-01-01

    Objective Models for the prediction of Cesarean delivery after induction of labor can be used to improve clinical decision-making. The objective of this study was to validate two existing models, published by Peregrine et al. and Rane et al., for the prediction of Cesarean section after induction of

  8. Improving Perovskite Solar Cells: Insights From a Validated Device Model

    NARCIS (Netherlands)

    Sherkar, Tejas S.; Momblona, Cristina; Gil-Escrig, Lidon; Bolink, Henk J.; Koster, L. Jan Anton

    2017-01-01

    To improve the efficiency of existing perovskite solar cells (PSCs), a detailed understanding of the underlying device physics during their operation is essential. Here, a device model has been developed and validated that describes the operation of PSCs and quantitatively explains the role of

  9. Common data model for natural language processing based on two existing standard information models: CDA+GrAF.

    Science.gov (United States)

    Meystre, Stéphane M; Lee, Sanghoon; Jung, Chai Young; Chevrier, Raphaël D

    2012-08-01

    An increasing need for collaboration and resources sharing in the Natural Language Processing (NLP) research and development community motivates efforts to create and share a common data model and a common terminology for all information annotated and extracted from clinical text. We have combined two existing standards: the HL7 Clinical Document Architecture (CDA), and the ISO Graph Annotation Format (GrAF; in development), to develop such a data model entitled "CDA+GrAF". We experimented with several methods to combine these existing standards, and eventually selected a method wrapping separate CDA and GrAF parts in a common standoff annotation (i.e., separate from the annotated text) XML document. Two use cases, clinical document sections, and the 2010 i2b2/VA NLP Challenge (i.e., problems, tests, and treatments, with their assertions and relations), were used to create examples of such standoff annotation documents, and were successfully validated with the XML schemata provided with both standards. We developed a tool to automatically translate annotation documents from the 2010 i2b2/VA NLP Challenge format to GrAF, and automatically generated 50 annotation documents using this tool, all successfully validated. Finally, we adapted the XSL stylesheet provided with HL7 CDA to allow viewing annotation XML documents in a web browser, and plan to adapt existing tools for translating annotation documents between CDA+GrAF and the UIMA and GATE frameworks. This common data model may ease directly comparing NLP tools and applications, combining their output, transforming and "translating" annotations between different NLP applications, and eventually "plug-and-play" of different modules in NLP applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Optimization and validation of an existing, surgical and robust dry eye rat model for the evaluation of therapeutic compounds.

    Science.gov (United States)

    Joossen, Cedric; Lanckacker, Ellen; Zakaria, Nadia; Koppen, Carina; Joossens, Jurgen; Cools, Nathalie; De Meester, Ingrid; Lambeir, Anne-Marie; Delputte, Peter; Maes, Louis; Cos, Paul

    2016-05-01

    The aim of this research was to optimize and validate an animal model for dry eye, adopting clinically relevant evaluation parameters. Dry eye was induced in female Wistar rats by surgical removal of the exorbital lacrimal gland. The clinical manifestations of dry eye were evaluated by tear volume measurements, corneal fluorescein staining, cytokine measurements in tear fluid, MMP-9 mRNA expression and CD3(+) cell infiltration in the conjunctiva. The animal model was validated by treatment with Restasis(®) (4 weeks) and commercial dexamethasone eye drops (2 weeks). Removal of the exorbital lacrimal gland resulted in 50% decrease in tear volume and a gradual increase in corneal fluorescein staining. Elevated levels of TNF-α and IL-1α have been registered in tear fluid together with an increase in CD3(+) cells in the palpebral conjunctiva when compared to control animals. Additionally, an increase in MMP-9 mRNA expression was recorded in conjunctival tissue. Reference treatment with Restasis(®) and dexamethasone eye drops had a positive effect on all evaluation parameters, except on tear volume. This rat dry eye model was validated extensively and judged appropriate for the evaluation of novel compounds and therapeutic preparations for dry eye disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Development and Validation of a Polarimetric-MCScene 3D Atmospheric Radiation Model

    Energy Technology Data Exchange (ETDEWEB)

    Berk, Alexander [Spectral Sciences, Inc., Burlington, MA (United States); Hawes, Frederick [Spectral Sciences, Inc., Burlington, MA (United States); Fox, Marsha [Spectral Sciences, Inc., Burlington, MA (United States)

    2016-03-15

    Polarimetric measurements can substantially enhance the ability of both spectrally resolved and single band imagery to detect the proliferation of weapons of mass destruction, providing data for locating and identifying facilities, materials, and processes of undeclared and proliferant nuclear weapons programs worldwide. Unfortunately, models do not exist that efficiently and accurately predict spectral polarized signatures for the materials of interest embedded in complex 3D environments. Having such a model would enable one to test hypotheses and optimize both the enhancement of scene contrast and the signal processing for spectral signature extraction. The Phase I set the groundwork for development of fully validated polarimetric spectral signature and scene simulation models. This has been accomplished 1. by (a) identifying and downloading state-of-the-art surface and atmospheric polarimetric data sources, (b) implementing tools for generating custom polarimetric data, and (c) identifying and requesting US Government funded field measurement data for use in validation; 2. by formulating an approach for upgrading the radiometric spectral signature model MODTRAN to generate polarimetric intensities through (a) ingestion of the polarimetric data, (b) polarimetric vectorization of existing MODTRAN modules, and (c) integration of a newly developed algorithm for computing polarimetric multiple scattering contributions; 3. by generating an initial polarimetric model that demonstrates calculation of polarimetric solar and lunar single scatter intensities arising from the interaction of incoming irradiances with molecules and aerosols; 4. by developing a design and implementation plan to (a) automate polarimetric scene construction and (b) efficiently sample polarimetric scattering and reflection events, for use in a to be developed polarimetric version of the existing first-principles synthetic scene simulation model, MCScene; and 5. by planning a validation field

  12. Development and validation of a mass casualty conceptual model.

    Science.gov (United States)

    Culley, Joan M; Effken, Judith A

    2010-03-01

    To develop and validate a conceptual model that provides a framework for the development and evaluation of information systems for mass casualty events. The model was designed based on extant literature and existing theoretical models. A purposeful sample of 18 experts validated the model. Open-ended questions, as well as a 7-point Likert scale, were used to measure expert consensus on the importance of each construct and its relationship in the model and the usefulness of the model to future research. Computer-mediated applications were used to facilitate a modified Delphi technique through which a panel of experts provided validation for the conceptual model. Rounds of questions continued until consensus was reached, as measured by an interquartile range (no more than 1 scale point for each item); stability (change in the distribution of responses less than 15% between rounds); and percent agreement (70% or greater) for indicator questions. Two rounds of the Delphi process were needed to satisfy the criteria for consensus or stability related to the constructs, relationships, and indicators in the model. The panel reached consensus or sufficient stability to retain all 10 constructs, 9 relationships, and 39 of 44 indicators. Experts viewed the model as useful (mean of 5.3 on a 7-point scale). Validation of the model provides the first step in understanding the context in which mass casualty events take place and identifying variables that impact outcomes of care. This study provides a foundation for understanding the complexity of mass casualty care, the roles that nurses play in mass casualty events, and factors that must be considered in designing and evaluating information-communication systems to support effective triage under these conditions.

  13. Validation of simulation models

    DEFF Research Database (Denmark)

    Rehman, Muniza; Pedersen, Stig Andur

    2012-01-01

    In philosophy of science, the interest for computational models and simulations has increased heavily during the past decades. Different positions regarding the validity of models have emerged but the views have not succeeded in capturing the diversity of validation methods. The wide variety...

  14. Internal and External Validation of a multivariable Model to Define Hospital-Acquired Pneumonia After Esophagectomy

    NARCIS (Netherlands)

    Weijs, Teus J; Seesing, Maarten F J; van Rossum, Peter S N; Koëter, Marijn; van der Sluis, Pieter C; Luyer, Misha D P; Ruurda, Jelle P; Nieuwenhuijzen, Grard A P; van Hillegersberg, Richard

    BACKGROUND: Pneumonia is an important complication following esophagectomy; however, a wide range of pneumonia incidence is reported. The lack of one generally accepted definition prevents valid inter-study comparisons. We aimed to simplify and validate an existing scoring model to define pneumonia

  15. Cross-validation of an employee safety climate model in Malaysia.

    Science.gov (United States)

    Bahari, Siti Fatimah; Clarke, Sharon

    2013-06-01

    Whilst substantial research has investigated the nature of safety climate, and its importance as a leading indicator of organisational safety, much of this research has been conducted with Western industrial samples. The current study focuses on the cross-validation of a safety climate model in the non-Western industrial context of Malaysian manufacturing. The first-order factorial validity of Cheyne et al.'s (1998) [Cheyne, A., Cox, S., Oliver, A., Tomas, J.M., 1998. Modelling safety climate in the prediction of levels of safety activity. Work and Stress, 12(3), 255-271] model was tested, using confirmatory factor analysis, in a Malaysian sample. Results showed that the model fit indices were below accepted levels, indicating that the original Cheyne et al. (1998) safety climate model was not supported. An alternative three-factor model was developed using exploratory factor analysis. Although these findings are not consistent with previously reported cross-validation studies, we argue that previous studies have focused on validation across Western samples, and that the current study demonstrates the need to take account of cultural factors in the development of safety climate models intended for use in non-Western contexts. The results have important implications for the transferability of existing safety climate models across cultures (for example, in global organisations) and highlight the need for future research to examine cross-cultural issues in relation to safety climate. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  16. Test-driven verification/validation of model transformations

    Institute of Scientific and Technical Information of China (English)

    László LENGYEL; Hassan CHARAF

    2015-01-01

    Why is it important to verify/validate model transformations? The motivation is to improve the quality of the trans-formations, and therefore the quality of the generated software artifacts. Verified/validated model transformations make it possible to ensure certain properties of the generated software artifacts. In this way, verification/validation methods can guarantee different requirements stated by the actual domain against the generated/modified/optimized software products. For example, a verified/ validated model transformation can ensure the preservation of certain properties during the model-to-model transformation. This paper emphasizes the necessity of methods that make model transformation verified/validated, discusses the different scenarios of model transformation verification and validation, and introduces the principles of a novel test-driven method for verifying/ validating model transformations. We provide a solution that makes it possible to automatically generate test input models for model transformations. Furthermore, we collect and discuss the actual open issues in the field of verification/validation of model transformations.

  17. Validation of the Continuum of Care Conceptual Model for Athletic Therapy

    Directory of Open Access Journals (Sweden)

    Mark R. Lafave

    2015-01-01

    Full Text Available Utilization of conceptual models in field-based emergency care currently borrows from existing standards of medical and paramedical professions. The purpose of this study was to develop and validate a comprehensive conceptual model that could account for injuries ranging from nonurgent to catastrophic events including events that do not follow traditional medical or prehospital care protocols. The conceptual model should represent the continuum of care from the time of initial injury spanning to an athlete’s return to participation in their sport. Finally, the conceptual model should accommodate both novices and experts in the AT profession. This paper chronicles the content validation steps of the Continuum of Care Conceptual Model for Athletic Therapy (CCCM-AT. The stages of model development were domain and item generation, content expert validation using a three-stage modified Ebel procedure, and pilot testing. Only the final stage of the modified Ebel procedure reached a priori 80% consensus on three domains of interest: (1 heading descriptors; (2 the order of the model; (3 the conceptual model as a whole. Future research is required to test the use of the CCCM-AT in order to understand its efficacy in teaching and practice within the AT discipline.

  18. Five year experience in management of perforated peptic ulcer and validation of common mortality risk prediction models - are existing models sufficient? A retrospective cohort study.

    Science.gov (United States)

    Anbalakan, K; Chua, D; Pandya, G J; Shelat, V G

    2015-02-01

    Emergency surgery for perforated peptic ulcer (PPU) is associated with significant morbidity and mortality. Accurate and early risk stratification is important. The primary aim of this study is to validate the various existing MRPMs and secondary aim is to audit our experience of managing PPU. 332 patients who underwent emergency surgery for PPU at a single intuition from January 2008 to December 2012 were studied. Clinical and operative details were collected. Four MRPMs: American Society of Anesthesiology (ASA) score, Boey's score, Mannheim peritonitis index (MPI) and Peptic ulcer perforation (PULP) score were validated. Median age was 54.7 years (range 17-109 years) with male predominance (82.5%). 61.7% presented within 24 h of onset of abdominal pain. Median length of stay was 7 days (range 2-137 days). Intra-abdominal collection, leakage, re-operation and 30-day mortality rates were 8.1%, 2.1%, 1.2% and 7.2% respectively. All the four MRPMs predicted intra-abdominal collection and mortality; however, only MPI predicted leak (p = 0.01) and re-operation (p = 0.02) rates. The area under curve for predicting mortality was 75%, 72%, 77.2% and 75% for ASA score, Boey's score, MPI and PULP score respectively. Emergency surgery for PPU has low morbidity and mortality in our experience. MPI is the only scoring system which predicts all - intra-abdominal collection, leak, reoperation and mortality. All four MRPMs had a similar and fair accuracy to predict mortality, however due to geographic and demographic diversity and inherent weaknesses of exiting MRPMs, quest for development of an ideal model should continue. Copyright © 2015 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  19. An exercise in model validation: Comparing univariate statistics and Monte Carlo-based multivariate statistics

    International Nuclear Information System (INIS)

    Weathers, J.B.; Luck, R.; Weathers, J.W.

    2009-01-01

    The complexity of mathematical models used by practicing engineers is increasing due to the growing availability of sophisticated mathematical modeling tools and ever-improving computational power. For this reason, the need to define a well-structured process for validating these models against experimental results has become a pressing issue in the engineering community. This validation process is partially characterized by the uncertainties associated with the modeling effort as well as the experimental results. The net impact of the uncertainties on the validation effort is assessed through the 'noise level of the validation procedure', which can be defined as an estimate of the 95% confidence uncertainty bounds for the comparison error between actual experimental results and model-based predictions of the same quantities of interest. Although general descriptions associated with the construction of the noise level using multivariate statistics exists in the literature, a detailed procedure outlining how to account for the systematic and random uncertainties is not available. In this paper, the methodology used to derive the covariance matrix associated with the multivariate normal pdf based on random and systematic uncertainties is examined, and a procedure used to estimate this covariance matrix using Monte Carlo analysis is presented. The covariance matrices are then used to construct approximate 95% confidence constant probability contours associated with comparison error results for a practical example. In addition, the example is used to show the drawbacks of using a first-order sensitivity analysis when nonlinear local sensitivity coefficients exist. Finally, the example is used to show the connection between the noise level of the validation exercise calculated using multivariate and univariate statistics.

  20. An exercise in model validation: Comparing univariate statistics and Monte Carlo-based multivariate statistics

    Energy Technology Data Exchange (ETDEWEB)

    Weathers, J.B. [Shock, Noise, and Vibration Group, Northrop Grumman Shipbuilding, P.O. Box 149, Pascagoula, MS 39568 (United States)], E-mail: James.Weathers@ngc.com; Luck, R. [Department of Mechanical Engineering, Mississippi State University, 210 Carpenter Engineering Building, P.O. Box ME, Mississippi State, MS 39762-5925 (United States)], E-mail: Luck@me.msstate.edu; Weathers, J.W. [Structural Analysis Group, Northrop Grumman Shipbuilding, P.O. Box 149, Pascagoula, MS 39568 (United States)], E-mail: Jeffrey.Weathers@ngc.com

    2009-11-15

    The complexity of mathematical models used by practicing engineers is increasing due to the growing availability of sophisticated mathematical modeling tools and ever-improving computational power. For this reason, the need to define a well-structured process for validating these models against experimental results has become a pressing issue in the engineering community. This validation process is partially characterized by the uncertainties associated with the modeling effort as well as the experimental results. The net impact of the uncertainties on the validation effort is assessed through the 'noise level of the validation procedure', which can be defined as an estimate of the 95% confidence uncertainty bounds for the comparison error between actual experimental results and model-based predictions of the same quantities of interest. Although general descriptions associated with the construction of the noise level using multivariate statistics exists in the literature, a detailed procedure outlining how to account for the systematic and random uncertainties is not available. In this paper, the methodology used to derive the covariance matrix associated with the multivariate normal pdf based on random and systematic uncertainties is examined, and a procedure used to estimate this covariance matrix using Monte Carlo analysis is presented. The covariance matrices are then used to construct approximate 95% confidence constant probability contours associated with comparison error results for a practical example. In addition, the example is used to show the drawbacks of using a first-order sensitivity analysis when nonlinear local sensitivity coefficients exist. Finally, the example is used to show the connection between the noise level of the validation exercise calculated using multivariate and univariate statistics.

  1. A practical model for pressure probe system response estimation (with review of existing models)

    Science.gov (United States)

    Hall, B. F.; Povey, T.

    2018-04-01

    The accurate estimation of the unsteady response (bandwidth) of pneumatic pressure probe systems (probe, line and transducer volume) is a common practical problem encountered in the design of aerodynamic experiments. Understanding the bandwidth of the probe system is necessary to capture unsteady flow features accurately. Where traversing probes are used, the desired traverse speed and spatial gradients in the flow dictate the minimum probe system bandwidth required to resolve the flow. Existing approaches for bandwidth estimation are either complex or inaccurate in implementation, so probes are often designed based on experience. Where probe system bandwidth is characterized, it is often done experimentally, requiring careful experimental set-up and analysis. There is a need for a relatively simple but accurate model for estimation of probe system bandwidth. A new model is presented for the accurate estimation of pressure probe bandwidth for simple probes commonly used in wind tunnel environments; experimental validation is provided. An additional, simple graphical method for air is included for convenience.

  2. Using of Structural Equation Modeling Techniques in Cognitive Levels Validation

    Directory of Open Access Journals (Sweden)

    Natalija Curkovic

    2012-10-01

    Full Text Available When constructing knowledge tests, cognitive level is usually one of the dimensions comprising the test specifications with each item assigned to measure a particular level. Recently used taxonomies of the cognitive levels most often represent some modification of the original Bloom’s taxonomy. There are many concerns in current literature about existence of predefined cognitive levels. The aim of this article is to investigate can structural equation modeling techniques confirm existence of different cognitive levels. For the purpose of the research, a Croatian final high-school Mathematics exam was used (N = 9626. Confirmatory factor analysis and structural regression modeling were used to test three different models. Structural equation modeling techniques did not support existence of different cognitive levels in this case. There is more than one possible explanation for that finding. Some other techniques that take into account nonlinear behaviour of the items as well as qualitative techniques might be more useful for the purpose of the cognitive levels validation. Furthermore, it seems that cognitive levels were not efficient descriptors of the items and so improvements are needed in describing the cognitive skills measured by items.

  3. Developing a model for hospital inherent safety assessment: Conceptualization and validation.

    Science.gov (United States)

    Yari, Saeed; Akbari, Hesam; Gholami Fesharaki, Mohammad; Khosravizadeh, Omid; Ghasemi, Mohammad; Barsam, Yalda; Akbari, Hamed

    2018-01-01

    Paying attention to the safety of hospitals, as the most crucial institute for providing medical and health services wherein a bundle of facilities, equipment, and human resource exist, is of significant importance. The present research aims at developing a model for assessing hospitals' safety based on principles of inherent safety design. Face validity (30 experts), content validity (20 experts), construct validity (268 examples), convergent validity, and divergent validity have been employed to validate the prepared questionnaire; and the items analysis, the Cronbach's alpha test, ICC test (to measure reliability of the test), composite reliability coefficient have been used to measure primary reliability. The relationship between variables and factors has been confirmed at 0.05 significance level by conducting confirmatory factor analysis (CFA) and structural equations modeling (SEM) technique with the use of Smart-PLS. R-square and load factors values, which were higher than 0.67 and 0.300 respectively, indicated the strong fit. Moderation (0.970), simplification (0.959), substitution (0.943), and minimization (0.5008) have had the most weights in determining the inherent safety of hospital respectively. Moderation, simplification, and substitution, among the other dimensions, have more weight on the inherent safety, while minimization has the less weight, which could be due do its definition as to minimize the risk.

  4. Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes

    Science.gov (United States)

    Bekbauov, Bakhbergen; Berdyshev, Abdumauvlen; Baishemirov, Zharasbek; Bau, Domenico

    2017-12-01

    Chemical compositional simulation of enhanced oil recovery and surfactant enhanced aquifer remediation processes is a complex task that involves solving dozens of equations for all grid blocks representing a reservoir. In the present work, we perform a numerical validation of the newly developed mathematical formulation which satisfies the conservation laws of mass and energy and allows applying a sequential solution approach to solve the governing equations separately and implicitly. Through its application to the numerical experiment using a wettability alteration model and comparisons with existing chemical compositional model's numerical results, the new model has proven to be practical, reliable and stable.

  5. HEDR model validation plan

    International Nuclear Information System (INIS)

    Napier, B.A.; Gilbert, R.O.; Simpson, J.C.; Ramsdell, J.V. Jr.; Thiede, M.E.; Walters, W.H.

    1993-06-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project has developed a set of computational ''tools'' for estimating the possible radiation dose that individuals may have received from past Hanford Site operations. This document describes the planned activities to ''validate'' these tools. In the sense of the HEDR Project, ''validation'' is a process carried out by comparing computational model predictions with field observations and experimental measurements that are independent of those used to develop the model

  6. Use of existing patient-reported outcome (PRO) instruments and their modification: the ISPOR Good Research Practices for Evaluating and Documenting Content Validity for the Use of Existing Instruments and Their Modification PRO Task Force Report.

    Science.gov (United States)

    Rothman, Margaret; Burke, Laurie; Erickson, Pennifer; Leidy, Nancy Kline; Patrick, Donald L; Petrie, Charles D

    2009-01-01

    Patient-reported outcome (PRO) instruments are used to evaluate the effect of medical products on how patients feel or function. This article presents the results of an ISPOR task force convened to address good clinical research practices for the use of existing or modified PRO instruments to support medical product labeling claims. The focus of the article is on content validity, with specific reference to existing or modified PRO instruments, because of the importance of content validity in selecting or modifying an existing PRO instrument and the lack of consensus in the research community regarding best practices for establishing and documenting this measurement property. Topics addressed in the article include: definition and general description of content validity; PRO concept identification as the important first step in establishing content validity; instrument identification and the initial review process; key issues in qualitative methodology; and potential threats to content validity, with three case examples used to illustrate types of threats and how they might be resolved. A table of steps used to identify and evaluate an existing PRO instrument is provided, and figures are used to illustrate the meaning of content validity in relationship to instrument development and evaluation. RESULTS & RECOMMENDATIONS: Four important threats to content validity are identified: unclear conceptual match between the PRO instrument and the intended claim, lack of direct patient input into PRO item content from the target population in which the claim is desired, no evidence that the most relevant and important item content is contained in the instrument, and lack of documentation to support modifications to the PRO instrument. In some cases, careful review of the threats to content validity in a specific application may be reduced through additional well documented qualitative studies that specifically address the issue of concern. Published evidence of the content

  7. Validation of models with multivariate output

    International Nuclear Information System (INIS)

    Rebba, Ramesh; Mahadevan, Sankaran

    2006-01-01

    This paper develops metrics for validating computational models with experimental data, considering uncertainties in both. A computational model may generate multiple response quantities and the validation experiment might yield corresponding measured values. Alternatively, a single response quantity may be predicted and observed at different spatial and temporal points. Model validation in such cases involves comparison of multiple correlated quantities. Multiple univariate comparisons may give conflicting inferences. Therefore, aggregate validation metrics are developed in this paper. Both classical and Bayesian hypothesis testing are investigated for this purpose, using multivariate analysis. Since, commonly used statistical significance tests are based on normality assumptions, appropriate transformations are investigated in the case of non-normal data. The methodology is implemented to validate an empirical model for energy dissipation in lap joints under dynamic loading

  8. Development and demonstration of a validation methodology for vehicle lateral dynamics simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Kutluay, Emir

    2013-02-01

    In this thesis a validation methodology to be used in the assessment of the vehicle dynamics simulation models is presented. Simulation of vehicle dynamics is used to estimate the dynamic responses of existing or proposed vehicles and has a wide array of applications in the development of vehicle technologies. Although simulation environments, measurement tools and mathematical theories on vehicle dynamics are well established, the methodical link between the experimental test data and validity analysis of the simulation model is still lacking. The developed validation paradigm has a top-down approach to the problem. It is ascertained that vehicle dynamics simulation models can only be validated using test maneuvers although they are aimed for real world maneuvers. Test maneuvers are determined according to the requirements of the real event at the start of the model development project and data handling techniques, validation metrics and criteria are declared for each of the selected maneuvers. If the simulation results satisfy these criteria, then the simulation is deemed ''not invalid''. If the simulation model fails to meet the criteria, the model is deemed invalid, and model iteration should be performed. The results are analyzed to determine if the results indicate a modeling error or a modeling inadequacy; and if a conditional validity in terms of system variables can be defined. Three test cases are used to demonstrate the application of the methodology. The developed methodology successfully identified the shortcomings of the tested simulation model, and defined the limits of application. The tested simulation model is found to be acceptable but valid only in a certain dynamical range. Several insights for the deficiencies of the model are reported in the analysis but the iteration step of the methodology is not demonstrated. Utilizing the proposed methodology will help to achieve more time and cost efficient simulation projects with

  9. Model Validation in Ontology Based Transformations

    Directory of Open Access Journals (Sweden)

    Jesús M. Almendros-Jiménez

    2012-10-01

    Full Text Available Model Driven Engineering (MDE is an emerging approach of software engineering. MDE emphasizes the construction of models from which the implementation should be derived by applying model transformations. The Ontology Definition Meta-model (ODM has been proposed as a profile for UML models of the Web Ontology Language (OWL. In this context, transformations of UML models can be mapped into ODM/OWL transformations. On the other hand, model validation is a crucial task in model transformation. Meta-modeling permits to give a syntactic structure to source and target models. However, semantic requirements have to be imposed on source and target models. A given transformation will be sound when source and target models fulfill the syntactic and semantic requirements. In this paper, we present an approach for model validation in ODM based transformations. Adopting a logic programming based transformational approach we will show how it is possible to transform and validate models. Properties to be validated range from structural and semantic requirements of models (pre and post conditions to properties of the transformation (invariants. The approach has been applied to a well-known example of model transformation: the Entity-Relationship (ER to Relational Model (RM transformation.

  10. Predictive validation of an influenza spread model.

    Directory of Open Access Journals (Sweden)

    Ayaz Hyder

    Full Text Available BACKGROUND: Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread. METHODS AND FINDINGS: We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998-1999. Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type. Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic. CONCLUSIONS: Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve

  11. Predictive Validation of an Influenza Spread Model

    Science.gov (United States)

    Hyder, Ayaz; Buckeridge, David L.; Leung, Brian

    2013-01-01

    Background Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread. Methods and Findings We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998–1999). Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type). Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic. Conclusions Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers) with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve their predictive

  12. 76 FR 69609 - Amendment to Existing Validated End-User Authorizations in the People's Republic of China...

    Science.gov (United States)

    2011-11-09

    ... Destinations'' in the People's Republic of China (PRC). BIS also removes one facility from the list of...-01] RIN 0694-AF32 Amendment to Existing Validated End-User Authorizations in the People's Republic of... the ``Eligible Destinations'' column in ``China (People's Republic of)''. Dated: November 1, 2011...

  13. Validation of a pre-existing safety climate scale for the Turkish furniture manufacturing industry.

    Science.gov (United States)

    Akyuz, Kadri Cemil; Yildirim, Ibrahim; Gungor, Celal

    2018-03-22

    Understanding the safety climate level is essential to implement a proactive safety program. The objective of this study is to explore the possibility of having a safety climate scale for the Turkish furniture manufacturing industry since there has not been any scale available. The questionnaire recruited 783 subjects. Confirmatory factor analysis (CFA) tested a pre-existing safety scale's fit to the industry. The CFA indicated that the structures of the model present a non-satisfactory fit with the data (χ 2  = 2033.4, df = 314, p ≤ 0.001; root mean square error of approximation = 0.08, normed fit index = 0.65, Tucker-Lewis index = 0.65, comparative fit index = 0.69, parsimony goodness-of-fit index = 0.68). The results suggest that a new scale should be developed and validated to measure the safety climate level in the Turkish furniture manufacturing industry. Due to the hierarchical structure of organizations, future studies should consider a multilevel approach in their exploratory factor analyses while developing a new scale.

  14. Trailing Edge Noise Model Validation and Application to Airfoil Optimization

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Bak, Christian

    2010-01-01

    The aim of this article is twofold. First, an existing trailing edge noise model is validated by comparing with airfoil surface pressure fluctuations and far field sound pressure levels measured in three different experiments. The agreement is satisfactory in one case but poor in two other cases...... across the boundary layer near the trailing edge and to a lesser extent by a smaller boundary layer displacement thickness. ©2010 American Society of Mechanical Engineers...

  15. On the validity of cosmic no-hair conjecture in an anisotropic inationary model

    Science.gov (United States)

    Do, Tuan Q.

    2018-05-01

    We will present main results of our recent investigations on the validity of cosmic no-hair conjecture proposed by Hawking and his colleagues long time ago in the framework of an anisotropic inflationary model proposed by Kanno, Soda, and Watanabe. As a result, we will show that the cosmic no-hair conjecture seems to be generally violated in the Kanno-Soda- Watanabe model for both canonical and non-canonical scalar fields due to the existence of a non-trivial coupling term between scalar and electromagnetic fields. However, we will also show that the validity of the cosmic no-hair conjecture will be ensured once a unusual scalar field called the phantom field, whose kinetic energy term is negative definite, is introduced into the Kanno-Soda-Watanabe model.

  16. Ground-water models: Validate or invalidate

    Science.gov (United States)

    Bredehoeft, J.D.; Konikow, Leonard F.

    1993-01-01

    The word validation has a clear meaning to both the scientific community and the general public. Within the scientific community the validation of scientific theory has been the subject of philosophical debate. The philosopher of science, Karl Popper, argued that scientific theory cannot be validated, only invalidated. Popper’s view is not the only opinion in this debate; however, many scientists today agree with Popper (including the authors). To the general public, proclaiming that a ground-water model is validated carries with it an aura of correctness that we do not believe many of us who model would claim. We can place all the caveats we wish, but the public has its own understanding of what the word implies. Using the word valid with respect to models misleads the public; verification carries with it similar connotations as far as the public is concerned. Our point is this: using the terms validation and verification are misleading, at best. These terms should be abandoned by the ground-water community.

  17. Analytical thermal model validation for Cassini radioisotope thermoelectric generator

    International Nuclear Information System (INIS)

    Lin, E.I.

    1997-01-01

    The Saturn-bound Cassini spacecraft is designed to rely, without precedent, on the waste heat from its three radioisotope thermoelectric generators (RTGs) to warm the propulsion module subsystem, and the RTG end dome temperature is a key determining factor of the amount of waste heat delivered. A previously validated SINDA thermal model of the RTG was the sole guide to understanding its complex thermal behavior, but displayed large discrepancies against some initial thermal development test data. A careful revalidation effort led to significant modifications and adjustments of the model, which result in a doubling of the radiative heat transfer from the heat source support assemblies to the end domes and bring up the end dome and flange temperature predictions to within 2 C of the pertinent test data. The increased inboard end dome temperature has a considerable impact on thermal control of the spacecraft central body. The validation process offers an example of physically-driven analytical model calibration with test data from not only an electrical simulator but also a nuclear-fueled flight unit, and has established the end dome temperatures of a flight RTG where no in-flight or ground-test data existed before

  18. Development of a multi-institutional cohort to facilitate cardiovascular disease biomarker validation using existing biorepository samples linked to electronic health records.

    Science.gov (United States)

    Cross, Deanna S; McCarty, Catherine A; Steinhubl, Steven R; Carey, David J; Erlich, Porat M

    2013-08-01

    Emerging biomarkers for acute myocardial infarction (AMI) may enhance conventional risk-prediction algorithms if they are informative and associated with risk independently of established predictors. In this study, we constructed a cohort for testing emerging biomarkers for AMI in managed-care populations using existing biospecimen repositories linked to electronic health records (EHR). Electronic health record-based biorepositories collected by healthcare systems can be federated to provide large, methodologically sound testing sets for biomarker validation. Subjects ages 40 to 80 years were selected from 2 existing population-based biospecimen repositories. Incident AMI status and covariates were ascertained from the EHR. An ad hoc model for AMI risk was parameterized and validated. Simulation was used to test incremental gains in performance due to the inclusion of biomarkers in this model. Gains in performance were assessed in terms of area under the receiver operating characteristic curve (ROC-AUC) and case reclassification. A total of 18 329 individuals (57% female) contributed 108 400 person-years of EHR follow-up. The crude AMI incidence was 10.8 and 5.0 per 1000 person-years among males and females, respectively. Compared with the model with risk factors alone, inclusion of a simulated biomarker yielded substantial gains in sensitivity without loss of specificity. Furthermore, a net ROC-AUC gain of 13.3% was observed, as well as correct reclassification of 9.8% of incident cases (79 of 806) that were otherwise not considered statin-indicated at baseline under the National Cholesterol Education Program Adult Treatment Panel III criteria. More research is needed to assess incremental contribution of emerging biomarkers for AMI prediction in managed-care populations. © 2013 Wiley Periodicals, Inc.

  19. Concepts of Model Verification and Validation

    International Nuclear Information System (INIS)

    Thacker, B.H.; Doebling, S.W.; Hemez, F.M.; Anderson, M.C.; Pepin, J.E.; Rodriguez, E.A.

    2004-01-01

    Model verification and validation (VandV) is an enabling methodology for the development of computational models that can be used to make engineering predictions with quantified confidence. Model VandV procedures are needed by government and industry to reduce the time, cost, and risk associated with full-scale testing of products, materials, and weapon systems. Quantifying the confidence and predictive accuracy of model calculations provides the decision-maker with the information necessary for making high-consequence decisions. The development of guidelines and procedures for conducting a model VandV program are currently being defined by a broad spectrum of researchers. This report reviews the concepts involved in such a program. Model VandV is a current topic of great interest to both government and industry. In response to a ban on the production of new strategic weapons and nuclear testing, the Department of Energy (DOE) initiated the Science-Based Stockpile Stewardship Program (SSP). An objective of the SSP is to maintain a high level of confidence in the safety, reliability, and performance of the existing nuclear weapons stockpile in the absence of nuclear testing. This objective has challenged the national laboratories to develop high-confidence tools and methods that can be used to provide credible models needed for stockpile certification via numerical simulation. There has been a significant increase in activity recently to define VandV methods and procedures. The U.S. Department of Defense (DoD) Modeling and Simulation Office (DMSO) is working to develop fundamental concepts and terminology for VandV applied to high-level systems such as ballistic missile defense and battle management simulations. The American Society of Mechanical Engineers (ASME) has recently formed a Standards Committee for the development of VandV procedures for computational solid mechanics models. The Defense Nuclear Facilities Safety Board (DNFSB) has been a proponent of model

  20. A broad view of model validation

    International Nuclear Information System (INIS)

    Tsang, C.F.

    1989-10-01

    The safety assessment of a nuclear waste repository requires the use of models. Such models need to be validated to ensure, as much as possible, that they are a good representation of the actual processes occurring in the real system. In this paper we attempt to take a broad view by reviewing step by step the modeling process and bringing out the need to validating every step of this process. This model validation includes not only comparison of modeling results with data from selected experiments, but also evaluation of procedures for the construction of conceptual models and calculational models as well as methodologies for studying data and parameter correlation. The need for advancing basic scientific knowledge in related fields, for multiple assessment groups, and for presenting our modeling efforts in open literature to public scrutiny is also emphasized. 16 refs

  1. A coupled chemotaxis-fluid model: Global existence

    KAUST Repository

    Liu, Jian-Guo; Lorz, Alexander

    2011-01-01

    We consider a model arising from biology, consisting of chemotaxis equations coupled to viscous incompressible fluid equations through transport and external forcing. Global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the chemotaxis-Navier- Stokes system in two space dimensions, we obtain global existence for large data. In three space dimensions, we prove global existence of weak solutions for the chemotaxis-Stokes system with nonlinear diffusion for the cell density.© 2011 Elsevier Masson SAS. All rights reserved.

  2. A coupled chemotaxis-fluid model: Global existence

    KAUST Repository

    Liu, Jian-Guo

    2011-09-01

    We consider a model arising from biology, consisting of chemotaxis equations coupled to viscous incompressible fluid equations through transport and external forcing. Global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the chemotaxis-Navier- Stokes system in two space dimensions, we obtain global existence for large data. In three space dimensions, we prove global existence of weak solutions for the chemotaxis-Stokes system with nonlinear diffusion for the cell density.© 2011 Elsevier Masson SAS. All rights reserved.

  3. Model performance analysis and model validation in logistic regression

    Directory of Open Access Journals (Sweden)

    Rosa Arboretti Giancristofaro

    2007-10-01

    Full Text Available In this paper a new model validation procedure for a logistic regression model is presented. At first, we illustrate a brief review of different techniques of model validation. Next, we define a number of properties required for a model to be considered "good", and a number of quantitative performance measures. Lastly, we describe a methodology for the assessment of the performance of a given model by using an example taken from a management study.

  4. Validation of the WATEQ4 geochemical model for uranium

    International Nuclear Information System (INIS)

    Krupka, K.M.; Jenne, E.A.; Deutsch, W.J.

    1983-09-01

    As part of the Geochemical Modeling and Nuclide/Rock/Groundwater Interactions Studies Program, a study was conducted to partially validate the WATEQ4 aqueous speciation-solubility geochemical model for uranium. The solubility controls determined with the WATEQ4 geochemical model were in excellent agreement with those laboratory studies in which the solids schoepite [UO 2 (OH) 2 . H 2 O], UO 2 (OH) 2 , and rutherfordine ((UO 2 CO 3 ) were identified as actual solubility controls for uranium. The results of modeling solution analyses from laboratory studies of uranyl phosphate solids, however, identified possible errors in the characterization of solids in the original solubility experiments. As part of this study, significant deficiencies in the WATEQ4 thermodynamic data base for uranium solutes and solids were corrected. Revisions included recalculation of selected uranium reactions. Additionally, thermodynamic data for the hydroxyl complexes of U(VI), including anionic (VI) species, were evaluated (to the extent permitted by the available data). Vanadium reactions were also added to the thermodynamic data base because uranium-vanadium solids can exist in natural ground-water systems. This study is only a partial validation of the WATEQ4 geochemical model because the available laboratory solubility studies do not cover the range of solid phases, alkaline pH values, and concentrations of inorganic complexing ligands needed to evaluate the potential solubility of uranium in ground waters associated with various proposed nuclear waste repositories. Further validation of this or other geochemical models for uranium will require careful determinations of uraninite solubility over the pH range of 7 to 10 under highly reducing conditions and of uranyl hydroxide and phosphate solubilities over the pH range of 7 to 10 under oxygenated conditions

  5. Establishing model credibility involves more than validation

    International Nuclear Information System (INIS)

    Kirchner, T.

    1991-01-01

    One widely used definition of validation is that the quantitative test of the performance of a model through the comparison of model predictions to independent sets of observations from the system being simulated. The ability to show that the model predictions compare well with observations is often thought to be the most rigorous test that can be used to establish credibility for a model in the scientific community. However, such tests are only part of the process used to establish credibility, and in some cases may be either unnecessary or misleading. Naylor and Finger extended the concept of validation to include the establishment of validity for the postulates embodied in the model and the test of assumptions used to select postulates for the model. Validity of postulates is established through concurrence by experts in the field of study that the mathematical or conceptual model contains the structural components and mathematical relationships necessary to adequately represent the system with respect to the goals for the model. This extended definition of validation provides for consideration of the structure of the model, not just its performance, in establishing credibility. Evaluation of a simulation model should establish the correctness of the code and the efficacy of the model within its domain of applicability. (24 refs., 6 figs.)

  6. Towards policy relevant environmental modeling: contextual validity and pragmatic models

    Science.gov (United States)

    Miles, Scott B.

    2000-01-01

    "What makes for a good model?" In various forms, this question is a question that, undoubtedly, many people, businesses, and institutions ponder with regards to their particular domain of modeling. One particular domain that is wrestling with this question is the multidisciplinary field of environmental modeling. Examples of environmental models range from models of contaminated ground water flow to the economic impact of natural disasters, such as earthquakes. One of the distinguishing claims of the field is the relevancy of environmental modeling to policy and environment-related decision-making in general. A pervasive view by both scientists and decision-makers is that a "good" model is one that is an accurate predictor. Thus, determining whether a model is "accurate" or "correct" is done by comparing model output to empirical observations. The expected outcome of this process, usually referred to as "validation" or "ground truthing," is a stamp on the model in question of "valid" or "not valid" that serves to indicate whether or not the model will be reliable before it is put into service in a decision-making context. In this paper, I begin by elaborating on the prevailing view of model validation and why this view must change. Drawing from concepts coming out of the studies of science and technology, I go on to propose a contextual view of validity that can overcome the problems associated with "ground truthing" models as an indicator of model goodness. The problem of how we talk about and determine model validity has much to do about how we perceive the utility of environmental models. In the remainder of the paper, I argue that we should adopt ideas of pragmatism in judging what makes for a good model and, in turn, developing good models. From such a perspective of model goodness, good environmental models should facilitate communication, convey—not bury or "eliminate"—uncertainties, and, thus, afford the active building of consensus decisions, instead

  7. NRPB models for calculating the transfer of radionuclides through the environment. Verification and validation

    International Nuclear Information System (INIS)

    Attwood, C.; Barraclough, I.; Brown, J.

    1998-06-01

    There is a wide range of models available at NRPB to predict the transfer of radionuclides through the environment. Such models form an essential part of assessments of the radiological impact of releases of radionuclides into the environment. These models cover: the atmosphere; the aquatic environment; the geosphere; the terrestrial environment including foodchains. It is important that the models used for radiological impact assessments are robust, reliable and suitable for the assessment being undertaken. During model development it is, therefore, important that the model is both verified and validated. Verification of a model involves ensuring that it has been implemented correctly, while validation consists of demonstrating that the model is an adequate representation of the real environment. The extent to which a model can be verified depends on its complexity and whether similar models exist. For relatively simple models verification is straightforward, but for more complex models verification has to form part of the development, coding and testing of the model within quality assurance procedures. Validation of models should ideally consist of comparisons between the results of the models and experimental or environmental measurement data that were not used to develop the model. This is more straightforward for some models than for others depending on the quantity and type of data available. Validation becomes increasingly difficult for models which are intended to predict environmental transfer at long times or at great distances. It is, therefore, necessary to adopt qualitative validation techniques to ensure that the model is an adequate representation of the real environment. This report summarises the models used at NRPB to predict the transfer of radionuclides through the environment as part of a radiological impact assessment. It outlines the work carried out to verify and validate the models. The majority of these models are not currently available

  8. Verification and Validation of Heat Transfer Model of AGREE Code

    Energy Technology Data Exchange (ETDEWEB)

    Tak, N. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Seker, V.; Drzewiecki, T. J.; Downar, T. J. [Department of Nuclear Engineering and Radiological Sciences, Univ. of Michigan, Michigan (United States); Kelly, J. M. [US Nuclear Regulatory Commission, Washington (United States)

    2013-05-15

    The AGREE code was originally developed as a multi physics simulation code to perform design and safety analysis of Pebble Bed Reactors (PBR). Currently, additional capability for the analysis of Prismatic Modular Reactor (PMR) core is in progress. Newly implemented fluid model for a PMR core is based on a subchannel approach which has been widely used in the analyses of light water reactor (LWR) cores. A hexagonal fuel (or graphite block) is discretized into triangular prism nodes having effective conductivities. Then, a meso-scale heat transfer model is applied to the unit cell geometry of a prismatic fuel block. Both unit cell geometries of multi-hole and pin-in-hole types of prismatic fuel blocks are considered in AGREE. The main objective of this work is to verify and validate the heat transfer model newly implemented for a PMR core in the AGREE code. The measured data in the HENDEL experiment were used for the validation of the heat transfer model for a pin-in-hole fuel block. However, the HENDEL tests were limited to only steady-state conditions of pin-in-hole fuel blocks. There exist no available experimental data regarding a heat transfer in multi-hole fuel blocks. Therefore, numerical benchmarks using conceptual problems are considered to verify the heat transfer model of AGREE for multi-hole fuel blocks as well as transient conditions. The CORONA and GAMMA+ codes were used to compare the numerical results. In this work, the verification and validation study were performed for the heat transfer model of the AGREE code using the HENDEL experiment and the numerical benchmarks of selected conceptual problems. The results of the present work show that the heat transfer model of AGREE is accurate and reliable for prismatic fuel blocks. Further validation of AGREE is in progress for a whole reactor problem using the HTTR safety test data such as control rod withdrawal tests and loss-of-forced convection tests.

  9. Statistical validation of normal tissue complication probability models.

    Science.gov (United States)

    Xu, Cheng-Jian; van der Schaaf, Arjen; Van't Veld, Aart A; Langendijk, Johannes A; Schilstra, Cornelis

    2012-09-01

    To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. A penalized regression method, LASSO (least absolute shrinkage and selection operator), was used to build NTCP models for xerostomia after radiation therapy treatment of head-and-neck cancer. Model assessment was based on the likelihood function and the area under the receiver operating characteristic curve. Repeated double cross-validation showed the uncertainty and instability of the NTCP models and indicated that the statistical significance of model performance can be obtained by permutation testing. Repeated double cross-validation and permutation tests are recommended to validate NTCP models before clinical use. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Statistical Validation of Normal Tissue Complication Probability Models

    Energy Technology Data Exchange (ETDEWEB)

    Xu Chengjian, E-mail: c.j.xu@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Schaaf, Arjen van der; Veld, Aart A. van' t; Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Schilstra, Cornelis [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Radiotherapy Institute Friesland, Leeuwarden (Netherlands)

    2012-09-01

    Purpose: To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. Methods and Materials: A penalized regression method, LASSO (least absolute shrinkage and selection operator), was used to build NTCP models for xerostomia after radiation therapy treatment of head-and-neck cancer. Model assessment was based on the likelihood function and the area under the receiver operating characteristic curve. Results: Repeated double cross-validation showed the uncertainty and instability of the NTCP models and indicated that the statistical significance of model performance can be obtained by permutation testing. Conclusion: Repeated double cross-validation and permutation tests are recommended to validate NTCP models before clinical use.

  11. Validation process of simulation model

    International Nuclear Information System (INIS)

    San Isidro, M. J.

    1998-01-01

    It is presented a methodology on empirical validation about any detailed simulation model. This king of validation it is always related with an experimental case. The empirical validation has a residual sense, because the conclusions are based on comparisons between simulated outputs and experimental measurements. This methodology will guide us to detect the fails of the simulation model. Furthermore, it can be used a guide in the design of posterior experiments. Three steps can be well differentiated: Sensitivity analysis. It can be made with a DSA, differential sensitivity analysis, and with a MCSA, Monte-Carlo sensitivity analysis. Looking the optimal domains of the input parameters. It has been developed a procedure based on the Monte-Carlo methods and Cluster techniques, to find the optimal domains of these parameters. Residual analysis. This analysis has been made on the time domain and on the frequency domain, it has been used the correlation analysis and spectral analysis. As application of this methodology, it is presented the validation carried out on a thermal simulation model on buildings, Esp., studying the behavior of building components on a Test Cell of LECE of CIEMAT. (Author) 17 refs

  12. Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible

    International Nuclear Information System (INIS)

    Connolly, D.; Leahy, M.; Lund, H.; Mathiesen, B.V.

    2010-01-01

    In this study a model of the Irish energy-system was developed using EnergyPLAN based on the year 2007, which was then used for three investigations. The first compares the model results with actual values from 2007 to validate its accuracy. The second illustrates the exposure of the existing Irish energy-system to future energy costs by considering future fuel prices, CO 2 prices, and different interest rates. The final investigation identifies the maximum wind penetration feasible on the 2007 Irish energy-system from a technical and economic perspective, as wind is the most promising fluctuating renewable resource available in Ireland. It is concluded that the reference model simulates the Irish energy-system accurately, the annual fuel costs for Ireland's energy could increase by approximately 58% from 2007 to 2020 if a business-as-usual scenario is followed, and the optimum wind penetration for the existing Irish energy-system is approximately 30% from both a technical and economic perspective based on 2020 energy prices. Future studies will use the model developed in this study to show that higher wind penetrations can be achieved if the existing energy-system is modified correctly. Finally, these results are not only applicable to Ireland, but also represent the issues facing many other countries. (author)

  13. A New Statistical Method to Determine the Degree of Validity of Health Economic Model Outcomes against Empirical Data.

    Science.gov (United States)

    Corro Ramos, Isaac; van Voorn, George A K; Vemer, Pepijn; Feenstra, Talitha L; Al, Maiwenn J

    2017-09-01

    The validation of health economic (HE) model outcomes against empirical data is of key importance. Although statistical testing seems applicable, guidelines for the validation of HE models lack guidance on statistical validation, and actual validation efforts often present subjective judgment of graphs and point estimates. To discuss the applicability of existing validation techniques and to present a new method for quantifying the degrees of validity statistically, which is useful for decision makers. A new Bayesian method is proposed to determine how well HE model outcomes compare with empirical data. Validity is based on a pre-established accuracy interval in which the model outcomes should fall. The method uses the outcomes of a probabilistic sensitivity analysis and results in a posterior distribution around the probability that HE model outcomes can be regarded as valid. We use a published diabetes model (Modelling Integrated Care for Diabetes based on Observational data) to validate the outcome "number of patients who are on dialysis or with end-stage renal disease." Results indicate that a high probability of a valid outcome is associated with relatively wide accuracy intervals. In particular, 25% deviation from the observed outcome implied approximately 60% expected validity. Current practice in HE model validation can be improved by using an alternative method based on assessing whether the model outcomes fit to empirical data at a predefined level of accuracy. This method has the advantage of assessing both model bias and parameter uncertainty and resulting in a quantitative measure of the degree of validity that penalizes models predicting the mean of an outcome correctly but with overly wide credible intervals. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  14. External validation of multivariable prediction models: a systematic review of methodological conduct and reporting

    Science.gov (United States)

    2014-01-01

    Background Before considering whether to use a multivariable (diagnostic or prognostic) prediction model, it is essential that its performance be evaluated in data that were not used to develop the model (referred to as external validation). We critically appraised the methodological conduct and reporting of external validation studies of multivariable prediction models. Methods We conducted a systematic review of articles describing some form of external validation of one or more multivariable prediction models indexed in PubMed core clinical journals published in 2010. Study data were extracted in duplicate on design, sample size, handling of missing data, reference to the original study developing the prediction models and predictive performance measures. Results 11,826 articles were identified and 78 were included for full review, which described the evaluation of 120 prediction models. in participant data that were not used to develop the model. Thirty-three articles described both the development of a prediction model and an evaluation of its performance on a separate dataset, and 45 articles described only the evaluation of an existing published prediction model on another dataset. Fifty-seven percent of the prediction models were presented and evaluated as simplified scoring systems. Sixteen percent of articles failed to report the number of outcome events in the validation datasets. Fifty-four percent of studies made no explicit mention of missing data. Sixty-seven percent did not report evaluating model calibration whilst most studies evaluated model discrimination. It was often unclear whether the reported performance measures were for the full regression model or for the simplified models. Conclusions The vast majority of studies describing some form of external validation of a multivariable prediction model were poorly reported with key details frequently not presented. The validation studies were characterised by poor design, inappropriate handling

  15. Validating agent based models through virtual worlds.

    Energy Technology Data Exchange (ETDEWEB)

    Lakkaraju, Kiran; Whetzel, Jonathan H.; Lee, Jina; Bier, Asmeret Brooke; Cardona-Rivera, Rogelio E.; Bernstein, Jeremy Ray Rhythm

    2014-01-01

    As the US continues its vigilance against distributed, embedded threats, understanding the political and social structure of these groups becomes paramount for predicting and dis- rupting their attacks. Agent-based models (ABMs) serve as a powerful tool to study these groups. While the popularity of social network tools (e.g., Facebook, Twitter) has provided extensive communication data, there is a lack of ne-grained behavioral data with which to inform and validate existing ABMs. Virtual worlds, in particular massively multiplayer online games (MMOG), where large numbers of people interact within a complex environ- ment for long periods of time provide an alternative source of data. These environments provide a rich social environment where players engage in a variety of activities observed between real-world groups: collaborating and/or competing with other groups, conducting battles for scarce resources, and trading in a market economy. Strategies employed by player groups surprisingly re ect those seen in present-day con icts, where players use diplomacy or espionage as their means for accomplishing their goals. In this project, we propose to address the need for ne-grained behavioral data by acquiring and analyzing game data a commercial MMOG, referred to within this report as Game X. The goals of this research were: (1) devising toolsets for analyzing virtual world data to better inform the rules that govern a social ABM and (2) exploring how virtual worlds could serve as a source of data to validate ABMs established for analogous real-world phenomena. During this research, we studied certain patterns of group behavior to compliment social modeling e orts where a signi cant lack of detailed examples of observed phenomena exists. This report outlines our work examining group behaviors that underly what we have termed the Expression-To-Action (E2A) problem: determining the changes in social contact that lead individuals/groups to engage in a particular behavior

  16. Anisotropic composite human skull model and skull fracture validation against temporo-parietal skull fracture.

    Science.gov (United States)

    Sahoo, Debasis; Deck, Caroline; Yoganandan, Narayan; Willinger, Rémy

    2013-12-01

    A composite material model for skull, taking into account damage is implemented in the Strasbourg University finite element head model (SUFEHM) in order to enhance the existing skull mechanical constitutive law. The skull behavior is validated in terms of fracture patterns and contact forces by reconstructing 15 experimental cases. The new SUFEHM skull model is capable of reproducing skull fracture precisely. The composite skull model is validated not only for maximum forces, but also for lateral impact against actual force time curves from PMHS for the first time. Skull strain energy is found to be a pertinent parameter to predict the skull fracture and based on statistical (binary logistical regression) analysis it is observed that 50% risk of skull fracture occurred at skull strain energy of 544.0mJ. © 2013 Elsevier Ltd. All rights reserved.

  17. User's Manual for Data for Validating Models for PV Module Performance

    Energy Technology Data Exchange (ETDEWEB)

    Marion, W.; Anderberg, A.; Deline, C.; Glick, S.; Muller, M.; Perrin, G.; Rodriguez, J.; Rummel, S.; Terwilliger, K.; Silverman, T. J.

    2014-04-01

    This user's manual describes performance data measured for flat-plate photovoltaic (PV) modules installed in Cocoa, Florida, Eugene, Oregon, and Golden, Colorado. The data include PV module current-voltage curves and associated meteorological data for approximately one-year periods. These publicly available data are intended to facilitate the validation of existing models for predicting the performance of PV modules, and for the development of new and improved models. For comparing different modeling approaches, using these public data will provide transparency and more meaningful comparisons of the relative benefits.

  18. Statistical Validation of Engineering and Scientific Models: Background

    International Nuclear Information System (INIS)

    Hills, Richard G.; Trucano, Timothy G.

    1999-01-01

    A tutorial is presented discussing the basic issues associated with propagation of uncertainty analysis and statistical validation of engineering and scientific models. The propagation of uncertainty tutorial illustrates the use of the sensitivity method and the Monte Carlo method to evaluate the uncertainty in predictions for linear and nonlinear models. Four example applications are presented; a linear model, a model for the behavior of a damped spring-mass system, a transient thermal conduction model, and a nonlinear transient convective-diffusive model based on Burger's equation. Correlated and uncorrelated model input parameters are considered. The model validation tutorial builds on the material presented in the propagation of uncertainty tutoriaI and uses the damp spring-mass system as the example application. The validation tutorial illustrates several concepts associated with the application of statistical inference to test model predictions against experimental observations. Several validation methods are presented including error band based, multivariate, sum of squares of residuals, and optimization methods. After completion of the tutorial, a survey of statistical model validation literature is presented and recommendations for future work are made

  19. Model Validation Using Coordinate Distance with Performance Sensitivity

    Directory of Open Access Journals (Sweden)

    Jiann-Shiun Lew

    2008-01-01

    Full Text Available This paper presents an innovative approach to model validation for a structure with significant parameter variations. Model uncertainty of the structural dynamics is quantified with the use of a singular value decomposition technique to extract the principal components of parameter change, and an interval model is generated to represent the system with parameter uncertainty. The coordinate vector, corresponding to the identified principal directions, of the validation system is computed. The coordinate distance between the validation system and the identified interval model is used as a metric for model validation. A beam structure with an attached subsystem, which has significant parameter uncertainty, is used to demonstrate the proposed approach.

  20. LDEF data: Comparisons with existing models

    Science.gov (United States)

    Coombs, Cassandra R.; Watts, Alan J.; Wagner, John D.; Atkinson, Dale R.

    1993-04-01

    The relationship between the observed cratering impact damage on the Long Duration Exposure Facility (LDEF) versus the existing models for both the natural environment of micrometeoroids and the man-made debris was investigated. Experimental data was provided by several LDEF Principal Investigators, Meteoroid and Debris Special Investigation Group (M&D SIG) members, and by the Kennedy Space Center Analysis Team (KSC A-Team) members. These data were collected from various aluminum materials around the LDEF satellite. A PC (personal computer) computer program, SPENV, was written which incorporates the existing models of the Low Earth Orbit (LEO) environment. This program calculates the expected number of impacts per unit area as functions of altitude, orbital inclination, time in orbit, and direction of the spacecraft surface relative to the velocity vector, for both micrometeoroids and man-made debris. Since both particle models are couched in terms of impact fluxes versus impactor particle size, and much of the LDEF data is in the form of crater production rates, scaling laws have been used to relate the two. Also many hydrodynamic impact computer simulations were conducted, using CTH, of various impact events, that identified certain modes of response, including simple metallic target cratering, perforations and delamination effects of coatings.

  1. SDG and qualitative trend based model multiple scale validation

    Science.gov (United States)

    Gao, Dong; Xu, Xin; Yin, Jianjin; Zhang, Hongyu; Zhang, Beike

    2017-09-01

    Verification, Validation and Accreditation (VV&A) is key technology of simulation and modelling. For the traditional model validation methods, the completeness is weak; it is carried out in one scale; it depends on human experience. The SDG (Signed Directed Graph) and qualitative trend based multiple scale validation is proposed. First the SDG model is built and qualitative trends are added to the model. And then complete testing scenarios are produced by positive inference. The multiple scale validation is carried out by comparing the testing scenarios with outputs of simulation model in different scales. Finally, the effectiveness is proved by carrying out validation for a reactor model.

  2. Business-as-Unusual: Existing policies in energy model baselines

    International Nuclear Information System (INIS)

    Strachan, Neil

    2011-01-01

    Baselines are generally accepted as a key input assumption in long-term energy modelling, but energy models have traditionally been poor on identifying baselines assumptions. Notably, transparency on the current policy content of model baselines is now especially critical as long-term climate mitigation policies have been underway for a number of years. This paper argues that the range of existing energy and emissions policies are an integral part of any long-term baseline, and hence already represent a 'with-policy' baseline, termed here a Business-as-Unusual (BAuU). Crucially, existing energy policies are not a sunk effort; as impacts of existing policy initiatives are targeted at future years, they may be revised through iterative policy making, and their quantitative effectiveness requires ex-post verification. To assess the long-term role of existing policies in energy modelling, currently identified UK policies are explicitly stripped out of the UK MARKAL Elastic Demand (MED) optimisation energy system model, to generate a BAuU (with-policy) and a REF (without policy) baseline. In terms of long-term mitigation costs, policy-baseline assumptions are comparable to another key exogenous modelling assumption - that of global fossil fuel prices. Therefore, best practice in energy modelling would be to have both a no-policy reference baseline, and a current policy reference baseline (BAuU). At a minimum, energy modelling studies should have a transparent assessment of the current policy contained within the baseline. Clearly identifying and comparing policy-baseline assumptions are required for cost effective and objective policy making, otherwise energy models will underestimate the true cost of long-term emissions reductions.

  3. Tracer travel time and model validation

    International Nuclear Information System (INIS)

    Tsang, Chin-Fu.

    1988-01-01

    The performance assessment of a nuclear waste repository demands much more in comparison to the safety evaluation of any civil constructions such as dams, or the resource evaluation of a petroleum or geothermal reservoir. It involves the estimation of low probability (low concentration) of radionuclide transport extrapolated 1000's of years into the future. Thus models used to make these estimates need to be carefully validated. A number of recent efforts have been devoted to the study of this problem. Some general comments on model validation were given by Tsang. The present paper discusses some issues of validation in regards to radionuclide transport. 5 refs

  4. Model validation: a systemic and systematic approach

    International Nuclear Information System (INIS)

    Sheng, G.; Elzas, M.S.; Cronhjort, B.T.

