WorldWideScience

Sample records for valid process model

  1. Validation process of simulation model

    International Nuclear Information System (INIS)

    San Isidro, M. J.

    1998-01-01

    It is presented a methodology on empirical validation about any detailed simulation model. This king of validation it is always related with an experimental case. The empirical validation has a residual sense, because the conclusions are based on comparisons between simulated outputs and experimental measurements. This methodology will guide us to detect the fails of the simulation model. Furthermore, it can be used a guide in the design of posterior experiments. Three steps can be well differentiated: Sensitivity analysis. It can be made with a DSA, differential sensitivity analysis, and with a MCSA, Monte-Carlo sensitivity analysis. Looking the optimal domains of the input parameters. It has been developed a procedure based on the Monte-Carlo methods and Cluster techniques, to find the optimal domains of these parameters. Residual analysis. This analysis has been made on the time domain and on the frequency domain, it has been used the correlation analysis and spectral analysis. As application of this methodology, it is presented the validation carried out on a thermal simulation model on buildings, Esp., studying the behavior of building components on a Test Cell of LECE of CIEMAT. (Author) 17 refs

  2. Integrated Process Modeling-A Process Validation Life Cycle Companion.

    Science.gov (United States)

    Zahel, Thomas; Hauer, Stefan; Mueller, Eric M; Murphy, Patrick; Abad, Sandra; Vasilieva, Elena; Maurer, Daniel; Brocard, Cécile; Reinisch, Daniela; Sagmeister, Patrick; Herwig, Christoph

    2017-10-17

    During the regulatory requested process validation of pharmaceutical manufacturing processes, companies aim to identify, control, and continuously monitor process variation and its impact on critical quality attributes (CQAs) of the final product. It is difficult to directly connect the impact of single process parameters (PPs) to final product CQAs, especially in biopharmaceutical process development and production, where multiple unit operations are stacked together and interact with each other. Therefore, we want to present the application of Monte Carlo (MC) simulation using an integrated process model (IPM) that enables estimation of process capability even in early stages of process validation. Once the IPM is established, its capability in risk and criticality assessment is furthermore demonstrated. IPMs can be used to enable holistic production control strategies that take interactions of process parameters of multiple unit operations into account. Moreover, IPMs can be trained with development data, refined with qualification runs, and maintained with routine manufacturing data which underlines the lifecycle concept. These applications will be shown by means of a process characterization study recently conducted at a world-leading contract manufacturing organization (CMO). The new IPM methodology therefore allows anticipation of out of specification (OOS) events, identify critical process parameters, and take risk-based decisions on counteractions that increase process robustness and decrease the likelihood of OOS events.

  3. Software Process Validation: Quantitatively Measuring the Correspondence of a Process to a Model

    National Research Council Canada - National Science Library

    Cook, Jonathan E; Wolf, Alexander L

    1997-01-01

    .... When process models and process executions diverge, something significant is happening. The authors have developed techniques for uncovering and measuring the discrepancies between models and executions, which they call process validation...

  4. A process improvement model for software verification and validation

    Science.gov (United States)

    Callahan, John; Sabolish, George

    1994-01-01

    We describe ongoing work at the NASA Independent Verification and Validation (IV&V) Facility to establish a process improvement model for software verification and validation (V&V) organizations. This model, similar to those used by some software development organizations, uses measurement-based techniques to identify problem areas and introduce incremental improvements. We seek to replicate this model for organizations involved in V&V on large-scale software development projects such as EOS and space station. At the IV&V Facility, a university research group and V&V contractors are working together to collect metrics across projects in order to determine the effectiveness of V&V and improve its application. Since V&V processes are intimately tied to development processes, this paper also examines the repercussions for development organizations in large-scale efforts.

  5. Analytical models approximating individual processes: a validation method.

    Science.gov (United States)

    Favier, C; Degallier, N; Menkès, C E

    2010-12-01

    Upscaling population models from fine to coarse resolutions, in space, time and/or level of description, allows the derivation of fast and tractable models based on a thorough knowledge of individual processes. The validity of such approximations is generally tested only on a limited range of parameter sets. A more general validation test, over a range of parameters, is proposed; this would estimate the error induced by the approximation, using the original model's stochastic variability as a reference. This method is illustrated by three examples taken from the field of epidemics transmitted by vectors that bite in a temporally cyclical pattern, that illustrate the use of the method: to estimate if an approximation over- or under-fits the original model; to invalidate an approximation; to rank possible approximations for their qualities. As a result, the application of the validation method to this field emphasizes the need to account for the vectors' biology in epidemic prediction models and to validate these against finer scale models. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes

    Science.gov (United States)

    Bekbauov, Bakhbergen; Berdyshev, Abdumauvlen; Baishemirov, Zharasbek; Bau, Domenico

    2017-12-01

    Chemical compositional simulation of enhanced oil recovery and surfactant enhanced aquifer remediation processes is a complex task that involves solving dozens of equations for all grid blocks representing a reservoir. In the present work, we perform a numerical validation of the newly developed mathematical formulation which satisfies the conservation laws of mass and energy and allows applying a sequential solution approach to solve the governing equations separately and implicitly. Through its application to the numerical experiment using a wettability alteration model and comparisons with existing chemical compositional model's numerical results, the new model has proven to be practical, reliable and stable.

  7. Guideline validation in multiple trauma care through business process modeling.

    Science.gov (United States)

    Stausberg, Jürgen; Bilir, Hüseyin; Waydhas, Christian; Ruchholtz, Steffen

    2003-07-01

    Clinical guidelines can improve the quality of care in multiple trauma. In our Department of Trauma Surgery a specific guideline is available paper-based as a set of flowcharts. This format is appropriate for the use by experienced physicians but insufficient for electronic support of learning, workflow and process optimization. A formal and logically consistent version represented with a standardized meta-model is necessary for automatic processing. In our project we transferred the paper-based into an electronic format and analyzed the structure with respect to formal errors. Several errors were detected in seven error categories. The errors were corrected to reach a formally and logically consistent process model. In a second step the clinical content of the guideline was revised interactively using a process-modeling tool. Our study reveals that guideline development should be assisted by process modeling tools, which check the content in comparison to a meta-model. The meta-model itself could support the domain experts in formulating their knowledge systematically. To assure sustainability of guideline development a representation independent of specific applications or specific provider is necessary. Then, clinical guidelines could be used for eLearning, process optimization and workflow management additionally.

  8. Dynamic modeling and validation of a lignocellulosic enzymatic hydrolysis process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Sin, Gürkan

    2013-01-01

    The enzymatic hydrolysis process is one of the key steps in second generation biofuel production. After being thermally pretreated, the lignocellulosic material is liquefied by enzymes prior to fermentation. The scope of this paper is to evaluate a dynamic model of the hydrolysis process...... on a demonstration scale reactor. The following novel features are included: the application of the Convection–Diffusion–Reaction equation to a hydrolysis reactor to assess transport and mixing effects; the extension of a competitive kinetic model with enzymatic pH dependency and hemicellulose hydrolysis......; a comprehensive pH model; and viscosity estimations during the course of reaction. The model is evaluated against real data extracted from a demonstration scale biorefinery throughout several days of operation. All measurements are within predictions uncertainty and, therefore, the model constitutes a valuable...

  9. Material model validation for laser shock peening process simulation

    International Nuclear Information System (INIS)

    Amarchinta, H K; Grandhi, R V; Langer, K; Stargel, D S

    2009-01-01

    Advanced mechanical surface enhancement techniques have been used successfully to increase the fatigue life of metallic components. These techniques impart deep compressive residual stresses into the component to counter potentially damage-inducing tensile stresses generated under service loading. Laser shock peening (LSP) is an advanced mechanical surface enhancement technique used predominantly in the aircraft industry. To reduce costs and make the technique available on a large-scale basis for industrial applications, simulation of the LSP process is required. Accurate simulation of the LSP process is a challenging task, because the process has many parameters such as laser spot size, pressure profile and material model that must be precisely determined. This work focuses on investigating the appropriate material model that could be used in simulation and design. In the LSP process material is subjected to strain rates of 10 6  s −1 , which is very high compared with conventional strain rates. The importance of an accurate material model increases because the material behaves significantly different at such high strain rates. This work investigates the effect of multiple nonlinear material models for representing the elastic–plastic behavior of materials. Elastic perfectly plastic, Johnson–Cook and Zerilli–Armstrong models are used, and the performance of each model is compared with available experimental results

  10. Process Modeling and Validation for Metal Big Area Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Simunovic, Srdjan [ORNL; Nycz, Andrzej [ORNL; Noakes, Mark W. [ORNL; Chin, Charlie [Dassault Systemes; Oancea, Victor [Dassault Systemes

    2017-05-01

    Metal Big Area Additive Manufacturing (mBAAM) is a new additive manufacturing (AM) technology based on the metal arc welding. A continuously fed metal wire is melted by an electric arc that forms between the wire and the substrate, and deposited in the form of a bead of molten metal along the predetermined path. Objects are manufactured one layer at a time starting from the base plate. The final properties of the manufactured object are dependent on its geometry and the metal deposition path, in addition to depending on the basic welding process parameters. Computational modeling can be used to accelerate the development of the mBAAM technology as well as a design and optimization tool for the actual manufacturing process. We have developed a finite element method simulation framework for mBAAM using the new features of software ABAQUS. The computational simulation of material deposition with heat transfer is performed first, followed by the structural analysis based on the temperature history for predicting the final deformation and stress state. In this formulation, we assume that two physics phenomena are coupled in only one direction, i.e. the temperatures are driving the deformation and internal stresses, but their feedback on the temperatures is negligible. The experiment instrumentation (measurement types, sensor types, sensor locations, sensor placements, measurement intervals) and the measurements are presented. The temperatures and distortions from the simulations show good correlation with experimental measurements. Ongoing modeling work is also briefly discussed.

  11. Model determination and validation for reactive wetting processes

    Energy Technology Data Exchange (ETDEWEB)

    Yost, F.G.; O`Toole, E.J.; Sackinger, P.A. [Sandia National Labs., Albuquerque, NM (United States); Swiler, T.P. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering

    1998-01-01

    It is shown that dissolutive wetting initially yields a metastable equilibrium. A compact model for the kinetics of approach to this metastable state is described. The technique for constructing these kinetics stems from the early work of Onsager and begins with a relationship for the entropy production. From this, a coupled set of nonlinear, ordinary differential equations can be written directly. The equations are solved numerically for the wetted area and compared with experimental data. The model captures many of the subtle complexities of dissolutive wetting such as multiple metastable states. Sessile drop experiments involving a variety of Bi-Sn alloys on solid Bi substrates were performed. Substrates prepared from small and large-grained polycrystals and single crystals were used to measure equilibrium and metastable contact angles and estimate the surface tension and equilibrium contact angle of the solid-liquid interface. The substrates were also used to investigate the coupling of the dissolution and wetting processes and to investigate the effect of substrate grain size on wetting. It was determined that the equilibrium wetting geometry is independent of linear scale and that grain size has little influence on wetting or dissolution in the Bi-Sn system. To investigate the atomic behavior of liquids at interfaces during wetting, the authors simulated wetting in the Ag-Cu system using molecular dynamics with atomic potentials and observed both atomic dynamics and structural correlations of the liquid-solid interface. The authors found that spreading is prompted by interactions between the liquid and the substrate surface that cause the liquid layer in contact with the substrate to take on some of the symmetry of the substrate surface and result in the formation of a liquid monolayer that extends beyond the major part of the liquid droplet.

  12. Three phase heat and mass transfer model for unsaturated soil freezing process: Part 2 - model validation

    Science.gov (United States)

    Zhang, Yaning; Xu, Fei; Li, Bingxi; Kim, Yong-Song; Zhao, Wenke; Xie, Gongnan; Fu, Zhongbin

    2018-04-01

    This study aims to validate the three-phase heat and mass transfer model developed in the first part (Three phase heat and mass transfer model for unsaturated soil freezing process: Part 1 - model development). Experimental results from studies and experiments were used for the validation. The results showed that the correlation coefficients for the simulated and experimental water contents at different soil depths were between 0.83 and 0.92. The correlation coefficients for the simulated and experimental liquid water contents at different soil temperatures were between 0.95 and 0.99. With these high accuracies, the developed model can be well used to predict the water contents at different soil depths and temperatures.

  13. Simulating pattern-process relationships to validate landscape genetic models

    Science.gov (United States)

    A. J. Shirk; S. A. Cushman; E. L. Landguth

    2012-01-01

    Landscapes may resist gene flow and thereby give rise to a pattern of genetic isolation within a population. The mechanism by which a landscape resists gene flow can be inferred by evaluating the relationship between landscape models and an observed pattern of genetic isolation. This approach risks false inferences because researchers can never feasibly test all...

  14. On-line validation of linear process models using generalized likelihood ratios

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1981-12-01

    A real-time method for testing the validity of linear models of nonlinear processes is described and evaluated. Using generalized likelihood ratios, the model dynamics are continually monitored to see if the process has moved far enough away from the nominal linear model operating point to justify generation of a new linear model. The method is demonstrated using a seventh-order model of a natural circulation steam generator

  15. Perceiving pain in others: validation of a dual processing model.

    Science.gov (United States)

    McCrystal, Kalie N; Craig, Kenneth D; Versloot, Judith; Fashler, Samantha R; Jones, Daniel N

    2011-05-01

    Accurate perception of another person's painful distress would appear to be accomplished through sensitivity to both automatic (unintentional, reflexive) and controlled (intentional, purposive) behavioural expression. We examined whether observers would construe diverse behavioural cues as falling within these domains, consistent with cognitive neuroscience findings describing activation of both automatic and controlled neuroregulatory processes. Using online survey methodology, 308 research participants rated behavioural cues as "goal directed vs. non-goal directed," "conscious vs. unconscious," "uncontrolled vs. controlled," "fast vs. slow," "intentional (deliberate) vs. unintentional," "stimulus driven (obligatory) vs. self driven," and "requiring contemplation vs. not requiring contemplation." The behavioural cues were the 39 items provided by the PROMIS pain behaviour bank, constructed to be representative of the diverse possibilities for pain expression. Inter-item correlations among rating scales provided evidence of sufficient internal consistency justifying a single score on an automatic/controlled dimension (excluding the inconsistent fast vs. slow scale). An initial exploratory factor analysis on 151 participant data sets yielded factors consistent with "controlled" and "automatic" actions, as well as behaviours characterized as "ambiguous." A confirmatory factor analysis using the remaining 151 data sets replicated EFA findings, supporting theoretical predictions that observers would distinguish immediate, reflexive, and spontaneous reactions (primarily facial expression and paralinguistic features of speech) from purposeful and controlled expression (verbal behaviour, instrumental behaviour requiring ongoing, integrated responses). There are implicit dispositions to organize cues signaling pain in others into the well-defined categories predicted by dual process theory. Copyright © 2011 International Association for the Study of Pain. Published by

  16. SmartWeld/SmartProcess - intelligent model based system for the design and validation of welding processes

    Energy Technology Data Exchange (ETDEWEB)

    Mitchner, J.

    1996-04-01

    Diagrams are presented on an intelligent model based system for the design and validation of welding processes. Key capabilities identified include `right the first time` manufacturing, continuous improvement, and on-line quality assurance.

  17. Validation of a functional model for integration of safety into process system design

    DEFF Research Database (Denmark)

    Wu, J.; Lind, M.; Zhang, X.

    2015-01-01

    with the process system functionalities as required for the intended safety applications. To provide the scientific rigor and facilitate the acceptance of qualitative modelling, this contribution focuses on developing a scientifically based validation method for functional models. The Multilevel Flow Modeling (MFM...

  18. A Supervised Learning Process to Validate Online Disease Reports for Use in Predictive Models.

    Science.gov (United States)

    Patching, Helena M M; Hudson, Laurence M; Cooke, Warrick; Garcia, Andres J; Hay, Simon I; Roberts, Mark; Moyes, Catherine L

    2015-12-01

    Pathogen distribution models that predict spatial variation in disease occurrence require data from a large number of geographic locations to generate disease risk maps. Traditionally, this process has used data from public health reporting systems; however, using online reports of new infections could speed up the process dramatically. Data from both public health systems and online sources must be validated before they can be used, but no mechanisms exist to validate data from online media reports. We have developed a supervised learning process to validate geolocated disease outbreak data in a timely manner. The process uses three input features, the data source and two metrics derived from the location of each disease occurrence. The location of disease occurrence provides information on the probability of disease occurrence at that location based on environmental and socioeconomic factors and the distance within or outside the current known disease extent. The process also uses validation scores, generated by disease experts who review a subset of the data, to build a training data set. The aim of the supervised learning process is to generate validation scores that can be used as weights going into the pathogen distribution model. After analyzing the three input features and testing the performance of alternative processes, we selected a cascade of ensembles comprising logistic regressors. Parameter values for the training data subset size, number of predictors, and number of layers in the cascade were tested before the process was deployed. The final configuration was tested using data for two contrasting diseases (dengue and cholera), and 66%-79% of data points were assigned a validation score. The remaining data points are scored by the experts, and the results inform the training data set for the next set of predictors, as well as going to the pathogen distribution model. The new supervised learning process has been implemented within our live site and is

  19. Soil process modelling in CZO research: gains in data harmonisation and model validation

    Science.gov (United States)

    van Gaans, Pauline; Andrianaki, Maria; Kobierska, Florian; Kram, Pavel; Lamacova, Anna; Lair, Georg; Nikolaidis, Nikos; Duffy, Chris; Regelink, Inge; van Leeuwen, Jeroen P.; de Ruiter, Peter

    2014-05-01

    Various soil process models were applied to four European Critical Zone observatories (CZOs), the core research sites of the FP7 project SoilTrEC: the Damma glacier forefield (CH), a set of three forested catchments on geochemically contrasing bedrocks in the Slavkov Forest (CZ), a chronosequence of soils in the former floodplain of the Danube of Fuchsenbigl/Marchfeld (AT), and the Koiliaris catchments in the north-western part of Crete, (GR). The aim of the modelling exercises was to apply and test soil process models with data from the CZOs for calibration/validation, identify potential limits to the application scope of the models, interpret soil state and soil functions at key stages of the soil life cycle, represented by the four SoilTrEC CZOs, contribute towards harmonisation of data and data acquisition. The models identified as specifically relevant were: The Penn State Integrated Hydrologic Model (PIHM), a fully coupled, multiprocess, multi-scale hydrologic model, to get a better understanding of water flow and pathways, The Soil and Water Assessment Tool (SWAT), a deterministic, continuous time (daily time step) basin scale model, to evaluate the impact of soil management practices, The Rothamsted Carbon model (Roth-C) to simulate organic carbon turnover and the Carbon, Aggregation, and Structure Turnover (CAST) model to include the role of soil aggregates in carbon dynamics, The Ligand Charge Distribution (LCD) model, to understand the interaction between organic matter and oxide surfaces in soil aggregate formation, and The Terrestrial Ecology Model (TEM) to obtain insight into the link between foodweb structure and carbon and nutrient turnover. With some exceptions all models were applied to all four CZOs. The need for specific model input contributed largely to data harmonisation. The comparisons between the CZOs turned out to be of great value for understanding the strength and limitations of the models, as well as the differences in soil conditions

  20. Conceptualization of Approaches and Thought Processes Emerging in Validating of Model in Mathematical Modeling in Technology Aided Environment

    Science.gov (United States)

    Hidiroglu, Çaglar Naci; Bukova Güzel, Esra

    2013-01-01

    The aim of the present study is to conceptualize the approaches displayed for validation of model and thought processes provided in mathematical modeling process performed in technology-aided learning environment. The participants of this grounded theory study were nineteen secondary school mathematics student teachers. The data gathered from the…

  1. Model-based verification and validation of the SMAP uplink processes

    Science.gov (United States)

    Khan, M. O.; Dubos, G. F.; Tirona, J.; Standley, S.

    Model-Based Systems Engineering (MBSE) is being used increasingly within the spacecraft design community because of its benefits when compared to document-based approaches. As the complexity of projects expands dramatically with continually increasing computational power and technology infusion, the time and effort needed for verification and validation (V& V) increases geometrically. Using simulation to perform design validation with system-level models earlier in the life cycle stands to bridge the gap between design of the system (based on system-level requirements) and verifying those requirements/validating the system as a whole. This case study stands as an example of how a project can validate a system-level design earlier in the project life cycle than traditional V& V processes by using simulation on a system model. Specifically, this paper describes how simulation was added to a system model of the Soil Moisture Active-Passive (SMAP) mission's uplink process. Also discussed are the advantages and disadvantages of the methods employed and the lessons learned; which are intended to benefit future model-based and simulation-based development efforts.

  2. Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process

    KAUST Repository

    Eleiwi, Fadi

    2016-02-01

    This work proposes a mathematical dynamic model for the direct contact membrane distillation (DCMD) process. The model is based on a 2D Advection–Diffusion Equation (ADE), which describes the heat and mass transfer mechanisms that take place inside the DCMD module. The model studies the behavior of the process in the time varying and the steady state phases, contributing to understanding the process performance, especially when it is driven by intermittent energy supply, such as the solar energy. The model is experimentally validated in the steady state phase, where the permeate flux is measured for different feed inlet temperatures and the maximum absolute error recorded is 2.78 °C. Moreover, experimental validation includes the time variation phase, where the feed inlet temperature ranges from 30 °C to 75 °C with 0.1 °C increment every 2min. The validation marks relative error to be less than 5%, which leads to a strong correlation between the model predictions and the experiments.

  3. Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process

    KAUST Repository

    Eleiwi, Fadi; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Francis, Lijo; Laleg-Kirati, Taous-Meriem

    2016-01-01

    This work proposes a mathematical dynamic model for the direct contact membrane distillation (DCMD) process. The model is based on a 2D Advection–Diffusion Equation (ADE), which describes the heat and mass transfer mechanisms that take place inside the DCMD module. The model studies the behavior of the process in the time varying and the steady state phases, contributing to understanding the process performance, especially when it is driven by intermittent energy supply, such as the solar energy. The model is experimentally validated in the steady state phase, where the permeate flux is measured for different feed inlet temperatures and the maximum absolute error recorded is 2.78 °C. Moreover, experimental validation includes the time variation phase, where the feed inlet temperature ranges from 30 °C to 75 °C with 0.1 °C increment every 2min. The validation marks relative error to be less than 5%, which leads to a strong correlation between the model predictions and the experiments.

  4. Donabedian's structure-process-outcome quality of care model: Validation in an integrated trauma system.

    Science.gov (United States)

    Moore, Lynne; Lavoie, André; Bourgeois, Gilles; Lapointe, Jean

    2015-06-01

    According to Donabedian's health care quality model, improvements in the structure of care should lead to improvements in clinical processes that should in turn improve patient outcome. This model has been widely adopted by the trauma community but has not yet been validated in a trauma system. The objective of this study was to assess the performance of an integrated trauma system in terms of structure, process, and outcome and evaluate the correlation between quality domains. Quality of care was evaluated for patients treated in a Canadian provincial trauma system (2005-2010; 57 centers, n = 63,971) using quality indicators (QIs) developed and validated previously. Structural performance was measured by transposing on-site accreditation visit reports onto an evaluation grid according to American College of Surgeons criteria. The composite process QI was calculated as the average sum of proportions of conformity to 15 process QIs derived from literature review and expert opinion. Outcome performance was measured using risk-adjusted rates of mortality, complications, and readmission as well as hospital length of stay (LOS). Correlation was assessed with Pearson's correlation coefficients. Statistically significant correlations were observed between structure and process QIs (r = 0.33), and process and outcome QIs (r = -0.33 for readmission, r = -0.27 for LOS). Significant positive correlations were also observed between outcome QIs (r = 0.37 for mortality-readmission; r = 0.39 for mortality-LOS and readmission-LOS; r = 0.45 for mortality-complications; r = 0.34 for readmission-complications; 0.63 for complications-LOS). Significant correlations between quality domains observed in this study suggest that Donabedian's structure-process-outcome model is a valid model for evaluating trauma care. Trauma centers that perform well in terms of structure also tend to perform well in terms of clinical processes, which in turn has a favorable influence on patient outcomes

  5. Predictive modeling of infrared radiative heating in tomato dry-peeling process: Part II. Model validation and sensitivity analysis

    Science.gov (United States)

    A predictive mathematical model was developed to simulate heat transfer in a tomato undergoing double sided infrared (IR) heating in a dry-peeling process. The aims of this study were to validate the developed model using experimental data and to investigate different engineering parameters that mos...

  6. Process validation for radiation processing

    International Nuclear Information System (INIS)

    Miller, A.

    1999-01-01

    Process validation concerns the establishment of the irradiation conditions that will lead to the desired changes of the irradiated product. Process validation therefore establishes the link between absorbed dose and the characteristics of the product, such as degree of crosslinking in a polyethylene tube, prolongation of shelf life of a food product, or degree of sterility of the medical device. Detailed international standards are written for the documentation of radiation sterilization, such as EN 552 and ISO 11137, and the steps of process validation that are described in these standards are discussed in this paper. They include material testing for the documentation of the correct functioning of the product, microbiological testing for selection of the minimum required dose and dose mapping for documentation of attainment of the required dose in all parts of the product. The process validation must be maintained by reviews and repeated measurements as necessary. This paper presents recommendations and guidance for the execution of these components of process validation. (author)

  7. Model Validation Status Review

    International Nuclear Information System (INIS)

    E.L. Hardin

    2001-01-01

    The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified, and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M and O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural and

  8. Model Validation Status Review

    Energy Technology Data Exchange (ETDEWEB)

    E.L. Hardin

    2001-11-28

    The primary objective for the Model Validation Status Review was to perform a one-time evaluation of model validation associated with the analysis/model reports (AMRs) containing model input to total-system performance assessment (TSPA) for the Yucca Mountain site recommendation (SR). This review was performed in response to Corrective Action Request BSC-01-C-01 (Clark 2001, Krisha 2001) pursuant to Quality Assurance review findings of an adverse trend in model validation deficiency. The review findings in this report provide the following information which defines the extent of model validation deficiency and the corrective action needed: (1) AMRs that contain or support models are identified, and conversely, for each model the supporting documentation is identified. (2) The use for each model is determined based on whether the output is used directly for TSPA-SR, or for screening (exclusion) of features, events, and processes (FEPs), and the nature of the model output. (3) Two approaches are used to evaluate the extent to which the validation for each model is compliant with AP-3.10Q (Analyses and Models). The approaches differ in regard to whether model validation is achieved within individual AMRs as originally intended, or whether model validation could be readily achieved by incorporating information from other sources. (4) Recommendations are presented for changes to the AMRs, and additional model development activities or data collection, that will remedy model validation review findings, in support of licensing activities. The Model Validation Status Review emphasized those AMRs that support TSPA-SR (CRWMS M&O 2000bl and 2000bm). A series of workshops and teleconferences was held to discuss and integrate the review findings. The review encompassed 125 AMRs (Table 1) plus certain other supporting documents and data needed to assess model validity. The AMRs were grouped in 21 model areas representing the modeling of processes affecting the natural and

  9. Experiments to populate and validate a processing model for polyurethane foam. BKC 44306 PMDI-10

    Energy Technology Data Exchange (ETDEWEB)

    Mondy, Lisa Ann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rao, Rekha Ranjana [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shelden, Bion [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Soehnel, Melissa Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); O' Hern, Timothy J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grillet, Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Celina, Mathias C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wyatt, Nicholas B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Russick, Edward Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hileman, Michael Bryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Urquhart, Alexander [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thompson, Kyle Richard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, David Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-03-01

    We are developing computational models to elucidate the expansion and dynamic filling process of a polyurethane foam, PMDI. The polyurethane of interest is chemically blown, where carbon dioxide is produced via the reaction of water, the blowing agent, and isocyanate. The isocyanate also reacts with polyol in a competing reaction, which produces the polymer. Here we detail the experiments needed to populate a processing model and provide parameters for the model based on these experiments. The model entails solving the conservation equations, including the equations of motion, an energy balance, and two rate equations for the polymerization and foaming reactions, following a simplified mathematical formalism that decouples these two reactions. Parameters for the polymerization kinetics model are reported based on infrared spectrophotometry. Parameters describing the gas generating reaction are reported based on measurements of volume, temperature and pressure evolution with time. A foam rheology model is proposed and parameters determined through steady-shear and oscillatory tests. Heat of reaction and heat capacity are determined through differential scanning calorimetry. Thermal conductivity of the foam as a function of density is measured using a transient method based on the theory of the transient plane source technique. Finally, density variations of the resulting solid foam in several simple geometries are directly measured by sectioning and sampling mass, as well as through x-ray computed tomography. These density measurements will be useful for model validation once the complete model is implemented in an engineering code.

  10. Groundwater Model Validation

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed E. Hassan

    2006-01-24

    Models have an inherent uncertainty. The difficulty in fully characterizing the subsurface environment makes uncertainty an integral component of groundwater flow and transport models, which dictates the need for continuous monitoring and improvement. Building and sustaining confidence in closure decisions and monitoring networks based on models of subsurface conditions require developing confidence in the models through an iterative process. The definition of model validation is postulated as a confidence building and long-term iterative process (Hassan, 2004a). Model validation should be viewed as a process not an end result. Following Hassan (2004b), an approach is proposed for the validation process of stochastic groundwater models. The approach is briefly summarized herein and detailed analyses of acceptance criteria for stochastic realizations and of using validation data to reduce input parameter uncertainty are presented and applied to two case studies. During the validation process for stochastic models, a question arises as to the sufficiency of the number of acceptable model realizations (in terms of conformity with validation data). Using a hierarchical approach to make this determination is proposed. This approach is based on computing five measures or metrics and following a decision tree to determine if a sufficient number of realizations attain satisfactory scores regarding how they represent the field data used for calibration (old) and used for validation (new). The first two of these measures are applied to hypothetical scenarios using the first case study and assuming field data consistent with the model or significantly different from the model results. In both cases it is shown how the two measures would lead to the appropriate decision about the model performance. Standard statistical tests are used to evaluate these measures with the results indicating they are appropriate measures for evaluating model realizations. The use of validation

  11. HEDR model validation plan

    International Nuclear Information System (INIS)

    Napier, B.A.; Gilbert, R.O.; Simpson, J.C.; Ramsdell, J.V. Jr.; Thiede, M.E.; Walters, W.H.

    1993-06-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project has developed a set of computational ''tools'' for estimating the possible radiation dose that individuals may have received from past Hanford Site operations. This document describes the planned activities to ''validate'' these tools. In the sense of the HEDR Project, ''validation'' is a process carried out by comparing computational model predictions with field observations and experimental measurements that are independent of those used to develop the model

  12. Dynamic Modeling and Validation of a Biomass Hydrothermal Pretreatment Process - A Demonstration Scale Study

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Blanke, Mogens; Jakobsen, Jon Geest

    2015-01-01

    for the enzymatic hydrolysis process. Several by-products are also formed, which disturb and act as inhibitors downstream. The objective of this study is to formulate and validate a large scale hydrothermal pretreatment dynamic model based on mass and energy balances, together with a complex conversion mechanism......Hydrothermal pretreatment of lignocellulosic biomass is a cost effective technology for second generation biorefineries. The process occurs in large horizontal and pressurized thermal reactors where the biomatrix is opened under the action of steam pressure and temperature to expose cellulose...... and kinetics. The study includes a comprehensive sensitivity and uncertainty analysis, with parameter estimation from real-data in the 178-185° range. To highlight the application utility of the model, a state estimator for biomass composition is developed. The predictions capture well the dynamic trends...

  13. Bayesian model selection validates a biokinetic model for zirconium processing in humans

    Science.gov (United States)

    2012-01-01

    Background In radiation protection, biokinetic models for zirconium processing are of crucial importance in dose estimation and further risk analysis for humans exposed to this radioactive substance. They provide limiting values of detrimental effects and build the basis for applications in internal dosimetry, the prediction for radioactive zirconium retention in various organs as well as retrospective dosimetry. Multi-compartmental models are the tool of choice for simulating the processing of zirconium. Although easily interpretable, determining the exact compartment structure and interaction mechanisms is generally daunting. In the context of observing the dynamics of multiple compartments, Bayesian methods provide efficient tools for model inference and selection. Results We are the first to apply a Markov chain Monte Carlo approach to compute Bayes factors for the evaluation of two competing models for zirconium processing in the human body after ingestion. Based on in vivo measurements of human plasma and urine levels we were able to show that a recently published model is superior to the standard model of the International Commission on Radiological Protection. The Bayes factors were estimated by means of the numerically stable thermodynamic integration in combination with a recently developed copula-based Metropolis-Hastings sampler. Conclusions In contrast to the standard model the novel model predicts lower accretion of zirconium in bones. This results in lower levels of noxious doses for exposed individuals. Moreover, the Bayesian approach allows for retrospective dose assessment, including credible intervals for the initially ingested zirconium, in a significantly more reliable fashion than previously possible. All methods presented here are readily applicable to many modeling tasks in systems biology. PMID:22863152

  14. Validation Process Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, John E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); English, Christine M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gesick, Joshua C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mukkamala, Saikrishna [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-04

    This report documents the validation process as applied to projects awarded through Funding Opportunity Announcements (FOAs) within the U.S. Department of Energy Bioenergy Technologies Office (DOE-BETO). It describes the procedures used to protect and verify project data, as well as the systematic framework used to evaluate and track performance metrics throughout the life of the project. This report also describes the procedures used to validate the proposed process design, cost data, analysis methodologies, and supporting documentation provided by the recipients.