    1993-01-01

    The term 'validation' is used ubiquitously in association with the modelling activities of numerous disciplines including social, political natural, physical sciences, and engineering. There is however, a wide range of definitions which give rise to very different interpretations of what activities the process involves. Analyses of results from the present large international effort in modelling radioactive waste disposal systems illustrate the urgent need to develop a common approach to model validation. Some possible explanations are offered to account for the present state of affairs. The methodology developed treats model validation and code verification in a systematic fashion. In fact, this approach may be regarded as a comprehensive framework to assess the adequacy of any simulation study. (author)

  5. Development, description and validation of a Tritium Environmental Release Model (TERM).

    Science.gov (United States)

    Jeffers, Rebecca S; Parker, Geoffrey T

    2014-01-01

    Tritium is a radioisotope of hydrogen that exists naturally in the environment and may also be released through anthropogenic activities. It bonds readily with hydrogen and oxygen atoms to form tritiated water, which then cycles through the hydrosphere. This paper seeks to model the migration of tritiated species throughout the environment - including atmospheric, river and coastal systems - more comprehensively and more consistently across release scenarios than is currently in the literature. A review of the features and underlying conceptual models of some existing tritium release models was conducted, and an underlying aggregated conceptual process model defined, which is presented. The new model, dubbed 'Tritium Environmental Release Model' (TERM), was then tested against multiple validation sets from literature, including experimental data and reference tests for tritium models. TERM has been shown to be capable of providing reasonable results which are broadly comparable with atmospheric HTO release models from the literature, spanning both continuous and discrete release conditions. TERM also performed well when compared with atmospheric data. TERM is believed to be a useful tool for examining discrete and continuous atmospheric releases or combinations thereof. TERM also includes further capabilities (e.g. river and coastal release scenarios) that may be applicable to certain scenarios that atmospheric models alone may not handle well. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Modeling Boston: A workflow for the efficient generation and maintenance of urban building energy models from existing geospatial datasets

    International Nuclear Information System (INIS)

    Cerezo Davila, Carlos; Reinhart, Christoph F.; Bemis, Jamie L.

    2016-01-01

    City governments and energy utilities are increasingly focusing on the development of energy efficiency strategies for buildings as a key component in emission reduction plans and energy supply strategies. To support these diverse needs, a new generation of Urban Building Energy Models (UBEM) is currently being developed and validated to estimate citywide hourly energy demands at the building level. However, in order for cities to rely on UBEMs, effective model generation and maintenance workflows are needed based on existing urban data structures. Within this context, the authors collaborated with the Boston Redevelopment Authority to develop a citywide UBEM based on official GIS datasets and a custom building archetype library. Energy models for 83,541 buildings were generated and assigned one of 52 use/age archetypes, within the CAD modelling environment Rhinoceros3D. The buildings were then simulated using the US DOE EnergyPlus simulation program, and results for buildings of the same archetype were crosschecked against data from the US national energy consumption surveys. A district-level intervention combining photovoltaics with demand side management is presented to demonstrate the ability of UBEM to provide actionable information. Lack of widely available archetype templates and metered energy data, were identified as key barriers within existing workflows that may impede cities from effectively applying UBEM to guide energy policy. - Highlights: • Data requirements for Urban Building Energy Models are reviewed. • A workflow for UBEM generation from available GIS datasets is developed. • A citywide demand simulation model for Boston is generated and tested. • Limitations for UBEM in current urban data systems are identified and discussed. • Model application for energy management policy is shown in an urban PV scenario.

  7. The landscape of existing models for high-throughput exposure assessment

    DEFF Research Database (Denmark)

    Jolliet, O.; Fantke, Peter; Huang, L.

    2017-01-01

    and ability to easily handle large datasets. For building materials a series of diffusion-based models have been developed to predict the chemicals emissions from building materials to indoor air, but existing models require complex analytical or numerical solutions, which are not suitable for LCA or HTS...... applications. Thus, existing model solutions needed to be simplified for application in LCA and HTS, and a parsimonious model has been developed by Huang et al. (2017) to address this need. For SVOCs, simplified solutions do exist, assuming constant SVOC concentrations in building materials and steadystate...... for skin permeation and volatilization as competing processes and that requires a limited number of readily available physiochemical properties would be suitable for LCA and HTS purposes. Thus, the multi-pathway exposure model for chemicals in cosmetics developed by Ernstoff et al.constitutes a suitable...

  8. Validation of models in an imaging infrared simulation

    CSIR Research Space (South Africa)

    Willers, C

    2007-10-01

    Full Text Available threeprocessesfortransformingtheinformationbetweentheentities. Reality/ Problem Entity Conceptual Model Computerized Model Model Validation ModelVerification Model Qualification Computer Implementation Analysisand Modelling Simulationand Experimentation “Substantiationthata....C.Refsgaard ,ModellingGuidelines-terminology andguidingprinciples, AdvancesinWaterResources, Vol27,No1,January2004,?pp.71-82(12),Elsevier. et.al. [5]N.Oreskes,et.al.,Verification,Validation,andConfirmationof NumericalModelsintheEarthSciences,Science,Vol263, Number...

  9. Towards practical application of sensors for monitoring animal health; design and validation of a model to detect ketosis.

    Science.gov (United States)

    Steensels, Machteld; Maltz, Ephraim; Bahr, Claudia; Berckmans, Daniel; Antler, Aharon; Halachmi, Ilan

    2017-05-01

    The objective of this study was to design and validate a mathematical model to detect post-calving ketosis. The validation was conducted in four commercial dairy farms in Israel, on a total of 706 multiparous Holstein dairy cows: 203 cows clinically diagnosed with ketosis and 503 healthy cows. A logistic binary regression model was developed, where the dependent variable is categorical (healthy/diseased) and a set of explanatory variables were measured with existing commercial sensors: rumination duration, activity and milk yield of each individual cow. In a first validation step (within-farm), the model was calibrated on the database of each farm separately. Two thirds of the sick cows and an equal number of healthy cows were randomly selected for model validation. The remaining one third of the cows, which did not participate in the model validation, were used for model calibration. In order to overcome the random selection effect, this procedure was repeated 100 times. In a second (between-farms) validation step, the model was calibrated on one farm and validated on another farm. Within-farm accuracy, ranging from 74 to 79%, was higher than between-farm accuracy, ranging from 49 to 72%, in all farms. The within-farm sensitivities ranged from 78 to 90%, and specificities ranged from 71 to 74%. The between-farms sensitivities ranged from 65 to 95%. The developed model can be improved in future research, by employing other variables that can be added; or by exploring other models to achieve greater sensitivity and specificity.

  10. Physical validation issue of the NEPTUNE two-phase modelling: validation plan to be adopted, experimental programs to be set up and associated instrumentation techniques developed

    International Nuclear Information System (INIS)

    Pierre Peturaud; Eric Hervieu

    2005-01-01

    Full text of publication follows: A long-term joint development program for the next generation of nuclear reactors simulation tools has been launched in 2001 by EDF (Electricite de France) and CEA (Commissariat a l'Energie Atomique). The NEPTUNE Project constitutes the Thermal-Hydraulics part of this comprehensive program. Along with the underway development of this new two-phase flow software platform, the physical validation of the involved modelling is a crucial issue, whatever the modelling scale is, and the present paper deals with this issue. After a brief recall about the NEPTUNE platform, the general validation strategy to be adopted is first of all clarified by means of three major features: (i) physical validation in close connection with the concerned industrial applications, (ii) involving (as far as possible) a two-step process successively focusing on dominant separate models and assessing the whole modelling capability, (iii) thanks to the use of relevant data with respect to the validation aims. Based on this general validation process, a four-step generic work approach has been defined; it includes: (i) a thorough analysis of the concerned industrial applications to identify the key physical phenomena involved and associated dominant basic models, (ii) an assessment of these models against the available validation pieces of information, to specify the additional validation needs and define dedicated validation plans, (iii) an inventory and assessment of existing validation data (with respect to the requirements specified in the previous task) to identify the actual needs for new validation data, (iv) the specification of the new experimental programs to be set up to provide the needed new data. This work approach has been applied to the NEPTUNE software, focusing on 8 high priority industrial applications, and it has resulted in the definition of (i) the validation plan and experimental programs to be set up for the open medium 3D modelling

  11. Validation of X1 motorcycle model in industrial plant layout by using WITNESSTM simulation software

    Science.gov (United States)

    Hamzas, M. F. M. A.; Bareduan, S. A.; Zakaria, M. Z.; Tan, W. J.; Zairi, S.

    2017-09-01

    This paper demonstrates a case study on simulation, modelling and analysis for X1 Motorcycles Model. In this research, a motorcycle assembly plant has been selected as a main place of research study. Simulation techniques by using Witness software were applied to evaluate the performance of the existing manufacturing system. The main objective is to validate the data and find out the significant impact on the overall performance of the system for future improvement. The process of validation starts when the layout of the assembly line was identified. All components are evaluated to validate whether the data is significance for future improvement. Machine and labor statistics are among the parameters that were evaluated for process improvement. Average total cycle time for given workstations is used as criterion for comparison of possible variants. From the simulation process, the data used are appropriate and meet the criteria for two-sided assembly line problems.

  12. Site selection and directional models of deserts used for ERBE validation targets

    Science.gov (United States)

    Staylor, W. F.

    1986-01-01

    Broadband shortwave and longwave radiance measurements obtained from the Nimbus 7 Earth Radiation Budget scanner were used to develop reflectance and emittance models for the Sahara, Gibson, and Saudi Deserts. These deserts will serve as in-flight validation targets for the Earth Radiation Budget Experiment being flown on the Earth Radiation Budget Satellite and two National Oceanic and Atmospheric Administration polar satellites. The directional reflectance model derived for the deserts was a function of the sum and product of the cosines of the solar and viewing zenith angles, and thus reciprocity existed between these zenith angles. The emittance model was related by a power law of the cosine of the viewing zenith angle.

  13. Development and validation of mechanical model for saturated/unsaturated bentonite buffer

    International Nuclear Information System (INIS)

    Yamamoto, S.; Komine, H.; Kato, S.

    2010-01-01

    Document available in extended abstract form only. Development and validation of mechanical models for bentonite buffer and backfill materials are one of important subjects to appropriately evaluate long term behaviour or condition of the EBS in radioactive waste disposal. The Barcelona Basic Model (BBM), which is one of extensions of the modified Cam-Clay model for unsaturated and expansive soil, has been developed and widely applied to several problems by using the coupled THM code, Code B right. Advantage of the model is that mechanical characteristics of buffer and backfill materials under not only saturated condition but also unsaturated one are taken account as well as swelling characteristics due to wetting. In this study the BBM is compared with already existing experimental data and already developed another model in terms of swelling characteristics of Japanese bentonite Kunigel-V1, and is validated in terms of consolidation characteristics based on newly performed controlled-suction oedometer tests for the Kunigel-V1 bentonite. Komine et al. (2003) have proposed a model (set of equations) for predicting swelling characteristics based on the diffuse double layer concept and the van der Waals force concept etc. They performed a lot of swelling deformation tests of bentonite and sand-bentonite mixture to confirm the applicability of the model. The BBM well agrees with the model proposed by Komine et al. and the experimental data in terms of swelling characteristics. Compression index and swelling index depending on suction are introduced in the BBM. Controlled-suction consolidation tests (oedometer tests) were performed to confirm the applicability of the suction dependent indexes to unsaturated bentonite. Compacted bentonite with initial dry density of 1.0 Mg/m 3 was tested. Constant suction, 80 kPa, 280 kPa and 480 kPa was applied and kept during the consolidation tests. Applicability of the BBM to consolidation and swelling behaviour of saturated and

  14. Development and validation of a nursing professionalism evaluation model in a career ladder system.

    Science.gov (United States)

    Kim, Yeon Hee; Jung, Young Sun; Min, Ja; Song, Eun Young; Ok, Jung Hui; Lim, Changwon; Kim, Kyunghee; Kim, Ji-Su

    2017-01-01

    The clinical ladder system categorizes the degree of nursing professionalism and rewards and is an important human resource tool for managing nursing. We developed a model to evaluate nursing professionalism, which determines the clinical ladder system levels, and verified its validity. Data were collected using a clinical competence tool developed in this study, and existing methods such as the nursing professionalism evaluation tool, peer reviews, and face-to-face interviews to evaluate promotions and verify the presented content in a medical institution. Reliability and convergent and discriminant validity of the clinical competence evaluation tool were verified using SmartPLS software. The validity of the model for evaluating overall nursing professionalism was also analyzed. Clinical competence was determined by five dimensions of nursing practice: scientific, technical, ethical, aesthetic, and existential. The structural model explained 66% of the variance. Clinical competence scales, peer reviews, and face-to-face interviews directly determined nursing professionalism levels. The evaluation system can be used for evaluating nurses' professionalism in actual medical institutions from a nursing practice perspective. A conceptual framework for establishing a human resources management system for nurses and a tool for evaluating nursing professionalism at medical institutions is provided.

  15. Feature Extraction for Structural Dynamics Model Validation

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Charles [Los Alamos National Laboratory; Nishio, Mayuko [Yokohama University; Hemez, Francois [Los Alamos National Laboratory; Stull, Chris [Los Alamos National Laboratory; Park, Gyuhae [Chonnam Univesity; Cornwell, Phil [Rose-Hulman Institute of Technology; Figueiredo, Eloi [Universidade Lusófona; Luscher, D. J. [Los Alamos National Laboratory; Worden, Keith [University of Sheffield

    2016-01-13

    As structural dynamics becomes increasingly non-modal, stochastic and nonlinear, finite element model-updating technology must adopt the broader notions of model validation and uncertainty quantification. For example, particular re-sampling procedures must be implemented to propagate uncertainty through a forward calculation, and non-modal features must be defined to analyze nonlinear data sets. The latter topic is the focus of this report, but first, some more general comments regarding the concept of model validation will be discussed.

  16. External Validation Study of First Trimester Obstetric Prediction Models (Expect Study I): Research Protocol and Population Characteristics.

    Science.gov (United States)

    Meertens, Linda Jacqueline Elisabeth; Scheepers, Hubertina Cj; De Vries, Raymond G; Dirksen, Carmen D; Korstjens, Irene; Mulder, Antonius Lm; Nieuwenhuijze, Marianne J; Nijhuis, Jan G; Spaanderman, Marc Ea; Smits, Luc Jm

    2017-10-26

    A number of first-trimester prediction models addressing important obstetric outcomes have been published. However, most models have not been externally validated. External validation is essential before implementing a prediction model in clinical practice. The objective of this paper is to describe the design of a study to externally validate existing first trimester obstetric prediction models, based upon maternal characteristics and standard measurements (eg, blood pressure), for the risk of pre-eclampsia (PE), gestational diabetes mellitus (GDM), spontaneous preterm birth (PTB), small-for-gestational-age (SGA) infants, and large-for-gestational-age (LGA) infants among Dutch pregnant women (Expect Study I). The results of a pilot study on the feasibility and acceptability of the recruitment process and the comprehensibility of the Pregnancy Questionnaire 1 are also reported. A multicenter prospective cohort study was performed in The Netherlands between July 1, 2013 and December 31, 2015. First trimester obstetric prediction models were systematically selected from the literature. Predictor variables were measured by the Web-based Pregnancy Questionnaire 1 and pregnancy outcomes were established using the Postpartum Questionnaire 1 and medical records. Information about maternal health-related quality of life, costs, and satisfaction with Dutch obstetric care was collected from a subsample of women. A pilot study was carried out before the official start of inclusion. External validity of the models will be evaluated by assessing discrimination and calibration. Based on the pilot study, minor improvements were made to the recruitment process and online Pregnancy Questionnaire 1. The validation cohort consists of 2614 women. Data analysis of the external validation study is in progress. This study will offer insight into the generalizability of existing, non-invasive first trimester prediction models for various obstetric outcomes in a Dutch obstetric population

  17. Validation of ASTEC core degradation and containment models

    International Nuclear Information System (INIS)

    Kruse, Philipp; Brähler, Thimo; Koch, Marco K.

    2014-01-01

    Ruhr-Universitaet Bochum performed in a German funded project validation of in-vessel and containment models of the integral code ASTEC V2, jointly developed by IRSN (France) and GRS (Germany). In this paper selected results of this validation are presented. In the in-vessel part, the main point of interest was the validation of the code capability concerning cladding oxidation and hydrogen generation. The ASTEC calculations of QUENCH experiments QUENCH-03 and QUENCH-11 show satisfactory results, despite of some necessary adjustments in the input deck. Furthermore, the oxidation models based on the Cathcart–Pawel and Urbanic–Heidrick correlations are not suitable for higher temperatures while the ASTEC model BEST-FIT based on the Prater–Courtright approach at high temperature gives reliable enough results. One part of the containment model validation was the assessment of three hydrogen combustion models of ASTEC against the experiment BMC Ix9. The simulation results of these models differ from each other and therefore the quality of the simulations depends on the characteristic of each model. Accordingly, the CPA FRONT model, corresponding to the simplest necessary input parameters, provides the best agreement to the experimental data

  18. Analytical models approximating individual processes: a validation method.

    Science.gov (United States)

    Favier, C; Degallier, N; Menkès, C E

    2010-12-01

    Upscaling population models from fine to coarse resolutions, in space, time and/or level of description, allows the derivation of fast and tractable models based on a thorough knowledge of individual processes. The validity of such approximations is generally tested only on a limited range of parameter sets. A more general validation test, over a range of parameters, is proposed; this would estimate the error induced by the approximation, using the original model's stochastic variability as a reference. This method is illustrated by three examples taken from the field of epidemics transmitted by vectors that bite in a temporally cyclical pattern, that illustrate the use of the method: to estimate if an approximation over- or under-fits the original model; to invalidate an approximation; to rank possible approximations for their qualities. As a result, the application of the validation method to this field emphasizes the need to account for the vectors' biology in epidemic prediction models and to validate these against finer scale models. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Development and validation of a Markov microsimulation model for the economic evaluation of treatments in osteoporosis.

    Science.gov (United States)

    Hiligsmann, Mickaël; Ethgen, Olivier; Bruyère, Olivier; Richy, Florent; Gathon, Henry-Jean; Reginster, Jean-Yves

    2009-01-01

    Markov models are increasingly used in economic evaluations of treatments for osteoporosis. Most of the existing evaluations are cohort-based Markov models missing comprehensive memory management and versatility. In this article, we describe and validate an original Markov microsimulation model to accurately assess the cost-effectiveness of prevention and treatment of osteoporosis. We developed a Markov microsimulation model with a lifetime horizon and a direct health-care cost perspective. The patient history was recorded and was used in calculations of transition probabilities, utilities, and costs. To test the internal consistency of the model, we carried out an example calculation for alendronate therapy. Then, external consistency was investigated by comparing absolute lifetime risk of fracture estimates with epidemiologic data. For women at age 70 years, with a twofold increase in the fracture risk of the average population, the costs per quality-adjusted life-year gained for alendronate therapy versus no treatment were estimated at €9105 and €15,325, respectively, under full and realistic adherence assumptions. All the sensitivity analyses in terms of model parameters and modeling assumptions were coherent with expected conclusions and absolute lifetime risk of fracture estimates were within the range of previous estimates, which confirmed both internal and external consistency of the model. Microsimulation models present some major advantages over cohort-based models, increasing the reliability of the results and being largely compatible with the existing state of the art, evidence-based literature. The developed model appears to be a valid model for use in economic evaluations in osteoporosis.

  20. Regulatory perspectives on model validation in high-level radioactive waste management programs: A joint NRC/SKI white paper

    Energy Technology Data Exchange (ETDEWEB)

    Wingefors, S.; Andersson, J.; Norrby, S. [Swedish Nuclear Power lnspectorate, Stockholm (Sweden). Office of Nuclear Waste Safety; Eisenberg, N.A.; Lee, M.P.; Federline, M.V. [U.S. Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Material Safety and Safeguards; Sagar, B.; Wittmeyer, G.W. [Center for Nuclear Waste Regulatory Analyses, San Antonio, TX (United States)

    1999-03-01

    Validation (or confidence building) should be an important aspect of the regulatory uses of mathematical models in the safety assessments of geologic repositories for the disposal of spent nuclear fuel and other high-level radioactive wastes (HLW). A substantial body of literature exists indicating the manner in which scientific validation of models is usually pursued. Because models for a geologic repository performance assessment cannot be tested over the spatial scales of interest and long time periods for which the models will make estimates of performance, the usual avenue for model validation- that is, comparison of model estimates with actual data at the space-time scales of interest- is precluded. Further complicating the model validation process in HLW programs are the uncertainties inherent in describing the geologic complexities of potential disposal sites, and their interactions with the engineered system, with a limited set of generally imprecise data, making it difficult to discriminate between model discrepancy and inadequacy of input data. A successful strategy for model validation, therefore, should attempt to recognize these difficulties, address their resolution, and document the resolution in a careful manner. The end result of validation efforts should be a documented enhancement of confidence in the model to an extent that the model's results can aid in regulatory decision-making. The level of validation needed should be determined by the intended uses of these models, rather than by the ideal of validation of a scientific theory. This white Paper presents a model validation strategy that can be implemented in a regulatory environment. It was prepared jointly by staff members of the U.S. Nuclear Regulatory Commission and the Swedish Nuclear Power Inspectorate-SKI. This document should not be viewed as, and is not intended to be formal guidance or as a staff position on this matter. Rather, based on a review of the literature and previous

  1. Regulatory perspectives on model validation in high-level radioactive waste management programs: A joint NRC/SKI white paper

    International Nuclear Information System (INIS)

    Wingefors, S.; Andersson, J.; Norrby, S.

    1999-03-01

    Validation (or confidence building) should be an important aspect of the regulatory uses of mathematical models in the safety assessments of geologic repositories for the disposal of spent nuclear fuel and other high-level radioactive wastes (HLW). A substantial body of literature exists indicating the manner in which scientific validation of models is usually pursued. Because models for a geologic repository performance assessment cannot be tested over the spatial scales of interest and long time periods for which the models will make estimates of performance, the usual avenue for model validation- that is, comparison of model estimates with actual data at the space-time scales of interest- is precluded. Further complicating the model validation process in HLW programs are the uncertainties inherent in describing the geologic complexities of potential disposal sites, and their interactions with the engineered system, with a limited set of generally imprecise data, making it difficult to discriminate between model discrepancy and inadequacy of input data. A successful strategy for model validation, therefore, should attempt to recognize these difficulties, address their resolution, and document the resolution in a careful manner. The end result of validation efforts should be a documented enhancement of confidence in the model to an extent that the model's results can aid in regulatory decision-making. The level of validation needed should be determined by the intended uses of these models, rather than by the ideal of validation of a scientific theory. This white Paper presents a model validation strategy that can be implemented in a regulatory environment. It was prepared jointly by staff members of the U.S. Nuclear Regulatory Commission and the Swedish Nuclear Power Inspectorate-SKI. This document should not be viewed as, and is not intended to be formal guidance or as a staff position on this matter. Rather, based on a review of the literature and previous

  2. A discussion on validation of hydrogeological models

    International Nuclear Information System (INIS)

    Carrera, J.; Mousavi, S.F.; Usunoff, E.J.; Sanchez-Vila, X.; Galarza, G.

    1993-01-01

    Groundwater flow and solute transport are often driven by heterogeneities that elude easy identification. It is also difficult to select and describe the physico-chemical processes controlling solute behaviour. As a result, definition of a conceptual model involves numerous assumptions both on the selection of processes and on the representation of their spatial variability. Validating a numerical model by comparing its predictions with actual measurements may not be sufficient for evaluating whether or not it provides a good representation of 'reality'. Predictions will be close to measurements, regardless of model validity, if these are taken from experiments that stress well-calibrated model modes. On the other hand, predictions will be far from measurements when model parameters are very uncertain, even if the model is indeed a very good representation of the real system. Hence, we contend that 'classical' validation of hydrogeological models is not possible. Rather, models should be viewed as theories about the real system. We propose to follow a rigorous modeling approach in which different sources of uncertainty are explicitly recognized. The application of one such approach is illustrated by modeling a laboratory uranium tracer test performed on fresh granite, which was used as Test Case 1b in INTRAVAL. (author)

  3. Verification and validation for waste disposal models

    International Nuclear Information System (INIS)

    1987-07-01

    A set of evaluation criteria has been developed to assess the suitability of current verification and validation techniques for waste disposal methods. A survey of current practices and techniques was undertaken and evaluated using these criteria with the items most relevant to waste disposal models being identified. Recommendations regarding the most suitable verification and validation practices for nuclear waste disposal modelling software have been made

  4. Validating the passenger traffic model for Copenhagen

    DEFF Research Database (Denmark)

    Overgård, Christian Hansen; VUK, Goran

    2006-01-01

    The paper presents a comprehensive validation procedure for the passenger traffic model for Copenhagen based on external data from the Danish national travel survey and traffic counts. The model was validated for the years 2000 to 2004, with 2004 being of particular interest because the Copenhagen...... matched the observed traffic better than those of the transit assignment model. With respect to the metro forecasts, the model over-predicts metro passenger flows by 10% to 50%. The wide range of findings from the project resulted in two actions. First, a project was started in January 2005 to upgrade...

  5. Bayesian risk-based decision method for model validation under uncertainty

    International Nuclear Information System (INIS)

    Jiang Xiaomo; Mahadevan, Sankaran

    2007-01-01

    This paper develops a decision-making methodology for computational model validation, considering the risk of using the current model, data support for the current model, and cost of acquiring new information to improve the model. A Bayesian decision theory-based method is developed for this purpose, using a likelihood ratio as the validation metric for model assessment. An expected risk or cost function is defined as a function of the decision costs, and the likelihood and prior of each hypothesis. The risk is minimized through correctly assigning experimental data to two decision regions based on the comparison of the likelihood ratio with a decision threshold. A Bayesian validation metric is derived based on the risk minimization criterion. Two types of validation tests are considered: pass/fail tests and system response value measurement tests. The methodology is illustrated for the validation of reliability prediction models in a tension bar and an engine blade subjected to high cycle fatigue. The proposed method can effectively integrate optimal experimental design into model validation to simultaneously reduce the cost and improve the accuracy of reliability model assessment

  6. Methodology for Computational Fluid Dynamic Validation for Medical Use: Application to Intracranial Aneurysm.

    Science.gov (United States)

    Paliwal, Nikhil; Damiano, Robert J; Varble, Nicole A; Tutino, Vincent M; Dou, Zhongwang; Siddiqui, Adnan H; Meng, Hui

    2017-12-01

    Computational fluid dynamics (CFD) is a promising tool to aid in clinical diagnoses of cardiovascular diseases. However, it uses assumptions that simplify the complexities of the real cardiovascular flow. Due to high-stakes in the clinical setting, it is critical to calculate the effect of these assumptions in the CFD simulation results. However, existing CFD validation approaches do not quantify error in the simulation results due to the CFD solver's modeling assumptions. Instead, they directly compare CFD simulation results against validation data. Thus, to quantify the accuracy of a CFD solver, we developed a validation methodology that calculates the CFD model error (arising from modeling assumptions). Our methodology identifies independent error sources in CFD and validation experiments, and calculates the model error by parsing out other sources of error inherent in simulation and experiments. To demonstrate the method, we simulated the flow field of a patient-specific intracranial aneurysm (IA) in the commercial CFD software star-ccm+. Particle image velocimetry (PIV) provided validation datasets for the flow field on two orthogonal planes. The average model error in the star-ccm+ solver was 5.63 ± 5.49% along the intersecting validation line of the orthogonal planes. Furthermore, we demonstrated that our validation method is superior to existing validation approaches by applying three representative existing validation techniques to our CFD and experimental dataset, and comparing the validation results. Our validation methodology offers a streamlined workflow to extract the "true" accuracy of a CFD solver.

  7. Validation of mentorship model for newly qualified professional ...

    African Journals Online (AJOL)

    Newly qualified professional nurses (NQPNs) allocated to community health care services require the use of validated model to practice independently. Validation was done to adapt and assess if the model is understood and could be implemented by NQPNs and mentors employed in community health care services.

  8. Validation and Adaptation of Router and Switch Models

    NARCIS (Netherlands)

    Boltjes, B.; Fernandez Diaz, I.; Kock, B.A.; Langeveld, R.J.G.M.; Schoenmaker, G.

    2003-01-01

    This paper describes validating OPNET models of key devices for the next generation IP-based tactical network of the Royal Netherlands Army (RNLA). The task of TNO-FEL is to provide insight in scalability and performance of future deployed networks. Because validated models ol key Cisco equipment

  9. ADOPT: A Historically Validated Light Duty Vehicle Consumer Choice Model

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, A.; Gonder, J.; Lopp, S.; Ward, J.

    2015-05-04

    The Automotive Deployment Option Projection Tool (ADOPT) is a light-duty vehicle consumer choice and stock model supported by the U.S. Department of Energy’s Vehicle Technologies Office. It estimates technology improvement impacts on U.S. light-duty vehicles sales, petroleum use, and greenhouse gas emissions. ADOPT uses techniques from the multinomial logit method and the mixed logit method estimate sales. Specifically, it estimates sales based on the weighted value of key attributes including vehicle price, fuel cost, acceleration, range and usable volume. The average importance of several attributes changes nonlinearly across its range and changes with income. For several attributes, a distribution of importance around the average value is used to represent consumer heterogeneity. The majority of existing vehicle makes, models, and trims are included to fully represent the market. The Corporate Average Fuel Economy regulations are enforced. The sales feed into the ADOPT stock model. It captures key aspects for summing petroleum use and greenhouse gas emissions This includes capturing the change in vehicle miles traveled by vehicle age, the creation of new model options based on the success of existing vehicles, new vehicle option introduction rate limits, and survival rates by vehicle age. ADOPT has been extensively validated with historical sales data. It matches in key dimensions including sales by fuel economy, acceleration, price, vehicle size class, and powertrain across multiple years. A graphical user interface provides easy and efficient use. It manages the inputs, simulation, and results.

  10. Development of a Conservative Model Validation Approach for Reliable Analysis

    Science.gov (United States)

    2015-01-01

    CIE 2015 August 2-5, 2015, Boston, Massachusetts, USA [DRAFT] DETC2015-46982 DEVELOPMENT OF A CONSERVATIVE MODEL VALIDATION APPROACH FOR RELIABLE...obtain a conservative simulation model for reliable design even with limited experimental data. Very little research has taken into account the...3, the proposed conservative model validation is briefly compared to the conventional model validation approach. Section 4 describes how to account

  11. Validation of ecological state space models using the Laplace approximation

    DEFF Research Database (Denmark)

    Thygesen, Uffe Høgsbro; Albertsen, Christoffer Moesgaard; Berg, Casper Willestofte

    2017-01-01

    Many statistical models in ecology follow the state space paradigm. For such models, the important step of model validation rarely receives as much attention as estimation or hypothesis testing, perhaps due to lack of available algorithms and software. Model validation is often based on a naive...... for estimation in general mixed effects models. Implementing one-step predictions in the R package Template Model Builder, we demonstrate that it is possible to perform model validation with little effort, even if the ecological model is multivariate, has non-linear dynamics, and whether observations...... useful directions in which the model could be improved....

  12. An Empirical Validation of Building Simulation Software for Modelling of Double-Skin Facade (DSF)

    DEFF Research Database (Denmark)

    Larsen, Olena Kalyanova; Heiselberg, Per; Felsmann, Clemens

    2009-01-01

    buildings, but their accuracy might be limited in cases with DSFs because of the complexity of the heat and mass transfer processes within the DSF. To address this problem, an empirical validation of building models with DSF, performed with various building simulation tools (ESP-r, IDA ICE 3.0, VA114......Double-skin facade (DSF) buildings are being built as an attractive, innovative and energy efficient solution. Nowadays, several design tools are used for assessment of thermal and energy performance of DSF buildings. Existing design tools are well-suited for performance assessment of conventional......, TRNSYS-TUD and BSim) was carried out in the framework of IEA SHC Task 34 /ECBCS Annex 43 "Testing and Validation of Building Energy Simulation Tools". The experimental data for the validation was gathered in a full-scale outdoor test facility. The empirical data sets comprise the key-functioning modes...

  13. Smooth particle hydrodynamic modeling and validation for impact bird substitution

    Science.gov (United States)

    Babu, Arun; Prasad, Ganesh

    2018-04-01

    Bird strike events incidentally occur and can at times be fatal for air frame structures. Federal Aviation Regulations (FAR) and such other ones mandates aircrafts to be modeled to withstand various levels of bird hit damages. The subject matter of this paper is numerical modeling of a soft body geometry for realistically substituting an actual bird for carrying out simulations of bird hit on target structures. Evolution of such a numerical code to effect an actual bird behavior through impact is much desired for making use of the state of the art computational facilities in simulating bird strike events. Validity, of simulations depicting bird hits, is largely dependent on the correctness of the bird model. In an impact, a set of complex and coupled dynamic interaction exists between the target and the impactor. To simplify this problem, impactor response needs to be decoupled from that of the target. This can be done by assuming and modeling the target as noncompliant. Bird is assumed as fluidic in a impact. Generated stresses in the bird body are significant than its yield stresses. Hydrodynamic theory is most ideal for describing this problem. Impactor literally flows steadily over the target for most part of this problem. The impact starts with an initial shock and falls into a radial release shock regime. Subsequently a steady flow is established in the bird body and this phase continues till the whole length of the bird body is turned around. Initial shock pressure and steady state pressure are ideal variables for comparing and validating the bird model. Spatial discretization of the bird is done using Smooth Particle Hydrodynamic (SPH) approach. This Discrete Element Model (DEM) offers significant advantages over other contemporary approaches. Thermodynamic state variable relations are established using Polynomial Equation of State (EOS). ANSYS AUTODYN is used to perform the explicit dynamic simulation of the impact event. Validation of the shock and steady

  14. An extended protocol for usability validation of medical devices: Research design and reference model.

    Science.gov (United States)

    Schmettow, Martin; Schnittker, Raphaela; Schraagen, Jan Maarten

    2017-05-01

    This paper proposes and demonstrates an extended protocol for usability validation testing of medical devices. A review of currently used methods for the usability evaluation of medical devices revealed two main shortcomings. Firstly, the lack of methods to closely trace the interaction sequences and derive performance measures. Secondly, a prevailing focus on cross-sectional validation studies, ignoring the issues of learnability and training. The U.S. Federal Drug and Food Administration's recent proposal for a validation testing protocol for medical devices is then extended to address these shortcomings: (1) a novel process measure 'normative path deviations' is introduced that is useful for both quantitative and qualitative usability studies and (2) a longitudinal, completely within-subject study design is presented that assesses learnability, training effects and allows analysis of diversity of users. A reference regression model is introduced to analyze data from this and similar studies, drawing upon generalized linear mixed-effects models and a Bayesian estimation approach. The extended protocol is implemented and demonstrated in a study comparing a novel syringe infusion pump prototype to an existing design with a sample of 25 healthcare professionals. Strong performance differences between designs were observed with a variety of usability measures, as well as varying training-on-the-job effects. We discuss our findings with regard to validation testing guidelines, reflect on the extensions and discuss the perspectives they add to the validation process. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Development and internal validation of a prognostic model to predict recurrence free survival in patients with adult granulosa cell tumors of the ovary

    NARCIS (Netherlands)

    van Meurs, Hannah S.; Schuit, Ewoud; Horlings, Hugo M.; van der Velden, Jacobus; van Driel, Willemien J.; Mol, Ben Willem J.; Kenter, Gemma G.; Buist, Marrije R.

    2014-01-01

    Models to predict the probability of recurrence free survival exist for various types of malignancies, but a model for recurrence free survival in individuals with an adult granulosa cell tumor (GCT) of the ovary is lacking. We aimed to develop and internally validate such a prognostic model. We

  16. Pharmacokinetic modeling of gentamicin in treatment of infective endocarditis : Model development and validation of existing models

    NARCIS (Netherlands)

    Gomes, Anna; van der Wijk, Lars; Proost, Johannes H; Sinha, Bhanu; Touw, Daan J

    2017-01-01

    Gentamicin shows large variations in half-life and volume of distribution (Vd) within and between individuals. Thus, monitoring and accurately predicting serum levels are required to optimize effectiveness and minimize toxicity. Currently, two population pharmacokinetic models are applied for

  17. Modelling the feasibility of retrofitting hydropower to existing South ...

    African Journals Online (AJOL)

    An investigation was carried out with the primary objective of ascertaining whether it is possible to develop a model for determining the feasibility of retrofitting hydropower to existing dams in South Africa. The need for such a model is primarily due to the growing importance of small-scale hydropower projects resulting from ...

  18. Development and prospective validation of a model estimating risk of readmission in cancer patients.

    Science.gov (United States)

    Schmidt, Carl R; Hefner, Jennifer; McAlearney, Ann S; Graham, Lisa; Johnson, Kristen; Moffatt-Bruce, Susan; Huerta, Timothy; Pawlik, Timothy M; White, Susan

    2018-02-26

    Hospital readmissions among cancer patients are common. While several models estimating readmission risk exist, models specific for cancer patients are lacking. A logistic regression model estimating risk of unplanned 30-day readmission was developed using inpatient admission data from a 2-year period (n = 18 782) at a tertiary cancer hospital. Readmission risk estimates derived from the model were then calculated prospectively over a 10-month period (n = 8616 admissions) and compared with actual incidence of readmission. There were 2478 (13.2%) unplanned readmissions. Model factors associated with readmission included: emergency department visit within 30 days, >1 admission within 60 days, non-surgical admission, solid malignancy, gastrointestinal cancer, emergency admission, length of stay >5 days, abnormal sodium, hemoglobin, or white blood cell count. The c-statistic for the model was 0.70. During the 10-month prospective evaluation, estimates of readmission from the model were associated with higher actual readmission incidence from 20.7% for the highest risk category to 9.6% for the lowest. An unplanned readmission risk model developed specifically for cancer patients performs well when validated prospectively. The specificity of the model for cancer patients, EMR incorporation, and prospective validation justify use of the model in future studies designed to reduce and prevent readmissions. © 2018 Wiley Periodicals, Inc.

  19. An animal model of co-existing sarcopenia and osteoporotic fracture in senescence accelerated mouse prone 8 (SAMP8).

    Science.gov (United States)

    Zhang, Ning; Chow, Simon Kwoon Ho; Leung, Kwok Sui; Lee, Ho Hin; Cheung, Wing Hoi

    2017-10-15

    Sarcopenia and osteoporotic fracture are common aging-related musculoskeletal problems. Recent evidences report that osteoporotic fracture patients showed high prevalence of sarcopenia; however, current clinical practice basically does not consider sarcopenia in the treatment or rehabilitation of osteoporotic fracture. There is almost no report studying the relationship of the co-existing of sarcopenia and osteoporotic fracture healing. In this study, we validated aged senescence accelerated mouse prone 8 (SAMP8) and senescence accelerated mouse resistant 1 (SAMR1) as animal models of senile osteoporosis with/without sarcopenia. Bone mineral density (BMD) at the 5th lumbar and muscle testing of the two animal strains were measured to confirm the status of osteoporosis and sarcopenia, respectively. Closed fracture was created on the right femur of 8-month-old animals. Radiographs were taken weekly post-fracture. MicroCT and histology of the fractured femur were performed at week 2, 4 and 6 post-fracture, while mechanical test of both femora at week 4 and 6 post-fracture. Results showed that the callus of SAMR1 was significantly larger at week 2 but smaller at week 6 post-fracture than SAMP8. Mechanical properties were significantly better at week 4 post-fracture in SAMR1 than SAMP8, indicating osteoporotic fracture healing was delayed in sarcopenic SAMP8. This study validated an animal model of co-existing sarcopenia and osteoporotic fracture, where a delayed fracture healing might be resulted in the presence of sarcopenia. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A validated model for the 22-item Sino-Nasal Outcome Test subdomain structure in chronic rhinosinusitis.

    Science.gov (United States)

    Feng, Allen L; Wesely, Nicholas C; Hoehle, Lloyd P; Phillips, Katie M; Yamasaki, Alisa; Campbell, Adam P; Gregorio, Luciano L; Killeen, Thomas E; Caradonna, David S; Meier, Josh C; Gray, Stacey T; Sedaghat, Ahmad R

    2017-12-01

    Previous studies have identified subdomains of the 22-item Sino-Nasal Outcome Test (SNOT-22), reflecting distinct and largely independent categories of chronic rhinosinusitis (CRS) symptoms. However, no study has validated the subdomain structure of the SNOT-22. This study aims to validate the existence of underlying symptom subdomains of the SNOT-22 using confirmatory factor analysis (CFA) and to develop a subdomain model that practitioners and researchers can use to describe CRS symptomatology. A total of 800 patients with CRS were included into this cross-sectional study (400 CRS patients from Boston, MA, and 400 CRS patients from Reno, NV). Their SNOT-22 responses were analyzed using exploratory factor analysis (EFA) to determine the number of symptom subdomains. A CFA was performed to develop a validated measurement model for the underlying SNOT-22 subdomains along with various tests of validity and goodness of fit. EFA demonstrated 4 distinct factors reflecting: sleep, nasal, otologic/facial pain, and emotional symptoms (Cronbach's alpha, >0.7; Bartlett's test of sphericity, p Kaiser-Meyer-Olkin >0.90), independent of geographic locale. The corresponding CFA measurement model demonstrated excellent measures of fit (root mean square error of approximation, 0.95; Tucker-Lewis index, >0.95) and measures of construct validity (heterotrait-monotrait [HTMT] ratio, 0.7), again independent of geographic locale. The use of the 4-subdomain structure for SNOT-22 (reflecting sleep, nasal, otologic/facial pain, and emotional symptoms of CRS) was validated as the most appropriate to calculate SNOT-22 subdomain scores for patients from different geographic regions using CFA. © 2017 ARS-AAOA, LLC.

  1. Method for Pre-Conditioning a Measured Surface Height Map for Model Validation

    Science.gov (United States)

    Sidick, Erkin

    2012-01-01

    This software allows one to up-sample or down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. Because the re-sampling of a surface map is accomplished based on the analytical expressions of Zernike-polynomials and a power spectral density model, such re-sampling does not introduce any aliasing and interpolation errors as is done by the conventional interpolation and FFT-based (fast-Fourier-transform-based) spatial-filtering method. Also, this new method automatically eliminates the measurement noise and other measurement errors such as artificial discontinuity. The developmental cycle of an optical system, such as a space telescope, includes, but is not limited to, the following two steps: (1) deriving requirements or specs on the optical quality of individual optics before they are fabricated through optical modeling and simulations, and (2) validating the optical model using the measured surface height maps after all optics are fabricated. There are a number of computational issues related to model validation, one of which is the "pre-conditioning" or pre-processing of the measured surface maps before using them in a model validation software tool. This software addresses the following issues: (1) up- or down-sampling a measured surface map to match it with the gridded data format of a model validation tool, and (2) eliminating the surface measurement noise or measurement errors such that the resulted surface height map is continuous or smoothly-varying. So far, the preferred method used for re-sampling a surface map is two-dimensional interpolation. The main problem of this method is that the same pixel can take different values when the method of interpolation is changed among the different methods such as the "nearest," "linear," "cubic," and "spline" fitting in Matlab. The conventional, FFT-based spatial filtering method used to

  2. A Supervised Learning Process to Validate Online Disease Reports for Use in Predictive Models.

    Science.gov (United States)

    Patching, Helena M M; Hudson, Laurence M; Cooke, Warrick; Garcia, Andres J; Hay, Simon I; Roberts, Mark; Moyes, Catherine L

    2015-12-01

    Pathogen distribution models that predict spatial variation in disease occurrence require data from a large number of geographic locations to generate disease risk maps. Traditionally, this process has used data from public health reporting systems; however, using online reports of new infections could speed up the process dramatically. Data from both public health systems and online sources must be validated before they can be used, but no mechanisms exist to validate data from online media reports. We have developed a supervised learning process to validate geolocated disease outbreak data in a timely manner. The process uses three input features, the data source and two metrics derived from the location of each disease occurrence. The location of disease occurrence provides information on the probability of disease occurrence at that location based on environmental and socioeconomic factors and the distance within or outside the current known disease extent. The process also uses validation scores, generated by disease experts who review a subset of the data, to build a training data set. The aim of the supervised learning process is to generate validation scores that can be used as weights going into the pathogen distribution model. After analyzing the three input features and testing the performance of alternative processes, we selected a cascade of ensembles comprising logistic regressors. Parameter values for the training data subset size, number of predictors, and number of layers in the cascade were tested before the process was deployed. The final configuration was tested using data for two contrasting diseases (dengue and cholera), and 66%-79% of data points were assigned a validation score. The remaining data points are scored by the experts, and the results inform the training data set for the next set of predictors, as well as going to the pathogen distribution model. The new supervised learning process has been implemented within our live site and is

  3. A methodology for PSA model validation

    International Nuclear Information System (INIS)

    Unwin, S.D.

    1995-09-01

    This document reports Phase 2 of work undertaken by Science Applications International Corporation (SAIC) in support of the Atomic Energy Control Board's Probabilistic Safety Assessment (PSA) review. A methodology is presented for the systematic review and evaluation of a PSA model. These methods are intended to support consideration of the following question: To within the scope and depth of modeling resolution of a PSA study, is the resultant model a complete and accurate representation of the subject plant? This question was identified as a key PSA validation issue in SAIC's Phase 1 project. The validation methods are based on a model transformation process devised to enhance the transparency of the modeling assumptions. Through conversion to a 'success-oriented' framework, a closer correspondence to plant design and operational specifications is achieved. This can both enhance the scrutability of the model by plant personnel, and provide an alternative perspective on the model that may assist in the identification of deficiencies. The model transformation process is defined and applied to fault trees documented in the Darlington Probabilistic Safety Evaluation. A tentative real-time process is outlined for implementation and documentation of a PSA review based on the proposed methods. (author). 11 refs., 9 tabs., 30 refs

  4. Assessing Discriminative Performance at External Validation of Clinical Prediction Models.

    Directory of Open Access Journals (Sweden)

    Daan Nieboer

    Full Text Available External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting.We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1 the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2 the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury.The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples and heterogeneous in scenario 2 (in 17%-39% of simulated samples. Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2.The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients.

  5. Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Utgikar, Vivek [Univ. of Idaho, Moscow, ID (United States); Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Christensen, Richard [The Ohio State Univ., Columbus, OH (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-29

    The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate the models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.

  6. Large-scale Validation of AMIP II Land-surface Simulations: Preliminary Results for Ten Models

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, T J; Henderson-Sellers, A; Irannejad, P; McGuffie, K; Zhang, H

    2005-12-01

    This report summarizes initial findings of a large-scale validation of the land-surface simulations of ten atmospheric general circulation models that are entries in phase II of the Atmospheric Model Intercomparison Project (AMIP II). This validation is conducted by AMIP Diagnostic Subproject 12 on Land-surface Processes and Parameterizations, which is focusing on putative relationships between the continental climate simulations and the associated models' land-surface schemes. The selected models typify the diversity of representations of land-surface climate that are currently implemented by the global modeling community. The current dearth of global-scale terrestrial observations makes exacting validation of AMIP II continental simulations impractical. Thus, selected land-surface processes of the models are compared with several alternative validation data sets, which include merged in-situ/satellite products, climate reanalyses, and off-line simulations of land-surface schemes that are driven by observed forcings. The aggregated spatio-temporal differences between each simulated process and a chosen reference data set then are quantified by means of root-mean-square error statistics; the differences among alternative validation data sets are similarly quantified as an estimate of the current observational uncertainty in the selected land-surface process. Examples of these metrics are displayed for land-surface air temperature, precipitation, and the latent and sensible heat fluxes. It is found that the simulations of surface air temperature, when aggregated over all land and seasons, agree most closely with the chosen reference data, while the simulations of precipitation agree least. In the latter case, there also is considerable inter-model scatter in the error statistics, with the reanalyses estimates of precipitation resembling the AMIP II simulations more than to the chosen reference data. In aggregate, the simulations of land-surface latent and

  7. Feasibility study and uncertainties in the validation of an existing safety-related control circuit with the ISO 13849-1:2006 design standard

    International Nuclear Information System (INIS)

    Jocelyn, Sabrina; Baudoin, James; Chinniah, Yuvin; Charpentier, Philippe

    2014-01-01

    In industry, machine users and people who modify or integrate equipment often have to evaluate the safety level of a safety-related control circuit that they have not necessarily designed. The modifications or integrations may involve work to make an existing machine that does not comply with normative or regulatory specifications safe. However, how can a circuit performing a safety function be validated a posteriori? Is the validation exercise feasible? What are the difficulties and limitations of such a procedure? The aim of this article is to answer these questions by presenting a validation study of a safety function of an existing machine. A plastic injection molding machine is used for this study, as well as standard ISO 13849-1:2006. Validation consists of performing an a posteriori (post-design) estimation of the performance level of the safety function. The procedure is studied for two contexts of use of the machine: in industry, and in laboratory. The calculations required by the ISO standard were done using Excel, followed by SIStema software. It is shown that, based on the context of use, the estimated performance level was different for the same safety-related circuit. The variability in the results is explained by the assumptions made by the person undertaking the validation without the involvement of the machine designer. - Highlights: • Validation of the performance level of a safety function is undertaken. • An injection molding machine and ISO 13849-1:2006 standard are used for the procedure. • The procedure is undertaken for two contexts of use of the machine. • In this study, the performance level depends on the context of use. • The assumptions made throughout the study partially explain this difference

  8. Validation and comparison of dispersion models of RTARC DSS

    International Nuclear Information System (INIS)

    Duran, J.; Pospisil, M.

    2004-01-01

    RTARC DSS (Real Time Accident Release Consequences - Decision Support System) is a computer code developed at the VUJE Trnava, Inc. (Stubna, M. et al, 1993). The code calculations include atmospheric transport and diffusion, dose assessment, evaluation and displaying of the affected zones, evaluation of the early health effects, concentration and dose rate time dependence in the selected sites etc. The simulation of the protective measures (sheltering, iodine administration) is involved. The aim of this paper is to present the process of validation of the RTARC dispersion models. RTARC includes models for calculations of release for very short (Method Monte Carlo - MEMOC), short (Gaussian Straight-Line Model) and long distances (Puff Trajectory Model - PTM). Validation of the code RTARC was performed using the results of comparisons and experiments summarized in the Table 1.: 1. Experiments and comparisons in the process of validation of the system RTARC - experiments or comparison - distance - model. Wind tunnel experiments (Universitaet der Bundeswehr, Muenchen) - Area of NPP - Method Monte Carlo. INEL (Idaho National Engineering Laboratory) - short/medium - Gaussian model and multi tracer atmospheric experiment - distances - PTM. Model Validation Kit - short distances - Gaussian model. STEP II.b 'Realistic Case Studies' - long distances - PTM. ENSEMBLE comparison - long distances - PTM (orig.)

  9. Few promising multivariable prognostic models exist for recovery of people with non-specific neck pain in musculoskeletal primary care: a systematic review.

    Science.gov (United States)

    Wingbermühle, Roel W; van Trijffel, Emiel; Nelissen, Paul M; Koes, Bart; Verhagen, Arianne P

    2018-01-01

    Which multivariable prognostic model(s) for recovery in people with neck pain can be used in primary care? Systematic review of studies evaluating multivariable prognostic models. People with non-specific neck pain presenting at primary care. Baseline characteristics of the participants. Recovery measured as pain reduction, reduced disability, or perceived recovery at short-term and long-term follow-up. Fifty-three publications were included, of which 46 were derivation studies, four were validation studies, and three concerned combined studies. The derivation studies presented 99 multivariate models, all of which were at high risk of bias. Three externally validated models generated usable models in low risk of bias studies. One predicted recovery in non-specific neck pain, while two concerned participants with whiplash-associated disorders (WAD). Discriminative ability of the non-specific neck pain model was area under the curve (AUC) 0.65 (95% CI 0.59 to 0.71). For the first WAD model, discriminative ability was AUC 0.85 (95% CI 0.79 to 0.91). For the second WAD model, specificity was 99% (95% CI 93 to 100) and sensitivity was 44% (95% CI 23 to 65) for prediction of non-recovery, and 86% (95% CI 73 to 94) and 55% (95% CI 41 to 69) for prediction of recovery, respectively. Initial Neck Disability Index scores and age were identified as consistent prognostic factors in these three models. Three externally validated models were found to be usable and to have low risk of bias, of which two showed acceptable discriminative properties for predicting recovery in people with neck pain. These three models need further validation and evaluation of their clinical impact before their broad clinical use can be advocated. PROSPERO CRD42016042204. [Wingbermühle RW, van Trijffel E, Nelissen PM, Koes B, Verhagen AP (2018) Few promising multivariable prognostic models exist for recovery of people with non-specific neck pain in musculoskeletal primary care: a systematic review

  10. Cross-validation pitfalls when selecting and assessing regression and classification models.

    Science.gov (United States)

    Krstajic, Damjan; Buturovic, Ljubomir J; Leahy, David E; Thomas, Simon

    2014-03-29

    We address the problem of selecting and assessing classification and regression models using cross-validation. Current state-of-the-art methods can yield models with high variance, rendering them unsuitable for a number of practical applications including QSAR. In this paper we describe and evaluate best practices which improve reliability and increase confidence in selected models. A key operational component of the proposed methods is cloud computing which enables routine use of previously infeasible approaches. We describe in detail an algorithm for repeated grid-search V-fold cross-validation for parameter tuning in classification and regression, and we define a repeated nested cross-validation algorithm for model assessment. As regards variable selection and parameter tuning we define two algorithms (repeated grid-search cross-validation and double cross-validation), and provide arguments for using the repeated grid-search in the general case. We show results of our algorithms on seven QSAR datasets. The variation of the prediction performance, which is the result of choosing different splits of the dataset in V-fold cross-validation, needs to be taken into account when selecting and assessing classification and regression models. We demonstrate the importance of repeating cross-validation when selecting an optimal model, as well as the importance of repeating nested cross-validation when assessing a prediction error.

  11. Mapping the EORTC QLQ-C30 onto the EQ-5D-3L: assessing the external validity of existing mapping algorithms.

    Science.gov (United States)

    Doble, Brett; Lorgelly, Paula

    2016-04-01

    To determine the external validity of existing mapping algorithms for predicting EQ-5D-3L utility values from EORTC QLQ-C30 responses and to establish their generalizability in different types of cancer. A main analysis (pooled) sample of 3560 observations (1727 patients) and two disease severity patient samples (496 and 93 patients) with repeated observations over time from Cancer 2015 were used to validate the existing algorithms. Errors were calculated between observed and predicted EQ-5D-3L utility values using a single pooled sample and ten pooled tumour type-specific samples. Predictive accuracy was assessed using mean absolute error (MAE) and standardized root-mean-squared error (RMSE). The association between observed and predicted EQ-5D utility values and other covariates across the distribution was tested using quantile regression. Quality-adjusted life years (QALYs) were calculated using observed and predicted values to test responsiveness. Ten 'preferred' mapping algorithms were identified. Two algorithms estimated via response mapping and ordinary least-squares regression using dummy variables performed well on number of validation criteria, including accurate prediction of the best and worst QLQ-C30 health states, predicted values within the EQ-5D tariff range, relatively small MAEs and RMSEs, and minimal differences between estimated QALYs. Comparison of predictive accuracy across ten tumour type-specific samples highlighted that algorithms are relatively insensitive to grouping by tumour type and affected more by differences in disease severity. Two of the 'preferred' mapping algorithms suggest more accurate predictions, but limitations exist. We recommend extensive scenario analyses if mapped utilities are used in cost-utility analyses.

  12. Developing a model for validation and prediction of bank customer ...

    African Journals Online (AJOL)

    Credit risk is the most important risk of banks. The main approaches of the bank to reduce credit risk are correct validation using the final status and the validation model parameters. High fuel of bank reserves and lost or outstanding facilities of banks indicate the lack of appropriate validation models in the banking network.

  13. Validation of heat transfer models for gap cooling

    International Nuclear Information System (INIS)

    Okano, Yukimitsu; Nagae, Takashi; Murase, Michio

    2004-01-01

    For severe accident assessment of a light water reactor, models of heat transfer in a narrow annular gap between overheated core debris and a reactor pressure vessel are important for evaluating vessel integrity and accident management. The authors developed and improved the models of heat transfer. However, validation was not sufficient for applicability of the gap heat flux correlation to the debris cooling in the vessel lower head and applicability of the local boiling heat flux correlations to the high-pressure conditions. Therefore, in this paper, we evaluated the validity of the heat transfer models and correlations by analyses for ALPHA and LAVA experiments where molten aluminum oxide (Al 2 O 3 ) at about 2700 K was poured into the high pressure water pool in a small-scale simulated vessel lower head. In the heating process of the vessel wall, the calculated heating rate and peak temperature agreed well with the measured values, and the validity of the heat transfer models and gap heat flux correlation was confirmed. In the cooling process of the vessel wall, the calculated cooling rate was compared with the measured value, and the validity of the nucleate boiling heat flux correlation was confirmed. The peak temperatures of the vessel wall in ALPHA and LAVA experiments were lower than the temperature at the minimum heat flux point between film boiling and transition boiling, so the minimum heat flux correlation could not be validated. (author)

  14. Solar Sail Models and Test Measurements Correspondence for Validation Requirements Definition

    Science.gov (United States)

    Ewing, Anthony; Adams, Charles

    2004-01-01

    Solar sails are being developed as a mission-enabling technology in support of future NASA science missions. Current efforts have advanced solar sail technology sufficient to justify a flight validation program. A primary objective of this activity is to test and validate solar sail models that are currently under development so that they may be used with confidence in future science mission development (e.g., scalable to larger sails). Both system and model validation requirements must be defined early in the program to guide design cycles and to ensure that relevant and sufficient test data will be obtained to conduct model validation to the level required. A process of model identification, model input/output documentation, model sensitivity analyses, and test measurement correspondence is required so that decisions can be made to satisfy validation requirements within program constraints.

  15. An approach to model validation and model-based prediction -- polyurethane foam case study.

    Energy Technology Data Exchange (ETDEWEB)

    Dowding, Kevin J.; Rutherford, Brian Milne

    2003-07-01

    Enhanced software methodology and improved computing hardware have advanced the state of simulation technology to a point where large physics-based codes can be a major contributor in many systems analyses. This shift toward the use of computational methods has brought with it new research challenges in a number of areas including characterization of uncertainty, model validation, and the analysis of computer output. It is these challenges that have motivated the work described in this report. Approaches to and methods for model validation and (model-based) prediction have been developed recently in the engineering, mathematics and statistical literatures. In this report we have provided a fairly detailed account of one approach to model validation and prediction applied to an analysis investigating thermal decomposition of polyurethane foam. A model simulates the evolution of the foam in a high temperature environment as it transforms from a solid to a gas phase. The available modeling and experimental results serve as data for a case study focusing our model validation and prediction developmental efforts on this specific thermal application. We discuss several elements of the ''philosophy'' behind the validation and prediction approach: (1) We view the validation process as an activity applying to the use of a specific computational model for a specific application. We do acknowledge, however, that an important part of the overall development of a computational simulation initiative is the feedback provided to model developers and analysts associated with the application. (2) We utilize information obtained for the calibration of model parameters to estimate the parameters and quantify uncertainty in the estimates. We rely, however, on validation data (or data from similar analyses) to measure the variability that contributes to the uncertainty in predictions for specific systems or units (unit-to-unit variability). (3) We perform statistical

  16. The existence of generalized synchronisation of three bidirectionally coupled chaotic systems

    International Nuclear Information System (INIS)

    Ai-Hua, Hu; Zhen-Yuan, Xu; Liu-Xiao, Guo

    2010-01-01

    The existence of two types of generalized synchronisation is studied. The model considered here includes three bidirectionally coupled chaotic systems, and two of them denote the driving systems, while the rest stands for the response system. Under certain conditions, the existence of generalised synchronisation can be turned to a problem of compression fixed point in the family of Lipschitz functions. In addition, theoretical proofs are proposed to the exponential attractive property of generalised synchronisation manifold. Numerical simulations validate the theory. (general)

  17. Experimental Validation of Flow Force Models for Fast Switching Valves

    DEFF Research Database (Denmark)

    Bender, Niels Christian; Pedersen, Henrik Clemmensen; Nørgård, Christian

    2017-01-01

    This paper comprises a detailed study of the forces acting on a Fast Switching Valve (FSV) plunger. The objective is to investigate to what extend different models are valid to be used for design purposes. These models depend on the geometry of the moving plunger and the properties of the surroun......This paper comprises a detailed study of the forces acting on a Fast Switching Valve (FSV) plunger. The objective is to investigate to what extend different models are valid to be used for design purposes. These models depend on the geometry of the moving plunger and the properties...... to compare and validate different models, where an effort is directed towards capturing the fluid squeeze effect just before material on material contact. The test data is compared with simulation data relying solely on analytic formulations. The general dynamics of the plunger is validated...

  18. Validating neural-network refinements of nuclear mass models

    Science.gov (United States)

    Utama, R.; Piekarewicz, J.

    2018-01-01

    Background: Nuclear astrophysics centers on the role of nuclear physics in the cosmos. In particular, nuclear masses at the limits of stability are critical in the development of stellar structure and the origin of the elements. Purpose: We aim to test and validate the predictions of recently refined nuclear mass models against the newly published AME2016 compilation. Methods: The basic paradigm underlining the recently refined nuclear mass models is based on existing state-of-the-art models that are subsequently refined through the training of an artificial neural network. Bayesian inference is used to determine the parameters of the neural network so that statistical uncertainties are provided for all model predictions. Results: We observe a significant improvement in the Bayesian neural network (BNN) predictions relative to the corresponding "bare" models when compared to the nearly 50 new masses reported in the AME2016 compilation. Further, AME2016 estimates for the handful of impactful isotopes in the determination of r -process abundances are found to be in fairly good agreement with our theoretical predictions. Indeed, the BNN-improved Duflo-Zuker model predicts a root-mean-square deviation relative to experiment of σrms≃400 keV. Conclusions: Given the excellent performance of the BNN refinement in confronting the recently published AME2016 compilation, we are confident of its critical role in our quest for mass models of the highest quality. Moreover, as uncertainty quantification is at the core of the BNN approach, the improved mass models are in a unique position to identify those nuclei that will have the strongest impact in resolving some of the outstanding questions in nuclear astrophysics.

  19. Statistical validation of normal tissue complication probability models

    NARCIS (Netherlands)

    Xu, Cheng-Jian; van der Schaaf, Arjen; van t Veld, Aart; Langendijk, Johannes A.; Schilstra, Cornelis

    2012-01-01

    PURPOSE: To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. METHODS AND MATERIALS: A penalized regression method, LASSO (least absolute shrinkage

  20. Preliminary validation of a Monte Carlo model for IMRT fields

    International Nuclear Information System (INIS)

    Wright, Tracy; Lye, Jessica; Mohammadi, Mohammad

    2011-01-01

    Full text: A Monte Carlo model of an Elekta linac, validated for medium to large (10-30 cm) symmetric fields, has been investigated for small, irregular and asymmetric fields suitable for IMRT treatments. The model has been validated with field segments using radiochromic film in solid water. The modelled positions of the multileaf collimator (MLC) leaves have been validated using EBT film, In the model, electrons with a narrow energy spectrum are incident on the target and all components of the linac head are included. The MLC is modelled using the EGSnrc MLCE component module. For the validation, a number of single complex IMRT segments with dimensions approximately 1-8 cm were delivered to film in solid water (see Fig, I), The same segments were modelled using EGSnrc by adjusting the MLC leaf positions in the model validated for 10 cm symmetric fields. Dose distributions along the centre of each MLC leaf as determined by both methods were compared. A picket fence test was also performed to confirm the MLC leaf positions. 95% of the points in the modelled dose distribution along the leaf axis agree with the film measurement to within 1%/1 mm for dose difference and distance to agreement. Areas of most deviation occur in the penumbra region. A system has been developed to calculate the MLC leaf positions in the model for any planned field size.

  1. Validation techniques of agent based modelling for geospatial simulations

    Directory of Open Access Journals (Sweden)

    M. Darvishi

    2014-10-01

    Full Text Available One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent-based modelling and simulation (ABMS is a new modelling method comprising of multiple interacting agent. They have been used in the different areas; for instance, geographic information system (GIS, biology, economics, social science and computer science. The emergence of ABM toolkits in GIS software libraries (e.g. ESRI’s ArcGIS, OpenMap, GeoTools, etc for geospatial modelling is an indication of the growing interest of users to use of special capabilities of ABMS. Since ABMS is inherently similar to human cognition, therefore it could be built easily and applicable to wide range applications than a traditional simulation. But a key challenge about ABMS is difficulty in their validation and verification. Because of frequent emergence patterns, strong dynamics in the system and the complex nature of ABMS, it is hard to validate and verify ABMS by conventional validation methods. Therefore, attempt to find appropriate validation techniques for ABM seems to be necessary. In this paper, after reviewing on Principles and Concepts of ABM for and its applications, the validation techniques and challenges of ABM validation are discussed.

  2. Validation techniques of agent based modelling for geospatial simulations

    Science.gov (United States)

    Darvishi, M.; Ahmadi, G.

    2014-10-01

    One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent-based modelling and simulation (ABMS) is a new modelling method comprising of multiple interacting agent. They have been used in the different areas; for instance, geographic information system (GIS), biology, economics, social science and computer science. The emergence of ABM toolkits in GIS software libraries (e.g. ESRI's ArcGIS, OpenMap, GeoTools, etc) for geospatial modelling is an indication of the growing interest of users to use of special capabilities of ABMS. Since ABMS is inherently similar to human cognition, therefore it could be built easily and applicable to wide range applications than a traditional simulation. But a key challenge about ABMS is difficulty in their validation and verification. Because of frequent emergence patterns, strong dynamics in the system and the complex nature of ABMS, it is hard to validate and verify ABMS by conventional validation methods. Therefore, attempt to find appropriate validation techniques for ABM seems to be necessary. In this paper, after reviewing on Principles and Concepts of ABM for and its applications, the validation techniques and challenges of ABM validation are discussed.

  3. How Can Blockchain Technology Disrupt the Existing Business Models?

    OpenAIRE

    Witold Nowiński; Miklós Kozma

    2017-01-01

    Objective: The main purpose of the paper is to show that blockchain technology may disrupt the existing business models and to explore how this may occur. Research Design & Methods: This is a theory development paper which relies on a literature review and desk re-search. The discussion of the reviewed sources leads to the formulation of three re-search propositions. Findings: The paper provides a short overview of key literature on business models and business model innovation, indic...

  4. Tools for system validation. Dynamic modelling of the direct condenser at Sandvik II in Vaexjoe; Hjaelpmedel foer systemvalidering. Dynamisk modellering av direktkondensorn paa Sandvik II i Vaexjoe

    Energy Technology Data Exchange (ETDEWEB)

    Raaberg, Martin [Dynasim AB, Lund (Sweden); Tuszynski, Jan [Sycon Energikonsult AB, Malmoe (Sweden)

    2002-04-01

    The project reported here aimed to test the suitability of existing computer tools for modelling of energy processes. The suggested use for the models are at the early tests and validations of new, refurbished or modernised thermal plants. The technique presented in this report should be applicable for clarification of the scope of delivery and testing for both the process and tile control system. The validation process can thus be simplified, allowing risk reduction and predictability of the commissioning. The main delays and economical misfortune often occurs during commissioning. This report should prove the feasibility of the purchase routines where purchaser, vendor and quality inspection will use a common model of the process to validate system requirements and specifications. Later on it is used to validate structure and predefine testing. Thanks to agreement on the common model, early tests can be conducted on complex systems, minimizing the investment risks. The modelling reported here concerns the direct condenser at Sandvik 11, power and heating plant owned by Vaexjoe Energi AB in Sweden. We have chosen the direct condenser because it is an existing, well-documented and well-defined subsystem of high complexity in both structure and operation. Heavy transients made commissioning and test runs of similar condensers throughout Sweden costly and troublesome. The work resulted in an open, general, and physically correct model. The model can easily be re-dimensioned through physical parameters of common use. The control system modelled corresponds to the actual control system at the Sandvik II plant. Any improvement or deep validation of the controllers was not included in this work. The suitability is shown through four simulation cases. Three cases are based on a registered plant operation during a turbine trip. The first test case uses present plant data, the second an old steam valve actuator and the third uses the old actuator and an error in level

  5. Supporting the Constructive Use of Existing Hydrological Models in Participatory Settings: a Set of "Rules of the Game"

    Directory of Open Access Journals (Sweden)

    Pieter W. G. Bots

    2011-06-01

    Full Text Available When hydrological models are used in support of water management decisions, stakeholders often contest these models because they perceive certain aspects to be inadequately addressed. A strongly contested model may be abandoned completely, even when stakeholders could potentially agree on the validity of part of the information it can produce. The development of a new model is costly, and the results may be contested again. We consider how existing hydrological models can be used in a policy process so as to benefit from both hydrological knowledge and the perspectives and local knowledge of stakeholders. We define a code of conduct as a set of "rules of the game" that we base on a case study of developing a water management plan for a Natura 2000 site in the Netherlands. We propose general rules for agenda management and information sharing, and more specific rules for model use and option development. These rules structure the interactions among actors, help them to explicitly acknowledge uncertainties, and prevent expertise from being neglected or overlooked. We designed the rules to favor openness, protection of core stakeholder values, the use of relevant substantive knowledge, and the momentum of the process. We expect that these rules, although developed on the basis of a water-management issue, can also be applied to support the use of existing computer models in other policy domains. As rules will shape actions only when they are constantly affirmed by actors, we expect that the rules will become less useful in an "unruly" social environment where stakeholders constantly challenge the proceedings.

  6. A clinical reasoning model focused on clients' behaviour change with reference to physiotherapists: its multiphase development and validation.

    Science.gov (United States)

    Elvén, Maria; Hochwälder, Jacek; Dean, Elizabeth; Söderlund, Anne

    2015-05-01

    A biopsychosocial approach and behaviour change strategies have long been proposed to serve as a basis for addressing current multifaceted health problems. This emphasis has implications for clinical reasoning of health professionals. This study's aim was to develop and validate a conceptual model to guide physiotherapists' clinical reasoning focused on clients' behaviour change. Phase 1 consisted of the exploration of existing research and the research team's experiences and knowledge. Phases 2a and 2b consisted of validation and refinement of the model based on input from physiotherapy students in two focus groups (n = 5 per group) and from experts in behavioural medicine (n = 9). Phase 1 generated theoretical and evidence bases for the first version of a model. Phases 2a and 2b established the validity and value of the model. The final model described clinical reasoning focused on clients' behaviour change as a cognitive, reflective, collaborative and iterative process with multiple interrelated levels that included input from the client and physiotherapist, a functional behavioural analysis of the activity-related target behaviour and the selection of strategies for behaviour change. This unique model, theory- and evidence-informed, has been developed to help physiotherapists to apply clinical reasoning systematically in the process of behaviour change with their clients.

  7. BIOMOVS: an international model validation study

    International Nuclear Information System (INIS)

    Haegg, C.; Johansson, G.

    1988-01-01

    BIOMOVS (BIOspheric MOdel Validation Study) is an international study where models used for describing the distribution of radioactive and nonradioactive trace substances in terrestrial and aquatic environments are compared and tested. The main objectives of the study are to compare and test the accuracy of predictions between such models, explain differences in these predictions, recommend priorities for future research concerning the improvement of the accuracy of model predictions and act as a forum for the exchange of ideas, experience and information. (author)

  8. BIOMOVS: An international model validation study

    International Nuclear Information System (INIS)

    Haegg, C.; Johansson, G.

    1987-01-01

    BIOMOVS (BIOspheric MOdel Validation Study) is an international study where models used for describing the distribution of radioactive and nonradioactive trace substances in terrestrial and aquatic environments are compared and tested. The main objectives of the study are to compare and test the accuracy of predictions between such models, explain differences in these predictions, recommend priorities for future research concerning the improvement of the accuracy of model predictions and act as a forum for the exchange of ideas, experience and information. (orig.)

  9. A Practical Approach to Validating a PD Model

    NARCIS (Netherlands)

    Medema, L.; Koning, de R.; Lensink, B.W.

    2009-01-01

    The capital adequacy framework Basel II aims to promote the adoption of stronger risk management practices by the banking industry. The implementation makes validation of credit risk models more important. Lenders therefore need a validation methodology to convince their supervisors that their

  10. A practical approach to validating a PD model

    NARCIS (Netherlands)

    Medema, Lydian; Koning, Ruud H.; Lensink, Robert; Medema, M.

    The capital adequacy framework Basel II aims to promote the adoption of stronger risk management practices by the banking industry. The implementation makes validation of credit risk models more important. Lenders therefore need a validation methodology to convince their supervisors that their

  11. Percolation Model for the Existence of a Mitochondrial Eve

    CERN Document Server

    Neves, A G M

    2005-01-01

    We look at the process of inheritance of mitochondrial DNA as a percolation model on trees equivalent to the Galton-Watson process. The model is exactly solvable for its percolation threshold $p_c$ and percolation probability critical exponent. In the approximation of small percolation probability, and assuming limited progeny number, we are also able to find the maximum and minimum percolation probabilities over all probability distributions for the progeny number constrained to a given $p_c$. As a consequence, we can relate existence of a mitochondrial Eve to quantitative knowledge about demographic evolution of early mankind. In particular, we show that a mitochondrial Eve may exist even in an exponentially growing population, provided that the average number of children per individual is constrained to a small range depending on the probability $p$ that a newborn child is a female.

  12. Validation of the actuator line/Navier Stokes technique using mexico measurements

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Zhu, Wei Jun; Sørensen, Jens Nørkær

    2010-01-01

    This paper concerns the contribution of DTU MEK in the international research collaboration project (MexNext) within the framework of IEA Annex 29 to validate aerodynamic models or CFD codes using the existing measurements made in the previous EU funded projectMEXICO (Model Experiments in Control......This paper concerns the contribution of DTU MEK in the international research collaboration project (MexNext) within the framework of IEA Annex 29 to validate aerodynamic models or CFD codes using the existing measurements made in the previous EU funded projectMEXICO (Model Experiments...... in Controlled Conditions). The Actuator Line/Navier Stokes (AL/NS) technique developed at DTU is validated against the detailed MEXICO measurements. The AL/NS computations without the DNW wind tunnel with speeds of 10m/s, 15m/s and 24m/s. Comparisons of blade loading between computations and measurements show...

  13. The turbulent viscosity models and their experimental validation; Les modeles de viscosite turbulente et leur validation experimentale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This workshop on turbulent viscosity models and on their experimental validation was organized by the `convection` section of the French society of thermal engineers. From the 9 papers presented during this workshop, 8 deal with the modeling of turbulent flows inside combustion chambers, turbo-machineries or in other energy-related applications, and have been selected for ETDE. (J.S.)

  14. Use of Synchronized Phasor Measurements for Model Validation in ERCOT

    Science.gov (United States)

    Nuthalapati, Sarma; Chen, Jian; Shrestha, Prakash; Huang, Shun-Hsien; Adams, John; Obadina, Diran; Mortensen, Tim; Blevins, Bill

    2013-05-01

    This paper discusses experiences in the use of synchronized phasor measurement technology in Electric Reliability Council of Texas (ERCOT) interconnection, USA. Implementation of synchronized phasor measurement technology in the region is a collaborative effort involving ERCOT, ONCOR, AEP, SHARYLAND, EPG, CCET, and UT-Arlington. As several phasor measurement units (PMU) have been installed in ERCOT grid in recent years, phasor data with the resolution of 30 samples per second is being used to monitor power system status and record system events. Post-event analyses using recorded phasor data have successfully verified ERCOT dynamic stability simulation studies. Real time monitoring software "RTDMS"® enables ERCOT to analyze small signal stability conditions by monitoring the phase angles and oscillations. The recorded phasor data enables ERCOT to validate the existing dynamic models of conventional and/or wind generator.

  15. Verification and validation of models

    International Nuclear Information System (INIS)

    Herbert, A.W.; Hodgkinson, D.P.; Jackson, C.P.; Lever, D.A.; Robinson, P.C.

    1986-12-01

    The numerical accuracy of the computer models for groundwater flow and radionuclide transport that are to be used in repository safety assessment must be tested, and their ability to describe experimental data assessed: they must be verified and validated respectively. Also appropriate ways to use the codes in performance assessments, taking into account uncertainties in present data and future conditions, must be studied. These objectives are being met by participation in international exercises, by developing bench-mark problems, and by analysing experiments. In particular the project has funded participation in the HYDROCOIN project for groundwater flow models, the Natural Analogues Working Group, and the INTRAVAL project for geosphere models. (author)

  16. On the existence of optimal contract mechanisms for incomplete information principal-agent models

    NARCIS (Netherlands)

    Balder, E.J.

    1997-01-01

    Two abstract results are given for the existence of optimal contract selection mechanisms in principal-agent models; by a suitable reformulation of the (almost) incentive compatibility constraint, they deal with both single- and multi-agent models. In particular, it is shown that the existence

  17. Electron Temperature Fluctuation Measurements and Transport Model Validation at Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    White, Anne [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-06-22

    The tokamak is a type of toroidal device used to confine a fusion plasma using large magnetic fields. Tokamaks and stellarators the leading devices for confining plasmas for fusion, and the capability to predict performance in these magnetically confined plasmas is essential for developing a sustainable fusion energy source. The magnetic configuration of tokamaks and stellarators does not exist in Nature, yet, the fundamental processes governing transport in fusion plasmas are universal – turbulence and instabilities, driven by inhomogeneity and asymmetry in the plasma, conspire to transport heat and particles across magnetic field lines and can play critical roles in impurity confinement and generation of intrinsic rotation. Turbulence exists in all plasmas, and in neutral fluids as well. The study of turbulence is essential to developing a fundamental understanding of the nature of the fourth state of matter, plasmas. Experimental studies of turbulence in tokamaks date back to early scattering observations from the late 1970s. Since that time, great advances in turbulence diagnostics have been made, all of which have significantly enhanced our knowledge and understanding of turbulence in tokamaks. Through comparisons with advanced gyrokinetic theory and turbulent-transport models a great deal of evidence exists to implicate turbulent-driven transport as an important mechanism determining transport in all channels: heat, particle and momentum However, prediction and control of turbulent-driven transport remains elusive. Key to development of predictive transport models for magnetically confined fusion plasmas is validation of the nonlinear gyrokinetic transport model, which describes transport due to turbulence. Validation of gyrokinetic codes must include detailed and quantitative comparisons with measured turbulence characteristics, in addition to comparisons with inferred transport levels and equilibrium profiles. For this reason, advanced plasma diagnostics

  18. 78 FR 3319 - Amendments to Existing Validated End User Authorizations: Advanced Micro Devices China, Inc., Lam...

    Science.gov (United States)

    2013-01-16

    ...In this rule, the Bureau of Industry and Security (BIS) amends the Export Administration Regulations (EAR) to revise the existing Authorization Validated End-User (VEU) listings for four VEUs in the People's Republic of China (PRC). Specifically, BIS amends Supplement No. 7 to part 748 of the EAR to update VEU Advanced Micro Devices China Inc.'s (AMD China) current list of eligible destinations. BIS also amends the authorization of VEU Lam Research Corporation (Lam) by updating the addresses of ten eligible destinations and reformatting the list of Lam's existing eligible destinations into groups associated with specific eligible items. BIS also updates the EAR to amend the addresses and lists of eligible items for VEUs SK hynix Semiconductor (China) Ltd. and SK hynix Semiconductor (Wuxi) Ltd. Finally, BIS amends Supplement No. 7 to part 748 of the EAR to include language reminding exporters that the language in the Supplement does not supersede other requirements in the EAR. These amendments to the authorizations of the named VEUs are not the result of activities of concern. The respective changes were prompted by factors arising from the companies' normal course of business or are being done at the request of the companies.

  19. Refinement, Validation and Benchmarking of a Model for E-Government Service Quality

    Science.gov (United States)

    Magoutas, Babis; Mentzas, Gregoris

    This paper presents the refinement and validation of a model for Quality of e-Government Services (QeGS). We built upon our previous work where a conceptualized model was identified and put focus on the confirmatory phase of the model development process, in order to come up with a valid and reliable QeGS model. The validated model, which was benchmarked with very positive results with similar models found in the literature, can be used for measuring the QeGS in a reliable and valid manner. This will form the basis for a continuous quality improvement process, unleashing the full potential of e-government services for both citizens and public administrations.

  20. Geochemistry Model Validation Report: Material Degradation and Release Model

    Energy Technology Data Exchange (ETDEWEB)

    H. Stockman

    2001-09-28

    The purpose of this Analysis and Modeling Report (AMR) is to validate the Material Degradation and Release (MDR) model that predicts degradation and release of radionuclides from a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. This AMR is prepared according to ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 17). The intended use of the MDR model is to estimate the long-term geochemical behavior of waste packages (WPs) containing U. S . Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The model is intended to predict (1) the extent to which criticality control material, such as gadolinium (Gd), will remain in the WP after corrosion of the initial WP, (2) the extent to which fissile Pu and uranium (U) will be carried out of the degraded WP by infiltrating water, and (3) the chemical composition and amounts of minerals and other solids left in the WP. The results of the model are intended for use in criticality calculations. The scope of the model validation report is to (1) describe the MDR model, and (2) compare the modeling results with experimental studies. A test case based on a degrading Pu-ceramic WP is provided to help explain the model. This model does not directly feed the assessment of system performance. The output from this model is used by several other models, such as the configuration generator, criticality, and criticality consequence models, prior to the evaluation of system performance. This document has been prepared according to AP-3.10Q, ''Analyses and Models'' (Ref. 2), and prepared in accordance with the technical work plan (Ref. 17).

  1. Geochemistry Model Validation Report: Material Degradation and Release Model

    International Nuclear Information System (INIS)

    Stockman, H.

    2001-01-01

    The purpose of this Analysis and Modeling Report (AMR) is to validate the Material Degradation and Release (MDR) model that predicts degradation and release of radionuclides from a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. This AMR is prepared according to ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 17). The intended use of the MDR model is to estimate the long-term geochemical behavior of waste packages (WPs) containing U. S . Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The model is intended to predict (1) the extent to which criticality control material, such as gadolinium (Gd), will remain in the WP after corrosion of the initial WP, (2) the extent to which fissile Pu and uranium (U) will be carried out of the degraded WP by infiltrating water, and (3) the chemical composition and amounts of minerals and other solids left in the WP. The results of the model are intended for use in criticality calculations. The scope of the model validation report is to (1) describe the MDR model, and (2) compare the modeling results with experimental studies. A test case based on a degrading Pu-ceramic WP is provided to help explain the model. This model does not directly feed the assessment of system performance. The output from this model is used by several other models, such as the configuration generator, criticality, and criticality consequence models, prior to the evaluation of system performance. This document has been prepared according to AP-3.10Q, ''Analyses and Models'' (Ref. 2), and prepared in accordance with the technical work plan (Ref. 17)

  2. SPR Hydrostatic Column Model Verification and Validation.

    Energy Technology Data Exchange (ETDEWEB)

    Bettin, Giorgia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lord, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rudeen, David Keith [Gram, Inc. Albuquerque, NM (United States)

    2015-10-01

    A Hydrostatic Column Model (HCM) was developed to help differentiate between normal "tight" well behavior and small-leak behavior under nitrogen for testing the pressure integrity of crude oil storage wells at the U.S. Strategic Petroleum Reserve. This effort was motivated by steady, yet distinct, pressure behavior of a series of Big Hill caverns that have been placed under nitrogen for extended period of time. This report describes the HCM model, its functional requirements, the model structure and the verification and validation process. Different modes of operation are also described, which illustrate how the software can be used to model extended nitrogen monitoring and Mechanical Integrity Tests by predicting wellhead pressures along with nitrogen interface movements. Model verification has shown that the program runs correctly and it is implemented as intended. The cavern BH101 long term nitrogen test was used to validate the model which showed very good agreement with measured data. This supports the claim that the model is, in fact, capturing the relevant physical phenomena and can be used to make accurate predictions of both wellhead pressure and interface movements.

  3. Geochemistry Model Validation Report: External Accumulation Model

    International Nuclear Information System (INIS)

    Zarrabi, K.

    2001-01-01

    The purpose of this Analysis and Modeling Report (AMR) is to validate the External Accumulation Model that predicts accumulation of fissile materials in fractures and lithophysae in the rock beneath a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. (Lithophysae are voids in the rock having concentric shells of finely crystalline alkali feldspar, quartz, and other materials that were formed due to entrapped gas that later escaped, DOE 1998, p. A-25.) The intended use of this model is to estimate the quantities of external accumulation of fissile material for use in external criticality risk assessments for different types of degrading WPs: U.S. Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The scope of the model validation is to (1) describe the model and the parameters used to develop the model, (2) provide rationale for selection of the parameters by comparisons with measured values, and (3) demonstrate that the parameters chosen are the most conservative selection for external criticality risk calculations. To demonstrate the applicability of the model, a Pu-ceramic WP is used as an example. The model begins with a source term from separately documented EQ6 calculations; where the source term is defined as the composition versus time of the water flowing out of a breached waste package (WP). Next, PHREEQC, is used to simulate the transport and interaction of the source term with the resident water and fractured tuff below the repository. In these simulations the primary mechanism for accumulation is mixing of the high pH, actinide-laden source term with resident water; thus lowering the pH values sufficiently for fissile minerals to become insoluble and precipitate. In the final section of the model, the outputs from PHREEQC, are processed to produce mass of accumulation

  4. Model-based verification and validation of the SMAP uplink processes

    Science.gov (United States)

    Khan, M. O.; Dubos, G. F.; Tirona, J.; Standley, S.

    Model-Based Systems Engineering (MBSE) is being used increasingly within the spacecraft design community because of its benefits when compared to document-based approaches. As the complexity of projects expands dramatically with continually increasing computational power and technology infusion, the time and effort needed for verification and validation (V& V) increases geometrically. Using simulation to perform design validation with system-level models earlier in the life cycle stands to bridge the gap between design of the system (based on system-level requirements) and verifying those requirements/validating the system as a whole. This case study stands as an example of how a project can validate a system-level design earlier in the project life cycle than traditional V& V processes by using simulation on a system model. Specifically, this paper describes how simulation was added to a system model of the Soil Moisture Active-Passive (SMAP) mission's uplink process. Also discussed are the advantages and disadvantages of the methods employed and the lessons learned; which are intended to benefit future model-based and simulation-based development efforts.

  5. IN-DRIFT MICROBIAL COMMUNITIES MODEL VALIDATION CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    D.M. Jolley

    2001-12-18

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN M09909SPAMINGl.003 using its replacement DTN M00106SPAIDMO 1.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 200 1) which includes controls for the management of electronic data.

  6. In-Drift Microbial Communities Model Validation Calculations

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley

    2001-09-24

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data.

  7. In-Drift Microbial Communities Model Validation Calculation

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley

    2001-10-31

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data.

  8. In-Drift Microbial Communities Model Validation Calculations

    International Nuclear Information System (INIS)

    Jolley, D.M.

    2001-01-01

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS MandO 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS MandO 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS MandO 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS MandO (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data

  9. IN-DRIFT MICROBIAL COMMUNITIES MODEL VALIDATION CALCULATIONS

    International Nuclear Information System (INIS)

    D.M. Jolley

    2001-01-01

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M andO 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M andO 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN M09909SPAMINGl.003 using its replacement DTN M00106SPAIDMO 1.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M andO 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M andO (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 200 1) which includes controls for the management of electronic data

  10. Validation of Computer Models for Homeland Security Purposes

    International Nuclear Information System (INIS)

    Schweppe, John E.; Ely, James; Kouzes, Richard T.; McConn, Ronald J.; Pagh, Richard T.; Robinson, Sean M.; Siciliano, Edward R.; Borgardt, James D.; Bender, Sarah E.; Earnhart, Alison H.

    2005-01-01

    At Pacific Northwest National Laboratory, we are developing computer models of radiation portal monitors for screening vehicles and cargo. Detailed models of the radiation detection equipment, vehicles, cargo containers, cargos, and radioactive sources have been created. These are used to determine the optimal configuration of detectors and the best alarm algorithms for the detection of items of interest while minimizing nuisance alarms due to the presence of legitimate radioactive material in the commerce stream. Most of the modeling is done with the Monte Carlo code MCNP to describe the transport of gammas and neutrons from extended sources through large, irregularly shaped absorbers to large detectors. A fundamental prerequisite is the validation of the computational models against field measurements. We describe the first step of this validation process, the comparison of the models to measurements with bare static sources

  11. Integral Reactor Containment Condensation Model and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiao [Oregon State Univ., Corvallis, OR (United States); Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States)

    2016-05-02

    This NEUP funded project, NEUP 12-3630, is for experimental, numerical and analytical studies on high-pressure steam condensation phenomena in a steel containment vessel connected to a water cooling tank, carried out at Oregon State University (OrSU) and the University of Wisconsin at Madison (UW-Madison). In the three years of investigation duration, following the original proposal, the planned tasks have been completed: (1) Performed a scaling study for the full pressure test facility applicable to the reference design for the condensation heat transfer process during design basis accidents (DBAs), modified the existing test facility to route the steady-state secondary steam flow into the high pressure containment for controllable condensation tests, and extended the operations at negative gage pressure conditions (OrSU). (2) Conducted a series of DBA and quasi-steady experiments using the full pressure test facility to provide a reliable high pressure condensation database (OrSU). (3) Analyzed experimental data and evaluated condensation model for the experimental conditions, and predicted the prototypic containment performance under accidental conditions (UW-Madison). A film flow model was developed for the scaling analysis, and the results suggest that the 1/3 scaled test facility covers large portion of laminar film flow, leading to a lower average heat transfer coefficient comparing to the prototypic value. Although it is conservative in reactor safety analysis, the significant reduction of heat transfer coefficient (50%) could under estimate the prototypic condensation heat transfer rate, resulting in inaccurate prediction of the decay heat removal capability. Further investigation is thus needed to quantify the scaling distortion for safety analysis code validation. Experimental investigations were performed in the existing MASLWR test facility at OrST with minor modifications. A total of 13 containment condensation tests were conducted for pressure

  12. Models, validation, and applied geochemistry: Issues in science, communication, and philosophy

    International Nuclear Information System (INIS)

    Kirk Nordstrom, D.

    2012-01-01

    Models have become so fashionable that many scientists and engineers cannot imagine working without them. The predominant use of computer codes to execute model calculations has blurred the distinction between code and model. The recent controversy regarding model validation has brought into question what we mean by a ‘model’ and by ‘validation.’ It has become apparent that the usual meaning of validation may be common in engineering practice and seems useful in legal practice but it is contrary to scientific practice and brings into question our understanding of science and how it can best be applied to such problems as hazardous waste characterization, remediation, and aqueous geochemistry in general. This review summarizes arguments against using the phrase model validation and examines efforts to validate models for high-level radioactive waste management and for permitting and monitoring open-pit mines. Part of the controversy comes from a misunderstanding of ‘prediction’ and the need to distinguish logical from temporal prediction. Another problem stems from the difference in the engineering approach contrasted with the scientific approach. The reductionist influence on the way we approach environmental investigations also limits our ability to model the interconnected nature of reality. Guidelines are proposed to improve our perceptions and proper utilization of models. Use of the word ‘validation’ is strongly discouraged when discussing model reliability.

  13. An independent verification and validation of the Future Theater Level Model conceptual model

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.S. III; Kruse, K.L.; Martellaro, A.J.; Packard, S.L.; Thomas, B. Jr.; Turley, V.K.

    1994-08-01

    This report describes the methodology and results of independent verification and validation performed on a combat model in its design stage. The combat model is the Future Theater Level Model (FTLM), under development by The Joint Staff/J-8. J-8 has undertaken its development to provide an analysis tool that addresses the uncertainties of combat more directly than previous models and yields more rapid study results. The methodology adopted for this verification and validation consisted of document analyses. Included were detailed examination of the FTLM design documents (at all stages of development), the FTLM Mission Needs Statement, and selected documentation for other theater level combat models. These documents were compared to assess the FTLM as to its design stage, its purpose as an analytical combat model, and its capabilities as specified in the Mission Needs Statement. The conceptual design passed those tests. The recommendations included specific modifications as well as a recommendation for continued development. The methodology is significant because independent verification and validation have not been previously reported as being performed on a combat model in its design stage. The results are significant because The Joint Staff/J-8 will be using the recommendations from this study in determining whether to proceed with develop of the model.

  14. Geographic and temporal validity of prediction models: Different approaches were useful to examine model performance

    NARCIS (Netherlands)

    P.C. Austin (Peter); D. van Klaveren (David); Y. Vergouwe (Yvonne); D. Nieboer (Daan); D.S. Lee (Douglas); E.W. Steyerberg (Ewout)

    2016-01-01

    textabstractObjective: Validation of clinical prediction models traditionally refers to the assessment of model performance in new patients. We studied different approaches to geographic and temporal validation in the setting of multicenter data from two time periods. Study Design and Setting: We

  15. Validation of the Colorado Retinopathy of Prematurity Screening Model.

    Science.gov (United States)

    McCourt, Emily A; Ying, Gui-Shuang; Lynch, Anne M; Palestine, Alan G; Wagner, Brandie D; Wymore, Erica; Tomlinson, Lauren A; Binenbaum, Gil

    2018-04-01

    The Colorado Retinopathy of Prematurity (CO-ROP) model uses birth weight, gestational age, and weight gain at the first month of life (WG-28) to predict risk of severe retinopathy of prematurity (ROP). In previous validation studies, the model performed very well, predicting virtually all cases of severe ROP and potentially reducing the number of infants who need ROP examinations, warranting validation in a larger, more diverse population. To validate the performance of the CO-ROP model in a large multicenter cohort. This study is a secondary analysis of data from the Postnatal Growth and Retinopathy of Prematurity (G-ROP) Study, a retrospective multicenter cohort study conducted in 29 hospitals in the United States and Canada between January 2006 and June 2012 of 6351 premature infants who received ROP examinations. Sensitivity and specificity for severe (early treatment of ROP [ETROP] type 1 or 2) ROP, and reduction in infants receiving examinations. The CO-ROP model was applied to the infants in the G-ROP data set with all 3 data points (infants would have received examinations if they met all 3 criteria: birth weight, large validation cohort. The model requires all 3 criteria to be met to signal a need for examinations, but some infants with a birth weight or gestational age above the thresholds developed severe ROP. Most of these infants who were not detected by the CO-ROP model had obvious deviation in expected weight trajectories or nonphysiologic weight gain. These findings suggest that the CO-ROP model needs to be revised before considering implementation into clinical practice.

  16. Validation of limited sampling models (LSM) for estimating AUC in therapeutic drug monitoring - is a separate validation group required?

    NARCIS (Netherlands)

    Proost, J. H.

    Objective: Limited sampling models (LSM) for estimating AUC in therapeutic drug monitoring are usually validated in a separate group of patients, according to published guidelines. The aim of this study is to evaluate the validation of LSM by comparing independent validation with cross-validation

  17. Validation of the GOES-16 magnetometer using multipoint measurements and magnetic field models

    Science.gov (United States)

    Califf, S.; Loto'aniu, P. T. M.; Redmon, R. J.; Sarris, T. E.; Brito, T.

    2017-12-01

    The Geostationary Operational Environmental Satellites (GOES) have been providing continuous geomagnetic field measurements for over 40 years. While the primary purpose of GOES is operational, the magnetometer data are also widely used in the scientific community. In an effort to validate the recently launched GOES-16 magnetometer, we compare the measurements to existing magnetic field models and other GOES spacecraft currently on orbit. There are four concurrent measurements from GOES-13, 14, 15 and 16 spanning 75W to 135W longitude. Also, GOES-13 is being replaced by GOES-16 in the GOES-East location, and during the transition, GOES-13 and GOES-16 will be parked nearby in order to assist with calibration of the new operational satellite. This work explores techniques to quantify the performance of the GOES-16 magnetometer by comparison to data from nearby spacecraft. We also build on previous work to assimilate in situ measurements with existing magnetic field models to assist in comparing data from different spatial locations. Finally, we use this unique dataset from four simultaneous geosynchronous magnetometer measurements and the close separation between GOES-13 and GOES-16 to study the spatial characteristics of ULF waves and other magnetospheric processes.

  18. Coalescence model of two collinear cracks existing in steam generator tubes

    International Nuclear Information System (INIS)

    Moon, S.-I.; Chang, Y.-S.; Kim, Y.-J.; Park, Y.-W.; Song, M.-H.; Choi, Y.-H.; Lee, J.-H.

    2005-01-01

    The 40% of wall thickness criterion has been used as a plugging rule of steam generator tubes but it can be applicable just to a single-cracked tubes. In the previous studies preformed by the authors, a total of 10 local failure prediction models were introduced to estimate the coalescence load of two adjacent collinear through-wall cracks existing in thin plates, and the reaction force model and plastic zone contact model were selected as optimum models among them. The objective of this study is to verify the applicability of the proposed optimum local failure prediction models to the tubes with two collinear through-wall cracks. For this, a series of plastic collapse tests and finite element analyses were carried out using the tubes containing two collinear through-wall cracks. It has been shown that the proposed optimum failure models can predict the local failure behavior of two collinear through-wall cracks existing in tubes well. And a coalescence evaluation diagram was developed which can be used to determine whether the adjacent cracks detected by NED coalsece or not. (authors)

  19. Validation of a phytoremediation computer model

    Energy Technology Data Exchange (ETDEWEB)

    Corapcioglu, M Y; Sung, K; Rhykerd, R L; Munster, C; Drew, M [Texas A and M Univ., College Station, TX (United States)

    1999-01-01

    The use of plants to stimulate remediation of contaminated soil is an effective, low-cost cleanup method which can be applied to many different sites. A phytoremediation computer model has been developed to simulate how recalcitrant hydrocarbons interact with plant roots in unsaturated soil. A study was conducted to provide data to validate and calibrate the model. During the study, lysimeters were constructed and filled with soil contaminated with 10 [mg kg[sub -1

  20. Traffic modelling validation of advanced driver assistance systems

    NARCIS (Netherlands)

    Tongeren, R. van; Gietelink, O.J.; Schutter, B. de; Verhaegen, M.

    2007-01-01

    This paper presents a microscopic traffic model for the validation of advanced driver assistance systems. This model describes single-lane traffic and is calibrated with data from a field operational test. To illustrate the use of the model, a Monte Carlo simulation of single-lane traffic scenarios

  1. Verification and Validation of Tropospheric Model/Database

    National Research Council Canada - National Science Library

    Junho, choi

    1998-01-01

    A verification and validation of tropospheric models and databases has been performed based on ray tracing algorithm, statistical analysis, test on real time system operation, and other technical evaluation process...

  2. Cost model validation: a technical and cultural approach

    Science.gov (United States)

    Hihn, J.; Rosenberg, L.; Roust, K.; Warfield, K.

    2001-01-01

    This paper summarizes how JPL's parametric mission cost model (PMCM) has been validated using both formal statistical methods and a variety of peer and management reviews in order to establish organizational acceptance of the cost model estimates.

  3. Validation and calibration of structural models that combine information from multiple sources.

    Science.gov (United States)

    Dahabreh, Issa J; Wong, John B; Trikalinos, Thomas A

    2017-02-01

    Mathematical models that attempt to capture structural relationships between their components and combine information from multiple sources are increasingly used in medicine. Areas covered: We provide an overview of methods for model validation and calibration and survey studies comparing alternative approaches. Expert commentary: Model validation entails a confrontation of models with data, background knowledge, and other models, and can inform judgments about model credibility. Calibration involves selecting parameter values to improve the agreement of model outputs with data. When the goal of modeling is quantitative inference on the effects of interventions or forecasting, calibration can be viewed as estimation. This view clarifies issues related to parameter identifiability and facilitates formal model validation and the examination of consistency among different sources of information. In contrast, when the goal of modeling is the generation of qualitative insights about the modeled phenomenon, calibration is a rather informal process for selecting inputs that result in model behavior that roughly reproduces select aspects of the modeled phenomenon and cannot be equated to an estimation procedure. Current empirical research on validation and calibration methods consists primarily of methodological appraisals or case-studies of alternative techniques and cannot address the numerous complex and multifaceted methodological decisions that modelers must make. Further research is needed on different approaches for developing and validating complex models that combine evidence from multiple sources.

  4. Application of parameters space analysis tools for empirical model validation

    Energy Technology Data Exchange (ETDEWEB)

    Paloma del Barrio, E. [LEPT-ENSAM UMR 8508, Talence (France); Guyon, G. [Electricite de France, Moret-sur-Loing (France)

    2004-01-01

    A new methodology for empirical model validation has been proposed in the framework of the Task 22 (Building Energy Analysis Tools) of the International Energy Agency. It involves two main steps: checking model validity and diagnosis. Both steps, as well as the underlying methods, have been presented in the first part of the paper. In this part, they are applied for testing modelling hypothesis in the framework of the thermal analysis of an actual building. Sensitivity analysis tools have been first used to identify the parts of the model that can be really tested on the available data. A preliminary diagnosis is then supplied by principal components analysis. Useful information for model behaviour improvement has been finally obtained by optimisation techniques. This example of application shows how model parameters space analysis is a powerful tool for empirical validation. In particular, diagnosis possibilities are largely increased in comparison with residuals analysis techniques. (author)

  5. Validation analysis of probabilistic models of dietary exposure to food additives.

    Science.gov (United States)

    Gilsenan, M B; Thompson, R L; Lambe, J; Gibney, M J

    2003-10-01

    The validity of a range of simple conceptual models designed specifically for the estimation of food additive intakes using probabilistic analysis was assessed. Modelled intake estimates that fell below traditional conservative point estimates of intake and above 'true' additive intakes (calculated from a reference database at brand level) were considered to be in a valid region. Models were developed for 10 food additives by combining food intake data, the probability of an additive being present in a food group and additive concentration data. Food intake and additive concentration data were entered as raw data or as a lognormal distribution, and the probability of an additive being present was entered based on the per cent brands or the per cent eating occasions within a food group that contained an additive. Since the three model components assumed two possible modes of input, the validity of eight (2(3)) model combinations was assessed. All model inputs were derived from the reference database. An iterative approach was employed in which the validity of individual model components was assessed first, followed by validation of full conceptual models. While the distribution of intake estimates from models fell below conservative intakes, which assume that the additive is present at maximum permitted levels (MPLs) in all foods in which it is permitted, intake estimates were not consistently above 'true' intakes. These analyses indicate the need for more complex models for the estimation of food additive intakes using probabilistic analysis. Such models should incorporate information on market share and/or brand loyalty.

  6. Incorporation of Markov reliability models for digital instrumentation and control systems into existing PRAs

    International Nuclear Information System (INIS)

    Bucci, P.; Mangan, L. A.; Kirschenbaum, J.; Mandelli, D.; Aldemir, T.; Arndt, S. A.

    2006-01-01

    Markov models have the ability to capture the statistical dependence between failure events that can arise in the presence of complex dynamic interactions between components of digital instrumentation and control systems. One obstacle to the use of such models in an existing probabilistic risk assessment (PRA) is that most of the currently available PRA software is based on the static event-tree/fault-tree methodology which often cannot represent such interactions. We present an approach to the integration of Markov reliability models into existing PRAs by describing the Markov model of a digital steam generator feedwater level control system, how dynamic event trees (DETs) can be generated from the model, and how the DETs can be incorporated into an existing PRA with the SAPHIRE software. (authors)

  7. Continuous validation of ASTEC containment models and regression testing

    International Nuclear Information System (INIS)

    Nowack, Holger; Reinke, Nils; Sonnenkalb, Martin

    2014-01-01

    The focus of the ASTEC (Accident Source Term Evaluation Code) development at GRS is primarily on the containment module CPA (Containment Part of ASTEC), whose modelling is to a large extent based on the GRS containment code COCOSYS (COntainment COde SYStem). Validation is usually understood as the approval of the modelling capabilities by calculations of appropriate experiments done by external users different from the code developers. During the development process of ASTEC CPA, bugs and unintended side effects may occur, which leads to changes in the results of the initially conducted validation. Due to the involvement of a considerable number of developers in the coding of ASTEC modules, validation of the code alone, even if executed repeatedly, is not sufficient. Therefore, a regression testing procedure has been implemented in order to ensure that the initially obtained validation results are still valid with succeeding code versions. Within the regression testing procedure, calculations of experiments and plant sequences are performed with the same input deck but applying two different code versions. For every test-case the up-to-date code version is compared to the preceding one on the basis of physical parameters deemed to be characteristic for the test-case under consideration. In the case of post-calculations of experiments also a comparison to experimental data is carried out. Three validation cases from the regression testing procedure are presented within this paper. The very good post-calculation of the HDR E11.1 experiment shows the high quality modelling of thermal-hydraulics in ASTEC CPA. Aerosol behaviour is validated on the BMC VANAM M3 experiment, and the results show also a very good agreement with experimental data. Finally, iodine behaviour is checked in the validation test-case of the THAI IOD-11 experiment. Within this test-case, the comparison of the ASTEC versions V2.0r1 and V2.0r2 shows how an error was detected by the regression testing

  8. Calibrating and Validating a Simulation Model to Identify Drivers of Urban Land Cover Change in the Baltimore, MD Metropolitan Region

    Directory of Open Access Journals (Sweden)

    Claire Jantz

    2014-09-01

    Full Text Available We build upon much of the accumulated knowledge of the widely used SLEUTH urban land change model and offer advances. First, we use SLEUTH’s exclusion/attraction layer to identify and test different urban land cover change drivers; second, we leverage SLEUTH’s self-modification capability to incorporate a demographic model; and third, we develop a validation procedure to quantify the influence of land cover change drivers and assess uncertainty. We found that, contrary to our a priori expectations, new development is not attracted to areas serviced by existing or planned water and sewer infrastructure. However, information about where population and employment growth is likely to occur did improve model performance. These findings point to the dominant role of centrifugal forces in post-industrial cities like Baltimore, MD. We successfully developed a demographic model that allowed us to constrain the SLEUTH model forecasts and address uncertainty related to the dynamic relationship between changes in population and employment and urban land use. Finally, we emphasize the importance of model validation. In this work the validation procedure played a key role in rigorously assessing the impacts of different exclusion/attraction layers and in assessing uncertainty related to population and employment forecasts.

  9. One-equation modeling and validation of dielectric barrier discharge plasma actuator thrust

    International Nuclear Information System (INIS)

    Yoon, Jae-San; Han, Jae-Hung

    2014-01-01

    Dielectric barrier discharge (DBD) plasma actuators with an asymmetric electrode configuration can generate a wall-bounded jet without mechanical moving parts, which require considerable modifications of existing aeronautical objects and which incur high maintenance costs. Despite this potential, one factor preventing the wider application of such actuators is the lack of a reliable actuator model. It is difficult to develop such a model because calculating the ion-electric field and fluid interaction consume a high amount calculation effort during the numerical analysis. Thus, the authors proposed a semi-empirical model which predicted the thrust of plasma actuators with a simple equation. It gave a numeric thrust value, and we implemented the value on a computational fluid dynamics (CFD) solver to describe the two-dimensional flow field induced by the actuator. However, the model had a narrow validation range, depending on the empirical formula, and it did not fully consider environment variables. This study presents an improved model by replacing the empirical formulae in the previous model with physical equations that take into account physical phenomena and environmental variables. During this process, additional operation parameters, such as pressure, temperature and ac waveforms, are newly taken to predict the thrust performance of the actuators with a wider range of existing parameters, the thickness of the dielectric barrier, the exposed electrode, the dielectric constant, the ac frequency and the voltage amplitude. Thrust prediction curves from the model are compared to those of earlier experimental results, showing that the average error is less than 5% for more than one hundred instances of data. As in the earlier work, the predicted thrust value is implemented on a CFD solver, and two-dimensional wall-jet velocity profiles induced by the actuator are compared to the previous experimental results. (paper)

  10. Ensuring the Validity of the Micro Foundation in DSGE Models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller

    & Primiceri (American Economic Review, forth- coming) and Fernández-Villaverde & Rubio-Ramírez (Review of Economic Studies, 2007) do not satisfy these sufficient conditions, or any other known set of conditions ensuring finite values for the objective functions. Thus, the validity of the micro foundation......The presence of i) stochastic trends, ii) deterministic trends, and/or iii) stochastic volatil- ity in DSGE models may imply that the agents' objective functions attain infinite values. We say that such models do not have a valid micro foundation. The paper derives sufficient condi- tions which...... ensure that the objective functions of the households and the firms are finite even when various trends and stochastic volatility are included in a standard DSGE model. Based on these conditions we test the validity of the micro foundation in six DSGE models from the literature. The models of Justiniano...

  11. Benchmark validation of statistical models: Application to mediation analysis of imagery and memory.

    Science.gov (United States)

    MacKinnon, David P; Valente, Matthew J; Wurpts, Ingrid C

    2018-03-29

    This article describes benchmark validation, an approach to validating a statistical model. According to benchmark validation, a valid model generates estimates and research conclusions consistent with a known substantive effect. Three types of benchmark validation-(a) benchmark value, (b) benchmark estimate, and (c) benchmark effect-are described and illustrated with examples. Benchmark validation methods are especially useful for statistical models with assumptions that are untestable or very difficult to test. Benchmark effect validation methods were applied to evaluate statistical mediation analysis in eight studies using the established effect that increasing mental imagery improves recall of words. Statistical mediation analysis led to conclusions about mediation that were consistent with established theory that increased imagery leads to increased word recall. Benchmark validation based on established substantive theory is discussed as a general way to investigate characteristics of statistical models and a complement to mathematical proof and statistical simulation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. Validation of models for analysis of ranks in horse breeding evaluation

    Directory of Open Access Journals (Sweden)

    Ricard Anne

    2010-01-01

    Full Text Available Abstract Background Ranks have been used as phenotypes in the genetic evaluation of horses for a long time through the use of earnings, normal score or raw ranks. A model, ("underlying model" of an unobservable underlying variable responsible for ranks exists. Recently, a full Bayesian analysis using this model was developed. In addition, in reality, competitions are structured into categories according to the technical level of difficulty linked to the technical ability of horses (horses considered to be the "best" meet their peers. The aim of this article was to validate the underlying model through simulations and to propose a more appropriate model with a mixture distribution of horses in the case of a structured competition. The simulations involved 1000 horses with 10 to 50 performances per horse and 4 to 20 horses per event with unstructured and structured competitions. Results The underlying model responsible for ranks performed well with unstructured competitions by drawing liabilities in the Gibbs sampler according to the following rule: the liability of each horse must be drawn in the interval formed by the liabilities of horses ranked before and after the particular horse. The estimated repeatability was the simulated one (0.25 and regression between estimated competing ability of horses and true ability was close to 1. Underestimations of repeatability (0.07 to 0.22 were obtained with other traditional criteria (normal score or raw ranks, but in the case of a structured competition, repeatability was underestimated (0.18 to 0.22. Our results show that the effect of an event, or category of event, is irrelevant in such a situation because ranks are independent of such an effect. The proposed mixture model pools horses according to their participation in different categories of competition during the period observed. This last model gave better results (repeatability 0.25, in particular, it provided an improved estimation of average

  13. Rupture of the atherosclerotic plaque: does a good animal model exist?

    NARCIS (Netherlands)

    Cullen, Paul; Baetta, Roberta; Bellosta, Stefano; Bernini, Franco; Chinetti, Giulia; Cignarella, Andrea; von Eckardstein, Arnold; Exley, Andrew; Goddard, Martin; Hofker, Marten; Hurt-Camejo, Eva; Kanters, Edwin; Kovanen, Petri; Lorkowski, Stefan; McPheat, William; Pentikäinen, Markku; Rauterberg, Jürgen; Ritchie, Andrew; Staels, Bart; Weitkamp, Benedikt; de Winther, Menno

    2003-01-01

    By its very nature, rupture of the atherosclerotic plaque is difficult to study directly in humans. A good animal model would help us not only to understand how rupture occurs but also to design and test treatments to prevent it from happening. However, several difficulties surround existing models

  14. Validation and implementation of model based control strategies at an industrial wastewater treatment plant.

    Science.gov (United States)

    Demey, D; Vanderhaegen, B; Vanhooren, H; Liessens, J; Van Eyck, L; Hopkins, L; Vanrolleghem, P A

    2001-01-01

    In this paper, the practical implementation and validation of advanced control strategies, designed using model based techniques, at an industrial wastewater treatment plant is demonstrated. The plant under study is treating the wastewater of a large pharmaceutical production facility. The process characteristics of the wastewater treatment were quantified by means of tracer tests, intensive measurement campaigns and the use of on-line sensors. In parallel, a dynamical model of the complete wastewater plant was developed according to the specific kinetic characteristics of the sludge and the highly varying composition of the industrial wastewater. Based on real-time data and dynamic models, control strategies for the equalisation system, the polymer dosing and phosphorus addition were established. The control strategies are being integrated in the existing SCADA system combining traditional PLC technology with robust PC based control calculations. The use of intelligent control in wastewater treatment offers a wide spectrum of possibilities to upgrade existing plants, to increase the capacity of the plant and to eliminate peaks. This can result in a more stable and secure overall performance and, finally, in cost savings. The use of on-line sensors has a potential not only for monitoring concentrations, but also for manipulating flows and concentrations. This way the performance of the plant can be secured.

  15. Statistical methods for mechanistic model validation: Salt Repository Project

    International Nuclear Information System (INIS)

    Eggett, D.L.

    1988-07-01

    As part of the Department of Energy's Salt Repository Program, Pacific Northwest Laboratory (PNL) is studying the emplacement of nuclear waste containers in a salt repository. One objective of the SRP program is to develop an overall waste package component model which adequately describes such phenomena as container corrosion, waste form leaching, spent fuel degradation, etc., which are possible in the salt repository environment. The form of this model will be proposed, based on scientific principles and relevant salt repository conditions with supporting data. The model will be used to predict the future characteristics of the near field environment. This involves several different submodels such as the amount of time it takes a brine solution to contact a canister in the repository, how long it takes a canister to corrode and expose its contents to the brine, the leach rate of the contents of the canister, etc. These submodels are often tested in a laboratory and should be statistically validated (in this context, validate means to demonstrate that the model adequately describes the data) before they can be incorporated into the waste package component model. This report describes statistical methods for validating these models. 13 refs., 1 fig., 3 tabs

  16. Predicting the ungauged basin: Model validation and realism assessment

    Directory of Open Access Journals (Sweden)

    Tim evan Emmerik

    2015-10-01

    Full Text Available The hydrological decade on Predictions in Ungauged Basins (PUB led to many new insights in model development, calibration strategies, data acquisition and uncertainty analysis. Due to a limited amount of published studies on genuinely ungauged basins, model validation and realism assessment of model outcome has not been discussed to a great extent. With this paper we aim to contribute to the discussion on how one can determine the value and validity of a hydrological model developed for an ungauged basin. As in many cases no local, or even regional, data are available, alternative methods should be applied. Using a PUB case study in a genuinely ungauged basin in southern Cambodia, we give several examples of how one can use different types of soft data to improve model design, calibrate and validate the model, and assess the realism of the model output. A rainfall-runoff model was coupled to an irrigation reservoir, allowing the use of additional and unconventional data. The model was mainly forced with remote sensing data, and local knowledge was used to constrain the parameters. Model realism assessment was done using data from surveys. This resulted in a successful reconstruction of the reservoir dynamics, and revealed the different hydrological characteristics of the two topographical classes. This paper does not present a generic approach that can be transferred to other ungauged catchments, but it aims to show how clever model design and alternative data acquisition can result in a valuable hydrological model for an ungauged catchment.

  17. Validating firn compaction model with remote sensing data

    DEFF Research Database (Denmark)

    Simonsen, S. B.; Stenseng, Lars; Sørensen, Louise Sandberg

    A comprehensive understanding of firn processes is of outmost importance, when estimating present and future changes of the Greenland Ice Sheet. Especially, when remote sensing altimetry is used to assess the state of ice sheets and their contribution to global sea level rise, firn compaction...... models have been shown to be a key component. Now, remote sensing data can also be used to validate the firn models. Radar penetrating the upper part of the firn column in the interior part of Greenland shows a clear layering. The observed layers from the radar data can be used as an in-situ validation...... correction relative to the changes in the elevation of the surface observed with remote sensing altimetry? What model time resolution is necessary to resolved the observed layering? What model refinements are necessary to give better estimates of the surface mass balance of the Greenland ice sheet from...

  18. Wind resource modelling for micro-siting - Validation at a 60-MW wind farm site

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J C; Gylling Mortensen, N [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark); Said, U S [New and Renewable Energy Authority, Cairo (Egypt)

    1999-03-01

    This paper investigates and validates the applicability of the WAsP-model for layout optimization and micro-siting of wind turbines at a given site for a 60-MW wind farm at Zafarana at the Gulf of Suez in Egypt. Previous investigations show large gradients in the wind climate within the area. For the design and optimization of the wind farm it was found necessary to verify the WAsP extrapolation of wind atlas results from 2 existing meteorological masts located 5 and 10 km, respectively, from the wind farm site. On-site measurements at the 3.5 x 3.5 km{sup 2} wind farm site in combination with 7 years of near-site wind atlas measurements offer significant amounts of data for verification of wind conditions for micro-siting. Wind speeds, wind directions, turbulence intensities and guests in 47.5 m a.g.l. have been measured at 9 locations across the site. Additionally, one of the site masts is equipped as a reference mast, measuring both vertical profiles of wind speed and temperature as well as air pressure and temperature. The exercise is further facilitated by the fact that winds are highly uni-directional; the north direction accounting for 80-90% of the wind resource. The paper presents comparisons of 5 months of on-site measurements and modeled predictions from 2 existing meteorological masts located at distances of 5 and 10 km, respectively, from the wind farm site. Predictions based on terrain descriptions of the Wind Atlas for the Gulf of Suez 1991-95 showed over-predictions of wind speeds of 4-10%. With calibrated terrain descriptions, made based on measured data and a re-visit to critical parts of the terrain, the average prediction error of wind speeds was reduced to about 1%. These deviations are smaller than generally expected for such wind resource modeling, clearly documenting the validity of using WAsP modeling for micro-siting and layout optimization of the wind farm. (au)

  19. Software phantom with realistic speckle modeling for validation of image analysis methods in echocardiography

    Science.gov (United States)

    Law, Yuen C.; Tenbrinck, Daniel; Jiang, Xiaoyi; Kuhlen, Torsten

    2014-03-01

    Computer-assisted processing and interpretation of medical ultrasound images is one of the most challenging tasks within image analysis. Physical phenomena in ultrasonographic images, e.g., the characteristic speckle noise and shadowing effects, make the majority of standard methods from image analysis non optimal. Furthermore, validation of adapted computer vision methods proves to be difficult due to missing ground truth information. There is no widely accepted software phantom in the community and existing software phantoms are not exible enough to support the use of specific speckle models for different tissue types, e.g., muscle and fat tissue. In this work we propose an anatomical software phantom with a realistic speckle pattern simulation to _ll this gap and provide a exible tool for validation purposes in medical ultrasound image analysis. We discuss the generation of speckle patterns and perform statistical analysis of the simulated textures to obtain quantitative measures of the realism and accuracy regarding the resulting textures.

  20. TGF-β Blockade Reduces Mortality and Metabolic Changes in a Validated Murine Model of Pancreatic Cancer Cachexia.

    Science.gov (United States)

    Greco, Stephanie H; Tomkötter, Lena; Vahle, Anne-Kristin; Rokosh, Rae; Avanzi, Antonina; Mahmood, Syed Kashif; Deutsch, Michael; Alothman, Sara; Alqunaibit, Dalia; Ochi, Atsuo; Zambirinis, Constantinos; Mohaimin, Tasnima; Rendon, Mauricio; Levie, Elliot; Pansari, Mridul; Torres-Hernandez, Alejandro; Daley, Donnele; Barilla, Rocky; Pachter, H Leon; Tippens, Daniel; Malik, Hassan; Boutajangout, Allal; Wisniewski, Thomas; Miller, George

    2015-01-01

    Cancer cachexia is a debilitating condition characterized by a combination of anorexia, muscle wasting, weight loss, and malnutrition. This condition affects an overwhelming majority of patients with pancreatic cancer and is a primary cause of cancer-related death. However, few, if any, effective therapies exist for both treatment and prevention of this syndrome. In order to develop novel therapeutic strategies for pancreatic cancer cachexia, appropriate animal models are necessary. In this study, we developed and validated a syngeneic, metastatic, murine model of pancreatic cancer cachexia. Using our model, we investigated the ability of transforming growth factor beta (TGF-β) blockade to mitigate the metabolic changes associated with cachexia. We found that TGF-β inhibition using the anti-TGF-β antibody 1D11.16.8 significantly improved overall mortality, weight loss, fat mass, lean body mass, bone mineral density, and skeletal muscle proteolysis in mice harboring advanced pancreatic cancer. Other immunotherapeutic strategies we employed were not effective. Collectively, we validated a simplified but useful model of pancreatic cancer cachexia to investigate immunologic treatment strategies. In addition, we showed that TGF-β inhibition can decrease the metabolic changes associated with cancer cachexia and improve overall survival.