  15. Development and validation of a CFD model predicting the backfill process of a nuclear waste gallery

    International Nuclear Information System (INIS)

    Gopala, Vinay Ramohalli; Lycklama a Nijeholt, Jan-Aiso; Bakker, Paul; Haverkate, Benno

    2011-01-01

    Research highlights: → This work presents the CFD simulation of the backfill process of Supercontainers with nuclear waste emplaced in a disposal gallery. → The cement-based material used for backfill is grout and the flow of grout is modelled as a Bingham fluid. → The model is verified against an analytical solution and validated against the flowability tests for concrete. → Comparison between backfill plexiglas experiment and simulation shows a distinct difference in the filling pattern. → The numerical model needs to be further developed to include segregation effects and thixotropic behavior of grout. - Abstract: Nuclear waste material may be stored in underground tunnels for long term storage. The example treated in this article is based on the current Belgian disposal concept for High-Level Waste (HLW), in which the nuclear waste material is packed in concrete shielded packages, called Supercontainers, which are inserted into these tunnels. After placement of the packages in the underground tunnels, the remaining voids between the packages and the tunnel lining is filled-up with a cement-based material called grout in order to encase the stored containers into the underground spacing. This encasement of the stored containers inside the tunnels is known as the backfill process. A good backfill process is necessary to stabilize the waste gallery against ground settlements. A numerical model to simulate the backfill process can help to improve and optimize the process by ensuring a homogeneous filling with no air voids and also optimization of the injection positions to achieve a homogeneous filling. The objective of the present work is to develop such a numerical code that can predict the backfill process well and validate the model against the available experiments and analytical solutions. In the present work the rheology of Grout is modelled as a Bingham fluid which is implemented in OpenFOAM - a finite volume-based open source computational fluid

  16. Validating and extending the three process model of alertness in airline operations.

    Directory of Open Access Journals (Sweden)

    Michael Ingre

    Full Text Available Sleepiness and fatigue are important risk factors in the transport sector and bio-mathematical sleepiness, sleep and fatigue modeling is increasingly becoming a valuable tool for assessing safety of work schedules and rosters in Fatigue Risk Management Systems (FRMS. The present study sought to validate the inner workings of one such model, Three Process Model (TPM, on aircrews and extend the model with functions to model jetlag and to directly assess the risk of any sleepiness level in any shift schedule or roster with and without knowledge of sleep timings. We collected sleep and sleepiness data from 136 aircrews in a real life situation by means of an application running on a handheld touch screen computer device (iPhone, iPod or iPad and used the TPM to predict sleepiness with varying level of complexity of model equations and data. The results based on multilevel linear and non-linear mixed effects models showed that the TPM predictions correlated with observed ratings of sleepiness, but explorative analyses suggest that the default model can be improved and reduced to include only two-processes (S+C, with adjusted phases of the circadian process based on a single question of circadian type. We also extended the model with a function to model jetlag acclimatization and with estimates of individual differences including reference limits accounting for 50%, 75% and 90% of the population as well as functions for predicting the probability of any level of sleepiness for ecological assessment of absolute and relative risk of sleepiness in shift systems for safety applications.

  17. Validating and extending the three process model of alertness in airline operations.

    Science.gov (United States)

    Ingre, Michael; Van Leeuwen, Wessel; Klemets, Tomas; Ullvetter, Christer; Hough, Stephen; Kecklund, Göran; Karlsson, David; Åkerstedt, Torbjörn

    2014-01-01

    Sleepiness and fatigue are important risk factors in the transport sector and bio-mathematical sleepiness, sleep and fatigue modeling is increasingly becoming a valuable tool for assessing safety of work schedules and rosters in Fatigue Risk Management Systems (FRMS). The present study sought to validate the inner workings of one such model, Three Process Model (TPM), on aircrews and extend the model with functions to model jetlag and to directly assess the risk of any sleepiness level in any shift schedule or roster with and without knowledge of sleep timings. We collected sleep and sleepiness data from 136 aircrews in a real life situation by means of an application running on a handheld touch screen computer device (iPhone, iPod or iPad) and used the TPM to predict sleepiness with varying level of complexity of model equations and data. The results based on multilevel linear and non-linear mixed effects models showed that the TPM predictions correlated with observed ratings of sleepiness, but explorative analyses suggest that the default model can be improved and reduced to include only two-processes (S+C), with adjusted phases of the circadian process based on a single question of circadian type. We also extended the model with a function to model jetlag acclimatization and with estimates of individual differences including reference limits accounting for 50%, 75% and 90% of the population as well as functions for predicting the probability of any level of sleepiness for ecological assessment of absolute and relative risk of sleepiness in shift systems for safety applications.

  18. Benchmarking Multilayer-HySEA model for landslide generated tsunami. HTHMP validation process.

    Science.gov (United States)

    Macias, J.; Escalante, C.; Castro, M. J.

    2017-12-01

    Landslide tsunami hazard may be dominant along significant parts of the coastline around the world, in particular in the USA, as compared to hazards from other tsunamigenic sources. This fact motivated NTHMP about the need of benchmarking models for landslide generated tsunamis, following the same methodology already used for standard tsunami models when the source is seismic. To perform the above-mentioned validation process, a set of candidate benchmarks were proposed. These benchmarks are based on a subset of available laboratory data sets for solid slide experiments and deformable slide experiments, and include both submarine and subaerial slides. A benchmark based on a historic field event (Valdez, AK, 1964) close the list of proposed benchmarks. A total of 7 benchmarks. The Multilayer-HySEA model including non-hydrostatic effects has been used to perform all the benchmarking problems dealing with laboratory experiments proposed in the workshop that was organized at Texas A&M University - Galveston, on January 9-11, 2017 by NTHMP. The aim of this presentation is to show some of the latest numerical results obtained with the Multilayer-HySEA (non-hydrostatic) model in the framework of this validation effort.Acknowledgements. This research has been partially supported by the Spanish Government Research project SIMURISK (MTM2015-70490-C02-01-R) and University of Malaga, Campus de Excelencia Internacional Andalucía Tech. The GPU computations were performed at the Unit of Numerical Methods (University of Malaga).

  19. Process-oriented tests for validation of baroclinic shallow water models: The lock-exchange problem

    Science.gov (United States)

    Kolar, R. L.; Kibbey, T. C. G.; Szpilka, C. M.; Dresback, K. M.; Tromble, E. M.; Toohey, I. P.; Hoggan, J. L.; Atkinson, J. H.

    A first step often taken to validate prognostic baroclinic codes is a series of process-oriented tests, as those suggested by Haidvogel and Beckmann [Haidvogel, D., Beckmann, A., 1999. Numerical Ocean Circulation Modeling. Imperial College Press, London], among others. One of these tests is the so-called "lock-exchange" test or "dam break" problem, wherein water of different densities is separated by a vertical barrier, which is removed at time zero. Validation against these tests has primarily consisted of comparing the propagation speed of the wave front, as predicted by various theoretical and experimental results, to model output. In addition, inter-model comparisons of the lock-exchange test have been used to validate codes. Herein, we present a high resolution data set, taken from a laboratory-scale model, for direct and quantitative comparison of experimental and numerical results throughout the domain, not just the wave front. Data is captured every 0.2 s using high resolution digital photography, with salt concentration extracted by comparing pixel intensity of the dyed fluid against calibration standards. Two scenarios are discussed in this paper, symmetric and asymmetric mixing, depending on the proportion of dense/light water (17.5 ppt/0.0 ppt) in the experiment; the Boussinesq approximation applies to both. Front speeds, cast in terms of the dimensionless Froude number, show excellent agreement with literature-reported values. Data are also used to quantify the degree of mixing, as measured by the front thickness, which also provides an error band on the front speed. Finally, experimental results are used to validate baroclinic enhancements to the barotropic shallow water ADvanced CIRCulation (ADCIRC) model, including the effect of the vertical mixing scheme on simulation results. Based on salinity data, the model provides an average root-mean-square (rms) error of 3.43 ppt for the symmetric case and 3.74 ppt for the asymmetric case, most of which can

  20. Non-isothermal processes during the drying of bare soil: Model Development and Validation

    Science.gov (United States)

    Sleep, B.; Talebi, A.; O'Carrol, D. M.

    2017-12-01

    Several coupled liquid water, water vapor, and heat transfer models have been developed either to study non-isothermal processes in the subsurface immediately below the ground surface, or to predict the evaporative flux from the ground surface. Equilibrium phase change between water and gas phases is typically assumed in these models. Recently, a few studies have questioned this assumption and proposed a coupled model considering kinetic phase change. However, none of these models were validated against real field data. In this study, a non-isothermal coupled model incorporating kinetic phase change was developed and examined against the measured data from a green roof test module. The model also incorporated a new surface boundary condition for water vapor transport at the ground surface. The measured field data included soil moisture content and temperature at different depths up to the depth of 15 cm below the ground surface. Lysimeter data were collected to determine the evaporation rates. Short and long wave radiation, wind velocity, air ambient temperature and relative humidity were measured and used as model input. Field data were collected for a period of three months during the warm seasons in south eastern Canada. The model was calibrated using one drying period and then several other drying periods were simulated. In general, the model underestimated the evaporation rates in the early stage of the drying period, however, the cumulative evaporation was in good agreement with the field data. The model predicted the trends in temperature and moisture content at the different depths in the green roof module. The simulated temperature was lower than the measured temperature for most of the simulation time with the maximum difference of 5 ° C. The simulated moisture content changes had the same temporal trend as the lysimeter data for the events simulated.

  1. A Mathematical Model for Reactions During Top-Blowing in the AOD Process: Validation and Results

    Science.gov (United States)

    Visuri, Ville-Valtteri; Järvinen, Mika; Kärnä, Aki; Sulasalmi, Petri; Heikkinen, Eetu-Pekka; Kupari, Pentti; Fabritius, Timo

    2017-06-01

    In earlier work, a fundamental mathematical model was proposed for side-blowing operation in the argon oxygen decarburization (AOD) process. In the preceding part "Derivation of the Model," a new mathematical model was proposed for reactions during top-blowing in the AOD process. In this model it was assumed that reactions occur simultaneously at the surface of the cavity caused by the gas jet and at the surface of the metal droplets ejected from the metal bath. This paper presents validation and preliminary results with twelve industrial heats. In the studied heats, the last combined-blowing stage was altered so that oxygen was introduced from the top lance only. Four heats were conducted using an oxygen-nitrogen mixture (1:1), while eight heats were conducted with pure oxygen. Simultaneously, nitrogen or argon gas was blown via tuyères in order to provide mixing that is comparable to regular practice. The measured carbon content varied from 0.4 to 0.5 wt pct before the studied stage to 0.1 to 0.2 wt pct after the studied stage. The results suggest that the model is capable of predicting changes in metal bath composition and temperature with a reasonably high degree of accuracy. The calculations indicate that the top slag may supply oxygen for decarburization during top-blowing. Furthermore, it is postulated that the metal droplets generated by the shear stress of top-blowing create a large mass exchange area, which plays an important role in enabling the high decarburization rates observed during top-blowing in the AOD process. The overall rate of decarburization attributable to top-blowing in the last combined-blowing stage was found to be limited by the mass transfer of dissolved carbon.

  2. Validation process of simulation model; Proceso de validacion de modelos de simulacion

    Energy Technology Data Exchange (ETDEWEB)

    San Isidro Pindado, M J

    1998-12-31

    It is presented a methodology on empirical about any detailed simulation model. This kind of validation it is always related with an experimental case. The empirical validation has a residual sense, because the conclusions are based on comparison between simulated outputs and experimental measurements. This methodology will guide us to detect the fails of the simulation model. Furthermore, it can be used a guide in the design of posteriori experiments. Three steps can be well differentiated: - Sensitivity analysis. It can be made with a DSA, differential sensitivity analysis, and with a MCSA, Monte-Carlo sensitivity analysis. - Looking the optimal domains of the input parameters. It has been developed a procedure based on the Monte-Carlo methods and Cluster techniques, to find the optimal domains of these parameters. - Residual analysis. This analysis has been made on the time domain on the frequency domain, it has been used the correlation analysis and spectral analysis. As application of this methodology, it is presented the validation carried out on a thermal simulation model on buildings, ESP studying the behavior of building components on a Test Cell of LECE of CIEMAT. (Author)

  3. Validation process of simulation model; Proceso de validacion de modelos de simulacion

    Energy Technology Data Exchange (ETDEWEB)

    San Isidro Pindado, M.J.

    1997-12-31

    It is presented a methodology on empirical about any detailed simulation model. This kind of validation it is always related with an experimental case. The empirical validation has a residual sense, because the conclusions are based on comparison between simulated outputs and experimental measurements. This methodology will guide us to detect the fails of the simulation model. Furthermore, it can be used a guide in the design of posteriori experiments. Three steps can be well differentiated: - Sensitivity analysis. It can be made with a DSA, differential sensitivity analysis, and with a MCSA, Monte-Carlo sensitivity analysis. - Looking the optimal domains of the input parameters. It has been developed a procedure based on the Monte-Carlo methods and Cluster techniques, to find the optimal domains of these parameters. - Residual analysis. This analysis has been made on the time domain on the frequency domain, it has been used the correlation analysis and spectral analysis. As application of this methodology, it is presented the validation carried out on a thermal simulation model on buildings, ESP studying the behavior of building components on a Test Cell of LECE of CIEMAT. (Author)

  4. Validation of HEDR models

    International Nuclear Information System (INIS)

    Napier, B.A.; Simpson, J.C.; Eslinger, P.W.; Ramsdell, J.V. Jr.; Thiede, M.E.; Walters, W.H.

    1994-05-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project has developed a set of computer models for estimating the possible radiation doses that individuals may have received from past Hanford Site operations. This document describes the validation of these models. In the HEDR Project, the model validation exercise consisted of comparing computational model estimates with limited historical field measurements and experimental measurements that are independent of those used to develop the models. The results of any one test do not mean that a model is valid. Rather, the collection of tests together provide a level of confidence that the HEDR models are valid

  5. Development and Validation of a Constitutive Model for Dental Composites during the Curing Process

    Science.gov (United States)

    Wickham Kolstad, Lauren

    Debonding is a critical failure of a dental composites used for dental restorations. Debonding of dental composites can be determined by comparing the shrinkage stress of to the debonding strength of the adhesive that bonds it to the tooth surface. It is difficult to measure shrinkage stress experimentally. In this study, finite element analysis is used to predict the stress in the composite during cure. A new constitutive law is presented that will allow composite developers to evaluate composite shrinkage stress at early stages in the material development. Shrinkage stress and shrinkage strain experimental data were gathered for three dental resins, Z250, Z350, and P90. Experimental data were used to develop a constitutive model for the Young's modulus as a function of time of the dental composite during cure. A Maxwell model, spring and dashpot in series, was used to simulate the composite. The compliance of the shrinkage stress device was also taken into account by including a spring in series with the Maxwell model. A coefficient of thermal expansion was also determined for internal loading of the composite by dividing shrinkage strain by time. Three FEA models are presented. A spring-disk model validates that the constitutive law is self-consistent. A quarter cuspal deflection model uses separate experimental data to verify that the constitutive law is valid. Finally, an axisymmetric tooth model is used to predict interfacial stresses in the composite. These stresses are compared to the debonding strength to check if the composite debonds. The new constitutive model accurately predicted cuspal deflection data. Predictions for interfacial bond stress in the tooth model compare favorably with debonding characteristics observed in practice for dental resins.

  6. Validation of mathematical model for CZ process using small-scale laboratory crystal growth furnace

    Science.gov (United States)

    Bergfelds, Kristaps; Sabanskis, Andrejs; Virbulis, Janis

    2018-05-01

    The present material is focused on the modelling of small-scale laboratory NaCl-RbCl crystal growth furnace. First steps towards fully transient simulations are taken in the form of stationary simulations that deal with the optimization of material properties to match the model to experimental conditions. For this purpose, simulation software primarily used for the modelling of industrial-scale silicon crystal growth process was successfully applied. Finally, transient simulations of the crystal growth are presented, giving a sufficient agreement to experimental results.

  7. Time Sharing Between Robotics and Process Control: Validating a Model of Attention Switching.

    Science.gov (United States)

    Wickens, Christopher Dow; Gutzwiller, Robert S; Vieane, Alex; Clegg, Benjamin A; Sebok, Angelia; Janes, Jess

    2016-03-01

    The aim of this study was to validate the strategic task overload management (STOM) model that predicts task switching when concurrence is impossible. The STOM model predicts that in overload, tasks will be switched to, to the extent that they are attractive on task attributes of high priority, interest, and salience and low difficulty. But more-difficult tasks are less likely to be switched away from once they are being performed. In Experiment 1, participants performed four tasks of the Multi-Attribute Task Battery and provided task-switching data to inform the role of difficulty and priority. In Experiment 2, participants concurrently performed an environmental control task and a robotic arm simulation. Workload was varied by automation of arm movement and both the phases of environmental control and existence of decision support for fault management. Attention to the two tasks was measured using a head tracker. Experiment 1 revealed the lack of influence of task priority and confirmed the differing roles of task difficulty. In Experiment 2, the percentage attention allocation across the eight conditions was predicted by the STOM model when participants rated the four attributes. Model predictions were compared against empirical data and accounted for over 95% of variance in task allocation. More-difficult tasks were performed longer than easier tasks. Task priority does not influence allocation. The multiattribute decision model provided a good fit to the data. The STOM model is useful for predicting cognitive tunneling given that human-in-the-loop simulation is time-consuming and expensive. © 2016, Human Factors and Ergonomics Society.

  8. Modeling and Experimental Validation of the Electron Beam Selective Melting Process

    Directory of Open Access Journals (Sweden)

    Wentao Yan

    2017-10-01

    Full Text Available Electron beam selective melting (EBSM is a promising additive manufacturing (AM technology. The EBSM process consists of three major procedures: ① spreading a powder layer, ② preheating to slightly sinter the powder, and ③ selectively melting the powder bed. The highly transient multi-physics phenomena involved in these procedures pose a significant challenge for in situ experimental observation and measurement. To advance the understanding of the physical mechanisms in each procedure, we leverage high-fidelity modeling and post-process experiments. The models resemble the actual fabrication procedures, including ① a powder-spreading model using the discrete element method (DEM, ② a phase field (PF model of powder sintering (solid-state sintering, and ③ a powder-melting (liquid-state sintering model using the finite volume method (FVM. Comprehensive insights into all the major procedures are provided, which have rarely been reported. Preliminary simulation results (including powder particle packing within the powder bed, sintering neck formation between particles, and single-track defects agree qualitatively with experiments, demonstrating the ability to understand the mechanisms and to guide the design and optimization of the experimental setup and manufacturing process.

  9. Validation of simulation models

    DEFF Research Database (Denmark)

    Rehman, Muniza; Pedersen, Stig Andur

    2012-01-01

    In philosophy of science, the interest for computational models and simulations has increased heavily during the past decades. Different positions regarding the validity of models have emerged but the views have not succeeded in capturing the diversity of validation methods. The wide variety...

  10. Experiments to Populate and Validate a Processing Model for Polyurethane Foam: Additional Data for Structural Foams

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Rekha R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Celina, Mathias C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Giron, Nicholas Henry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Long, Kevin Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Russick, Edward M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    We are developing computational models to help understand manufacturing processes, final properties and aging of structural foam, polyurethane PMDI. Th e resulting model predictions of density and cure gradients from the manufacturing process will be used as input to foam heat transfer and mechanical models. BKC 44306 PMDI-10 and BKC 44307 PMDI-18 are the most prevalent foams used in structural parts. Experiments needed to parameterize models of the reaction kinetics and the equations of motion during the foam blowing stages were described for BKC 44306 PMDI-10 in the first of this report series (Mondy et al. 2014). BKC 44307 PMDI-18 is a new foam that will be used to make relatively dense structural supports via over packing. It uses a different catalyst than those in the BKC 44306 family of foams; hence, we expect that the reaction kineti cs models must be modified. Here we detail the experiments needed to characteriz e the reaction kinetics of BKC 44307 PMDI-18 and suggest parameters for the model based on these experiments. In additi on, the second part of this report describes data taken to provide input to the preliminary nonlinear visco elastic structural response model developed for BKC 44306 PMDI-10 foam. We show that the standard cu re schedule used by KCP does not fully cure the material, and, upon temperature elevation above 150°C, oxidation or decomposition reactions occur that alter the composition of the foam. These findings suggest that achieving a fully cured foam part with this formulation may be not be possible through therma l curing. As such, visco elastic characterization procedures developed for curing thermosets can provide only approximate material properties, since the state of the material continuously evolves during tests.

  11. Validation of a Process-Based Agro-Ecosystem Model (Agro-IBIS for Maize in Xinjiang, Northwest China

    Directory of Open Access Journals (Sweden)

    Tureniguli Amuti

    2018-03-01

    Full Text Available Agricultural oasis expansion and intensive management practices have occurred in arid and semiarid regions of China during the last few decades. Accordingly, regional carbon and water budgets have been profoundly impacted by agroecosystems in these regions. Therefore, study on the methods used to accurately estimate energy, water, and carbon exchanges is becoming increasingly important. Process-based models can represent the complex processes between land and atmosphere among agricultural ecosystems. However, before the models can be applied they must be validated under different environmental and climatic conditions. In this study, a process-based agricultural ecosystem model (Agro-IBIS was validated for maize crops using 3 years of soil and biometric measurements at Wulanwusu agrometeorological site (WAS located in the Shihezi oasis in Xinjiang, northwest China. The model satisfactorily represented leaf area index (LAI during the growing season, simulating its peak values within the magnitude of 0–10%. The total biomass carbon was overestimated by 15%, 8%, and 16% in 2004, 2005, and 2006, respectively. The model satisfactorily simulated the soil temperature (0–10 cm and volumetric water content (VWC (0–25 cm of farmland during the growing season. However, it overestimated soil temperature approximately by 4 °C and VWC by 15–30% during the winter, coinciding with the period of no vegetation cover in Xinjiang. Overall, the results indicate that the model could represent crop growth, and seems to be applicable in multiple sites in arid oases agroecosystems of Xinjiang. Future application of the model will impose more comprehensive validation using eddy covariance flux data, and consider including dynamics of crop residue and improving characterization of the final stage of leaf development.

  12. Process simulation and statistical approaches for validating waste form qualification models

    International Nuclear Information System (INIS)

    Kuhn, W.L.; Toland, M.R.; Pulsipher, B.A.

    1989-05-01

    This report describes recent progress toward one of the principal objectives of the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory (PNL): to establish relationships between vitrification process control and glass product quality. during testing of a vitrification system, it is important to show that departures affecting the product quality can be sufficiently detected through process measurements to prevent an unacceptable canister from being produced. Meeting this goal is a practical definition of a successful sampling, data analysis, and process control strategy. A simulation model has been developed and preliminarily tested by applying it to approximate operation of the West Valley Demonstration Project (WVDP) vitrification system at West Valley, New York. Multivariate statistical techniques have been identified and described that can be applied to analyze large sets of process measurements. Information on components, tanks, and time is then combined to create a single statistic through which all of the information can be used at once to determine whether the process has shifted away from a normal condition

  13. Product/Process (P/P) Models For The Defense Waste Processing Facility (DWPF): Model Ranges And Validation Ranges For Future Processing

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-25

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository.

  14. Validation of radiation sterilization process

    International Nuclear Information System (INIS)

    Kaluska, I.

    2007-01-01

    The standards for quality management systems recognize that, for certain processes used in manufacturing, the effectiveness of the process cannot be fully verified by subsequent inspection and testing of the product. Sterilization is an example of such a process. For this reason, sterilization processes are validated for use, the performance of sterilization process is monitored routinely and the equipment is maintained according to ISO 13 485. Different aspects of this norm are presented

  15. Locating the Seventh Cervical Spinous Process: Development and Validation of a Multivariate Model Using Palpation and Personal Information.

    Science.gov (United States)

    Ferreira, Ana Paula A; Póvoa, Luciana C; Zanier, José F C; Ferreira, Arthur S

    2017-02-01

    The aim of this study was to develop and validate a multivariate prediction model, guided by palpation and personal information, for locating the seventh cervical spinous process (C7SP). A single-blinded, cross-sectional study at a primary to tertiary health care center was conducted for model development and temporal validation. One-hundred sixty participants were prospectively included for model development (n = 80) and time-split validation stages (n = 80). The C7SP was located using the thorax-rib static method (TRSM). Participants underwent chest radiography for assessment of the inner body structure located with TRSM and using radio-opaque markers placed over the skin. Age, sex, height, body mass, body mass index, and vertex-marker distance (D V-M ) were used to predict the distance from the C7SP to the vertex (D V-C7 ). Multivariate linear regression modeling, limits of agreement plot, histogram of residues, receiver operating characteristic curves, and confusion tables were analyzed. The multivariate linear prediction model for D V-C7 (in centimeters) was D V-C7 = 0.986D V-M + 0.018(mass) + 0.014(age) - 1.008. Receiver operating characteristic curves had better discrimination of D V-C7 (area under the curve = 0.661; 95% confidence interval = 0.541-0.782; P = .015) than D V-M (area under the curve = 0.480; 95% confidence interval = 0.345-0.614; P = .761), with respective cutoff points at 23.40 cm (sensitivity = 41%, specificity = 63%) and 24.75 cm (sensitivity = 69%, specificity = 52%). The C7SP was correctly located more often when using predicted D V-C7 in the validation sample than when using the TRSM in the development sample: n = 53 (66%) vs n = 32 (40%), P information. Copyright © 2016. Published by Elsevier Inc.

  16. Multibody dynamical modeling for spacecraft docking process with spring-damper buffering device: A new validation approach

    Science.gov (United States)

    Daneshjou, Kamran; Alibakhshi, Reza

    2018-01-01

    In the current manuscript, the process of spacecraft docking, as one of the main risky operations in an on-orbit servicing mission, is modeled based on unconstrained multibody dynamics. The spring-damper buffering device is utilized here in the docking probe-cone system for micro-satellites. Owing to the impact occurs inevitably during docking process and the motion characteristics of multibody systems are remarkably affected by this phenomenon, a continuous contact force model needs to be considered. Spring-damper buffering device, keeping the spacecraft stable in an orbit when impact occurs, connects a base (cylinder) inserted in the chaser satellite and the end of docking probe. Furthermore, by considering a revolute joint equipped with torsional shock absorber, between base and chaser satellite, the docking probe can experience both translational and rotational motions simultaneously. Although spacecraft docking process accompanied by the buffering mechanisms may be modeled by constrained multibody dynamics, this paper deals with a simple and efficient formulation to eliminate the surplus generalized coordinates and solve the impact docking problem based on unconstrained Lagrangian mechanics. By an example problem, first, model verification is accomplished by comparing the computed results with those recently reported in the literature. Second, according to a new alternative validation approach, which is based on constrained multibody problem, the accuracy of presented model can be also evaluated. This proposed verification approach can be applied to indirectly solve the constrained multibody problems by minimum required effort. The time history of impact force, the influence of system flexibility and physical interaction between shock absorber and penetration depth caused by impact are the issues followed in this paper. Third, the MATLAB/SIMULINK multibody dynamic analysis software will be applied to build impact docking model to validate computed results and

  17. Validation of formability of laminated sheet metal for deep drawing process using GTN damage model

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yongbin; Cha, Wan-gi; Kim, Naksoo [Department of Mechanical Engineering, Sogang University, 1 Sinsu-dong, Mapo-gu, Seoul, 121-742 (Korea, Republic of); Ko, Sangjin [Mold/die and forming technology team, Product prestige research lab, LG electronics, 222, LG-ro, Jinwi-myeon, Pyeongtaek-si, Gyeonggi-do, 451-713 (Korea, Republic of)

    2013-12-16

    In this study, we studied formability of PET/PVC laminated sheet metal which named VCM (Vinyl Coated Metal). VCM offers various patterns and good-looking metal steel used for appliances such as refrigerator and washing machine. But, this sheet has problems which are crack and peeling of film when the material is formed by deep drawing process. To predict the problems, we used finite element method and GTN (Gurson-Tvergaard-Needleman) damage model to represent damage of material. We divided the VCM into 3 layers (PET film, adhesive and steel added PVC) in finite element analysis model to express the crack and peeling phenomenon. The material properties of each layer are determined by reverse engineering based on tensile test result. Furthermore, we performed the simple rectangular deep drawing and simulated it. The simulation result shows good agreement with drawing experiment result in position, punch stroke of crack occurrence. Also, we studied the fracture mechanism of PET film on VCM by comparing the width direction strain of metal and PET film.

  18. Composite Cure Process Modeling and Simulations using COMPRO(Registered Trademark) and Validation of Residual Strains using Fiber Optics Sensors

    Science.gov (United States)

    Sreekantamurthy, Thammaiah; Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.

    2016-01-01

    Composite cure process induced residual strains and warping deformations in composite components present significant challenges in the manufacturing of advanced composite structure. As a part of the Manufacturing Process and Simulation initiative of the NASA Advanced Composite Project (ACP), research is being conducted on the composite cure process by developing an understanding of the fundamental mechanisms by which the process induced factors influence the residual responses. In this regard, analytical studies have been conducted on the cure process modeling of composite structural parts with varied physical, thermal, and resin flow process characteristics. The cure process simulation results were analyzed to interpret the cure response predictions based on the underlying physics incorporated into the modeling tool. In the cure-kinetic analysis, the model predictions on the degree of cure, resin viscosity and modulus were interpreted with reference to the temperature distribution in the composite panel part and tool setup during autoclave or hot-press curing cycles. In the fiber-bed compaction simulation, the pore pressure and resin flow velocity in the porous media models, and the compaction strain responses under applied pressure were studied to interpret the fiber volume fraction distribution predictions. In the structural simulation, the effect of temperature on the resin and ply modulus, and thermal coefficient changes during curing on predicted mechanical strains and chemical cure shrinkage strains were studied to understand the residual strains and stress response predictions. In addition to computational analysis, experimental studies were conducted to measure strains during the curing of laminated panels by means of optical fiber Bragg grating sensors (FBGs) embedded in the resin impregnated panels. The residual strain measurements from laboratory tests were then compared with the analytical model predictions. The paper describes the cure process

  19. Validating and Determining the Weight of Items Used for Evaluating Clinical Governance Implementation Based on Analytic Hierarchy Process Model

    Directory of Open Access Journals (Sweden)

    Elaheh Hooshmand

    2015-10-01

    Full Text Available Background The purpose of implementing a system such as Clinical Governance (CG is to integrate, establish and globalize distinct policies in order to improve quality through increasing professional knowledge and the accountability of healthcare professional toward providing clinical excellence. Since CG is related to change, and change requires money and time, CG implementation has to be focused on priority areas that are in more dire need of change. The purpose of the present study was to validate and determine the significance of items used for evaluating CG implementation. Methods The present study was descriptive-quantitative in method and design. Items used for evaluating CG implementation were first validated by the Delphi method and then compared with one another and ranked based on the Analytical Hierarchy Process (AHP model. Results The items that were validated for evaluating CG implementation in Iran include performance evaluation, training and development, personnel motivation, clinical audit, clinical effectiveness, risk management, resource allocation, policies and strategies, external audit, information system management, research and development, CG structure, implementation prerequisites, the management of patients’ non-medical needs, complaints and patients’ participation in the treatment process. The most important items based on their degree of significance were training and development, performance evaluation, and risk management. The least important items included the management of patients’ non-medical needs, patients’ participation in the treatment process and research and development. Conclusion The fundamental requirements of CG implementation included having an effective policy at national level, avoiding perfectionism, using the expertise and potentials of the entire country and the coordination of this model with other models of quality improvement such as accreditation and patient safety.

  20. Validating and determining the weight of items used for evaluating clinical governance implementation based on analytic hierarchy process model.

    Science.gov (United States)

    Hooshmand, Elaheh; Tourani, Sogand; Ravaghi, Hamid; Vafaee Najar, Ali; Meraji, Marziye; Ebrahimipour, Hossein

    2015-04-08

    The purpose of implementing a system such as Clinical Governance (CG) is to integrate, establish and globalize distinct policies in order to improve quality through increasing professional knowledge and the accountability of healthcare professional toward providing clinical excellence. Since CG is related to change, and change requires money and time, CG implementation has to be focused on priority areas that are in more dire need of change. The purpose of the present study was to validate and determine the significance of items used for evaluating CG implementation. The present study was descriptive-quantitative in method and design. Items used for evaluating CG implementation were first validated by the Delphi method and then compared with one another and ranked based on the Analytical Hierarchy Process (AHP) model. The items that were validated for evaluating CG implementation in Iran include performance evaluation, training and development, personnel motivation, clinical audit, clinical effectiveness, risk management, resource allocation, policies and strategies, external audit, information system management, research and development, CG structure, implementation prerequisites, the management of patients' non-medical needs, complaints and patients' participation in the treatment process. The most important items based on their degree of significance were training and development, performance evaluation, and risk management. The least important items included the management of patients' non-medical needs, patients' participation in the treatment process and research and development. The fundamental requirements of CG implementation included having an effective policy at national level, avoiding perfectionism, using the expertise and potentials of the entire country and the coordination of this model with other models of quality improvement such as accreditation and patient safety. © 2015 by Kerman University of Medical Sciences.

  1. Study on the Rationality and Validity of Probit Models of Domino Effect to Chemical Process Equipment caused by Overpressure

    International Nuclear Information System (INIS)

    Sun, Dongliang; Huang, Guangtuan; Jiang, Juncheng; Zhang, Mingguang; Wang, Zhirong

    2013-01-01

    Overpressure is one important cause of domino effect in accidents of chemical process equipments. Some models considering propagation probability and threshold values of the domino effect caused by overpressure have been proposed in previous study. In order to prove the rationality and validity of the models reported in the reference, two boundary values of three damage degrees reported were considered as random variables respectively in the interval [0, 100%]. Based on the overpressure data for damage to the equipment and the damage state, and the calculation method reported in the references, the mean square errors of the four categories of damage probability models of overpressure were calculated with random boundary values, and then a relationship of mean square error vs. the two boundary value was obtained, the minimum of mean square error was obtained, compared with the result of the present work, mean square error decreases by about 3%. Therefore, the error was in the acceptable range of engineering applications, the models reported can be considered reasonable and valid.

  2. Study on the Rationality and Validity of Probit Models of Domino Effect to Chemical Process Equipment caused by Overpressure

    Science.gov (United States)

    Sun, Dongliang; Huang, Guangtuan; Jiang, Juncheng; Zhang, Mingguang; Wang, Zhirong

    2013-04-01

    Overpressure is one important cause of domino effect in accidents of chemical process equipments. Some models considering propagation probability and threshold values of the domino effect caused by overpressure have been proposed in previous study. In order to prove the rationality and validity of the models reported in the reference, two boundary values of three damage degrees reported were considered as random variables respectively in the interval [0, 100%]. Based on the overpressure data for damage to the equipment and the damage state, and the calculation method reported in the references, the mean square errors of the four categories of damage probability models of overpressure were calculated with random boundary values, and then a relationship of mean square error vs. the two boundary value was obtained, the minimum of mean square error was obtained, compared with the result of the present work, mean square error decreases by about 3%. Therefore, the error was in the acceptable range of engineering applications, the models reported can be considered reasonable and valid.

  3. The process of processing: exploring the validity of Neisser's perceptual cycle model with accounts from critical decision-making in the cockpit.

    Science.gov (United States)

    Plant, Katherine L; Stanton, Neville A

    2015-01-01

    The perceptual cycle model (PCM) has been widely applied in ergonomics research in domains including road, rail and aviation. The PCM assumes that information processing occurs in a cyclical manner drawing on top-down and bottom-up influences to produce perceptual exploration and actions. However, the validity of the model has not been addressed. This paper explores the construct validity of the PCM in the context of aeronautical decision-making. The critical decision method was used to interview 20 helicopter pilots about critical decision-making. The data were qualitatively analysed using an established coding scheme, and composite PCMs for incident phases were constructed. It was found that the PCM provided a mutually exclusive and exhaustive classification of the information-processing cycles for dealing with critical incidents. However, a counter-cycle was also discovered which has been attributed to skill-based behaviour, characteristic of experts. The practical applications and future research questions are discussed. Practitioner Summary: This paper explores whether information processing, when dealing with critical incidents, occurs in the manner anticipated by the perceptual cycle model. In addition to the traditional processing cycle, a reciprocal counter-cycle was found. This research can be utilised by those who use the model as an accident analysis framework.

  4. Validation and sensitivity tests on improved parametrizations of a land surface process model (LSPM) in the Po Valley

    International Nuclear Information System (INIS)

    Cassardo, C.; Carena, E.; Longhetto, A.

    1998-01-01

    The Land Surface Process Model (LSPM) has been improved with respect to the 1. version of 1994. The modifications have involved the parametrizations of the radiation terms and of turbulent heat fluxes. A parametrization of runoff has also been developed, in order to close the hydrologic balance. This 2. version of LSPM has been validated against experimental data gathered at Mottarone (Verbania, Northern Italy) during a field experiment. The results of this validation show that this new version is able to apportionate the energy into sensible and latent heat fluxes. LSPM has also been submitted to a series of sensitivity tests in order to investigate the hydrological part of the model. The physical quantities selected in these sensitivity experiments have been the initial soil moisture content and the rainfall intensity. In each experiment, the model has been forced by using the observations carried out at the synoptic stations of San Pietro Capofiume (Po Valley, Italy). The observed characteristics of soil and vegetation (not involved in the sensitivity tests) have been used as initial and boundary conditions. The results of the simulation show that LSPM can reproduce well the energy, heat and water budgets and their behaviours with varying the selected parameters. A careful analysis of the LSPM output shows also the importance to identify the effective soil type

  5. Dynamic Model of Basic Oxygen Steelmaking Process Based on Multi-zone Reaction Kinetics: Model Derivation and Validation

    Science.gov (United States)

    Rout, Bapin Kumar; Brooks, Geoff; Rhamdhani, M. Akbar; Li, Zushu; Schrama, Frank N. H.; Sun, Jianjun

    2018-04-01

    A multi-zone kinetic model coupled with a dynamic slag generation model was developed for the simulation of hot metal and slag composition during the basic oxygen furnace (BOF) operation. The three reaction zones (i) jet impact zone, (ii) slag-bulk metal zone, (iii) slag-metal-gas emulsion zone were considered for the calculation of overall refining kinetics. In the rate equations, the transient rate parameters were mathematically described as a function of process variables. A micro and macroscopic rate calculation methodology (micro-kinetics and macro-kinetics) were developed to estimate the total refining contributed by the recirculating metal droplets through the slag-metal emulsion zone. The micro-kinetics involves developing the rate equation for individual droplets in the emulsion. The mathematical models for the size distribution of initial droplets, kinetics of simultaneous refining of elements, the residence time in the emulsion, and dynamic interfacial area change were established in the micro-kinetic model. In the macro-kinetics calculation, a droplet generation model was employed and the total amount of refining by emulsion was calculated by summing the refining from the entire population of returning droplets. A dynamic FetO generation model based on oxygen mass balance was developed and coupled with the multi-zone kinetic model. The effect of post-combustion on the evolution of slag and metal composition was investigated. The model was applied to a 200-ton top blowing converter and the simulated value of metal and slag was found to be in good agreement with the measured data. The post-combustion ratio was found to be an important factor in controlling FetO content in the slag and the kinetics of Mn and P in a BOF process.

  6. Visual Attention Allocation Between Robotic Arm and Environmental Process Control: Validating the STOM Task Switching Model

    Science.gov (United States)

    Wickens, Christopher; Vieanne, Alex; Clegg, Benjamin; Sebok, Angelia; Janes, Jessica

    2015-01-01

    Fifty six participants time shared a spacecraft environmental control system task with a realistic space robotic arm control task in either a manual or highly automated version. The former could suffer minor failures, whose diagnosis and repair were supported by a decision aid. At the end of the experiment this decision aid unexpectedly failed. We measured visual attention allocation and switching between the two tasks, in each of the eight conditions formed by manual-automated arm X expected-unexpected failure X monitoring- failure management. We also used our multi-attribute task switching model, based on task attributes of priority interest, difficulty and salience that were self-rated by participants, to predict allocation. An un-weighted model based on attributes of difficulty, interest and salience accounted for 96 percent of the task allocation variance across the 8 different conditions. Task difficulty served as an attractor, with more difficult tasks increasing the tendency to stay on task.

  7. Transient simulation of an endothermic chemical process facility coupled to a high temperature reactor: Model development and validation

    International Nuclear Information System (INIS)

    Brown, Nicholas R.; Seker, Volkan; Revankar, Shripad T.; Downar, Thomas J.

    2012-01-01

    Highlights: ► Models for PBMR and thermochemical sulfur cycle based hydrogen plant are developed. ► Models are validated against available data in literature. ► Transient in coupled reactor and hydrogen plant system is studied. ► For loss-of-heat sink accident, temperature feedback within the reactor core enables shut down of the reactor. - Abstract: A high temperature reactor (HTR) is a candidate to drive high temperature water-splitting using process heat. While both high temperature nuclear reactors and hydrogen generation plants have high individual degrees of development, study of the coupled plant is lacking. Particularly absent are considerations of the transient behavior of the coupled plant, as well as studies of the safety of the overall plant. The aim of this document is to contribute knowledge to the effort of nuclear hydrogen generation. In particular, this study regards identification of safety issues in the coupled plant and the transient modeling of some leading candidates for implementation in the Nuclear Hydrogen Initiative (NHI). The Sulfur Iodine (SI) and Hybrid Sulfur (HyS) cycles are considered as candidate hydrogen generation schemes. Three thermodynamically derived chemical reaction chamber models are coupled to a well-known reference design of a high temperature nuclear reactor. These chemical reaction chamber models have several dimensions of validation, including detailed steady state flowsheets, integrated loop test data, and bench scale chemical kinetics. The models and coupling scheme are presented here, as well as a transient test case initiated within the chemical plant. The 50% feed flow failure within the chemical plant results in a slow loss-of-heat sink (LOHS) accident in the nuclear reactor. Due to the temperature feedback within the reactor core the nuclear reactor partially shuts down over 1500 s. Two distinct regions are identified within the coupled plant response: (1) immediate LOHS due to the loss of the sulfuric

  8. Computerized prediction of intensive care unit discharge after cardiac surgery: development and validation of a Gaussian processes model

    Directory of Open Access Journals (Sweden)

    Meyfroidt Geert

    2011-10-01

    Full Text Available Abstract Background The intensive care unit (ICU length of stay (LOS of patients undergoing cardiac surgery may vary considerably, and is often difficult to predict within the first hours after admission. The early clinical evolution of a cardiac surgery patient might be predictive for his LOS. The purpose of the present study was to develop a predictive model for ICU discharge after non-emergency cardiac surgery, by analyzing the first 4 hours of data in the computerized medical record of these patients with Gaussian processes (GP, a machine learning technique. Methods Non-interventional study. Predictive modeling, separate development (n = 461 and validation (n = 499 cohort. GP models were developed to predict the probability of ICU discharge the day after surgery (classification task, and to predict the day of ICU discharge as a discrete variable (regression task. GP predictions were compared with predictions by EuroSCORE, nurses and physicians. The classification task was evaluated using aROC for discrimination, and Brier Score, Brier Score Scaled, and Hosmer-Lemeshow test for calibration. The regression task was evaluated by comparing median actual and predicted discharge, loss penalty function (LPF ((actual-predicted/actual and calculating root mean squared relative errors (RMSRE. Results Median (P25-P75 ICU length of stay was 3 (2-5 days. For classification, the GP model showed an aROC of 0.758 which was significantly higher than the predictions by nurses, but not better than EuroSCORE and physicians. The GP had the best calibration, with a Brier Score of 0.179 and Hosmer-Lemeshow p-value of 0.382. For regression, GP had the highest proportion of patients with a correctly predicted day of discharge (40%, which was significantly better than the EuroSCORE (p Conclusions A GP model that uses PDMS data of the first 4 hours after admission in the ICU of scheduled adult cardiac surgery patients was able to predict discharge from the ICU as a

  9. Perpetual Model Validation

    Science.gov (United States)

    2017-03-01

    25]. This inference process is carried out by a tool referred to as Hynger (Hybrid iNvariant GEneratoR), overviewed in Figure 4, which is a MATLAB ...initially on memory access patterns. A monitoring module will check, at runtime that the observed memory access pattern matches the pattern the software is...necessary. By using the developed approach, a model may be derived from initial tests or simulations , which will then be formally checked at runtime

  10. Numerical Simulation of Tuff Dissolution and Precipitation Experiments: Validation of Thermal-Hydrologic-Chemical (THC) Coupled-Process Modeling

    Science.gov (United States)

    Dobson, P. F.; Kneafsey, T. J.

    2001-12-01

    As part of an ongoing effort to evaluate THC effects on flow in fractured media, we performed a laboratory experiment and numerical simulations to investigate mineral dissolution and precipitation. To replicate mineral dissolution by condensate in fractured tuff, deionized water equilibrated with carbon dioxide was flowed for 1,500 hours through crushed Yucca Mountain tuff at 94° C. The reacted water was collected and sampled for major dissolved species, total alkalinity, electrical conductivity, and pH. The resulting steady-state fluid composition had a total dissolved solids content of about 140 mg/L; silica was the dominant dissolved constituent. A portion of the steady-state reacted water was flowed at 10.8 mL/hr into a 31.7-cm tall, 16.2-cm wide vertically oriented planar fracture with a hydraulic aperture of 31 microns in a block of welded Topopah Spring tuff that was maintained at 80° C at the top and 130° C at the bottom. The fracture began to seal within five days. A 1-D plug-flow model using the TOUGHREACT code developed at Berkeley Lab was used to simulate mineral dissolution, and a 2-D model was developed to simulate the flow of mineralized water through a planar fracture, where boiling conditions led to mineral precipitation. Predicted concentrations of the major dissolved constituents for the tuff dissolution were within a factor of 2 of the measured average steady-state compositions. The fracture-plugging simulations result in the precipitation of amorphous silica at the base of the boiling front, leading to a hundred-fold decrease in fracture permeability in less than 6 days, consistent with the laboratory experiment. These results help validate the use of the TOUGHREACT code for THC modeling of the Yucca Mountain system. The experiment and simulations indicate that boiling and concomitant precipitation of amorphous silica could cause significant reductions in fracture porosity and permeability on a local scale. The TOUGHREACT code will be used

  11. 3D Finite Element Modelling of Drilling Process of Al2024-T3 Alloy with solid tooling and Experimental Validation

    DEFF Research Database (Denmark)

    Davoudinejad, Ali; Tosello, Guido

    2017-01-01

    Drilling is an indispensable process for many manufacturing industries due to the importance of the process for assembling components. This study presents a 3D finite element modeling (3D FEM) approach for drilling process of aluminum 2024-T3. The 3D model of tool for two facet HSSCo and four facet...... area were determined numerically. The results confirm the ability and advantage of 3D FE model of the drilling process....... HSS were generated base on the details geometry. The simulations were carried out for both drills in different cutting conditions. The numerically obtained thrust forces were compared against experimental results. The tool stress distribution, chip formation and temperature distribution in the chip...

  12. Validating Animal Models

    Directory of Open Access Journals (Sweden)

    Nina Atanasova

    2015-06-01

    Full Text Available In this paper, I respond to the challenge raised against contemporary experimental neurobiology according to which the field is in a state of crisis because of the multiple experimental protocols employed in different laboratories and strengthening their reliability that presumably preclude the validity of neurobiological knowledge. I provide an alternative account of experimentation in neurobiology which makes sense of its experimental practices. I argue that maintaining a multiplicity of experimental protocols and strengthening their reliability are well justified and they foster rather than preclude the validity of neurobiological knowledge. Thus, their presence indicates thriving rather than crisis of experimental neurobiology.

  13. A broad view of model validation

    International Nuclear Information System (INIS)

    Tsang, C.F.

    1989-10-01

    The safety assessment of a nuclear waste repository requires the use of models. Such models need to be validated to ensure, as much as possible, that they are a good representation of the actual processes occurring in the real system. In this paper we attempt to take a broad view by reviewing step by step the modeling process and bringing out the need to validating every step of this process. This model validation includes not only comparison of modeling results with data from selected experiments, but also evaluation of procedures for the construction of conceptual models and calculational models as well as methodologies for studying data and parameter correlation. The need for advancing basic scientific knowledge in related fields, for multiple assessment groups, and for presenting our modeling efforts in open literature to public scrutiny is also emphasized. 16 refs

  14. [Assessment of the validity and reliability of the processes of change scale based on the transtheoretical model of vegetable consumption behavior in Japanese male workers].

    Science.gov (United States)

    Kushida, Osamu; Murayama, Nobuko

    2012-12-01

    A core construct of the Transtheoretical model is that the processes and stages of change are strongly related to observable behavioral changes. We created the Processes of Change Scale of vegetable consumption behavior and examined the validity and reliability of this scale. In September 2009, a self-administered questionnaire was administered to male Japanese employees, aged 20-59 years, working at 20 worksites in Niigata City in Japan. The stages of change (precontempration, contemplation, preparation, action, and maintenance stage) were measured using 2 items that assessed participants' current implementation of the target behavior (eating 5 or more servings of vegetables per day) and their readiness to change their habits. The Processes of Change Scale of vegetable consumption behavior comprised 10 items assessing 5 cognitive processes (consciousness raising, emotional arousal, environmental reevaluation, self-reevaluation, and social liberation) and 5 behavioral processes (commitment, rewards, helping relationships, countering, and environment control). Each item was selected from an existing scale. Decisional balance (pros [2 items] and cons [2 items]), and self-efficacy (3 items) were also assessed, because these constructs were considered to be relevant to the processes of change. The internal consistency reliability of the scale was examined using Cronbach's alpha. Its construct validity was examined using a factor analysis of the processes of change, decisional balance, and self-efficacy variables, while its criterion-related validity was determined by assessing the association between the scale scores and the stages of change. The data of 527 (out of 600) participants (mean age, 41.1 years) were analyzed. Results indicated that the Processes of Change Scale had sufficient internal consistency reliability (Cronbach's alpha: cognitive processes=0.722, behavioral processes=0.803). The processes of change were divided into 2 factors: "consciousness raising

  15. 2D Numerical Modelling of the Resin Injection Pultrusion Process Including Experimental Resin Kinetics and Temperature Validation

    DEFF Research Database (Denmark)

    Rasmussen, Filip Salling; Sonne, Mads Rostgaard; Larsen, Martin

    In the present study, a two-dimensional (2D) transient Eulerian thermo-chemical analysis of a carbon fibre epoxy thermosetting Resin Injection Pultrusion (RIP) process is carried out. The numerical model is implemented using the well known unconditionally stable Alternating Direction Implicit (ADI......) scheme. The total heat of reaction and the cure kinetics of the epoxy thermosetting are determined using Differential Scanning Calorimetry (DSC). A very good agreement is observed between the fitted cure kinetic model and the experimental measurements. The numerical steady state temperature predictions...

  16. A dutch adaptation of the child-rearing styles inventory and a validation of krohne's two-process model.

    Science.gov (United States)

    Depreeuw, E; Lens, W; Horebeek, W

    1995-01-01

    Abstract A Questionnaire for the Parent-Child Interaction (VOKI) has been developed by adapting Krohne's German ESI for the Flemish high school population. The psychometric characteristics of the adaptation are satisfying. The ESI factor structure has been replicated and the VOKI scales are perfectly comparable to the original German scales. Further research on the VOKI and two questionnaires assessing achievement related concepts such as test anxiety, procrastination and achievement motivation yielded correlational patterns partly predicted from Krohne's Two-Process Model. The relations between parental child-rearing styles and competence and consequence expectancies are in line with this model, whereas test anxiety and procrastination seem more complexly determined.

  17. VALIDITY OF THE CONNECTION INTER-LEXICAL A-SEMANTICS IN THE COGNITIVE MODEL OF PROCESSING PRAXIS

    Directory of Open Access Journals (Sweden)

    P. G. Gómez

    2011-07-01

    Full Text Available Rothia Gonzalez et al. (1991, 1997 postulated a cognitive model of praxis on which changes were proposed (Cubelli et al., 2000, including the removal of the direct path between both input praxicon and output. Was suggested that to validate an inter-lexical a-semantics path (Cubelli et al., 2000 would enough to find a patientwith preserved ability for imitate familiar gestures, but with disturbances in the ability to access to the meaning of familiar gestures and alterations in ability for imitate unfamiliar gestures. The aim of this work is present two patients whose patterns ofperformance on praxis supports the existence of a pathway inter-lexical a-semantic. We evaluated two patients with Alzheimer type dementia unlikely with a battery of cognitive assessment of apraxia (Politis 2003. Both patients show alterations in test of Imitation of unfamiliar gestures and on tasks which assess semantic action objecttool watching and naming by function, with good performance on the task of imitating familiar gestures. Based on cognitive models of praxis Rothia Gonzalez et al. (1991, 1997 and Cubelli et al. (2000 is require a direct connection between both input praxicon and output to explain the performance of these patients. Of thus, the performance pattern showing both patients confirms existence of a pathway.Interlexical asemantics

  18. Validating Dart Model

    Directory of Open Access Journals (Sweden)

    Mazur Jolanta

    2014-12-01

    Full Text Available The primary objective of the study was to quantitatively test the DART model, which despite being one of the most popular representations of co-creation concept was so far studied almost solely with qualitative methods. To this end, the researchers developed a multiple measurement scale and employed it in interviewing managers. The statistical evidence for adequacy of the model was obtained through CFA with AMOS software. The findings suggest that the DART model may not be an accurate representation of co-creation practices in companies. From the data analysis it was evident that the building blocks of DART had too much of conceptual overlap to be an effective framework for quantitative analysis. It was also implied that the phenomenon of co-creation is so rich and multifaceted that it may be more adequately captured by a measurement model where co-creation is conceived as a third-level factor with two layers of intermediate latent variables.

  19. Validation through model testing

    International Nuclear Information System (INIS)

    1995-01-01

    Geoval-94 is the third Geoval symposium arranged jointly by the OECD/NEA and the Swedish Nuclear Power Inspectorate. Earlier symposia in this series took place in 1987 and 1990. In many countries, the ongoing programmes to site and construct deep geological repositories for high and intermediate level nuclear waste are close to realization. A number of studies demonstrates the potential barrier function of the geosphere, but also that there are many unresolved issues. A key to these problems are the possibilities to gain knowledge by model testing with experiments and to increase confidence in models used for prediction. The sessions cover conclusions from the INTRAVAL-project, experiences from integrated experimental programs and underground research laboratories as well as the integration between performance assessment and site characterisation. Technical issues ranging from waste and buffer interactions with the rock to radionuclide migration in different geological media is addressed. (J.S.)

  20. Toward a Process-Focused Model of Test Score Validity: Improving Psychological Assessment in Science and Practice

    Science.gov (United States)

    Bornstein, Robert F.

    2011-01-01

    Although definitions of validity have evolved considerably since L. J. Cronbach and P. E. Meehl's classic (1955) review, contemporary validity research continues to emphasize correlational analyses assessing predictor-criterion relationships, with most outcome criteria being self-reports. The present article describes an alternative way of…

  1. Identification and location tasks rely on different mental processes: a diffusion model account of validity effects in spatial cueing paradigms with emotional stimuli.

    Science.gov (United States)

    Imhoff, Roland; Lange, Jens; Germar, Markus

    2018-02-22

    Spatial cueing paradigms are popular tools to assess human attention to emotional stimuli, but different variants of these paradigms differ in what participants' primary task is. In one variant, participants indicate the location of the target (location task), whereas in the other they indicate the shape of the target (identification task). In the present paper we test the idea that although these two variants produce seemingly comparable cue validity effects on response times, they rest on different underlying processes. Across four studies (total N = 397; two in the supplement) using both variants and manipulating the motivational relevance of cue content, diffusion model analyses revealed that cue validity effects in location tasks are primarily driven by response biases, whereas the same effect rests on delay due to attention to the cue in identification tasks. Based on this, we predict and empirically support that a symmetrical distribution of valid and invalid cues would reduce cue validity effects in location tasks to a greater extent than in identification tasks. Across all variants of the task, we fail to replicate the effect of greater cue validity effects for arousing (vs. neutral) stimuli. We discuss the implications of these findings for best practice in spatial cueing research.

  2. Geochemistry Model Validation Report: External Accumulation Model

    International Nuclear Information System (INIS)

    Zarrabi, K.

    2001-01-01

    The purpose of this Analysis and Modeling Report (AMR) is to validate the External Accumulation Model that predicts accumulation of fissile materials in fractures and lithophysae in the rock beneath a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. (Lithophysae are voids in the rock having concentric shells of finely crystalline alkali feldspar, quartz, and other materials that were formed due to entrapped gas that later escaped, DOE 1998, p. A-25.) The intended use of this model is to estimate the quantities of external accumulation of fissile material for use in external criticality risk assessments for different types of degrading WPs: U.S. Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The scope of the model validation is to (1) describe the model and the parameters used to develop the model, (2) provide rationale for selection of the parameters by comparisons with measured values, and (3) demonstrate that the parameters chosen are the most conservative selection for external criticality risk calculations. To demonstrate the applicability of the model, a Pu-ceramic WP is used as an example. The model begins with a source term from separately documented EQ6 calculations; where the source term is defined as the composition versus time of the water flowing out of a breached waste package (WP). Next, PHREEQC, is used to simulate the transport and interaction of the source term with the resident water and fractured tuff below the repository. In these simulations the primary mechanism for accumulation is mixing of the high pH, actinide-laden source term with resident water; thus lowering the pH values sufficiently for fissile minerals to become insoluble and precipitate. In the final section of the model, the outputs from PHREEQC, are processed to produce mass of accumulation

  3. Establishing model credibility involves more than validation

    International Nuclear Information System (INIS)

    Kirchner, T.

    1991-01-01

    One widely used definition of validation is that the quantitative test of the performance of a model through the comparison of model predictions to independent sets of observations from the system being simulated. The ability to show that the model predictions compare well with observations is often thought to be the most rigorous test that can be used to establish credibility for a model in the scientific community. However, such tests are only part of the process used to establish credibility, and in some cases may be either unnecessary or misleading. Naylor and Finger extended the concept of validation to include the establishment of validity for the postulates embodied in the model and the test of assumptions used to select postulates for the model. Validity of postulates is established through concurrence by experts in the field of study that the mathematical or conceptual model contains the structural components and mathematical relationships necessary to adequately represent the system with respect to the goals for the model. This extended definition of validation provides for consideration of the structure of the model, not just its performance, in establishing credibility. Evaluation of a simulation model should establish the correctness of the code and the efficacy of the model within its domain of applicability. (24 refs., 6 figs.)

  4. Aerospace Materials Process Modelling

    Science.gov (United States)

    1988-08-01

    Cooling Transformation diagram ( CCT diagram ) When a IT diagram is used in the heat process modelling, we suppose that a sudden cooling (instantaneous...processes. CE, chooses instead to study thermo-mechanical properties referring to a CCT diagram . This is thinked to be more reliable to give a true...k , mm-_____sml l ml A I 1 III 12.4 This determination is however based on the following approximations: i) A CCT diagram is valid only for the

  5. Development and validation of predictive simulation model of multi-layer repair welding process by temper bead technique

    International Nuclear Information System (INIS)

    Okano, Shigetaka; Miyasaka, Fumikazu; Mochizuki, Masahito; Tanaka, Manabu

    2015-01-01

    Stress corrosion cracking (SCC) has recently been observed in the nickel base alloy weld metal of dissimilar pipe joint used in pressurized water reactor (PWR) . Temper bead technique has been developed as one of repair procedures against SCC applicable in case that post weld heat treatment (PWHT) is difficult to carry out. In this regard, however it is essential to pass the property and performance qualification test to confirm the effect of tempering on the mechanical properties at repair welds before temper bead technique is actually used in practice. Thus the appropriate welding procedure conditions in temper bead technique are determined on the basis of the property and performance qualification testing. It is necessary for certifying the structural soundness and reliability at repair welds but takes a lot of work and time in the present circumstances. Therefore it is desirable to establish the reasonable alternatives for qualifying the property and performance at repair welds. In this study, mathematical modeling and numerical simulation procedures were developed for predicting weld bead configuration and temperature distribution during multi-layer repair welding process by temper bead technique. In the developed simulation technique, characteristics of heat source in temper bead welding are calculated from weld heat input conditions through the arc plasma simulation and then weld bead configuration and temperature distribution during temper bead welding are calculated from characteristics of heat source obtained through the coupling analysis between bead surface shape and thermal conduction. The simulation results were compared with the experimental results under the same welding heat input conditions. As the results, the bead surface shape and temperature distribution, such as A cl lines, were in good agreement between simulation and experimental results. It was concluded that the developed simulation technique has the potential to become useful for

  6. Validity and reliability of an application review process using dedicated reviewers in one stage of a multi-stage admissions model.

    Science.gov (United States)

    Zeeman, Jacqueline M; McLaughlin, Jacqueline E; Cox, Wendy C

    2017-11-01

    With increased emphasis placed on non-academic skills in the workplace, a need exists to identify an admissions process that evaluates these skills. This study assessed the validity and reliability of an application review process involving three dedicated application reviewers in a multi-stage admissions model. A multi-stage admissions model was utilized during the 2014-2015 admissions cycle. After advancing through the academic review, each application was independently reviewed by two dedicated application reviewers utilizing a six-construct rubric (written communication, extracurricular and community service activities, leadership experience, pharmacy career appreciation, research experience, and resiliency). Rubric scores were extrapolated to a three-tier ranking to select candidates for on-site interviews. Kappa statistics were used to assess interrater reliability. A three-facet Many-Facet Rasch Model (MFRM) determined reviewer severity, candidate suitability, and rubric construct difficulty. The kappa statistic for candidates' tier rank score (n = 388 candidates) was 0.692 with a perfect agreement frequency of 84.3%. There was substantial interrater reliability between reviewers for the tier ranking (kappa: 0.654-0.710). Highest construct agreement occurred in written communication (kappa: 0.924-0.984). A three-facet MFRM analysis explained 36.9% of variance in the ratings, with 0.06% reflecting application reviewer scoring patterns (i.e., severity or leniency), 22.8% reflecting candidate suitability, and 14.1% reflecting construct difficulty. Utilization of dedicated application reviewers and a defined tiered rubric provided a valid and reliable method to effectively evaluate candidates during the application review process. These analyses provide insight into opportunities for improving the application review process among schools and colleges of pharmacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Model validation: a systemic and systematic approach

    International Nuclear Information System (INIS)

    Sheng, G.; Elzas, M.S.; Cronhjort, B.T.

    1993-01-01

    The term 'validation' is used ubiquitously in association with the modelling activities of numerous disciplines including social, political natural, physical sciences, and engineering. There is however, a wide range of definitions which give rise to very different interpretations of what activities the process involves. Analyses of results from the present large international effort in modelling radioactive waste disposal systems illustrate the urgent need to develop a common approach to model validation. Some possible explanations are offered to account for the present state of affairs. The methodology developed treats model validation and code verification in a systematic fashion. In fact, this approach may be regarded as a comprehensive framework to assess the adequacy of any simulation study. (author)

  8. Modeling and validation of heat and mass transfer in individual coffee beans during the coffee roasting process using computational fluid dynamics (CFD).

    Science.gov (United States)

    Alonso-Torres, Beatriz; Hernández-Pérez, José Alfredo; Sierra-Espinoza, Fernando; Schenker, Stefan; Yeretzian, Chahan

    2013-01-01

    Heat and mass transfer in individual coffee beans during roasting were simulated using computational fluid dynamics (CFD). Numerical equations for heat and mass transfer inside the coffee bean were solved using the finite volume technique in the commercial CFD code Fluent; the software was complemented with specific user-defined functions (UDFs). To experimentally validate the numerical model, a single coffee bean was placed in a cylindrical glass tube and roasted by a hot air flow, using the identical geometrical 3D configuration and hot air flow conditions as the ones used for numerical simulations. Temperature and humidity calculations obtained with the model were compared with experimental data. The model predicts the actual process quite accurately and represents a useful approach to monitor the coffee roasting process in real time. It provides valuable information on time-resolved process variables that are otherwise difficult to obtain experimentally, but critical to a better understanding of the coffee roasting process at the individual bean level. This includes variables such as time-resolved 3D profiles of bean temperature and moisture content, and temperature profiles of the roasting air in the vicinity of the coffee bean.

  9. A discussion on validation of hydrogeological models

    International Nuclear Information System (INIS)

    Carrera, J.; Mousavi, S.F.; Usunoff, E.J.; Sanchez-Vila, X.; Galarza, G.

    1993-01-01

    Groundwater flow and solute transport are often driven by heterogeneities that elude easy identification. It is also difficult to select and describe the physico-chemical processes controlling solute behaviour. As a result, definition of a conceptual model involves numerous assumptions both on the selection of processes and on the representation of their spatial variability. Validating a numerical model by comparing its predictions with actual measurements may not be sufficient for evaluating whether or not it provides a good representation of 'reality'. Predictions will be close to measurements, regardless of model validity, if these are taken from experiments that stress well-calibrated model modes. On the other hand, predictions will be far from measurements when model parameters are very uncertain, even if the model is indeed a very good representation of the real system. Hence, we contend that 'classical' validation of hydrogeological models is not possible. Rather, models should be viewed as theories about the real system. We propose to follow a rigorous modeling approach in which different sources of uncertainty are explicitly recognized. The application of one such approach is illustrated by modeling a laboratory uranium tracer test performed on fresh granite, which was used as Test Case 1b in INTRAVAL. (author)

  10. Verification and validation of models

    International Nuclear Information System (INIS)

    Herbert, A.W.; Hodgkinson, D.P.; Jackson, C.P.; Lever, D.A.; Robinson, P.C.