  1. TGF-β Blockade Reduces Mortality and Metabolic Changes in a Validated Murine Model of Pancreatic Cancer Cachexia.

    Directory of Open Access Journals (Sweden)

    Stephanie H Greco

    Full Text Available Cancer cachexia is a debilitating condition characterized by a combination of anorexia, muscle wasting, weight loss, and malnutrition. This condition affects an overwhelming majority of patients with pancreatic cancer and is a primary cause of cancer-related death. However, few, if any, effective therapies exist for both treatment and prevention of this syndrome. In order to develop novel therapeutic strategies for pancreatic cancer cachexia, appropriate animal models are necessary. In this study, we developed and validated a syngeneic, metastatic, murine model of pancreatic cancer cachexia. Using our model, we investigated the ability of transforming growth factor beta (TGF-β blockade to mitigate the metabolic changes associated with cachexia. We found that TGF-β inhibition using the anti-TGF-β antibody 1D11.16.8 significantly improved overall mortality, weight loss, fat mass, lean body mass, bone mineral density, and skeletal muscle proteolysis in mice harboring advanced pancreatic cancer. Other immunotherapeutic strategies we employed were not effective. Collectively, we validated a simplified but useful model of pancreatic cancer cachexia to investigate immunologic treatment strategies. In addition, we showed that TGF-β inhibition can decrease the metabolic changes associated with cancer cachexia and improve overall survival.

  2. TGF-β Blockade Reduces Mortality and Metabolic Changes in a Validated Murine Model of Pancreatic Cancer Cachexia

    Science.gov (United States)

    Rokosh, Rae; Avanzi, Antonina; Mahmood, Syed Kashif; Deutsch, Michael; Alothman, Sara; Alqunaibit, Dalia; Ochi, Atsuo; Zambirinis, Constantinos; Mohaimin, Tasnima; Rendon, Mauricio; Levie, Elliot; Pansari, Mridul; Torres-Hernandez, Alejandro; Daley, Donnele; Barilla, Rocky; Pachter, H. Leon; Tippens, Daniel; Malik, Hassan; Boutajangout, Allal; Wisniewski, Thomas; Miller, George

    2015-01-01

    Cancer cachexia is a debilitating condition characterized by a combination of anorexia, muscle wasting, weight loss, and malnutrition. This condition affects an overwhelming majority of patients with pancreatic cancer and is a primary cause of cancer-related death. However, few, if any, effective therapies exist for both treatment and prevention of this syndrome. In order to develop novel therapeutic strategies for pancreatic cancer cachexia, appropriate animal models are necessary. In this study, we developed and validated a syngeneic, metastatic, murine model of pancreatic cancer cachexia. Using our model, we investigated the ability of transforming growth factor beta (TGF-β) blockade to mitigate the metabolic changes associated with cachexia. We found that TGF-β inhibition using the anti-TGF-β antibody 1D11.16.8 significantly improved overall mortality, weight loss, fat mass, lean body mass, bone mineral density, and skeletal muscle proteolysis in mice harboring advanced pancreatic cancer. Other immunotherapeutic strategies we employed were not effective. Collectively, we validated a simplified but useful model of pancreatic cancer cachexia to investigate immunologic treatment strategies. In addition, we showed that TGF-β inhibition can decrease the metabolic changes associated with cancer cachexia and improve overall survival. PMID:26172047

  3. Validation of TGLF in C-Mod and DIII-D using machine learning and integrated modeling tools

    Science.gov (United States)

    Rodriguez-Fernandez, P.; White, Ae; Cao, Nm; Creely, Aj; Greenwald, Mj; Grierson, Ba; Howard, Nt; Meneghini, O.; Petty, Cc; Rice, Je; Sciortino, F.; Yuan, X.

    2017-10-01

    Predictive models for steady-state and perturbative transport are necessary to support burning plasma operations. A combination of machine learning algorithms and integrated modeling tools is used to validate TGLF in C-Mod and DIII-D. First, a new code suite, VITALS, is used to compare SAT1 and SAT0 models in C-Mod. VITALS exploits machine learning and optimization algorithms for the validation of transport codes. Unlike SAT0, the SAT1 saturation rule contains a model to capture cross-scale turbulence coupling. Results show that SAT1 agrees better with experiments, further confirming that multi-scale effects are needed to model heat transport in C-Mod L-modes. VITALS will next be used to analyze past data from DIII-D: L-mode ``Shortfall'' plasma and ECH swing experiments. A second code suite, PRIMA, allows for integrated modeling of the plasma response to Laser Blow-Off cold pulses. Preliminary results show that SAT1 qualitatively reproduces the propagation of cold pulses after LBO injections and SAT0 does not, indicating that cross-scale coupling effects play a role in the plasma response. PRIMA will be used to ``predict-first'' cold pulse experiments using the new LBO system at DIII-D, and analyze existing ECH heat pulse data. Work supported by DE-FC02-99ER54512, DE-FC02-04ER54698.

  4. Some guidance on preparing validation plans for the DART Full System Models.

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Genetha Anne; Hough, Patricia Diane; Hills, Richard Guy (Sandia National Laboratories, Albuquerque, NM)

    2009-03-01

    Planning is an important part of computational model verification and validation (V&V) and the requisite planning document is vital for effectively executing the plan. The document provides a means of communicating intent to the typically large group of people, from program management to analysts to test engineers, who must work together to complete the validation activities. This report provides guidelines for writing a validation plan. It describes the components of such a plan and includes important references and resources. While the initial target audience is the DART Full System Model teams in the nuclear weapons program, the guidelines are generally applicable to other modeling efforts. Our goal in writing this document is to provide a framework for consistency in validation plans across weapon systems, different types of models, and different scenarios. Specific details contained in any given validation plan will vary according to application requirements and available resources.

  5. Studying Validity of Single-Fluid Model in Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    Gu Jian-Fa; Fan Zheng-Feng; Dai Zhen-Sheng; Ye Wen-Hua; Pei Wen-Bing; Zhu Shao-Ping

    2014-01-01

    The validity of single-fluid model in inertial confinement fusion simulations is studied by comparing the results of the multi- and single-fluid models. The multi-fluid model includes the effects of collision and interpenetration between fluid species. By simulating the collision of fluid species, steady-state shock propagation into the thin DT gas and expansion of hohlraum Au wall heated by lasers, the results show that the validity of single-fluid model is strongly dependent on the ratio of the characteristic length of the simulated system to the particle mean free path. When the characteristic length L is one order larger than the mean free path λ, the single-fluid model's results are found to be in good agreement with the multi-fluid model's simulations, and the modeling of single-fluid remains valid. If the value of L/λ is lower than 10, the interpenetration between fluid species is significant, and the single-fluid simulations show some unphysical results; while the multi-fluid model can describe well the interpenetration and mix phenomena, and give more reasonable results. (physics of gases, plasmas, and electric discharges)

  6. ADVISHE: A new tool to report validation of health-economic decision models

    NARCIS (Netherlands)

    Vemer, P.; Corro Ramos, I.; Van Voorn, G.; Al, M.J.; Feenstra, T.L.

    2014-01-01

    Background: Modelers and reimbursement decision makers could both profit from a more systematic reporting of the efforts to validate health-economic (HE) models. Objectives: Development of a tool to systematically report validation efforts of HE decision models and their outcomes. Methods: A gross

  7. Thermo-mechanical analyses and model validation in the HAW test field. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Heijdra, J J; Broerse, J; Prij, J

    1995-01-01

    An overview is given of the thermo-mechanical analysis work done for the design of the High Active Waste experiment and for the purpose of validation of the used models through comparison with experiments. A brief treatise is given on the problems of validation of models used for the prediction of physical behaviour which cannot be determined with experiments. The analysis work encompasses investigations into the initial state of stress in the field, the constitutive relations, the temperature rise, and the pressure on the liner tubes inserted in the field to guarantee the retrievability of the radioactive sources used for the experiment. The measurements of temperatures, deformations, and stresses are described and an evaluation is given of the comparison of measured and calculated data. An attempt has been made to qualify or even quantify the discrepancies, if any, between measurements and calculations. It was found that the model for the temperature calculations performed adequately. For the stresses the general tendency was good, however, large discrepancies exist mainly due to inaccuracies in the measurements. For the deformations again the general tendency of the model predictions was in accordance with the measurements. However, from the evaluation it appears that in spite of the efforts to estimate the correct initial rock pressure at the location of the experiment, this pressure has been underestimated. The evaluation has contributed to a considerable increase in confidence in the models and gives no reason to question the constitutive model for rock salt. However, due to the quality of the measurements of the stress and the relatively short period of the experiments no quantitatively firm support for the constitutive model is acquired. Collections of graphs giving the measured and calculated data are attached as appendices. (orig.).

  8. Thermo-mechanical analyses and model validation in the HAW test field. Final report

    International Nuclear Information System (INIS)

    Heijdra, J.J.; Broerse, J.; Prij, J.

    1995-01-01

    An overview is given of the thermo-mechanical analysis work done for the design of the High Active Waste experiment and for the purpose of validation of the used models through comparison with experiments. A brief treatise is given on the problems of validation of models used for the prediction of physical behaviour which cannot be determined with experiments. The analysis work encompasses investigations into the initial state of stress in the field, the constitutive relations, the temperature rise, and the pressure on the liner tubes inserted in the field to guarantee the retrievability of the radioactive sources used for the experiment. The measurements of temperatures, deformations, and stresses are described and an evaluation is given of the comparison of measured and calculated data. An attempt has been made to qualify or even quantify the discrepancies, if any, between measurements and calculations. It was found that the model for the temperature calculations performed adequately. For the stresses the general tendency was good, however, large discrepancies exist mainly due to inaccuracies in the measurements. For the deformations again the general tendency of the model predictions was in accordance with the measurements. However, from the evaluation it appears that in spite of the efforts to estimate the correct initial rock pressure at the location of the experiment, this pressure has been underestimated. The evaluation has contributed to a considerable increase in confidence in the models and gives no reason to question the constitutive model for rock salt. However, due to the quality of the measurements of the stress and the relatively short period of the experiments no quantitatively firm support for the constitutive model is acquired. Collections of graphs giving the measured and calculated data are attached as appendices. (orig.)

  9. Validating a continental-scale groundwater diffuse pollution model using regional datasets.

    Science.gov (United States)

    Ouedraogo, Issoufou; Defourny, Pierre; Vanclooster, Marnik

    2017-12-11

    In this study, we assess the validity of an African-scale groundwater pollution model for nitrates. In a previous study, we identified a statistical continental-scale groundwater pollution model for nitrate. The model was identified using a pan-African meta-analysis of available nitrate groundwater pollution studies. The model was implemented in both Random Forest (RF) and multiple regression formats. For both approaches, we collected as predictors a comprehensive GIS database of 13 spatial attributes, related to land use, soil type, hydrogeology, topography, climatology, region typology, nitrogen fertiliser application rate, and population density. In this paper, we validate the continental-scale model of groundwater contamination by using a nitrate measurement dataset from three African countries. We discuss the issue of data availability, and quality and scale issues, as challenges in validation. Notwithstanding that the modelling procedure exhibited very good success using a continental-scale dataset (e.g. R 2  = 0.97 in the RF format using a cross-validation approach), the continental-scale model could not be used without recalibration to predict nitrate pollution at the country scale using regional data. In addition, when recalibrating the model using country-scale datasets, the order of model exploratory factors changes. This suggests that the structure and the parameters of a statistical spatially distributed groundwater degradation model for the African continent are strongly scale dependent.

  10. Validation of spectral gas radiation models under oxyfuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Johann Valentin

    2013-05-15

    Combustion of hydrocarbon fuels with pure oxygen results in a different flue gas composition than combustion with air. Standard computational-fluid-dynamics (CFD) spectral gas radiation models for air combustion are therefore out of their validity range in oxyfuel combustion. This thesis provides a common spectral basis for the validation of new spectral models. A literature review about fundamental gas radiation theory, spectral modeling and experimental methods provides the reader with a basic understanding of the topic. In the first results section, this thesis validates detailed spectral models with high resolution spectral measurements in a gas cell with the aim of recommending one model as the best benchmark model. In the second results section, spectral measurements from a turbulent natural gas flame - as an example for a technical combustion process - are compared to simulated spectra based on measured gas atmospheres. The third results section compares simplified spectral models to the benchmark model recommended in the first results section and gives a ranking of the proposed models based on their accuracy. A concluding section gives recommendations for the selection and further development of simplified spectral radiation models. Gas cell transmissivity spectra in the spectral range of 2.4 - 5.4 {mu}m of water vapor and carbon dioxide in the temperature range from 727 C to 1500 C and at different concentrations were compared in the first results section at a nominal resolution of 32 cm{sup -1} to line-by-line models from different databases, two statistical-narrow-band models and the exponential-wide-band model. The two statistical-narrow-band models EM2C and RADCAL showed good agreement with a maximal band transmissivity deviation of 3 %. The exponential-wide-band model showed a deviation of 6 %. The new line-by-line database HITEMP2010 had the lowest band transmissivity deviation of 2.2% and was therefore recommended as a reference model for the

  11. Contact Modelling in Resistance Welding, Part II: Experimental Validation

    DEFF Research Database (Denmark)

    Song, Quanfeng; Zhang, Wenqi; Bay, Niels

    2006-01-01

    Contact algorithms in resistance welding presented in the previous paper are experimentally validated in the present paper. In order to verify the mechanical contact algorithm, two types of experiments, i.e. sandwich upsetting of circular, cylindrical specimens and compression tests of discs...... with a solid ring projection towards a flat ring, are carried out at room temperature. The complete algorithm, involving not only the mechanical model but also the thermal and electrical models, is validated by projection welding experiments. The experimental results are in satisfactory agreement...

  12. Validation of Power Requirement Model for Active Loudspeakers

    DEFF Research Database (Denmark)

    Schneider, Henrik; Madsen, Anders Normann; Bjerregaard, Ruben

    2015-01-01

    . There are however many advantages that could be harvested from such knowledge like size, cost and efficiency improvements. In this paper a recently proposed power requirement model for active loudspeakers is experimentally validated and the model is expanded to include the closed and vented type enclosures...

  13. Progress in Geant4 Electromagnetic Physics Modelling and Validation

    International Nuclear Information System (INIS)

    Apostolakis, J; Burkhardt, H; Ivanchenko, V N; Asai, M; Bagulya, A; Grichine, V; Brown, J M C; Chikuma, N; Cortes-Giraldo, M A; Elles, S; Jacquemier, J; Guatelli, S; Incerti, S; Kadri, O; Maire, M; Urban, L; Pandola, L; Sawkey, D; Toshito, T; Yamashita, T

    2015-01-01

    In this work we report on recent improvements in the electromagnetic (EM) physics models of Geant4 and new validations of EM physics. Improvements have been made in models of the photoelectric effect, Compton scattering, gamma conversion to electron and muon pairs, fluctuations of energy loss, multiple scattering, synchrotron radiation, and high energy positron annihilation. The results of these developments are included in the new Geant4 version 10.1 and in patches to previous versions 9.6 and 10.0 that are planned to be used for production for run-2 at LHC. The Geant4 validation suite for EM physics has been extended and new validation results are shown in this work. In particular, the effect of gamma-nuclear interactions on EM shower shape at LHC energies is discussed. (paper)

  14. Accounting for treatment use when validating a prognostic model: a simulation study.

    Science.gov (United States)

    Pajouheshnia, Romin; Peelen, Linda M; Moons, Karel G M; Reitsma, Johannes B; Groenwold, Rolf H H

    2017-07-14

    Prognostic models often show poor performance when applied to independent validation data sets. We illustrate how treatment use in a validation set can affect measures of model performance and present the uses and limitations of available analytical methods to account for this using simulated data. We outline how the use of risk-lowering treatments in a validation set can lead to an apparent overestimation of risk by a prognostic model that was developed in a treatment-naïve cohort to make predictions of risk without treatment. Potential methods to correct for the effects of treatment use when testing or validating a prognostic model are discussed from a theoretical perspective.. Subsequently, we assess, in simulated data sets, the impact of excluding treated individuals and the use of inverse probability weighting (IPW) on the estimated model discrimination (c-index) and calibration (observed:expected ratio and calibration plots) in scenarios with different patterns and effects of treatment use. Ignoring the use of effective treatments in a validation data set leads to poorer model discrimination and calibration than would be observed in the untreated target population for the model. Excluding treated individuals provided correct estimates of model performance only when treatment was randomly allocated, although this reduced the precision of the estimates. IPW followed by exclusion of the treated individuals provided correct estimates of model performance in data sets where treatment use was either random or moderately associated with an individual's risk when the assumptions of IPW were met, but yielded incorrect estimates in the presence of non-positivity or an unobserved confounder. When validating a prognostic model developed to make predictions of risk without treatment, treatment use in the validation set can bias estimates of the performance of the model in future targeted individuals, and should not be ignored. When treatment use is random, treated

  15. Validation of dispersion model of RTARC-DSS based on ''KIT'' field experiments

    International Nuclear Information System (INIS)

    Duran, J.

    2000-01-01

    The aim of this study is to present the performance of the Gaussian dispersion model RTARC-DSS (Real Time Accident Release Consequences - Decision Support System) at the 'Kit' field experiments. The Model Validation Kit is a collection of three experimental data sets from Kincaid, Copenhagen, Lillestrom and supplementary Indianopolis experimental campaigns accompanied by software for model evaluation. The validation of the model has been performed on the basis of the maximum arc-wise concentrations using the Bootstrap resampling procedure the variation of the model residuals. Validation was performed for the short-range distances (about 1 - 10 km, maximum for Kincaid data set - 50 km from source). Model evaluation procedure and amount of relative over- or under-prediction are discussed and compared with the model. (author)

  16. The validation of evacuation simulation models through the analysis of behavioural uncertainty

    International Nuclear Information System (INIS)

    Lovreglio, Ruggiero; Ronchi, Enrico; Borri, Dino

    2014-01-01

    Both experimental and simulation data on fire evacuation are influenced by a component of uncertainty caused by the impact of the unexplained variance in human behaviour, namely behavioural uncertainty (BU). Evacuation model validation studies should include the study of this type of uncertainty during the comparison of experiments and simulation results. An evacuation model validation procedure is introduced in this paper to study the impact of BU. This methodology is presented through a case study for the comparison between repeated experimental data and simulation results produced by FDS+Evac, an evacuation model for the simulation of human behaviour in fire, which makes use of distribution laws. - Highlights: • Validation of evacuation models is investigated. • Quantitative evaluation of behavioural uncertainty is performed. • A validation procedure is presented through an evacuation case study

  17. Construct validity of the ovine model in endoscopic sinus surgery training.

    Science.gov (United States)

    Awad, Zaid; Taghi, Ali; Sethukumar, Priya; Tolley, Neil S

    2015-03-01

    To demonstrate construct validity of the ovine model as a tool for training in endoscopic sinus surgery (ESS). Prospective, cross-sectional evaluation study. Over 18 consecutive months, trainees and experts were evaluated in their ability to perform a range of tasks (based on previous face validation and descriptive studies conducted by the same group) relating to ESS on the sheep-head model. Anonymized randomized video recordings of the above were assessed by two independent and blinded assessors. A validated assessment tool utilizing a five-point Likert scale was employed. Construct validity was calculated by comparing scores across training levels and experts using mean and interquartile range of global and task-specific scores. Subgroup analysis of the intermediate group ascertained previous experience. Nonparametric descriptive statistics were used, and analysis was carried out using SPSS version 21 (IBM, Armonk, NY). Reliability of the assessment tool was confirmed. The model discriminated well between different levels of expertise in global and task-specific scores. A positive correlation was noted between year in training and both global and task-specific scores (P variable, and the number of ESS procedures performed under supervision had the highest impact on performance. This study describes an alternative model for ESS training and assessment. It is also the first to demonstrate construct validity of the sheep-head model for ESS training. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  18. Validating a Technology Enhanced Student-Centered Learning Model

    Science.gov (United States)

    Kang, Myunghee; Hahn, Jungsun; Chung, Warren

    2015-01-01

    The Technology Enhanced Student Centered Learning (TESCL) Model in this study presents the core factors that ensure the quality of learning in a technology-supported environment. Although the model was conceptually constructed using a student-centered learning framework and drawing upon previous studies, it should be validated through real-world…

  19. Polarographic validation of chemical speciation models

    International Nuclear Information System (INIS)

    Duffield, J.R.; Jarratt, J.A.

    2001-01-01

    It is well established that the chemical speciation of an element in a given matrix, or system of matrices, is of fundamental importance in controlling the transport behaviour of the element. Therefore, to accurately understand and predict the transport of elements and compounds in the environment it is a requirement that both the identities and concentrations of trace element physico-chemical forms can be ascertained. These twin requirements present the analytical scientist with considerable challenges given the labile equilibria, the range of time scales (from nanoseconds to years) and the range of concentrations (ultra-trace to macro) that may be involved. As a result of this analytical variability, chemical equilibrium modelling has become recognised as an important predictive tool in chemical speciation analysis. However, this technique requires firm underpinning by the use of complementary experimental techniques for the validation of the predictions made. The work reported here has been undertaken with the primary aim of investigating possible methodologies that can be used for the validation of chemical speciation models. However, in approaching this aim, direct chemical speciation analyses have been made in their own right. Results will be reported and analysed for the iron(II)/iron(III)-citrate proton system (pH 2 to 10; total [Fe] = 3 mmol dm -3 ; total [citrate 3- ] 10 mmol dm -3 ) in which equilibrium constants have been determined using glass electrode potentiometry, speciation is predicted using the PHREEQE computer code, and validation of predictions is achieved by determination of iron complexation and redox state with associated concentrations. (authors)

  20. Systematic validation of non-equilibrium thermochemical models using Bayesian inference

    KAUST Repository

    Miki, Kenji

    2015-10-01

    © 2015 Elsevier Inc. The validation process proposed by Babuška et al. [1] is applied to thermochemical models describing post-shock flow conditions. In this validation approach, experimental data is involved only in the calibration of the models, and the decision process is based on quantities of interest (QoIs) predicted on scenarios that are not necessarily amenable experimentally. Moreover, uncertainties present in the experimental data, as well as those resulting from an incomplete physical model description, are propagated to the QoIs. We investigate four commonly used thermochemical models: a one-temperature model (which assumes thermal equilibrium among all inner modes), and two-temperature models developed by Macheret et al. [2], Marrone and Treanor [3], and Park [4]. Up to 16 uncertain parameters are estimated using Bayesian updating based on the latest absolute volumetric radiance data collected at the Electric Arc Shock Tube (EAST) installed inside the NASA Ames Research Center. Following the solution of the inverse problems, the forward problems are solved in order to predict the radiative heat flux, QoI, and examine the validity of these models. Our results show that all four models are invalid, but for different reasons: the one-temperature model simply fails to reproduce the data while the two-temperature models exhibit unacceptably large uncertainties in the QoI predictions.

  1. THE FLAT TAX - A COMPARATIVE STUDY OF THE EXISTING MODELS

    Directory of Open Access Journals (Sweden)

    Schiau (Macavei Laura - Liana

    2011-07-01

    Full Text Available In the two last decades the flat tax systems have spread all around the globe from East and Central Europe to Asia and Central America. Many specialists consider this phenomenon a real fiscal revolution, but others see it as a mistake as long as the new systems are just a feint of the true flat tax designed by the famous Stanford University professors Robert Hall and Alvin Rabushka. In this context this paper tries to determine which of the existing flat tax systems resemble the true flat tax model by comparing and contrasting their main characteristics with the features of the model proposed by Hall and Rabushka. The research also underlines the common features and the differences between the existing models. The idea of this kind of study is not really new, others have done it but the comparison was limited to one country. For example Emil Kalchev from New Bulgarian University has asses the Bulgarian income system, by comparing it with the flat tax and concluding that taxation in Bulgaria is not simple, neutral and non-distortive. Our research is based on several case studies and on compare and contrast qualitative and quantitative methods. The study starts form the fiscal design drawn by the two American professors in the book The Flat Tax. Four main characteristics of the flat tax system were chosen in order to build the comparison: fiscal design, simplicity, avoidance of double taxation and uniformity of the tax rates. The jurisdictions chosen for the case study are countries all around the globe with fiscal systems which are considered flat tax systems. The results obtained show that the fiscal design of Hong Kong is the only flat tax model which is built following an economic logic and not a legal sense, being in the same time a simple and transparent system. Others countries as Slovakia, Albania, Macedonia in Central and Eastern Europe fulfill the requirement regarding the uniformity of taxation. Other jurisdictions avoid the double

  2. Stochastic modeling of oligodendrocyte generation in cell culture: model validation with time-lapse data

    Directory of Open Access Journals (Sweden)

    Noble Mark

    2006-05-01

    Full Text Available Abstract Background The purpose of this paper is two-fold. The first objective is to validate the assumptions behind a stochastic model developed earlier by these authors to describe oligodendrocyte generation in cell culture. The second is to generate time-lapse data that may help biomathematicians to build stochastic models of cell proliferation and differentiation under other experimental scenarios. Results Using time-lapse video recording it is possible to follow the individual evolutions of different cells within each clone. This experimental technique is very laborious and cannot replace model-based quantitative inference from clonal data. However, it is unrivalled in validating the structure of a stochastic model intended to describe cell proliferation and differentiation at the clonal level. In this paper, such data are reported and analyzed for oligodendrocyte precursor cells cultured in vitro. Conclusion The results strongly support the validity of the most basic assumptions underpinning the previously proposed model of oligodendrocyte development in cell culture. However, there are some discrepancies; the most important is that the contribution of progenitor cell death to cell kinetics in this experimental system has been underestimated.

  3. Importance of Computer Model Validation in Pyroprocessing Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y. E.; Li, Hui; Yim, M. S. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    In this research, we developed a plan for experimental validation of one of the computer models developed for ER process modeling, i. e., the ERAD code. Several candidate surrogate materials are selected for the experiment considering the chemical and physical properties. Molten salt-based pyroprocessing technology is being examined internationally as an alternative to treat spent nuclear fuel over aqueous technology. The central process in pyroprocessing is electrorefining(ER) which separates uranium from transuranic elements and fission products present in spent nuclear fuel. ER is a widely used process in the minerals industry to purify impure metals. Studies of ER by using actual spent nuclear fuel materials are problematic for both technical and political reasons. Therefore, the initial effort for ER process optimization is made by using computer models. A number of models have been developed for this purpose. But as validation of these models is incomplete and often times problematic, the simulation results from these models are inherently uncertain.

  4. Validation Hydrodynamic Models of Three Topological Models of Secondary Facultative Ponds

    OpenAIRE

    Aponte-Reyes Alxander

    2014-01-01

    A methodology was developed to analyze boundary conditions, the size of the mesh and the turbulence of a mathematical model of CFD, which could explain hydrodynamic behavior on facultative stabilization ponds, FSP, built to pilot scale: conventional pond, CP, baffled pond, BP, and baffled-mesh pond, BMP. Models dispersion studies were performed in field for validation, taking samples into and out of the FSP, the information was used to carry out CFD model simulations of the three topologies. ...

  5. Validating a perceptual distraction model in a personal two-zone sound system

    DEFF Research Database (Denmark)

    Rämö, Jussi; Christensen, Lasse; Bech, Søren

    2017-01-01

    This paper focuses on validating a perceptual distraction model, which aims to predict user’s perceived distraction caused by audio-on-audio interference, e.g., two competing audio sources within the same listening space. Originally, the distraction model was trained with music-on-music stimuli...... using a simple loudspeaker setup, consisting of only two loudspeakers, one for the target sound source and the other for the interfering sound source. Recently, the model was successfully validated in a complex personal sound-zone system with speech-on-music stimuli. Second round of validations were...... conducted by physically altering the sound-zone system and running a set of new listening experiments utilizing two sound zones within the sound-zone system. Thus, validating the model using a different sound-zone system with both speech-on-music and music-on-speech stimuli sets. Preliminary results show...

  6. Modeling the Relationship between Safety Climate and Safety Performance in a Developing Construction Industry: A Cross-Cultural Validation Study.

    Science.gov (United States)

    Zahoor, Hafiz; Chan, Albert P C; Utama, Wahyudi P; Gao, Ran; Zafar, Irfan

    2017-03-28

    This study attempts to validate a safety performance (SP) measurement model in the cross-cultural setting of a developing country. In addition, it highlights the variations in investigating the relationship between safety climate (SC) factors and SP indicators. The data were collected from forty under-construction multi-storey building projects in Pakistan. Based on the results of exploratory factor analysis, a SP measurement model was hypothesized. It was tested and validated by conducting confirmatory factor analysis on calibration and validation sub-samples respectively. The study confirmed the significant positive impact of SC on safety compliance and safety participation , and negative impact on number of self-reported accidents/injuries . However, number of near-misses could not be retained in the final SP model because it attained a lower standardized path coefficient value. Moreover, instead of safety participation , safety compliance established a stronger impact on SP. The study uncovered safety enforcement and promotion as a novel SC factor, whereas safety rules and work practices was identified as the most neglected factor. The study contributed to the body of knowledge by unveiling the deviations in existing dimensions of SC and SP. The refined model is expected to concisely measure the SP in the Pakistani construction industry, however, caution must be exercised while generalizing the study results to other developing countries.

  7. Accounting for treatment use when validating a prognostic model: a simulation study

    Directory of Open Access Journals (Sweden)

    Romin Pajouheshnia

    2017-07-01

    Full Text Available Abstract Background Prognostic models often show poor performance when applied to independent validation data sets. We illustrate how treatment use in a validation set can affect measures of model performance and present the uses and limitations of available analytical methods to account for this using simulated data. Methods We outline how the use of risk-lowering treatments in a validation set can lead to an apparent overestimation of risk by a prognostic model that was developed in a treatment-naïve cohort to make predictions of risk without treatment. Potential methods to correct for the effects of treatment use when testing or validating a prognostic model are discussed from a theoretical perspective.. Subsequently, we assess, in simulated data sets, the impact of excluding treated individuals and the use of inverse probability weighting (IPW on the estimated model discrimination (c-index and calibration (observed:expected ratio and calibration plots in scenarios with different patterns and effects of treatment use. Results Ignoring the use of effective treatments in a validation data set leads to poorer model discrimination and calibration than would be observed in the untreated target population for the model. Excluding treated individuals provided correct estimates of model performance only when treatment was randomly allocated, although this reduced the precision of the estimates. IPW followed by exclusion of the treated individuals provided correct estimates of model performance in data sets where treatment use was either random or moderately associated with an individual's risk when the assumptions of IPW were met, but yielded incorrect estimates in the presence of non-positivity or an unobserved confounder. Conclusions When validating a prognostic model developed to make predictions of risk without treatment, treatment use in the validation set can bias estimates of the performance of the model in future targeted individuals, and

  8. Paleoclimate validation of a numerical climate model

    International Nuclear Information System (INIS)

    Schelling, F.J.; Church, H.W.; Zak, B.D.; Thompson, S.L.

    1994-01-01

    An analysis planned to validate regional climate model results for a past climate state at Yucca Mountain, Nevada, against paleoclimate evidence for the period is described. This analysis, which will use the GENESIS model of global climate nested with the RegCM2 regional climate model, is part of a larger study for DOE's Yucca Mountain Site Characterization Project that is evaluating the impacts of long term future climate change on performance of the potential high level nuclear waste repository at Yucca Mountain. The planned analysis and anticipated results are presented

  9. Validation of a phytoremediation computer model

    International Nuclear Information System (INIS)

    Corapcioglu, M.Y.; Sung, K.; Rhykerd, R.L.; Munster, C.; Drew, M.

    1999-01-01

    The use of plants to stimulate remediation of contaminated soil is an effective, low-cost cleanup method which can be applied to many different sites. A phytoremediation computer model has been developed to simulate how recalcitrant hydrocarbons interact with plant roots in unsaturated soil. A study was conducted to provide data to validate and calibrate the model. During the study, lysimeters were constructed and filled with soil contaminated with 10 [mg kg -1 ] TNT, PBB and chrysene. Vegetated and unvegetated treatments were conducted in triplicate to obtain data regarding contaminant concentrations in the soil, plant roots, root distribution, microbial activity, plant water use and soil moisture. When given the parameters of time and depth, the model successfully predicted contaminant concentrations under actual field conditions. Other model parameters are currently being evaluated. 15 refs., 2 figs

  10. Making Validated Educational Models Central in Preschool Standards.

    Science.gov (United States)

    Schweinhart, Lawrence J.

    This paper presents some ideas to preschool educators and policy makers about how to make validated educational models central in standards for preschool education and care programs that are available to all 3- and 4-year-olds. Defining an educational model as a coherent body of program practices, curriculum content, program and child, and teacher…

  11. Validation of the newborn larynx modeling with aerodynamical experimental data.

    Science.gov (United States)

    Nicollas, R; Giordano, J; Garrel, R; Medale, M; Caminat, P; Giovanni, A; Ouaknine, M; Triglia, J M

    2009-06-01

    Many authors have studied adult's larynx modelization, but the mechanisms of newborn's voice production have very rarely been investigated. After validating a numerical model with acoustic data, studies were performed on larynges of human fetuses in order to validate this model with aerodynamical experiments. Anatomical measurements were performed and a simplified numerical model was built using Fluent((R)) with the vocal folds in phonatory position. The results obtained are in good agreement with those obtained by laser Doppler velocimetry (LDV) and high-frame rate particle image velocimetry (HFR-PIV), on an experimental bench with excised human fetus larynges. It appears that computing with first cry physiological parameters leads to a model which is close to those obtained in experiments with real organs.

  12. Validation od computational model ALDERSON/EGSnrc for chest radiography

    International Nuclear Information System (INIS)

    Muniz, Bianca C.; Santos, André L. dos; Menezes, Claudio J.M.

    2017-01-01

    To perform dose studies in situations of exposure to radiation, without exposing individuals, the numerical dosimetry uses Computational Exposure Models (ECM). Composed essentially by a radioactive source simulator algorithm, a voxel phantom representing the human anatomy and a Monte Carlo code, the ECMs must be validated to determine the reliability of the physical array representation. The objective of this work is to validate the ALDERSON / EGSnrc MCE by through comparisons between the experimental measurements obtained with the ionization chamber and virtual simulations using Monte Carlo Method to determine the ratio of the input and output radiation dose. Preliminary results of these comparisons showed that the ECM reproduced the results of the experimental measurements performed with the physical phantom with a relative error of less than 10%, validating the use of this model for simulations of chest radiographs and estimates of radiation doses in tissues in the irradiated structures

  13. Performance of Existing Hydrogen Stations

    Energy Technology Data Exchange (ETDEWEB)

    Sprik, Samuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Jennifer M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ainscough, Christopher D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Peters, Michael C [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-01

    In this presentation, the National Renewable Energy Laboratory presented aggregated analysis results on the performance of existing hydrogen stations, including performance, operation, utilization, maintenance, safety, hydrogen quality, and cost. The U.S. Department of Energy funds technology validation work at NREL through its National Fuel Cell Technology Evaluation Center (NFCTEC).

  14. Model Validation and Verification of Data Mining from the ...

    African Journals Online (AJOL)

    Michael Horsfall

    In this paper, we seek to present a hybrid method for Model Validation and Verification of Data Mining from the ... This model generally states the numerical value of knowledge .... procedures found in the field of software engineering should be ...

  15. How to enhance the future use of energy policy simulation models through ex post validation

    International Nuclear Information System (INIS)

    Qudrat-Ullah, Hassan

    2017-01-01

    Although simulation and modeling in general and system dynamics models in particular has long served the energy policy domain, ex post validation of these energy policy models is rarely addressed. In fact, ex post validation is a valuable area of research because it offers modelers a chance to enhance the future use of their simulation models by validating them against the field data. This paper contributes by presenting (i) a system dynamics simulation model, which was developed and used to do a three dimensional, socio-economical and environmental long-term assessment of Pakistan's energy policy in 1999, (ii) a systematic analysis of the 15-years old predictive scenarios produced by a system dynamics simulation model through ex post validation. How did the model predictions compare with the actual data? We report that the ongoing crisis of the electricity sector of Pakistan is unfolding, as the model-based scenarios had projected. - Highlights: • Argues that increased use of energy policy models is dependent on their credibility validation. • An ex post validation process is presented as a solution to build confidence in models. • A unique system dynamics model, MDESRAP, is presented. • The root mean square percentage error and Thiel's inequality statistics are applied. • The dynamic model, MDESRAP, is presented as an ex ante and ex post validated model.

  16. Identifying best existing practice for characterization modeling in life cycle impact assessment

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Goedkoop, Mark; Guinée, Jeroen

    2013-01-01

    Purpose: Life cycle impact assessment (LCIA) is a field of active development. The last decade has seen prolific publication of new impact assessment methods covering many different impact categories and providing characterization factors that often deviate from each other for the same substance...... and impact. The LCA standard ISO 14044 is rather general and unspecific in its requirements and offers little help to the LCA practitioner who needs to make a choice. With the aim to identify the best among existing characterization models and provide recommendations to the LCA practitioner, a study...... was performed for the Joint Research Centre of the European Commission (JRC). Methods Existing LCIA methods were collected and their individual characterization models identified at both midpoint and endpoint levels and supplemented with other environmental models of potential use for LCIA. No new developments...

  17. Validation of the TTM processes of change measure for physical activity in an adult French sample.

    Science.gov (United States)

    Bernard, Paquito; Romain, Ahmed-Jérôme; Trouillet, Raphael; Gernigon, Christophe; Nigg, Claudio; Ninot, Gregory

    2014-04-01

    Processes of change (POC) are constructs from the transtheoretical model that propose to examine how people engage in a behavior. However, there is no consensus about a leading model explaining POC and there is no validated French POC scale in physical activity This study aimed to compare the different existing models to validate a French POC scale. Three studies, with 748 subjects included, were carried out to translate the items and evaluate their clarity (study 1, n = 77), to assess the factorial validity (n = 200) and invariance/equivalence (study 2, n = 471), and to analyze the concurrent validity by stage × process analyses (study 3, n = 671). Two models displayed adequate fit to the data; however, based on the Akaike information criterion, the fully correlated five-factor model appeared as the most appropriate to measure POC in physical activity. The invariance/equivalence was also confirmed across genders and student status. Four of the five existing factors discriminated pre-action and post-action stages. These data support the validation of the POC questionnaire in physical activity among a French sample. More research is needed to explore the longitudinal properties of this scale.

  18. Bayesian Calibration, Validation and Uncertainty Quantification for Predictive Modelling of Tumour Growth: A Tutorial.

    Science.gov (United States)

    Collis, Joe; Connor, Anthony J; Paczkowski, Marcin; Kannan, Pavitra; Pitt-Francis, Joe; Byrne, Helen M; Hubbard, Matthew E

    2017-04-01

    In this work, we present a pedagogical tumour growth example, in which we apply calibration and validation techniques to an uncertain, Gompertzian model of tumour spheroid growth. The key contribution of this article is the discussion and application of these methods (that are not commonly employed in the field of cancer modelling) in the context of a simple model, whose deterministic analogue is widely known within the community. In the course of the example, we calibrate the model against experimental data that are subject to measurement errors, and then validate the resulting uncertain model predictions. We then analyse the sensitivity of the model predictions to the underlying measurement model. Finally, we propose an elementary learning approach for tuning a threshold parameter in the validation procedure in order to maximize predictive accuracy of our validated model.

  19. Validation of nuclear models used in space radiation shielding applications

    International Nuclear Information System (INIS)

    Norman, Ryan B.; Blattnig, Steve R.

    2013-01-01

    A program of verification and validation has been undertaken to assess the applicability of models to space radiation shielding applications and to track progress as these models are developed over time. In this work, simple validation metrics applicable to testing both model accuracy and consistency with experimental data are developed. The developed metrics treat experimental measurement uncertainty as an interval and are therefore applicable to cases in which epistemic uncertainty dominates the experimental data. To demonstrate the applicability of the metrics, nuclear physics models used by NASA for space radiation shielding applications are compared to an experimental database consisting of over 3600 experimental cross sections. A cumulative uncertainty metric is applied to the question of overall model accuracy, while a metric based on the median uncertainty is used to analyze the models from the perspective of model development by examining subsets of the model parameter space.

  20. Prospective validation of a prognostic model for respiratory syncytial virus bronchiolitis in late preterm infants: a multicenter birth cohort study.

    Directory of Open Access Journals (Sweden)

    Maarten O Blanken

    Full Text Available This study aimed to update and validate a prediction rule for respiratory syncytial virus (RSV hospitalization in preterm infants 33-35 weeks gestational age (WGA.The RISK study consisted of 2 multicenter prospective birth cohorts in 41 hospitals. Risk factors were assessed at birth among healthy preterm infants 33-35 WGA. All hospitalizations for respiratory tract infection were screened for proven RSV infection by immunofluorescence or polymerase chain reaction. Multivariate logistic regression analysis was used to update an existing prediction model in the derivation cohort (n = 1,227. In the validation cohort (n = 1,194, predicted versus actual RSV hospitalization rates were compared to determine validity of the model.RSV hospitalization risk in both cohorts was comparable (5.7% versus 4.9%. In the derivation cohort, a prediction rule to determine probability of RSV hospitalization was developed using 4 predictors: family atopy (OR 1.9; 95%CI, 1.1-3.2, birth period (OR 2.6; 1.6-4.2, breastfeeding (OR 1.7; 1.0-2.7 and siblings or daycare attendance (OR 4.7; 1.7-13.1. The model showed good discrimination (c-statistic 0.703; 0.64-0.76, 0.702 after bootstrapping. External validation showed good discrimination and calibration (c-statistic 0.678; 0.61-0.74.Our prospectively validated prediction rule identifies infants at increased RSV hospitalization risk, who may benefit from targeted preventive interventions. This prediction rule can facilitate country-specific, cost-effective use of RSV prophylaxis in late preterm infants.

  1. Existence and uniqueness of solution for a model problem of transonic flow

    International Nuclear Information System (INIS)

    Tangmanee, S.

    1985-11-01

    A model problem of transonic flow ''the Tricomi equation'' bounded by the rectangular-curve boundary is studied. We transform the model problem into a symmetric positive system and an admissible boundary condition is posed. We show that with some conditions the existence and uniqueness of the solution are guaranteed. (author)

  2. Predicting the ungauged basin : Model validation and realism assessment

    NARCIS (Netherlands)

    Van Emmerik, T.H.M.; Mulder, G.; Eilander, D.; Piet, M.; Savenije, H.H.G.

    2015-01-01

    The hydrological decade on Predictions in Ungauged Basins (PUB) led to many new insights in model development, calibration strategies, data acquisition and uncertainty analysis. Due to a limited amount of published studies on genuinely ungauged basins, model validation and realism assessment of

  3. Predicting the ungauged basin: model validation and realism assessment

    NARCIS (Netherlands)

    van Emmerik, Tim; Mulder, Gert; Eilander, Dirk; Piet, Marijn; Savenije, Hubert

    2015-01-01

    The hydrological decade on Predictions in Ungauged Basins (PUB) led to many new insights in model development, calibration strategies, data acquisition and uncertainty analysis. Due to a limited amount of published studies on genuinely ungauged basins, model validation and realism assessment of

  4. Validation of Inhibition Effect in the Cellulose Hydrolysis: a Dynamic Modelling Approach

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Tsai, Chien-Tai; Meyer, Anne S.

    2011-01-01

    Enzymatic hydrolysis is one of the main steps in the processing of bioethanol from lignocellulosic raw materials. However, complete understanding of the underlying phenomena is still under development. Hence, this study has focused on validation of the inhibition effects in the cellulosic biomass...... for parameter estimation (calibration) and validation purposes. The model predictions using calibrated parameters have shown good agreement with the validation data sets, which provides credibility to the model structure and the parameter values....

  5. A process improvement model for software verification and validation

    Science.gov (United States)

    Callahan, John; Sabolish, George

    1994-01-01

    We describe ongoing work at the NASA Independent Verification and Validation (IV&V) Facility to establish a process improvement model for software verification and validation (V&V) organizations. This model, similar to those used by some software development organizations, uses measurement-based techniques to identify problem areas and introduce incremental improvements. We seek to replicate this model for organizations involved in V&V on large-scale software development projects such as EOS and space station. At the IV&V Facility, a university research group and V&V contractors are working together to collect metrics across projects in order to determine the effectiveness of V&V and improve its application. Since V&V processes are intimately tied to development processes, this paper also examines the repercussions for development organizations in large-scale efforts.

  6. Thermal hydraulic model validation for HOR mixed core fuel management

    International Nuclear Information System (INIS)

    Gibcus, H.P.M.; Vries, J.W. de; Leege, P.F.A. de

    1997-01-01

    A thermal-hydraulic core management model has been developed for the Hoger Onderwijsreactor (HOR), a 2 MW pool-type university research reactor. The model was adopted for safety analysis purposes in the framework of HEU/LEU core conversion studies. It is applied in the thermal-hydraulic computer code SHORT (Steady-state HOR Thermal-hydraulics) which is presently in use in designing core configurations and for in-core fuel management. An elaborate measurement program was performed for establishing the core hydraulic characteristics for a variety of conditions. The hydraulic data were obtained with a dummy fuel element with special equipment allowing a.o. direct measurement of the true core flow rate. Using these data the thermal-hydraulic model was validated experimentally. The model, experimental tests, and model validation are discussed. (author)

  7. Validated TRNSYS Model for Solar Assisted Space Heating System

    International Nuclear Information System (INIS)

    Abdalla, Nedal

    2014-01-01

    The present study involves a validated TRNSYS model for solar assisted space heating system as applied to a residential building in Jordan using new detailed radiation models of the TRNSYS 17.1 and geometric building model Trnsys3d for the Google SketchUp 3D drawing program. The annual heating load for a building (Solar House) which is located at the Royal ScientiFIc Society (RS5) in Jordan is estimated under climatological conditions of Amman. The aim of this Paper is to compare measured thermal performance of the Solar House with that modeled using TRNSYS. The results showed that the annual measured space heating load for the building was 6,188 kWh while the heati.ng load for the modeled building was 6,391 kWh. Moreover, the measured solar fraction for the solar system was 50% while the modeled solar fraction was 55%. A comparison of modeled and measured data resulted in percentage mean absolute errors for solar energy for space heating, auxiliary heating and solar fraction of 13%, 7% and 10%, respectively. The validated model will be useful for long-term performance simulation under different weather and operating conditions.(author)

  8. Validation of statistical models for creep rupture by parametric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J., E-mail: john.bolton@uwclub.net [65, Fisher Ave., Rugby, Warks CV22 5HW (United Kingdom)

    2012-01-15

    Statistical analysis is an efficient method for the optimisation of any candidate mathematical model of creep rupture data, and for the comparative ranking of competing models. However, when a series of candidate models has been examined and the best of the series has been identified, there is no statistical criterion to determine whether a yet more accurate model might be devised. Hence there remains some uncertainty that the best of any series examined is sufficiently accurate to be considered reliable as a basis for extrapolation. This paper proposes that models should be validated primarily by parametric graphical comparison to rupture data and rupture gradient data. It proposes that no mathematical model should be considered reliable for extrapolation unless the visible divergence between model and data is so small as to leave no apparent scope for further reduction. This study is based on the data for a 12% Cr alloy steel used in BS PD6605:1998 to exemplify its recommended statistical analysis procedure. The models considered in this paper include a) a relatively simple model, b) the PD6605 recommended model and c) a more accurate model of somewhat greater complexity. - Highlights: Black-Right-Pointing-Pointer The paper discusses the validation of creep rupture models derived from statistical analysis. Black-Right-Pointing-Pointer It demonstrates that models can be satisfactorily validated by a visual-graphic comparison of models to data. Black-Right-Pointing-Pointer The method proposed utilises test data both as conventional rupture stress and as rupture stress gradient. Black-Right-Pointing-Pointer The approach is shown to be more reliable than a well-established and widely used method (BS PD6605).

  9. Validation of a two-fluid model used for the simulation of dense fluidized beds; Validation d`un modele a deux fluides applique a la simulation des lits fluidises denses

    Energy Technology Data Exchange (ETDEWEB)

    Boelle, A.

    1997-02-17

    A two-fluid model applied to the simulation of gas-solid dense fluidized beds is validated on micro scale and on macro scale. Phase coupling is carried out in the momentum and energy transport equation of both phases. The modeling is built on the kinetic theory of granular media in which the gas action has been taken into account in order to get correct expressions of transport coefficients. A description of hydrodynamic interactions between particles in high Stokes number flow is also incorporated in the model. The micro scale validation uses Lagrangian numerical simulations viewed as numerical experiments. The first validation case refers to a gas particle simple shear flow. It allows to validate the competition between two dissipation mechanisms: drag and particle collisions. The second validation case is concerted with sedimenting particles in high Stokes number flow. It allows to validate our approach of hydrodynamic interactions. This last case had led us to develop an original Lagrangian simulation with a two-way coupling between the fluid and the particles. The macro scale validation uses the results of Eulerian simulations of dense fluidized bed. Bed height, particles circulation and spontaneous created bubbles characteristics are studied and compared to experimental measurement, both looking at physical and numerical parameters. (author) 159 refs.

  10. Basic Modelling principles and Validation of Software for Prediction of Collision Damage

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    2000-01-01

    This report describes basic modelling principles, the theoretical background and validation examples for the collision damage prediction module in the ISESO stand-alone software.......This report describes basic modelling principles, the theoretical background and validation examples for the collision damage prediction module in the ISESO stand-alone software....

  11. Gap Conductance model Validation in the TASS/SMR-S code using MARS code

    International Nuclear Information System (INIS)

    Ahn, Sang Jun; Yang, Soo Hyung; Chung, Young Jong; Lee, Won Jae

    2010-01-01

    Korea Atomic Energy Research Institute (KAERI) has been developing the TASS/SMR-S (Transient and Setpoint Simulation/Small and Medium Reactor) code, which is a thermal hydraulic code for the safety analysis of the advanced integral reactor. An appropriate work to validate the applicability of the thermal hydraulic models within the code should be demanded. Among the models, the gap conductance model which is describes the thermal gap conductivity between fuel and cladding was validated through the comparison with MARS code. The validation of the gap conductance model was performed by evaluating the variation of the gap temperature and gap width as the changed with the power fraction. In this paper, a brief description of the gap conductance model in the TASS/SMR-S code is presented. In addition, calculated results to validate the gap conductance model are demonstrated by comparing with the results of the MARS code with the test case

  12. Developing and Validating Path-Dependent Uncertainty Estimates for use with the Regional Seismic Travel Time (RSTT) Model

    Science.gov (United States)

    Begnaud, M. L.; Anderson, D. N.; Phillips, W. S.; Myers, S. C.; Ballard, S.

    2016-12-01

    The Regional Seismic Travel Time (RSTT) tomography model has been developed to improve travel time predictions for regional phases (Pn, Sn, Pg, Lg) in order to increase seismic location accuracy, especially for explosion monitoring. The RSTT model is specifically designed to exploit regional phases for location, especially when combined with teleseismic arrivals. The latest RSTT model (version 201404um) has been released (http://www.sandia.gov/rstt). Travel time uncertainty estimates for RSTT are determined using one-dimensional (1D), distance-dependent error models, that have the benefit of being very fast to use in standard location algorithms, but do not account for path-dependent variations in error, and structural inadequacy of the RSTTT model (e.g., model error). Although global in extent, the RSTT tomography model is only defined in areas where data exist. A simple 1D error model does not accurately model areas where RSTT has not been calibrated. We are developing and validating a new error model for RSTT phase arrivals by mathematically deriving this multivariate model directly from a unified model of RSTT embedded into a statistical random effects model that captures distance, path and model error effects. An initial method developed is a two-dimensional path-distributed method using residuals. The goals for any RSTT uncertainty method are for it to be both readily useful for the standard RSTT user as well as improve travel time uncertainty estimates for location. We have successfully tested using the new error model for Pn phases and will demonstrate the method and validation of the error model for Sn, Pg, and Lg phases.

  13. Assessment model validity document FARF31

    International Nuclear Information System (INIS)

    Elert, Mark; Gylling Bjoern; Lindgren, Maria

    2004-08-01

    The prime goal of model validation is to build confidence in the model concept and that the model is fit for its intended purpose. In other words: Does the model predict transport in fractured rock adequately to be used in repository performance assessments. Are the results reasonable for the type of modelling tasks the model is designed for. Commonly, in performance assessments a large number of realisations of flow and transport is made to cover the associated uncertainties. Thus, the flow and transport including radioactive chain decay are preferably calculated in the same model framework. A rather sophisticated concept is necessary to be able to model flow and radionuclide transport in the near field and far field of a deep repository, also including radioactive chain decay. In order to avoid excessively long computational times there is a need for well-based simplifications. For this reason, the far field code FARF31 is made relatively simple, and calculates transport by using averaged entities to represent the most important processes. FARF31 has been shown to be suitable for the performance assessments within the SKB studies, e.g. SR 97. Among the advantages are that it is a fast, simple and robust code, which enables handling of many realisations with wide spread in parameters in combination with chain decay of radionuclides. Being a component in the model chain PROPER, it is easy to assign statistical distributions to the input parameters. Due to the formulation of the advection-dispersion equation in FARF31 it is possible to perform the groundwater flow calculations separately.The basis for the modelling is a stream tube, i.e. a volume of rock including fractures with flowing water, with the walls of the imaginary stream tube defined by streamlines. The transport within the stream tube is described using a dual porosity continuum approach, where it is assumed that rock can be divided into two distinct domains with different types of porosity

  14. Validation Assessment of a Glass-to-Metal Seal Finite-Element Model

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, Ryan Dale [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Emery, John M [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Vicente J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Newton, Clay S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Arthur [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Sealing glasses are ubiquitous in high pressure and temperature engineering applications, such as hermetic feed-through electrical connectors. A common connector technology are glass-to-metal seals where a metal shell compresses a sealing glass to create a hermetic seal. Though finite-element analysis has been used to understand and design glass-to-metal seals for many years, there has been little validation of these models. An indentation technique was employed to measure the residual stress on the surface of a simple glass-to-metal seal. Recently developed rate- dependent material models of both Schott 8061 and 304L VAR stainless steel have been applied to a finite-element model of the simple glass-to-metal seal. Model predictions of residual stress based on the evolution of material models are shown. These model predictions are compared to measured data. Validity of the finite- element predictions is discussed. It will be shown that the finite-element model of the glass-to-metal seal accurately predicts the mean residual stress in the glass near the glass-to-metal interface and is valid for this quantity of interest.

  15. Validation of an employee satisfaction model: A structural equation model approach

    OpenAIRE

    Ophillia Ledimo; Nico Martins

    2015-01-01

    The purpose of this study was to validate an employee satisfaction model and to determine the relationships between the different dimensions of the concept, using the structural equation modelling approach (SEM). A cross-sectional quantitative survey design was used to collect data from a random sample of (n=759) permanent employees of a parastatal organisation. Data was collected using the Employee Satisfaction Survey (ESS) to measure employee satisfaction dimensions. Following the steps of ...

  16. Concrete structures vulnerability under impact: characterization, modeling, and validation - Concrete slabs vulnerability under impact: characterization, modeling, and validation

    International Nuclear Information System (INIS)

    Xuan Dung Vu

    2013-01-01

    Concrete is a material whose behavior is complex, especially in cases of extreme loads. The objective of this thesis is to carry out an experimental characterization of the behavior of concrete under impact-generated stresses (confined compression and dynamic traction) and to develop a robust numerical tool to reliably model this behavior. In the experimental part, we have studied concrete samples from the VTT center (Technical Research Center of Finland). At first, quasi-static triaxial compressions with the confinement varies from 0 MPa (unconfined compression test) to 600 MPa were realized. The stiffness of the concrete increases with confinement pressure because of the reduction of porosity. Therefore, the maximum shear strength of the concrete is increased. The presence of water plays an important role when the degree of saturation is high and the concrete is subjected to high confinement pressure. Beyond a certain level of confinement pressure, the maximum shear strength of concrete decreases with increasing water content. The effect of water also influences the volumetric behavior of concrete. When all free pores are closed as a result of compaction, the low compressibility of the water prevents the deformation of the concrete, whereby the wet concrete is less deformed than the dry concrete for the same mean stress. The second part of the experimental program concerns dynamic tensile tests at different loading velocities, and different moisture conditions of concrete. The results show that the tensile strength of concrete C50 may increase up to 5 times compared to its static strength for a strain rate of about 100 s -1 . In the numerical part, we are interested in improving an existing constitutive coupled model of concrete behavior called PRM (Pontiroli-Rouquand-Mazars) to predict the concrete behavior under impact. This model is based on a coupling between a damage model which is able to describe the degradation mechanisms and cracking of the concrete at

  17. A Propagative Model of Simultaneous Impact: Existence, Uniqueness, and Design Consequences

    OpenAIRE

    Seghete, Vlad; Murphey, Todd

    2017-01-01

    This paper presents existence and uniqueness results for a propagative model of simultaneous impacts that is guaranteed to conserve energy and momentum in the case of elastic impacts with extensions to perfectly plastic and inelastic impacts. A corresponding time-stepping algorithm that guarantees conservation of continuous energy and discrete momentum is developed, also with extensions to plastic and inelastic impacts. The model is illustrated in simulation using billiard balls and a two-dim...

  18. Assessment model validity document - HYDRASTAR. A stochastic continuum program for groundwater flow

    Energy Technology Data Exchange (ETDEWEB)

    Gylling, B. [Kemakta Konsult AB, Stockholm (Sweden); Eriksson, Lars [Equa Simulation AB, Sundbyberg (Sweden)

    2001-12-01

    The prevailing document addresses validation of the stochastic continuum model HYDRASTAR designed for Monte Carlo simulations of groundwater flow in fractured rocks. Here, validation is defined as a process to demonstrate that a model concept is fit for its purpose. Preferably, the validation is carried out by comparison of model predictions with independent field observations and experimental measurements. In addition, other sources can also be used to confirm that the model concept gives acceptable results. One method is to compare results with the ones achieved using other model concepts for the same set of input data. Another method is to compare model results with analytical solutions. The model concept HYDRASTAR has been used in several studies including performance assessments of hypothetical repositories for spent nuclear fuel. In the performance assessments, the main tasks for HYDRASTAR have been to calculate groundwater travel time distributions, repository flux distributions, path lines and their exit locations. The results have then been used by other model concepts to calculate the near field release and far field transport. The aim and framework for the validation process includes describing the applicability of the model concept for its purpose in order to build confidence in the concept. Preferably, this is made by comparisons of simulation results with the corresponding field experiments or field measurements. Here, two comparisons with experimental results are reported. In both cases the agreement was reasonably fair. In the broader and more general context of the validation process, HYDRASTAR results have been compared with other models and analytical solutions. Commonly, the approximation calculations agree well with the medians of model ensemble results. Additional indications that HYDRASTAR is suitable for its purpose were obtained from the comparisons with results from other model concepts. Several verification studies have been made for

  19. Evaluation factors for verification and validation of low-level waste disposal site models

    International Nuclear Information System (INIS)

    Moran, M.S.; Mezga, L.J.

    1982-01-01

    The purpose of this paper is to identify general evaluation factors to be used to verify and validate LLW disposal site performance models in order to assess their site-specific applicability and to determine their accuracy and sensitivity. It is intended that the information contained in this paper be employed by model users involved with LLW site performance model verification and validation. It should not be construed as providing protocols, but rather as providing a framework for the preparation of specific protocols or procedures. A brief description of each evaluation factor is provided. The factors have been categorized according to recommended use during either the model verification or the model validation process. The general responsibilities of the developer and user are provided. In many cases it is difficult to separate the responsibilities of the developer and user, but the user is ultimately accountable for both verification and validation processes. 4 refs

  20. Existence of global attractor for the Trojan Y Chromosome model

    Directory of Open Access Journals (Sweden)

    Xiaopeng Zhao

    2012-04-01

    Full Text Available This paper is concerned with the long time behavior of solution for the equation derived by the Trojan Y Chromosome (TYC model with spatial spread. Based on the regularity estimates for the semigroups and the classical existence theorem of global attractors, we prove that this equations possesses a global attractor in $H^k(\\Omega^4$ $(k\\geq 0$ space.

  1. Attempted development and cross-validation of predictive models of individual-level and organizational-level turnover of nuclear power operators

    International Nuclear Information System (INIS)

    Vasa-Sideris, S.J.

    1989-01-01

    Nuclear power accounts for 209% of the electric power generated in the U.S. by 107 nuclear plants which employ over 8,700 operators. Operator turnover is significant to utilities from the economic point of view since it costs almost three hundred thousand dollars to train and qualify one operator, and because turnover affects plant operability and therefore plant safety. The study purpose was to develop and cross-validate individual-level and organizational-level models of turnover of nuclear power plant operators. Data were obtained by questionnaires and from published data for 1983 and 1984 on a number of individual, organizational, and environmental predictors. Plants had been in operation for two or more years. Questionnaires were returned by 29 out of 50 plants on over 1600 operators. The objectives were to examine the reliability of the turnover criterion, to determine the classification accuracy of the multivariate predictive models and of categories of predictors (individual, organizational, and environmental) and to determine if a homology existed between the individual-level and organizational-level models. The method was to examine the shrinkage that occurred between foldback design (in which the predictive models were reapplied to the data used to develop them) and cross-validation. Results did not support the hypothesis objectives. Turnover data were accurate but not stable between the two years. No significant differences were detected between the low and high turnover groups at the organization or individual level in cross-validation. Lack of stability in the criterion, restriction of range, and small sample size at the organizational level were serious limitations of this study. The results did support the methods. Considerable shrinkage occurred between foldback and cross-validation of the models

  2. Validation of elk resource selection models with spatially independent data

    Science.gov (United States)

    Priscilla K. Coe; Bruce K. Johnson; Michael J. Wisdom; John G. Cook; Marty Vavra; Ryan M. Nielson

    2011-01-01

    Knowledge of how landscape features affect wildlife resource use is essential for informed management. Resource selection functions often are used to make and validate predictions about landscape use; however, resource selection functions are rarely validated with data from landscapes independent of those from which the models were built. This problem has severely...