    1986-12-01

    The numerical accuracy of the computer models for groundwater flow and radionuclide transport that are to be used in repository safety assessment must be tested, and their ability to describe experimental data assessed: they must be verified and validated respectively. Also appropriate ways to use the codes in performance assessments, taking into account uncertainties in present data and future conditions, must be studied. These objectives are being met by participation in international exercises, by developing bench-mark problems, and by analysing experiments. In particular the project has funded participation in the HYDROCOIN project for groundwater flow models, the Natural Analogues Working Group, and the INTRAVAL project for geosphere models. (author)

  11. Structural system identification: Structural dynamics model validation

    Energy Technology Data Exchange (ETDEWEB)

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  12. PEMFC modeling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, J.V.C. [Federal University of Parana (UFPR), Curitiba, PR (Brazil). Dept. of Mechanical Engineering], E-mail: jvargas@demec.ufpr.br; Ordonez, J.C.; Martins, L.S. [Florida State University, Tallahassee, FL (United States). Center for Advanced Power Systems], Emails: ordonez@caps.fsu.edu, martins@caps.fsu.edu

    2009-07-01

    In this paper, a simplified and comprehensive PEMFC mathematical model introduced in previous studies is experimentally validated. Numerical results are obtained for an existing set of commercial unit PEM fuel cells. The model accounts for pressure drops in the gas channels, and for temperature gradients with respect to space in the flow direction, that are investigated by direct infrared imaging, showing that even at low current operation such gradients are present in fuel cell operation, and therefore should be considered by a PEMFC model, since large coolant flow rates are limited due to induced high pressure drops in the cooling channels. The computed polarization and power curves are directly compared to the experimentally measured ones with good qualitative and quantitative agreement. The combination of accuracy and low computational time allow for the future utilization of the model as a reliable tool for PEMFC simulation, control, design and optimization purposes. (author)

  13. Natural analogues and radionuclide transport model validation

    International Nuclear Information System (INIS)

    Lever, D.A.

    1987-08-01

    In this paper, some possible roles for natural analogues are discussed from the point of view of those involved with the development of mathematical models for radionuclide transport and with the use of these models in repository safety assessments. The characteristic features of a safety assessment are outlined in order to address the questions of where natural analogues can be used to improve our understanding of the processes involved and where they can assist in validating the models that are used. Natural analogues have the potential to provide useful information about some critical processes, especially long-term chemical processes and migration rates. There is likely to be considerable uncertainty and ambiguity associated with the interpretation of natural analogues, and thus it is their general features which should be emphasized, and models with appropriate levels of sophistication should be used. Experience gained in modelling the Koongarra uranium deposit in northern Australia is drawn upon. (author)

  14. A methodology for PSA model validation

    International Nuclear Information System (INIS)

    Unwin, S.D.

    1995-09-01

    This document reports Phase 2 of work undertaken by Science Applications International Corporation (SAIC) in support of the Atomic Energy Control Board's Probabilistic Safety Assessment (PSA) review. A methodology is presented for the systematic review and evaluation of a PSA model. These methods are intended to support consideration of the following question: To within the scope and depth of modeling resolution of a PSA study, is the resultant model a complete and accurate representation of the subject plant? This question was identified as a key PSA validation issue in SAIC's Phase 1 project. The validation methods are based on a model transformation process devised to enhance the transparency of the modeling assumptions. Through conversion to a 'success-oriented' framework, a closer correspondence to plant design and operational specifications is achieved. This can both enhance the scrutability of the model by plant personnel, and provide an alternative perspective on the model that may assist in the identification of deficiencies. The model transformation process is defined and applied to fault trees documented in the Darlington Probabilistic Safety Evaluation. A tentative real-time process is outlined for implementation and documentation of a PSA review based on the proposed methods. (author). 11 refs., 9 tabs., 30 refs

  15. Streamlining Compliance Validation Through Automation Processes

    Science.gov (United States)

    2014-03-01

    INTENTIONALLY LEFT BLANK xv LIST OF ACRONYMS AND ABBREVIATIONS ACAS Assured Compliance Assessment Suite AMP Apache- MySQL -PHP ANSI American...enemy. Of course , a common standard for DoD security personnel to write and share compliance validation content would prevent duplicate work and aid in...process and consume much of the SCAP content available. Finally, it is free and easy to install as part of the Apache/ MySQL /PHP (AMP) [37

  16. In house validation of a high resolution mass spectrometry Orbitrap-based method for multiple allergen detection in a processed model food.

    Science.gov (United States)

    Pilolli, Rosa; De Angelis, Elisabetta; Monaci, Linda

    2018-02-13

    In recent years, mass spectrometry (MS) has been establishing its role in the development of analytical methods for multiple allergen detection, but most analyses are being carried out on low-resolution mass spectrometers such as triple quadrupole or ion traps. In this investigation, performance provided by a high resolution (HR) hybrid quadrupole-Orbitrap™ MS platform for the multiple allergens detection in processed food matrix is presented. In particular, three different acquisition modes were compared: full-MS, targeted-selected ion monitoring with data-dependent fragmentation (t-SIM/dd2), and parallel reaction monitoring. In order to challenge the HR-MS platform, the sample preparation was kept as simple as possible, limited to a 30-min ultrasound-aided protein extraction followed by clean-up with disposable size exclusion cartridges. Selected peptide markers tracing for five allergenic ingredients namely skim milk, whole egg, soy flour, ground hazelnut, and ground peanut were monitored in home-made cookies chosen as model processed matrix. Timed t-SIM/dd2 was found the best choice as a good compromise between sensitivity and accuracy, accomplishing the detection of 17 peptides originating from the five allergens in the same run. The optimized method was validated in-house through the evaluation of matrix and processing effects, recoveries, and precision. The selected quantitative markers for each allergenic ingredient provided quantification of 60-100 μg ingred /g allergenic ingredient/matrix in incurred cookies.

  17. The Role of Slope in the Fill and Spill Process of Linked Submarine Minibasins. Model Validation and Numerical Runs at Laboratory Scale.

    Science.gov (United States)

    Bastianon, E.; Viparelli, E.; Cantelli, A.; Imran, J.

    2015-12-01

    Primarily motivated by applications to hydrocarbon exploration, submarine minibasins have been widely studied during recent decades to understand the physical phenomenon that characterizes their fill process. Minibasins were identified in seismic records in the Gulf of Mexico, Angola, Trinidad and Tobago, Ireland, Nigeria and also in outcrops (e.g., Tres Pasos Formation, southern Chile). The filling of minibasis is generally described as the 'fill-and-spill' process, i.e. turbidity currents enter, are reflected on the minibasin flanks, pond and deposit suspended sediment. As the minibasin fills the turbidity current spills on the lowermost zone of the basin flank -spill point - and start filling the next basin downdip. Different versions of this simplified model were used to interpret field and laboratory data but it is still unclear how the minibasin size compared to the magnitude of the turbidity currents, the position of each basin in the system, and the slope of the minibasin system affects the characteristics of the deposit (e.g., geometry, grain size). Here, we conduct a numerical study to investigate how the 'fill-and-spill' model changes with increase in slopes of the minibasin system. First, we validate our numerical results against laboratory experiment performed on two linked minibasins located on a horizontal platform by comparing measured and simulated deposit geometries, suspended sediment concentration profiles and grain sizes. We then perform numerical simulations by increasing the minibasin system slope: deposit and flow characteristics are compared with the case of horizontal platform to identify how the depositional processes change. For the numerical study we used a three-dimensional numerical model of turbidity currents that solves the Reynolds-averaged Navier-Stokes equations for dilute suspensions. Turbulence is modeled by a buoyancy-modified k-ɛ closure. The numerical model has a deforming bottom boundary, to model the changes in the bed

  18. Verifying and Validating Simulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Hemez, Francois M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-23

    This presentation is a high-level discussion of the Verification and Validation (V&V) of computational models. Definitions of V&V are given to emphasize that “validation” is never performed in a vacuum; it accounts, instead, for the current state-of-knowledge in the discipline considered. In particular comparisons between physical measurements and numerical predictions should account for their respective sources of uncertainty. The differences between error (bias), aleatoric uncertainty (randomness) and epistemic uncertainty (ignorance, lack-of- knowledge) are briefly discussed. Four types of uncertainty in physics and engineering are discussed: 1) experimental variability, 2) variability and randomness, 3) numerical uncertainty and 4) model-form uncertainty. Statistical sampling methods are available to propagate, and analyze, variability and randomness. Numerical uncertainty originates from the truncation error introduced by the discretization of partial differential equations in time and space. Model-form uncertainty is introduced by assumptions often formulated to render a complex problem more tractable and amenable to modeling and simulation. The discussion concludes with high-level guidance to assess the “credibility” of numerical simulations, which stems from the level of rigor with which these various sources of uncertainty are assessed and quantified.

  19. Validation of measured friction by process tests

    DEFF Research Database (Denmark)

    Eriksen, Morten; Henningsen, Poul; Tan, Xincai

    The objective of sub-task 3.3 is to evaluate under actual process conditions the friction formulations determined by simulative testing. As regards task 3.3 the following tests have been used according to the original project plan: 1. standard ring test and 2. double cup extrusion test. The task...... has, however, been extended to include a number of new developed process tests: 3. forward rod extrusion test, 4. special ring test at low normal pressure, 5. spike test (especially developed for warm and hot forging). Validation of the measured friction values in cold forming from sub-task 3.1 has...... been made with forward rod extrusion, and very good agreement was obtained between the measured friction values in simulative testing and process testing....

  20. A proposed best practice model validation framework for banks

    Directory of Open Access Journals (Sweden)

    Pieter J. (Riaan de Jongh

    2017-06-01

    Full Text Available Background: With the increasing use of complex quantitative models in applications throughout the financial world, model risk has become a major concern. The credit crisis of 2008–2009 provoked added concern about the use of models in finance. Measuring and managing model risk has subsequently come under scrutiny from regulators, supervisors, banks and other financial institutions. Regulatory guidance indicates that meticulous monitoring of all phases of model development and implementation is required to mitigate this risk. Considerable resources must be mobilised for this purpose. The exercise must embrace model development, assembly, implementation, validation and effective governance. Setting: Model validation practices are generally patchy, disparate and sometimes contradictory, and although the Basel Accord and some regulatory authorities have attempted to establish guiding principles, no definite set of global standards exists. Aim: Assessing the available literature for the best validation practices. Methods: This comprehensive literature study provided a background to the complexities of effective model management and focussed on model validation as a component of model risk management. Results: We propose a coherent ‘best practice’ framework for model validation. Scorecard tools are also presented to evaluate if the proposed best practice model validation framework has been adequately assembled and implemented. Conclusion: The proposed best practice model validation framework is designed to assist firms in the construction of an effective, robust and fully compliant model validation programme and comprises three principal elements: model validation governance, policy and process.

  1. SPR Hydrostatic Column Model Verification and Validation.

    Energy Technology Data Exchange (ETDEWEB)

    Bettin, Giorgia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lord, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rudeen, David Keith [Gram, Inc. Albuquerque, NM (United States)

    2015-10-01

    A Hydrostatic Column Model (HCM) was developed to help differentiate between normal "tight" well behavior and small-leak behavior under nitrogen for testing the pressure integrity of crude oil storage wells at the U.S. Strategic Petroleum Reserve. This effort was motivated by steady, yet distinct, pressure behavior of a series of Big Hill caverns that have been placed under nitrogen for extended period of time. This report describes the HCM model, its functional requirements, the model structure and the verification and validation process. Different modes of operation are also described, which illustrate how the software can be used to model extended nitrogen monitoring and Mechanical Integrity Tests by predicting wellhead pressures along with nitrogen interface movements. Model verification has shown that the program runs correctly and it is implemented as intended. The cavern BH101 long term nitrogen test was used to validate the model which showed very good agreement with measured data. This supports the claim that the model is, in fact, capturing the relevant physical phenomena and can be used to make accurate predictions of both wellhead pressure and interface movements.

  2. Operational validation of a multi-period and multi-criteria model conditioning approach for the prediction of rainfall-runoff processes in small forest catchments

    Science.gov (United States)

    Choi, H.; Kim, S.

    2012-12-01

    Most of hydrologic models have generally been used to describe and represent the spatio-temporal variability of hydrological processes in the watershed scale. Though it is an obvious fact that hydrological responses have the time varying nature, optimal values of model parameters were normally considered as time invariants or constants in most cases. The recent paper of Choi and Beven (2007) presents a multi-period and multi-criteria model conditioning approach. The approach is based on the equifinality thesis within the Generalised Likelihood Uncertainty Estimation (GLUE) framework. In their application, the behavioural TOPMODEL parameter sets are determined by several performance measures for global (annual) and short (30-days) periods, clustered using a Fuzzy C-means algorithm, into 15 types representing different hydrological conditions. Their study shows a good performance on the calibration of a rainfall-runoff model in a forest catchment, and also gives strong indications that it is uncommon to find model realizations that were behavioural over all multi-periods and all performance measures, and multi-period model conditioning approach may become new effective tool for predictions of hydrological processes in ungauged catchments. This study is a follow-up study on the Choi and Beven's (2007) model conditioning approach to test how the approach is effective for the prediction of rainfall-runoff responses in ungauged catchments. To achieve this purpose, 6 small forest catchments are selected among the several hydrological experimental catchments operated by Korea Forest Research Institute. In each catchment, long-term hydrological time series data varying from 10 to 30 years were available. The areas of the selected catchments range from 13.6 to 37.8 ha, and all areas are covered by coniferous or broad-leaves forests. The selected catchments locate in the southern coastal area to the northern part of South Korea. The bed rocks are Granite gneiss, Granite or

  3. Predictive validation of an influenza spread model.

    Directory of Open Access Journals (Sweden)

    Ayaz Hyder

    Full Text Available BACKGROUND: Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread. METHODS AND FINDINGS: We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998-1999. Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type. Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic. CONCLUSIONS: Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve

  4. Predictive Validation of an Influenza Spread Model

    Science.gov (United States)

    Hyder, Ayaz; Buckeridge, David L.; Leung, Brian

    2013-01-01

    Background Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread. Methods and Findings We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998–1999). Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type). Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic. Conclusions Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers) with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve their predictive

  5. A validated physical model of greenhouse climate

    International Nuclear Information System (INIS)

    Bot, G.P.A.

    1989-01-01

    In the greenhouse model the momentaneous environmental crop growth factors are calculated as output, together with the physical behaviour of the crop. The boundary conditions for this model are the outside weather conditions; other inputs are the physical characteristics of the crop, of the greenhouse and of the control system. The greenhouse model is based on the energy, water vapour and CO 2 balances of the crop-greenhouse system. While the emphasis is on the dynamic behaviour of the greenhouse for implementation in continuous optimization, the state variables temperature, water vapour pressure and carbondioxide concentration in the relevant greenhouse parts crop, air, soil and cover are calculated from the balances over these parts. To do this in a proper way, the physical exchange processes between the system parts have to be quantified first. Therefore the greenhouse model is constructed from submodels describing these processes: a. Radiation transmission model for the modification of the outside to the inside global radiation. b. Ventilation model to describe the ventilation exchange between greenhouse and outside air. c. The description of the exchange of energy and mass between the crop and the greenhouse air. d. Calculation of the thermal radiation exchange between the various greenhouse parts. e. Quantification of the convective exchange processes between the greenhouse air and respectively the cover, the heating pipes and the soil surface and between the cover and the outside air. f. Determination of the heat conduction in the soil. The various submodels are validated first and then the complete greenhouse model is verified

  6. Towards policy relevant environmental modeling: contextual validity and pragmatic models

    Science.gov (United States)

    Miles, Scott B.

    2000-01-01

    "What makes for a good model?" In various forms, this question is a question that, undoubtedly, many people, businesses, and institutions ponder with regards to their particular domain of modeling. One particular domain that is wrestling with this question is the multidisciplinary field of environmental modeling. Examples of environmental models range from models of contaminated ground water flow to the economic impact of natural disasters, such as earthquakes. One of the distinguishing claims of the field is the relevancy of environmental modeling to policy and environment-related decision-making in general. A pervasive view by both scientists and decision-makers is that a "good" model is one that is an accurate predictor. Thus, determining whether a model is "accurate" or "correct" is done by comparing model output to empirical observations. The expected outcome of this process, usually referred to as "validation" or "ground truthing," is a stamp on the model in question of "valid" or "not valid" that serves to indicate whether or not the model will be reliable before it is put into service in a decision-making context. In this paper, I begin by elaborating on the prevailing view of model validation and why this view must change. Drawing from concepts coming out of the studies of science and technology, I go on to propose a contextual view of validity that can overcome the problems associated with "ground truthing" models as an indicator of model goodness. The problem of how we talk about and determine model validity has much to do about how we perceive the utility of environmental models. In the remainder of the paper, I argue that we should adopt ideas of pragmatism in judging what makes for a good model and, in turn, developing good models. From such a perspective of model goodness, good environmental models should facilitate communication, convey—not bury or "eliminate"—uncertainties, and, thus, afford the active building of consensus decisions, instead

  7. IV&V Project Assessment Process Validation

    Science.gov (United States)

    Driskell, Stephen

    2012-01-01

    The Space Launch System (SLS) will launch NASA's Multi-Purpose Crew Vehicle (MPCV). This launch vehicle will provide American launch capability for human exploration and travelling beyond Earth orbit. SLS is designed to be flexible for crew or cargo missions. The first test flight is scheduled for December 2017. The SLS SRR/SDR provided insight into the project development life cycle. NASA IV&V ran the standard Risk Based Assessment and Portfolio Based Risk Assessment to identify analysis tasking for the SLS program. This presentation examines the SLS System Requirements Review/System Definition Review (SRR/SDR), IV&V findings for IV&V process validation correlation to/from the selected IV&V tasking and capabilities. It also provides a reusable IEEE 1012 scorecard for programmatic completeness across the software development life cycle.

  8. A Dirichlet process mixture model for automatic (18)F-FDG PET image segmentation: Validation study on phantoms and on lung and esophageal lesions.

    Science.gov (United States)

    Giri, Maria Grazia; Cavedon, Carlo; Mazzarotto, Renzo; Ferdeghini, Marco

    2016-05-01

    The aim of this study was to implement a Dirichlet process mixture (DPM) model for automatic tumor edge identification on (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) images by optimizing the parameters on which the algorithm depends, to validate it experimentally, and to test its robustness. The DPM model belongs to the class of the Bayesian nonparametric models and uses the Dirichlet process prior for flexible nonparametric mixture modeling, without any preliminary choice of the number of mixture components. The DPM algorithm implemented in the statistical software package R was used in this work. The contouring accuracy was evaluated on several image data sets: on an IEC phantom (spherical inserts with diameter in the range 10-37 mm) acquired by a Philips Gemini Big Bore PET-CT scanner, using 9 different target-to-background ratios (TBRs) from 2.5 to 70; on a digital phantom simulating spherical/uniform lesions and tumors, irregular in shape and activity; and on 20 clinical cases (10 lung and 10 esophageal cancer patients). The influence of the DPM parameters on contour generation was studied in two steps. In the first one, only the IEC spheres having diameters of 22 and 37 mm and a sphere of the digital phantom (41.6 mm diameter) were studied by varying the main parameters until the diameter of the spheres was obtained within 0.2% of the true value. In the second step, the results obtained for this training set were applied to the entire data set to determine DPM based volumes of all available lesions. These volumes were compared to those obtained by applying already known algorithms (Gaussian mixture model and gradient-based) and to true values, when available. Only one parameter was found able to significantly influence segmentation accuracy (ANOVA test). This parameter was linearly connected to the uptake variance of the tested region of interest (ROI). In the first step of the study, a calibration curve was determined to

  9. A Dirichlet process mixture model for automatic {sup 18}F-FDG PET image segmentation: Validation study on phantoms and on lung and esophageal lesions

    Energy Technology Data Exchange (ETDEWEB)

    Giri, Maria Grazia, E-mail: mariagrazia.giri@ospedaleuniverona.it; Cavedon, Carlo [Medical Physics Unit, University Hospital of Verona, P.le Stefani 1, Verona 37126 (Italy); Mazzarotto, Renzo [Radiation Oncology Unit, University Hospital of Verona, P.le Stefani 1, Verona 37126 (Italy); Ferdeghini, Marco [Nuclear Medicine Unit, University Hospital of Verona, P.le Stefani 1, Verona 37126 (Italy)

    2016-05-15

    Purpose: The aim of this study was to implement a Dirichlet process mixture (DPM) model for automatic tumor edge identification on {sup 18}F-fluorodeoxyglucose positron emission tomography ({sup 18}F-FDG PET) images by optimizing the parameters on which the algorithm depends, to validate it experimentally, and to test its robustness. Methods: The DPM model belongs to the class of the Bayesian nonparametric models and uses the Dirichlet process prior for flexible nonparametric mixture modeling, without any preliminary choice of the number of mixture components. The DPM algorithm implemented in the statistical software package R was used in this work. The contouring accuracy was evaluated on several image data sets: on an IEC phantom (spherical inserts with diameter in the range 10–37 mm) acquired by a Philips Gemini Big Bore PET-CT scanner, using 9 different target-to-background ratios (TBRs) from 2.5 to 70; on a digital phantom simulating spherical/uniform lesions and tumors, irregular in shape and activity; and on 20 clinical cases (10 lung and 10 esophageal cancer patients). The influence of the DPM parameters on contour generation was studied in two steps. In the first one, only the IEC spheres having diameters of 22 and 37 mm and a sphere of the digital phantom (41.6 mm diameter) were studied by varying the main parameters until the diameter of the spheres was obtained within 0.2% of the true value. In the second step, the results obtained for this training set were applied to the entire data set to determine DPM based volumes of all available lesions. These volumes were compared to those obtained by applying already known algorithms (Gaussian mixture model and gradient-based) and to true values, when available. Results: Only one parameter was found able to significantly influence segmentation accuracy (ANOVA test). This parameter was linearly connected to the uptake variance of the tested region of interest (ROI). In the first step of the study, a

  10. A Dirichlet process mixture model for automatic 18F-FDG PET image segmentation: Validation study on phantoms and on lung and esophageal lesions

    International Nuclear Information System (INIS)

    Giri, Maria Grazia; Cavedon, Carlo; Mazzarotto, Renzo; Ferdeghini, Marco

    2016-01-01

    Purpose: The aim of this study was to implement a Dirichlet process mixture (DPM) model for automatic tumor edge identification on 18 F-fluorodeoxyglucose positron emission tomography ( 18 F-FDG PET) images by optimizing the parameters on which the algorithm depends, to validate it experimentally, and to test its robustness. Methods: The DPM model belongs to the class of the Bayesian nonparametric models and uses the Dirichlet process prior for flexible nonparametric mixture modeling, without any preliminary choice of the number of mixture components. The DPM algorithm implemented in the statistical software package R was used in this work. The contouring accuracy was evaluated on several image data sets: on an IEC phantom (spherical inserts with diameter in the range 10–37 mm) acquired by a Philips Gemini Big Bore PET-CT scanner, using 9 different target-to-background ratios (TBRs) from 2.5 to 70; on a digital phantom simulating spherical/uniform lesions and tumors, irregular in shape and activity; and on 20 clinical cases (10 lung and 10 esophageal cancer patients). The influence of the DPM parameters on contour generation was studied in two steps. In the first one, only the IEC spheres having diameters of 22 and 37 mm and a sphere of the digital phantom (41.6 mm diameter) were studied by varying the main parameters until the diameter of the spheres was obtained within 0.2% of the true value. In the second step, the results obtained for this training set were applied to the entire data set to determine DPM based volumes of all available lesions. These volumes were compared to those obtained by applying already known algorithms (Gaussian mixture model and gradient-based) and to true values, when available. Results: Only one parameter was found able to significantly influence segmentation accuracy (ANOVA test). This parameter was linearly connected to the uptake variance of the tested region of interest (ROI). In the first step of the study, a calibration curve

  11. Spent Nuclear Fuel (SNF) Process Validation Technical Support Plan

    Energy Technology Data Exchange (ETDEWEB)

    SEXTON, R.A.

    2000-03-13

    The purpose of Process Validation is to confirm that nominal process operations are consistent with the expected process envelope. The Process Validation activities described in this document are not part of the safety basis, but are expected to demonstrate that the process operates well within the safety basis. Some adjustments to the process may be made as a result of information gathered in Process Validation.

  12. Spent Nuclear Fuel (SNF) Process Validation Technical Support Plan

    International Nuclear Information System (INIS)

    SEXTON, R.A.

    2000-01-01

    The purpose of Process Validation is to confirm that nominal process operations are consistent with the expected process envelope. The Process Validation activities described in this document are not part of the safety basis, but are expected to demonstrate that the process operates well within the safety basis. Some adjustments to the process may be made as a result of information gathered in Process Validation

  13. Concepts of Model Verification and Validation

    International Nuclear Information System (INIS)

    Thacker, B.H.; Doebling, S.W.; Hemez, F.M.; Anderson, M.C.; Pepin, J.E.; Rodriguez, E.A.

    2004-01-01

    VandV for all safety-related nuclear facility design, analyses, and operations. In fact, DNFSB 2002-1 recommends to the DOE and National Nuclear Security Administration (NNSA) that a VandV process be performed for all safety related software and analysis. Model verification and validation are the primary processes for quantifying and building credibility in numerical models. Verification is the process of determining that a model implementation accurately represents the developer's conceptual description of the model and its solution. Validation is the process of determining the degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model. Both verification and validation are processes that accumulate evidence of a model's correctness or accuracy for a specific scenario; thus, VandV cannot prove that a model is correct and accurate for all possible scenarios, but, rather, it can provide evidence that the model is sufficiently accurate for its intended use. Model VandV is fundamentally different from software VandV. Code developers developing computer programs perform software VandV to ensure code correctness, reliability, and robustness. In model VandV, the end product is a predictive model based on fundamental physics of the problem being solved. In all applications of practical interest, the calculations involved in obtaining solutions with the model require a computer code, e.g., finite element or finite difference analysis. Therefore, engineers seeking to develop credible predictive models critically need model VandV guidelines and procedures. The expected outcome of the model VandV process is the quantified level of agreement between experimental data and model prediction, as well as the predictive accuracy of the model. This report attempts to describe the general philosophy, definitions, concepts, and processes for conducting a successful VandV program. This objective is motivated by the need for

  14. Verification and Validation of Tropospheric Model/Database

    National Research Council Canada - National Science Library

    Junho, choi

    1998-01-01

    A verification and validation of tropospheric models and databases has been performed based on ray tracing algorithm, statistical analysis, test on real time system operation, and other technical evaluation process...

  15. Processing and validation of intermediate energy evaluated data files

    International Nuclear Information System (INIS)

    2000-01-01

    Current accelerator-driven and other intermediate energy technologies require accurate nuclear data to model the performance of the target/blanket assembly, neutron production, activation, heating and damage. In a previous WPEC subgroup, SG13 on intermediate energy nuclear data, various aspects of intermediate energy data, such as nuclear data needs, experiments, model calculations and file formatting issues were investigated and categorized to come to a joint evaluation effort. The successor of SG13, SG14 on the processing and validation of intermediate energy evaluated data files, goes one step further. The nuclear data files that have been created with the aforementioned information need to be processed and validated in order to be applicable in realistic intermediate energy simulations. We emphasize that the work of SG14 excludes the 0-20 MeV data part of the neutron evaluations, which is supposed to be covered elsewhere. This final report contains the following sections: section 2: a survey of the data files above 20 MeV that have been considered for validation in SG14; section 3: a summary of the review of the 150 MeV intermediate energy data files for ENDF/B-VI and, more briefly, the other libraries; section 4: validation of the data library against an integral experiment with MCNPX; section 5: conclusions. (author)

  16. Semantic Business Process Modeling

    OpenAIRE

    Markovic, Ivan

    2010-01-01

    This book presents a process-oriented business modeling framework based on semantic technologies. The framework consists of modeling languages, methods, and tools that allow for semantic modeling of business motivation, business policies and rules, and business processes. Quality of the proposed modeling framework is evaluated based on the modeling content of SAP Solution Composer and several real-world business scenarios.

  17. Validation of models with multivariate output

    International Nuclear Information System (INIS)

    Rebba, Ramesh; Mahadevan, Sankaran

    2006-01-01

    This paper develops metrics for validating computational models with experimental data, considering uncertainties in both. A computational model may generate multiple response quantities and the validation experiment might yield corresponding measured values. Alternatively, a single response quantity may be predicted and observed at different spatial and temporal points. Model validation in such cases involves comparison of multiple correlated quantities. Multiple univariate comparisons may give conflicting inferences. Therefore, aggregate validation metrics are developed in this paper. Both classical and Bayesian hypothesis testing are investigated for this purpose, using multivariate analysis. Since, commonly used statistical significance tests are based on normality assumptions, appropriate transformations are investigated in the case of non-normal data. The methodology is implemented to validate an empirical model for energy dissipation in lap joints under dynamic loading

  18. Data Validation and Modelling of Thermodynamic Properties of Systems with Active Pharmaceutical Ingredients (APIs) in Complex Media for Skin Absorption Processes

    DEFF Research Database (Denmark)

    Ruszczynski, Lukasz; Zubov, Alexandr; Sin, Gürkan

    2017-01-01

    This study presents methods for prediction of thermodynamic properties required in development of models for drug skin permeation processes, such as drug solubilities and partition coefficients. For evaluation of these properties, ab initio models such as COSMO-SAC can assist in providing...

  19. A process-based model for ammonia emission from urine patches, GAG (Generation of Ammonia from Grazing): description, validation and sensitivity analysis

    DEFF Research Database (Denmark)

    Móring, A; Vieno, M.; Doherty, R M

    2015-01-01

    models, as a necessary basis for assessing the effects of climate change on NH3 related atmospheric processes. GAG is capable of simulating the TAN (Total Ammoniacal Nitrogen) content, pH and the water content of the soil under a urine patch. To calculate the TAN budget, GAG takes into account urea......In this paper a new process-based, weather-driven model for ammonia (NH3) emission from a urine patch has been developed and its sensitivity to various factors assessed. This model, the GAG model (Generation of Ammonia from Grazing) was developed as a part of a suite of weather-driven NH3 exchange...... hydrolysis as a TAN input and NH3 volatilization as a loss. In the water budget, in addition to the water content of urine, precipitation and evaporation are also considered. In the pH module we assumed that the main regulating processes are the dissociation and dissolution equilibria related to the two...

  20. Feature Extraction for Structural Dynamics Model Validation

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Charles [Los Alamos National Laboratory; Nishio, Mayuko [Yokohama University; Hemez, Francois [Los Alamos National Laboratory; Stull, Chris [Los Alamos National Laboratory; Park, Gyuhae [Chonnam Univesity; Cornwell, Phil [Rose-Hulman Institute of Technology; Figueiredo, Eloi [Universidade Lusófona; Luscher, D. J. [Los Alamos National Laboratory; Worden, Keith [University of Sheffield

    2016-01-13

    As structural dynamics becomes increasingly non-modal, stochastic and nonlinear, finite element model-updating technology must adopt the broader notions of model validation and uncertainty quantification. For example, particular re-sampling procedures must be implemented to propagate uncertainty through a forward calculation, and non-modal features must be defined to analyze nonlinear data sets. The latter topic is the focus of this report, but first, some more general comments regarding the concept of model validation will be discussed.

  1. Model Validation in Ontology Based Transformations

    Directory of Open Access Journals (Sweden)

    Jesús M. Almendros-Jiménez

    2012-10-01

    Full Text Available Model Driven Engineering (MDE is an emerging approach of software engineering. MDE emphasizes the construction of models from which the implementation should be derived by applying model transformations. The Ontology Definition Meta-model (ODM has been proposed as a profile for UML models of the Web Ontology Language (OWL. In this context, transformations of UML models can be mapped into ODM/OWL transformations. On the other hand, model validation is a crucial task in model transformation. Meta-modeling permits to give a syntactic structure to source and target models. However, semantic requirements have to be imposed on source and target models. A given transformation will be sound when source and target models fulfill the syntactic and semantic requirements. In this paper, we present an approach for model validation in ODM based transformations. Adopting a logic programming based transformational approach we will show how it is possible to transform and validate models. Properties to be validated range from structural and semantic requirements of models (pre and post conditions to properties of the transformation (invariants. The approach has been applied to a well-known example of model transformation: the Entity-Relationship (ER to Relational Model (RM transformation.

  2. Validity of information security policy models

    Directory of Open Access Journals (Sweden)

    Joshua Onome Imoniana

    Full Text Available Validity is concerned with establishing evidence for the use of a method to be used with a particular set of population. Thus, when we address the issue of application of security policy models, we are concerned with the implementation of a certain policy, taking into consideration the standards required, through attribution of scores to every item in the research instrument. En today's globalized economic scenarios, the implementation of information security policy, in an information technology environment, is a condition sine qua non for the strategic management process of any organization. Regarding this topic, various studies present evidences that, the responsibility for maintaining a policy rests primarily with the Chief Security Officer. The Chief Security Officer, in doing so, strives to enhance the updating of technologies, in order to meet all-inclusive business continuity planning policies. Therefore, for such policy to be effective, it has to be entirely embraced by the Chief Executive Officer. This study was developed with the purpose of validating specific theoretical models, whose designs were based on literature review, by sampling 10 of the Automobile Industries located in the ABC region of Metropolitan São Paulo City. This sampling was based on the representativeness of such industries, particularly with regards to each one's implementation of information technology in the region. The current study concludes, presenting evidence of the discriminating validity of four key dimensions of the security policy, being such: the Physical Security, the Logical Access Security, the Administrative Security, and the Legal & Environmental Security. On analyzing the Alpha of Crombach structure of these security items, results not only attest that the capacity of those industries to implement security policies is indisputable, but also, the items involved, homogeneously correlate to each other.

  3. Modeling multiphase materials processes

    CERN Document Server

    Iguchi, Manabu

    2010-01-01

    ""Modeling Multiphase Materials Processes: Gas-Liquid Systems"" describes the methodology and application of physical and mathematical modeling to multi-phase flow phenomena in materials processing. The book focuses on systems involving gas-liquid interaction, the most prevalent in current metallurgical processes. The performance characteristics of these processes are largely dependent on transport phenomena. This volume covers the inherent characteristics that complicate the modeling of transport phenomena in such systems, including complex multiphase structure, intense turbulence, opacity of

  4. Propylene/Nitrogen Separation in a By-Stream of the Polypropylene Production: From Pilot Test and Model Validation to Industrial Scale Process Design and Optimization

    OpenAIRE

    Guler Narin; Ana Ribeiro; Alexandre Ferreira; Young Hwang; U-Hwang Lee; José Loureiro; Jong-San Chang; Alírio Rodrigues

    2014-01-01

    Two industrial-scale pressure swing adsorption (PSA) processes were designed and optimized by simulations: recovery of only nitrogen and recovery of both nitrogen and propylene from a polypropylene manufacture purge gas stream. MIL-100(Fe) granulates were used as adsorbent. The mathematical model employed in the simulations was verified by a PSA experiment. The effect of several operating parameters on the performance of the proposed PSA processes was investigated. For the nitrogen recovery, ...

  5. AN OVERVIEW OF PHARMACEUTICAL PROCESS VALIDATION AND PROCESS CONTROL VARIABLES OF TABLETS MANUFACTURING PROCESSES IN INDUSTRY

    OpenAIRE

    Mahesh B. Wazade*, Sheelpriya R. Walde and Abhay M. Ittadwar

    2012-01-01

    Validation is an integral part of quality assurance; the product quality is derived from careful attention to a number of factors including selection of quality parts and materials, adequate product and manufacturing process design, control of the process variables, in-process and end-product testing. Recently validation has become one of the pharmaceutical industry’s most recognized and discussed subjects. It is a critical success factor in product approval and ongoing commercialization, fac...

  6. Base Flow Model Validation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is the systematic "building-block" validation of CFD/turbulence models employing a GUI driven CFD code (RPFM) and existing as well as new data sets to...

  7. Model validation: Correlation for updating

    Indian Academy of Sciences (India)

    In this paper, a review is presented of the various methods which ... to make a direct and objective comparison of specific dynamic properties, measured ..... stiffness matrix is available from the analytical model, is that of reducing or condensing.

  8. Model validation and calibration based on component functions of model output

    International Nuclear Information System (INIS)

    Wu, Danqing; Lu, Zhenzhou; Wang, Yanping; Cheng, Lei

    2015-01-01

    The target in this work is to validate the component functions of model output between physical observation and computational model with the area metric. Based on the theory of high dimensional model representations (HDMR) of independent input variables, conditional expectations are component functions of model output, and the conditional expectations reflect partial information of model output. Therefore, the model validation of conditional expectations tells the discrepancy between the partial information of the computational model output and that of the observations. Then a calibration of the conditional expectations is carried out to reduce the value of model validation metric. After that, a recalculation of the model validation metric of model output is taken with the calibrated model parameters, and the result shows that a reduction of the discrepancy in the conditional expectations can help decrease the difference in model output. At last, several examples are employed to demonstrate the rationality and necessity of the methodology in case of both single validation site and multiple validation sites. - Highlights: • A validation metric of conditional expectations of model output is proposed. • HDRM explains the relationship of conditional expectations and model output. • An improved approach of parameter calibration updates the computational models. • Validation and calibration process are applied at single site and multiple sites. • Validation and calibration process show a superiority than existing methods

  9. Validating EHR clinical models using ontology patterns.

    Science.gov (United States)

    Martínez-Costa, Catalina; Schulz, Stefan

    2017-12-01

    Clinical models are artefacts that specify how information is structured in electronic health records (EHRs). However, the makeup of clinical models is not guided by any formal constraint beyond a semantically vague information model. We address this gap by advocating ontology design patterns as a mechanism that makes the semantics of clinical models explicit. This paper demonstrates how ontology design patterns can validate existing clinical models using SHACL. Based on the Clinical Information Modelling Initiative (CIMI), we show how ontology patterns detect both modeling and terminology binding errors in CIMI models. SHACL, a W3C constraint language for the validation of RDF graphs, builds on the concept of "Shape", a description of data in terms of expected cardinalities, datatypes and other restrictions. SHACL, as opposed to OWL, subscribes to the Closed World Assumption (CWA) and is therefore more suitable for the validation of clinical models. We have demonstrated the feasibility of the approach by manually describing the correspondences between six CIMI clinical models represented in RDF and two SHACL ontology design patterns. Using a Java-based SHACL implementation, we found at least eleven modeling and binding errors within these CIMI models. This demonstrates the usefulness of ontology design patterns not only as a modeling tool but also as a tool for validation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Process modeling style

    CERN Document Server

    Long, John

    2014-01-01

    Process Modeling Style focuses on other aspects of process modeling beyond notation that are very important to practitioners. Many people who model processes focus on the specific notation used to create their drawings. While that is important, there are many other aspects to modeling, such as naming, creating identifiers, descriptions, interfaces, patterns, and creating useful process documentation. Experience author John Long focuses on those non-notational aspects of modeling, which practitioners will find invaluable. Gives solid advice for creating roles, work produ

  11. Verification and validation for waste disposal models

    International Nuclear Information System (INIS)

    1987-07-01

    A set of evaluation criteria has been developed to assess the suitability of current verification and validation techniques for waste disposal methods. A survey of current practices and techniques was undertaken and evaluated using these criteria with the items most relevant to waste disposal models being identified. Recommendations regarding the most suitable verification and validation practices for nuclear waste disposal modelling software have been made

  12. Tracer travel time and model validation

    International Nuclear Information System (INIS)

    Tsang, Chin-Fu.

    1988-01-01

    The performance assessment of a nuclear waste repository demands much more in comparison to the safety evaluation of any civil constructions such as dams, or the resource evaluation of a petroleum or geothermal reservoir. It involves the estimation of low probability (low concentration) of radionuclide transport extrapolated 1000's of years into the future. Thus models used to make these estimates need to be carefully validated. A number of recent efforts have been devoted to the study of this problem. Some general comments on model validation were given by Tsang. The present paper discusses some issues of validation in regards to radionuclide transport. 5 refs

  13. Product and Process Modelling

    DEFF Research Database (Denmark)

    Cameron, Ian T.; Gani, Rafiqul

    . These approaches are put into the context of life cycle modelling, where multiscale and multiform modelling is increasingly prevalent in the 21st century. The book commences with a discussion of modern product and process modelling theory and practice followed by a series of case studies drawn from a variety......This book covers the area of product and process modelling via a case study approach. It addresses a wide range of modelling applications with emphasis on modelling methodology and the subsequent in-depth analysis of mathematical models to gain insight via structural aspects of the models...... to biotechnology applications, food, polymer and human health application areas. The book highlights to important nature of modern product and process modelling in the decision making processes across the life cycle. As such it provides an important resource for students, researchers and industrial practitioners....

  14. Assessment model validity document FARF31

    International Nuclear Information System (INIS)

    Elert, Mark; Gylling Bjoern; Lindgren, Maria

    2004-08-01

    The prime goal of model validation is to build confidence in the model concept and that the model is fit for its intended purpose. In other words: Does the model predict transport in fractured rock adequately to be used in repository performance assessments. Are the results reasonable for the type of modelling tasks the model is designed for. Commonly, in performance assessments a large number of realisations of flow and transport is made to cover the associated uncertainties. Thus, the flow and transport including radioactive chain decay are preferably calculated in the same model framework. A rather sophisticated concept is necessary to be able to model flow and radionuclide transport in the near field and far field of a deep repository, also including radioactive chain decay. In order to avoid excessively long computational times there is a need for well-based simplifications. For this reason, the far field code FARF31 is made relatively simple, and calculates transport by using averaged entities to represent the most important processes. FARF31 has been shown to be suitable for the performance assessments within the SKB studies, e.g. SR 97. Among the advantages are that it is a fast, simple and robust code, which enables handling of many realisations with wide spread in parameters in combination with chain decay of radionuclides. Being a component in the model chain PROPER, it is easy to assign statistical distributions to the input parameters. Due to the formulation of the advection-dispersion equation in FARF31 it is possible to perform the groundwater flow calculations separately.The basis for the modelling is a stream tube, i.e. a volume of rock including fractures with flowing water, with the walls of the imaginary stream tube defined by streamlines. The transport within the stream tube is described using a dual porosity continuum approach, where it is assumed that rock can be divided into two distinct domains with different types of porosity

  15. Standard Model processes

    CERN Document Server

    Mangano, M.L.; Aguilar-Saavedra, Juan Antonio; Alekhin, S.; Badger, S.; Bauer, C.W.; Becher, T.; Bertone, V.; Bonvini, M.; Boselli, S.; Bothmann, E.; Boughezal, R.; Cacciari, M.; Carloni Calame, C.M.; Caola, F.; Campbell, J.M.; Carrazza, S.; Chiesa, M.; Cieri, L.; Cimaglia, F.; Febres Cordero, F.; Ferrarese, P.; D'Enterria, D.; Ferrera, G.; Garcia i Tormo, X.; Garzelli, M.V.; Germann, E.; Hirschi, V.; Han, T.; Ita, H.; Jäger, B.; Kallweit, S.; Karlberg, A.; Kuttimalai, S.; Krauss, F.; Larkoski, A.J.; Lindert, J.; Luisoni, G.; Maierhöfer, P.; Mattelaer, O.; Martinez, H.; Moch, S.; Montagna, G.; Moretti, M.; Nason, P.; Nicrosini, O.; Oleari, C.; Pagani, D.; Papaefstathiou, A.; Petriello, F.; Piccinini, F.; Pierini, M.; Pierog, T.; Pozzorini, S.; Re, E.; Robens, T.; Rojo, J.; Ruiz, R.; Sakurai, K.; Salam, G.P.; Salfelder, L.; Schönherr, M.; Schulze, M.; Schumann, S.; Selvaggi, M.; Shivaji, A.; Siodmok, A.; Skands, P.; Torrielli, P.; Tramontano, F.; Tsinikos, I.; Tweedie, B.; Vicini, A.; Westhoff, S.; Zaro, M.; Zeppenfeld, D.; CERN. Geneva. ATS Department

    2017-06-22

    This report summarises the properties of Standard Model processes at the 100 TeV pp collider. We document the production rates and typical distributions for a number of benchmark Standard Model processes, and discuss new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches.

  16. Validating the passenger traffic model for Copenhagen

    DEFF Research Database (Denmark)

    Overgård, Christian Hansen; VUK, Goran

    2006-01-01

    The paper presents a comprehensive validation procedure for the passenger traffic model for Copenhagen based on external data from the Danish national travel survey and traffic counts. The model was validated for the years 2000 to 2004, with 2004 being of particular interest because the Copenhagen...... matched the observed traffic better than those of the transit assignment model. With respect to the metro forecasts, the model over-predicts metro passenger flows by 10% to 50%. The wide range of findings from the project resulted in two actions. First, a project was started in January 2005 to upgrade...

  17. Importance of Computer Model Validation in Pyroprocessing Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y. E.; Li, Hui; Yim, M. S. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    In this research, we developed a plan for experimental validation of one of the computer models developed for ER process modeling, i. e., the ERAD code. Several candidate surrogate materials are selected for the experiment considering the chemical and physical properties. Molten salt-based pyroprocessing technology is being examined internationally as an alternative to treat spent nuclear fuel over aqueous technology. The central process in pyroprocessing is electrorefining(ER) which separates uranium from transuranic elements and fission products present in spent nuclear fuel. ER is a widely used process in the minerals industry to purify impure metals. Studies of ER by using actual spent nuclear fuel materials are problematic for both technical and political reasons. Therefore, the initial effort for ER process optimization is made by using computer models. A number of models have been developed for this purpose. But as validation of these models is incomplete and often times problematic, the simulation results from these models are inherently uncertain.

  18. Aerosol modelling and validation during ESCOMPTE 2001

    Science.gov (United States)

    Cousin, F.; Liousse, C.; Cachier, H.; Bessagnet, B.; Guillaume, B.; Rosset, R.

    The ESCOMPTE 2001 programme (Atmospheric Research. 69(3-4) (2004) 241) has resulted in an exhaustive set of dynamical, radiative, gas and aerosol observations (surface and aircraft measurements). A previous paper (Atmospheric Research. (2004) in press) has dealt with dynamics and gas-phase chemistry. The present paper is an extension to aerosol formation, transport and evolution. To account for important loadings of primary and secondary aerosols and their transformation processes in the ESCOMPTE domain, the ORISAM aerosol module (Atmospheric Environment. 35 (2001) 4751) was implemented on-line in the air-quality Meso-NH-C model. Additional developments have been introduced in ORganic and Inorganic Spectral Aerosol Module (ORISAM) to improve the comparison between simulations and experimental surface and aircraft field data. This paper discusses this comparison for a simulation performed during one selected day, 24 June 2001, during the Intensive Observation Period IOP2b. Our work relies on BC and OCp emission inventories specifically developed for ESCOMPTE. This study confirms the need for a fine resolution aerosol inventory with spectral chemical speciation. BC levels are satisfactorily reproduced, thus validating our emission inventory and its processing through Meso-NH-C. However, comparisons for reactive species generally denote an underestimation of concentrations. Organic aerosol levels are rather well simulated though with a trend to underestimation in the afternoon. Inorganic aerosol species are underestimated for several reasons, some of them have been identified. For sulphates, primary emissions were introduced. Improvement was obtained too for modelled nitrate and ammonium levels after introducing heterogeneous chemistry. However, no modelling of terrigeneous particles is probably a major cause for nitrates and ammonium underestimations. Particle numbers and size distributions are well reproduced, but only in the submicrometer range. Our work points out

  19. In defense of the personal/impersonal distinction in moral psychology research: Cross-cultural validation of the dual process model of moral judgment

    Directory of Open Access Journals (Sweden)

    Adam B. Moore

    2011-04-01

    Full Text Available The dual process model of moral judgment (DPM; Greene et al., 2004 argues that such judgments are influenced by both emotion-laden intuition and controlled reasoning. These influences are associated with distinct neural circuitries and different response tendencies. After reanalyzing data from an earlier study, McGuire et al. (2009 questioned the level of support for the dual process model and asserted that the distinction between emotion evoking moral dilemmas (personal dilemmas and those that do not trigger such intuitions (impersonal dilemmas is spurious. Using similar reanalysis methods on data reported by Moore, Clark, and Kane (2008, we show that the personal/impersonal distinction is reliable. Furthermore, new data show that this distinction is fundamental to moral judgment across widely different cultures (U.S. and China and supports claims made by the DPM.

  20. Validation of the Vanderbilt Holistic Face Processing Test

    OpenAIRE

    Wang, Chao-Chih; Ross, David A.; Gauthier, Isabel; Richler, Jennifer J.

    2016-01-01

    The Vanderbilt Holistic Face Processing Test (VHPT-F) is a new measure of holistic face processing with better psychometric properties relative to prior measures developed for group studies (Richler et al., 2014). In fields where psychologists study individual differences, validation studies are commonplace and the concurrent validity of a new measure is established by comparing it to an older measure with established validity. We follow this approach and test whether the VHPT-F measures the ...

  1. Validation of the Vanderbilt Holistic Face Processing Test.

    OpenAIRE

    Chao-Chih Wang; Chao-Chih Wang; David Andrew Ross; Isabel Gauthier; Jennifer Joanna Richler

    2016-01-01

    The Vanderbilt Holistic Face Processing Test (VHPT-F) is a new measure of holistic face processing with better psychometric properties relative to prior measures developed for group studies (Richler et al., 2014). In fields where psychologists study individual differences, validation studies are commonplace and the concurrent validity of a new measure is established by comparing it to an older measure with established validity. We follow this approach and test whether the VHPT-F measures the ...

  2. BIOMOVS: an international model validation study

    International Nuclear Information System (INIS)

    Haegg, C.; Johansson, G.

    1988-01-01

    BIOMOVS (BIOspheric MOdel Validation Study) is an international study where models used for describing the distribution of radioactive and nonradioactive trace substances in terrestrial and aquatic environments are compared and tested. The main objectives of the study are to compare and test the accuracy of predictions between such models, explain differences in these predictions, recommend priorities for future research concerning the improvement of the accuracy of model predictions and act as a forum for the exchange of ideas, experience and information. (author)

  3. BIOMOVS: An international model validation study

    International Nuclear Information System (INIS)

    Haegg, C.; Johansson, G.

    1987-01-01

    BIOMOVS (BIOspheric MOdel Validation Study) is an international study where models used for describing the distribution of radioactive and nonradioactive trace substances in terrestrial and aquatic environments are compared and tested. The main objectives of the study are to compare and test the accuracy of predictions between such models, explain differences in these predictions, recommend priorities for future research concerning the improvement of the accuracy of model predictions and act as a forum for the exchange of ideas, experience and information. (orig.)

  4. The concept of validation of numerical models for consequence analysis

    International Nuclear Information System (INIS)

    Borg, Audun; Paulsen Husted, Bjarne; Njå, Ove

    2014-01-01

    Numerical models such as computational fluid dynamics (CFD) models are increasingly used in life safety studies and other types of analyses to calculate the effects of fire and explosions. The validity of these models is usually established by benchmark testing. This is done to quantitatively measure the agreement between the predictions provided by the model and the real world represented by observations in experiments. This approach assumes that all variables in the real world relevant for the specific study are adequately measured in the experiments and in the predictions made by the model. In this paper the various definitions of validation for CFD models used for hazard prediction are investigated to assess their implication for consequence analysis in a design phase. In other words, how is uncertainty in the prediction of future events reflected in the validation process? The sources of uncertainty are viewed from the perspective of the safety engineer. An example of the use of a CFD model is included to illustrate the assumptions the analyst must make and how these affect the prediction made by the model. The assessments presented in this paper are based on a review of standards and best practice guides for CFD modeling and the documentation from two existing CFD programs. Our main thrust has been to assess how validation work is performed and communicated in practice. We conclude that the concept of validation adopted for numerical models is adequate in terms of model performance. However, it does not address the main sources of uncertainty from the perspective of the safety engineer. Uncertainty in the input quantities describing future events, which are determined by the model user, outweighs the inaccuracies in the model as reported in validation studies. - Highlights: • Examine the basic concept of validation applied to models for consequence analysis. • Review standards and guides for validation of numerical models. • Comparison of the validation

  5. Ground-water models: Validate or invalidate

    Science.gov (United States)

    Bredehoeft, J.D.; Konikow, Leonard F.

    1993-01-01

    The word validation has a clear meaning to both the scientific community and the general public. Within the scientific community the validation of scientific theory has been the subject of philosophical debate. The philosopher of science, Karl Popper, argued that scientific theory cannot be validated, only invalidated. Popper’s view is not the only opinion in this debate; however, many scientists today agree with Popper (including the authors). To the general public, proclaiming that a ground-water model is validated carries with it an aura of correctness that we do not believe many of us who model would claim. We can place all the caveats we wish, but the public has its own understanding of what the word implies. Using the word valid with respect to models misleads the public; verification carries with it similar connotations as far as the public is concerned. Our point is this: using the terms validation and verification are misleading, at best. These terms should be abandoned by the ground-water community.

  6. Model performance analysis and model validation in logistic regression

    Directory of Open Access Journals (Sweden)

    Rosa Arboretti Giancristofaro

    2007-10-01

    Full Text Available In this paper a new model validation procedure for a logistic regression model is presented. At first, we illustrate a brief review of different techniques of model validation. Next, we define a number of properties required for a model to be considered "good", and a number of quantitative performance measures. Lastly, we describe a methodology for the assessment of the performance of a given model by using an example taken from a management study.

  7. WWTP Process Tank Modelling

    DEFF Research Database (Denmark)

    Laursen, Jesper

    The present thesis considers numerical modeling of activated sludge tanks on municipal wastewater treatment plants. Focus is aimed at integrated modeling where the detailed microbiological model the Activated Sludge Model 3 (ASM3) is combined with a detailed hydrodynamic model based on a numerical...... solution of the Navier-Stokes equations in a multiphase scheme. After a general introduction to the activated sludge tank as a system, the activated sludge tank model is gradually setup in separate stages. The individual sub-processes that are often occurring in activated sludge tanks are initially...... hydrofoil shaped propellers. These two sub-processes deliver the main part of the supplied energy to the activated sludge tank, and for this reason they are important for the mixing conditions in the tank. For other important processes occurring in the activated sludge tank, existing models and measurements...

  8. Use of fuzzy logic in signal processing and validation

    International Nuclear Information System (INIS)

    Heger, A.S.; Alang-Rashid, N.K.; Holbert, K.E.

    1993-01-01

    The advent of fuzzy logic technology has afforded another opportunity to reexamine the signal processing and validation process (SPV). The features offered by fuzzy logic can lend themselves to a more reliable and perhaps fault-tolerant approach to SPV. This is particularly attractive to complex system operations, where optimal control for safe operation depends on reliable input data. The reason for the use of fuzzy logic as the tool for SPV is its ability to transform information from the linguistic domain to a mathematical domain for processing and then transformation of its result back into the linguistic domain for presentation. To ensure the safe and optimal operation of a nuclear plant, for example, reliable and valid data must be available to the human and computer operators. Based on these input data, the operators determine the current state of the power plant and project corrective actions for future states. This determination is based on available data and the conceptual and mathematical models for the plant. A fault-tolerant SPV based on fuzzy logic can help the operators meet the objective of effective, efficient, and safe operation of the nuclear power plant. The ultimate product of this project will be a code that will assist plant operators in making informed decisions under uncertain conditions when conflicting signals may be present

  9. Radiochemical verification and validation in the environmental data collection process

    International Nuclear Information System (INIS)

    Rosano-Reece, D.; Bottrell, D.; Bath, R.J.

    1994-01-01

    A credible and cost effective environmental data collection process should produce analytical data which meets regulatory and program specific requirements. Analytical data, which support the sampling and analysis activities at hazardous waste sites, undergo verification and independent validation before the data are submitted to regulators. Understanding the difference between verification and validation and their respective roles in the sampling and analysis process is critical to the effectiveness of a program. Verification is deciding whether the measurement data obtained are what was requested. The verification process determines whether all the requirements were met. Validation is more complicated than verification. It attempts to assess the impacts on data use, especially when requirements are not met. Validation becomes part of the decision-making process. Radiochemical data consists of a sample result with an associated error. Therefore, radiochemical validation is different and more quantitative than is currently possible for the validation of hazardous chemical data. Radiochemical data include both results and uncertainty that can be statistically compared to identify significance of differences in a more technically defensible manner. Radiochemical validation makes decisions about analyte identification, detection, and uncertainty for a batch of data. The process focuses on the variability of the data in the context of the decision to be made. The objectives of this paper are to present radiochemical verification and validation for environmental data and to distinguish the differences between the two operations

  10. Advanced training simulator models. Implementation and validation

    International Nuclear Information System (INIS)

    Borkowsky, Jeffrey; Judd, Jerry; Belblidia, Lotfi; O'farrell, David; Andersen, Peter

    2008-01-01

    Modern training simulators are required to replicate plant data for both thermal-hydraulic and neutronic response. Replication is required such that reactivity manipulation on the simulator properly trains the operator for reactivity manipulation at the plant. This paper discusses advanced models which perform this function in real-time using the coupled code system THOR/S3R. This code system models the all fluids systems in detail using an advanced, two-phase thermal-hydraulic a model. The nuclear core is modeled using an advanced, three-dimensional nodal method and also by using cycle-specific nuclear data. These models are configured to run interactively from a graphical instructor station or handware operation panels. The simulator models are theoretically rigorous and are expected to replicate the physics of the plant. However, to verify replication, the models must be independently assessed. Plant data is the preferred validation method, but plant data is often not available for many important training scenarios. In the absence of data, validation may be obtained by slower-than-real-time transient analysis. This analysis can be performed by coupling a safety analysis code and a core design code. Such a coupling exists between the codes RELAP5 and SIMULATE-3K (S3K). RELAP5/S3K is used to validate the real-time model for several postulated plant events. (author)

  11. Model Process Control Language

    Data.gov (United States)

    National Aeronautics and Space Administration — The MPC (Model Process Control) language enables the capture, communication and preservation of a simulation instance, with sufficient detail that it can be...

  12. Biosphere Process Model Report

    Energy Technology Data Exchange (ETDEWEB)

    J. Schmitt

    2000-05-25

    To evaluate the postclosure performance of a potential monitored geologic repository at Yucca Mountain, a Total System Performance Assessment (TSPA) will be conducted. Nine Process Model Reports (PMRs), including this document, are being developed to summarize the technical basis for each of the process models supporting the TSPA model. These reports cover the following areas: (1) Integrated Site Model; (2) Unsaturated Zone Flow and Transport; (3) Near Field Environment; (4) Engineered Barrier System Degradation, Flow, and Transport; (5) Waste Package Degradation; (6) Waste Form Degradation; (7) Saturated Zone Flow and Transport; (8) Biosphere; and (9) Disruptive Events. Analysis/Model Reports (AMRs) contain the more detailed technical information used to support TSPA and the PMRs. The AMRs consists of data, analyses, models, software, and supporting documentation that will be used to defend the applicability of each process model for evaluating the postclosure performance of the potential Yucca Mountain repository system. This documentation will ensure the traceability of information from its source through its ultimate use in the TSPA-Site Recommendation (SR) and in the National Environmental Policy Act (NEPA) analysis processes. The objective of the Biosphere PMR is to summarize (1) the development of the biosphere model, and (2) the Biosphere Dose Conversion Factors (BDCFs) developed for use in TSPA. The Biosphere PMR does not present or summarize estimates of potential radiation doses to human receptors. Dose calculations are performed as part of TSPA and will be presented in the TSPA documentation. The biosphere model is a component of the process to evaluate postclosure repository performance and regulatory compliance for a potential monitored geologic repository at Yucca Mountain, Nevada. The biosphere model describes those exposure pathways in the biosphere by which radionuclides released from a potential repository could reach a human receptor

  13. Biosphere Process Model Report

    International Nuclear Information System (INIS)

    Schmitt, J.

    2000-01-01

    To evaluate the postclosure performance of a potential monitored geologic repository at Yucca Mountain, a Total System Performance Assessment (TSPA) will be conducted. Nine Process Model Reports (PMRs), including this document, are being developed to summarize the technical basis for each of the process models supporting the TSPA model. These reports cover the following areas: (1) Integrated Site Model; (2) Unsaturated Zone Flow and Transport; (3) Near Field Environment; (4) Engineered Barrier System Degradation, Flow, and Transport; (5) Waste Package Degradation; (6) Waste Form Degradation; (7) Saturated Zone Flow and Transport; (8) Biosphere; and (9) Disruptive Events. Analysis/Model Reports (AMRs) contain the more detailed technical information used to support TSPA and the PMRs. The AMRs consists of data, analyses, models, software, and supporting documentation that will be used to defend the applicability of each process model for evaluating the postclosure performance of the potential Yucca Mountain repository system. This documentation will ensure the traceability of information from its source through its ultimate use in the TSPA-Site Recommendation (SR) and in the National Environmental Policy Act (NEPA) analysis processes. The objective of the Biosphere PMR is to summarize (1) the development of the biosphere model, and (2) the Biosphere Dose Conversion Factors (BDCFs) developed for use in TSPA. The Biosphere PMR does not present or summarize estimates of potential radiation doses to human receptors. Dose calculations are performed as part of TSPA and will be presented in the TSPA documentation. The biosphere model is a component of the process to evaluate postclosure repository performance and regulatory compliance for a potential monitored geologic repository at Yucca Mountain, Nevada. The biosphere model describes those exposure pathways in the biosphere by which radionuclides released from a potential repository could reach a human receptor

  14. Validation and comparison of dispersion models of RTARC DSS

    International Nuclear Information System (INIS)

    Duran, J.; Pospisil, M.

    2004-01-01

    RTARC DSS (Real Time Accident Release Consequences - Decision Support System) is a computer code developed at the VUJE Trnava, Inc. (Stubna, M. et al, 1993). The code calculations include atmospheric transport and diffusion, dose assessment, evaluation and displaying of the affected zones, evaluation of the early health effects, concentration and dose rate time dependence in the selected sites etc. The simulation of the protective measures (sheltering, iodine administration) is involved. The aim of this paper is to present the process of validation of the RTARC dispersion models. RTARC includes models for calculations of release for very short (Method Monte Carlo - MEMOC), short (Gaussian Straight-Line Model) and long distances (Puff Trajectory Model - PTM). Validation of the code RTARC was performed using the results of comparisons and experiments summarized in the Table 1.: 1. Experiments and comparisons in the process of validation of the system RTARC - experiments or comparison - distance - model. Wind tunnel experiments (Universitaet der Bundeswehr, Muenchen) - Area of NPP - Method Monte Carlo. INEL (Idaho National Engineering Laboratory) - short/medium - Gaussian model and multi tracer atmospheric experiment - distances - PTM. Model Validation Kit - short distances - Gaussian model. STEP II.b 'Realistic Case Studies' - long distances - PTM. ENSEMBLE comparison - long distances - PTM (orig.)

  15. Validation of a phytoremediation computer model

    Energy Technology Data Exchange (ETDEWEB)

    Corapcioglu, M Y; Sung, K; Rhykerd, R L; Munster, C; Drew, M [Texas A and M Univ., College Station, TX (United States)

    1999-01-01

    The use of plants to stimulate remediation of contaminated soil is an effective, low-cost cleanup method which can be applied to many different sites. A phytoremediation computer model has been developed to simulate how recalcitrant hydrocarbons interact with plant roots in unsaturated soil. A study was conducted to provide data to validate and calibrate the model. During the study, lysimeters were constructed and filled with soil contaminated with 10 [mg kg[sub -1

  16. Field validation of the contaminant transport model, FEMA

    International Nuclear Information System (INIS)

    Wong, K.-F.V.

    1986-01-01

    The work describes the validation with field data of a finite element model of material transport through aquifers (FEMA). Field data from the Idaho Chemical Processing Plant, Idaho, USA and from the 58th Street landfill in Miami, Florida, USA are used. In both cases the model was first calibrated and then integrated over a span of eight years to check on the predictive capability of the model. Both predictive runs gave results that matched well with available data. (author)

  17. ECONOMIC MODELING PROCESSES USING MATLAB

    Directory of Open Access Journals (Sweden)

    Anamaria G. MACOVEI

    2008-06-01

    Full Text Available To study economic phenomena and processes using mathem atical modeling, and to determine the approximatesolution to a problem we need to choose a method of calculation and a numerical computer program, namely thepackage of programs MatLab. Any economic process or phenomenon is a mathematical description of h is behavior,and thus draw up an economic and mathematical model that has the following stages: formulation of the problem, theanalysis process modeling, the production model and design verification, validation and implementation of the model.This article is presented an economic model and its modeling is using mathematical equations and software packageMatLab, which helps us approximation effective solution. As data entry is considered the net cost, the cost of direct andtotal cost and the link between them. I presented the basic formula for determining the total cost. Economic modelcalculations were made in MatLab software package and with graphic representation of its interpretation of the resultsachieved in terms of our specific problem.

  18. Microsoft Visio 2013 business process diagramming and validation

    CERN Document Server

    Parker, David

    2013-01-01

    Microsoft Visio 2013 Business Process Diagramming and Validation provides a comprehensive and practical tutorial including example code and demonstrations for creating validation rules, writing ShapeSheet formulae, and much more.If you are a Microsoft Visio 2013 Professional Edition power user or developer who wants to get to grips with both the essential features of Visio 2013 and the validation rules in this edition, then this book is for you. A working knowledge of Microsoft Visio and optionally .NET for the add-on code is required, though previous knowledge of business process diagramming

  19. Validation of heat transfer models for gap cooling

    International Nuclear Information System (INIS)

    Okano, Yukimitsu; Nagae, Takashi; Murase, Michio

    2004-01-01

    For severe accident assessment of a light water reactor, models of heat transfer in a narrow annular gap between overheated core debris and a reactor pressure vessel are important for evaluating vessel integrity and accident management. The authors developed and improved the models of heat transfer. However, validation was not sufficient for applicability of the gap heat flux correlation to the debris cooling in the vessel lower head and applicability of the local boiling heat flux correlations to the high-pressure conditions. Therefore, in this paper, we evaluated the validity of the heat transfer models and correlations by analyses for ALPHA and LAVA experiments where molten aluminum oxide (Al 2 O 3 ) at about 2700 K was poured into the high pressure water pool in a small-scale simulated vessel lower head. In the heating process of the vessel wall, the calculated heating rate and peak temperature agreed well with the measured values, and the validity of the heat transfer models and gap heat flux correlation was confirmed. In the cooling process of the vessel wall, the calculated cooling rate was compared with the measured value, and the validity of the nucleate boiling heat flux correlation was confirmed. The peak temperatures of the vessel wall in ALPHA and LAVA experiments were lower than the temperature at the minimum heat flux point between film boiling and transition boiling, so the minimum heat flux correlation could not be validated. (author)

  20. Paleoclimate validation of a numerical climate model

    International Nuclear Information System (INIS)

    Schelling, F.J.; Church, H.W.; Zak, B.D.; Thompson, S.L.