  3. Existence of Torsional Solitons in a Beam Model of Suspension Bridge

    Science.gov (United States)

    Benci, Vieri; Fortunato, Donato; Gazzola, Filippo

    2017-11-01

    This paper studies the existence of solitons, namely stable solitary waves, in an idealized suspension bridge. The bridge is modeled as an unbounded degenerate plate, that is, a central beam with cross sections, and displays two degrees of freedom: the vertical displacement of the beam and the torsional angles of the cross sections. Under fairly general assumptions, we prove the existence of solitons. Under the additional assumption of large tension in the sustaining cables, we prove that these solitons have a nontrivial torsional component. This appears relevant for security since several suspension bridges collapsed due to torsional oscillations.

  4. Verification and validation of models: far-field modelling of radionuclide migration

    International Nuclear Information System (INIS)

    Porter, J.D.; Herbert, A.W.; Clarke, D.S.; Roe, P.; Vassilic Melling, D.; Einfeldt, B.; Mackay, R.; Glendinning, R.

    1992-01-01

    The aim of this project was to improve the capability, efficiency and realism of the NAMMU and NAPSAC codes, which simulate groundwater flow and solute transport. Using NAMMU, various solution methods for non linear problems were investigated. The Broyden method gave a useful reduction in computing time and appeared robust. The relative saving obtained with this method increased with the problem size. This was also the case when parameter stepping was used. The existing empirical sorption models in NAMMU were generalized and a ternary heterogeneous ion exchange model was added. These modifications were tested and gave excellent results. The desirability of coupling NAMMU to an existing geochemical speciation code was assessed

  5. Validation Analysis of the Shoal Groundwater Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    A. Hassan; J. Chapman

    2008-11-01

    groundwater withdrawal activities in the area. The conceptual and numerical models were developed based upon regional hydrogeologic investigations conducted in the 1960s, site characterization investigations (including ten wells and various geophysical and geologic studies) at Shoal itself prior to and immediately after the test, and two site characterization campaigns in the 1990s for environmental restoration purposes (including eight wells and a year-long tracer test). The new wells are denoted MV-1, MV-2, and MV-3, and are located to the northnortheast of the nuclear test. The groundwater model was generally lacking data in the north-northeastern area; only HC-1 and the abandoned PM-2 wells existed in this area. The wells provide data on fracture orientation and frequency, water levels, hydraulic conductivity, and water chemistry for comparison with the groundwater model. A total of 12 real-number validation targets were available for the validation analysis, including five values of hydraulic head, three hydraulic conductivity measurements, three hydraulic gradient values, and one angle value for the lateral gradient in radians. In addition, the fracture dip and orientation data provide comparisons to the distributions used in the model and radiochemistry is available for comparison to model output. Goodness-of-fit analysis indicates that some of the model realizations correspond well with the newly acquired conductivity, head, and gradient data, while others do not. Other tests indicated that additional model realizations may be needed to test if the model input distributions need refinement to improve model performance. This approach (generating additional realizations) was not followed because it was realized that there was a temporal component to the data disconnect: the new head measurements are on the high side of the model distributions, but the heads at the original calibration locations themselves have also increased over time. This indicates that the steady

  6. The validation of a human resource management professional competence model for the South African context

    Directory of Open Access Journals (Sweden)

    Nico Schutte

    2015-09-01

    Research purpose: The main objective of the present research was to validate a HRM competence measure for the assessment of professional HRM competencies in the workplace. Motivation for the study: Competency models can assist HR professionals in supporting their organisations to achieve success and sustainability. Research approach, design and method: A cross-sectional research approach was followed. The proposed HRM Professional Competence Model was administered to a diverse population of HR managers and practitioners (N = 483. Data were analysed using SPSS 22.0 for Windows. Main findings: Exploratory factor analysis resulted in three distinguishable competency dimensions for HR professionals: Professional behaviour and leadership (consisting of the factors Leadership and personal credibility, Solution creation, Interpersonal communication and Innovation, Service orientation and execution (consisting of the factors Talent management, HR risk, HR metrics and HR service delivery and Business intelligence (consisting of the factors Strategic contribution, HR business knowledge, HR business acumen and HR technology. All factors showed acceptable construct equivalence for the English and indigenous language groups. Practical/managerial implications: Managers can utilise the validated competence measure to measure the performance of HR practitioners in the organisation. Contribution/value-add: This research adds to the limited HR professional competence measures that currently exist.

  7. Nonparametric model validations for hidden Markov models with applications in financial econometrics.

    Science.gov (United States)

    Zhao, Zhibiao

    2011-06-01

    We address the nonparametric model validation problem for hidden Markov models with partially observable variables and hidden states. We achieve this goal by constructing a nonparametric simultaneous confidence envelope for transition density function of the observable variables and checking whether the parametric density estimate is contained within such an envelope. Our specification test procedure is motivated by a functional connection between the transition density of the observable variables and the Markov transition kernel of the hidden states. Our approach is applicable for continuous time diffusion models, stochastic volatility models, nonlinear time series models, and models with market microstructure noise.

  8. Validity of information security policy models

    Directory of Open Access Journals (Sweden)

    Joshua Onome Imoniana

    Full Text Available Validity is concerned with establishing evidence for the use of a method to be used with a particular set of population. Thus, when we address the issue of application of security policy models, we are concerned with the implementation of a certain policy, taking into consideration the standards required, through attribution of scores to every item in the research instrument. En today's globalized economic scenarios, the implementation of information security policy, in an information technology environment, is a condition sine qua non for the strategic management process of any organization. Regarding this topic, various studies present evidences that, the responsibility for maintaining a policy rests primarily with the Chief Security Officer. The Chief Security Officer, in doing so, strives to enhance the updating of technologies, in order to meet all-inclusive business continuity planning policies. Therefore, for such policy to be effective, it has to be entirely embraced by the Chief Executive Officer. This study was developed with the purpose of validating specific theoretical models, whose designs were based on literature review, by sampling 10 of the Automobile Industries located in the ABC region of Metropolitan São Paulo City. This sampling was based on the representativeness of such industries, particularly with regards to each one's implementation of information technology in the region. The current study concludes, presenting evidence of the discriminating validity of four key dimensions of the security policy, being such: the Physical Security, the Logical Access Security, the Administrative Security, and the Legal & Environmental Security. On analyzing the Alpha of Crombach structure of these security items, results not only attest that the capacity of those industries to implement security policies is indisputable, but also, the items involved, homogeneously correlate to each other.

  9. Validation and selection of ODE based systems biology models: how to arrive at more reliable decisions.

    Science.gov (United States)

    Hasdemir, Dicle; Hoefsloot, Huub C J; Smilde, Age K

    2015-07-08

    Most ordinary differential equation (ODE) based modeling studies in systems biology involve a hold-out validation step for model validation. In this framework a pre-determined part of the data is used as validation data and, therefore it is not used for estimating the parameters of the model. The model is assumed to be validated if the model predictions on the validation dataset show good agreement with the data. Model selection between alternative model structures can also be performed in the same setting, based on the predictive power of the model structures on the validation dataset. However, drawbacks associated with this approach are usually under-estimated. We have carried out simulations by using a recently published High Osmolarity Glycerol (HOG) pathway from S.cerevisiae to demonstrate these drawbacks. We have shown that it is very important how the data is partitioned and which part of the data is used for validation purposes. The hold-out validation strategy leads to biased conclusions, since it can lead to different validation and selection decisions when different partitioning schemes are used. Furthermore, finding sensible partitioning schemes that would lead to reliable decisions are heavily dependent on the biology and unknown model parameters which turns the problem into a paradox. This brings the need for alternative validation approaches that offer flexible partitioning of the data. For this purpose, we have introduced a stratified random cross-validation (SRCV) approach that successfully overcomes these limitations. SRCV leads to more stable decisions for both validation and selection which are not biased by underlying biological phenomena. Furthermore, it is less dependent on the specific noise realization in the data. Therefore, it proves to be a promising alternative to the standard hold-out validation strategy.

  10. Cross validation for the classical model of structured expert judgment

    International Nuclear Information System (INIS)

    Colson, Abigail R.; Cooke, Roger M.

    2017-01-01

    We update the 2008 TU Delft structured expert judgment database with data from 33 professionally contracted Classical Model studies conducted between 2006 and March 2015 to evaluate its performance relative to other expert aggregation models. We briefly review alternative mathematical aggregation schemes, including harmonic weighting, before focusing on linear pooling of expert judgments with equal weights and performance-based weights. Performance weighting outperforms equal weighting in all but 1 of the 33 studies in-sample. True out-of-sample validation is rarely possible for Classical Model studies, and cross validation techniques that split calibration questions into a training and test set are used instead. Performance weighting incurs an “out-of-sample penalty” and its statistical accuracy out-of-sample is lower than that of equal weighting. However, as a function of training set size, the statistical accuracy of performance-based combinations reaches 75% of the equal weight value when the training set includes 80% of calibration variables. At this point the training set is sufficiently powerful to resolve differences in individual expert performance. The information of performance-based combinations is double that of equal weighting when the training set is at least 50% of the set of calibration variables. Previous out-of-sample validation work used a Total Out-of-Sample Validity Index based on all splits of the calibration questions into training and test subsets, which is expensive to compute and includes small training sets of dubious value. As an alternative, we propose an Out-of-Sample Validity Index based on averaging the product of statistical accuracy and information over all training sets sized at 80% of the calibration set. Performance weighting outperforms equal weighting on this Out-of-Sample Validity Index in 26 of the 33 post-2006 studies; the probability of 26 or more successes on 33 trials if there were no difference between performance

  11. Verifying and Validating Simulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Hemez, Francois M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-23

    This presentation is a high-level discussion of the Verification and Validation (V&V) of computational models. Definitions of V&V are given to emphasize that “validation” is never performed in a vacuum; it accounts, instead, for the current state-of-knowledge in the discipline considered. In particular comparisons between physical measurements and numerical predictions should account for their respective sources of uncertainty. The differences between error (bias), aleatoric uncertainty (randomness) and epistemic uncertainty (ignorance, lack-of- knowledge) are briefly discussed. Four types of uncertainty in physics and engineering are discussed: 1) experimental variability, 2) variability and randomness, 3) numerical uncertainty and 4) model-form uncertainty. Statistical sampling methods are available to propagate, and analyze, variability and randomness. Numerical uncertainty originates from the truncation error introduced by the discretization of partial differential equations in time and space. Model-form uncertainty is introduced by assumptions often formulated to render a complex problem more tractable and amenable to modeling and simulation. The discussion concludes with high-level guidance to assess the “credibility” of numerical simulations, which stems from the level of rigor with which these various sources of uncertainty are assessed and quantified.

  12. Validation of a multi-objective, predictive urban traffic model

    NARCIS (Netherlands)

    Wilmink, I.R.; Haak, P. van den; Woldeab, Z.; Vreeswijk, J.

    2013-01-01

    This paper describes the results of the verification and validation of the ecoStrategic Model, which was developed, implemented and tested in the eCoMove project. The model uses real-time and historical traffic information to determine the current, predicted and desired state of traffic in a

  13. Animal models of binge drinking, current challenges to improve face validity.

    Science.gov (United States)

    Jeanblanc, Jérôme; Rolland, Benjamin; Gierski, Fabien; Martinetti, Margaret P; Naassila, Mickael

    2018-05-05

    Binge drinking (BD), i.e., consuming a large amount of alcohol in a short period of time, is an increasing public health issue. Though no clear definition has been adopted worldwide the speed of drinking seems to be a keystone of this behavior. Developing relevant animal models of BD is a priority for gaining a better characterization of the neurobiological and psychobiological mechanisms underlying this dangerous and harmful behavior. Until recently, preclinical research on BD has been conducted mostly using forced administration of alcohol, but more recent studies used scheduled access to alcohol, to model more voluntary excessive intakes, and to achieve signs of intoxications that mimic the human behavior. The main challenges for future research are discussed regarding the need of good face validity, construct validity and predictive validity of animal models of BD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Field validation of the contaminant transport model, FEMA

    International Nuclear Information System (INIS)

    Wong, K.-F.V.

    1986-01-01

    The work describes the validation with field data of a finite element model of material transport through aquifers (FEMA). Field data from the Idaho Chemical Processing Plant, Idaho, USA and from the 58th Street landfill in Miami, Florida, USA are used. In both cases the model was first calibrated and then integrated over a span of eight years to check on the predictive capability of the model. Both predictive runs gave results that matched well with available data. (author)

  15. Validation of a regional distribution model in environmental risk assessment of substances

    Energy Technology Data Exchange (ETDEWEB)

    Berding, V.

    2000-06-26

    The regional distribution model SimpleBox proposed in the TGD (Technical Guidance Document) and implemented in the EUSES software (European Union System for the Evaluation of Substances) was validated. The aim of this investigation was to determine the applicability and weaknesses of the model and to make proposals for improvement. The validation was performed using the scheme set up by SCHWARTZ (2000) of which the main aspects are the division into internal and external validation, i.e. into generic and task-specific properties of the model. These two validation parts contain the scrutiny of theory, sensitivity analyses, comparison of predicted environmental concentrations with measured ones by means of scenario analyses, uncertainty analyses and comparison with alternative models. Generally, the model employed is a reasonable compromise between complexity and simplification. Simpler models are applicable, too, but in many cases the results can deviate considerably from the measured values. For the sewage treatment model, it could be shown that its influence on the predicted concentration is very low and a much simpler model fulfils its purpose in a similar way. It is proposed to improve the model in several ways, e.g. by including the pH/pK-correction for dissociating substances or by alternative estimations functions for partition coefficients. But the main focus for future improvements should be on the amelioration of release estimations and substance characteristics as degradation rates and partition coefficients.

  16. External validation of EPIWIN biodegradation models.

    Science.gov (United States)

    Posthumus, R; Traas, T P; Peijnenburg, W J G M; Hulzebos, E M

    2005-01-01

    The BIOWIN biodegradation models were evaluated for their suitability for regulatory purposes. BIOWIN includes the linear and non-linear BIODEG and MITI models for estimating the probability of rapid aerobic biodegradation and an expert survey model for primary and ultimate biodegradation estimation. Experimental biodegradation data for 110 newly notified substances were compared with the estimations of the different models. The models were applied separately and in combinations to determine which model(s) showed the best performance. The results of this study were compared with the results of other validation studies and other biodegradation models. The BIOWIN models predict not-readily biodegradable substances with high accuracy in contrast to ready biodegradability. In view of the high environmental concern of persistent chemicals and in view of the large number of not-readily biodegradable chemicals compared to the readily ones, a model is preferred that gives a minimum of false positives without a corresponding high percentage false negatives. A combination of the BIOWIN models (BIOWIN2 or BIOWIN6) showed the highest predictive value for not-readily biodegradability. However, the highest score for overall predictivity with lowest percentage false predictions was achieved by applying BIOWIN3 (pass level 2.75) and BIOWIN6.

  17. Validation of the STAFF-5 computer model

    International Nuclear Information System (INIS)

    Fletcher, J.F.; Fields, S.R.

    1981-04-01

    STAFF-5 is a dynamic heat-transfer-fluid-flow stress model designed for computerized prediction of the temperature-stress performance of spent LWR fuel assemblies under storage/disposal conditions. Validation of the temperature calculating abilities of this model was performed by comparing temperature calculations under specified conditions to experimental data from the Engine Maintenance and Dissassembly (EMAD) Fuel Temperature Test Facility and to calculations performed by Battelle Pacific Northwest Laboratory (PNL) using the HYDRA-1 model. The comparisons confirmed the ability of STAFF-5 to calculate representative fuel temperatures over a considerable range of conditions, as a first step in the evaluation and prediction of fuel temperature-stress performance

  18. The Validation of a Beta-Binomial Model for Overdispersed Binomial Data.

    Science.gov (United States)

    Kim, Jongphil; Lee, Ji-Hyun

    2017-01-01

    The beta-binomial model has been widely used as an analytically tractable alternative that captures the overdispersion of an intra-correlated, binomial random variable, X . However, the model validation for X has been rarely investigated. As a beta-binomial mass function takes on a few different shapes, the model validation is examined for each of the classified shapes in this paper. Further, the mean square error (MSE) is illustrated for each shape by the maximum likelihood estimator (MLE) based on a beta-binomial model approach and the method of moments estimator (MME) in order to gauge when and how much the MLE is biased.

  19. Bayesian leave-one-out cross-validation approximations for Gaussian latent variable models

    DEFF Research Database (Denmark)

    Vehtari, Aki; Mononen, Tommi; Tolvanen, Ville

    2016-01-01

    The future predictive performance of a Bayesian model can be estimated using Bayesian cross-validation. In this article, we consider Gaussian latent variable models where the integration over the latent values is approximated using the Laplace method or expectation propagation (EP). We study...... the properties of several Bayesian leave-one-out (LOO) cross-validation approximations that in most cases can be computed with a small additional cost after forming the posterior approximation given the full data. Our main objective is to assess the accuracy of the approximative LOO cross-validation estimators...

  20. Recent validation studies for two NRPB environmental transfer models

    International Nuclear Information System (INIS)

    Brown, J.; Simmonds, J.R.

    1991-01-01

    The National Radiological Protection Board (NRPB) developed a dynamic model for the transfer of radionuclides through terrestrial food chains some years ago. This model, now called FARMLAND, predicts both instantaneous and time integrals of concentration of radionuclides in a variety of foods. The model can be used to assess the consequences of both accidental and routine releases of radioactivity to the environment; and results can be obtained as a function of time. A number of validation studies have been carried out on FARMLAND. In these the model predictions have been compared with a variety of sets of environmental measurement data. Some of these studies will be outlined in the paper. A model to predict external radiation exposure from radioactivity deposited on different surfaces in the environment has also been developed at NRPB. This model, called EXPURT (EXPosure from Urban Radionuclide Transfer), can be used to predict radiation doses as a function of time following deposition in a variety of environments, ranging from rural to inner-city areas. This paper outlines validation studies and future extensions to be carried out on EXPURT. (12 refs., 4 figs.)

  1. Validation by simulation of a clinical trial model using the standardized mean and variance criteria.

    Science.gov (United States)

    Abbas, Ismail; Rovira, Joan; Casanovas, Josep

    2006-12-01

    To develop and validate a model of a clinical trial that evaluates the changes in cholesterol level as a surrogate marker for lipodystrophy in HIV subjects under alternative antiretroviral regimes, i.e., treatment with Protease Inhibitors vs. a combination of nevirapine and other antiretroviral drugs. Five simulation models were developed based on different assumptions, on treatment variability and pattern of cholesterol reduction over time. The last recorded cholesterol level, the difference from the baseline, the average difference from the baseline and level evolution, are the considered endpoints. Specific validation criteria based on a 10% minus or plus standardized distance in means and variances were used to compare the real and the simulated data. The validity criterion was met by all models for considered endpoints. However, only two models met the validity criterion when all endpoints were considered. The model based on the assumption that within-subjects variability of cholesterol levels changes over time is the one that minimizes the validity criterion, standardized distance equal to or less than 1% minus or plus. Simulation is a useful technique for calibration, estimation, and evaluation of models, which allows us to relax the often overly restrictive assumptions regarding parameters required by analytical approaches. The validity criterion can also be used to select the preferred model for design optimization, until additional data are obtained allowing an external validation of the model.

  2. Validation of advanced NSSS simulator model for loss-of-coolant accidents

    Energy Technology Data Exchange (ETDEWEB)

    Kao, S.P.; Chang, S.K.; Huang, H.C. [Nuclear Training Branch, Northeast Utilities, Waterford, CT (United States)

    1995-09-01

    The replacement of the NSSS (Nuclear Steam Supply System) model on the Millstone 2 full-scope simulator has significantly increased its fidelity to simulate adverse conditions in the RCS. The new simulator NSSS model is a real-time derivative of the Nuclear Plant Analyzer by ABB. The thermal-hydraulic model is a five-equation, non-homogeneous model for water, steam, and non-condensible gases. The neutronic model is a three-dimensional nodal diffusion model. In order to certify the new NSSS model for operator training, an extensive validation effort has been performed by benchmarking the model performance against RELAP5/MOD2. This paper presents the validation results for the cases of small-and large-break loss-of-coolant accidents (LOCA). Detailed comparisons in the phenomena of reflux-condensation, phase separation, and two-phase natural circulation are discussed.

  3. Statistical Analysis Methods for Physics Models Verification and Validation

    CERN Document Server

    De Luca, Silvia

    2017-01-01

    The validation and verification process is a fundamental step for any software like Geant4 and GeantV, which aim to perform data simulation using physics models and Monte Carlo techniques. As experimental physicists, we have to face the problem to compare the results obtained using simulations with what the experiments actually observed. One way to solve the problem is to perform a consistency test. Within the Geant group, we developed a C++ compact library which will be added to the automated validation process on the Geant Validation Portal

  4. Isotopes as validation tools for global climate models

    International Nuclear Information System (INIS)

    Henderson-Sellers, A.

    2001-01-01

    Global Climate Models (GCMs) are the predominant tool with which we predict the future climate. In order that people can have confidence in such predictions, GCMs require validation. As almost every available item of meteorological data has been exploited in the construction and tuning of GCMs to date, independent validation is very difficult. This paper explores the use of isotopes as a novel and fully independent means of evaluating GCMs. The focus is the Amazon Basin which has a long history of isotope collection and analysis and also of climate modelling: both having been reported for over thirty years. Careful consideration of the results of GCM simulations of Amazonian deforestation and climate change suggests that the recent stable isotope record is more consistent with the predicted effects of greenhouse warming, possibly combined with forest removal, than with GCM predictions of the effects of deforestation alone

  5. A strategy for validation a concept model for radionuclide migration in the saturated zone beneath Yucca Mountain

    International Nuclear Information System (INIS)

    Robinson, B.A.

    1994-01-01

    A conceptual model for radionuclide migration in the saturated zone beneath Yucca Mountain is presented. The available hydrologic data from the site is compiled to present a qualitative picture of transport of radionuclides horizontally within the first 100-200 m of the saturated zone. The transport model consists of flow within fractures and interchange of dissolved species between the fractures and surrounding matrix blocks via molecular diffusion. A parametric study illustrates that at the groundwater conditions expected to exist in the saturated zone, radionuclide will have ample time to diffuse fully within the matrix blocks. The result is a predicted solute transport time several orders of magnitude greater than the groundwater travel time (GWTT). To validate this model, a suite of interwell tracer tests are proposed at various flow rates and with conservative and sorbing species. Numerical simulations show that these tests will allow us to discriminate between a matrix diffusion model and a more conventional continuum transport model. (author) 8 figs., tabs., 35 refs

  6. Using Modeling and Simulation to Predict Operator Performance and Automation-Induced Complacency With Robotic Automation: A Case Study and Empirical Validation.

    Science.gov (United States)

    Wickens, Christopher D; Sebok, Angelia; Li, Huiyang; Sarter, Nadine; Gacy, Andrew M

    2015-09-01

    The aim of this study was to develop and validate a computational model of the automation complacency effect, as operators work on a robotic arm task, supported by three different degrees of automation. Some computational models of complacency in human-automation interaction exist, but those are formed and validated within the context of fairly simplified monitoring failures. This research extends model validation to a much more complex task, so that system designers can establish, without need for human-in-the-loop (HITL) experimentation, merits and shortcomings of different automation degrees. We developed a realistic simulation of a space-based robotic arm task that could be carried out with three different levels of trajectory visualization and execution automation support. Using this simulation, we performed HITL testing. Complacency was induced via several trials of correctly performing automation and then was assessed on trials when automation failed. Following a cognitive task analysis of the robotic arm operation, we developed a multicomponent model of the robotic operator and his or her reliance on automation, based in part on visual scanning. The comparison of model predictions with empirical results revealed that the model accurately predicted routine performance and predicted the responses to these failures after complacency developed. However, the scanning models do not account for the entire attention allocation effects of complacency. Complacency modeling can provide a useful tool for predicting the effects of different types of imperfect automation. The results from this research suggest that focus should be given to supporting situation awareness in automation development. © 2015, Human Factors and Ergonomics Society.

  7. Validation of a Wave-Body Interaction Model by Experimental Tests

    DEFF Research Database (Denmark)

    Ferri, Francesco; Kramer, Morten; Pecher, Arthur

    2013-01-01

    Within the wave energy field, numerical simulation has recently acquired a worldwide consent as being a useful tool, besides physical model testing. The main goal of this work is the validation of a numerical model by experimental results. The numerical model is based on a linear wave-body intera...

  8. SWAT application in intensive irrigation systems: Model modification, calibration and validation

    Science.gov (United States)

    Dechmi, Farida; Burguete, Javier; Skhiri, Ahmed

    2012-11-01

    SummaryThe Soil and Water Assessment Tool (SWAT) is a well established, distributed, eco-hydrologic model. However, using the study case of an agricultural intensive irrigated watershed, it was shown that all the model versions are not able to appropriately reproduce the total streamflow in such system when the irrigation source is outside the watershed. The objective of this study was to modify the SWAT2005 version for correctly simulating the main hydrological processes. Crop yield, total streamflow, total suspended sediment (TSS) losses and phosphorus load calibration and validation were performed using field survey information and water quantity and quality data recorded during 2008 and 2009 years in Del Reguero irrigated watershed in Spain. The goodness of the calibration and validation results was assessed using five statistical measures, including the Nash-Sutcliffe efficiency (NSE). Results indicated that the average annual crop yield and actual evapotranspiration estimations were quite satisfactory. On a monthly basis, the values of NSE were 0.90 (calibration) and 0.80 (validation) indicating that the modified model could reproduce accurately the observed streamflow. The TSS losses were also satisfactorily estimated (NSE = 0.72 and 0.52 for the calibration and validation steps). The monthly temporal patterns and all the statistical parameters indicated that the modified SWAT-IRRIG model adequately predicted the total phosphorus (TP) loading. Therefore, the model could be used to assess the impacts of different best management practices on nonpoint phosphorus losses in irrigated systems.

  9. Using a small scale wireless sensor network for model validation. Two case studies

    Energy Technology Data Exchange (ETDEWEB)

    Lengfeld, Katharina; Ament, Felix [Hamburg Univ. (Germany). Meteorological Inst.; Zacharias, Stefan [Deutscher Wetterdienst, Freiburg im Breisgau (Germany)

    2013-10-15

    In this paper, the potential of a network consisting of low cost weather stations for validating microscale model simulations and for forcing surface-atmosphere-transfer-schemes is investigated within two case studies. Transfer schemes often do not account for small scale variabilities of the earth surface, because measurements of the atmospheric conditions do not exist in such a high spatial resolution to force the models. To overcome this issue, in this study a small scale network of meteorological stations is used to derive measurements in high spatial and temporal resolution. The observations carried out during the measurement campaign are compared to air temperature and specific humidity simulations of the mesoscale atmospheric model FOOT3DK (Flow Over Orographically-Structured Terrain - 3 Dimensional Model (Koelner Version)). This comparison indicates that FOOT3DK simulates either air temperature or specific humidity satisfactorily for each station at the lowest model level, depending on the dominating land use class within each grid cell. The influence of heterogeneous forcing and vegetation on heat flux modelling is studied using the soil-vegetation-atmosphere transfer scheme TERRA. The observations of the measurement campaign are used as input for four different runs with homogeneous and heterogeneous forcing and vegetation. Heterogeneous vegetation reduces the bias between the grid cells, heterogeneous forcing reduces the random error for each grid cell. (orig.)

  10. Object-oriented simulation model of a parabolic trough solar collector: Static and dynamic validation

    Science.gov (United States)

    Ubieta, Eduardo; Hoyo, Itzal del; Valenzuela, Loreto; Lopez-Martín, Rafael; Peña, Víctor de la; López, Susana

    2017-06-01

    A simulation model of a parabolic-trough solar collector developed in Modelica® language is calibrated and validated. The calibration is performed in order to approximate the behavior of the solar collector model to a real one due to the uncertainty in some of the system parameters, i.e. measured data is used during the calibration process. Afterwards, the validation of this calibrated model is done. During the validation, the results obtained from the model are compared to the ones obtained during real operation in a collector from the Plataforma Solar de Almeria (PSA).

  11. Experimental Testing Procedures and Dynamic Model Validation for Vanadium Redox Flow Battery Storage System

    DEFF Research Database (Denmark)

    Baccino, Francesco; Marinelli, Mattia; Nørgård, Per Bromand

    2013-01-01

    The paper aims at characterizing the electrochemical and thermal parameters of a 15 kW/320 kWh vanadium redox flow battery (VRB) installed in the SYSLAB test facility of the DTU Risø Campus and experimentally validating the proposed dynamic model realized in Matlab-Simulink. The adopted testing...... efficiency of the battery system. The test procedure has general validity and could also be used for other storage technologies. The storage model proposed and described is suitable for electrical studies and can represent a general model in terms of validity. Finally, the model simulation outputs...

  12. Existence theory for a Poisson-Nernst-Planck model of electrophoresis

    OpenAIRE

    Bedin, Luciano; Thompson, Mark

    2011-01-01

    A system modeling the electrophoretic motion of a charged rigid macromolecule immersed in a incompressible ionized fluid is considered. The ionic concentration is governing by the Nernst-Planck equation coupled with the Poisson equation for the electrostatic potential, Navier-Stokes and Newtonian equations for the fluid and the macromolecule dynamics, respectively. A local in time existence result for suitable weak solutions is established, following the approach of Desjardins and Esteban [Co...

  13. Model-Based Method for Sensor Validation

    Science.gov (United States)

    Vatan, Farrokh

    2012-01-01

    Fault detection, diagnosis, and prognosis are essential tasks in the operation of autonomous spacecraft, instruments, and in situ platforms. One of NASA s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in robust state estimation, and there is a need to diagnose sensor failure as well as component failure. Sensor validation can be considered to be part of the larger effort of improving reliability and safety. The standard methods for solving the sensor validation problem are based on probabilistic analysis of the system, from which the method based on Bayesian networks is most popular. Therefore, these methods can only predict the most probable faulty sensors, which are subject to the initial probabilities defined for the failures. The method developed in this work is based on a model-based approach and provides the faulty sensors (if any), which can be logically inferred from the model of the system and the sensor readings (observations). The method is also more suitable for the systems when it is hard, or even impossible, to find the probability functions of the system. The method starts by a new mathematical description of the problem and develops a very efficient and systematic algorithm for its solution. The method builds on the concepts of analytical redundant relations (ARRs).

  14. Validating a perceptual distraction model using a personal two-zone sound system

    DEFF Research Database (Denmark)

    Rämö, Jussi; Christensen, Lasse; Bech, Søren

    2017-01-01

    This paper focuses on validating a perceptual distraction model, which aims to predict user's perceived distraction caused by audio-on-audio interference. Originally, the distraction model was trained with music targets and interferers using a simple loudspeaker setup, consisting of only two...... sound zones within the sound-zone system. Thus, validating the model using a different sound-zone system with both speech-on-music and music-on-speech stimuli sets. The results show that the model performance is equally good in both zones, i.e., with both speech- on-music and music-on-speech stimuli...

  15. A proposed strategy for the validation of ground-water flow and solute transport models

    International Nuclear Information System (INIS)

    Davis, P.A.; Goodrich, M.T.

    1991-01-01

    Ground-water flow and transport models can be thought of as a combination of conceptual and mathematical models and the data that characterize a given system. The judgment of the validity or invalidity of a model depends both on the adequacy of the data and the model structure (i.e., the conceptual and mathematical model). This report proposes a validation strategy for testing both components independently. The strategy is based on the philosophy that a model cannot be proven valid, only invalid or not invalid. In addition, the authors believe that a model should not be judged in absence of its intended purpose. Hence, a flow and transport model may be invalid for one purpose but not invalid for another. 9 refs

  16. Sewer solids separation by sedimentation--the problem of modeling, validation and transferability.

    Science.gov (United States)

    Kutzner, R; Brombach, H; Geiger, W F

    2007-01-01

    Sedimentation of sewer solids in tanks, ponds and similar devices is the most relevant process for the treatment of stormwater and combined sewer overflows in urban collecting systems. In the past a lot of research work was done to develop deterministic models for the description of this separation process. But these modern models are not commonly accepted in Germany until today. Water Authorities are sceptical with regard to model validation and transferability. Within this paper it is checked whether this scepticism is reasonable. A framework-proposal for the validation of mathematical models with zero or one dimensional spatial resolution for particle separation processes for stormwater and combined sewer overflow treatment is presented. This proposal was applied to publications of repute on sewer solids separation by sedimentation. The result was that none of the investigated models described in literature passed the validation entirely. There is an urgent need for future research in sewer solids sedimentation and remobilization!

  17. Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process

    KAUST Repository

    Eleiwi, Fadi

    2016-02-01

    This work proposes a mathematical dynamic model for the direct contact membrane distillation (DCMD) process. The model is based on a 2D Advection–Diffusion Equation (ADE), which describes the heat and mass transfer mechanisms that take place inside the DCMD module. The model studies the behavior of the process in the time varying and the steady state phases, contributing to understanding the process performance, especially when it is driven by intermittent energy supply, such as the solar energy. The model is experimentally validated in the steady state phase, where the permeate flux is measured for different feed inlet temperatures and the maximum absolute error recorded is 2.78 °C. Moreover, experimental validation includes the time variation phase, where the feed inlet temperature ranges from 30 °C to 75 °C with 0.1 °C increment every 2min. The validation marks relative error to be less than 5%, which leads to a strong correlation between the model predictions and the experiments.

  18. Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process

    KAUST Repository

    Eleiwi, Fadi; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Francis, Lijo; Laleg-Kirati, Taous-Meriem

    2016-01-01

    This work proposes a mathematical dynamic model for the direct contact membrane distillation (DCMD) process. The model is based on a 2D Advection–Diffusion Equation (ADE), which describes the heat and mass transfer mechanisms that take place inside the DCMD module. The model studies the behavior of the process in the time varying and the steady state phases, contributing to understanding the process performance, especially when it is driven by intermittent energy supply, such as the solar energy. The model is experimentally validated in the steady state phase, where the permeate flux is measured for different feed inlet temperatures and the maximum absolute error recorded is 2.78 °C. Moreover, experimental validation includes the time variation phase, where the feed inlet temperature ranges from 30 °C to 75 °C with 0.1 °C increment every 2min. The validation marks relative error to be less than 5%, which leads to a strong correlation between the model predictions and the experiments.

  19. VALIDITY OF THE CONNECTION INTER-LEXICAL A-SEMANTICS IN THE COGNITIVE MODEL OF PROCESSING PRAXIS

    Directory of Open Access Journals (Sweden)

    P. G. Gómez

    2011-07-01

    Full Text Available Rothia Gonzalez et al. (1991, 1997 postulated a cognitive model of praxis on which changes were proposed (Cubelli et al., 2000, including the removal of the direct path between both input praxicon and output. Was suggested that to validate an inter-lexical a-semantics path (Cubelli et al., 2000 would enough to find a patientwith preserved ability for imitate familiar gestures, but with disturbances in the ability to access to the meaning of familiar gestures and alterations in ability for imitate unfamiliar gestures. The aim of this work is present two patients whose patterns ofperformance on praxis supports the existence of a pathway inter-lexical a-semantic. We evaluated two patients with Alzheimer type dementia unlikely with a battery of cognitive assessment of apraxia (Politis 2003. Both patients show alterations in test of Imitation of unfamiliar gestures and on tasks which assess semantic action objecttool watching and naming by function, with good performance on the task of imitating familiar gestures. Based on cognitive models of praxis Rothia Gonzalez et al. (1991, 1997 and Cubelli et al. (2000 is require a direct connection between both input praxicon and output to explain the performance of these patients. Of thus, the performance pattern showing both patients confirms existence of a pathway.Interlexical asemantics

  20. Validating Animal Models

    Directory of Open Access Journals (Sweden)

    Nina Atanasova

    2015-06-01

    Full Text Available In this paper, I respond to the challenge raised against contemporary experimental neurobiology according to which the field is in a state of crisis because of the multiple experimental protocols employed in different laboratories and strengthening their reliability that presumably preclude the validity of neurobiological knowledge. I provide an alternative account of experimentation in neurobiology which makes sense of its experimental practices. I argue that maintaining a multiplicity of experimental protocols and strengthening their reliability are well justified and they foster rather than preclude the validity of neurobiological knowledge. Thus, their presence indicates thriving rather than crisis of experimental neurobiology.

  1. Context discovery using attenuated Bloom codes: model description and validation

    NARCIS (Netherlands)

    Liu, F.; Heijenk, Geert

    A novel approach to performing context discovery in ad-hoc networks based on the use of attenuated Bloom filters is proposed in this report. In order to investigate the performance of this approach, a model has been developed. This document describes the model and its validation. The model has been

  2. A practical guide for operational validation of discrete simulation models

    Directory of Open Access Journals (Sweden)

    Fabiano Leal

    2011-04-01

    Full Text Available As the number of simulation experiments increases, the necessity for validation and verification of these models demands special attention on the part of the simulation practitioners. By analyzing the current scientific literature, it is observed that the operational validation description presented in many papers does not agree on the importance designated to this process and about its applied techniques, subjective or objective. With the expectation of orienting professionals, researchers and students in simulation, this article aims to elaborate a practical guide through the compilation of statistical techniques in the operational validation of discrete simulation models. Finally, the guide's applicability was evaluated by using two study objects, which represent two manufacturing cells, one from the automobile industry and the other from a Brazilian tech company. For each application, the guide identified distinct steps, due to the different aspects that characterize the analyzed distributions

  3. Development and Validation of a Predictive Model for Functional Outcome After Stroke Rehabilitation: The Maugeri Model.

    Science.gov (United States)

    Scrutinio, Domenico; Lanzillo, Bernardo; Guida, Pietro; Mastropasqua, Filippo; Monitillo, Vincenzo; Pusineri, Monica; Formica, Roberto; Russo, Giovanna; Guarnaschelli, Caterina; Ferretti, Chiara; Calabrese, Gianluigi

    2017-12-01

    Prediction of outcome after stroke rehabilitation may help clinicians in decision-making and planning rehabilitation care. We developed and validated a predictive tool to estimate the probability of achieving improvement in physical functioning (model 1) and a level of independence requiring no more than supervision (model 2) after stroke rehabilitation. The models were derived from 717 patients admitted for stroke rehabilitation. We used multivariable logistic regression analysis to build each model. Then, each model was prospectively validated in 875 patients. Model 1 included age, time from stroke occurrence to rehabilitation admission, admission motor and cognitive Functional Independence Measure scores, and neglect. Model 2 included age, male gender, time since stroke onset, and admission motor and cognitive Functional Independence Measure score. Both models demonstrated excellent discrimination. In the derivation cohort, the area under the curve was 0.883 (95% confidence intervals, 0.858-0.910) for model 1 and 0.913 (95% confidence intervals, 0.884-0.942) for model 2. The Hosmer-Lemeshow χ 2 was 4.12 ( P =0.249) and 1.20 ( P =0.754), respectively. In the validation cohort, the area under the curve was 0.866 (95% confidence intervals, 0.840-0.892) for model 1 and 0.850 (95% confidence intervals, 0.815-0.885) for model 2. The Hosmer-Lemeshow χ 2 was 8.86 ( P =0.115) and 34.50 ( P =0.001), respectively. Both improvement in physical functioning (hazard ratios, 0.43; 0.25-0.71; P =0.001) and a level of independence requiring no more than supervision (hazard ratios, 0.32; 0.14-0.68; P =0.004) were independently associated with improved 4-year survival. A calculator is freely available for download at https://goo.gl/fEAp81. This study provides researchers and clinicians with an easy-to-use, accurate, and validated predictive tool for potential application in rehabilitation research and stroke management. © 2017 American Heart Association, Inc.

  4. Canards Existence in FitzHugh-Nagumo and Hodgkin-Huxley Neuronal Models

    Directory of Open Access Journals (Sweden)

    Jean-Marc Ginoux

    2015-01-01

    Full Text Available In a previous paper we have proposed a new method for proving the existence of “canard solutions” for three- and four-dimensional singularly perturbed systems with only one fast variable which improves the methods used until now. The aim of this work is to extend this method to the case of four-dimensional singularly perturbed systems with two slow and two fast variables. This method enables stating a unique generic condition for the existence of “canard solutions” for such four-dimensional singularly perturbed systems which is based on the stability of folded singularities (pseudo singular points in this case of the normalized slow dynamics deduced from a well-known property of linear algebra. This unique generic condition is identical to that provided in previous works. Application of this method to the famous coupled FitzHugh-Nagumo equations and to the Hodgkin-Huxley model enables showing the existence of “canard solutions” in such systems.

  5. Verification and Validation of FAARR Model and Data Envelopment Analysis Models for United States Army Recruiting

    National Research Council Canada - National Science Library

    Piskator, Gene

    1998-01-01

    ...) model and to develop a Data Envelopment Analysis (DEA) modeling strategy. First, the FAARR model was verified using a simulation of a known production function and validated using sensitivity analysis and ex-post forecasts...

  6. Towards a realistic approach to validation of reactive transport models for performance assessment

    International Nuclear Information System (INIS)

    Siegel, M.D.

    1993-01-01

    Performance assessment calculations are based on geochemical models that assume that interactions among radionuclides, rocks and groundwaters under natural conditions, can be estimated or bound by data obtained from laboratory-scale studies. The data include radionuclide distribution coefficients, measured in saturated batch systems of powdered rocks, and retardation factors measured in short-term column experiments. Traditional approaches to model validation cannot be applied in a straightforward manner to the simple reactive transport models that use these data. An approach to model validation in support of performance assessment is described in this paper. It is based on a recognition of different levels of model validity and is compatible with the requirements of current regulations for high-level waste disposal. Activities that are being carried out in support of this approach include (1) laboratory and numerical experiments to test the validity of important assumptions inherent in current performance assessment methodologies,(2) integrated transport experiments, and (3) development of a robust coupled reaction/transport code for sensitivity analyses using massively parallel computers

  7. Implementation and validation of the condensation model for containment hydrogen distribution studies

    International Nuclear Information System (INIS)

    Ravva, Srinivasa Rao; Iyer, Kannan N.; Gupta, S.K.; Gaikwad, Avinash J.

    2014-01-01

    Highlights: • A condensation model based on diffusion was implemented in FLUENT. • Validation of a condensation model for the H 2 distribution studies was performed. • Multi-component diffusion is used in the present work. • Appropriate grid and turbulence model were identified. - Abstract: This paper aims at the implementation details of a condensation model in the CFD code FLUENT and its validation so that it can be used in performing the containment hydrogen distribution studies. In such studies, computational fluid dynamics simulations are necessary for obtaining accurate predictions. While steam condensation plays an important role, commercial CFD codes such as FLUENT do not have an in-built condensation model. Therefore, a condensation model was developed and implemented in the FLUENT code through user defined functions (UDFs) for the sink terms in the mass, momentum, energy and species balance equations together with associated turbulence quantities viz., kinetic energy and dissipation rate. The implemented model was validated against the ISP-47 test of TOSQAN facility using the standard wall functions and enhanced wall treatment approaches. The best suitable grid size and the turbulence model for the low density gas (He) distribution studies are brought out in this paper

  8. System Advisor Model: Flat Plate Photovoltaic Performance Modeling Validation Report

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Janine [National Renewable Energy Lab. (NREL), Golden, CO (United States); Whitmore, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kaffine, Leah [National Renewable Energy Lab. (NREL), Golden, CO (United States); Blair, Nate [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dobos, Aron P. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    The System Advisor Model (SAM) is a free software tool that performs detailed analysis of both system performance and system financing for a variety of renewable energy technologies. This report provides detailed validation of the SAM flat plate photovoltaic performance model by comparing SAM-modeled PV system generation data to actual measured production data for nine PV systems ranging from 75 kW to greater than 25 MW in size. The results show strong agreement between SAM predictions and field data, with annualized prediction error below 3% for all fixed tilt cases and below 8% for all one axis tracked cases. The analysis concludes that snow cover and system outages are the primary sources of disagreement, and other deviations resulting from seasonal biases in the irradiation models and one axis tracking issues are discussed in detail.

  9. Validation of Hydrodynamic Numerical Model of a Pitching Wave Energy Converter

    DEFF Research Database (Denmark)

    López, Maria del Pilar Heras; Thomas, Sarah; Kramer, Morten Mejlhede

    2017-01-01

    Validation of numerical model is essential in the development of new technologies. Commercial software and codes available simulating wave energy converters (WECs) have not been proved to work for all the available and upcoming technologies yet. The present paper presents the first stages...... of the validation process of a hydrodynamic numerical model for a pitching wave energy converter. The development of dry tests, wave flume and wave basin experiments are going to be explained, lessons learned shared and results presented....

  10. Software verification, model validation, and hydrogeologic modelling aspects in nuclear waste disposal system simulations. A paradigm shift

    International Nuclear Information System (INIS)

    Sheng, G.M.

    1994-01-01

    This work reviewed the current concept of nuclear waste disposal in stable, terrestrial geologic media with a system of natural and man-made multi-barriers. Various aspects of this concept and supporting research were examined with the emphasis on the Canadian Nuclear Fuel Waste Management Program. Several of the crucial issues and challenges facing the current concept were discussed. These include: The difficulties inherent in a concept that centres around lithologic studies; the unsatisfactory state of software quality assurance in the present computer simulation programs; and the lack of a standardized, comprehensive, and systematic procedure to carry out a rigorous process of model validation and assessment of simulation studies. An outline of such an approach was presented and some of the principles, tools and techniques for software verification were introduced and described. A case study involving an evaluation of the Canadian performance assessment computer program is presented. A new paradigm to nuclear waste disposal was advocated to address the challenges facing the existing concept. The RRC (Regional Recharge Concept) was introduced and its many advantages were described and shown through a modelling exercise. (orig./HP)

  11. PERCEPTION AND BEHAVIOR ANALYSIS OF COMMUNITY TO THE EXISTENCE OF POIGAR PFMU MODEL

    Directory of Open Access Journals (Sweden)

    Arif Irawan

    2017-04-01

    Full Text Available Implementation of community empowerment scheme in the Poigar Production Forest Management Unit (PFMU Model area needs to take into account on community perception and behavior. This study aimed to determine the level of perception and behavior of the community towards the existence Poigar PFMU Model and to recommend the appropriate community empowerment scheme. To find out the perceptios and behavior of the Lolan Village community towards Poigar PFMU Model was by using Likert Scale. Furthermore, to determine the factors that influence people's behavior, then Spearman rank (Rs correlation test was used. The results showed that the level of perception of Lolan village communities to the existence of the Poigar PFMU Model was in good category, while the society behavior was in the less category. A good public perception of the Poigar PFMU Model area, did not have significant influence on its behavior. Community social characteristics that correlate with the behavior of the community were among others: education, level of income sourced from outside the area and level of interaction with the forest. Based on this, community empowerment strategy that is most likely to do in Poigar PFMU Model is through the Forestry Partnership Scheme.

  12. Validating soil phosphorus routines in the SWAT model

    Science.gov (United States)

    Phosphorus transfer from agricultural soils to surface waters is an important environmental issue. Commonly used models like SWAT have not always been updated to reflect improved understanding of soil P transformations and transfer to runoff. Our objective was to validate the ability of the P routin...

  13. An integrated approach for the validation of energy and environmental system analysis models : used in the validation of the Flexigas Excel BioGas model

    NARCIS (Netherlands)

    Pierie, Frank; van Someren, Christian; Liu, Wen; Bekkering, Jan; Hengeveld, Evert Jan; Holstein, J.; Benders, René M.J.; Laugs, Gideon A.H.; van Gemert, Wim; Moll, Henri C.

    2016-01-01

    A review has been completed for a verification and validation (V&V) of the (Excel) BioGas simulator or EBS model. The EBS model calculates the environmental impact of biogas production pathways using Material and Energy Flow Analysis, time dependent dynamics, geographic information, and Life Cycle

  14. Improvement and Validation of Weld Residual Stress Modelling Procedure

    International Nuclear Information System (INIS)

    Zang, Weilin; Gunnars, Jens; Dong, Pingsha; Hong, Jeong K.

    2009-06-01

    The objective of this work is to identify and evaluate improvements for the residual stress modelling procedure currently used in Sweden. There is a growing demand to eliminate any unnecessary conservatism involved in residual stress assumptions. The study was focused on the development and validation of an improved weld residual stress modelling procedure, by taking advantage of the recent advances in residual stress modelling and stress measurement techniques. The major changes applied in the new weld residual stress modelling procedure are: - Improved procedure for heat source calibration based on use of analytical solutions. - Use of an isotropic hardening model where mixed hardening data is not available. - Use of an annealing model for improved simulation of strain relaxation in re-heated material. The new modelling procedure is demonstrated to capture the main characteristics of the through thickness stress distributions by validation to experimental measurements. Three austenitic stainless steel butt-welds cases are analysed, covering a large range of pipe geometries. From the cases it is evident that there can be large differences between the residual stresses predicted using the new procedure, and the earlier procedure or handbook recommendations. Previously recommended profiles could give misleading fracture assessment results. The stress profiles according to the new procedure agree well with the measured data. If data is available then a mixed hardening model should be used

  15. Improvement and Validation of Weld Residual Stress Modelling Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Zang, Weilin; Gunnars, Jens (Inspecta Technology AB, Stockholm (Sweden)); Dong, Pingsha; Hong, Jeong K. (Center for Welded Structures Research, Battelle, Columbus, OH (United States))

    2009-06-15

    The objective of this work is to identify and evaluate improvements for the residual stress modelling procedure currently used in Sweden. There is a growing demand to eliminate any unnecessary conservatism involved in residual stress assumptions. The study was focused on the development and validation of an improved weld residual stress modelling procedure, by taking advantage of the recent advances in residual stress modelling and stress measurement techniques. The major changes applied in the new weld residual stress modelling procedure are: - Improved procedure for heat source calibration based on use of analytical solutions. - Use of an isotropic hardening model where mixed hardening data is not available. - Use of an annealing model for improved simulation of strain relaxation in re-heated material. The new modelling procedure is demonstrated to capture the main characteristics of the through thickness stress distributions by validation to experimental measurements. Three austenitic stainless steel butt-welds cases are analysed, covering a large range of pipe geometries. From the cases it is evident that there can be large differences between the residual stresses predicted using the new procedure, and the earlier procedure or handbook recommendations. Previously recommended profiles could give misleading fracture assessment results. The stress profiles according to the new procedure agree well with the measured data. If data is available then a mixed hardening model should be used

  16. Calibration and validation of earthquake catastrophe models. Case study: Impact Forecasting Earthquake Model for Algeria

    Science.gov (United States)

    Trendafiloski, G.; Gaspa Rebull, O.; Ewing, C.; Podlaha, A.; Magee, B.

    2012-04-01

    Calibration and validation are crucial steps in the production of the catastrophe models for the insurance industry in order to assure the model's reliability and to quantify its uncertainty. Calibration is needed in all components of model development including hazard and vulnerability. Validation is required to ensure that the losses calculated by the model match those observed in past events and which could happen in future. Impact Forecasting, the catastrophe modelling development centre of excellence within Aon Benfield, has recently launched its earthquake model for Algeria as a part of the earthquake model for the Maghreb region. The earthquake model went through a detailed calibration process including: (1) the seismic intensity attenuation model by use of macroseismic observations and maps from past earthquakes in Algeria; (2) calculation of the country-specific vulnerability modifiers by use of past damage observations in the country. The use of Benouar, 1994 ground motion prediction relationship was proven as the most appropriate for our model. Calculation of the regional vulnerability modifiers for the country led to 10% to 40% larger vulnerability indexes for different building types compared to average European indexes. The country specific damage models also included aggregate damage models for residential, commercial and industrial properties considering the description of the buildings stock given by World Housing Encyclopaedia and the local rebuilding cost factors equal to 10% for damage grade 1, 20% for damage grade 2, 35% for damage grade 3, 75% for damage grade 4 and 100% for damage grade 5. The damage grades comply with the European Macroseismic Scale (EMS-1998). The model was validated by use of "as-if" historical scenario simulations of three past earthquake events in Algeria M6.8 2003 Boumerdes, M7.3 1980 El-Asnam and M7.3 1856 Djidjelli earthquake. The calculated return periods of the losses for client market portfolio align with the

  17. Global existence and uniqueness result for the diffusive Peterlin viscoelastic model

    Czech Academy of Sciences Publication Activity Database

    Medviďová-Lukáčová, M.; Mizerová, H.; Nečasová, Šárka

    2015-01-01

    Roč. 120, June (2015), s. 154-170 ISSN 0362-546X R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : Peterlin viscoelastic model * existence * uniqueness Subject RIV: BA - General Mathematics Impact factor: 1.125, year: 2015 http://www.sciencedirect.com/science/article/pii/S0362546X1500070X

  18. Three phase heat and mass transfer model for unsaturated soil freezing process: Part 2 - model validation

    Science.gov (United States)

    Zhang, Yaning; Xu, Fei; Li, Bingxi; Kim, Yong-Song; Zhao, Wenke; Xie, Gongnan; Fu, Zhongbin

    2018-04-01

    This study aims to validate the three-phase heat and mass transfer model developed in the first part (Three phase heat and mass transfer model for unsaturated soil freezing process: Part 1 - model development). Experimental results from studies and experiments were used for the validation. The results showed that the correlation coefficients for the simulated and experimental water contents at different soil depths were between 0.83 and 0.92. The correlation coefficients for the simulated and experimental liquid water contents at different soil temperatures were between 0.95 and 0.99. With these high accuracies, the developed model can be well used to predict the water contents at different soil depths and temperatures.

  19. Validation of NEPTUNE-CFD two-phase flow models using experimental data

    International Nuclear Information System (INIS)

    Perez-Manes, Jorge; Sanchez Espinoza, Victor Hugo; Bottcher, Michael; Stieglitz, Robert; Sergio Chiva Vicent

    2014-01-01

    This paper deals with the validation of the two-phase flow models of the CFD code NEPTUNE-CFD using experimental data provided by the OECD BWR BFBT and PSBT Benchmark. Since the two-phase models of CFD codes are extensively being improved, the validation is a key step for the acceptability of such codes. The validation work is performed in the frame of the European NURISP Project and it was focused on the steady state and transient void fraction tests. The influence of different NEPTUNE-CFD model parameters on the void fraction prediction is investigated and discussed in detail. Due to the coupling of heat conduction solver SYRTHES with NEPTUNE-CFD, the description of the coupled fluid dynamics and heat transfer between the fuel rod and the fluid is improved significantly. The averaged void fraction predicted by NEPTUNE-CFD for selected PSBT and BFBT tests is in good agreement with the experimental data. Finally, areas for future improvements of the NEPTUNE-CFD code were identified, too. (authors)

  20. Flight Testing an Iced Business Jet for Flight Simulation Model Validation

    Science.gov (United States)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam; Cooper, Jon

    2007-01-01

    A flight test of a business jet aircraft with various ice accretions was performed to obtain data to validate flight simulation models developed through wind tunnel tests. Three types of ice accretions were tested: pre-activation roughness, runback shapes that form downstream of the thermal wing ice protection system, and a wing ice protection system failure shape. The high fidelity flight simulation models of this business jet aircraft were validated using a software tool called "Overdrive." Through comparisons of flight-extracted aerodynamic forces and moments to simulation-predicted forces and moments, the simulation models were successfully validated. Only minor adjustments in the simulation database were required to obtain adequate match, signifying the process used to develop the simulation models was successful. The simulation models were implemented in the NASA Ice Contamination Effects Flight Training Device (ICEFTD) to enable company pilots to evaluate flight characteristics of the simulation models. By and large, the pilots confirmed good similarities in the flight characteristics when compared to the real airplane. However, pilots noted pitch up tendencies at stall with the flaps extended that were not representative of the airplane and identified some differences in pilot forces. The elevator hinge moment model and implementation of the control forces on the ICEFTD were identified as a driver in the pitch ups and control force issues, and will be an area for future work.

  1. Pre-engineering Spaceflight Validation of Environmental Models and the 2005 HZETRN Simulation Code

    Science.gov (United States)

    Nealy, John E.; Cucinotta, Francis A.; Wilson, John W.; Badavi, Francis F.; Dachev, Ts. P.; Tomov, B. T.; Walker, Steven A.; DeAngelis, Giovanni; Blattnig, Steve R.; Atwell, William

    2006-01-01

    The HZETRN code has been identified by NASA for engineering design in the next phase of space exploration highlighting a return to the Moon in preparation for a Mars mission. In response, a new series of algorithms beginning with 2005 HZETRN, will be issued by correcting some prior limitations and improving control of propagated errors along with established code verification processes. Code validation processes will use new/improved low Earth orbit (LEO) environmental models with a recently improved International Space Station (ISS) shield model to validate computational models and procedures using measured data aboard ISS. These validated models will provide a basis for flight-testing the designs of future space vehicles and systems of the Constellation program in the LEO environment.

  2. Comparison of existing models to simulate anaerobic digestion of lipid-rich waste.

    Science.gov (United States)

    Béline, F; Rodriguez-Mendez, R; Girault, R; Bihan, Y Le; Lessard, P

    2017-02-01

    Models for anaerobic digestion of lipid-rich waste taking inhibition into account were reviewed and, if necessary, adjusted to the ADM1 model framework in order to compare them. Experimental data from anaerobic digestion of slaughterhouse waste at an organic loading rate (OLR) ranging from 0.3 to 1.9kgVSm -3 d -1 were used to compare and evaluate models. Experimental data obtained at low OLRs were accurately modeled whatever the model thereby validating the stoichiometric parameters used and influent fractionation. However, at higher OLRs, although inhibition parameters were optimized to reduce differences between experimental and simulated data, no model was able to accurately simulate accumulation of substrates and intermediates, mainly due to the wrong simulation of pH. A simulation using pH based on experimental data showed that acetogenesis and methanogenesis were the most sensitive steps to LCFA inhibition and enabled identification of the inhibition parameters of both steps. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Validating a perceptual distraction model in a personal two-zone sound system

    DEFF Research Database (Denmark)

    Rämö, Jussi; Christensen, Lasse; Bech, Søren

    2017-01-01

    This paper focuses on validating a perceptual distraction model, which aims to predict user’s perceived distraction caused by audio-on-audio interference, e.g., two competing audio sources within the same listening space. Originally, the distraction model was trained with music-on-music stimuli...... that the model performance is equally good in both zones, i.e., with both speech-on-music and music-on-speech stimuli, and comparable to the previous validation round (RMSE approximately 10%). The results further confirm that the distraction model can be used as a valuable tool in evaluating and optimizing...

  4. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Bradley R. [Univ. of Utah, Salt Lake City, UT (United States); Fry, Andrew R. [Univ. of Utah, Salt Lake City, UT (United States); Senior, Constance L. [Univ. of Utah, Salt Lake City, UT (United States); Shim, Hong Shig [Univ. of Utah, Salt Lake City, UT (United States); Otten, Brydger Van [Univ. of Utah, Salt Lake City, UT (United States); Wendt, Jost [Univ. of Utah, Salt Lake City, UT (United States); Shaddix, Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tree, Dale [Brigham Young Univ., Provo, UT (United States)

    2010-06-01

    This report summarizes Year 2 results of a research program designed to use multi-scale experimental studies and fundamental theoretical models to characterize and predict the impacts of retrofit of existing coal-fired utility boilers for oxy-combustion. Year 2 focused extensively on obtaining experimental data from the bench-scale, lab-scale and pilot-scale reactors. These data will be used to refine and validate submodels to be implemented in CFD simulations of full-scale boiler retrofits. Program tasks are on schedule for Year 3 completion. Both Year 2 milestones were completed on schedule and within budget.

  5. A Component-Based Modeling and Validation Method for PLC Systems

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2014-05-01

    Full Text Available Programmable logic controllers (PLCs are complex embedded systems that are widely used in industry. This paper presents a component-based modeling and validation method for PLC systems using the behavior-interaction-priority (BIP framework. We designed a general system architecture and a component library for a type of device control system. The control software and hardware of the environment were all modeled as BIP components. System requirements were formalized as monitors. Simulation was carried out to validate the system model. A realistic example from industry of the gates control system was employed to illustrate our strategies. We found a couple of design errors during the simulation, which helped us to improve the dependability of the original systems. The results of experiment demonstrated the effectiveness of our approach.