    1994-01-01

    An analysis planned to validate regional climate model results for a past climate state at Yucca Mountain, Nevada, against paleoclimate evidence for the period is described. This analysis, which will use the GENESIS model of global climate nested with the RegCM2 regional climate model, is part of a larger study for DOE's Yucca Mountain Site Characterization Project that is evaluating the impacts of long term future climate change on performance of the potential high level nuclear waste repository at Yucca Mountain. The planned analysis and anticipated results are presented

  1. Validation of the STAFF-5 computer model

    International Nuclear Information System (INIS)

    Fletcher, J.F.; Fields, S.R.

    1981-04-01

    STAFF-5 is a dynamic heat-transfer-fluid-flow stress model designed for computerized prediction of the temperature-stress performance of spent LWR fuel assemblies under storage/disposal conditions. Validation of the temperature calculating abilities of this model was performed by comparing temperature calculations under specified conditions to experimental data from the Engine Maintenance and Dissassembly (EMAD) Fuel Temperature Test Facility and to calculations performed by Battelle Pacific Northwest Laboratory (PNL) using the HYDRA-1 model. The comparisons confirmed the ability of STAFF-5 to calculate representative fuel temperatures over a considerable range of conditions, as a first step in the evaluation and prediction of fuel temperature-stress performance

  2. Applying the Mixed Methods Instrument Development and Construct Validation Process: the Transformative Experience Questionnaire

    Science.gov (United States)

    Koskey, Kristin L. K.; Sondergeld, Toni A.; Stewart, Victoria C.; Pugh, Kevin J.

    2018-01-01

    Onwuegbuzie and colleagues proposed the Instrument Development and Construct Validation (IDCV) process as a mixed methods framework for creating and validating measures. Examples applying IDCV are lacking. We provide an illustrative case integrating the Rasch model and cognitive interviews applied to the development of the Transformative…

  3. Business Model Process Configurations

    DEFF Research Database (Denmark)

    Taran, Yariv; Nielsen, Christian; Thomsen, Peter

    2015-01-01

    , by developing (inductively) an ontological classification framework, in view of the BM process configurations typology developed. Design/methodology/approach – Given the inconsistencies found in the business model studies (e.g. definitions, configurations, classifications) we adopted the analytical induction...

  4. External validation of EPIWIN biodegradation models.

    Science.gov (United States)

    Posthumus, R; Traas, T P; Peijnenburg, W J G M; Hulzebos, E M

    2005-01-01

    The BIOWIN biodegradation models were evaluated for their suitability for regulatory purposes. BIOWIN includes the linear and non-linear BIODEG and MITI models for estimating the probability of rapid aerobic biodegradation and an expert survey model for primary and ultimate biodegradation estimation. Experimental biodegradation data for 110 newly notified substances were compared with the estimations of the different models. The models were applied separately and in combinations to determine which model(s) showed the best performance. The results of this study were compared with the results of other validation studies and other biodegradation models. The BIOWIN models predict not-readily biodegradable substances with high accuracy in contrast to ready biodegradability. In view of the high environmental concern of persistent chemicals and in view of the large number of not-readily biodegradable chemicals compared to the readily ones, a model is preferred that gives a minimum of false positives without a corresponding high percentage false negatives. A combination of the BIOWIN models (BIOWIN2 or BIOWIN6) showed the highest predictive value for not-readily biodegradability. However, the highest score for overall predictivity with lowest percentage false predictions was achieved by applying BIOWIN3 (pass level 2.75) and BIOWIN6.

  5. Development, validation and routine control of a radiation process

    International Nuclear Information System (INIS)

    Kishor Mehta

    2010-01-01

    Today, radiation is used in industrial processing for variety of applications; from low doses for blood irradiation to very high doses for materials modification and even higher for gemstone colour enhancement. At present, radiation is mainly provided by either radionuclides or machine sources; cobalt-60 is the most predominant radionuclide in use. Currently, there are several hundred irradiation facilities worldwide. Similar to other industries, quality management systems can assist radiation processing facilities in enhancing customer satisfaction and maintaining and improving product quality. To help fulfill quality management requirements, several national and international organizations have developed various standards related to radiation processing. They all have requirements and guidelines for development, validation and routine control of the radiation process. For radiation processing, these three phases involve the following activities. Development phase includes selecting the type of radiation source, irradiation facility and the dose required for the process. Validation phase includes conducting activities that give assurance that the process will be successful. Routine control then involves activities that provide evidence that the process has been successfully realized. These standards require documentary evidence that process validation and process control have been followed. Dosimetry information gathered during these processes provides this evidence. (authors)

  6. SPECIFICITY OF MANIFACTURING PROCESS VALIDATION FOR DIAGNOSTIC SEROLOGICAL DEVICES

    Directory of Open Access Journals (Sweden)

    O. Yu. Galkin

    2018-02-01

    Full Text Available The aim of this research was to analyze recent scientific literature, as well as national and international legislature on manifacturing process validation of biopharmaceutical production, in particular devices for serological diagnostics. Technology validation in the field of medical devices for serological diagnostics is most influenced by the Technical Regulation for Medical Devices for in vitro Diagnostics State Standards of Ukraine – SSU EN ISO 13485:2015 “Medical devices. Quality management system. Requirements for regulation”, SSU EN ISO 14971:2015 “Medical devices. Instructions for risk management”, Instruction ST-N of the Ministry of Healthcare of Ukraine 42-4.0:2014 “Medications. Suitable industrial practice”, State Pharmacopoeia of Ukraine and Instruction ICH Q9 on risk management. Current recommendations for validations of drugs manufacturing process, including biotechnological manufacturing, can not be directly applied to medical devices for in vitro diagnostics. It was shown that the specifics of application and raw materials require individual validation parameters and process validations for serological diagnostics devices. Critical parameters to consider in validation plans were provided for every typical stage of production of in vitro diagnostics devices on the example of immunoassay kits, such as obtaining protein antigens, including recombinant ones, preparations of mono- and polyclonal antibodies, immunoenzyme conjugates and immunosorbents, chemical reagents etc. The bottlenecks of technologies for in vitro diagnostics devices were analyzed from the bioethical and biosafety points of view.

  7. Validation of the Vanderbilt Holistic Face Processing Test.

    Science.gov (United States)

    Wang, Chao-Chih; Ross, David A; Gauthier, Isabel; Richler, Jennifer J

    2016-01-01

    The Vanderbilt Holistic Face Processing Test (VHPT-F) is a new measure of holistic face processing with better psychometric properties relative to prior measures developed for group studies (Richler et al., 2014). In fields where psychologists study individual differences, validation studies are commonplace and the concurrent validity of a new measure is established by comparing it to an older measure with established validity. We follow this approach and test whether the VHPT-F measures the same construct as the composite task, which is group-based measure at the center of the large literature on holistic face processing. In Experiment 1, we found a significant correlation between holistic processing measured in the VHPT-F and the composite task. Although this correlation was small, it was comparable to the correlation between holistic processing measured in the composite task with the same faces, but different target parts (top or bottom), which represents a reasonable upper limit for correlations between the composite task and another measure of holistic processing. These results confirm the validity of the VHPT-F by demonstrating shared variance with another measure of holistic processing based on the same operational definition. These results were replicated in Experiment 2, but only when the demographic profile of our sample matched that of Experiment 1.

  8. Validation of the Vanderbilt Holistic Face Processing Test.

    Directory of Open Access Journals (Sweden)

    Chao-Chih Wang

    2016-11-01

    Full Text Available The Vanderbilt Holistic Face Processing Test (VHPT-F is a new measure of holistic face processing with better psychometric properties relative to prior measures developed for group studies (Richler et al., 2014. In fields where psychologists study individual differences, validation studies are commonplace and the concurrent validity of a new measure is established by comparing it to an older measure with established validity. We follow this approach and test whether the VHPT-F measures the same construct as the composite task, which is group-based measure at the center of the large literature on holistic face processing. In Experiment 1, we found a significant correlation between holistic processing measured in the VHPT-F and the composite task. Although this correlation was small, it was comparable to the correlation between holistic processing measured in the composite task with the same faces, but different target parts (top or bottom, which represents a reasonable upper limit for correlations between the composite task and another measure of holistic processing. These results confirm the validity of the VHPT-F by demonstrating shared variance with another measure of holistic processing based on the same operational definition. These results were replicated in Experiment 2, but only when the demographic profile of our sample matched that of Experiment 1.

  9. Validation of Computer Models for Homeland Security Purposes

    International Nuclear Information System (INIS)

    Schweppe, John E.; Ely, James; Kouzes, Richard T.; McConn, Ronald J.; Pagh, Richard T.; Robinson, Sean M.; Siciliano, Edward R.; Borgardt, James D.; Bender, Sarah E.; Earnhart, Alison H.

    2005-01-01

    At Pacific Northwest National Laboratory, we are developing computer models of radiation portal monitors for screening vehicles and cargo. Detailed models of the radiation detection equipment, vehicles, cargo containers, cargos, and radioactive sources have been created. These are used to determine the optimal configuration of detectors and the best alarm algorithms for the detection of items of interest while minimizing nuisance alarms due to the presence of legitimate radioactive material in the commerce stream. Most of the modeling is done with the Monte Carlo code MCNP to describe the transport of gammas and neutrons from extended sources through large, irregularly shaped absorbers to large detectors. A fundamental prerequisite is the validation of the computational models against field measurements. We describe the first step of this validation process, the comparison of the models to measurements with bare static sources

  10. Validation of a phytoremediation computer model

    International Nuclear Information System (INIS)

    Corapcioglu, M.Y.; Sung, K.; Rhykerd, R.L.; Munster, C.; Drew, M.

    1999-01-01

    The use of plants to stimulate remediation of contaminated soil is an effective, low-cost cleanup method which can be applied to many different sites. A phytoremediation computer model has been developed to simulate how recalcitrant hydrocarbons interact with plant roots in unsaturated soil. A study was conducted to provide data to validate and calibrate the model. During the study, lysimeters were constructed and filled with soil contaminated with 10 [mg kg -1 ] TNT, PBB and chrysene. Vegetated and unvegetated treatments were conducted in triplicate to obtain data regarding contaminant concentrations in the soil, plant roots, root distribution, microbial activity, plant water use and soil moisture. When given the parameters of time and depth, the model successfully predicted contaminant concentrations under actual field conditions. Other model parameters are currently being evaluated. 15 refs., 2 figs

  11. Business process model repositories : efficient process retrieval

    NARCIS (Netherlands)

    Yan, Z.

    2012-01-01

    As organizations increasingly work in process-oriented manner, the number of business process models that they develop and have to maintain increases. As a consequence, it has become common for organizations to have collections of hundreds or even thousands of business process models. When a

  12. A practical guide for operational validation of discrete simulation models

    Directory of Open Access Journals (Sweden)

    Fabiano Leal

    2011-04-01

    Full Text Available As the number of simulation experiments increases, the necessity for validation and verification of these models demands special attention on the part of the simulation practitioners. By analyzing the current scientific literature, it is observed that the operational validation description presented in many papers does not agree on the importance designated to this process and about its applied techniques, subjective or objective. With the expectation of orienting professionals, researchers and students in simulation, this article aims to elaborate a practical guide through the compilation of statistical techniques in the operational validation of discrete simulation models. Finally, the guide's applicability was evaluated by using two study objects, which represent two manufacturing cells, one from the automobile industry and the other from a Brazilian tech company. For each application, the guide identified distinct steps, due to the different aspects that characterize the analyzed distributions

  13. Process model repositories and PNML

    NARCIS (Netherlands)

    Hee, van K.M.; Post, R.D.J.; Somers, L.J.A.M.; Werf, van der J.M.E.M.; Kindler, E.

    2004-01-01

    Bringing system and process models together in repositories facilitates the interchange of model information between modelling tools, and allows the combination and interlinking of complementary models. Petriweb is a web application for managing such repositories. It supports hierarchical process

  14. Validating firn compaction model with remote sensing data

    DEFF Research Database (Denmark)

    Simonsen, S. B.; Stenseng, Lars; Sørensen, Louise Sandberg

    A comprehensive understanding of firn processes is of outmost importance, when estimating present and future changes of the Greenland Ice Sheet. Especially, when remote sensing altimetry is used to assess the state of ice sheets and their contribution to global sea level rise, firn compaction...... models have been shown to be a key component. Now, remote sensing data can also be used to validate the firn models. Radar penetrating the upper part of the firn column in the interior part of Greenland shows a clear layering. The observed layers from the radar data can be used as an in-situ validation...... correction relative to the changes in the elevation of the surface observed with remote sensing altimetry? What model time resolution is necessary to resolved the observed layering? What model refinements are necessary to give better estimates of the surface mass balance of the Greenland ice sheet from...

  15. Continuous validation of ASTEC containment models and regression testing

    International Nuclear Information System (INIS)

    Nowack, Holger; Reinke, Nils; Sonnenkalb, Martin

    2014-01-01

    The focus of the ASTEC (Accident Source Term Evaluation Code) development at GRS is primarily on the containment module CPA (Containment Part of ASTEC), whose modelling is to a large extent based on the GRS containment code COCOSYS (COntainment COde SYStem). Validation is usually understood as the approval of the modelling capabilities by calculations of appropriate experiments done by external users different from the code developers. During the development process of ASTEC CPA, bugs and unintended side effects may occur, which leads to changes in the results of the initially conducted validation. Due to the involvement of a considerable number of developers in the coding of ASTEC modules, validation of the code alone, even if executed repeatedly, is not sufficient. Therefore, a regression testing procedure has been implemented in order to ensure that the initially obtained validation results are still valid with succeeding code versions. Within the regression testing procedure, calculations of experiments and plant sequences are performed with the same input deck but applying two different code versions. For every test-case the up-to-date code version is compared to the preceding one on the basis of physical parameters deemed to be characteristic for the test-case under consideration. In the case of post-calculations of experiments also a comparison to experimental data is carried out. Three validation cases from the regression testing procedure are presented within this paper. The very good post-calculation of the HDR E11.1 experiment shows the high quality modelling of thermal-hydraulics in ASTEC CPA. Aerosol behaviour is validated on the BMC VANAM M3 experiment, and the results show also a very good agreement with experimental data. Finally, iodine behaviour is checked in the validation test-case of the THAI IOD-11 experiment. Within this test-case, the comparison of the ASTEC versions V2.0r1 and V2.0r2 shows how an error was detected by the regression testing

  16. Selection, calibration, and validation of models of tumor growth.

    Science.gov (United States)

    Lima, E A B F; Oden, J T; Hormuth, D A; Yankeelov, T E; Almeida, R C

    2016-11-01

    This paper presents general approaches for addressing some of the most important issues in predictive computational oncology concerned with developing classes of predictive models of tumor growth. First, the process of developing mathematical models of vascular tumors evolving in the complex, heterogeneous, macroenvironment of living tissue; second, the selection of the most plausible models among these classes, given relevant observational data; third, the statistical calibration and validation of models in these classes, and finally, the prediction of key Quantities of Interest (QOIs) relevant to patient survival and the effect of various therapies. The most challenging aspects of this endeavor is that all of these issues often involve confounding uncertainties: in observational data, in model parameters, in model selection, and in the features targeted in the prediction. Our approach can be referred to as "model agnostic" in that no single model is advocated; rather, a general approach that explores powerful mixture-theory representations of tissue behavior while accounting for a range of relevant biological factors is presented, which leads to many potentially predictive models. Then representative classes are identified which provide a starting point for the implementation of OPAL, the Occam Plausibility Algorithm (OPAL) which enables the modeler to select the most plausible models (for given data) and to determine if the model is a valid tool for predicting tumor growth and morphology ( in vivo ). All of these approaches account for uncertainties in the model, the observational data, the model parameters, and the target QOI. We demonstrate these processes by comparing a list of models for tumor growth, including reaction-diffusion models, phase-fields models, and models with and without mechanical deformation effects, for glioma growth measured in murine experiments. Examples are provided that exhibit quite acceptable predictions of tumor growth in laboratory

  17. Validation of spectral gas radiation models under oxyfuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Johann Valentin

    2013-05-15

    Combustion of hydrocarbon fuels with pure oxygen results in a different flue gas composition than combustion with air. Standard computational-fluid-dynamics (CFD) spectral gas radiation models for air combustion are therefore out of their validity range in oxyfuel combustion. This thesis provides a common spectral basis for the validation of new spectral models. A literature review about fundamental gas radiation theory, spectral modeling and experimental methods provides the reader with a basic understanding of the topic. In the first results section, this thesis validates detailed spectral models with high resolution spectral measurements in a gas cell with the aim of recommending one model as the best benchmark model. In the second results section, spectral measurements from a turbulent natural gas flame - as an example for a technical combustion process - are compared to simulated spectra based on measured gas atmospheres. The third results section compares simplified spectral models to the benchmark model recommended in the first results section and gives a ranking of the proposed models based on their accuracy. A concluding section gives recommendations for the selection and further development of simplified spectral radiation models. Gas cell transmissivity spectra in the spectral range of 2.4 - 5.4 {mu}m of water vapor and carbon dioxide in the temperature range from 727 C to 1500 C and at different concentrations were compared in the first results section at a nominal resolution of 32 cm{sup -1} to line-by-line models from different databases, two statistical-narrow-band models and the exponential-wide-band model. The two statistical-narrow-band models EM2C and RADCAL showed good agreement with a maximal band transmissivity deviation of 3 %. The exponential-wide-band model showed a deviation of 6 %. The new line-by-line database HITEMP2010 had the lowest band transmissivity deviation of 2.2% and was therefore recommended as a reference model for the

  18. Materials of the Regional Training Course on Validation and Process Control for Electron Beam Radiation Processing

    International Nuclear Information System (INIS)

    Kaluska, I.; Gluszewski, W.

    2007-01-01

    Irradiation with electron beams is used in the polymer industry, food, pharmaceutical and medical device industries for sterilization of surfaces. About 20 lectures presented during the Course were devoted to all aspects of control and validation of low energy electron beam processes. They should help the product manufacturers better understand the application of the ANSI/AAMI/ISO 11137 norm, which defines the requirements and standard practices for validation of the irradiation process and the process controls required during routine processing

  19. Validated predictive modelling of the environmental resistome.

    Science.gov (United States)

    Amos, Gregory C A; Gozzard, Emma; Carter, Charlotte E; Mead, Andrew; Bowes, Mike J; Hawkey, Peter M; Zhang, Lihong; Singer, Andrew C; Gaze, William H; Wellington, Elizabeth M H

    2015-06-01

    Multi-drug-resistant bacteria pose a significant threat to public health. The role of the environment in the overall rise in antibiotic-resistant infections and risk to humans is largely unknown. This study aimed to evaluate drivers of antibiotic-resistance levels across the River Thames catchment, model key biotic, spatial and chemical variables and produce predictive models for future risk assessment. Sediment samples from 13 sites across the River Thames basin were taken at four time points across 2011 and 2012. Samples were analysed for class 1 integron prevalence and enumeration of third-generation cephalosporin-resistant bacteria. Class 1 integron prevalence was validated as a molecular marker of antibiotic resistance; levels of resistance showed significant geospatial and temporal variation. The main explanatory variables of resistance levels at each sample site were the number, proximity, size and type of surrounding wastewater-treatment plants. Model 1 revealed treatment plants accounted for 49.5% of the variance in resistance levels. Other contributing factors were extent of different surrounding land cover types (for example, Neutral Grassland), temporal patterns and prior rainfall; when modelling all variables the resulting model (Model 2) could explain 82.9% of variations in resistance levels in the whole catchment. Chemical analyses correlated with key indicators of treatment plant effluent and a model (Model 3) was generated based on water quality parameters (contaminant and macro- and micro-nutrient levels). Model 2 was beta tested on independent sites and explained over 78% of the variation in integron prevalence showing a significant predictive ability. We believe all models in this study are highly useful tools for informing and prioritising mitigation strategies to reduce the environmental resistome.

  20. Polarographic validation of chemical speciation models

    International Nuclear Information System (INIS)

    Duffield, J.R.; Jarratt, J.A.

    2001-01-01

    It is well established that the chemical speciation of an element in a given matrix, or system of matrices, is of fundamental importance in controlling the transport behaviour of the element. Therefore, to accurately understand and predict the transport of elements and compounds in the environment it is a requirement that both the identities and concentrations of trace element physico-chemical forms can be ascertained. These twin requirements present the analytical scientist with considerable challenges given the labile equilibria, the range of time scales (from nanoseconds to years) and the range of concentrations (ultra-trace to macro) that may be involved. As a result of this analytical variability, chemical equilibrium modelling has become recognised as an important predictive tool in chemical speciation analysis. However, this technique requires firm underpinning by the use of complementary experimental techniques for the validation of the predictions made. The work reported here has been undertaken with the primary aim of investigating possible methodologies that can be used for the validation of chemical speciation models. However, in approaching this aim, direct chemical speciation analyses have been made in their own right. Results will be reported and analysed for the iron(II)/iron(III)-citrate proton system (pH 2 to 10; total [Fe] = 3 mmol dm -3 ; total [citrate 3- ] 10 mmol dm -3 ) in which equilibrium constants have been determined using glass electrode potentiometry, speciation is predicted using the PHREEQE computer code, and validation of predictions is achieved by determination of iron complexation and redox state with associated concentrations. (authors)

  1. Model-Based Method for Sensor Validation

    Science.gov (United States)

    Vatan, Farrokh

    2012-01-01

    Fault detection, diagnosis, and prognosis are essential tasks in the operation of autonomous spacecraft, instruments, and in situ platforms. One of NASA s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in robust state estimation, and there is a need to diagnose sensor failure as well as component failure. Sensor validation can be considered to be part of the larger effort of improving reliability and safety. The standard methods for solving the sensor validation problem are based on probabilistic analysis of the system, from which the method based on Bayesian networks is most popular. Therefore, these methods can only predict the most probable faulty sensors, which are subject to the initial probabilities defined for the failures. The method developed in this work is based on a model-based approach and provides the faulty sensors (if any), which can be logically inferred from the model of the system and the sensor readings (observations). The method is also more suitable for the systems when it is hard, or even impossible, to find the probability functions of the system. The method starts by a new mathematical description of the problem and develops a very efficient and systematic algorithm for its solution. The method builds on the concepts of analytical redundant relations (ARRs).

  2. Modelling and validation of electromechanical shock absorbers

    Science.gov (United States)

    Tonoli, Andrea; Amati, Nicola; Girardello Detoni, Joaquim; Galluzzi, Renato; Gasparin, Enrico

    2013-08-01

    Electromechanical vehicle suspension systems represent a promising substitute to conventional hydraulic solutions. However, the design of electromechanical devices that are able to supply high damping forces without exceeding geometric dimension and mass constraints is a difficult task. All these challenges meet in off-road vehicle suspension systems, where the power density of the dampers is a crucial parameter. In this context, the present paper outlines a particular shock absorber configuration where a suitable electric machine and a transmission mechanism are utilised to meet off-road vehicle requirements. A dynamic model is used to represent the device. Subsequently, experimental tests are performed on an actual prototype to verify the functionality of the damper and validate the proposed model.

  3. Development and validation of a mass casualty conceptual model.

    Science.gov (United States)

    Culley, Joan M; Effken, Judith A

    2010-03-01

    To develop and validate a conceptual model that provides a framework for the development and evaluation of information systems for mass casualty events. The model was designed based on extant literature and existing theoretical models. A purposeful sample of 18 experts validated the model. Open-ended questions, as well as a 7-point Likert scale, were used to measure expert consensus on the importance of each construct and its relationship in the model and the usefulness of the model to future research. Computer-mediated applications were used to facilitate a modified Delphi technique through which a panel of experts provided validation for the conceptual model. Rounds of questions continued until consensus was reached, as measured by an interquartile range (no more than 1 scale point for each item); stability (change in the distribution of responses less than 15% between rounds); and percent agreement (70% or greater) for indicator questions. Two rounds of the Delphi process were needed to satisfy the criteria for consensus or stability related to the constructs, relationships, and indicators in the model. The panel reached consensus or sufficient stability to retain all 10 constructs, 9 relationships, and 39 of 44 indicators. Experts viewed the model as useful (mean of 5.3 on a 7-point scale). Validation of the model provides the first step in understanding the context in which mass casualty events take place and identifying variables that impact outcomes of care. This study provides a foundation for understanding the complexity of mass casualty care, the roles that nurses play in mass casualty events, and factors that must be considered in designing and evaluating information-communication systems to support effective triage under these conditions.

  4. Modeling styles in business process modeling

    NARCIS (Netherlands)

    Pinggera, J.; Soffer, P.; Zugal, S.; Weber, B.; Weidlich, M.; Fahland, D.; Reijers, H.A.; Mendling, J.; Bider, I.; Halpin, T.; Krogstie, J.; Nurcan, S.; Proper, E.; Schmidt, R.; Soffer, P.; Wrycza, S.

    2012-01-01

    Research on quality issues of business process models has recently begun to explore the process of creating process models. As a consequence, the question arises whether different ways of creating process models exist. In this vein, we observed 115 students engaged in the act of modeling, recording

  5. Experimental Validation of a Permeability Model for Enrichment Membranes

    International Nuclear Information System (INIS)

    Orellano, Pablo; Brasnarof, Daniel; Florido Pablo

    2003-01-01

    An experimental loop with a real scale diffuser, in a single enrichment-stage configuration, was operated with air at different process conditions, in order to characterize the membrane permeability.Using these experimental data, an analytical geometric-and-morphologic-based model was validated.It is conclude that a new set of independent measurements, i.e. enrichment, is necessary in order to fully characterize diffusers, because of its internal parameters are not univocally determinated with permeability experimental data only

  6. Atmospheric corrosion: statistical validation of models

    International Nuclear Information System (INIS)

    Diaz, V.; Martinez-Luaces, V.; Guineo-Cobs, G.

    2003-01-01

    In this paper we discuss two different methods for validation of regression models, applied to corrosion data. One of them is based on the correlation coefficient and the other one is the statistical test of lack of fit. Both methods are used here to analyse fitting of bi logarithmic model in order to predict corrosion for very low carbon steel substrates in rural and urban-industrial atmospheres in Uruguay. Results for parameters A and n of the bi logarithmic model are reported here. For this purpose, all repeated values were used instead of using average values as usual. Modelling is carried out using experimental data corresponding to steel substrates under the same initial meteorological conditions ( in fact, they are put in the rack at the same time). Results of correlation coefficient are compared with the lack of it tested at two different signification levels (α=0.01 and α=0.05). Unexpected differences between them are explained and finally, it is possible to conclude, at least in the studied atmospheres, that the bi logarithmic model does not fit properly the experimental data. (Author) 18 refs

  7. SDG and qualitative trend based model multiple scale validation

    Science.gov (United States)

    Gao, Dong; Xu, Xin; Yin, Jianjin; Zhang, Hongyu; Zhang, Beike

    2017-09-01

    Verification, Validation and Accreditation (VV&A) is key technology of simulation and modelling. For the traditional model validation methods, the completeness is weak; it is carried out in one scale; it depends on human experience. The SDG (Signed Directed Graph) and qualitative trend based multiple scale validation is proposed. First the SDG model is built and qualitative trends are added to the model. And then complete testing scenarios are produced by positive inference. The multiple scale validation is carried out by comparing the testing scenarios with outputs of simulation model in different scales. Finally, the effectiveness is proved by carrying out validation for a reactor model.

  8. Unit testing, model validation, and biological simulation.

    Science.gov (United States)

    Sarma, Gopal P; Jacobs, Travis W; Watts, Mark D; Ghayoomie, S Vahid; Larson, Stephen D; Gerkin, Richard C

    2016-01-01

    The growth of the software industry has gone hand in hand with the development of tools and cultural practices for ensuring the reliability of complex pieces of software. These tools and practices are now acknowledged to be essential to the management of modern software. As computational models and methods have become increasingly common in the biological sciences, it is important to examine how these practices can accelerate biological software development and improve research quality. In this article, we give a focused case study of our experience with the practices of unit testing and test-driven development in OpenWorm, an open-science project aimed at modeling Caenorhabditis elegans. We identify and discuss the challenges of incorporating test-driven development into a heterogeneous, data-driven project, as well as the role of model validation tests, a category of tests unique to software which expresses scientific models.

  9. MAAP4 model and validation status

    International Nuclear Information System (INIS)

    Plys, M.G.; Paik, C.Y.; Henry, R.E.; Wu, Chunder; Suh, K.Y.; Sung Jin Lee; McCartney, M.A.; Wang, Zhe

    1993-01-01

    The MAAP 4 code for integrated severe accident analysis is intended to be used for Level 1 and Level 2 probabilistic safety assessment and severe accident management evaluations for current and advanced light water reactors. MAAP 4 can be used to determine which accidents lead to fuel damage and which are successfully terminated which accidents lead to fuel damage and which are successfully terminated before or after fuel damage (a level 1 application). It can also be used to determine which sequences result in fission product release to the environment and provide the time history of such releases (a level 2 application). The MAAP 4 thermal-hydraulic and fission product models and their validation are discussed here. This code is the newest version of MAAP offered by the Electric Power Research Institute (EPRI) and it contains substantial mechanistic improvements over its predecessor, MAAP 3.0B

  10. Validation of High Displacement Piezoelectric Actuator Finite Element Models

    Science.gov (United States)

    Taleghani, B. K.

    2000-01-01

    The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.

  11. Validation of A Global Hydrological Model

    Science.gov (United States)

    Doell, P.; Lehner, B.; Kaspar, F.; Vassolo, S.

    due to the precipitation mea- surement errors. Even though the explicit modeling of wetlands and lakes leads to a much improved modeling of both the vertical water balance and the lateral transport of water, not enough information is included in WGHM to accurately capture the hy- drology of these water bodies. Certainly, the reliability of model results is highest at the locations at which WGHM was calibrated. The validation indicates that reliability for cells inside calibrated basins is satisfactory if the basin is relatively homogeneous. Analyses of the few available stations outside of calibrated basins indicate a reason- ably high model reliability, particularly in humid regions.

  12. Behavioral conformance of artifact-centric process models

    NARCIS (Netherlands)

    Fahland, D.; Leoni, de M.; Dongen, van B.F.; Aalst, van der W.M.P.; Abramowicz, W.

    2011-01-01

    The use of process models in business information systems for analysis, execution, and improvement of processes assumes that the models describe reality. Conformance checking is a technique to validate how good a given process model describes recorded executions of the actual process. Recently,

  13. NHPoisson: An R Package for Fitting and Validating Nonhomogeneous Poisson Processes

    Directory of Open Access Journals (Sweden)

    Ana C. Cebrián

    2015-03-01

    Full Text Available NHPoisson is an R package for the modeling of nonhomogeneous Poisson processes in one dimension. It includes functions for data preparation, maximum likelihood estimation, covariate selection and inference based on asymptotic distributions and simulation methods. It also provides specific methods for the estimation of Poisson processes resulting from a peak over threshold approach. In addition, the package supports a wide range of model validation tools and functions for generating nonhomogenous Poisson process trajectories. This paper is a description of the package and aims to help those interested in modeling data using nonhomogeneous Poisson processes.

  14. Development and preliminary validation of flux map processing code MAPLE

    International Nuclear Information System (INIS)

    Li Wenhuai; Zhang Xiangju; Dang Zhen; Chen Ming'an; Lu Haoliang; Li Jinggang; Wu Yuanbao

    2013-01-01

    The self-reliant flux map processing code MAPLE was developed by China General Nuclear Power Corporation (CGN). Weight coefficient method (WCM), polynomial expand method (PEM) and thin plane spline (TPS) method were applied to fit the deviation between measured and predicted detector signal results for two-dimensional radial plane, to interpolate or extrapolate the non-instrumented location deviation. Comparison of results in the test cases shows that the TPS method can better capture the information of curved fitting lines than the other methods. The measured flux map data of the Lingao Nuclear Power Plant were processed using MAPLE as validation test cases, combined with SMART code. Validation results show that the calculation results of MAPLE are reasonable and satisfied. (authors)

  15. Approaches to Validation of Models for Low Gravity Fluid Behavior

    Science.gov (United States)

    Chato, David J.; Marchetta, Jeffery; Hochstein, John I.; Kassemi, Mohammad

    2005-01-01

    This paper details the author experiences with the validation of computer models to predict low gravity fluid behavior. It reviews the literature of low gravity fluid behavior as a starting point for developing a baseline set of test cases. It examines authors attempts to validate their models against these cases and the issues they encountered. The main issues seem to be that: Most of the data is described by empirical correlation rather than fundamental relation; Detailed measurements of the flow field have not been made; Free surface shapes are observed but through thick plastic cylinders, and therefore subject to a great deal of optical distortion; and Heat transfer process time constants are on the order of minutes to days but the zero-gravity time available has been only seconds.

  16. Developing a model for validation and prediction of bank customer ...

    African Journals Online (AJOL)

    Credit risk is the most important risk of banks. The main approaches of the bank to reduce credit risk are correct validation using the final status and the validation model parameters. High fuel of bank reserves and lost or outstanding facilities of banks indicate the lack of appropriate validation models in the banking network.

  17. Validating agent based models through virtual worlds.

    Energy Technology Data Exchange (ETDEWEB)

    Lakkaraju, Kiran; Whetzel, Jonathan H.; Lee, Jina; Bier, Asmeret Brooke; Cardona-Rivera, Rogelio E.; Bernstein, Jeremy Ray Rhythm

    2014-01-01

    As the US continues its vigilance against distributed, embedded threats, understanding the political and social structure of these groups becomes paramount for predicting and dis- rupting their attacks. Agent-based models (ABMs) serve as a powerful tool to study these groups. While the popularity of social network tools (e.g., Facebook, Twitter) has provided extensive communication data, there is a lack of ne-grained behavioral data with which to inform and validate existing ABMs. Virtual worlds, in particular massively multiplayer online games (MMOG), where large numbers of people interact within a complex environ- ment for long periods of time provide an alternative source of data. These environments provide a rich social environment where players engage in a variety of activities observed between real-world groups: collaborating and/or competing with other groups, conducting battles for scarce resources, and trading in a market economy. Strategies employed by player groups surprisingly re ect those seen in present-day con icts, where players use diplomacy or espionage as their means for accomplishing their goals. In this project, we propose to address the need for ne-grained behavioral data by acquiring and analyzing game data a commercial MMOG, referred to within this report as Game X. The goals of this research were: (1) devising toolsets for analyzing virtual world data to better inform the rules that govern a social ABM and (2) exploring how virtual worlds could serve as a source of data to validate ABMs established for analogous real-world phenomena. During this research, we studied certain patterns of group behavior to compliment social modeling e orts where a signi cant lack of detailed examples of observed phenomena exists. This report outlines our work examining group behaviors that underly what we have termed the Expression-To-Action (E2A) problem: determining the changes in social contact that lead individuals/groups to engage in a particular behavior

  18. Geochemistry Model Validation Report: Material Degradation and Release Model

    Energy Technology Data Exchange (ETDEWEB)

    H. Stockman

    2001-09-28

    The purpose of this Analysis and Modeling Report (AMR) is to validate the Material Degradation and Release (MDR) model that predicts degradation and release of radionuclides from a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. This AMR is prepared according to ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 17). The intended use of the MDR model is to estimate the long-term geochemical behavior of waste packages (WPs) containing U. S . Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The model is intended to predict (1) the extent to which criticality control material, such as gadolinium (Gd), will remain in the WP after corrosion of the initial WP, (2) the extent to which fissile Pu and uranium (U) will be carried out of the degraded WP by infiltrating water, and (3) the chemical composition and amounts of minerals and other solids left in the WP. The results of the model are intended for use in criticality calculations. The scope of the model validation report is to (1) describe the MDR model, and (2) compare the modeling results with experimental studies. A test case based on a degrading Pu-ceramic WP is provided to help explain the model. This model does not directly feed the assessment of system performance. The output from this model is used by several other models, such as the configuration generator, criticality, and criticality consequence models, prior to the evaluation of system performance. This document has been prepared according to AP-3.10Q, ''Analyses and Models'' (Ref. 2), and prepared in accordance with the technical work plan (Ref. 17).

  19. Geochemistry Model Validation Report: Material Degradation and Release Model

    International Nuclear Information System (INIS)

    Stockman, H.

    2001-01-01

    The purpose of this Analysis and Modeling Report (AMR) is to validate the Material Degradation and Release (MDR) model that predicts degradation and release of radionuclides from a degrading waste package (WP) in the potential monitored geologic repository at Yucca Mountain. This AMR is prepared according to ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 17). The intended use of the MDR model is to estimate the long-term geochemical behavior of waste packages (WPs) containing U. S . Department of Energy (DOE) Spent Nuclear Fuel (SNF) codisposed with High Level Waste (HLW) glass, commercial SNF, and Immobilized Plutonium Ceramic (Pu-ceramic) codisposed with HLW glass. The model is intended to predict (1) the extent to which criticality control material, such as gadolinium (Gd), will remain in the WP after corrosion of the initial WP, (2) the extent to which fissile Pu and uranium (U) will be carried out of the degraded WP by infiltrating water, and (3) the chemical composition and amounts of minerals and other solids left in the WP. The results of the model are intended for use in criticality calculations. The scope of the model validation report is to (1) describe the MDR model, and (2) compare the modeling results with experimental studies. A test case based on a degrading Pu-ceramic WP is provided to help explain the model. This model does not directly feed the assessment of system performance. The output from this model is used by several other models, such as the configuration generator, criticality, and criticality consequence models, prior to the evaluation of system performance. This document has been prepared according to AP-3.10Q, ''Analyses and Models'' (Ref. 2), and prepared in accordance with the technical work plan (Ref. 17)

  20. Statistical validation of normal tissue complication probability models

    NARCIS (Netherlands)

    Xu, Cheng-Jian; van der Schaaf, Arjen; van t Veld, Aart; Langendijk, Johannes A.; Schilstra, Cornelis

    2012-01-01

    PURPOSE: To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. METHODS AND MATERIALS: A penalized regression method, LASSO (least absolute shrinkage

  1. Validation of the community radiative transfer model

    International Nuclear Information System (INIS)

    Ding Shouguo; Yang Ping; Weng Fuzhong; Liu Quanhua; Han Yong; Delst, Paul van; Li Jun; Baum, Bryan

    2011-01-01

    To validate the Community Radiative Transfer Model (CRTM) developed by the U.S. Joint Center for Satellite Data Assimilation (JCSDA), the discrete ordinate radiative transfer (DISORT) model and the line-by-line radiative transfer model (LBLRTM) are combined in order to provide a reference benchmark. Compared with the benchmark, the CRTM appears quite accurate for both clear sky and ice cloud radiance simulations with RMS errors below 0.2 K, except for clouds with small ice particles. In a computer CPU run time comparison, the CRTM is faster than DISORT by approximately two orders of magnitude. Using the operational MODIS cloud products and the European Center for Medium-range Weather Forecasting (ECMWF) atmospheric profiles as an input, the CRTM is employed to simulate the Atmospheric Infrared Sounder (AIRS) radiances. The CRTM simulations are shown to be in reasonably close agreement with the AIRS measurements (the discrepancies are within 2 K in terms of brightness temperature difference). Furthermore, the impact of uncertainties in the input cloud properties and atmospheric profiles on the CRTM simulations has been assessed. The CRTM-based brightness temperatures (BTs) at the top of the atmosphere (TOA), for both thin (τ 30) clouds, are highly sensitive to uncertainties in atmospheric temperature and cloud top pressure. However, for an optically thick cloud, the CRTM-based BTs are not sensitive to the uncertainties of cloud optical thickness, effective particle size, and atmospheric humidity profiles. On the contrary, the uncertainties of the CRTM-based TOA BTs resulting from effective particle size and optical thickness are not negligible in an optically thin cloud.

  2. Development and Validation of a 3-Dimensional CFB Furnace Model

    Science.gov (United States)

    Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti

    At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents

  3. Development of a Conservative Model Validation Approach for Reliable Analysis

    Science.gov (United States)

    2015-01-01

    CIE 2015 August 2-5, 2015, Boston, Massachusetts, USA [DRAFT] DETC2015-46982 DEVELOPMENT OF A CONSERVATIVE MODEL VALIDATION APPROACH FOR RELIABLE...obtain a conservative simulation model for reliable design even with limited experimental data. Very little research has taken into account the...3, the proposed conservative model validation is briefly compared to the conventional model validation approach. Section 4 describes how to account

  4. Validation of ecological state space models using the Laplace approximation

    DEFF Research Database (Denmark)

    Thygesen, Uffe Høgsbro; Albertsen, Christoffer Moesgaard; Berg, Casper Willestofte

    2017-01-01

    Many statistical models in ecology follow the state space paradigm. For such models, the important step of model validation rarely receives as much attention as estimation or hypothesis testing, perhaps due to lack of available algorithms and software. Model validation is often based on a naive...... for estimation in general mixed effects models. Implementing one-step predictions in the R package Template Model Builder, we demonstrate that it is possible to perform model validation with little effort, even if the ecological model is multivariate, has non-linear dynamics, and whether observations...... useful directions in which the model could be improved....

  5. Generating process model collections

    NARCIS (Netherlands)

    Yan, Z.; Dijkman, R.M.; Grefen, P.W.P.J.

    2017-01-01

    Business process management plays an important role in the management of organizations. More and more organizations describe their operations as business processes. It is common for organizations to have collections of thousands of business processes, but for reasons of confidentiality these

  6. Spent Nuclear Fuel (SNF) Project Design Verification and Validation Process

    International Nuclear Information System (INIS)

    OLGUIN, L.J.

    2000-01-01

    This document provides a description of design verification and validation activities implemented by the Spent Nuclear Fuel (SNF) Project. During the execution of early design verification, a management assessment (Bergman, 1999) and external assessments on configuration management (Augustenburg, 1999) and testing (Loscoe, 2000) were conducted and identified potential uncertainties in the verification process. This led the SNF Chief Engineer to implement corrective actions to improve process and design products. This included Design Verification Reports (DVRs) for each subproject, validation assessments for testing, and verification of the safety function of systems and components identified in the Safety Equipment List to ensure that the design outputs were compliant with the SNF Technical Requirements. Although some activities are still in progress, the results of the DVR and associated validation assessments indicate that Project requirements for design verification are being effectively implemented. These results have been documented in subproject-specific technical documents (Table 2). Identified punch-list items are being dispositioned by the Project. As these remaining items are closed, the technical reports (Table 2) will be revised and reissued to document the results of this work

  7. What makes process models understandable?

    NARCIS (Netherlands)

    Mendling, J.; Reijers, H.A.; Cardoso, J.; Alonso, G.; Dadam, P.; Rosemann, M.

    2007-01-01

    Despite that formal and informal quality aspects are of significant importance to business process modeling, there is only little empirical work reported on process model quality and its impact factors. In this paper we investigate understandability as a proxy for quality of process models and focus

  8. Best practice strategies for validation of micro moulding process simulation

    DEFF Research Database (Denmark)

    Costa, Franco; Tosello, Guido; Whiteside, Ben

    2009-01-01

    The use of simulation for injection moulding design is a powerful tool which can be used up-front to avoid costly tooling modifications and reduce the number of mould trials. However, the accuracy of the simulation results depends on many component technologies and information, some of which can...... be easily controlled or known by the simulation analyst and others which are not easily known. For this reason, experimental validation studies are an important tool for establishing best practice methodologies for use during analysis set up on all future design projects. During the validation studies......, detailed information about the moulding process is gathered and used to establish these methodologies. Whereas in routine design projects, these methodologies are then relied on to provide efficient but reliable working practices. Data analysis and simulations on preliminary micro-moulding experiments have...

  9. Validation of models in an imaging infrared simulation

    CSIR Research Space (South Africa)

    Willers, C

    2007-10-01

    Full Text Available threeprocessesfortransformingtheinformationbetweentheentities. Reality/ Problem Entity Conceptual Model Computerized Model Model Validation ModelVerification Model Qualification Computer Implementation Analysisand Modelling Simulationand Experimentation “Substantiationthata....C.Refsgaard ,ModellingGuidelines-terminology andguidingprinciples, AdvancesinWaterResources, Vol27,No1,January2004,?pp.71-82(12),Elsevier. et.al. [5]N.Oreskes,et.al.,Verification,Validation,andConfirmationof NumericalModelsintheEarthSciences,Science,Vol263, Number...

  10. Validation of the TTM processes of change measure for physical activity in an adult French sample.

    Science.gov (United States)

    Bernard, Paquito; Romain, Ahmed-Jérôme; Trouillet, Raphael; Gernigon, Christophe; Nigg, Claudio; Ninot, Gregory

    2014-04-01

    Processes of change (POC) are constructs from the transtheoretical model that propose to examine how people engage in a behavior. However, there is no consensus about a leading model explaining POC and there is no validated French POC scale in physical activity This study aimed to compare the different existing models to validate a French POC scale. Three studies, with 748 subjects included, were carried out to translate the items and evaluate their clarity (study 1, n = 77), to assess the factorial validity (n = 200) and invariance/equivalence (study 2, n = 471), and to analyze the concurrent validity by stage × process analyses (study 3, n = 671). Two models displayed adequate fit to the data; however, based on the Akaike information criterion, the fully correlated five-factor model appeared as the most appropriate to measure POC in physical activity. The invariance/equivalence was also confirmed across genders and student status. Four of the five existing factors discriminated pre-action and post-action stages. These data support the validation of the POC questionnaire in physical activity among a French sample. More research is needed to explore the longitudinal properties of this scale.

  11. Numerical simulation and experimental validation of aircraft ground deicing model

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2016-05-01

    Full Text Available Aircraft ground deicing plays an important role of guaranteeing the aircraft safety. In practice, most airports generally use as many deicing fluids as possible to remove the ice, which causes the waste of the deicing fluids and the pollution of the environment. Therefore, the model of aircraft ground deicing should be built to establish the foundation for the subsequent research, such as the optimization of the deicing fluid consumption. In this article, the heat balance of the deicing process is depicted, and the dynamic model of the deicing process is provided based on the analysis of the deicing mechanism. In the dynamic model, the surface temperature of the deicing fluids and the ice thickness are regarded as the state parameters, while the fluid flow rate, the initial temperature, and the injection time of the deicing fluids are treated as control parameters. Ignoring the heat exchange between the deicing fluids and the environment, the simplified model is obtained. The rationality of the simplified model is verified by the numerical simulation and the impacts of the flow rate, the initial temperature and the injection time on the deicing process are investigated. To verify the model, the semi-physical experiment system is established, consisting of the low-constant temperature test chamber, the ice simulation system, the deicing fluid heating and spraying system, the simulated wing, the test sensors, and the computer measure and control system. The actual test data verify the validity of the dynamic model and the accuracy of the simulation analysis.

  12. Model Validation Using Coordinate Distance with Performance Sensitivity

    Directory of Open Access Journals (Sweden)

    Jiann-Shiun Lew

    2008-01-01

    Full Text Available This paper presents an innovative approach to model validation for a structure with significant parameter variations. Model uncertainty of the structural dynamics is quantified with the use of a singular value decomposition technique to extract the principal components of parameter change, and an interval model is generated to represent the system with parameter uncertainty. The coordinate vector, corresponding to the identified principal directions, of the validation system is computed. The coordinate distance between the validation system and the identified interval model is used as a metric for model validation. A beam structure with an attached subsystem, which has significant parameter uncertainty, is used to demonstrate the proposed approach.

  13. In-Drift Microbial Communities Model Validation Calculations

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley

    2001-09-24

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data.

  14. In-Drift Microbial Communities Model Validation Calculation

    Energy Technology Data Exchange (ETDEWEB)

    D. M. Jolley

    2001-10-31

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data.

  15. IN-DRIFT MICROBIAL COMMUNITIES MODEL VALIDATION CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    D.M. Jolley

    2001-12-18

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN M09909SPAMINGl.003 using its replacement DTN M00106SPAIDMO 1.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 200 1) which includes controls for the management of electronic data.

  16. In-Drift Microbial Communities Model Validation Calculations

    International Nuclear Information System (INIS)

    Jolley, D.M.

    2001-01-01

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS MandO 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS MandO 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS MandO 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS MandO (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data

  17. IN-DRIFT MICROBIAL COMMUNITIES MODEL VALIDATION CALCULATIONS

    International Nuclear Information System (INIS)

    D.M. Jolley

    2001-01-01

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M andO 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M andO 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN M09909SPAMINGl.003 using its replacement DTN M00106SPAIDMO 1.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M andO 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M andO (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 200 1) which includes controls for the management of electronic data

  18. Condensation of steam in horizontal pipes: model development and validation

    International Nuclear Information System (INIS)

    Szijarto, R.

    2015-01-01

    This thesis submitted to the Swiss Federal Institute of Technology ETH in Zurich presents the development and validation of a model for the condensation of steam in horizontal pipes. Condensation models were introduced and developed particularly for the application in the emergency cooling system of a Gen-III+ boiling water reactor. Such an emergency cooling system consists of slightly inclined horizontal pipes, which are immersed in a cold water tank. The pipes are connected to the reactor pressure vessel. They are responsible for a fast depressurization of the reactor core in the case of accident. Condensation in horizontal pipes was investigated with both one-dimensional system codes (RELAP5) and three-dimensional computational fluid dynamics software (ANSYS FLUENT). The performance of the RELAP5 code was not sufficient for transient condensation processes. Therefore, a mechanistic model was developed and implemented. Four models were tested on the LAOKOON facility, which analysed direct contact condensation in a horizontal duct

  19. Validation of Inhibition Effect in the Cellulose Hydrolysis: a Dynamic Modelling Approach

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Tsai, Chien-Tai; Meyer, Anne S.

    2011-01-01

    Enzymatic hydrolysis is one of the main steps in the processing of bioethanol from lignocellulosic raw materials. However, complete understanding of the underlying phenomena is still under development. Hence, this study has focused on validation of the inhibition effects in the cellulosic biomass...... for parameter estimation (calibration) and validation purposes. The model predictions using calibrated parameters have shown good agreement with the validation data sets, which provides credibility to the model structure and the parameter values....

  20. System Advisor Model: Flat Plate Photovoltaic Performance Modeling Validation Report

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Janine [National Renewable Energy Lab. (NREL), Golden, CO (United States); Whitmore, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kaffine, Leah [National Renewable Energy Lab. (NREL), Golden, CO (United States); Blair, Nate [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dobos, Aron P. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    The System Advisor Model (SAM) is a free software tool that performs detailed analysis of both system performance and system financing for a variety of renewable energy technologies. This report provides detailed validation of the SAM flat plate photovoltaic performance model by comparing SAM-modeled PV system generation data to actual measured production data for nine PV systems ranging from 75 kW to greater than 25 MW in size. The results show strong agreement between SAM predictions and field data, with annualized prediction error below 3% for all fixed tilt cases and below 8% for all one axis tracked cases. The analysis concludes that snow cover and system outages are the primary sources of disagreement, and other deviations resulting from seasonal biases in the irradiation models and one axis tracking issues are discussed in detail.

  1. Validation of Alternative In Vitro Methods to Animal Testing: Concepts, Challenges, Processes and Tools.

    Science.gov (United States)

    Griesinger, Claudius; Desprez, Bertrand; Coecke, Sandra; Casey, Warren; Zuang, Valérie

    This chapter explores the concepts, processes, tools and challenges relating to the validation of alternative methods for toxicity and safety testing. In general terms, validation is the process of assessing the appropriateness and usefulness of a tool for its intended purpose. Validation is routinely used in various contexts in science, technology, the manufacturing and services sectors. It serves to assess the fitness-for-purpose of devices, systems, software up to entire methodologies. In the area of toxicity testing, validation plays an indispensable role: "alternative approaches" are increasingly replacing animal models as predictive tools and it needs to be demonstrated that these novel methods are fit for purpose. Alternative approaches include in vitro test methods, non-testing approaches such as predictive computer models up to entire testing and assessment strategies composed of method suites, data sources and decision-aiding tools. Data generated with alternative approaches are ultimately used for decision-making on public health and the protection of the environment. It is therefore essential that the underlying methods and methodologies are thoroughly characterised, assessed and transparently documented through validation studies involving impartial actors. Importantly, validation serves as a filter to ensure that only test methods able to produce data that help to address legislative requirements (e.g. EU's REACH legislation) are accepted as official testing tools and, owing to the globalisation of markets, recognised on international level (e.g. through inclusion in OECD test guidelines). Since validation creates a credible and transparent evidence base on test methods, it provides a quality stamp, supporting companies developing and marketing alternative methods and creating considerable business opportunities. Validation of alternative methods is conducted through scientific studies assessing two key hypotheses, reliability and relevance of the

  2. Numerical Simulation of Hydrogen Combustion: Global Reaction Model and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yun [School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an (China); Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States); Liu, Yinhe, E-mail: yinheliu@mail.xjtu.edu.cn [School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an (China)

    2017-11-20

    Due to the complexity of modeling the combustion process in nuclear power plants, the global mechanisms are preferred for numerical simulation. To quickly perform the highly resolved simulations with limited processing resources of large-scale hydrogen combustion, a method based on thermal theory was developed to obtain kinetic parameters of global reaction mechanism of hydrogen–air combustion in a wide range. The calculated kinetic parameters at lower hydrogen concentration (C{sub hydrogen} < 20%) were validated against the results obtained from experimental measurements in a container and combustion test facility. In addition, the numerical data by the global mechanism (C{sub hydrogen} > 20%) were compared with the results by detailed mechanism. Good agreement between the model prediction and the experimental data was achieved, and the comparison between simulation results by the detailed mechanism and the global reaction mechanism show that the present calculated global mechanism has excellent predictable capabilities for a wide range of hydrogen–air mixtures.

  3. Numerical Simulation of Hydrogen Combustion: Global Reaction Model and Validation

    International Nuclear Information System (INIS)

    Zhang, Yun; Liu, Yinhe

    2017-01-01

    Due to the complexity of modeling the combustion process in nuclear power plants, the global mechanisms are preferred for numerical simulation. To quickly perform the highly resolved simulations with limited processing resources of large-scale hydrogen combustion, a method based on thermal theory was developed to obtain kinetic parameters of global reaction mechanism of hydrogen–air combustion in a wide range. The calculated kinetic parameters at lower hydrogen concentration (C hydrogen < 20%) were validated against the results obtained from experimental measurements in a container and combustion test facility. In addition, the numerical data by the global mechanism (C hydrogen > 20%) were compared with the results by detailed mechanism. Good agreement between the model prediction and the experimental data was achieved, and the comparison between simulation results by the detailed mechanism and the global reaction mechanism show that the present calculated global mechanism has excellent predictable capabilities for a wide range of hydrogen–air mixtures.

  4. Test-driven verification/validation of model transformations

    Institute of Scientific and Technical Information of China (English)

    László LENGYEL; Hassan CHARAF

    2015-01-01

    Why is it important to verify/validate model transformations? The motivation is to improve the quality of the trans-formations, and therefore the quality of the generated software artifacts. Verified/validated model transformations make it possible to ensure certain properties of the generated software artifacts. In this way, verification/validation methods can guarantee different requirements stated by the actual domain against the generated/modified/optimized software products. For example, a verified/ validated model transformation can ensure the preservation of certain properties during the model-to-model transformation. This paper emphasizes the necessity of methods that make model transformation verified/validated, discusses the different scenarios of model transformation verification and validation, and introduces the principles of a novel test-driven method for verifying/ validating model transformations. We provide a solution that makes it possible to automatically generate test input models for model transformations. Furthermore, we collect and discuss the actual open issues in the field of verification/validation of model transformations.

  5. A comprehensive model for piezoceramic actuators: modelling, validation and application

    International Nuclear Information System (INIS)

    Quant, Mario; Elizalde, Hugo; Flores, Abiud; Ramírez, Ricardo; Orta, Pedro; Song, Gangbing

    2009-01-01

    This paper presents a comprehensive model for piezoceramic actuators (PAs), which accounts for hysteresis, non-linear electric field and dynamic effects. The hysteresis model is based on the widely used general Maxwell slip model, while an enhanced electro-mechanical non-linear model replaces the linear constitutive equations commonly used. Further on, a linear second order model compensates the frequency response of the actuator. Each individual model is fully characterized from experimental data yielded by a specific PA, then incorporated into a comprehensive 'direct' model able to determine the output strain based on the applied input voltage, fully compensating the aforementioned effects, where the term 'direct' represents an electrical-to-mechanical operating path. The 'direct' model was implemented in a Matlab/Simulink environment and successfully validated via experimental results, exhibiting higher accuracy and simplicity than many published models. This simplicity would allow a straightforward inclusion of other behaviour such as creep, ageing, material non-linearity, etc, if such parameters are important for a particular application. Based on the same formulation, two other models are also presented: the first is an 'alternate' model intended to operate within a force-controlled scheme (instead of a displacement/position control), thus able to capture the complex mechanical interactions occurring between a PA and its host structure. The second development is an 'inverse' model, able to operate within an open-loop control scheme, that is, yielding a 'linearized' PA behaviour. The performance of the developed models is demonstrated via a numerical sample case simulated in Matlab/Simulink, consisting of a PA coupled to a simple mechanical system, aimed at shifting the natural frequency of the latter

  6. MOLECULAR VALIDATED MODEL FOR ADSORPTION OF PROTONATED DYE ON LDH

    Directory of Open Access Journals (Sweden)

    B. M. Braga

    Full Text Available Abstract Hydrotalcite-like compounds are anionic clays of scientific and technological interest for their use as ion exchange materials, catalysts and modified electrodes. Surface phenomenon are important for all these applications. Although conventional analytical methods have enabled progress in understanding the behavior of anionic clays in solution, an evaluation at the atomic scale of the dynamics of their ionic interactions has never been performed. Molecular simulation has become an extremely useful tool to provide this perspective. Our purpose is to validate a simplified model for the adsorption of 5-benzoyl-4-hydroxy-2-methoxy-benzenesulfonic acid (MBSA, a prototype molecule of anionic dyes, onto a hydrotalcite surface. Monte Carlo simulations were performed in the canonical ensemble with MBSA ions and a pore model of hydrotalcite using UFF and ClayFF force fields. The proposed molecular model has allowed us to reproduce experimental data of atomic force microscopy. Influences of protonation during the adsorption process are also presented.

  7. Experimental Validation of a Dynamic Model for Lightweight Robots

    Directory of Open Access Journals (Sweden)

    Alessandro Gasparetto

    2013-03-01

    Full Text Available Nowadays, one of the main topics in robotics research is dynamic performance improvement by means of a lightening of the overall system structure. The effective motion and control of these lightweight robotic systems occurs with the use of suitable motion planning and control process. In order to do so, model-based approaches can be adopted by exploiting accurate dynamic models that take into account the inertial and elastic terms that are usually neglected in a heavy rigid link configuration. In this paper, an effective method for modelling spatial lightweight industrial robots based on an Equivalent Rigid Link System approach is considered from an experimental validation perspective. A dynamic simulator implementing the formulation is used and an experimental test-bench is set-up. Experimental tests are carried out with a benchmark L-shape mechanism.

  8. Multiphysics modelling of the spray forming process

    International Nuclear Information System (INIS)

    Mi, J.; Grant, P.S.; Fritsching, U.; Belkessam, O.; Garmendia, I.; Landaberea, A.

    2008-01-01

    An integrated, multiphysics numerical model has been developed through the joint efforts of the University of Oxford (UK), University of Bremen (Germany) and Inasmet (Spain) to simulate the spray forming process. The integrated model consisted of four sub-models: (1) an atomization model simulating the fragmentation of a continuous liquid metal stream into droplet spray during gas atomization; (2) a droplet spray model simulating the droplet spray mass and enthalpy evolution in the gas flow field prior to deposition; (3) a droplet deposition model simulating droplet deposition, splashing and re-deposition behavior and the resulting preform shape and heat flow; and (4) a porosity model simulating the porosity distribution inside a spray formed ring preform. The model has been validated against experiments of the spray forming of large diameter IN718 Ni superalloy rings. The modelled preform shape, surface temperature and final porosity distribution showed good agreement with experimental measurements

  9. Neuroscientific Model of Motivational Process

    OpenAIRE

    Kim, Sung-il

    2013-01-01

    Considering the neuroscientific findings on reward, learning, value, decision-making, and cognitive control, motivation can be parsed into three sub processes, a process of generating motivation, a process of maintaining motivation, and a process of regulating motivation. I propose a tentative neuroscientific model of motivational processes which consists of three distinct but continuous sub processes, namely reward-driven approach, value-based decision-making, and goal-directed control. Rewa...

  10. Precision Glass Molding: Validation of an FE Model for Thermo-Mechanical Simulation

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Hattel, Jesper Henri; Hansen, Hans Nørgaard

    2014-01-01

    glass molding process including heating, pressing, and cooling stages. Temperature- dependent viscoelastic and structural relaxation behavior of the glass material are implemented through a FORTRAN material subroutine (UMAT) into the commercial FEM program ABAQUS, and the FE model is validated...

  11. Some considerations for validation of repository performance assessment models

    International Nuclear Information System (INIS)

    Eisenberg, N.

    1991-01-01

    Validation is an important aspect of the regulatory uses of performance assessment. A substantial body of literature exists indicating the manner in which validation of models is usually pursued. Because performance models for a nuclear waste repository cannot be tested over the long time periods for which the model must make predictions, the usual avenue for model validation is precluded. Further impediments to model validation include a lack of fundamental scientific theory to describe important aspects of repository performance and an inability to easily deduce the complex, intricate structures characteristic of a natural system. A successful strategy for validation must attempt to resolve these difficulties in a direct fashion. Although some procedural aspects will be important, the main reliance of validation should be on scientific substance and logical rigor. The level of validation needed will be mandated, in part, by the uses to which these models are put, rather than by the ideal of validation of a scientific theory. Because of the importance of the validation of performance assessment models, the NRC staff has engaged in a program of research and international cooperation to seek progress in this important area. 2 figs., 16 refs

  12. Validation, Optimization and Simulation of a Solar Thermoelectric Generator Model

    Science.gov (United States)

    Madkhali, Hadi Ali; Hamil, Ali; Lee, HoSung

    2017-12-01

    This study explores thermoelectrics as a viable option for small-scale solar thermal applications. Thermoelectric technology is based on the Seebeck effect, which states that a voltage is induced when a temperature gradient is applied to the junctions of two differing materials. This research proposes to analyze, validate, simulate, and optimize a prototype solar thermoelectric generator (STEG) model in order to increase efficiency. The intent is to further develop STEGs as a viable and productive energy source that limits pollution and reduces the cost of energy production. An empirical study (Kraemer et al. in Nat Mater 10:532, 2011) on the solar thermoelectric generator reported a high efficiency performance of 4.6%. The system had a vacuum glass enclosure, a flat panel (absorber), thermoelectric generator and water circulation for the cold side. The theoretical and numerical approach of this current study validated the experimental results from Kraemer's study to a high degree. The numerical simulation process utilizes a two-stage approach in ANSYS software for Fluent and Thermal-Electric Systems. The solar load model technique uses solar radiation under AM 1.5G conditions in Fluent. This analytical model applies Dr. Ho Sung Lee's theory of optimal design to improve the performance of the STEG system by using dimensionless parameters. Applying this theory, using two cover glasses and radiation shields, the STEG model can achieve a highest efficiency of 7%.

  13. Statistical Validation of Normal Tissue Complication Probability Models

    Energy Technology Data Exchange (ETDEWEB)

    Xu Chengjian, E-mail: c.j.xu@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Schaaf, Arjen van der; Veld, Aart A. van' t; Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Schilstra, Cornelis [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Radiotherapy Institute Friesland, Leeuwarden (Netherlands)

    2012-09-01

    Purpose: To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. Methods and Materials: A penalized regression method, LASSO (least absolute shrinkage and selection operator), was used to build NTCP models for xerostomia after radiation therapy treatment of head-and-neck cancer. Model assessment was based on the likelihood function and the area under the receiver operating characteristic curve. Results: Repeated double cross-validation showed the uncertainty and instability of the NTCP models and indicated that the statistical significance of model performance can be obtained by permutation testing. Conclusion: Repeated double cross-validation and permutation tests are recommended to validate NTCP models before clinical use.

  14. Statistical validation of normal tissue complication probability models.

    Science.gov (United States)

    Xu, Cheng-Jian; van der Schaaf, Arjen; Van't Veld, Aart A; Langendijk, Johannes A; Schilstra, Cornelis

    2012-09-01

    To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. A penalized regression method, LASSO (least absolute shrinkage and selection operator), was used to build NTCP models for xerostomia after radiation therapy treatment of head-and-neck cancer. Model assessment was based on the likelihood function and the area under the receiver operating characteristic curve. Repeated double cross-validation showed the uncertainty and instability of the NTCP models and indicated that the statistical significance of model performance can be obtained by permutation testing. Repeated double cross-validation and permutation tests are recommended to validate NTCP models before clinical use. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Validation process of ISIS CFD software for fire simulation

    International Nuclear Information System (INIS)

    Lapuerta, C.; Suard, S.; Babik, F.; Rigollet, L.

    2012-01-01

    Fire propagation constitutes a major safety concern in nuclear facilities. In this context, IRSN is developing a CFD code, named ISIS, dedicated to fire simulations. This software is based on a coherent set of models that can be used to describe a fire in large, mechanically ventilated compartments. The system of balance equations obtained by combining these models is discretized in time using fractional step methods, including a pressure correction technique for solving hydrodynamic equations. Discretization in space combines two techniques, each proven in the relevant context: mixed finite elements for hydrodynamic equations and finite volumes for transport equations. ISIS is currently in an advanced stage of verification and validation. The results obtained for a full-scale fire test performed at IRSN are presented.

  16. How to enhance the future use of energy policy simulation models through ex post validation

    International Nuclear Information System (INIS)

    Qudrat-Ullah, Hassan

    2017-01-01

    Although simulation and modeling in general and system dynamics models in particular has long served the energy policy domain, ex post validation of these energy policy models is rarely addressed. In fact, ex post validation is a valuable area of research because it offers modelers a chance to enhance the future use of their simulation models by validating them against the field data. This paper contributes by presenting (i) a system dynamics simulation model, which was developed and used to do a three dimensional, socio-economical and environmental long-term assessment of Pakistan's energy policy in 1999, (ii) a systematic analysis of the 15-years old predictive scenarios produced by a system dynamics simulation model through ex post validation. How did the model predictions compare with the actual data? We report that the ongoing crisis of the electricity sector of Pakistan is unfolding, as the model-based scenarios had projected. - Highlights: • Argues that increased use of energy policy models is dependent on their credibility validation. • An ex post validation process is presented as a solution to build confidence in models. • A unique system dynamics model, MDESRAP, is presented. • The root mean square percentage error and Thiel's inequality statistics are applied. • The dynamic model, MDESRAP, is presented as an ex ante and ex post validated model.