  6. Abstract on the Effective validation of both new and existing methods for the observation and forecasting of volcanic emissions

    Science.gov (United States)

    Sathnur, Ashwini

    2017-04-01

    " positives. Cost - free data made available. Minimum band - width problem. Rapid communication system. Validation and Requirements of the New products of the Remote Sensing instruments The qualities of the existing products would be present in the new products also. Along with these qualities, newly devised additional qualities are also required in order to build an advanced remote sensing instrument. The new additional requirements are mentioned below:- Review Comment Number 1 Enlarging the spatial resolution so that the volcanic plumes erupting from the early volcanic eruption is captured by the remote sensing instrument. This spatial resolution data capture would involve better video and camera facilities on the remote sensing instrument. Review Comment Number 2 Capturing the traces of carbon, carbonic acid and water vapour, along with the existing product's capture of sulphur dioxide and volcanic Ash. Review Comment Number 3 Creating an additional module in the instrument to derive the functionality of forecasting a volcanic eruption. This new forecast model should be able to predict the occurrences of volcanic eruption several months in advance. This is basically to create mechanisms for providing early solutions to the problems of mitigation of volcanic hazards. Review Comment Number 4 Creating additional features in the remote sensing instrument to enable the automatic transfer of forecasted eruptions of volcanoes, to the disaster relief operations team. This transfer of information is to be performed automatically, without any request raised from the relief operations team, for the predicted forecast information. This is for the purpose of receiving the information at the right - time, thus eliminating any possibility of occurrences of errors during hazard management.

  7. Validation of the simulator neutronics model

    International Nuclear Information System (INIS)

    Gregory, M.V.

    1984-01-01

    The neutronics model in the SRP reactor training simulator computes the variation with time of the neutron population in the reactor core. The power output of a reactor is directly proportional to the neutron population, thus in a very real sense the neutronics model determines the response of the simulator. The geometrical complexity of the reactor control system in SRP reactors requires the neutronics model to provide a detailed, 3D representation of the reactor core. Existing simulator technology does not allow such a detailed representation to run in real-time in a minicomputer environment, thus an entirely different approach to the problem was required. A prompt jump method has been developed in answer to this need

  8. Development and validation of a stochastic model for potential growth of Listeria monocytogenes in naturally contaminated lightly preserved seafood.

    Science.gov (United States)

    Mejlholm, Ole; Bøknæs, Niels; Dalgaard, Paw

    2015-02-01

    A new stochastic model for the simultaneous growth of Listeria monocytogenes and lactic acid bacteria (LAB) was developed and validated on data from naturally contaminated samples of cold-smoked Greenland halibut (CSGH) and cold-smoked salmon (CSS). During industrial processing these samples were added acetic and/or lactic acids. The stochastic model was developed from an existing deterministic model including the effect of 12 environmental parameters and microbial interaction (O. Mejlholm and P. Dalgaard, Food Microbiology, submitted for publication). Observed maximum population density (MPD) values of L. monocytogenes in naturally contaminated samples of CSGH and CSS were accurately predicted by the stochastic model based on measured variability in product characteristics and storage conditions. Results comparable to those from the stochastic model were obtained, when product characteristics of the least and most preserved sample of CSGH and CSS were used as input for the existing deterministic model. For both modelling approaches, it was shown that lag time and the effect of microbial interaction needs to be included to accurately predict MPD values of L. monocytogenes. Addition of organic acids to CSGH and CSS was confirmed as a suitable mitigation strategy against the risk of growth by L. monocytogenes as both types of products were in compliance with the EU regulation on ready-to-eat foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Modeling of surge in free-spool centrifugal compressors : experimental validation

    NARCIS (Netherlands)

    Gravdahl, J.T.; Willems, F.P.T.; Jager, de A.G.; Egeland, O.

    2004-01-01

    The derivation of a compressor characteristic, and the experimental validation of a dynamic model for a variable speed centrifugal compressor using this characteristic, are presented. The dynamic compressor model of Fink et al. is used, and a variable speed compressor characteristic is derived by

  10. Sample size calculation to externally validate scoring systems based on logistic regression models.

    Directory of Open Access Journals (Sweden)

    Antonio Palazón-Bru

    Full Text Available A sample size containing at least 100 events and 100 non-events has been suggested to validate a predictive model, regardless of the model being validated and that certain factors can influence calibration of the predictive model (discrimination, parameterization and incidence. Scoring systems based on binary logistic regression models are a specific type of predictive model.The aim of this study was to develop an algorithm to determine the sample size for validating a scoring system based on a binary logistic regression model and to apply it to a case study.The algorithm was based on bootstrap samples in which the area under the ROC curve, the observed event probabilities through smooth curves, and a measure to determine the lack of calibration (estimated calibration index were calculated. To illustrate its use for interested researchers, the algorithm was applied to a scoring system, based on a binary logistic regression model, to determine mortality in intensive care units.In the case study provided, the algorithm obtained a sample size with 69 events, which is lower than the value suggested in the literature.An algorithm is provided for finding the appropriate sample size to validate scoring systems based on binary logistic regression models. This could be applied to determine the sample size in other similar cases.

  11. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    Science.gov (United States)

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  12. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C.; Hoeschele, M.

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the ARBI team validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. In addition to completing validation activities, this project looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. Based on these datasets, we conclude that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws. This has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  13. Experimental validation of a thermodynamic boiler model under steady state and dynamic conditions

    International Nuclear Information System (INIS)

    Carlon, Elisa; Verma, Vijay Kumar; Schwarz, Markus; Golicza, Laszlo; Prada, Alessandro; Baratieri, Marco; Haslinger, Walter; Schmidl, Christoph

    2015-01-01

    Highlights: • Laboratory tests on two commercially available pellet boilers. • Steady state and a dynamic load cycle tests. • Pellet boiler model calibration based on data registered in stationary operation. • Boiler model validation with reference to both stationary and dynamic operation. • Validated model suitable for coupled simulation of building and heating system. - Abstract: Nowadays dynamic building simulation is an essential tool for the design of heating systems for residential buildings. The simulation of buildings heated by biomass systems, first of all needs detailed boiler models, capable of simulating the boiler both as a stand-alone appliance and as a system component. This paper presents the calibration and validation of a boiler model by means of laboratory tests. The chosen model, i.e. TRNSYS “Type 869”, has been validated for two commercially available pellet boilers of 6 and 12 kW nominal capacities. Two test methods have been applied: the first is a steady state test at nominal load and the second is a load cycle test including stationary operation at different loads as well as transient operation. The load cycle test is representative of the boiler operation in the field and characterises the boiler’s stationary and dynamic behaviour. The model had been calibrated based on laboratory data registered during stationary operation at different loads and afterwards it was validated by simulating both the stationary and the dynamic tests. Selected parameters for the validation were the heat transfer rates to water and the water temperature profiles inside the boiler and at the boiler outlet. Modelling results showed better agreement with experimental data during stationary operation rather than during dynamic operation. Heat transfer rates to water were predicted with a maximum deviation of 10% during the stationary operation, and a maximum deviation of 30% during the dynamic load cycle. However, for both operational regimes the

  14. Validation of Slosh Modeling Approach Using STAR-CCM+

    Science.gov (United States)

    Benson, David J.; Ng, Wanyi

    2018-01-01

    Without an adequate understanding of propellant slosh, the spacecraft attitude control system may be inadequate to control the spacecraft or there may be an unexpected loss of science observation time due to higher slosh settling times. Computational fluid dynamics (CFD) is used to model propellant slosh. STAR-CCM+ is a commercially available CFD code. This paper seeks to validate the CFD modeling approach via a comparison between STAR-CCM+ liquid slosh modeling results and experimental, empirically, and analytically derived results. The geometries examined are a bare right cylinder tank and a right cylinder with a single ring baffle.

  15. Validation of coastal oceanographic models at Laxemar-Simpevarp. Site descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Engqvist, Anders; Andrejev, Oleg

    2008-12-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterization at two different locations, the Forsmark and the Laxemar-Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterization work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models and the coupled discrete basin (CDB-) model employed to simulate the water exchange in the near-shore coastal zone in the Laxemar-Simpevarp area, an encompassing measurement program entailing data from six stations (of which two are close) has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR-) model of the Laxemar- Simpevarp study area at its interfacial boundary to the coarse resolution (CR-) model of the entire Baltic was reproduced. In addition to this, it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain and further influence the water exchange with the interior, more secluded, basins. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that some periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Interference with ship traffic and lack of absolute calibration of the salinity meters necessitated dismissal of measurement data too. In this study so-called Mesan data have been consistently used for the meteorological forcing of the 3D-models. Relative the assessed data that can be accepted as adequate, the outcome of the

  16. Validation of coastal oceanographic models at Laxemar-Simpevarp. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Engqvist, Anders (A och I Engqvist Konsult HB, Vaxholm (SE)); Andrejev, Oleg (Finnish Inst. of Marine Research, Helsinki (FI))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterization at two different locations, the Forsmark and the Laxemar-Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterization work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models and the coupled discrete basin (CDB-) model employed to simulate the water exchange in the near-shore coastal zone in the Laxemar-Simpevarp area, an encompassing measurement program entailing data from six stations (of which two are close) has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR-) model of the Laxemar- Simpevarp study area at its interfacial boundary to the coarse resolution (CR-) model of the entire Baltic was reproduced. In addition to this, it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain and further influence the water exchange with the interior, more secluded, basins. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that some periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Interference with ship traffic and lack of absolute calibration of the salinity meters necessitated dismissal of measurement data too. In this study so-called Mesan data have been consistently used for the meteorological forcing of the 3D-models. Relative the assessed data that can be accepted as adequate, the outcome of the

  17. Atmospheric corrosion: statistical validation of models

    International Nuclear Information System (INIS)

    Diaz, V.; Martinez-Luaces, V.; Guineo-Cobs, G.

    2003-01-01

    In this paper we discuss two different methods for validation of regression models, applied to corrosion data. One of them is based on the correlation coefficient and the other one is the statistical test of lack of fit. Both methods are used here to analyse fitting of bi logarithmic model in order to predict corrosion for very low carbon steel substrates in rural and urban-industrial atmospheres in Uruguay. Results for parameters A and n of the bi logarithmic model are reported here. For this purpose, all repeated values were used instead of using average values as usual. Modelling is carried out using experimental data corresponding to steel substrates under the same initial meteorological conditions ( in fact, they are put in the rack at the same time). Results of correlation coefficient are compared with the lack of it tested at two different signification levels (α=0.01 and α=0.05). Unexpected differences between them are explained and finally, it is possible to conclude, at least in the studied atmospheres, that the bi logarithmic model does not fit properly the experimental data. (Author) 18 refs

  18. Lagrangian Stochastic Dispersion Model IMS Model Suite and its Validation against Experimental Data

    International Nuclear Information System (INIS)

    Bartok, J.

    2010-01-01

    The dissertation presents IMS Lagrangian Dispersion Model, which is a 'new generation' Slovak dispersion model of long-range transport, developed by MicroStep-MIS. It solves trajectory equation for a vast number of Lagrangian 'particles' and stochastic equation that simulates the effects of turbulence. Model contains simulation of radioactive decay (full decay chains of more than 300 nuclides), and dry and wet deposition. Model was integrated into IMS Model Suite, a system in which several models and modules can run and cooperate, e.g. LAM model WRF preparing fine resolution meteorological data for dispersion. The main theme of the work is validation of dispersion model against large scale international campaigns CAPTEX and ETEX, which are two of the largest tracer experiments. Validation addressed treatment of missing data, data interpolation into comparable temporal and spatial representation. The best model results were observed for ETEX I, standard results for CAPTEXes and worst results for ETEX II, known in modelling community for its meteorological conditions that can be hardly resolved by models. The IMS Lagrangian Dispersion Model was identified as capable long range dispersion model for slowly- or nonreacting chemicals and radioactive matter. Influence of input data on simulation quality is discussed within the work. Additional modules were prepared according to praxis requirement: a) Recalculation of concentrations of radioactive pollutant into effective doses form inhalation, immersion in the plume and deposition. b) Dispersion of mineral dust was added and tested in desert locality, where wind and soil moisture were firstly analysed and forecast by WRF. The result was qualitatively verified in case study against satellite observations. (author)

  19. Reactor core modeling practice: Operational requirements, model characteristics, and model validation

    International Nuclear Information System (INIS)

    Zerbino, H.

    1997-01-01

    The physical models implemented in power plant simulators have greatly increased in performance and complexity in recent years. This process has been enabled by the ever increasing computing power available at affordable prices. This paper describes this process from several angles: First the operational requirements which are more critical from the point of view of model performance, both for normal and off-normal operating conditions; A second section discusses core model characteristics in the light of the solutions implemented by Thomson Training and Simulation (TT and S) in several full-scope simulators recently built and delivered for Dutch, German, and French nuclear power plants; finally we consider the model validation procedures, which are of course an integral part of model development, and which are becoming more and more severe as performance expectations increase. As a conclusion, it may be asserted that in the core modeling field, as in other areas, the general improvement in the quality of simulation codes has resulted in a fairly rapid convergence towards mainstream engineering-grade calculations. This is remarkable performance in view of the stringent real-time requirements which the simulation codes must satisfy as well as the extremely wide range of operating conditions that they are called upon to cover with good accuracy. (author)

  20. Measuring and Managing Value Co-Creation Process: Overview of Existing Theoretical Models

    Directory of Open Access Journals (Sweden)

    Monika Skaržauskaitė

    2013-08-01

    Full Text Available Purpose — the article is to provide a holistic view on concept of value co-creation and existing models for measuring and managing it by conducting theoretical analysis of scientific literature sources targeting the integration of various approaches. Most important and relevant results of the literature study are presented with a focus on changed roles of organizations and consumers. This article aims at contributing theoretically to the research stream of measuring co-creation of value in order to gain knowledge for improvement of organizational performance and enabling new and innovative means of value creation. Design/methodology/approach. The nature of this research is exploratory – theoretical analysis and synthesis of scientific literature sources targeting the integration of various approaches was performed. This approach was chosen due to the absence of established theory on models of co-creation, possible uses in organizations and systematic overview of tools measuring/suggesting how to measure co-creation. Findings. While the principles of managing and measuring co-creation in regards of consumer motivation and involvement are widely researched, little attempt has been made to identify critical factors and create models dealing with organizational capabilities and managerial implications of value co-creation. Systematic analysis of literature revealed a gap not only in empirical research concerning organization’s role in co-creation process, but in theoretical and conceptual levels, too. Research limitations/implications. The limitations of this work as a literature review lies in its nature – the complete reliance on previously published research papers and the availability of these studies. For a deeper understanding of co-creation management and for developing models that can be used in real-life organizations, a broader theoretical, as well as empirical, research is necessary. Practical implications. Analysis of the

  1. Selection, calibration, and validation of models of tumor growth.

    Science.gov (United States)

    Lima, E A B F; Oden, J T; Hormuth, D A; Yankeelov, T E; Almeida, R C

    2016-11-01

    This paper presents general approaches for addressing some of the most important issues in predictive computational oncology concerned with developing classes of predictive models of tumor growth. First, the process of developing mathematical models of vascular tumors evolving in the complex, heterogeneous, macroenvironment of living tissue; second, the selection of the most plausible models among these classes, given relevant observational data; third, the statistical calibration and validation of models in these classes, and finally, the prediction of key Quantities of Interest (QOIs) relevant to patient survival and the effect of various therapies. The most challenging aspects of this endeavor is that all of these issues often involve confounding uncertainties: in observational data, in model parameters, in model selection, and in the features targeted in the prediction. Our approach can be referred to as "model agnostic" in that no single model is advocated; rather, a general approach that explores powerful mixture-theory representations of tissue behavior while accounting for a range of relevant biological factors is presented, which leads to many potentially predictive models. Then representative classes are identified which provide a starting point for the implementation of OPAL, the Occam Plausibility Algorithm (OPAL) which enables the modeler to select the most plausible models (for given data) and to determine if the model is a valid tool for predicting tumor growth and morphology ( in vivo ). All of these approaches account for uncertainties in the model, the observational data, the model parameters, and the target QOI. We demonstrate these processes by comparing a list of models for tumor growth, including reaction-diffusion models, phase-fields models, and models with and without mechanical deformation effects, for glioma growth measured in murine experiments. Examples are provided that exhibit quite acceptable predictions of tumor growth in laboratory

  2. Validation of a FAST Model of the SWAY Prototype Floating Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Koh, J. H. [Nanyang Technological Univ. (Singapore); Ng, E. Y. K. [Nanyang Technological Univ. (Singapore); Robertson, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Lab. (NREL), Golden, CO (United States); Driscoll, Frederick [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-06-01

    As part of a collaboration of the National Renewable Energy Laboratory (NREL) and SWAY AS, NREL installed scientific wind, wave, and motion measurement equipment on the spar-type 1/6.5th-scale prototype SWAY floating offshore wind system. The equipment enhanced SWAY's data collection and allowed SWAY to verify the concept and NREL to validate a FAST model of the SWAY design in an open-water condition. Nanyang Technological University (NTU), in collaboration with NREL, assisted with the validation. This final report gives an overview of the SWAY prototype and NREL and NTU's efforts to validate a model of the system. The report provides a summary of the different software tools used in the study, the modeling strategies, and the development of a FAST model of the SWAY prototype wind turbine, including justification of the modeling assumptions. Because of uncertainty in system parameters and modeling assumptions due to the complexity of the design, several system properties were tuned to better represent the system and improve the accuracy of the simulations. Calibration was performed using data from a static equilibrium test and free-decay tests.

  3. Refining and validating a conceptual model of Clinical Nurse Leader integrated care delivery.

    Science.gov (United States)

    Bender, Miriam; Williams, Marjory; Su, Wei; Hites, Lisle

    2017-02-01

    To empirically validate a conceptual model of Clinical Nurse Leader integrated care delivery. There is limited evidence of frontline care delivery models that consistently achieve quality patient outcomes. Clinical Nurse Leader integrated care delivery is a promising nursing model with a growing record of success. However, theoretical clarity is necessary to generate causal evidence of effectiveness. Sequential mixed methods. A preliminary Clinical Nurse Leader practice model was refined and survey items developed to correspond with model domains, using focus groups and a Delphi process with a multi-professional expert panel. The survey was administered in 2015 to clinicians and administrators involved in Clinical Nurse Leader initiatives. Confirmatory factor analysis and structural equation modelling were used to validate the measurement and model structure. Final sample n = 518. The model incorporates 13 components organized into five conceptual domains: 'Readiness for Clinical Nurse Leader integrated care delivery'; 'Structuring Clinical Nurse Leader integrated care delivery'; 'Clinical Nurse Leader Practice: Continuous Clinical Leadership'; 'Outcomes of Clinical Nurse Leader integrated care delivery'; and 'Value'. Sample data had good fit with specified model and two-level measurement structure. All hypothesized pathways were significant, with strong coefficients suggesting good fit between theorized and observed path relationships. The validated model articulates an explanatory pathway of Clinical Nurse Leader integrated care delivery, including Clinical Nurse Leader practices that result in improved care dynamics and patient outcomes. The validated model provides a basis for testing in practice to generate evidence that can be deployed across the healthcare spectrum. © 2016 John Wiley & Sons Ltd.

  4. A validation test for Adagio through replication of Big Hill and Bayou Choctaw JAS3D models.

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoung Yoon

    2013-06-01

    JAS3D, a three dimensional iterative solid mechanics code, has been used for structural analyses for the Strategic Petroleum Reserve system since the 1990s. JAS3D is no longer supported by Sandia National Laboratories, and has been replaced by Adagio. To validate the transition from JAS3D to Adagio, the existing JAS3D input decks and user subroutines for Bayou Choctaw and Big Hill models were converted for use with Adagio. The calculation results from the Adagio runs are compared to the JAS3D. Since the Adagio results are very similar to the JAS3D results, Adagio is judged to be performing satisfactorily.

  5. Predictive Simulation of Material Failure Using Peridynamics -- Advanced Constitutive Modeling, Verification and Validation

    Science.gov (United States)

    2016-03-31

    AFRL-AFOSR-VA-TR-2016-0309 Predictive simulation of material failure using peridynamics- advanced constitutive modeling, verification , and validation... Self -explanatory. 8. PERFORMING ORGANIZATION REPORT NUMBER. Enter all unique alphanumeric report numbers assigned by the performing organization, e.g...for public release. Predictive simulation of material failure using peridynamics-advanced constitutive modeling, verification , and validation John T

  6. Validation of the hdm models forcrack initiation and development, rutting and roughness of the pavement

    Directory of Open Access Journals (Sweden)

    Ognjenović Slobodan

    2017-01-01

    Full Text Available Worldwide practice recommends validation of the HDM models with some other software that can be used for comparison of the forecasting results. The program package MATLAB is used in this case, as it enables for modelling of all the HDM models. A statistic validation of the results of the forecasts concerning the condition of the pavements in HDM with the on-field measuring results was also performed. This paper shall present the results of the validation of the coefficients of calibration of the deterioration models in HDM 4 on the Macedonian highways.

  7. Natural analogues and radionuclide transport model validation

    International Nuclear Information System (INIS)

    Lever, D.A.

    1987-08-01

    In this paper, some possible roles for natural analogues are discussed from the point of view of those involved with the development of mathematical models for radionuclide transport and with the use of these models in repository safety assessments. The characteristic features of a safety assessment are outlined in order to address the questions of where natural analogues can be used to improve our understanding of the processes involved and where they can assist in validating the models that are used. Natural analogues have the potential to provide useful information about some critical processes, especially long-term chemical processes and migration rates. There is likely to be considerable uncertainty and ambiguity associated with the interpretation of natural analogues, and thus it is their general features which should be emphasized, and models with appropriate levels of sophistication should be used. Experience gained in modelling the Koongarra uranium deposit in northern Australia is drawn upon. (author)

  8. Image decomposition as a tool for validating stress analysis models

    Directory of Open Access Journals (Sweden)

    Mottershead J.

    2010-06-01

    Full Text Available It is good practice to validate analytical and numerical models used in stress analysis for engineering design by comparison with measurements obtained from real components either in-service or in the laboratory. In reality, this critical step is often neglected or reduced to placing a single strain gage at the predicted hot-spot of stress. Modern techniques of optical analysis allow full-field maps of displacement, strain and, or stress to be obtained from real components with relative ease and at modest cost. However, validations continued to be performed only at predicted and, or observed hot-spots and most of the wealth of data is ignored. It is proposed that image decomposition methods, commonly employed in techniques such as fingerprinting and iris recognition, can be employed to validate stress analysis models by comparing all of the key features in the data from the experiment and the model. Image decomposition techniques such as Zernike moments and Fourier transforms have been used to decompose full-field distributions for strain generated from optical techniques such as digital image correlation and thermoelastic stress analysis as well as from analytical and numerical models by treating the strain distributions as images. The result of the decomposition is 101 to 102 image descriptors instead of the 105 or 106 pixels in the original data. As a consequence, it is relatively easy to make a statistical comparison of the image descriptors from the experiment and from the analytical/numerical model and to provide a quantitative assessment of the stress analysis.

  9. Model performance evaluation (validation and calibration) in model-based studies of therapeutic interventions for cardiovascular diseases : a review and suggested reporting framework.

    Science.gov (United States)

    Haji Ali Afzali, Hossein; Gray, Jodi; Karnon, Jonathan

    2013-04-01

    Decision analytic models play an increasingly important role in the economic evaluation of health technologies. Given uncertainties around the assumptions used to develop such models, several guidelines have been published to identify and assess 'best practice' in the model development process, including general modelling approach (e.g., time horizon), model structure, input data and model performance evaluation. This paper focuses on model performance evaluation. In the absence of a sufficient level of detail around model performance evaluation, concerns regarding the accuracy of model outputs, and hence the credibility of such models, are frequently raised. Following presentation of its components, a review of the application and reporting of model performance evaluation is presented. Taking cardiovascular disease as an illustrative example, the review investigates the use of face validity, internal validity, external validity, and cross model validity. As a part of the performance evaluation process, model calibration is also discussed and its use in applied studies investigated. The review found that the application and reporting of model performance evaluation across 81 studies of treatment for cardiovascular disease was variable. Cross-model validation was reported in 55 % of the reviewed studies, though the level of detail provided varied considerably. We found that very few studies documented other types of validity, and only 6 % of the reviewed articles reported a calibration process. Considering the above findings, we propose a comprehensive model performance evaluation framework (checklist), informed by a review of best-practice guidelines. This framework provides a basis for more accurate and consistent documentation of model performance evaluation. This will improve the peer review process and the comparability of modelling studies. Recognising the fundamental role of decision analytic models in informing public funding decisions, the proposed

  10. Bibliography - Existing Guidance for External Hazard Modelling

    International Nuclear Information System (INIS)

    Decker, Kurt

    2015-01-01

    The bibliography of deliverable D21.1 includes existing international and national guidance documents and standards on external hazard assessment together with a selection of recent scientific papers, which are regarded to provide useful information on the state of the art of external event modelling. The literature database is subdivided into International Standards, National Standards, and Science Papers. The deliverable is treated as a 'living document' which is regularly updated as necessary during the lifetime of ASAMPSA-E. The current content of the database is about 140 papers. Most of the articles are available as full-text versions in PDF format. The deliverable is available as an EndNote X4 database and as text files. The database includes the following information: Reference, Key words, Abstract (if available), PDF file of the original paper (if available), Notes (comments by the ASAMPSA-E consortium if available) The database is stored at the ASAMPSA-E FTP server hosted by IRSN. PDF files of original papers are accessible through the EndNote software

  11. Lessons learned from recent geomagnetic disturbance model validation activities

    Science.gov (United States)

    Pulkkinen, A. A.; Welling, D. T.

    2017-12-01

    Due to concerns pertaining to geomagnetically induced current impact on ground-based infrastructure, there has been significantly elevated interest in applying models for local geomagnetic disturbance or "delta-B" predictions. Correspondingly there has been elevated need for testing the quality of the delta-B predictions generated by the modern empirical and physics-based models. To address this need, community-wide activities were launched under the GEM Challenge framework and one culmination of the activities was the validation and selection of models that were transitioned into operations at NOAA SWPC. The community-wide delta-B action is continued under the CCMC-facilitated International Forum for Space Weather Capabilities Assessment and its "Ground Magnetic Perturbations: dBdt, delta-B, GICs, FACs" working group. The new delta-B working group builds on the past experiences and expands the collaborations to cover the entire international space weather community. In this paper, we discuss the key lessons learned from the past delta-B validation exercises and lay out the path forward for building on those experience under the new delta-B working group.

  12. High Turbidity Solis Clear Sky Model: Development and Validation

    Directory of Open Access Journals (Sweden)

    Pierre Ineichen

    2018-03-01

    Full Text Available The Solis clear sky model is a spectral scheme based on radiative transfer calculations and the Lambert–Beer relation. Its broadband version is a simplified fast analytical version; it is limited to broadband aerosol optical depths lower than 0.45, which is a weakness when applied in countries with very high turbidity such as China or India. In order to extend the use of the original simplified version of the model for high turbidity values, we developed a new version of the broadband Solis model based on radiative transfer calculations, valid for turbidity values up to 7, for the three components, global, beam, and diffuse, and for the four aerosol types defined by Shettle and Fenn. A validation of low turbidity data acquired in Geneva shows slightly better results than the previous version. On data acquired at sites presenting higher turbidity data, the bias stays within ±4% for the beam and the global irradiances, and the standard deviation around 5% for clean and stable condition data and around 12% for questionable data and variable sky conditions.

  13. Construction and validation of detailed kinetic models for the combustion of gasoline surrogates; Construction et validation de modeles cinetiques detailles pour la combustion de melanges modeles des essences

    Energy Technology Data Exchange (ETDEWEB)

    Touchard, S.

    2005-10-15

    The irreversible reduction of oil resources, the CO{sub 2} emission control and the application of increasingly strict standards of pollutants emission lead the worldwide researchers to work to reduce the pollutants formation and to improve the engine yields, especially by using homogenous charge combustion of lean mixtures. The numerical simulation of fuel blends oxidation is an essential tool to study the influence of fuel formulation and motor conditions on auto-ignition and on pollutants emissions. The automatic generation helps to obtain detailed kinetic models, especially at low temperature, where the number of reactions quickly exceeds thousand. The main purpose of this study is the generation and the validation of detailed kinetic models for the oxidation of gasoline blends using the EXGAS software. This work has implied an improvement of computation rules for thermodynamic and kinetic data, those were validated by numerical simulation using CHEMKIN II softwares. A large part of this work has concerned the understanding of the low temperature oxidation chemistry of the C5 and larger alkenes. Low and high temperature mechanisms were proposed and validated for 1 pentene, 1-hexene, the binary mixtures containing 1 hexene/iso octane, 1 hexene/toluene, iso octane/toluene and the ternary mixture of 1 hexene/toluene/iso octane. Simulations were also done for propene, 1-butene and iso-octane with former models including the modifications proposed in this PhD work. If the generated models allowed us to simulate with a good agreement the auto-ignition delays of the studied molecules and blends, some uncertainties still remains for some reaction paths leading to the formation of cyclic products in the case of alkenes oxidation at low temperature. It would be also interesting to carry on this work for combustion models of gasoline blends at low temperature. (author)

  14. A Result on the Existence and Uniqueness of Stationary Solutions for a Bioconvective Flow Model

    Directory of Open Access Journals (Sweden)

    Aníbal Coronel

    2018-01-01

    Full Text Available In this note, we prove the existence and uniqueness of weak solutions for the boundary value problem modelling the stationary case of the bioconvective flow problem. The bioconvective model is a boundary value problem for a system of four equations: the nonlinear Stokes equation, the incompressibility equation, and two transport equations. The unknowns of the model are the velocity of the fluid, the pressure of the fluid, the local concentration of microorganisms, and the oxygen concentration. We derive some appropriate a priori estimates for the weak solution, which implies the existence, by application of Gossez theorem, and the uniqueness by standard methodology of comparison of two arbitrary solutions.

  15. Validation of an O-18 leaf water enrichment model

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggi, M.; Saurer, M.; Siegwolf, R.

    2002-03-01

    The seasonal trend in {delta}{sup 18}O{sub ol} in leaf organic matter of spruce needles of mature trees could be modelled for two years. The seasonality was mainly explained by the {delta}{sup 18}O of top-soil water, whereas between years differences were due to variation in air humidity. Application of a third year's data set improved the correlation between modelled and measured {delta}{sup 18}O{sub ol} and thus validated our extended Dongmann model. (author)

  16. Development and validation of logistic prognostic models by predefined SAS-macros

    Directory of Open Access Journals (Sweden)

    Ziegler, Christoph

    2006-02-01

    Full Text Available In medical decision making about therapies or diagnostic procedures in the treatment of patients the prognoses of the course or of the magnitude of diseases plays a relevant role. Beside of the subjective attitude of the clinician mathematical models can help in providing such prognoses. Such models are mostly multivariate regression models. In the case of a dichotomous outcome the logistic model will be applied as the standard model. In this paper we will describe SAS-macros for the development of such a model, for examination of the prognostic performance, and for model validation. The rational for this developmental approach of a prognostic modelling and the description of the macros can only given briefly in this paper. Much more details are given in. These 14 SAS-macros are a tool for setting up the whole process of deriving a prognostic model. Especially the possibility of validating the model by a standardized software tool gives an opportunity, which is not used in general in published prognostic models. Therefore, this can help to develop new models with good prognostic performance for use in medical applications.

  17. Effects of Task Performance and Task Complexity on the Validity of Computational Models of Attention

    NARCIS (Netherlands)

    Koning, L. de; Maanen, P.P. van; Dongen, K. van

    2008-01-01

    Computational models of attention can be used as a component of decision support systems. For accurate support, a computational model of attention has to be valid and robust. The effects of task performance and task complexity on the validity of three different computational models of attention were

  18. Temporal validation for landsat-based volume estimation model

    Science.gov (United States)

    Renaldo J. Arroyo; Emily B. Schultz; Thomas G. Matney; David L. Evans; Zhaofei Fan

    2015-01-01

    Satellite imagery can potentially reduce the costs and time associated with ground-based forest inventories; however, for satellite imagery to provide reliable forest inventory data, it must produce consistent results from one time period to the next. The objective of this study was to temporally validate a Landsat-based volume estimation model in a four county study...

  19. Validation of PV-RPM Code in the System Advisor Model.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lavrova, Olga [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Freeman, Janine [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-01

    This paper describes efforts made by Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) to validate the SNL developed PV Reliability Performance Model (PV - RPM) algorithm as implemented in the NREL System Advisor Model (SAM). The PV - RPM model is a library of functions that estimates component failure and repair in a photovoltaic system over a desired simulation period. The failure and repair distributions in this paper are probabilistic representations of component failure and repair based on data collected by SNL for a PV power plant operating in Arizona. The validation effort focuses on whether the failure and repair dist ributions used in the SAM implementation result in estimated failures that match the expected failures developed in the proof - of - concept implementation. Results indicate that the SAM implementation of PV - RPM provides the same results as the proof - of - concep t implementation, indicating the algorithms were reproduced successfully.

  20. Deployable and Conformal Planar Micro-Devices: Design and Model Validation

    Directory of Open Access Journals (Sweden)

    Jinda Zhuang

    2014-08-01

    Full Text Available We report a design concept for a deployable planar microdevice and the modeling and experimental validation of its mechanical behavior. The device consists of foldable membranes that are suspended between flexible stems and actuated by push-pull wires. Such a deployable device can be introduced into a region of interest in its compact “collapsed” state and then deployed to conformally cover a large two-dimensional surface area for minimally invasive biomedical operations and other engineering applications. We develop and experimentally validate theoretical models based on the energy minimization approach to examine the conformality and figures of merit of the device. The experimental results obtained using model contact surfaces agree well with the prediction and quantitatively highlight the importance of the membrane bending modulus in controlling surface conformality. The present study establishes an early foundation for the mechanical design of this and related deployable planar microdevice concepts.

  1. Modeling and validating HL7 FHIR profiles using semantic web Shape Expressions (ShEx).

    Science.gov (United States)

    Solbrig, Harold R; Prud'hommeaux, Eric; Grieve, Grahame; McKenzie, Lloyd; Mandel, Joshua C; Sharma, Deepak K; Jiang, Guoqian

    2017-03-01

    HL7 Fast Healthcare Interoperability Resources (FHIR) is an emerging open standard for the exchange of electronic healthcare information. FHIR resources are defined in a specialized modeling language. FHIR instances can currently be represented in either XML or JSON. The FHIR and Semantic Web communities are developing a third FHIR instance representation format in Resource Description Framework (RDF). Shape Expressions (ShEx), a formal RDF data constraint language, is a candidate for describing and validating the FHIR RDF representation. Create a FHIR to ShEx model transformation and assess its ability to describe and validate FHIR RDF data. We created the methods and tools that generate the ShEx schemas modeling the FHIR to RDF specification being developed by HL7 ITS/W3C RDF Task Force, and evaluated the applicability of ShEx in the description and validation of FHIR to RDF transformations. The ShEx models contributed significantly to workgroup consensus. Algorithmic transformations from the FHIR model to ShEx schemas and FHIR example data to RDF transformations were incorporated into the FHIR build process. ShEx schemas representing 109 FHIR resources were used to validate 511 FHIR RDF data examples from the Standards for Trial Use (STU 3) Ballot version. We were able to uncover unresolved issues in the FHIR to RDF specification and detect 10 types of errors and root causes in the actual implementation. The FHIR ShEx representations have been included in the official FHIR web pages for the STU 3 Ballot version since September 2016. ShEx can be used to define and validate the syntax of a FHIR resource, which is complementary to the use of RDF Schema (RDFS) and Web Ontology Language (OWL) for semantic validation. ShEx proved useful for describing a standard model of FHIR RDF data. The combination of a formal model and a succinct format enabled comprehensive review and automated validation. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Validation of a tuber blight (Phytophthora infestans) prediction model

    Science.gov (United States)

    Potato tuber blight caused by Phytophthora infestans accounts for significant losses in storage. There is limited published quantitative data on predicting tuber blight. We validated a tuber blight prediction model developed in New York with cultivars Allegany, NY 101, and Katahdin using independent...

  3. Technical Note: Calibration and validation of geophysical observation models

    NARCIS (Netherlands)

    Salama, M.S.; van der Velde, R.; van der Woerd, H.J.; Kromkamp, J.C.; Philippart, C.J.M.; Joseph, A.T.; O'Neill, P.E.; Lang, R.H.; Gish, T.; Werdell, P.J.; Su, Z.

    2012-01-01

    We present a method to calibrate and validate observational models that interrelate remotely sensed energy fluxes to geophysical variables of land and water surfaces. Coincident sets of remote sensing observation of visible and microwave radiations and geophysical data are assembled and subdivided

  4. Quantification of Dynamic Model Validation Metrics Using Uncertainty Propagation from Requirements

    Science.gov (United States)

    Brown, Andrew M.; Peck, Jeffrey A.; Stewart, Eric C.

    2018-01-01

    The Space Launch System, NASA's new large launch vehicle for long range space exploration, is presently in the final design and construction phases, with the first launch scheduled for 2019. A dynamic model of the system has been created and is critical for calculation of interface loads and natural frequencies and mode shapes for guidance, navigation, and control (GNC). Because of the program and schedule constraints, a single modal test of the SLS will be performed while bolted down to the Mobile Launch Pad just before the first launch. A Monte Carlo and optimization scheme will be performed to create thousands of possible models based on given dispersions in model properties and to determine which model best fits the natural frequencies and mode shapes from modal test. However, the question still remains as to whether this model is acceptable for the loads and GNC requirements. An uncertainty propagation and quantification (UP and UQ) technique to develop a quantitative set of validation metrics that is based on the flight requirements has therefore been developed and is discussed in this paper. There has been considerable research on UQ and UP and validation in the literature, but very little on propagating the uncertainties from requirements, so most validation metrics are "rules-of-thumb;" this research seeks to come up with more reason-based metrics. One of the main assumptions used to achieve this task is that the uncertainty in the modeling of the fixed boundary condition is accurate, so therefore that same uncertainty can be used in propagating the fixed-test configuration to the free-free actual configuration. The second main technique applied here is the usage of the limit-state formulation to quantify the final probabilistic parameters and to compare them with the requirements. These techniques are explored with a simple lumped spring-mass system and a simplified SLS model. When completed, it is anticipated that this requirements-based validation

  5. Heat Transfer Modeling and Validation for Optically Thick Alumina Fibrous Insulation

    Science.gov (United States)

    Daryabeigi, Kamran

    2009-01-01

    Combined radiation/conduction heat transfer through unbonded alumina fibrous insulation was modeled using the diffusion approximation for modeling the radiation component of heat transfer in the optically thick insulation. The validity of the heat transfer model was investigated by comparison to previously reported experimental effective thermal conductivity data over the insulation density range of 24 to 96 kg/cu m, with a pressure range of 0.001 to 750 torr (0.1 to 101.3 x 10(exp 3) Pa), and test sample hot side temperature range of 530 to 1360 K. The model was further validated by comparison to thermal conductivity measurements using the transient step heating technique on an insulation sample at a density of 144 kg/cu m over a pressure range of 0.001 to 760 torr, and temperature range of 290 to 1090 K.

  6. Validating a model that predicts daily growth and feed quality of New Zealand dairy pastures.

    Science.gov (United States)

    Woodward, S J

    2001-09-01

    The Pasture Quality (PQ) model is a simple, mechanistic, dynamical system model that was designed to capture the essential biological processes in grazed grass-clover pasture, and to be optimised to derive improved grazing strategies for New Zealand dairy farms. While the individual processes represented in the model (photosynthesis, tissue growth, flowering, leaf death, decomposition, worms) were based on experimental data, this did not guarantee that the assembled model would accurately predict the behaviour of the system as a whole (i.e., pasture growth and quality). Validation of the whole model was thus a priority, since any strategy derived from the model could impact a farm business in the order of thousands of dollars per annum if adopted. This paper describes the process of defining performance criteria for the model, obtaining suitable data to test the model, and carrying out the validation analysis. The validation process highlighted a number of weaknesses in the model, which will lead to the model being improved. As a result, the model's utility will be enhanced. Furthermore, validation was found to have an unexpected additional benefit, in that despite the model's poor initial performance, support was generated for the model among field scientists involved in the wider project.

  7. Evaluation of Validity and Reliability for Hierarchical Scales Using Latent Variable Modeling

    Science.gov (United States)

    Raykov, Tenko; Marcoulides, George A.

    2012-01-01

    A latent variable modeling method is outlined, which accomplishes estimation of criterion validity and reliability for a multicomponent measuring instrument with hierarchical structure. The approach provides point and interval estimates for the scale criterion validity and reliability coefficients, and can also be used for testing composite or…

  8. Model Verification and Validation Concepts for a Probabilistic Fracture Assessment Model to Predict Cracking of Knife Edge Seals in the Space Shuttle Main Engine High Pressure Oxidizer

    Science.gov (United States)

    Pai, Shantaram S.; Riha, David S.

    2013-01-01

    Physics-based models are routinely used to predict the performance of engineered systems to make decisions such as when to retire system components, how to extend the life of an aging system, or if a new design will be safe or available. Model verification and validation (V&V) is a process to establish credibility in model predictions. Ideally, carefully controlled validation experiments will be designed and performed to validate models or submodels. In reality, time and cost constraints limit experiments and even model development. This paper describes elements of model V&V during the development and application of a probabilistic fracture assessment model to predict cracking in space shuttle main engine high-pressure oxidizer turbopump knife-edge seals. The objective of this effort was to assess the probability of initiating and growing a crack to a specified failure length in specific flight units for different usage and inspection scenarios. The probabilistic fracture assessment model developed in this investigation combined a series of submodels describing the usage, temperature history, flutter tendencies, tooth stresses and numbers of cycles, fatigue cracking, nondestructive inspection, and finally the probability of failure. The analysis accounted for unit-to-unit variations in temperature, flutter limit state, flutter stress magnitude, and fatigue life properties. The investigation focused on the calculation of relative risk rather than absolute risk between the usage scenarios. Verification predictions were first performed for three units with known usage and cracking histories to establish credibility in the model predictions. Then, numerous predictions were performed for an assortment of operating units that had flown recently or that were projected for future flights. Calculations were performed using two NASA-developed software tools: NESSUS(Registered Trademark) for the probabilistic analysis, and NASGRO(Registered Trademark) for the fracture

  9. When is the Anelastic Approximation a Valid Model for Compressible Convection?

    Science.gov (United States)

    Alboussiere, T.; Curbelo, J.; Labrosse, S.; Ricard, Y. R.; Dubuffet, F.

    2017-12-01

    Compressible convection is ubiquitous in large natural systems such Planetary atmospheres, stellar and planetary interiors. Its modelling is notoriously more difficult than the case when the Boussinesq approximation applies. One reason for that difficulty has been put forward by Ogura and Phillips (1961): the compressible equations generate sound waves with very short time scales which need to be resolved. This is why they introduced an anelastic model, based on an expansion of the solution around an isentropic hydrostatic profile. How accurate is that anelastic model? What are the conditions for its validity? To answer these questions, we have developed a numerical model for the full set of compressible equations and compared its solutions with those of the corresponding anelastic model. We considered a simple rectangular 2D Rayleigh-Bénard configuration and decided to restrict the analysis to infinite Prandtl numbers. This choice is valid for convection in the mantles of rocky planets, but more importantly lead to a zero Mach number. So we got rid of the question of the interference of acoustic waves with convection. In that simplified context, we used the entropy balances (that of the full set of equations and that of the anelastic model) to investigate the differences between exact and anelastic solutions. We found that the validity of the anelastic model is dictated by two conditions: first, the superadiabatic temperature difference must be small compared with the adiabatic temperature difference (as expected) ɛ = Δ TSA / delta Ta << 1, and secondly that the product of ɛ with the Nusselt number must be small.

  10. Qualitative Validation of the IMM Model for ISS and STS Programs

    Science.gov (United States)

    Kerstman, E.; Walton, M.; Reyes, D.; Boley, L.; Saile, L.; Young, M.; Arellano, J.; Garcia, Y.; Myers, J. G.

    2016-01-01

    To validate and further improve the Integrated Medical Model (IMM), medical event data were obtained from 32 ISS and 122 STS person-missions. Using the crew characteristics from these observed missions, IMM v4.0 was used to forecast medical events and medical resource utilization. The IMM medical condition incidence values were compared to the actual observed medical event incidence values, and the IMM forecasted medical resource utilization was compared to actual observed medical resource utilization. Qualitative comparisons of these parameters were conducted for both the ISS and STS programs. The results of these analyses will provide validation of IMM v4.0 and reveal areas of the model requiring adjustments to improve the overall accuracy of IMM outputs. This validation effort should result in enhanced credibility of the IMM and improved confidence in the use of IMM as a decision support tool for human space flight.

  11. Model-based Systems Engineering: Creation and Implementation of Model Validation Rules for MOS 2.0

    Science.gov (United States)

    Schmidt, Conrad K.

    2013-01-01

    Model-based Systems Engineering (MBSE) is an emerging modeling application that is used to enhance the system development process. MBSE allows for the centralization of project and system information that would otherwise be stored in extraneous locations, yielding better communication, expedited document generation and increased knowledge capture. Based on MBSE concepts and the employment of the Systems Modeling Language (SysML), extremely large and complex systems can be modeled from conceptual design through all system lifecycles. The Operations Revitalization Initiative (OpsRev) seeks to leverage MBSE to modernize the aging Advanced Multi-Mission Operations Systems (AMMOS) into the Mission Operations System 2.0 (MOS 2.0). The MOS 2.0 will be delivered in a series of conceptual and design models and documents built using the modeling tool MagicDraw. To ensure model completeness and cohesiveness, it is imperative that the MOS 2.0 models adhere to the specifications, patterns and profiles of the Mission Service Architecture Framework, thus leading to the use of validation rules. This paper outlines the process by which validation rules are identified, designed, implemented and tested. Ultimately, these rules provide the ability to maintain model correctness and synchronization in a simple, quick and effective manner, thus allowing the continuation of project and system progress.

  12. Multiphysics modelling and experimental validation of high concentration photovoltaic modules

    International Nuclear Information System (INIS)

    Theristis, Marios; Fernández, Eduardo F.; Sumner, Mike; O'Donovan, Tadhg S.

    2017-01-01

    Highlights: • A multiphysics modelling approach for concentrating photovoltaics was developed. • An experimental campaign was conducted to validate the models. • The experimental results were in good agreement with the models. • The multiphysics modelling allows the concentrator’s optimisation. - Abstract: High concentration photovoltaics, equipped with high efficiency multijunction solar cells, have great potential in achieving cost-effective and clean electricity generation at utility scale. Such systems are more complex compared to conventional photovoltaics because of the multiphysics effect that is present. Modelling the power output of such systems is therefore crucial for their further market penetration. Following this line, a multiphysics modelling procedure for high concentration photovoltaics is presented in this work. It combines an open source spectral model, a single diode electrical model and a three-dimensional finite element thermal model. In order to validate the models and the multiphysics modelling procedure against actual data, an outdoor experimental campaign was conducted in Albuquerque, New Mexico using a high concentration photovoltaic monomodule that is thoroughly described in terms of its geometry and materials. The experimental results were in good agreement (within 2.7%) with the predicted maximum power point. This multiphysics approach is relatively more complex when compared to empirical models, but besides the overall performance prediction it can also provide better understanding of the physics involved in the conversion of solar irradiance into electricity. It can therefore be used for the design and optimisation of high concentration photovoltaic modules.

  13. VALIDATION OF CRACK INTERACTION LIMIT MODEL FOR PARALLEL EDGE CRACKS USING TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS

    Directory of Open Access Journals (Sweden)

    R. Daud

    2013-06-01

    Full Text Available Shielding interaction effects of two parallel edge cracks in finite thickness plates subjected to remote tension load is analyzed using a developed finite element analysis program. In the present study, the crack interaction limit is evaluated based on the fitness of service (FFS code, and focus is given to the weak crack interaction region as the crack interval exceeds the length of cracks (b > a. Crack interaction factors are evaluated based on stress intensity factors (SIFs for Mode I SIFs using a displacement extrapolation technique. Parametric studies involved a wide range of crack-to-width (0.05 ≤ a/W ≤ 0.5 and crack interval ratios (b/a > 1. For validation, crack interaction factors are compared with single edge crack SIFs as a state of zero interaction. Within the considered range of parameters, the proposed numerical evaluation used to predict the crack interaction factor reduces the error of existing analytical solution from 1.92% to 0.97% at higher a/W. In reference to FFS codes, the small discrepancy in the prediction of the crack interaction factor validates the reliability of the numerical model to predict crack interaction limits under shielding interaction effects. In conclusion, the numerical model gave a successful prediction in estimating the crack interaction limit, which can be used as a reference for the shielding orientation of other cracks.

  14. Experimental Study of the Twin Turbulent Water Jets Using Laser Doppler Anemometry for Validating Numerical Models

    International Nuclear Information System (INIS)

    Wang Huhu; Lee Saya; Hassan, Yassin A.; Ruggles, Arthur E.

    2014-01-01

    The design of next generation (Gen. IV) high-temperature nuclear reactors including gas-cooled and sodium-cooled ones involves massive numerical works especially the Computational Fluid Dynamics (CFD) simulations. The high cost of large-scale experiments and the inherent uncertainties existing in the turbulent models and wall functions of any CFD codes solving Reynolds-averaged Navier-Stokes (RANS) equations necessitate the high-spacial experimental data sets for benchmarking the simulation results. In Gen. IV conceptual reactors, the high- temperature flows mix in the upper plenum before entering the secondary cooling system. The mixing condition should be accurately estimated and fully understood as it is related to the thermal stresses induced in the upper plenum and the magnitudes of output power oscillations due to any changes of primary coolant temperature. The purpose of this study is to use Laser Doppler Anemometry (LDA) technique to measure the flow field of two submerged parallel jets issuing from two rectangular channels. The LDA data sets can be used to validate the corresponding simulation results. The jets studied in this work were at room temperature. The turbulent characteristics including the distributions of mean velocities, turbulence intensities, Reynolds stresses were studied. Uncertainty analysis was also performed to study the errors involved in this experiment. The experimental results in this work are valid for benchmarking any steady-state numerical simulations using turbulence models to solve RANS equations. (author)

  15. DMFC performance and methanol cross-over: Experimental analysis and model validation

    Energy Technology Data Exchange (ETDEWEB)

    Casalegno, A.; Marchesi, R. [Dipartimento di Energia, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2008-10-15

    A combined experimental and modelling approach is proposed to analyze methanol cross-over and its effect on DMFC performance. The experimental analysis is performed in order to allow an accurate investigation of methanol cross-over influence on DMFC performance, hence measurements were characterized in terms of uncertainty and reproducibility. The findings suggest that methanol cross-over is mainly determined by diffusion transport and affects cell performance partly via methanol electro-oxidation at the cathode. The modelling analysis is carried out to further investigate methanol cross-over phenomenon. A simple model evaluates the effectiveness of two proposed interpretations regarding methanol cross-over and its effects. The model is validated using the experimental data gathered. Both the experimental analysis and the proposed and validated model allow a substantial step forward in the understanding of the main phenomena associated with methanol cross-over. The findings confirm the possibility to reduce methanol cross-over by optimizing anode feeding. (author)

  16. Development and Validation of Triarchic Construct Scales from the Psychopathic Personality Inventory

    Science.gov (United States)

    Hall, Jason R.; Drislane, Laura E.; Patrick, Christopher J.; Morano, Mario; Lilienfeld, Scott O.; Poythress, Norman G.

    2014-01-01

    The Triarchic model of psychopathy describes this complex condition in terms of distinct phenotypic components of boldness, meanness, and disinhibition. Brief self-report scales designed specifically to index these psychopathy facets have thus far demonstrated promising construct validity. The present study sought to develop and validate scales for assessing facets of the Triarchic model using items from a well-validated existing measure of psychopathy—the Psychopathic Personality Inventory (PPI). A consensus rating approach was used to identify PPI items relevant to each Triarchic facet, and the convergent and discriminant validity of the resulting PPI-based Triarchic scales were evaluated in relation to multiple criterion variables (i.e., other psychopathy inventories, antisocial personality disorder features, personality traits, psychosocial functioning) in offender and non-offender samples. The PPI-based Triarchic scales showed good internal consistency and related to criterion variables in ways consistent with predictions based on the Triarchic model. Findings are discussed in terms of implications for conceptualization and assessment of psychopathy. PMID:24447280

  17. Modelling and validation of electromechanical shock absorbers

    Science.gov (United States)

    Tonoli, Andrea; Amati, Nicola; Girardello Detoni, Joaquim; Galluzzi, Renato; Gasparin, Enrico

    2013-08-01

    Electromechanical vehicle suspension systems represent a promising substitute to conventional hydraulic solutions. However, the design of electromechanical devices that are able to supply high damping forces without exceeding geometric dimension and mass constraints is a difficult task. All these challenges meet in off-road vehicle suspension systems, where the power density of the dampers is a crucial parameter. In this context, the present paper outlines a particular shock absorber configuration where a suitable electric machine and a transmission mechanism are utilised to meet off-road vehicle requirements. A dynamic model is used to represent the device. Subsequently, experimental tests are performed on an actual prototype to verify the functionality of the damper and validate the proposed model.

  18. Modelling of PEM Fuel Cell Performance: Steady-State and Dynamic Experimental Validation

    Directory of Open Access Journals (Sweden)

    Idoia San Martín

    2014-02-01

    Full Text Available This paper reports on the modelling of a commercial 1.2 kW proton exchange membrane fuel cell (PEMFC, based on interrelated electrical and thermal models. The electrical model proposed is based on the integration of the thermodynamic and electrochemical phenomena taking place in the FC whilst the thermal model is established from the FC thermal energy balance. The combination of both models makes it possible to predict the FC voltage, based on the current demanded and the ambient temperature. Furthermore, an experimental characterization is conducted and the parameters for the models associated with the FC electrical and thermal performance are obtained. The models are implemented in Matlab Simulink and validated in a number of operating environments, for steady-state and dynamic modes alike. In turn, the FC models are validated in an actual microgrid operating environment, through the series connection of 4 PEMFC. The simulations of the models precisely and accurately reproduce the FC electrical and thermal performance.

  19. 3D Core Model for simulation of nuclear power plants: Simulation requirements, model features, and validation

    International Nuclear Information System (INIS)

    Zerbino, H.

    1999-01-01

    In 1994-1996, Thomson Training and Simulation (TT and S) earned out the D50 Project, which involved the design and construction of optimized replica simulators for one Dutch and three German Nuclear Power Plants. It was recognized early on that the faithful reproduction of the Siemens reactor control and protection systems would impose extremely stringent demands on the simulation models, particularly the Core physics and the RCS thermohydraulics. The quality of the models, and their thorough validation, were thus essential. The present paper describes the main features of the fully 3D Core model implemented by TT and S, and its extensive validation campaign, which was defined in extremely positive collaboration with the Customer and the Core Data suppliers. (author)

  20. Standard model of WWER-440 fuel rod for Transuranus and its application for RELAP5 hot channel validation

    International Nuclear Information System (INIS)

    Hatala, B.; Cvan, M.

    2001-01-01

    Within the PECO European Commission project of 'Extension of the validation matrix of the TRANSURANUS code' is developed a generic model of WWER-440 fuel rod. The model is intended to be applied for both realistic and licensing, conservative analysis. For such an application the TRANSURANUS code would be complementary tool to generally used system codes, e.g. RELAP5, providing realistic, more detailed insight into processes and safety criteria, relevant to the fuel rod. The paper presents general description of the model for TRANSURANUS code, brief discussion of approaches used in TRANSURANUS and RELAP5 code safety analysis, accompanied with information about RELAP5 model (whole scope unit model, used for licensing analysis). The existing model for RELAP5 code for WWER-440/V-213 Bohunice V2 unit is checked and modified in hot channel part to allow transparent comparison with the TRANSURANUS code. The results from comparison calculations of the both codes are presented for fresh fuel and quasi steady state scenario and are in good agreement, almost identical. These results might be used as a basis for transient analysis

  1. Cross-Validation of Aerobic Capacity Prediction Models in Adolescents.

    Science.gov (United States)

    Burns, Ryan Donald; Hannon, James C; Brusseau, Timothy A; Eisenman, Patricia A; Saint-Maurice, Pedro F; Welk, Greg J; Mahar, Matthew T

    2015-08-01

    Cardiorespiratory endurance is a component of health-related fitness. FITNESSGRAM recommends the Progressive Aerobic Cardiovascular Endurance Run (PACER) or One mile Run/Walk (1MRW) to assess cardiorespiratory endurance by estimating VO2 Peak. No research has cross-validated prediction models from both PACER and 1MRW, including the New PACER Model and PACER-Mile Equivalent (PACER-MEQ) using current standards. The purpose of this study was to cross-validate prediction models from PACER and 1MRW against measured VO2 Peak in adolescents. Cardiorespiratory endurance data were collected on 90 adolescents aged 13-16 years (Mean = 14.7 ± 1.3 years; 32 girls, 52 boys) who completed the PACER and 1MRW in addition to a laboratory maximal treadmill test to measure VO2 Peak. Multiple correlations among various models with measured VO2 Peak were considered moderately strong (R = .74-0.78), and prediction error (RMSE) ranged from 5.95 ml·kg⁻¹,min⁻¹ to 8.27 ml·kg⁻¹.min⁻¹. Criterion-referenced agreement into FITNESSGRAM's Healthy Fitness Zones was considered fair-to-good among models (Kappa = 0.31-0.62; Agreement = 75.5-89.9%; F = 0.08-0.65). In conclusion, prediction models demonstrated moderately strong linear relationships with measured VO2 Peak, fair prediction error, and fair-to-good criterion referenced agreement with measured VO2 Peak into FITNESSGRAM's Healthy Fitness Zones.

  2. Development and validation of an extensive growth and growth boundary model for psychrotolerant Lactobacillus spp. in seafood and meat products

    DEFF Research Database (Denmark)

    Mejlholm, Ole; Dalgaard, Paw

    2013-01-01

    A new and extensive growth and growth boundary model for psychrotolerant Lactobacillus spp. was developed and validated for processed and unprocessed products of seafood and meat. The new model was developed by refitting and expanding an existing cardinal parameter model for growth and the growth...... of psychrotolerant Lactobacillus spp. was clearly demonstrated. The new model can be used to predict growth of psychrotolerant Lactobacillus spp. in seafood and meat products e.g. prediction of the time to a critical cell concentration of bacteria is considered useful for establishing the shelf life. In addition...... boundary of lactic acid bacteria (LAB) in processed seafood (O. Mejlholm and P. Dalgaard, J. Food Prot. 70. 2485–2497, 2007). Initially, to estimate values for the maximum specific growth rate at the reference temperature of 25°C (μref) and the theoretical minimum temperature that prevents growth...

  3. Unit testing, model validation, and biological simulation.

    Science.gov (United States)

    Sarma, Gopal P; Jacobs, Travis W; Watts, Mark D; Ghayoomie, S Vahid; Larson, Stephen D; Gerkin, Richard C

    2016-01-01

    The growth of the software industry has gone hand in hand with the development of tools and cultural practices for ensuring the reliability of complex pieces of software. These tools and practices are now acknowledged to be essential to the management of modern software. As computational models and methods have become increasingly common in the biological sciences, it is important to examine how these practices can accelerate biological software development and improve research quality. In this article, we give a focused case study of our experience with the practices of unit testing and test-driven development in OpenWorm, an open-science project aimed at modeling Caenorhabditis elegans. We identify and discuss the challenges of incorporating test-driven development into a heterogeneous, data-driven project, as well as the role of model validation tests, a category of tests unique to software which expresses scientific models.

  4. Sizing and scaling requirements of a large-scale physical model for code validation

    International Nuclear Information System (INIS)

    Khaleel, R.; Legore, T.

    1990-01-01

    Model validation is an important consideration in application of a code for performance assessment and therefore in assessing the long-term behavior of the engineered and natural barriers of a geologic repository. Scaling considerations relevant to porous media flow are reviewed. An analysis approach is presented for determining the sizing requirements of a large-scale, hydrology physical model. The physical model will be used to validate performance assessment codes that evaluate the long-term behavior of the repository isolation system. Numerical simulation results for sizing requirements are presented for a porous medium model in which the media properties are spatially uncorrelated

  5. FY2017 Pilot Project Plan for the Nuclear Energy Knowledge and Validation Center Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-30

    To prepare for technical development of computational code validation under the Nuclear Energy Knowledge and Validation Center (NEKVAC) initiative, several meetings were held by a group of experts of the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory (ORNL) to develop requirements of, and formulate a structure for, a transient fuel database through leveraging existing resources. It was concluded in discussions of these meetings that a pilot project is needed to address the most fundamental issues that can generate immediate stimulus to near-future validation developments as well as long-lasting benefits to NEKVAC operation. The present project is proposed based on the consensus of these discussions. Analysis of common scenarios in code validation indicates that the incapability of acquiring satisfactory validation data is often a showstopper that must first be tackled before any confident validation developments can be carried out. Validation data are usually found scattered in different places most likely with interrelationships among the data not well documented, incomplete with information for some parameters missing, nonexistent, or unrealistic to experimentally generate. Furthermore, with very different technical backgrounds, the modeler, the experimentalist, and the knowledgebase developer that must be involved in validation data development often cannot communicate effectively without a data package template that is representative of the data structure for the information domain of interest to the desired code validation. This pilot project is proposed to use the legendary TREAT Experiments Database to provide core elements for creating an ideal validation data package. Data gaps and missing data interrelationships will be identified from these core elements. All the identified missing elements will then be filled in with experimental data if available from other existing sources or with dummy data if nonexistent. The resulting hybrid

  6. Wave Tank Testing and Model Validation of an Autonomous Wave Energy Converter

    Directory of Open Access Journals (Sweden)

    Bret Bosma

    2015-08-01

    Full Text Available A key component in bringing ocean wave energy converters from concept to commercialization is the building and testing of scaled prototypes to provide model validation. A one quarter scale prototype of an autonomous two body heaving point absorber was modeled, built, and tested for this work. Wave tank testing results are compared with two hydrodynamic and system models—implemented in both ANSYS AQWA and MATLAB/Simulink—and show model validation over certain regions of operation. This work will serve as a guide for future developers of wave energy converter devices, providing insight in taking their design from concept to prototype stage.

  7. A unified bond theory, probabilistic meso-scale modeling, and experimental validation of deformed steel rebar in normal strength concrete

    Science.gov (United States)

    Wu, Chenglin

    Bond between deformed rebar and concrete is affected by rebar deformation pattern, concrete properties, concrete confinement, and rebar-concrete interfacial properties. Two distinct groups of bond models were traditionally developed based on the dominant effects of concrete splitting and near-interface shear-off failures. Their accuracy highly depended upon the test data sets selected in analysis and calibration. In this study, a unified bond model is proposed and developed based on an analogy to the indentation problem around the rib front of deformed rebar. This mechanics-based model can take into account the combined effect of concrete splitting and interface shear-off failures, resulting in average bond strengths for all practical scenarios. To understand the fracture process associated with bond failure, a probabilistic meso-scale model of concrete is proposed and its sensitivity to interface and confinement strengths are investigated. Both the mechanical and finite element models are validated with the available test data sets and are superior to existing models in prediction of average bond strength (rib spacing-to-height ratio of deformed rebar. It can accurately predict the transition of failure modes from concrete splitting to rebar pullout and predict the effect of rebar surface characteristics as the rib spacing-to-height ratio increases. Based on the unified theory, a global bond model is proposed and developed by introducing bond-slip laws, and validated with testing of concrete beams with spliced reinforcement, achieving a load capacity prediction error of less than 26%. The optimal rebar parameters and concrete cover in structural designs can be derived from this study.

  8. Using the mouse to model human disease: increasing validity and reproducibility

    Directory of Open Access Journals (Sweden)

    Monica J. Justice

    2016-02-01

    Full Text Available Experiments that use the mouse as a model for disease have recently come under scrutiny because of the repeated failure of data, particularly derived from preclinical studies, to be replicated or translated to humans. The usefulness of mouse models has been questioned because of irreproducibility and poor recapitulation of human conditions. Newer studies, however, point to bias in reporting results and improper data analysis as key factors that limit reproducibility and validity of preclinical mouse research. Inaccurate and incomplete descriptions of experimental conditions also contribute. Here, we provide guidance on best practice in mouse experimentation, focusing on appropriate selection and validation of the model, sources of variation and their influence on phenotypic outcomes, minimum requirements for control sets, and the importance of rigorous statistics. Our goal is to raise the standards in mouse disease modeling to enhance reproducibility, reliability and clinical translation of findings.

  9. Conversion of IVA Human Computer Model to EVA Use and Evaluation and Comparison of the Result to Existing EVA Models

    Science.gov (United States)

    Hamilton, George S.; Williams, Jermaine C.

    1998-01-01

    This paper describes the methods, rationale, and comparative results of the conversion of an intravehicular (IVA) 3D human computer model (HCM) to extravehicular (EVA) use and compares the converted model to an existing model on another computer platform. The task of accurately modeling a spacesuited human figure in software is daunting: the suit restricts the human's joint range of motion (ROM) and does not have joints collocated with human joints. The modeling of the variety of materials needed to construct a space suit (e. g. metal bearings, rigid fiberglass torso, flexible cloth limbs and rubber coated gloves) attached to a human figure is currently out of reach of desktop computer hardware and software. Therefore a simplified approach was taken. The HCM's body parts were enlarged and the joint ROM was restricted to match the existing spacesuit model. This basic approach could be used to model other restrictive environments in industry such as chemical or fire protective clothing. In summary, the approach provides a moderate fidelity, usable tool which will run on current notebook computers.

  10. Methods for Geometric Data Validation of 3d City Models

    Science.gov (United States)

    Wagner, D.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.

    2015-12-01

    Geometric quality of 3D city models is crucial for data analysis and simulation tasks, which are part of modern applications of the data (e.g. potential heating energy consumption of city quarters, solar potential, etc.). Geometric quality in these contexts is however a different concept as it is for 2D maps. In the latter case, aspects such as positional or temporal accuracy and correctness represent typical quality metrics of the data. They are defined in ISO 19157 and should be mentioned as part of the metadata. 3D data has a far wider range of aspects which influence their quality, plus the idea of quality itself is application dependent. Thus, concepts for definition of quality are needed, including methods to validate these definitions. Quality on this sense means internal validation and detection of inconsistent or wrong geometry according to a predefined set of rules. A useful starting point would be to have correct geometry in accordance with ISO 19107. A valid solid should consist of planar faces which touch their neighbours exclusively in defined corner points and edges. No gaps between them are allowed, and the whole feature must be 2-manifold. In this paper, we present methods to validate common geometric requirements for building geometry. Different checks based on several algorithms have been implemented to validate a set of rules derived from the solid definition mentioned above (e.g. water tightness of the solid or planarity of its polygons), as they were developed for the software tool CityDoctor. The method of each check is specified, with a special focus on the discussion of tolerance values where they are necessary. The checks include polygon level checks to validate the correctness of each polygon, i.e. closeness of the bounding linear ring and planarity. On the solid level, which is only validated if the polygons have passed validation, correct polygon orientation is checked, after self-intersections outside of defined corner points and edges

  11. A New Statistical Method to Determine the Degree of Validity of Health Economic Model Outcomes against Empirical Data.

    NARCIS (Netherlands)

    Corro Ramos, Isaac; van Voorn, George A K; Vemer, Pepijn; Feenstra, Talitha L; Al, Maiwenn J

    2017-01-01

    The validation of health economic (HE) model outcomes against empirical data is of key importance. Although statistical testing seems applicable, guidelines for the validation of HE models lack guidance on statistical validation, and actual validation efforts often present subjective judgment of

  12. Experimental validation of a mathematical model for seabed liquefaction in waves

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Kirca, Özgür; Fredsøe, Jørgen

    2011-01-01

    This paper summarizes the results of an experimental study directed towards the validation of a mathematical model for the buildup of pore water pressure and resulting liquefaction of marine soils under progressive waves. Experiments were conducted under controlled conditions with silt ( d50 = 0.......070 mm) in a wave flume with a soil pit. Waves with wave heights in the range 7.7-18 cm with the water depth 55 cm and the wave period 1.6 s enabled us to study both the liquefaction and no-liquefaction regime pore water pressure buildup. The experimental data was used to validate the model. A numerical...

  13. Validity test and its consistency in the construction of patient loyalty model

    Science.gov (United States)

    Yanuar, Ferra

    2016-04-01

    The main objective of this present study is to demonstrate the estimation of validity values and its consistency based on structural equation model. The method of estimation was then implemented to an empirical data in case of the construction the patient loyalty model. In the hypothesis model, service quality, patient satisfaction and patient loyalty were determined simultaneously, each factor were measured by any indicator variables. The respondents involved in this study were the patients who ever got healthcare at Puskesmas in Padang, West Sumatera. All 394 respondents who had complete information were included in the analysis. This study found that each construct; service quality, patient satisfaction and patient loyalty were valid. It means that all hypothesized indicator variables were significant to measure their corresponding latent variable. Service quality is the most measured by tangible, patient satisfaction is the most mesured by satisfied on service and patient loyalty is the most measured by good service quality. Meanwhile in structural equation, this study found that patient loyalty was affected by patient satisfaction positively and directly. Service quality affected patient loyalty indirectly with patient satisfaction as mediator variable between both latent variables. Both structural equations were also valid. This study also proved that validity values which obtained here were also consistence based on simulation study using bootstrap approach.

  14. WEC-SIM Phase 1 Validation Testing -- Numerical Modeling of Experiments: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ruehl, Kelley; Michelen, Carlos; Bosma, Bret; Yu, Yi-Hsiang

    2016-08-01

    The Wave Energy Converter Simulator (WEC-Sim) is an open-source code jointly developed by Sandia National Laboratories and the National Renewable Energy Laboratory. It is used to model wave energy converters subjected to operational and extreme waves. In order for the WEC-Sim code to be beneficial to the wave energy community, code verification and physical model validation is necessary. This paper describes numerical modeling of the wave tank testing for the 1:33-scale experimental testing of the floating oscillating surge wave energy converter. The comparison between WEC-Sim and the Phase 1 experimental data set serves as code validation. This paper is a follow-up to the WEC-Sim paper on experimental testing, and describes the WEC-Sim numerical simulations for the floating oscillating surge wave energy converter.

  15. Clinical prediction in defined populations: a simulation study investigating when and how to aggregate existing models

    Directory of Open Access Journals (Sweden)

    Glen P. Martin

    2017-01-01

    Full Text Available Abstract Background Clinical prediction models (CPMs are increasingly deployed to support healthcare decisions but they are derived inconsistently, in part due to limited data. An emerging alternative is to aggregate existing CPMs developed for similar settings and outcomes. This simulation study aimed to investigate the impact of between-population-heterogeneity and sample size on aggregating existing CPMs in a defined population, compared with developing a model de novo. Methods Simulations were designed to mimic a scenario in which multiple CPMs for a binary outcome had been derived in distinct, heterogeneous populations, with potentially different predictors available in each. We then generated a new ‘local’ population and compared the performance of CPMs developed for this population by aggregation, using stacked regression, principal component analysis or partial least squares, with redevelopment from scratch using backwards selection and penalised regression. Results While redevelopment approaches resulted in models that were miscalibrated for local datasets of less than 500 observations, model aggregation methods were well calibrated across all simulation scenarios. When the size of local data was less than 1000 observations and between-population-heterogeneity was small, aggregating existing CPMs gave better discrimination and had the lowest mean square error in the predicted risks compared with deriving a new model. Conversely, given greater than 1000 observations and significant between-population-heterogeneity, then redevelopment outperformed the aggregation approaches. In all other scenarios, both aggregation and de novo derivation resulted in similar predictive performance. Conclusion This study demonstrates a pragmatic approach to contextualising CPMs to defined populations. When aiming to develop models in defined populations, modellers should consider existing CPMs, with aggregation approaches being a suitable modelling

  16. Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models

    International Nuclear Information System (INIS)

    Hsu, Cheng-Hsiung; Yang, Tzi-Sheng

    2013-01-01

    The purpose of this work is to investigate the existence, uniqueness, monotonicity and asymptotic behaviour of travelling wave solutions for a general epidemic model arising from the spread of an epidemic by oral–faecal transmission. First, we apply Schauder's fixed point theorem combining with a supersolution and subsolution pair to derive the existence of positive monotone monostable travelling wave solutions. Then, applying the Ikehara's theorem, we determine the exponential rates of travelling wave solutions which converge to two different equilibria as the moving coordinate tends to positive infinity and negative infinity, respectively. Finally, using the sliding method, we prove the uniqueness result provided the travelling wave solutions satisfy some boundedness conditions. (paper)

  17. Validation of the replica trick for simple models

    Science.gov (United States)

    Shinzato, Takashi

    2018-04-01

    We discuss the replica analytic continuation using several simple models in order to prove mathematically the validity of the replica analysis, which is used in a wide range of fields related to large-scale complex systems. While replica analysis consists of two analytical techniques—the replica trick (or replica analytic continuation) and the thermodynamical limit (and/or order parameter expansion)—we focus our study on replica analytic continuation, which is the mathematical basis of the replica trick. We apply replica analysis to solve a variety of analytical models, and examine the properties of replica analytic continuation. Based on the positive results for these models we propose that replica analytic continuation is a robust procedure in replica analysis.

  18. On-line validation of linear process models using generalized likelihood ratios

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1981-12-01

    A real-time method for testing the validity of linear models of nonlinear processes is described and evaluated. Using generalized likelihood ratios, the model dynamics are continually monitored to see if the process has moved far enough away from the nominal linear model operating point to justify generation of a new linear model. The method is demonstrated using a seventh-order model of a natural circulation steam generator

  19. Time Sharing Between Robotics and Process Control: Validating a Model of Attention Switching.

    Science.gov (United States)

    Wickens, Christopher Dow; Gutzwiller, Robert S; Vieane, Alex; Clegg, Benjamin A; Sebok, Angelia; Janes, Jess

    2016-03-01

    The aim of this study was to validate the strategic task overload management (STOM) model that predicts task switching when concurrence is impossible. The STOM model predicts that in overload, tasks will be switched to, to the extent that they are attractive on task attributes of high priority, interest, and salience and low difficulty. But more-difficult tasks are less likely to be switched away from once they are being performed. In Experiment 1, participants performed four tasks of the Multi-Attribute Task Battery and provided task-switching data to inform the role of difficulty and priority. In Experiment 2, participants concurrently performed an environmental control task and a robotic arm simulation. Workload was varied by automation of arm movement and both the phases of environmental control and existence of decision support for fault management. Attention to the two tasks was measured using a head tracker. Experiment 1 revealed the lack of influence of task priority and confirmed the differing roles of task difficulty. In Experiment 2, the percentage attention allocation across the eight conditions was predicted by the STOM model when participants rated the four attributes. Model predictions were compared against empirical data and accounted for over 95% of variance in task allocation. More-difficult tasks were performed longer than easier tasks. Task priority does not influence allocation. The multiattribute decision model provided a good fit to the data. The STOM model is useful for predicting cognitive tunneling given that human-in-the-loop simulation is time-consuming and expensive. © 2016, Human Factors and Ergonomics Society.

  20. Developing an Actuarial Track Utilizing Existing Resources

    Science.gov (United States)

    Rodgers, Kathy V.; Sarol, Yalçin

    2014-01-01

    Students earning a degree in mathematics often seek information on how to apply their mathematical knowledge. One option is to follow a curriculum with an actuarial emphasis designed to prepare students as an applied mathematician in the actuarial field. By developing only two new courses and utilizing existing courses for Validation by…

  1. Calibration and validation of coarse-grained models of atomic systems: application to semiconductor manufacturing

    Science.gov (United States)

    Farrell, Kathryn; Oden, J. Tinsley

    2014-07-01

    Coarse-grained models of atomic systems, created by aggregating groups of atoms into molecules to reduce the number of degrees of freedom, have been used for decades in important scientific and technological applications. In recent years, interest in developing a more rigorous theory for coarse graining and in assessing the predictivity of coarse-grained models has arisen. In this work, Bayesian methods for the calibration and validation of coarse-grained models of atomistic systems in thermodynamic equilibrium are developed. For specificity, only configurational models of systems in canonical ensembles are considered. Among major challenges in validating coarse-grained models are (1) the development of validation processes that lead to information essential in establishing confidence in the model's ability predict key quantities of interest and (2), above all, the determination of the coarse-grained model itself; that is, the characterization of the molecular architecture, the choice of interaction potentials and thus parameters, which best fit available data. The all-atom model is treated as the "ground truth," and it provides the basis with respect to which properties of the coarse-grained model are compared. This base all-atom model is characterized by an appropriate statistical mechanics framework in this work by canonical ensembles involving only configurational energies. The all-atom model thus supplies data for Bayesian calibration and validation methods for the molecular model. To address the first challenge, we develop priors based on the maximum entropy principle and likelihood functions based on Gaussian approximations of the uncertainties in the parameter-to-observation error. To address challenge (2), we introduce the notion of model plausibilities as a means for model selection. This methodology provides a powerful approach toward constructing coarse-grained models which are most plausible for given all-atom data. We demonstrate the theory and

  2. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-01-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicated on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction. 43 refs

  3. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-09-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicted on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction

  4. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    Glass, R.J.; Tidwell, V.C.

    1991-01-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicted on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction

  5. Approaches to Validation of Models for Low Gravity Fluid Behavior

    Science.gov (United States)

    Chato, David J.; Marchetta, Jeffery; Hochstein, John I.; Kassemi, Mohammad

    2005-01-01

    This paper details the author experiences with the validation of computer models to predict low gravity fluid behavior. It reviews the literature of low gravity fluid behavior as a starting point for developing a baseline set of test cases. It examines authors attempts to validate their models against these cases and the issues they encountered. The main issues seem to be that: Most of the data is described by empirical correlation rather than fundamental relation; Detailed measurements of the flow field have not been made; Free surface shapes are observed but through thick plastic cylinders, and therefore subject to a great deal of optical distortion; and Heat transfer process time constants are on the order of minutes to days but the zero-gravity time available has been only seconds.

  6. External Validation of a Prediction Model for Successful External Cephalic Version

    NARCIS (Netherlands)

    de Hundt, Marcella; Vlemmix, Floortje; Kok, Marjolein; van der Steeg, Jan W.; Bais, Joke M.; Mol, Ben W.; van der Post, Joris A.

    2012-01-01

    We sought external validation of a prediction model for the probability of a successful external cephalic version (ECV). We evaluated the performance of the prediction model with calibration and discrimination. For clinical practice, we developed a score chart to calculate the probability of a

  7. Modeling and Experimental Validation of an Islanded No-Inertia Microgrid Site

    DEFF Research Database (Denmark)

    Bonfiglio, Andrea; Delfino, Federico; Labella, Alessandro

    2018-01-01

    The paper proposes a simple but effective model for no-inertia microgrids suitable to represent the instantaneous values of its meaningful electric variables, becoming a useful platform to test innovative control logics and energy management systems. The proposed model is validated against a more...

  8. Validation of Pressure Drop Models for PHWR-type Fuel Elements

    International Nuclear Information System (INIS)

    Brasnarof Daniel; Daverio, H.

    2003-01-01

    In the present work an one-dimensional pressure drop analytical model and the COBRA code, are validated with experimental data of CANDU and Atucha fuel bundles in low and high pressure experimental test loops.Models have very good agreement with the experimental data, having less than 5 % of discrepancy. The analytical model results were compared with COBRA code results, having small difference between them in a wide range of pressure, temperature and mass flow

  9. Validation of coastal oceanographic models at Forsmark. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Engqvist, Anders (A och I Engqvist Konsult HB, Vaxholm (SE)); Andrejev, Oleg (Finnish Inst. of Marine Research, Helsinki (FI))

    2008-01-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, the Forsmark and the Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterisation work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models employed to simulate the water exchange in the near-shore coastal zone in the Forsmark area, an encompassing measurement program entailing six stations has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR) model of the Forsmark study area at its interfacial boundary to the coarse resolution (CR) model of the entire Baltic was reproduced. In addition to this scrutiny it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain, since this corresponds to the most efficient mode of water exchange. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that several periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Lack of thorough absolute calibration of the salinity meters also necessitates dismissal of measurement data. Relative the assessed data that can be accepted as adequate, the outcome of the validation can be summarized in five points: (i) The surface-most salinity of the CR-model drifts downward a little less than one practical salinity unit (psu) per year, requiring that the ensuing correlation analysis be subdivided into periods of a

  10. Validation of coastal oceanographic models at Forsmark. Site descriptive modelling SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Engqvist, Anders; Andrejev, Oleg

    2008-01-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, the Forsmark and the Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterisation work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models employed to simulate the water exchange in the near-shore coastal zone in the Forsmark area, an encompassing measurement program entailing six stations has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR) model of the Forsmark study area at its interfacial boundary to the coarse resolution (CR) model of the entire Baltic was reproduced. In addition to this scrutiny it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain, since this corresponds to the most efficient mode of water exchange. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that several periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Lack of thorough absolute calibration of the salinity meters also necessitates dismissal of measurement data. Relative the assessed data that can be accepted as adequate, the outcome of the validation can be summarized in five points: (i) The surface-most salinity of the CR-model drifts downward a little less than one practical salinity unit (psu) per year, requiring that the ensuing correlation analysis be subdivided into periods of a

  11. Development and validation of a mortality risk model for pediatric sepsis

    Science.gov (United States)

    Chen, Mengshi; Lu, Xiulan; Hu, Li; Liu, Pingping; Zhao, Wenjiao; Yan, Haipeng; Tang, Liang; Zhu, Yimin; Xiao, Zhenghui; Chen, Lizhang; Tan, Hongzhuan

    2017-01-01

    Abstract Pediatric sepsis is a burdensome public health problem. Assessing the mortality risk of pediatric sepsis patients, offering effective treatment guidance, and improving prognosis to reduce mortality rates, are crucial. We extracted data derived from electronic medical records of pediatric sepsis patients that were collected during the first 24 hours after admission to the pediatric intensive care unit (PICU) of the Hunan Children's hospital from January 2012 to June 2014. A total of 788 children were randomly divided into a training (592, 75%) and validation group (196, 25%). The risk factors for mortality among these patients were identified by conducting multivariate logistic regression in the training group. Based on the established logistic regression equation, the logit probabilities for all patients (in both groups) were calculated to verify the model's internal and external validities. According to the training group, 6 variables (brain natriuretic peptide, albumin, total bilirubin, D-dimer, lactate levels, and mechanical ventilation in 24 hours) were included in the final logistic regression model. The areas under the curves of the model were 0.854 (0.826, 0.881) and 0.844 (0.816, 0.873) in the training and validation groups, respectively. The Mortality Risk Model for Pediatric Sepsis we established in this study showed acceptable accuracy to predict the mortality risk in pediatric sepsis patients. PMID:28514310

  12. Development of a new model to predict indoor daylighting: Integration in CODYRUN software and validation

    Energy Technology Data Exchange (ETDEWEB)

    Fakra, A.H., E-mail: fakra@univ-reunion.f [Physics and Mathematical Engineering Laboratory for Energy and Environment (PIMENT), University of La Reunion, 117 rue du General Ailleret, 97430 Le Tampon (French Overseas Dpt.), Reunion (France); Miranville, F.; Boyer, H.; Guichard, S. [Physics and Mathematical Engineering Laboratory for Energy and Environment (PIMENT), University of La Reunion, 117 rue du General Ailleret, 97430 Le Tampon (French Overseas Dpt.), Reunion (France)

    2011-07-15

    Research highlights: {yields} This study presents a new model capable to simulate indoor daylighting. {yields} The model was introduced in research software called CODYRUN. {yields} The validation of the code was realized from a lot of tests cases. -- Abstract: Many models exist in the scientific literature for determining indoor daylighting values. They are classified in three categories: numerical, simplified and empirical models. Nevertheless, each of these categories of models are not convenient for every application. Indeed, the numerical model requires high calculation time; conditions of use of the simplified models are limited, and experimental models need not only important financial resources but also a perfect control of experimental devices (e.g. scale model), as well as climatic characteristics of the location (e.g. in situ experiment). In this article, a new model based on a combination of multiple simplified models is established. The objective is to improve this category of model. The originality of our paper relies on the coupling of several simplified models of indoor daylighting calculations. The accuracy of the simulation code, introduced into CODYRUN software to simulate correctly indoor illuminance, is then verified. Besides, the software consists of a numerical building simulation code, developed in the Physics and Mathematical Engineering Laboratory for Energy and Environment (PIMENT) at the University of Reunion. Initially dedicated to the thermal, airflow and hydrous phenomena in the buildings, the software has been completed for the calculation of indoor daylighting. New models and algorithms - which rely on a semi-detailed approach - will be presented in this paper. In order to validate the accuracy of the integrated models, many test cases have been considered as analytical, inter-software comparisons and experimental comparisons. In order to prove the accuracy of the new model - which can properly simulate the illuminance - a

  13. Consistency, Verification, and Validation of Turbulence Models for Reynolds-Averaged Navier-Stokes Applications

    Science.gov (United States)

    Rumsey, Christopher L.

    2009-01-01

    In current practice, it is often difficult to draw firm conclusions about turbulence model accuracy when performing multi-code CFD studies ostensibly using the same model because of inconsistencies in model formulation or implementation in different codes. This paper describes an effort to improve the consistency, verification, and validation of turbulence models within the aerospace community through a website database of verification and validation cases. Some of the variants of two widely-used turbulence models are described, and two independent computer codes (one structured and one unstructured) are used in conjunction with two specific versions of these models to demonstrate consistency with grid refinement for several representative problems. Naming conventions, implementation consistency, and thorough grid resolution studies are key factors necessary for success.

  14. Development and validation of a viscoelastic and nonlinear liver model for needle insertion

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Yo [Waseda University, Consolidated Research Institute for Advanced Science and Medical Care, Shinjuku, Tokyo (Japan); Onishi, Akinori; Hoshi, Takeharu; Kawamura, Kazuya [Waseda University, Graduate School of Science and Engineering, Shinjuku (Japan); Hashizume, Makoto [Kyushu University Hospital, Center for the Integration of Advanced Medicine and Innovative Technology, Fukuoka (Japan); Fujie, Masakatsu G. [Waseda University, Graduate School of Science and Engineering, Faculty of Science and Engineering, Shinjuku (Japan)

    2009-01-15

    The objective of our work is to develop and validate a viscoelastic and nonlinear physical liver model for organ model-based needle insertion, in which the deformation of an organ is estimated and predicted, and the needle path is determined with organ deformation taken into consideration. First, an overview is given of the development of the physical liver model. The material properties of the liver considering viscoelasticity and nonlinearity are modeled based on the measured data collected from a pig's liver. The method to develop the liver model using FEM is also shown. Second, the experimental method to validate the model is explained. Both in vitro and in vivo experiments that made use of a pig's liver were conducted for comparison with the simulation using the model. Results of the in vitro experiment showed that the model reproduces nonlinear and viscoelastic response of displacement at an internally located point with high accuracy. For a force up to 0.45 N, the maximum error is below 1 mm. Results of the in vivo experiment showed that the model reproduces the nonlinear increase of load upon the needle during insertion. Based on these results, the liver model developed and validated in this work reproduces the physical response of a liver in both in vitro and in vivo situations. (orig.)

  15. Comparative Application of Capacity Models for Seismic Vulnerability Evaluation of Existing RC Structures

    International Nuclear Information System (INIS)

    Faella, C.; Lima, C.; Martinelli, E.; Nigro, E.

    2008-01-01

    Seismic vulnerability assessment of existing buildings is one of the most common tasks in which Structural Engineers are currently engaged. Since, its is often a preliminary step to approach the issue of how to retrofit non-seismic designed and detailed structures, it plays a key role in the successful choice of the most suitable strengthening technique. In this framework, the basic information for both seismic assessment and retrofitting is related to the formulation of capacity models for structural members. Plenty of proposals, often contradictory under the quantitative standpoint, are currently available within the technical and scientific literature for defining the structural capacity in terms of force and displacements, possibly with reference to different parameters representing the seismic response. The present paper shortly reviews some of the models for capacity of RC members and compare them with reference to two case studies assumed as representative of a wide class of existing buildings

  16. Development and validation of a two-dimensional fast-response flood estimation model

    Energy Technology Data Exchange (ETDEWEB)

    Judi, David R [Los Alamos National Laboratory; Mcpherson, Timothy N [Los Alamos National Laboratory; Burian, Steven J [UNIV OF UTAK

    2009-01-01

    A finite difference formulation of the shallow water equations using an upwind differencing method was developed maintaining computational efficiency and accuracy such that it can be used as a fast-response flood estimation tool. The model was validated using both laboratory controlled experiments and an actual dam breach. Through the laboratory experiments, the model was shown to give good estimations of depth and velocity when compared to the measured data, as well as when compared to a more complex two-dimensional model. Additionally, the model was compared to high water mark data obtained from the failure of the Taum Sauk dam. The simulated inundation extent agreed well with the observed extent, with the most notable differences resulting from the inability to model sediment transport. The results of these validation studies complex two-dimensional model. Additionally, the model was compared to high water mark data obtained from the failure of the Taum Sauk dam. The simulated inundation extent agreed well with the observed extent, with the most notable differences resulting from the inability to model sediment transport. The results of these validation studies show that a relatively numerical scheme used to solve the complete shallow water equations can be used to accurately estimate flood inundation. Future work will focus on further reducing the computation time needed to provide flood inundation estimates for fast-response analyses. This will be accomplished through the efficient use of multi-core, multi-processor computers coupled with an efficient domain-tracking algorithm, as well as an understanding of the impacts of grid resolution on model results.

  17. Monte Carlo Modelling of Mammograms : Development and Validation

    International Nuclear Information System (INIS)

    Spyrou, G.; Panayiotakis, G.; Bakas, A.; Tzanakos, G.

    1998-01-01

    A software package using Monte Carlo methods has been developed for the simulation of x-ray mammography. A simplified geometry of the mammographic apparatus has been considered along with the software phantom of compressed breast. This phantom may contain inhomogeneities of various compositions and sizes at any point. Using this model one can produce simulated mammograms. Results that demonstrate the validity of this simulation are presented. (authors)

  18. Validation of Nonlinear Bipolar Transistor Model by Small-Signal Measurements

    DEFF Research Database (Denmark)

    Vidkjær, Jens; Porra, V.; Zhu, J.

    1992-01-01

    A new method for the validity analysis of nonlinear transistor models is presented based on DC-and small-signal S-parameter measurements and realistic consideration of the measurement and de-embedding errors and singularities of the small-signal equivalent circuit. As an example, some analysis...... results for an extended Gummel Poon model are presented in the case of a UHF bipolar power transistor....

  19. Understanding Dynamic Model Validation of a Wind Turbine Generator and a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Zhang, Ying Chen; Gevorgian, Vahan; Kosterev, Dmitry

    2016-09-01

    Regional reliability organizations require power plants to validate the dynamic models that represent them to ensure that power systems studies are performed to the best representation of the components installed. In the process of validating a wind power plant (WPP), one must be cognizant of the parameter settings of the wind turbine generators (WTGs) and the operational settings of the WPP. Validating the dynamic model of a WPP is required to be performed periodically. This is because the control parameters of the WTGs and the other supporting components within a WPP may be modified to comply with new grid codes or upgrades to the WTG controller with new capabilities developed by the turbine manufacturers or requested by the plant owners or operators. The diversity within a WPP affects the way we represent it in a model. Diversity within a WPP may be found in the way the WTGs are controlled, the wind resource, the layout of the WPP (electrical diversity), and the type of WTGs used. Each group of WTGs constitutes a significant portion of the output power of the WPP, and their unique and salient behaviors should be represented individually. The objective of this paper is to illustrate the process of dynamic model validations of WTGs and WPPs, the available data recorded that must be screened before it is used for the dynamic validations, and the assumptions made in the dynamic models of the WTG and WPP that must be understood. Without understanding the correct process, the validations may lead to the wrong representations of the WTG and WPP modeled.

  20. Use of the FDA nozzle model to illustrate validation techniques in computational fluid dynamics (CFD) simulations.

    Science.gov (United States)

    Hariharan, Prasanna; D'Souza, Gavin A; Horner, Marc; Morrison, Tina M; Malinauskas, Richard A; Myers, Matthew R

    2017-01-01

    A "credible" computational fluid dynamics (CFD) model has the potential to provide a meaningful evaluation of safety in medical devices. One major challenge in establishing "model credibility" is to determine the required degree of similarity between the model and experimental results for the model to be considered sufficiently validated. This study proposes a "threshold-based" validation approach that provides a well-defined acceptance criteria, which is a function of how close the simulation and experimental results are to the safety threshold, for establishing the model validity. The validation criteria developed following the threshold approach is not only a function of Comparison Error, E (which is the difference between experiments and simulations) but also takes in to account the risk to patient safety because of E. The method is applicable for scenarios in which a safety threshold can be clearly defined (e.g., the viscous shear-stress threshold for hemolysis in blood contacting devices). The applicability of the new validation approach was tested on the FDA nozzle geometry. The context of use (COU) was to evaluate if the instantaneous viscous shear stress in the nozzle geometry at Reynolds numbers (Re) of 3500 and 6500 was below the commonly accepted threshold for hemolysis. The CFD results ("S") of velocity and viscous shear stress were compared with inter-laboratory experimental measurements ("D"). The uncertainties in the CFD and experimental results due to input parameter uncertainties were quantified following the ASME V&V 20 standard. The CFD models for both Re = 3500 and 6500 could not be sufficiently validated by performing a direct comparison between CFD and experimental results using the Student's t-test. However, following the threshold-based approach, a Student's t-test comparing |S-D| and |Threshold-S| showed that relative to the threshold, the CFD and experimental datasets for Re = 3500 were statistically similar and the model could be

  1. Modeling of mitochondria bioenergetics using a composable chemiosmotic energy transduction rate law: theory and experimental validation.

    Directory of Open Access Journals (Sweden)

    Ivan Chang

    Full Text Available Mitochondrial bioenergetic processes are central to the production of cellular energy, and a decrease in the expression or activity of enzyme complexes responsible for these processes can result in energetic deficit that correlates with many metabolic diseases and aging. Unfortunately, existing computational models of mitochondrial bioenergetics either lack relevant kinetic descriptions of the enzyme complexes, or incorporate mechanisms too specific to a particular mitochondrial system and are thus incapable of capturing the heterogeneity associated with these complexes across different systems and system states. Here we introduce a new composable rate equation, the chemiosmotic rate law, that expresses the flux of a prototypical energy transduction complex as a function of: the saturation kinetics of the electron donor and acceptor substrates; the redox transfer potential between the complex and the substrates; and the steady-state thermodynamic force-to-flux relationship of the overall electro-chemical reaction. Modeling of bioenergetics with this rate law has several advantages: (1 it minimizes the use of arbitrary free parameters while featuring biochemically relevant parameters that can be obtained through progress curves of common enzyme kinetics protocols; (2 it is modular and can adapt to various enzyme complex arrangements for both in vivo and in vitro systems via transformation of its rate and equilibrium constants; (3 it provides a clear association between the sensitivity of the parameters of the individual complexes and the sensitivity of the system's steady-state. To validate our approach, we conduct in vitro measurements of ETC complex I, III, and IV activities using rat heart homogenates, and construct an estimation procedure for the parameter values directly from these measurements. In addition, we show the theoretical connections of our approach to the existing models, and compare the predictive accuracy of the rate law with

  2. Modeling of mitochondria bioenergetics using a composable chemiosmotic energy transduction rate law: theory and experimental validation.

    Science.gov (United States)

    Chang, Ivan; Heiske, Margit; Letellier, Thierry; Wallace, Douglas; Baldi, Pierre

    2011-01-01

    Mitochondrial bioenergetic processes are central to the production of cellular energy, and a decrease in the expression or activity of enzyme complexes responsible for these processes can result in energetic deficit that correlates with many metabolic diseases and aging. Unfortunately, existing computational models of mitochondrial bioenergetics either lack relevant kinetic descriptions of the enzyme complexes, or incorporate mechanisms too specific to a particular mitochondrial system and are thus incapable of capturing the heterogeneity associated with these complexes across different systems and system states. Here we introduce a new composable rate equation, the chemiosmotic rate law, that expresses the flux of a prototypical energy transduction complex as a function of: the saturation kinetics of the electron donor and acceptor substrates; the redox transfer potential between the complex and the substrates; and the steady-state thermodynamic force-to-flux relationship of the overall electro-chemical reaction. Modeling of bioenergetics with this rate law has several advantages: (1) it minimizes the use of arbitrary free parameters while featuring biochemically relevant parameters that can be obtained through progress curves of common enzyme kinetics protocols; (2) it is modular and can adapt to various enzyme complex arrangements for both in vivo and in vitro systems via transformation of its rate and equilibrium constants; (3) it provides a clear association between the sensitivity of the parameters of the individual complexes and the sensitivity of the system's steady-state. To validate our approach, we conduct in vitro measurements of ETC complex I, III, and IV activities using rat heart homogenates, and construct an estimation procedure for the parameter values directly from these measurements. In addition, we show the theoretical connections of our approach to the existing models, and compare the predictive accuracy of the rate law with our experimentally

  3. A validated dynamic model of the first marine molten carbonate fuel cell

    International Nuclear Information System (INIS)

    Ovrum, E.; Dimopoulos, G.

    2012-01-01

    In this work we present a modular, dynamic and multi-dimensional model of a molten carbonate fuel cell (MCFC) onboard the offshore supply vessel “Viking Lady” serving as an auxiliary power unit. The model is able to capture detailed thermodynamic, heat transfer and electrochemical reaction phenomena within the fuel cell layers. The model has been calibrated and validated with measured performance data from a prototype installation onboard the vessel. The model is able to capture detailed thermodynamic, heat transfer and electrochemical reaction phenomena within the fuel cell layers. The model has been calibrated and validated with measured performance data from a prototype installation onboard the offshore supply vessel. The calibration process included parameter identification, sensitivity analysis to identify the critical model parameters, and iterative calibration of these to minimize the overall prediction error. The calibrated model has a low prediction error of 4% for the operating range of the cell, exhibiting at the same time a physically sound qualitative behavior in terms of thermodynamic heat transfer and electrochemical phenomena, both on steady-state and transient operation. The developed model is suitable for a wide range of studies covering the aspects of thermal efficiency, performance, operability, safety and endurance/degradation, which are necessary to introduce fuel cells in ships. The aim of this MCFC model is to aid to the introduction, design, concept approval and verification of environmentally friendly marine applications such as fuel cells, in a cost-effective, fast and safe manner. - Highlights: ► We model the first marine molten carbonate fuel cell auxiliary power unit. ► The model is distributed spatially and models both steady state and transients. ► The model is validated against experimental data. ► The paper illustrates how the model can be used in safety and reliability studies.

  4. Transient Model Validation of Fixed-Speed Induction Generator Using Wind Farm Measurements

    DEFF Research Database (Denmark)

    Rogdakis, Georgios; Garcia-Valle, Rodrigo; Arana Aristi, Iván

    2012-01-01

    In this paper, an electromagnetic transient model for fixed-speed wind turbines equipped with induction generators is developed and implemented in PSCAD/EMTDC. The model is comprised by: an induction generator, aerodynamic rotor, and a two-mass representation of the shaft system. Model validation...

  5. A GLOBAL TWO-TEMPERATURE CORONA AND INNER HELIOSPHERE MODEL: A COMPREHENSIVE VALIDATION STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Jin, M.; Manchester, W. B.; Van der Holst, B.; Gruesbeck, J. R.; Frazin, R. A.; Landi, E.; Toth, G.; Gombosi, T. I. [Atmospheric Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Vasquez, A. M. [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67, Suc 28, Ciudad de Buenos Aires (Argentina); Lamy, P. L.; Llebaria, A.; Fedorov, A., E-mail: jinmeng@umich.edu [Laboratoire d' Astrophysique de Marseille, Universite de Provence, Marseille (France)

    2012-01-20

    The recent solar minimum with very low activity provides us a unique opportunity for validating solar wind models. During CR2077 (2008 November 20 through December 17), the number of sunspots was near the absolute minimum of solar cycle 23. For this solar rotation, we perform a multi-spacecraft validation study for the recently developed three-dimensional, two-temperature, Alfven-wave-driven global solar wind model (a component within the Space Weather Modeling Framework). By using in situ observations from the Solar Terrestrial Relations Observatory (STEREO) A and B, Advanced Composition Explorer (ACE), and Venus Express, we compare the observed proton state (density, temperature, and velocity) and magnetic field of the heliosphere with that predicted by the model. Near the Sun, we validate the numerical model with the electron density obtained from the solar rotational tomography of Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph C2 data in the range of 2.4 to 6 solar radii. Electron temperature and density are determined from differential emission measure tomography (DEMT) of STEREO A and B Extreme Ultraviolet Imager data in the range of 1.035 to 1.225 solar radii. The electron density and temperature derived from the Hinode/Extreme Ultraviolet Imaging Spectrometer data are also used to compare with the DEMT as well as the model output. Moreover, for the first time, we compare ionic charge states of carbon, oxygen, silicon, and iron observed in situ with the ACE/Solar Wind Ion Composition Spectrometer with those predicted by our model. The validation results suggest that most of the model outputs for CR2077 can fit the observations very well. Based on this encouraging result, we therefore expect great improvement for the future modeling of coronal mass ejections (CMEs) and CME-driven shocks.

  6. Explicit validation of a surface shortwave radiation balance model over snow-covered complex terrain

    Science.gov (United States)

    Helbig, N.; Löwe, H.; Mayer, B.; Lehning, M.

    2010-09-01

    A model that computes the surface radiation balance for all sky conditions in complex terrain is presented. The spatial distribution of direct and diffuse sky radiation is determined from observations of incident global radiation, air temperature, and relative humidity at a single measurement location. Incident radiation under cloudless sky is spatially derived from a parameterization of the atmospheric transmittance. Direct and diffuse sky radiation for all sky conditions are obtained by decomposing the measured global radiation value. Spatial incident radiation values under all atmospheric conditions are computed by adjusting the spatial radiation values obtained from the parametric model with the radiation components obtained from the decomposition model at the measurement site. Topographic influences such as shading are accounted for. The radiosity approach is used to compute anisotropic terrain reflected radiation. Validations of the shortwave radiation balance model are presented in detail for a day with cloudless sky. For a day with overcast sky a first validation is presented. Validation of a section of the horizon line as well as of individual radiation components is performed with high-quality measurements. A new measurement setup was designed to determine terrain reflected radiation. There is good agreement between the measurements and the modeled terrain reflected radiation values as well as with incident radiation values. A comparison of the model with a fully three-dimensional radiative transfer Monte Carlo model is presented. That validation reveals a good agreement between modeled radiation values.

  7. Comparative calculations and validation studies with atmospheric dispersion models

    International Nuclear Information System (INIS)

    Paesler-Sauer, J.

    1986-11-01

    This report presents the results of an intercomparison of different mesoscale dispersion models and measured data of tracer experiments. The types of models taking part in the intercomparison are Gaussian-type, numerical Eulerian, and Lagrangian dispersion models. They are suited for the calculation of the atmospherical transport of radionuclides released from a nuclear installation. For the model intercomparison artificial meteorological situations were defined and corresponding arithmetical problems were formulated. For the purpose of model validation real dispersion situations of tracer experiments were used as input data for model calculations; in these cases calculated and measured time-integrated concentrations close to the ground are compared. Finally a valuation of the models concerning their efficiency in solving the problems is carried out by the aid of objective methods. (orig./HP) [de

  8. Groundwater Model Validation for the Project Shoal Area, Corrective Action Unit 447

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Ahmed [Desert Research Inst. (DRI), Las Vegas, NV (United States). Division of Hydrologic Sciences; Chapman, Jenny [Desert Research Inst. (DRI), Las Vegas, NV (United States). Division of Hydrologic Sciences; Lyles, Brad [Desert Research Inst. (DRI), Las Vegas, NV (United States). Division of Hydrologic Sciences

    2008-05-19

    Stoller has examined newly collected water level data in multiple wells at the Shoal site. On the basis of these data and information presented in the report, we are currently unable to confirm that the model is successfully validated. Most of our concerns regarding the model stem from two findings: (1) measured water level data do not provide clear evidence of a prevailing lateral flow direction; and (2) the groundwater flow system has been and continues to be in a transient state, which contrasts with assumed steady-state conditions in the model. The results of DRI's model validation efforts and observations made regarding water level behavior are discussed in the following sections. A summary of our conclusions and recommendations for a path forward are also provided in this letter report.

  9. MT3DMS: Model use, calibration, and validation

    Science.gov (United States)

    Zheng, C.; Hill, Mary C.; Cao, G.; Ma, R.

    2012-01-01

    MT3DMS is a three-dimensional multi-species solute transport model for solving advection, dispersion, and chemical reactions of contaminants in saturated groundwater flow systems. MT3DMS interfaces directly with the U.S. Geological Survey finite-difference groundwater flow model MODFLOW for the flow solution and supports the hydrologic and discretization features of MODFLOW. MT3DMS contains multiple transport solution techniques in one code, which can often be important, including in model calibration. Since its first release in 1990 as MT3D for single-species mass transport modeling, MT3DMS has been widely used in research projects and practical field applications. This article provides a brief introduction to MT3DMS and presents recommendations about calibration and validation procedures for field applications of MT3DMS. The examples presented suggest the need to consider alternative processes as models are calibrated and suggest opportunities and difficulties associated with using groundwater age in transport model calibration.

  10. Clinical prediction models for bronchopulmonary dysplasia: a systematic review and external validation study

    NARCIS (Netherlands)

    Onland, Wes; Debray, Thomas P.; Laughon, Matthew M.; Miedema, Martijn; Cools, Filip; Askie, Lisa M.; Asselin, Jeanette M.; Calvert, Sandra A.; Courtney, Sherry E.; Dani, Carlo; Durand, David J.; Marlow, Neil; Peacock, Janet L.; Pillow, J. Jane; Soll, Roger F.; Thome, Ulrich H.; Truffert, Patrick; Schreiber, Michael D.; van Reempts, Patrick; Vendettuoli, Valentina; Vento, Giovanni; van Kaam, Anton H.; Moons, Karel G.; Offringa, Martin

    2013-01-01

    Bronchopulmonary dysplasia (BPD) is a common complication of preterm birth. Very different models using clinical parameters at an early postnatal age to predict BPD have been developed with little extensive quantitative validation. The objective of this study is to review and validate clinical

  11. Validation of the news computerizing renography system developed of the CEADEN in order to improve the renography system existing at the National Nephrology Institute

    International Nuclear Information System (INIS)

    Medina Martin, D.; Rodriguez Gonzalez, F.; Arista Romeu, E.; Diaz Barreto, M.; Fraxedas Mayor, R.

    1999-01-01

    The isotopic renography is a technique that permits the evaluation of renal and the urinary tract diseases. In our country is not possible performs these studies only using gamma cameras due to the high costs of this technique, so the renography results an important method for this. It was developed a computerizing renography system in order to improve the renography system existing at the National Nephrology Institute (INEF), which is the head institute in this field in Cuba. The computerizing renography system includes a detection system, an interface card and software. As detection system was using the existing at the Institute. Specialists of the CEADEN using the high experience of the INEF and the international standards developed the card and software. The new software has several advantages with respect to the ancient, as example: normalized and standardizing control and processing protocols, a higher number of studies, the conduction and parameters validation of the studies, help system included, a database with the study results, teaching possibilities, etc. The validation of the news card and software was carried out simultaneously with the old system during 1 year approximately. This permitted to compare the main parameters and results in both systems. The results obtained were analyzed using statistical programs. As conclusion we obtained that both systems have a high correlation, so it is possible to substitute the old system with a more powerful and integral renography system

  12. Validation of a risk prediction model for Barrett's esophagus in an Australian population.

    Science.gov (United States)

    Ireland, Colin J; Gordon, Andrea L; Thompson, Sarah K; Watson, David I; Whiteman, David C; Reed, Richard L; Esterman, Adrian

    2018-01-01

    Esophageal adenocarcinoma is a disease that has a high mortality rate, the only known precursor being Barrett's esophagus (BE). While screening for BE is not cost-effective at the population level, targeted screening might be beneficial. We have developed a risk prediction model to identify people with BE, and here we present the external validation of this model. A cohort study was undertaken to validate a risk prediction model for BE. Individuals with endoscopy and histopathology proven BE completed a questionnaire containing variables previously identified as risk factors for this condition. Their responses were combined with data from a population sample for analysis. Risk scores were derived for each participant. Overall performance of the risk prediction model in terms of calibration and discrimination was assessed. Scores from 95 individuals with BE and 636 individuals from the general population were analyzed. The Brier score was 0.118, suggesting reasonable overall performance. The area under the receiver operating characteristic was 0.83 (95% CI 0.78-0.87). The Hosmer-Lemeshow statistic was p =0.14. Minimizing false positives and false negatives, the model achieved a sensitivity of 74% and a specificity of 73%. This study has validated a risk prediction model for BE that has a higher sensitivity than previous models.

  13. Probability of Detection (POD) as a statistical model for the validation of qualitative methods.

    Science.gov (United States)

    Wehling, Paul; LaBudde, Robert A; Brunelle, Sharon L; Nelson, Maria T

    2011-01-01

    A statistical model is presented for use in validation of qualitative methods. This model, termed Probability of Detection (POD), harmonizes the statistical concepts and parameters between quantitative and qualitative method validation. POD characterizes method response with respect to concentration as a continuous variable. The POD model provides a tool for graphical representation of response curves for qualitative methods. In addition, the model allows comparisons between candidate and reference methods, and provides calculations of repeatability, reproducibility, and laboratory effects from collaborative study data. Single laboratory study and collaborative study examples are given.

  14. Validating the CORE-10 as a mental health screening tool for prisoners

    OpenAIRE

    Lewis, Gwen

    2016-01-01

    Background: Few mental health screening tools have been validated with prisoners and existing tools, do not assess severity of need in line with contemporary stepped care service models. \\ud \\ud Aims: The current research aims to assess the CORE-10’s psychometric reliability, validity and predictive accuracy as a screening tool for common (primary care) and severe (secondary care) mental health problems in prisoners. \\ud \\ud Method: Cross –sectional study of 150 prisoners. All participants co...

  15. Calibration and validation of a general infiltration model

    Science.gov (United States)

    Mishra, Surendra Kumar; Ranjan Kumar, Shashi; Singh, Vijay P.

    1999-08-01

    A general infiltration model proposed by Singh and Yu (1990) was calibrated and validated using a split sampling approach for 191 sets of infiltration data observed in the states of Minnesota and Georgia in the USA. Of the five model parameters, fc (the final infiltration rate), So (the available storage space) and exponent n were found to be more predictable than the other two parameters: m (exponent) and a (proportionality factor). A critical examination of the general model revealed that it is related to the Soil Conservation Service (1956) curve number (SCS-CN) method and its parameter So is equivalent to the potential maximum retention of the SCS-CN method and is, in turn, found to be a function of soil sorptivity and hydraulic conductivity. The general model was found to describe infiltration rate with time varying curve number.

  16. Validation of ASTEC v2.0 corium jet fragmentation model using FARO experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Pla, P.; Sangiorgi, M.

    2015-01-01

    Highlights: • Model validation base extended to six FARO experiments. • Focus on the calculation of the fragmented particle diameter. • Capability and limits of the ASTEC fragmentation model. • Sensitivity analysis of model outputs. - Abstract: ASTEC is an integral code for the prediction of Severe Accidents in Nuclear Power Plants. As such, it needs to cover all physical processes that could occur during accident progression, yet keeping its models simple enough for the ensemble to stay manageable and produce results within an acceptable time. The present paper is concerned with the validation of the Corium jet fragmentation model of ASTEC v2.0 rev3 by means of a selection of six experiments carried out within the FARO facility. The different conditions applied within these six experiments help to analyse the model behaviour in different situations and to expose model limits. In addition to comparing model outputs with experimental measurements, sensitivity analyses are applied to investigate the model. Results of the paper are (i) validation runs, accompanied by an identification of situations where the implemented fragmentation model does not match the experiments well, and discussion of results; (ii) its special attention to the models calculating the diameter of fragmented particles, the identification of a fault in one model implemented, and the discussion of simplification and ad hoc modification to improve the model fit; and, (iii) an investigation of the sensitivity of predictions towards inputs and parameters. In this way, the paper offers a thorough investigation of the merit and limitation of the fragmentation model used in ASTEC

  17. Evaluation of nonlinearity and validity of nonlinear modeling for complex time series.

    Science.gov (United States)

    Suzuki, Tomoya; Ikeguchi, Tohru; Suzuki, Masuo

    2007-10-01

    Even if an original time series exhibits nonlinearity, it is not always effective to approximate the time series by a nonlinear model because such nonlinear models have high complexity from the viewpoint of information criteria. Therefore, we propose two measures to evaluate both the nonlinearity of a time series and validity of nonlinear modeling applied to it by nonlinear predictability and information criteria. Through numerical simulations, we confirm that the proposed measures effectively detect the nonlinearity of an observed time series and evaluate the validity of the nonlinear model. The measures are also robust against observational noises. We also analyze some real time series: the difference of the number of chickenpox and measles patients, the number of sunspots, five Japanese vowels, and the chaotic laser. We can confirm that the nonlinear model is effective for the Japanese vowel /a/, the difference of the number of measles patients, and the chaotic laser.

  18. Validation of a probabilistic model for hurricane insurance loss projections in Florida

    International Nuclear Information System (INIS)

    Pinelli, J.-P.; Gurley, K.R.; Subramanian, C.S.; Hamid, S.S.; Pita, G.L.

    2008-01-01

    The Florida Public Hurricane Loss Model is one of the first public models accessible for scrutiny to the scientific community, incorporating state of the art techniques in hurricane and vulnerability modeling. The model was developed for Florida, and is applicable to other hurricane-prone regions where construction practice is similar. The 2004 hurricane season produced substantial losses in Florida, and provided the means to validate and calibrate this model against actual claim data. This paper presents the predicted losses for several insurance portfolios corresponding to hurricanes Andrew, Charley, and Frances. The predictions are validated against the actual claim data. Physical damage predictions for external building components are also compared to observed damage. The analyses show that the predictive capabilities of the model were substantially improved after the calibration against the 2004 data. The methodology also shows that the predictive capabilities of the model could be enhanced if insurance companies report more detailed information about the structures they insure and the types of damage they suffer. This model can be a powerful tool for the study of risk reduction strategies

  19. Experimental validation of TASS/SMR-S critical flow model for the integral reactor SMART

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Si Won; Ra, In Sik; Kim, Kun Yeup [ACT Co., Daejeon (Korea, Republic of); Chung, Young Jong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    An advanced integral PWR, SMART (System- Integrated Modular Advanced ReacTor) is being developed in KAERI. It has a compact size and a relatively small power rating (330MWt) compared to a conventional reactor. Because new concepts are applied to SMART, an experimental and analytical validation is necessary for the safety evaluation of SMART. The analytical safety validation is being accomplished by a safety analysis code for an integral reactor, TASS/SMR-S developed by KAERI. TASS/SMR-S uses a lumped parameter one dimensional node and path modeling for the thermal hydraulic calculation and it uses point kinetics for the reactor power calculation. It has models for a general usage such as a core heat transfer model, a wall heat structure model, a critical flow model, component models, and it also has many SMART specific models such as an once through helical coiled steam generator model, and a condensate heat transfer model. To ensure that the TASS/SMR-S code has the calculation capability for the safety evaluation of SMART, the code should be validated for the specific models with the separate effect test experimental results. In this study, TASS/SMR-S critical flow model is evaluated as compared with SMD (Super Moby Dick) experiment

  20. Monte Carlo Modelling of Mammograms : Development and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Spyrou, G; Panayiotakis, G [Univercity of Patras, School of Medicine, Medical Physics Department, 265 00 Patras (Greece); Bakas, A [Technological Educational Institution of Athens, Department of Radiography, 122 10 Athens (Greece); Tzanakos, G [University of Athens, Department of Physics, Divission of Nuclear and Particle Physics, 157 71 Athens (Greece)

    1999-12-31

    A software package using Monte Carlo methods has been developed for the simulation of x-ray mammography. A simplified geometry of the mammographic apparatus has been considered along with the software phantom of compressed breast. This phantom may contain inhomogeneities of various compositions and sizes at any point. Using this model one can produce simulated mammograms. Results that demonstrate the validity of this simulation are presented. (authors) 16 refs, 4 figs

  1. Towards Model Validation and Verification with SAT Techniques

    OpenAIRE

    Gogolla, Martin

    2010-01-01

    After sketching how system development and the UML (Unified Modeling Language) and the OCL (Object Constraint Language) are related, validation and verification with the tool USE (UML-based Specification Environment) is demonstrated. As a more efficient alternative for verification tasks, two approaches using SAT-based techniques are put forward: First, a direct encoding of UML and OCL with Boolean variables and propositional formulas, and second, an encoding employing an...

  2. External validation of a normal tissue complication probability model for radiation-induced hypothyroidism in an independent cohort

    DEFF Research Database (Denmark)

    Rønjom, Marianne F; Brink, Carsten; Bentzen, Søren M

    2015-01-01

    blood tests in the validation cohort relative to the original cohort. However, Pearson's correlation coefficients between model and clinical outcome were high: r = 0.97 estimated by the original model versus the original cohort, and r = 0.97 estimated by the original model versus the new cohort....... CONCLUSION: Dmean and Vthyroid were significant predictors of RIHT in both cohorts. The original NTCP model demonstrated external validity owing to high Pearson's correlation coefficients between estimated and observed incidence rates of RIHT in the original as well as in the validation cohort. This model...

  3. Developing and validating a model to predict the success of an IHCS implementation: the Readiness for Implementation Model

    Science.gov (United States)

    Gustafson, David H; Hawkins, Robert P; Brennan, Patricia F; Dinauer, Susan; Johnson, Pauley R; Siegler, Tracy

    2010-01-01

    Objective To develop and validate the Readiness for Implementation Model (RIM). This model predicts a healthcare organization's potential for success in implementing an interactive health communication system (IHCS). The model consists of seven weighted factors, with each factor containing five to seven elements. Design Two decision-analytic approaches, self-explicated and conjoint analysis, were used to measure the weights of the RIM with a sample of 410 experts. The RIM model with weights was then validated in a prospective study of 25 IHCS implementation cases. Measurements Orthogonal main effects design was used to develop 700 conjoint-analysis profiles, which varied on seven factors. Each of the 410 experts rated the importance and desirability of the factors and their levels, as well as a set of 10 different profiles. For the prospective 25-case validation, three time-repeated measures of the RIM scores were collected for comparison with the implementation outcomes. Results Two of the seven factors, ‘organizational motivation’ and ‘meeting user needs,’ were found to be most important in predicting implementation readiness. No statistically significant difference was found in the predictive validity of the two approaches (self-explicated and conjoint analysis). The RIM was a better predictor for the 1-year implementation outcome than the half-year outcome. Limitations The expert sample, the order of the survey tasks, the additive model, and basing the RIM cut-off score on experience are possible limitations of the study. Conclusion The RIM needs to be empirically evaluated in institutions adopting IHCS and sustaining the system in the long term. PMID:20962135

  4. Updating and prospective validation of a prognostic model for high sickness absence

    NARCIS (Netherlands)

    Roelen, C.A.M.; Heymans, M.W.; Twisk, J.W.R.; van Rhenen, W.; Pallesen, S.; Bjorvatn, B.; Moen, B.E.; Mageroy, N.

    2015-01-01

    Objectives To further develop and validate a Dutch prognostic model for high sickness absence (SA). Methods Three-wave longitudinal cohort study of 2,059 Norwegian nurses. The Dutch prognostic model was used to predict high SA among Norwegian nurses at wave 2. Subsequently, the model was updated by

  5. Assessing Religious Orientations: Replication and Validation of the Commitment-Reflectivity Circumplex (CRC Model

    Directory of Open Access Journals (Sweden)

    Steven L. Isaak

    2017-09-01

    Full Text Available The Commitment-Reflectivity Circumplex (CRC model is a structural model of religious orientation that was designed to help organize and clarify measurement of foundational aspect of religiousness. The current study successfully replicated the CRC model using multidimensional scaling, and further evaluated the reliability, structure, and validity of their measures in both a university student sample (Study 1 and a nationally representative sample (Study 2. All 10 subscales of the Circumplex Religious Orientation Inventory (CROI demonstrated good reliability across both samples. A two-week test-retest of the CROI showed that the subscales are stable over time. A confirmatory factor analysis of the CROI in the representative adult sample demonstrated good model fit. Finally, the CROI’s validity was examined in relation to the Intrinsic, Extrinsic and Quest measures. Overall, the CROI appears to clarify much of the ambiguity inherent in the established scales by breaking down what were very broad orientations into very specific suborientations. The results suggest that the CRC model is applicable for diverse populations of adults. In addition, the CROI appears to be construct valid with good structural and psychometric properties across all 10 subscales.

  6. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the Building America research team ARBI validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. This project also looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. The team concluded that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws, which has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  7. IVIM: modeling, experimental validation and application to animal models

    International Nuclear Information System (INIS)

    Fournet, Gabrielle

    2016-01-01

    This PhD thesis is centered on the study of the IVIM ('Intravoxel Incoherent Motion') MRI sequence. This sequence allows for the study of the blood microvasculature such as the capillaries, arterioles and venules. To be sensitive only to moving groups of spins, diffusion gradients are added before and after the 180 degrees pulse of a spin echo (SE) sequence. The signal component corresponding to spins diffusing in the tissue can be separated from the one related to spins travelling in the blood vessels which is called the IVIM signal. These two components are weighted by f IVIM which represents the volume fraction of blood inside the tissue. The IVIM signal is usually modelled by a mono-exponential (ME) function and characterized by a pseudo-diffusion coefficient, D*. We propose instead a bi-exponential IVIM model consisting of a slow pool, characterized by F slow and D* slow corresponding to the capillaries as in the ME model, and a fast pool, characterized by F fast and D* fast, related to larger vessels such as medium-size arterioles and venules. This model was validated experimentally and more information was retrieved by comparing the experimental signals to a dictionary of simulated IVIM signals. The influence of the pulse sequence, the repetition time and the diffusion encoding time was also studied. Finally, the IVIM sequence was applied to the study of an animal model of Alzheimer's disease. (author) [fr

  8. Large-scale multimodal transport modelling. Part 2: Implementation and validation

    CSIR Research Space (South Africa)

    Van Heerden, Q

    2013-07-01

    Full Text Available their individual utilities using both time and cost elements. The agent-based model is run for the Nelson Mandela Bay Metropolitan area using multiple modes that include commercial vehicles. We validate the simulation results against regional traffic counts...

  9. Review and evaluation of performance measures for survival prediction models in external validation settings

    Directory of Open Access Journals (Sweden)

    M. Shafiqur Rahman

    2017-04-01

    Full Text Available Abstract Background When developing a prediction model for survival data it is essential to validate its performance in external validation settings using appropriate performance measures. Although a number of such measures have been proposed, there is only limited guidance regarding their use in the context of model validation. This paper reviewed and evaluated a wide range of performance measures to provide some guidelines for their use in practice. Methods An extensive simulation study based on two clinical datasets was conducted to investigate the performance of the measures in external validation settings. Measures were selected from categories that assess the overall performance, discrimination and calibration of a survival prediction model. Some of these have been modified to allow their use with validation data, and a case study is provided to describe how these measures can be estimated in practice. The measures were evaluated with respect to their robustness to censoring and ease of interpretation. All measures are implemented, or are straightforward to implement, in statistical software. Results Most of the performance measures were reasonably robust to moderate levels of censoring. One exception was Harrell’s concordance measure which tended to increase as censoring increased. Conclusions We recommend that Uno’s concordance measure is used to quantify concordance when there are moderate levels of censoring. Alternatively, Gönen and Heller’s measure could be considered, especially if censoring is very high, but we suggest that the prediction model is re-calibrated first. We also recommend that Royston’s D is routinely reported to assess discrimination since it has an appealing interpretation. The calibration slope is useful for both internal and external validation settings and recommended to report routinely. Our recommendation would be to use any of the predictive accuracy measures and provide the corresponding predictive

  10. The Safety Culture Enactment Questionnaire (SCEQ): Theoretical model and empirical validation.

    Science.gov (United States)

    de Castro, Borja López; Gracia, Francisco J; Tomás, Inés; Peiró, José M

    2017-06-01

    This paper presents the Safety Culture Enactment Questionnaire (SCEQ), designed to assess the degree to which safety is an enacted value in the day-to-day running of nuclear power plants (NPPs). The SCEQ is based on a theoretical safety culture model that is manifested in three fundamental components of the functioning and operation of any organization: strategic decisions, human resources practices, and daily activities and behaviors. The extent to which the importance of safety is enacted in each of these three components provides information about the pervasiveness of the safety culture in the NPP. To validate the SCEQ and the model on which it is based, two separate studies were carried out with data collection in 2008 and 2014, respectively. In Study 1, the SCEQ was administered to the employees of two Spanish NPPs (N=533) belonging to the same company. Participants in Study 2 included 598 employees from the same NPPs, who completed the SCEQ and other questionnaires measuring different safety outcomes (safety climate, safety satisfaction, job satisfaction and risky behaviors). Study 1 comprised item formulation and examination of the factorial structure and reliability of the SCEQ. Study 2 tested internal consistency and provided evidence of factorial validity, validity based on relationships with other variables, and discriminant validity between the SCEQ and safety climate. Exploratory Factor Analysis (EFA) carried out in Study 1 revealed a three-factor solution corresponding to the three components of the theoretical model. Reliability analyses showed strong internal consistency for the three scales of the SCEQ, and each of the 21 items on the questionnaire contributed to the homogeneity of its theoretically developed scale. Confirmatory Factor Analysis (CFA) carried out in Study 2 supported the internal structure of the SCEQ; internal consistency of the scales was also supported. Furthermore, the three scales of the SCEQ showed the expected correlation

  11. Copenhagen Psychosocial Questionnaire - A validation study using the Job Demand-Resources model.

    Science.gov (United States)

    Berthelsen, Hanne; Hakanen, Jari J; Westerlund, Hugo

    2018-01-01

    This study aims at investigating the nomological validity of the Copenhagen Psychosocial Questionnaire (COPSOQ II) by using an extension of the Job Demands-Resources (JD-R) model with aspects of work ability as outcome. The study design is cross-sectional. All staff working at public dental organizations in four regions of Sweden were invited to complete an electronic questionnaire (75% response rate, n = 1345). The questionnaire was based on COPSOQ II scales, the Utrecht Work Engagement scale, and the one-item Work Ability Score in combination with a proprietary item. The data was analysed by Structural Equation Modelling. This study contributed to the literature by showing that: A) The scale characteristics were satisfactory and the construct validity of COPSOQ instrument could be integrated in the JD-R framework; B) Job resources arising from leadership may be a driver of the two processes included in the JD-R model; and C) Both the health impairment and motivational processes were associated with WA, and the results suggested that leadership may impact WA, in particularly by securing task resources. In conclusion, the nomological validity of COPSOQ was supported as the JD-R model-can be operationalized by the instrument. This may be helpful for transferral of complex survey results and work life theories to practitioners in the field.

  12. A comprehensive model for piezoceramic actuators: modelling, validation and application

    International Nuclear Information System (INIS)

    Quant, Mario; Elizalde, Hugo; Flores, Abiud; Ramírez, Ricardo; Orta, Pedro; Song, Gangbing

    2009-01-01

    This paper presents a comprehensive model for piezoceramic actuators (PAs), which accounts for hysteresis, non-linear electric field and dynamic effects. The hysteresis model is based on the widely used general Maxwell slip model, while an enhanced electro-mechanical non-linear model replaces the linear constitutive equations commonly used. Further on, a linear second order model compensates the frequency response of the actuator. Each individual model is fully characterized from experimental data yielded by a specific PA, then incorporated into a comprehensive 'direct' model able to determine the output strain based on the applied input voltage, fully compensating the aforementioned effects, where the term 'direct' represents an electrical-to-mechanical operating path. The 'direct' model was implemented in a Matlab/Simulink environment and successfully validated via experimental results, exhibiting higher accuracy and simplicity than many published models. This simplicity would allow a straightforward inclusion of other behaviour such as creep, ageing, material non-linearity, etc, if such parameters are important for a particular application. Based on the same formulation, two other models are also presented: the first is an 'alternate' model intended to operate within a force-controlled scheme (instead of a displacement/position control), thus able to capture the complex mechanical interactions occurring between a PA and its host structure. The second development is an 'inverse' model, able to operate within an open-loop control scheme, that is, yielding a 'linearized' PA behaviour. The performance of the developed models is demonstrated via a numerical sample case simulated in Matlab/Simulink, consisting of a PA coupled to a simple mechanical system, aimed at shifting the natural frequency of the latter

  13. Establishing the existence of a distance-based upper bound for a fuzzy DEA model using duality

    International Nuclear Information System (INIS)

    Soleimani-damaneh, M.

    2009-01-01

    In a recent paper [Soleimani-damaneh M. Fuzzy upper bounds and their applications. Chaos, Solitons and Fractals 2008;36:217-25.], I established the existence of a distance-based fuzzy upper bound for the objective function of a fuzzy DEA model, using the properties of a discussed signed distance, and provided an effective approach to solve that model. In this paper a new dual-based proof for the existence of the above-mentioned upper bound is provided which gives a useful insight into the theory of fuzzy DEA.

  14. Validation of infrared thermography in serotonin-induced itch model in rats

    DEFF Research Database (Denmark)

    Dagnæs-Hansen, Frederik; Jasemian, Yousef; Gazerani, Parisa

    The number of scratching bouts is generally used as a standard method in animal models of itch. The aim of the present study was to validate the application of infrared thermography (IR-Th) in a serotonin-induced itch model in rats. Adult Sprague-Dawley male rats (n = 24) were used in 3 consecuti...

  15. Theoretical modeling and experimental validation of a torsional piezoelectric vibration energy harvesting system

    Science.gov (United States)

    Qian, Feng; Zhou, Wanlu; Kaluvan, Suresh; Zhang, Haifeng; Zuo, Lei

    2018-04-01

    Vibration energy harvesting has been extensively studied in recent years to explore a continuous power source for sensor networks and low-power electronics. Torsional vibration widely exists in mechanical engineering; however, it has not yet been well exploited for energy harvesting. This paper presents a theoretical model and an experimental validation of a torsional vibration energy harvesting system comprised of a shaft and a shear mode piezoelectric transducer. The piezoelectric transducer position on the surface of the shaft is parameterized by two variables that are optimized to obtain the maximum power output. The piezoelectric transducer can work in d 15 mode (pure shear mode), coupled mode of d 31 and d 33, and coupled mode of d 33, d 31 and d 15, respectively, when attached at different angles. Approximate expressions of voltage and power are derived from the theoretical model, which gave predictions in good agreement with analytical solutions. Physical interpretations on the implicit relationship between the power output and the position parameters of the piezoelectric transducer is given based on the derived approximate expression. The optimal position and angle of the piezoelectric transducer is determined, in which case, the transducer works in the coupled mode of d 15, d 31 and d 33.

  16. Developing and Validating a Survival Prediction Model for NSCLC Patients Through Distributed Learning Across 3 Countries.

    Science.gov (United States)

    Jochems, Arthur; Deist, Timo M; El Naqa, Issam; Kessler, Marc; Mayo, Chuck; Reeves, Jackson; Jolly, Shruti; Matuszak, Martha; Ten Haken, Randall; van Soest, Johan; Oberije, Cary; Faivre-Finn, Corinne; Price, Gareth; de Ruysscher, Dirk; Lambin, Philippe; Dekker, Andre

    2017-10-01

    Tools for survival prediction for non-small cell lung cancer (NSCLC) patients treated with chemoradiation or radiation therapy are of limited quality. In this work, we developed a predictive model of survival at 2 years. The model is based on a large volume of historical patient data and serves as a proof of concept to demonstrate the distributed learning approach. Clinical data from 698 lung cancer patients, treated with curative intent with chemoradiation or radiation therapy alone, were collected and stored at 2 different cancer institutes (559 patients at Maastro clinic (Netherlands) and 139 at Michigan university [United States]). The model was further validated on 196 patients originating from The Christie (United Kingdon). A Bayesian network model was adapted for distributed learning (the animation can be viewed at https://www.youtube.com/watch?v=ZDJFOxpwqEA). Two-year posttreatment survival was chosen as the endpoint. The Maastro clinic cohort data are publicly available at https://www.cancerdata.org/publication/developing-and-validating-survival-prediction-model-nsclc-patients-through-distributed, and the developed models can be found at www.predictcancer.org. Variables included in the final model were T and N category, age, performance status, and total tumor dose. The model has an area under the curve (AUC) of 0.66 on the external validation set and an AUC of 0.62 on a 5-fold cross validation. A model based on the T and N category performed with an AUC of 0.47 on the validation set, significantly worse than our model (PLearning the model in a centralized or distributed fashion yields a minor difference on the probabilities of the conditional probability tables (0.6%); the discriminative performance of the models on the validation set is similar (P=.26). Distributed learning from federated databases allows learning of predictive models on data originating from multiple institutions while avoiding many of the data-sharing barriers. We believe that

  17. 3D reconstruction of a patient-specific surface model of the proximal femur from calibrated x-ray radiographs: A validation study

    International Nuclear Information System (INIS)

    Zheng Guoyan; Schumann, Steffen

    2009-01-01

    Twenty-three femurs (one plastic bone and twenty-two cadaver bones) with both nonpathologic and pathologic cases were considered to validate a statistical shape model based technique for three-dimensional (3D) reconstruction of a patient-specific surface model from calibrated x-ray radiographs. The 3D reconstruction technique is based on an iterative nonrigid registration of the features extracted from a statistically instantiated 3D surface model to those interactively identified from the radiographs. The surface models reconstructed from the radiographs were compared to the associated ground truths derived either from a 3D CT-scan reconstruction method or from a 3D laser-scan reconstruction method and an average error distance of 0.95 mm were found. Compared to the existing works, our approach has the advantage of seamlessly handling both nonpathologic and pathologic cases even when the statistical shape model that we used was constructed from surface models of nonpathologic bones.

  18. Mentoring for junior medical faculty: Existing models and suggestions for low-resource settings.

    Science.gov (United States)

    Menon, Vikas; Muraleedharan, Aparna; Bhat, Ballambhattu Vishnu

    2016-02-01

    Globally, there is increasing recognition about the positive benefits and impact of mentoring on faculty retention rates, career satisfaction and scholarly output. However, emphasis on research and practice of mentoring is comparatively meagre in low and middle income countries. In this commentary, we critically examine two existing models of mentorship for medical faculty and offer few suggestions for an integrated hybrid model that can be adapted for use in low resource settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Validation of periodontitis screening model using sociodemographic, systemic, and molecular information in a Korean population.

    Science.gov (United States)

    Kim, Hyun-Duck; Sukhbaatar, Munkhzaya; Shin, Myungseop; Ahn, Yoo-Been; Yoo, Wook-Sung

    2014-12-01

    This study aims to evaluate and validate a periodontitis screening model that includes sociodemographic, metabolic syndrome (MetS), and molecular information, including gingival crevicular fluid (GCF), matrix metalloproteinase (MMP), and blood cytokines. The authors selected 506 participants from the Shiwha-Banwol cohort: 322 participants from the 2005 cohort for deriving the screening model and 184 participants from the 2007 cohort for its validation. Periodontitis was assessed by dentists using the community periodontal index. Interleukin (IL)-6, IL-8, and tumor necrosis factor-α in blood and MMP-8, -9, and -13 in GCF were assayed using enzyme-linked immunosorbent assay. MetS was assessed by physicians using physical examination and blood laboratory data. Information about age, sex, income, smoking, and drinking was obtained by interview. Logistic regression analysis was applied to finalize the best-fitting model and validate the model using sensitivity, specificity, and c-statistics. The derived model for periodontitis screening had a sensitivity of 0.73, specificity of 0.85, and c-statistic of 0.86 (P validated model were 0.64, 0.91, and 0.83 (P <0.001), respectively. The model that included age, sex, income, smoking, drinking, and blood and GCF biomarkers could be useful in screening for periodontitis. A future prospective study is indicated for evaluating this model's ability to predict the occurrence of periodontitis.

  20. Lactic Acid Recovery in Electro-Enhanced Dialysis: Modelling and Validation

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Jørgensen, Sten Bay; Jonsson, Gunnar Eigil

    2009-01-01

    and migration across the boundary layers and membranes. The model is validated for Donnan dialysis recovery of different monoprotic carboxylic acids. Simulations are used to evaluate the potential enhancement of lactate fluxes under current load conditions, referred as Electro-Enhanced Dialysis operation...

  1. Validation Testing of a Peridynamic Impact Damage Model Using NASA's Micro-Particle Gun

    Science.gov (United States)

    Baber, Forrest E.; Zelinski, Brian J.; Guven, Ibrahim; Gray, Perry

    2017-01-01

    Through a collaborative effort between the Virginia Commonwealth University and Raytheon, a peridynamic model for sand impact damage has been developed1-3. Model development has focused on simulating impacts of sand particles on ZnS traveling at velocities consistent with aircraft take-off and landing speeds. The model reproduces common features of impact damage including pit and radial cracks, and, under some conditions, lateral cracks. This study focuses on a preliminary validation exercise in which simulation results from the peridynamic model are compared to a limited experimental data set generated by NASA's recently developed micro-particle gun (MPG). The MPG facility measures the dimensions and incoming and rebound velocities of the impact particles. It also links each particle to a specific impact site and its associated damage. In this validation exercise parameters of the peridynamic model are adjusted to fit the experimentally observed pit diameter, average length of radial cracks and rebound velocities for 4 impacts of 300 µm glass beads on ZnS. Results indicate that a reasonable fit of these impact characteristics can be obtained by suitable adjustment of the peridynamic input parameters, demonstrating that the MPG can be used effectively as a validation tool for impact modeling and that the peridynamic sand impact model described herein possesses not only a qualitative but also a quantitative ability to simulate sand impact events.

  2. In silico modelling and validation of differential expressed proteins in lung cancer

    Directory of Open Access Journals (Sweden)

    Bhagavathi S

    2012-05-01

    Full Text Available Objective: The present study aims predict the three dimensional structure of three major proteins responsible for causing Lung cancer. Methods: These are the differentially expressed proteins in lung cancer dataset. Initially, the structural template for these proteins is identified from structural database using homology search and perform homology modelling approach to predict its native 3D structure. Three-dimensional model obtained was validated using Ramachandran plot analysis to find the reliability of the model. Results: Four proteins were differentially expressed and were significant proteins in causing lung cancer. Among the four proteins, Matrixmetallo proteinase (P39900 had a known 3D structure and hence was not considered for modelling. The remaining proteins Polo like kinase I Q58A51, Trophinin B1AKF1, Thrombomodulin P07204 were modelled and validated. Conclusions: The three dimensional structure of proteins provides insights about the functional aspect and regulatory aspect of the protein. Thus, this study will be a breakthrough for further lung cancer related studies.

  3. Multiphysics software and the challenge to validating physical models

    International Nuclear Information System (INIS)

    Luxat, J.C.

    2008-01-01

    This paper discusses multi physics software and validation of physical models in the nuclear industry. The major challenge is to convert the general purpose software package to a robust application-specific solution. This requires greater knowledge of the underlying solution techniques and the limitations of the packages. Good user interfaces and neat graphics do not compensate for any deficiencies

  4. Application of environmental isotopes to validate a model of regional groundwater flow and transport (Carrizo Aquifer)

    International Nuclear Information System (INIS)

    Pearson, F.J.

    1999-01-01

    It is asserted that models cannot be validated. This seems obvious if one identifies validation as the process of testing a model against absolute truth, and accepts that absolute truth is less a scientific than a philosophic or religious concept. What is here called model validation has a more modest goal - to develop confidence in the conceptual and mathematical models used to describe a groundwater system by illustrating that measured radiochemical properties of the groundwater match those predicted by the model. The system described is the Carrizo sand in the Gulf Coastal Plain of south Texas. Each element of the modelling chain describing the movement of 14 C is confirmed independently and, thus, can be said to be validated. The groundwater ages, and the 14 C measurements and carbonate geochemical model underlying them, are confirmed by the noble gas measurements, while the flow and transport model is confirmed by the 14 C results. Agreement between the modelled and measured 234 U/ 238 U ratios supports the description of U transport used in the modelling, while the need to use an unexpectedly low K D value for U raises questions about the applicability of laboratory K D data to the Carrizo groundwater system. (author)

  5. Using Mathematical Modeling and Set-Based Design Principles to Recommend an Existing CVL Design

    Science.gov (United States)

    2017-09-01

    MATHEMATICAL MODELING AND SET-BASED DESIGN PRINCIPLES TO RECOMMEND AN EXISTING CVL DESIGN by William H. Ehlies September 2017 Thesis Advisor...Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE...September 2017 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE USING MATHEMATICAL MODELING AND SET-BASED DESIGN PRINCIPLES

  6. Validation of multi-body modelling methodology for reconfigurable underwater robots

    DEFF Research Database (Denmark)

    Nielsen, M.C.; Eidsvik, O. A.; Blanke, Mogens

    2016-01-01

    This paper investigates the problem of employing reconfigurable robots in an underwater setting. The main results presented is the experimental validation of a modelling methodology for a system consisting of N dynamically connected robots with heterogeneous dynamics. Two distinct types...... of experiments are performed, a series of hydrostatic free-decay tests and a series of open-loop trajectory tests. The results are compared to a simulation based on the modelling methodology. The modelling methodology shows promising results for usage with systems composed of reconfigurable underwater modules...

  7. Validation study of safety assessment model for radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Munakata, Masahiro; Takeda, Seiji; Kimura, Hideo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    The JAERI-AECL collaboration research program has been conducted to validate a groundwater flow and radionuclide transport models for safety assessment. JAERI have developed a geostatistical model for radionuclide transport through a heterogeneous geological media and verify using experimental results of field tracer tests. The simulated tracer plumes explain favorably the experimental tracer plumes. A regional groundwater flow and transport model using site-scale parameter obtained from tracer tests have been verified by comparing simulation results with observation ones of natural environmental tracer. (author)

  8. External validation of a biomarker and clinical prediction model for hospital mortality in acute respiratory distress syndrome.

    Science.gov (United States)

    Zhao, Zhiguo; Wickersham, Nancy; Kangelaris, Kirsten N; May, Addison K; Bernard, Gordon R; Matthay, Michael A; Calfee, Carolyn S; Koyama, Tatsuki; Ware, Lorraine B

    2017-08-01

    Mortality prediction in ARDS is important for prognostication and risk stratification. However, no prediction models have been independently validated. A combination of two biomarkers with age and APACHE III was superior in predicting mortality in the NHLBI ARDSNet ALVEOLI trial. We validated this prediction tool in two clinical trials and an observational cohort. The validation cohorts included 849 patients from the NHLBI ARDSNet Fluid and Catheter Treatment Trial (FACTT), 144 patients from a clinical trial of sivelestat for ARDS (STRIVE), and 545 ARDS patients from the VALID observational cohort study. To evaluate the performance of the prediction model, the area under the receiver operating characteristic curve (AUC), model discrimination, and calibration were assessed, and recalibration methods were applied. The biomarker/clinical prediction model performed well in all cohorts. Performance was better in the clinical trials with an AUC of 0.74 (95% CI 0.70-0.79) in FACTT, compared to 0.72 (95% CI 0.67-0.77) in VALID, a more heterogeneous observational cohort. The AUC was 0.73 (95% CI 0.70-0.76) when FACTT and VALID were combined. We validated a mortality prediction model for ARDS that includes age, APACHE III, surfactant protein D, and interleukin-8 in a variety of clinical settings. Although the model performance as measured by AUC was lower than in the original model derivation cohort, the biomarker/clinical model still performed well and may be useful for risk assessment for clinical trial enrollment, an issue of increasing importance as ARDS mortality declines, and better methods are needed for selection of the most severely ill patients for inclusion.

  9. CFD modelling of hydrogen stratification in enclosures: Model validation and application to PAR performance

    Energy Technology Data Exchange (ETDEWEB)

    Hoyes, J.R., E-mail: james.hoyes@hsl.gsi.gov.uk; Ivings, M.J.

    2016-12-15

    Highlights: • The ability of CFD to predict hydrogen stratification phenomena is investigated. • Contrary to expectation, simulations on tetrahedral meshes under-predict mixing. • Simulations on structured meshes give good agreement with experimental data. • CFD model used to investigate the effects of stratification on PAR performance. • Results show stratification can have a significant effect on PAR performance. - Abstract: Computational Fluid Dynamics (CFD) models are maturing into useful tools for supporting safety analyses. This paper investigates the capabilities of CFD models for predicting hydrogen stratification in a containment vessel using data from the NEA/OECD SETH2 MISTRA experiments. Further simulations are then carried out to illustrate the qualitative effects of hydrogen stratification on the performance of Passive Autocatalytic Recombiner (PAR) units. The MISTRA experiments have well-defined initial and boundary conditions which makes them well suited for use in a validation study. Results are presented for the sensitivity to mesh resolution and mesh type. Whilst the predictions are shown to be largely insensitive to the mesh resolution they are surprisingly sensitive to the mesh type. In particular, tetrahedral meshes are found to induce small unphysical convection currents that result in molecular diffusion and turbulent mixing being under-predicted. This behaviour is not unique to the CFD model used here (ANSYS CFX) and furthermore, it may affect simulations run on other non-aligned meshes (meshes that are not aligned perpendicular to gravity), including non-aligned structured meshes. Following existing best practice guidelines can help to identify potential unphysical predictions, but as an additional precaution consideration should be given to using gravity-aligned meshes for modelling stratified flows. CFD simulations of hydrogen recombination in the Becker Technologies THAI facility are presented with high and low PAR positions

  10. Modeling pedestrian shopping behavior using principles of bounded rationality: model comparison and validation

    Science.gov (United States)

    Zhu, Wei; Timmermans, Harry

    2011-06-01

    Models of geographical choice behavior have been dominantly based on rational choice models, which assume that decision makers are utility-maximizers. Rational choice models may be less appropriate as behavioral models when modeling decisions in complex environments in which decision makers may simplify the decision problem using heuristics. Pedestrian behavior in shopping streets is an example. We therefore propose a modeling framework for pedestrian shopping behavior incorporating principles of bounded rationality. We extend three classical heuristic rules (conjunctive, disjunctive and lexicographic rule) by introducing threshold heterogeneity. The proposed models are implemented using data on pedestrian behavior in Wang Fujing Street, the city center of Beijing, China. The models are estimated and compared with multinomial logit models and mixed logit models. Results show that the heuristic models are the best for all the decisions that are modeled. Validation tests are carried out through multi-agent simulation by comparing simulated spatio-temporal agent behavior with the observed pedestrian behavior. The predictions of heuristic models are slightly better than those of the multinomial logit models.

  11. Alteration of 'R7T7' type nuclear glasses: statistical approach, experimental validation, local evolution model

    International Nuclear Information System (INIS)

    Thierry, F.

    2003-02-01

    The aim of this work is to propose an evolution of nuclear (R7T7-type) glass alteration modeling. The first part of this thesis is about development and validation of the 'r(t)' model. This model which predicts the decrease of alteration rates in confined conditions is based upon a coupling between a first-order dissolution law and a diffusion barrier effect of the alteration gel layer. The values and the uncertainties regarding the main adjustable parameters of the model (α, Dg and C*) have been determined from a systematic study of the available experimental data. A program called INVERSION has been written for this purpose. This work lead to characterize the validity domain of the 'r(t)' model and to parametrize it. Validation experiments have been undertaken, confirming the validity of the parametrization over 200 days. A new model is proposed in the second part of this thesis. It is based on an inhibition of glass dissolution reaction by silicon coupled with a local description of silicon retention in the alteration gel layer. This model predicts the evolutions of boron and silicon concentrations in solution as well as the concentrations and retention profiles in the gel layer. These predictions have been compared to measurements of retention profiles by the secondary ion mass spectrometry (SIMS) method. The model has been validated on fractions of gel layer which reactivity present low or moderate disparities. (author)

  12. Are Model Transferability And Complexity Antithetical? Insights From Validation of a Variable-Complexity Empirical Snow Model in Space and Time

    Science.gov (United States)

    Lute, A. C.; Luce, Charles H.

    2017-11-01

    The related challenges of predictions in ungauged basins and predictions in ungauged climates point to the need to develop environmental models that are transferable across both space and time. Hydrologic modeling has historically focused on modelling one or only a few basins using highly parameterized conceptual or physically based models. However, model parameters and structures have been shown to change significantly when calibrated to new basins or time periods, suggesting that model complexity and model transferability may be antithetical. Empirical space-for-time models provide a framework within which to assess model transferability and any tradeoff with model complexity. Using 497 SNOTEL sites in the western U.S., we develop space-for-time models of April 1 SWE and Snow Residence Time based on mean winter temperature and cumulative winter precipitation. The transferability of the models to new conditions (in both space and time) is assessed using non-random cross-validation tests with consideration of the influence of model complexity on transferability. As others have noted, the algorithmic empirical models transfer best when minimal extrapolation in input variables is required. Temporal split-sample validations use pseudoreplicated samples, resulting in the selection of overly complex models, which has implications for the design of hydrologic model validation tests. Finally, we show that low to moderate complexity models transfer most successfully to new conditions in space and time, providing empirical confirmation of the parsimony principal.

  13. Validation of the dynamic model for a pressurized water reactor

    International Nuclear Information System (INIS)

    Zwingelstein, Gilles.

    1979-01-01

    Dynamic model validation is a necessary procedure to assure that the developed empirical or physical models are satisfactorily representing the dynamic behavior of the actual plant during normal or abnormal transients. For small transients, physical models which represent isolated core, isolated steam generator and the overall pressurized water reactor are described. Using data collected during the step power changes that occured during the startup procedures, comparisons of experimental and actual transients are given at 30% and 100% of full power. The agreement between the transients derived from the model and those recorded on the plant indicates that the developed models are well suited for use for functional or control studies

  14. Published diagnostic models safely excluded colorectal cancer in an independent primary care validation study

    NARCIS (Netherlands)

    Elias, Sjoerd G; Kok, Liselotte; Witteman, Ben J M; Goedhard, Jelle G; Romberg-Camps, Mariëlle J L; Muris, Jean W M; de Wit, Niek J; Moons, Karel G M

    OBJECTIVE: To validate published diagnostic models for their ability to safely reduce unnecessary endoscopy referrals in primary care patients suspected of significant colorectal disease. STUDY DESIGN AND SETTING: Following a systematic literature search, we independently validated the identified

  15. Validation process of simulation model; Proceso de validacion de modelos de simulacion

    Energy Technology Data Exchange (ETDEWEB)

    San Isidro Pindado, M J

    1998-12-31

    It is presented a methodology on empirical about any detailed simulation model. This kind of validation it is always related with an experimental case. The empirical validation has a residual sense, because the conclusions are based on comparison between simulated outputs and experimental measurements. This methodology will guide us to detect the fails of the simulation model. Furthermore, it can be used a guide in the design of posteriori experiments. Three steps can be well differentiated: - Sensitivity analysis. It can be made with a DSA, differential sensitivity analysis, and with a MCSA, Monte-Carlo sensitivity analysis. - Looking the optimal domains of the input parameters. It has been developed a procedure based on the Monte-Carlo methods and Cluster techniques, to find the optimal domains of these parameters. - Residual analysis. This analysis has been made on the time domain on the frequency domain, it has been used the correlation analysis and spectral analysis. As application of this methodology, it is presented the validation carried out on a thermal simulation model on buildings, ESP studying the behavior of building components on a Test Cell of LECE of CIEMAT. (Author)

  16. Validation process of simulation model; Proceso de validacion de modelos de simulacion

    Energy Technology Data Exchange (ETDEWEB)

    San Isidro Pindado, M.J.

    1997-12-31

    It is presented a methodology on empirical about any detailed simulation model. This kind of validation it is always related with an experimental case. The empirical validation has a residual sense, because the conclusions are based on comparison between simulated outputs and experimental measurements. This methodology will guide us to detect the fails of the simulation model. Furthermore, it can be used a guide in the design of posteriori experiments. Three steps can be well differentiated: - Sensitivity analysis. It can be made with a DSA, differential sensitivity analysis, and with a MCSA, Monte-Carlo sensitivity analysis. - Looking the optimal domains of the input parameters. It has been developed a procedure based on the Monte-Carlo methods and Cluster techniques, to find the optimal domains of these parameters. - Residual analysis. This analysis has been made on the time domain on the frequency domain, it has been used the correlation analysis and spectral analysis. As application of this methodology, it is presented the validation carried out on a thermal simulation model on buildings, ESP studying the behavior of building components on a Test Cell of LECE of CIEMAT. (Author)

  17. Stakeholder validation of a model of readiness for transition to adult care.

    Science.gov (United States)

    Schwartz, Lisa A; Brumley, Lauren D; Tuchman, Lisa K; Barakat, Lamia P; Hobbie, Wendy L; Ginsberg, Jill P; Daniel, Lauren C; Kazak, Anne E; Bevans, Katherine; Deatrick, Janet A

    2013-10-01

    That too few youth with special health care needs make the transition to adult-oriented health care successfully may be due, in part, to lack of readiness to transfer care. There is a lack of theoretical models to guide development and implementation of evidence-based guidelines, assessments, and interventions to improve transition readiness. To further validate the Social-ecological Model of Adolescent and Young Adult Readiness to Transition (SMART) via feedback from stakeholders (patients, parents, and providers) from a medically diverse population in need of life-long follow-up care, survivors of childhood cancer. Mixed-methods participatory research design. A large Mid-Atlantic children's hospital. Adolescent and young adult survivors of childhood cancer (n = 14), parents (n = 18), and pediatric providers (n = 10). Patients and parents participated in focus groups; providers participated in individual semi-structured interviews. Validity of SMART was assessed 3 ways: (1) ratings on importance of SMART components for transition readiness using a 5-point scale (0-4; ratings >2 support validity), (2) nominations of 3 "most important" components, and (3) directed content analysis of focus group/interview transcripts. Qualitative data supported the validity of SMART, with minor modifications to definitions of components. Quantitative ratings met criteria for validity; stakeholders endorsed all components of SMART as important for transition. No additional SMART variables were suggested by stakeholders and the "most important" components varied by stakeholders, thus supporting the comprehensiveness of SMART and need to involve multiple perspectives. SMART represents a comprehensive and empirically validated framework for transition research and program planning, supported by survivors of childhood cancer, parents, and pediatric providers. Future research should validate SMART among other populations with special health care needs.

  18. Simplified Summative Temporal Bone Dissection Scale Demonstrates Equivalence to Existing Measures.

    Science.gov (United States)

    Pisa, Justyn; Gousseau, Michael; Mowat, Stephanie; Westerberg, Brian; Unger, Bert; Hochman, Jordan B

    2018-01-01

    Emphasis on patient safety has created the need for quality assessment of fundamental surgical skills. Existing temporal bone rating scales are laborious, subject to evaluator fatigue, and contain inconsistencies when conferring points. To address these deficiencies, a novel binary assessment tool was designed and validated against a well-established rating scale. Residents completed a mastoidectomy with posterior tympanotomy on identical 3D-printed temporal bone models. Four neurotologists evaluated each specimen using a validated scale (Welling) and a newly developed "CanadaWest" scale, with scoring repeated after a 4-week interval. Nineteen participants were clustered into junior, intermediate, and senior cohorts. An ANOVA found significant differences between performance of the junior-intermediate and junior-senior cohorts for both Welling and CanadaWest scales ( P .05). Cohen's kappa found strong intrarater reliability (0.711) with a high degree of interrater reliability of (0.858) for the CanadaWest scale, similar to scores on the Welling scale of (0.713) and (0.917), respectively. The CanadaWest scale was facile and delineated performance by experience level with strong intrarater reliability. Comparable to the validated Welling Scale, it distinguished junior from senior trainees but was challenged in differentiating intermediate and senior trainee performance.

  19. Software Process Validation: Quantitatively Measuring the Correspondence of a Process to a Model

    National Research Council Canada - National Science Library

    Cook, Jonathan E; Wolf, Alexander L

    1997-01-01

    .... When process models and process executions diverge, something significant is happening. The authors have developed techniques for uncovering and measuring the discrepancies between models and executions, which they call process validation...

  20. Determination and validation of mTOR kinase-domain 3D structure by homology modeling

    Directory of Open Access Journals (Sweden)

    Lakhlili W

    2015-07-01

    Full Text Available Wiame Lakhlili,1 Gwénaël Chevé,2 Abdelaziz Yasri,2 Azeddine Ibrahimi1 1Laboratoire de Biotechnologie (MedBiotech, Faculté de Médecine et de Pharmacie de Rabat, Université Mohammed V de Rabat, Rabat, Morroco; 2OriBase Pharma, Cap Gamma, Parc Euromédecine, Montpellier, France Abstract: The AKT/mammalian target of rapamycin (mTOR pathway is considered as one of the commonly activated and deregulated signaling pathways in human cancer. mTOR is associated with other proteins in two molecular complexes: mTOR complex 1/Raptor and the mTOR complex 2/Rictor. Using the crystal structure of the related lipid kinase PI3Kγ, we built a model of the catalytic region of mTOR. The modeling of the three-dimensional (3D structure of the mTOR was performed by homology modeling program SWISS-MODEL. The quality and validation of the obtained model were performed using PROCHECK and PROVE softwares. The overall stereochemical property of the protein was assessed by the Ramachandran plot. The model validation was also done by docking of known inhibitors. In this paper, we describe and validate a 3D model for the mTOR catalytic site.Keywords: mTOR, homology modeling, mTOR kinase-domain, docking

  1. Modeling validation to structural flaws in the foundations of oil tanks

    International Nuclear Information System (INIS)

    Couto, Larissa Goncalves; Leite, Sandro Passos

    2014-01-01

    This paper presents the modeling of an experiment used to study the application of backscattered neutrons in the identification of structural flaws in the foundations of oil tanks. This modeling was a preliminary validation procedure of the method of calculation, performed with the radiation transport code MCNP, to study the application of backscattered neutrons as inspection tool. (author)

  2. Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks

    Science.gov (United States)

    Chen, Mingjie; Sun, Yunwei; Fu, Pengcheng; Carrigan, Charles R.; Lu, Zhiming; Tong, Charles H.; Buscheck, Thomas A.

    2013-08-01

    Hydraulic fracturing has been used widely to stimulate production of oil, natural gas, and geothermal energy in formations with low natural permeability. Numerical optimization of fracture stimulation often requires a large number of evaluations of objective functions and constraints from forward hydraulic fracturing models, which are computationally expensive and even prohibitive in some situations. Moreover, there are a variety of uncertainties associated with the pre-existing fracture distributions and rock mechanical properties, which affect the optimized decisions for hydraulic fracturing. In this study, a surrogate-based approach is developed for efficient optimization of hydraulic fracturing well design in the presence of natural-system uncertainties. The fractal dimension is derived from the simulated fracturing network as the objective for maximizing energy recovery sweep efficiency. The surrogate model, which is constructed using training data from high-fidelity fracturing models for mapping the relationship between uncertain input parameters and the fractal dimension, provides fast approximation of the objective functions and constraints. A suite of surrogate models constructed using different fitting methods is evaluated and validated for fast predictions. Global sensitivity analysis is conducted to gain insights into the impact of the input variables on the output of interest, and further used for parameter screening. The high efficiency of the surrogate-based approach is demonstrated for three optimization scenarios with different and uncertain ambient conditions. Our results suggest the critical importance of considering uncertain pre-existing fracture networks in optimization studies of hydraulic fracturing.

  3. Experimental validation of solid rocket motor damping models

    Science.gov (United States)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2017-12-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe

  4. Experimental validation of solid rocket motor damping models

    Science.gov (United States)

    Riso, Cristina; Fransen, Sebastiaan; Mastroddi, Franco; Coppotelli, Giuliano; Trequattrini, Francesco; De Vivo, Alessio

    2018-06-01

    In design and certification of spacecraft, payload/launcher coupled load analyses are performed to simulate the satellite dynamic environment. To obtain accurate predictions, the system damping properties must be properly taken into account in the finite element model used for coupled load analysis. This is typically done using a structural damping characterization in the frequency domain, which is not applicable in the time domain. Therefore, the structural damping matrix of the system must be converted into an equivalent viscous damping matrix when a transient coupled load analysis is performed. This paper focuses on the validation of equivalent viscous damping methods for dynamically condensed finite element models via correlation with experimental data for a realistic structure representative of a slender launch vehicle with solid rocket motors. A second scope of the paper is to investigate how to conveniently choose a single combination of Young's modulus and structural damping coefficient—complex Young's modulus—to approximate the viscoelastic behavior of a solid propellant material in the frequency band of interest for coupled load analysis. A scaled-down test article inspired to the Z9-ignition Vega launcher configuration is designed, manufactured, and experimentally tested to obtain data for validation of the equivalent viscous damping methods. The Z9-like component of the test article is filled with a viscoelastic material representative of the Z9 solid propellant that is also preliminarily tested to investigate the dependency of the complex Young's modulus on the excitation frequency and provide data for the test article finite element model. Experimental results from seismic and shock tests performed on the test configuration are correlated with numerical results from frequency and time domain analyses carried out on its dynamically condensed finite element model to assess the applicability of different equivalent viscous damping methods to describe

  5. Modelling of the activity system - development of an evaluation method for integrated system validation

    International Nuclear Information System (INIS)

    Norros, Leena; Savioja, Paula

    2004-01-01

    In this paper we present our recent research which focuses on creating an evaluation method for human-system interfaces of complex systems. The method is aimed for use in the validation of modernised nuclear power plant (NPP) control rooms, and other complex systems with high reliability requirements. The task in validation is to determine whether the human-system functions safely and effectively. This question can be operationalized to the selection of relevant operational features and their appropriate acceptance criteria. Thus, there is a need to ensure that the results of the evaluation can be generalized so that they serve the purpose of integrated system validation. The definition of the appropriate acceptance criteria provides basis for the judgement of the appropriateness of the performance of the system. We propose that the operational situations and the acceptance criteria should be defined based on modelling of the NPP operation that is comprehended as an activity system. We developed a new core-tasks modelling framework. It is a formative modelling approach that combines causal, functional and understanding explanations of system performance. In this paper we reason how modelling can be used as a medium to determine the validity of the emerging control room system. (Author)

  6. Validation of a functional model for integration of safety into process system design

    DEFF Research Database (Denmark)

    Wu, J.; Lind, M.; Zhang, X.

    2015-01-01

    with the process system functionalities as required for the intended safety applications. To provide the scientific rigor and facilitate the acceptance of qualitative modelling, this contribution focuses on developing a scientifically based validation method for functional models. The Multilevel Flow Modeling (MFM...

  7. A multibody motorcycle model with rigid-ring tyres: formulation and validation

    Science.gov (United States)

    Leonelli, Luca; Mancinelli, Nicolò

    2015-06-01

    The aim of this paper is the development and validation of a three-dimensional multibody motorcycle model including a rigid-ring tyre model, taking into account both the slopes and elevation of the road surface. In order to achieve accurate assessment of ride and handling performances of a road racing motorcycle, a tyre model capable of reproducing the dynamic response to actual road excitation is required. While a number of vehicle models with such feature are available for car application, the extension to the motorcycle modelling has not been addressed yet. To do so, a novel parametrisation for the general motorcycle kinematics is proposed, using a mixed reference point and relative coordinates approach. The resulting description, developed in terms of dependent coordinates, makes it possible to include the rigid-ring kinematics as well as road elevation and slopes, without affecting computational efficiency. The equations of motion for the whole multibody system are derived symbolically and the constraint equations arising from the dependent coordinate formulation are handled using the position and velocity vector projection technique. The resulting system of equations is integrated in time domain using a standard ordinary differential equation (ODE) algorithm. Finally, the model is validated with respect to experimentally measured data in both time and frequency domains.

  8. A comprehensive validation toolbox for regional ocean models - Outline, implementation and application to the Baltic Sea

    Science.gov (United States)

    Jandt, Simon; Laagemaa, Priidik; Janssen, Frank

    2014-05-01

    The systematic and objective comparison between output from a numerical ocean model and a set of observations, called validation in the context of this presentation, is a beneficial activity at several stages, starting from early steps in model development and ending at the quality control of model based products delivered to customers. Even though the importance of this kind of validation work is widely acknowledged it is often not among the most popular tasks in ocean modelling. In order to ease the validation work a comprehensive toolbox has been developed in the framework of the MyOcean-2 project. The objective of this toolbox is to carry out validation integrating different data sources, e.g. time-series at stations, vertical profiles, surface fields or along track satellite data, with one single program call. The validation toolbox, implemented in MATLAB, features all parts of the validation process - ranging from read-in procedures of datasets to the graphical and numerical output of statistical metrics of the comparison. The basic idea is to have only one well-defined validation schedule for all applications, in which all parts of the validation process are executed. Each part, e.g. read-in procedures, forms a module in which all available functions of this particular part are collected. The interface between the functions, the module and the validation schedule is highly standardized. Functions of a module are set up for certain validation tasks, new functions can be implemented into the appropriate module without affecting the functionality of the toolbox. The functions are assigned for each validation task in user specific settings, which are externally stored in so-called namelists and gather all information of the used datasets as well as paths and metadata. In the framework of the MyOcean-2 project the toolbox is frequently used to validate the forecast products of the Baltic Sea Marine Forecasting Centre. Hereby the performance of any new product

  9. Fast Running Urban Dispersion Model for Radiological Dispersal Device (RDD) Releases: Model Description and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Gowardhan, Akshay [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Neuscamman, Stephanie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Donetti, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Walker, Hoyt [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Belles, Rich [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Eme, Bill [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Homann, Steven [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC); Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). National Atmospheric Release Advisory Center (NARAC)

    2017-05-24

    Aeolus is an efficient three-dimensional computational fluid dynamics code based on finite volume method developed for predicting transport and dispersion of contaminants in a complex urban area. It solves the time dependent incompressible Navier-Stokes equation on a regular Cartesian staggered grid using a fractional step method. It also solves a scalar transport equation for temperature and using the Boussinesq approximation. The model also includes a Lagrangian dispersion model for predicting the transport and dispersion of atmospheric contaminants. The model can be run in an efficient Reynolds Average Navier-Stokes (RANS) mode with a run time of several minutes, or a more detailed Large Eddy Simulation (LES) mode with run time of hours for a typical simulation. This report describes the model components, including details on the physics models used in the code, as well as several model validation efforts. Aeolus wind and dispersion predictions are compared to field data from the Joint Urban Field Trials 2003 conducted in Oklahoma City (Allwine et al 2004) including both continuous and instantaneous releases. Newly implemented Aeolus capabilities include a decay chain model and an explosive Radiological Dispersal Device (RDD) source term; these capabilities are described. Aeolus predictions using the buoyant explosive RDD source are validated against two experimental data sets: the Green Field explosive cloud rise experiments conducted in Israel (Sharon et al 2012) and the Full-Scale RDD Field Trials conducted in Canada (Green et al 2016).

  10. Simulated training in colonoscopic stenting of colonic strictures: validation of a cadaver model.

    Science.gov (United States)

    Iordache, F; Bucobo, J C; Devlin, D; You, K; Bergamaschi, R

    2015-07-01

    There are currently no available simulation models for training in colonoscopic stent deployment. The aim of this study was to validate a cadaver model for simulation training in colonoscopy with stent deployment for colonic strictures. This was a prospective study enrolling surgeons at a single institution. Participants performed colonoscopic stenting on a cadaver model. Their performance was assessed by two independent observers. Measurements were performed for quantitative analysis (time to identify stenosis, time for deployment, accuracy) and a weighted score was devised for assessment. The Mann-Whitney U-test and Student's t-test were used for nonparametric and parametric data, respectively. Cohen's kappa coefficient was used for reliability. Twenty participants performed a colonoscopy with deployment of a self-expandable metallic stent in two cadavers (groups A and B) with 20 strictures overall. The median time was 206 s. The model was able to differentiate between experts and novices (P = 0. 013). The results showed a good consensus estimate of reliability, with kappa = 0.571 (P cadaver model described in this study has content, construct and concurrent validity for simulation training in colonoscopic deployment of self-expandable stents for colonic strictures. Further studies are needed to evaluate the predictive validity of this model in terms of skill transfer to clinical practice. Colorectal Disease © 2014 The Association of Coloproctology of Great Britain and Ireland.

  11. Experimental validation of models for Plasma Focus devices

    International Nuclear Information System (INIS)

    Rodriguez Palomino, Luis; Gonzalez, Jose; Clausse, Alejandro

    2003-01-01

    Plasma Focus(PF) Devices are thermonuclear pulsators that produce short pulsed radiation (X-ray, charged particles and neutrons). Since Filippov and Mather, investigations have been used to study plasma properties. Nowadays the interest about PF is focused in technology applications, related to the use of these devices as pulsed neutron sources. In the numerical calculus the Inter institutional PLADEMA (PLAsmas DEnsos MAgnetizados) network is developing three models. Each one is useful in different engineering stages of the Plasma Focus design. One of the main objectives in this work is a comparative study on the influence of the different parameters involved in each models. To validate these results, several experimental measurements under different geometry and initial conditions were performed. (author)

  12. Predicting the success of IVF: external validation of the van Loendersloot's model.

    Science.gov (United States)

    Sarais, Veronica; Reschini, Marco; Busnelli, Andrea; Biancardi, Rossella; Paffoni, Alessio; Somigliana, Edgardo

    2016-06-01

    Is the predictive model for IVF success proposed by van Loendersloot et al. valid in a different geographical and cultural context? The model discriminates well but was less accurate than in the original context where it was developed. Several independent groups have developed models that combine different variables with the aim of estimating the chance of pregnancy with IVF but only four of them have been externally validated. One of these four, the van Loendersloot's model, deserves particular attention and further investigation for at least three reasons; (i) the reported area under the receiver operating characteristics curve (c-statistics) in the temporal validation setting was the highest reported to date (0.68), (ii) the perspective of the model is clinically wise since it includes variables obtained from previous failed cycles, if any, so it can be applied to any women entering an IVF cycle, (iii) the model lacks external validation in a geographically different center. Retrospective cohort study of women undergoing oocyte retrieval for IVF between January 2013 and December 2013 at the infertility unit of the Fondazione Ca' Granda, Ospedale Maggiore Policlinico of Milan, Italy. Only the first oocyte retrieval cycle performed during the study period was included in the study. Women with previous IVF cycles were excluded if the last one before the study cycle was in another center. The main outcome was the cumulative live birth rate per oocytes retrieval. Seven hundred seventy-two women were selected. Variables included in the van Loendersloot's model and the relative weights (beta) were used. The variable resulting from this combination (Y) was transformed into a probability. The discriminatory capacity was assessed using the c-statistics. Calibration was made using a logistic regression that included Y as the unique variable and live birth as the outcome. Data are presented using both the original and the calibrated models. Performance was evaluated

  13. Validation of a mixture-averaged thermal diffusion model for premixed lean hydrogen flames

    Science.gov (United States)

    Schlup, Jason; Blanquart, Guillaume

    2018-03-01

    The mixture-averaged thermal diffusion model originally proposed by Chapman and Cowling is validated using multiple flame configurations. Simulations using detailed hydrogen chemistry are done on one-, two-, and three-dimensional flames. The analysis spans flat and stretched, steady and unsteady, and laminar and turbulent flames. Quantitative and qualitative results using the thermal diffusion model compare very well with the more complex multicomponent diffusion model. Comparisons are made using flame speeds, surface areas, species profiles, and chemical source terms. Once validated, this model is applied to three-dimensional laminar and turbulent flames. For these cases, thermal diffusion causes an increase in the propagation speed of the flames as well as increased product chemical source terms in regions of high positive curvature. The results illustrate the necessity for including thermal diffusion, and the accuracy and computational efficiency of the mixture-averaged thermal diffusion model.

  14. Copenhagen Psychosocial Questionnaire - A validation study using the Job Demand-Resources model.

    Directory of Open Access Journals (Sweden)

    Hanne Berthelsen

    Full Text Available This study aims at investigating the nomological validity of the Copenhagen Psychosocial Questionnaire (COPSOQ II by using an extension of the Job Demands-Resources (JD-R model with aspects of work ability as outcome.The study design is cross-sectional. All staff working at public dental organizations in four regions of Sweden were invited to complete an electronic questionnaire (75% response rate, n = 1345. The questionnaire was based on COPSOQ II scales, the Utrecht Work Engagement scale, and the one-item Work Ability Score in combination with a proprietary item. The data was analysed by Structural Equation Modelling.This study contributed to the literature by showing that: A The scale characteristics were satisfactory and the construct validity of COPSOQ instrument could be integrated in the JD-R framework; B Job resources arising from leadership may be a driver of the two processes included in the JD-R model; and C Both the health impairment and motivational processes were associated with WA, and the results suggested that leadership may impact WA, in particularly by securing task resources.In conclusion, the nomological validity of COPSOQ was supported as the JD-R model-can be operationalized by the instrument. This may be helpful for transferral of complex survey results and work life theories to practitioners in the field.

  15. Innovative use of soft data for the validation of a rainfall-runoff model forced by remote sensing data

    Science.gov (United States)

    van Emmerik, Tim; Eilander, Dirk; Piet, Marijn; Mulder, Gert

    2013-04-01

    The Chamcar Bei catchment in southern Cambodia is a typical ungauged basin. Neither meteorological data or discharge measurements are available. In this catchment, local farmers are highly dependent on the irrigation system. However, due to the unreliability of the water supply, it was required to make a hydrological model, with which further improvements of the irrigation system could be planned. First, we used knowledge generated in the IAHS decade on Predictions in Ungauged Basins (PUB) to estimate the annual water balance of the Chamcar Bei catchment. Next, using remotely sensed precipitation, vegetation, elevation and transpiration data, a monthly rainfall-runoff model has been developed. The rainfall-runoff model was linked to the irrigation system reservoir, which allowed to validate the model based on soft data such as historical knowledge of the reservoir water level and groundwater levels visible in wells. This study shows that combining existing remote sensing data and soft ground data can lead to useful modeling results. The approach presented in this study can be applied in other ungauged basins, which can be extremely helpful in managing water resources in developing countries.

  16. Multi-Scale Soil Moisture Monitoring and Modeling at ARS Watersheds for NASA's Soil Moisture Active Passive (SMAP) Calibration/Validation Mission

    Science.gov (United States)

    Coopersmith, E. J.; Cosh, M. H.

    2014-12-01

    NASA's SMAP satellite, launched in November of 2014, produces estimates of average volumetric soil moisture at 3, 9, and 36-kilometer scales. The calibration and validation process of these estimates requires the generation of an identically-scaled soil moisture product from existing in-situ networks. This can be achieved via the integration of NLDAS precipitation data to perform calibration of models at each ­in-situ gauge. In turn, these models and the gauges' volumetric estimations are used to generate soil moisture estimates at a 500m scale throughout a given test watershed by leveraging, at each location, the gauge-calibrated models deemed most appropriate in terms of proximity, calibration efficacy, soil-textural similarity, and topography. Four ARS watersheds, located in Iowa, Oklahoma, Georgia, and Arizona are employed to demonstrate the utility of this approach. The South Fork watershed in Iowa represents the simplest case - the soil textures and topography are relative constants and the variability of soil moisture is simply tied to the spatial variability of precipitation. The Little Washita watershed in Oklahoma adds soil textural variability (but remains topographically simple), while the Little River watershed in Georgia incorporates topographic classification. Finally, the Walnut Gulch watershed in Arizona adds a dense precipitation network to be employed for even finer-scale modeling estimates. Results suggest RMSE values at or below the 4% volumetric standard adopted for the SMAP mission are attainable over the desired spatial scales via this integration of modeling efforts and existing in-situ networks.

  17. Predicting survival of de novo metastatic breast cancer in Asian women: systematic review and validation study.

    Science.gov (United States)

    Miao, Hui; Hartman, Mikael; Bhoo-Pathy, Nirmala; Lee, Soo-Chin; Taib, Nur Aishah; Tan, Ern-Yu; Chan, Patrick; Moons, Karel G M; Wong, Hoong-Seam; Goh, Jeremy; Rahim, Siti Mastura; Yip, Cheng-Har; Verkooijen, Helena M

    2014-01-01

    In Asia, up to 25% of breast cancer patients present with distant metastases at diagnosis. Given the heterogeneous survival probabilities of de novo metastatic breast cancer, individual outcome prediction is challenging. The aim of the study is to identify existing prognostic models for patients with de novo metastatic breast cancer and validate them in Asia. We performed a systematic review to identify prediction models for metastatic breast cancer. Models were validated in 642 women with de novo metastatic breast cancer registered between 2000 and 2010 in the Singapore Malaysia Hospital Based Breast Cancer Registry. Survival curves for low, intermediate and high-risk groups according to each prognostic score were compared by log-rank test and discrimination of the models was assessed by concordance statistic (C-statistic). We identified 16 prediction models, seven of which were for patients with brain metastases only. Performance status, estrogen receptor status, metastatic site(s) and disease-free interval were the most common predictors. We were able to validate nine prediction models. The capacity of the models to discriminate between poor and good survivors varied from poor to fair with C-statistics ranging from 0.50 (95% CI, 0.48-0.53) to 0.63 (95% CI, 0.60-0.66). The discriminatory performance of existing prediction models for de novo metastatic breast cancer in Asia is modest. Development of an Asian-specific prediction model is needed to improve prognostication and guide decision making.

  18. Predicting survival of de novo metastatic breast cancer in Asian women: systematic review and validation study.

    Directory of Open Access Journals (Sweden)

    Hui Miao

    Full Text Available BACKGROUND: In Asia, up to 25% of breast cancer patients present with distant metastases at diagnosis. Given the heterogeneous survival probabilities of de novo metastatic breast cancer, individual outcome prediction is challenging. The aim of the study is to identify existing prognostic models for patients with de novo metastatic breast cancer and validate them in Asia. MATERIALS AND METHODS: We performed a systematic review to identify prediction models for metastatic breast cancer. Models were validated in 642 women with de novo metastatic breast cancer registered between 2000 and 2010 in the Singapore Malaysia Hospital Based Breast Cancer Registry. Survival curves for low, intermediate and high-risk groups according to each prognostic score were compared by log-rank test and discrimination of the models was assessed by concordance statistic (C-statistic. RESULTS: We identified 16 prediction models, seven of which were for patients with brain metastases only. Performance status, estrogen receptor status, metastatic site(s and disease-free interval were the most common predictors. We were able to validate nine prediction models. The capacity of the models to discriminate between poor and good survivors varied from poor to fair with C-statistics ranging from 0.50 (95% CI, 0.48-0.53 to 0.63 (95% CI, 0.60-0.66. CONCLUSION: The discriminatory performance of existing prediction models for de novo metastatic breast cancer in Asia is modest. Development of an Asian-specific prediction model is needed to improve prognostication and guide decision making.

  19. Validity of urinary monoamine assay sales under the "spot baseline urinary neurotransmitter testing marketing model".

    Science.gov (United States)

    Hinz, Marty; Stein, Alvin; Uncini, Thomas

    2011-01-01

    Spot baseline urinary monoamine assays have been used in medicine for over 50 years as a screening test for monoamine-secreting tumors, such as pheochromocytoma and carcinoid syndrome. In these disease states, when the result of a spot baseline monoamine assay is above the specific value set by the laboratory, it is an indication to obtain a 24-hour urine sample to make a definitive diagnosis. There are no defined applications where spot baseline urinary monoamine assays can be used to diagnose disease or other states directly. No peer-reviewed published original research exists which demonstrates that these assays are valid in the treatment of individual patients in the clinical setting. Since 2001, urinary monoamine assay sales have been promoted for numerous applications under the "spot baseline urinary neurotransmitter testing marketing model". There is no published peer-reviewed original research that defines the scientific foundation upon which the claims for these assays are made. On the contrary, several articles have been published that discredit various aspects of the model. To fill the void, this manuscript is a comprehensive review of the scientific foundation and claims put forth by laboratories selling urinary monoamine assays under the spot baseline urinary neurotransmitter testing marketing model.

  20. Assessment and validation of the CAESAR predictive model for bioconcentration factor (BCF in fish

    Directory of Open Access Journals (Sweden)

    Milan Chiara

    2010-07-01

    Full Text Available Abstract Background Bioconcentration factor (BCF describes the behaviour of a chemical in terms of its likelihood of concentrating in organisms in the environment. It is a fundamental property in recent regulations, such as the European Community Regulation on chemicals and their safe use or the Globally Harmonized System for classification, labelling and packaging. These new regulations consider the possibility of reducing or waiving animal tests using alternative methods, such as in silico methods. This study assessed and validated the CAESAR predictive model for BCF in fish. Results To validate the model, new experimental data were collected and used to create an external set, as a second validation set (a first validation exercise had been done just after model development. The performance of the model was compared with BCFBAF v3.00. For continuous values and for classification purposes the CAESAR BCF model gave better results than BCFBAF v3.00 for the chemicals in the applicability domain of the model. R2 and Q2 were good and accuracy in classification higher than 90%. Applying an offset of 0.5 to the compounds predicted with BCF close to the thresholds, the number of false negatives (the most dangerous errors dropped considerably (less than 0.6% of chemicals. Conclusions The CAESAR model for BCF is useful for regulatory purposes because it is robust, reliable and predictive. It is also fully transparent and documented and has a well-defined applicability domain, as required by REACH. The model is freely available on the CAESAR web site and easy to use. The reliability of the model reporting the six most similar compounds found in the CAESAR dataset, and their experimental and predicted values, can be evaluated.