  17. Validation of mentorship model for newly qualified professional ...

    African Journals Online (AJOL)

    Newly qualified professional nurses (NQPNs) allocated to community health care services require the use of validated model to practice independently. Validation was done to adapt and assess if the model is understood and could be implemented by NQPNs and mentors employed in community health care services.

  18. Validation and Adaptation of Router and Switch Models

    NARCIS (Netherlands)

    Boltjes, B.; Fernandez Diaz, I.; Kock, B.A.; Langeveld, R.J.G.M.; Schoenmaker, G.

    2003-01-01

    This paper describes validating OPNET models of key devices for the next generation IP-based tactical network of the Royal Netherlands Army (RNLA). The task of TNO-FEL is to provide insight in scalability and performance of future deployed networks. Because validated models ol key Cisco equipment

  19. Solar Sail Models and Test Measurements Correspondence for Validation Requirements Definition

    Science.gov (United States)

    Ewing, Anthony; Adams, Charles

    2004-01-01

    Solar sails are being developed as a mission-enabling technology in support of future NASA science missions. Current efforts have advanced solar sail technology sufficient to justify a flight validation program. A primary objective of this activity is to test and validate solar sail models that are currently under development so that they may be used with confidence in future science mission development (e.g., scalable to larger sails). Both system and model validation requirements must be defined early in the program to guide design cycles and to ensure that relevant and sufficient test data will be obtained to conduct model validation to the level required. A process of model identification, model input/output documentation, model sensitivity analyses, and test measurement correspondence is required so that decisions can be made to satisfy validation requirements within program constraints.

  20. Thermochemical equilibrium modelling of a gasifying process

    International Nuclear Information System (INIS)

    Melgar, Andres; Perez, Juan F.; Laget, Hannes; Horillo, Alfonso

    2007-01-01

    This article discusses a mathematical model for the thermochemical processes in a downdraft biomass gasifier. The model combines the chemical equilibrium and the thermodynamic equilibrium of the global reaction, predicting the final composition of the producer gas as well as its reaction temperature. Once the composition of the producer gas is obtained, a range of parameters can be derived, such as the cold gas efficiency of the gasifier, the amount of dissociated water in the process and the heating value and engine fuel quality of the gas. The model has been validated experimentally. This work includes a parametric study of the influence of the gasifying relative fuel/air ratio and the moisture content of the biomass on the characteristics of the process and the producer gas composition. The model helps to predict the behaviour of different biomass types and is a useful tool for optimizing the design and operation of downdraft biomass gasifiers

  1. Cost model validation: a technical and cultural approach

    Science.gov (United States)

    Hihn, J.; Rosenberg, L.; Roust, K.; Warfield, K.

    2001-01-01

    This paper summarizes how JPL's parametric mission cost model (PMCM) has been validated using both formal statistical methods and a variety of peer and management reviews in order to establish organizational acceptance of the cost model estimates.

  2. Modeling of column apparatus processes

    CERN Document Server

    Boyadjiev, Christo; Boyadjiev, Boyan; Popova-Krumova, Petya

    2016-01-01

    This book presents a new approach for the modeling of chemical and interphase mass transfer processes in industrial column apparatuses, using convection-diffusion and average-concentration models. The convection-diffusion type models are used for a qualitative analysis of the processes and to assess the main, small and slight physical effects, and then reject the slight effects. As a result, the process mechanism can be identified. It also introduces average concentration models for quantitative analysis, which use the average values of the velocity and concentration over the cross-sectional area of the column. The new models are used to analyze different processes (simple and complex chemical reactions, absorption, adsorption and catalytic reactions), and make it possible to model the processes of gas purification with sulfur dioxide, which form the basis of several patents.

  3. Compressive strength test for cemented waste forms: validation process

    International Nuclear Information System (INIS)

    Haucz, Maria Judite A.; Candido, Francisco Donizete; Seles, Sandro Rogerio

    2007-01-01

    In the Cementation Laboratory (LABCIM), of the Development Centre of the Nuclear Technology (CNEN/CDTN-MG), hazardous/radioactive wastes are incorporated in cement, to transform them into monolithic products, preventing or minimizing the contaminant release to the environment. The compressive strength test is important to evaluate the cemented product quality, in which it is determined the compression load necessary to rupture the cemented waste form. In LABCIM a specific procedure was developed to determine the compressive strength of cement waste forms based on the Brazilian Standard NBR 7215. The accreditation of this procedure is essential to assure reproductive and accurate results in the evaluation of these products. To achieve this goal the Laboratory personal implemented technical and administrative improvements in accordance with the NBR ISO/IEC 17025 standard 'General requirements for the competence of testing and calibration laboratories'. As the developed procedure was not a standard one the norm ISO/IEC 17025 requests its validation. There are some methodologies to do that. In this paper it is described the current status of the accreditation project, especially the validation process of the referred procedure and its results. (author)

  4. Validation of Embedded System Verification Models

    NARCIS (Netherlands)

    Marincic, J.; Mader, Angelika H.; Wieringa, Roelf J.

    The result of a model-based requirements verification shows that the model of a system satisfies (or not) formalised system requirements. The verification result is correct only if the model represents the system adequately. No matter what modelling technique we use, what precedes the model

  5. Validation of designing tools as part of nuclear pump development process

    International Nuclear Information System (INIS)

    Klemm, T.; Sehr, F.; Spenner, P.; Fritz, J.

    2010-01-01

    Nuclear pumps are characterized by high safety standards, operational reliability as well as long life cycles. For the design process it is of common use to have a down scaled model pump to qualify operating data and simulate exceptional operating conditions. In case of modifications of the pump design compared to existing reactor coolant pumps a model pump is required to develop methods and tools to design the full scale pump. In the presented case it has a geometry scale of 1:2 regarding the full scale pump size. The experimental data of the model pump is basis for validation of methods and tools which are applied in the designing process of the full scale pump. In this paper the selection of qualified tools and the validation process is demonstrated exemplarily on a cooling circuit. The aim is to predict the resulting flow rate. Tools are chosen for different components depending on the benefit to effort ratio. For elementary flow phenomena such as fluid flow in straight pipes or gaps analytic or empirical laws can be used. For more complex flow situations numerical methods are utilized. Main focus is set on the validation process of the applied numerical flow simulation. In this case not only integral data should be compared, it is also necessary to validate local flow structure of numerical flow simulation to avoid systematic errors in CFD Model generation. Due to complex design internal flow measurements are not possible. On that reason simple comparisons of similar flow test cases are used. Results of this study show, that the flow simulation data closely match measured integral pump and test case data. With this validation it is now possible to qualify CFD simulations as a design tool for the full scale pump in similar cooling circuit. (authors)

  6. Refinement, Validation and Benchmarking of a Model for E-Government Service Quality

    Science.gov (United States)

    Magoutas, Babis; Mentzas, Gregoris

    This paper presents the refinement and validation of a model for Quality of e-Government Services (QeGS). We built upon our previous work where a conceptualized model was identified and put focus on the confirmatory phase of the model development process, in order to come up with a valid and reliable QeGS model. The validated model, which was benchmarked with very positive results with similar models found in the literature, can be used for measuring the QeGS in a reliable and valid manner. This will form the basis for a continuous quality improvement process, unleashing the full potential of e-government services for both citizens and public administrations.

  7. IVIM: modeling, experimental validation and application to animal models

    International Nuclear Information System (INIS)

    Fournet, Gabrielle

    2016-01-01

    This PhD thesis is centered on the study of the IVIM ('Intravoxel Incoherent Motion') MRI sequence. This sequence allows for the study of the blood microvasculature such as the capillaries, arterioles and venules. To be sensitive only to moving groups of spins, diffusion gradients are added before and after the 180 degrees pulse of a spin echo (SE) sequence. The signal component corresponding to spins diffusing in the tissue can be separated from the one related to spins travelling in the blood vessels which is called the IVIM signal. These two components are weighted by f IVIM which represents the volume fraction of blood inside the tissue. The IVIM signal is usually modelled by a mono-exponential (ME) function and characterized by a pseudo-diffusion coefficient, D*. We propose instead a bi-exponential IVIM model consisting of a slow pool, characterized by F slow and D* slow corresponding to the capillaries as in the ME model, and a fast pool, characterized by F fast and D* fast, related to larger vessels such as medium-size arterioles and venules. This model was validated experimentally and more information was retrieved by comparing the experimental signals to a dictionary of simulated IVIM signals. The influence of the pulse sequence, the repetition time and the diffusion encoding time was also studied. Finally, the IVIM sequence was applied to the study of an animal model of Alzheimer's disease. (author) [fr

  8. Analytical thermal model validation for Cassini radioisotope thermoelectric generator

    International Nuclear Information System (INIS)

    Lin, E.I.

    1997-01-01

    The Saturn-bound Cassini spacecraft is designed to rely, without precedent, on the waste heat from its three radioisotope thermoelectric generators (RTGs) to warm the propulsion module subsystem, and the RTG end dome temperature is a key determining factor of the amount of waste heat delivered. A previously validated SINDA thermal model of the RTG was the sole guide to understanding its complex thermal behavior, but displayed large discrepancies against some initial thermal development test data. A careful revalidation effort led to significant modifications and adjustments of the model, which result in a doubling of the radiative heat transfer from the heat source support assemblies to the end domes and bring up the end dome and flange temperature predictions to within 2 C of the pertinent test data. The increased inboard end dome temperature has a considerable impact on thermal control of the spacecraft central body. The validation process offers an example of physically-driven analytical model calibration with test data from not only an electrical simulator but also a nuclear-fueled flight unit, and has established the end dome temperatures of a flight RTG where no in-flight or ground-test data existed before

  9. UML in business process modeling

    Directory of Open Access Journals (Sweden)

    Bartosz Marcinkowski

    2013-03-01

    Full Text Available Selection and proper application of business process modeling methods and techniques have a significant impact on organizational improvement capabilities as well as proper understanding of functionality of information systems that shall support activity of the organization. A number of business process modeling notations were popularized in practice in recent decades. Most significant of the notations include Business Process Modeling Notation (OMG BPMN and several Unified Modeling Language (OMG UML extensions. In this paper, the assessment whether one of the most flexible and strictly standardized contemporary business process modeling notations, i.e. Rational UML Profile for Business Modeling, enable business analysts to prepare business models that are all-embracing and understandable by all the stakeholders. After the introduction, methodology of research is discussed. Section 2 presents selected case study results. The paper is concluded with a summary.

  10. Validating modeled turbulent heat fluxes across large freshwater surfaces

    Science.gov (United States)

    Lofgren, B. M.; Fujisaki-Manome, A.; Gronewold, A.; Anderson, E. J.; Fitzpatrick, L.; Blanken, P.; Spence, C.; Lenters, J. D.; Xiao, C.; Charusambot, U.

    2017-12-01

    Turbulent fluxes of latent and sensible heat are important physical processes that influence the energy and water budgets of the Great Lakes. Validation and improvement of bulk flux algorithms to simulate these turbulent heat fluxes are critical for accurate prediction of hydrodynamics, water levels, weather, and climate over the region. Here we consider five heat flux algorithms from several model systems; the Finite-Volume Community Ocean Model, the Weather Research and Forecasting model, and the Large Lake Thermodynamics Model, which are used in research and operational environments and concentrate on different aspects of the Great Lakes' physical system, but interface at the lake surface. The heat flux algorithms were isolated from each model and driven by meteorological data from over-lake stations in the Great Lakes Evaporation Network. The simulation results were compared with eddy covariance flux measurements at the same stations. All models show the capacity to the seasonal cycle of the turbulent heat fluxes. Overall, the Coupled Ocean Atmosphere Response Experiment algorithm in FVCOM has the best agreement with eddy covariance measurements. Simulations with the other four algorithms are overall improved by updating the parameterization of roughness length scales of temperature and humidity. Agreement between modelled and observed fluxes notably varied with geographical locations of the stations. For example, at the Long Point station in Lake Erie, observed fluxes are likely influenced by the upwind land surface while the simulations do not take account of the land surface influence, and therefore the agreement is worse in general.

  11. Business Process Modeling: Perceived Benefits

    Science.gov (United States)

    Indulska, Marta; Green, Peter; Recker, Jan; Rosemann, Michael

    The process-centered design of organizations and information systems is globally seen as an appropriate response to the increased economic pressure on organizations. At the methodological core of process-centered management is process modeling. However, business process modeling in large initiatives can be a time-consuming and costly exercise, making it potentially difficult to convince executive management of its benefits. To date, and despite substantial interest and research in the area of process modeling, the understanding of the actual benefits of process modeling in academia and practice is limited. To address this gap, this paper explores the perception of benefits derived from process modeling initiatives, as reported through a global Delphi study. The study incorporates the views of three groups of stakeholders - academics, practitioners and vendors. Our findings lead to the first identification and ranking of 19 unique benefits associated with process modeling. The study in particular found that process modeling benefits vary significantly between practitioners and academics. We argue that the variations may point to a disconnect between research projects and practical demands.

  12. Reactor core modeling practice: Operational requirements, model characteristics, and model validation

    International Nuclear Information System (INIS)

    Zerbino, H.

    1997-01-01

    The physical models implemented in power plant simulators have greatly increased in performance and complexity in recent years. This process has been enabled by the ever increasing computing power available at affordable prices. This paper describes this process from several angles: First the operational requirements which are more critical from the point of view of model performance, both for normal and off-normal operating conditions; A second section discusses core model characteristics in the light of the solutions implemented by Thomson Training and Simulation (TT and S) in several full-scope simulators recently built and delivered for Dutch, German, and French nuclear power plants; finally we consider the model validation procedures, which are of course an integral part of model development, and which are becoming more and more severe as performance expectations increase. As a conclusion, it may be asserted that in the core modeling field, as in other areas, the general improvement in the quality of simulation codes has resulted in a fairly rapid convergence towards mainstream engineering-grade calculations. This is remarkable performance in view of the stringent real-time requirements which the simulation codes must satisfy as well as the extremely wide range of operating conditions that they are called upon to cover with good accuracy. (author)

  13. Object-oriented simulation model of a parabolic trough solar collector: Static and dynamic validation

    Science.gov (United States)

    Ubieta, Eduardo; Hoyo, Itzal del; Valenzuela, Loreto; Lopez-Martín, Rafael; Peña, Víctor de la; López, Susana

    2017-06-01

    A simulation model of a parabolic-trough solar collector developed in Modelica® language is calibrated and validated. The calibration is performed in order to approximate the behavior of the solar collector model to a real one due to the uncertainty in some of the system parameters, i.e. measured data is used during the calibration process. Afterwards, the validation of this calibrated model is done. During the validation, the results obtained from the model are compared to the ones obtained during real operation in a collector from the Plataforma Solar de Almeria (PSA).

  14. Conceptual models of information processing

    Science.gov (United States)

    Stewart, L. J.

    1983-01-01

    The conceptual information processing issues are examined. Human information processing is defined as an active cognitive process that is analogous to a system. It is the flow and transformation of information within a human. The human is viewed as an active information seeker who is constantly receiving, processing, and acting upon the surrounding environmental stimuli. Human information processing models are conceptual representations of cognitive behaviors. Models of information processing are useful in representing the different theoretical positions and in attempting to define the limits and capabilities of human memory. It is concluded that an understanding of conceptual human information processing models and their applications to systems design leads to a better human factors approach.

  15. Business process modeling in healthcare.

    Science.gov (United States)

    Ruiz, Francisco; Garcia, Felix; Calahorra, Luis; Llorente, César; Gonçalves, Luis; Daniel, Christel; Blobel, Bernd

    2012-01-01

    The importance of the process point of view is not restricted to a specific enterprise sector. In the field of health, as a result of the nature of the service offered, health institutions' processes are also the basis for decision making which is focused on achieving their objective of providing quality medical assistance. In this chapter the application of business process modelling - using the Business Process Modelling Notation (BPMN) standard is described. Main challenges of business process modelling in healthcare are the definition of healthcare processes, the multi-disciplinary nature of healthcare, the flexibility and variability of the activities involved in health care processes, the need of interoperability between multiple information systems, and the continuous updating of scientific knowledge in healthcare.

  16. Modeling nuclear processes by Simulink

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Nahrul Khair Alang Md, E-mail: nahrul@iium.edu.my [Faculty of Engineering, International Islamic University Malaysia, Jalan Gombak, Selangor (Malaysia)

    2015-04-29

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.

  17. Modeling nuclear processes by Simulink

    International Nuclear Information System (INIS)

    Rashid, Nahrul Khair Alang Md

    2015-01-01

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples

  18. MT3DMS: Model use, calibration, and validation

    Science.gov (United States)

    Zheng, C.; Hill, Mary C.; Cao, G.; Ma, R.

    2012-01-01

    MT3DMS is a three-dimensional multi-species solute transport model for solving advection, dispersion, and chemical reactions of contaminants in saturated groundwater flow systems. MT3DMS interfaces directly with the U.S. Geological Survey finite-difference groundwater flow model MODFLOW for the flow solution and supports the hydrologic and discretization features of MODFLOW. MT3DMS contains multiple transport solution techniques in one code, which can often be important, including in model calibration. Since its first release in 1990 as MT3D for single-species mass transport modeling, MT3DMS has been widely used in research projects and practical field applications. This article provides a brief introduction to MT3DMS and presents recommendations about calibration and validation procedures for field applications of MT3DMS. The examples presented suggest the need to consider alternative processes as models are calibrated and suggest opportunities and difficulties associated with using groundwater age in transport model calibration.

  19. Evaluation factors for verification and validation of low-level waste disposal site models

    International Nuclear Information System (INIS)

    Moran, M.S.; Mezga, L.J.

    1982-01-01

    The purpose of this paper is to identify general evaluation factors to be used to verify and validate LLW disposal site performance models in order to assess their site-specific applicability and to determine their accuracy and sensitivity. It is intended that the information contained in this paper be employed by model users involved with LLW site performance model verification and validation. It should not be construed as providing protocols, but rather as providing a framework for the preparation of specific protocols or procedures. A brief description of each evaluation factor is provided. The factors have been categorized according to recommended use during either the model verification or the model validation process. The general responsibilities of the developer and user are provided. In many cases it is difficult to separate the responsibilities of the developer and user, but the user is ultimately accountable for both verification and validation processes. 4 refs

  20. Process modelling and optimization of osmotic dehydration assisted ...

    African Journals Online (AJOL)

    ... ash content, water loss and solid gain were estimated as quality parameters. Model equations were developed with Essential Regression (ESSREG) software package which related output parameters to process variables and validated.

  1. Models for Validation of Prior Learning (VPL)

    DEFF Research Database (Denmark)

    Ehlers, Søren

    The national policies for the education/training of adults are in the 21st century highly influenced by proposals which are formulated and promoted by The European Union (EU) as well as other transnational players and this shift in policy making has consequences. One is that ideas which in the past...... would have been categorized as utopian can become realpolitik. Validation of Prior Learning (VPL) was in Europe mainly regarded as utopian while universities in the United States of America (USA) were developing ways to obtain credits to those students which was coming with experiences from working life....

  2. modeling grinding modeling grinding processes as micro processes

    African Journals Online (AJOL)

    eobe

    industrial precision grinding processes are cylindrical, center less and ... Several model shave been proposed and used to study grinding ..... grinding force for the two cases were 9.07237N/mm ..... International Journal of Machine Tools &.

  3. Modeling and validation of existing VAV system components

    Energy Technology Data Exchange (ETDEWEB)

    Nassif, N.; Kajl, S.; Sabourin, R. [Ecole de Technologie Superieure, Montreal, PQ (Canada)

    2004-07-01

    The optimization of supervisory control strategies and local-loop controllers can improve the performance of HVAC (heating, ventilating, air-conditioning) systems. In this study, the component model of the fan, the damper and the cooling coil were developed and validated against monitored data of an existing variable air volume (VAV) system installed at Montreal's Ecole de Technologie Superieure. The measured variables that influence energy use in individual HVAC models included: (1) outdoor and return air temperature and relative humidity, (2) supply air and water temperatures, (3) zone airflow rates, (4) supply duct, outlet fan, mixing plenum static pressures, (5) fan speed, and (6) minimum and principal damper and cooling and heating coil valve positions. The additional variables that were considered, but not measured were: (1) fan and outdoor airflow rate, (2) inlet and outlet cooling coil relative humidity, and (3) liquid flow rate through the heating or cooling coils. The paper demonstrates the challenges of the validation process when monitored data of existing VAV systems are used. 7 refs., 11 figs.

  4. Assessing Discriminative Performance at External Validation of Clinical Prediction Models.

    Directory of Open Access Journals (Sweden)

    Daan Nieboer

    Full Text Available External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting.We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1 the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2 the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury.The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples and heterogeneous in scenario 2 (in 17%-39% of simulated samples. Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2.The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients.

  5. Retort process modelling for Indian traditional foods.

    Science.gov (United States)

    Gokhale, S V; Lele, S S

    2014-11-01

    Indian traditional staple and snack food is typically a heterogeneous recipe that incorporates varieties of vegetables, lentils and other ingredients. Modelling the retorting process of multilayer pouch packed Indian food was achieved using lumped-parameter approach. A unified model is proposed to estimate cold point temperature. Initial process conditions, retort temperature and % solid content were the significantly affecting independent variables. A model was developed using combination of vegetable solids and water, which was then validated using four traditional Indian vegetarian products: Pulav (steamed rice with vegetables), Sambar (south Indian style curry containing mixed vegetables and lentils), Gajar Halawa (carrot based sweet product) and Upama (wheat based snack product). The predicted and experimental values of temperature profile matched with ±10 % error which is a good match considering the food was a multi component system. Thus the model will be useful as a tool to reduce number of trials required to optimize retorting of various Indian traditional vegetarian foods.

  6. Multi-enzyme Process Modeling

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia

    are affected (in a positive or negative way) by the presence of the other enzymes and compounds in the media. In this thesis the concept of multi-enzyme in-pot term is adopted for processes that are carried out by the combination of enzymes in a single reactor and implemented at pilot or industrial scale...... features of the process and provides the information required to structure the process model by using a step-by-step procedure with the required tools and methods. In this way, this framework increases efficiency of the model development process with respect to time and resources needed (fast and effective....... In this way the model parameters that drives the main dynamic behavior can be identified and thus a better understanding of this type of processes. In order to develop, test and verify the methodology, three case studies were selected, specifically the bi-enzyme process for the production of lactobionic acid...

  7. Sato Processes in Default Modeling

    DEFF Research Database (Denmark)

    Kokholm, Thomas; Nicolato, Elisa

    -change of a homogeneous Levy process. While the processes in these two classes share the same average behavior over time, the associated intensities exhibit very different properties. Concrete specifications are calibrated to data on the single names included in the iTraxx Europe index. The performances are compared......In reduced form default models, the instantaneous default intensity is classically the modeling object. Survival probabilities are then given by the Laplace transform of the cumulative hazard defined as the integrated intensity process. Instead, recent literature has shown a tendency towards...... specifying the cumulative hazard process directly. Within this framework we present a new model class where cumulative hazards are described by self-similar additive processes, also known as Sato processes. Furthermore we also analyze specifications obtained via a simple deterministic time...

  8. Validating a model that predicts daily growth and feed quality of New Zealand dairy pastures.

    Science.gov (United States)

    Woodward, S J

    2001-09-01

    The Pasture Quality (PQ) model is a simple, mechanistic, dynamical system model that was designed to capture the essential biological processes in grazed grass-clover pasture, and to be optimised to derive improved grazing strategies for New Zealand dairy farms. While the individual processes represented in the model (photosynthesis, tissue growth, flowering, leaf death, decomposition, worms) were based on experimental data, this did not guarantee that the assembled model would accurately predict the behaviour of the system as a whole (i.e., pasture growth and quality). Validation of the whole model was thus a priority, since any strategy derived from the model could impact a farm business in the order of thousands of dollars per annum if adopted. This paper describes the process of defining performance criteria for the model, obtaining suitable data to test the model, and carrying out the validation analysis. The validation process highlighted a number of weaknesses in the model, which will lead to the model being improved. As a result, the model's utility will be enhanced. Furthermore, validation was found to have an unexpected additional benefit, in that despite the model's poor initial performance, support was generated for the model among field scientists involved in the wider project.

  9. Experimental Validation of Flow Force Models for Fast Switching Valves

    DEFF Research Database (Denmark)

    Bender, Niels Christian; Pedersen, Henrik Clemmensen; Nørgård, Christian

    2017-01-01

    This paper comprises a detailed study of the forces acting on a Fast Switching Valve (FSV) plunger. The objective is to investigate to what extend different models are valid to be used for design purposes. These models depend on the geometry of the moving plunger and the properties of the surroun......This paper comprises a detailed study of the forces acting on a Fast Switching Valve (FSV) plunger. The objective is to investigate to what extend different models are valid to be used for design purposes. These models depend on the geometry of the moving plunger and the properties...... to compare and validate different models, where an effort is directed towards capturing the fluid squeeze effect just before material on material contact. The test data is compared with simulation data relying solely on analytic formulations. The general dynamics of the plunger is validated...

  10. Validation of elk resource selection models with spatially independent data

    Science.gov (United States)

    Priscilla K. Coe; Bruce K. Johnson; Michael J. Wisdom; John G. Cook; Marty Vavra; Ryan M. Nielson

    2011-01-01

    Knowledge of how landscape features affect wildlife resource use is essential for informed management. Resource selection functions often are used to make and validate predictions about landscape use; however, resource selection functions are rarely validated with data from landscapes independent of those from which the models were built. This problem has severely...

  11. A Practical Approach to Validating a PD Model

    NARCIS (Netherlands)

    Medema, L.; Koning, de R.; Lensink, B.W.

    2009-01-01

    The capital adequacy framework Basel II aims to promote the adoption of stronger risk management practices by the banking industry. The implementation makes validation of credit risk models more important. Lenders therefore need a validation methodology to convince their supervisors that their

  12. A practical approach to validating a PD model

    NARCIS (Netherlands)

    Medema, Lydian; Koning, Ruud H.; Lensink, Robert; Medema, M.

    The capital adequacy framework Basel II aims to promote the adoption of stronger risk management practices by the banking industry. The implementation makes validation of credit risk models more important. Lenders therefore need a validation methodology to convince their supervisors that their

  13. Amendment to Validated dynamic flow model

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2011-01-01

    The purpose of WP2 is to establish flow models relating the wind speed at turbines in a farm. Until now, active control of power reference has not been included in these models as only data with standard operation has been available. In this report the first data series with power reference excit...... turbine in undisturbed flow. For this data set both the multiplicative model and in particular the simple first order transfer function model can predict the down wind wind speed from upwind wind speed and loading.......The purpose of WP2 is to establish flow models relating the wind speed at turbines in a farm. Until now, active control of power reference has not been included in these models as only data with standard operation has been available. In this report the first data series with power reference...

  14. Best practice strategies for validation of micro moulding process simulation

    DEFF Research Database (Denmark)

    Costa, Franco; Tosello, Guido; Whiteside, Ben

    2009-01-01

    are the optimization of the moulding process and of the tool using simulation techniques. Therefore, in polymer micro manufacturing technology, software simulation tools adapted from conventional injection moulding can provide useful assistance for the optimization of moulding tools, mould inserts, micro component...... are discussed. Recommendations regarding sampling rate, meshing quality, filling analysis methods (micro short shots, flow visualization) and machine geometry modelling are given on the basis of the comparison between simulated and experimental results within the two considered study cases.......Simulation programs in polymer micro replication technology are used for the same reasons as in conventional injection moulding. To avoid the risks of costly re-engineering, the moulding process is simulated before starting the actual manufacturing process. Important economic factors...

  15. Validation of a Global Hydrodynamic Flood Inundation Model

    Science.gov (United States)

    Bates, P. D.; Smith, A.; Sampson, C. C.; Alfieri, L.; Neal, J. C.

    2014-12-01

    In this work we present first validation results for a hyper-resolution global flood inundation model. We use a true hydrodynamic model (LISFLOOD-FP) to simulate flood inundation at 1km resolution globally and then use downscaling algorithms to determine flood extent and depth at 90m spatial resolution. Terrain data are taken from a custom version of the SRTM data set that has been processed specifically for hydrodynamic modelling. Return periods of flood flows along the entire global river network are determined using: (1) empirical relationships between catchment characteristics and index flood magnitude in different hydroclimatic zones derived from global runoff data; and (2) an index flood growth curve, also empirically derived. Bankful return period flow is then used to set channel width and depth, and flood defence impacts are modelled using empirical relationships between GDP, urbanization and defence standard of protection. The results of these simulations are global flood hazard maps for a number of different return period events from 1 in 5 to 1 in 1000 years. We compare these predictions to flood hazard maps developed by national government agencies in the UK and Germany using similar methods but employing detailed local data, and to observed flood extent at a number of sites including St. Louis, USA and Bangkok in Thailand. Results show that global flood hazard models can have considerable skill given careful treatment to overcome errors in the publicly available data that are used as their input.

  16. A validated physical model of greenhouse climate.

    NARCIS (Netherlands)

    Bot, G.P.A.

    1989-01-01

    In the greenhouse model the momentaneous environmental crop growth factors are calculated as output, together with the physical behaviour of the crop. The boundary conditions for this model are the outside weather conditions; other inputs are the physical characteristics of the crop, of the

  17. Markov Decision Process Measurement Model.

    Science.gov (United States)

    LaMar, Michelle M

    2018-03-01

    Within-task actions can provide additional information on student competencies but are challenging to model. This paper explores the potential of using a cognitive model for decision making, the Markov decision process, to provide a mapping between within-task actions and latent traits of interest. Psychometric properties of the model are explored, and simulation studies report on parameter recovery within the context of a simple strategy game. The model is then applied to empirical data from an educational game. Estimates from the model are found to correlate more strongly with posttest results than a partial-credit IRT model based on outcome data alone.

  18. PEANO, a toolbox for real-time process signal validation and estimation

    Energy Technology Data Exchange (ETDEWEB)

    Fantoni, Paolo F.; Figedy, Stefan; Racz, Attila

    1998-02-01

    PEANO (Process Evaluation and Analysis by Neural Operators), a toolbox for real time process signal validation and condition monitoring has been developed. This system analyses the signals, which are e.g. the readings of process monitoring sensors, computes their expected values and alerts if real values are deviated from the expected ones more than limits allow. The reliability level of the current analysis is also produced. The system is based on neuro-fuzzy techniques. Artificial Neural Networks and Fuzzy Logic models can be combined to exploit learning and generalisation capability of the first technique with the approximate reasoning embedded in the second approach. Real-time process signal validation is an application field where the use of this technique can improve the diagnosis of faulty sensors and the identification of outliers in a robust and reliable way. This study implements a fuzzy and possibilistic clustering algorithm to classify the operating region where the validation process has to be performed. The possibilistic approach (rather than probabilistic) allows a ''don't know'' classification that results in a fast detection of unforeseen plant conditions or outliers. Specialised Artificial Neural Networks are used for the validation process, one for each fuzzy cluster in which the operating map has been divided. There are two main advantages in using this technique: the accuracy and generalisation capability is increased compared to the case of a single network working in the entire operating region, and the ability to identify abnormal conditions, where the system is not capable to operate with a satisfactory accuracy, is improved. This model has been tested in a simulated environment on a French PWR, to monitor safety-related reactor variables over the entire power-flow operating map. (author)

  19. PEANO, a toolbox for real-time process signal validation and estimation

    International Nuclear Information System (INIS)

    Fantoni, Paolo F.; Figedy, Stefan; Racz, Attila

    1998-02-01

    PEANO (Process Evaluation and Analysis by Neural Operators), a toolbox for real time process signal validation and condition monitoring has been developed. This system analyses the signals, which are e.g. the readings of process monitoring sensors, computes their expected values and alerts if real values are deviated from the expected ones more than limits allow. The reliability level of the current analysis is also produced. The system is based on neuro-fuzzy techniques. Artificial Neural Networks and Fuzzy Logic models can be combined to exploit learning and generalisation capability of the first technique with the approximate reasoning embedded in the second approach. Real-time process signal validation is an application field where the use of this technique can improve the diagnosis of faulty sensors and the identification of outliers in a robust and reliable way. This study implements a fuzzy and possibilistic clustering algorithm to classify the operating region where the validation process has to be performed. The possibilistic approach (rather than probabilistic) allows a ''don't know'' classification that results in a fast detection of unforeseen plant conditions or outliers. Specialised Artificial Neural Networks are used for the validation process, one for each fuzzy cluster in which the operating map has been divided. There are two main advantages in using this technique: the accuracy and generalisation capability is increased compared to the case of a single network working in the entire operating region, and the ability to identify abnormal conditions, where the system is not capable to operate with a satisfactory accuracy, is improved. This model has been tested in a simulated environment on a French PWR, to monitor safety-related reactor variables over the entire power-flow operating map. (author)

  20. Social Models: Blueprints or Processes?

    Science.gov (United States)

    Little, Graham R.

    1981-01-01

    Discusses the nature and implications of two different models for societal planning: (1) the problem-solving process approach based on Karl Popper; and (2) the goal-setting "blueprint" approach based on Karl Marx. (DC)

  1. Simple Models for Process Control

    Czech Academy of Sciences Publication Activity Database

    Gorez, R.; Klán, Petr

    2011-01-01

    Roč. 22, č. 2 (2011), s. 58-62 ISSN 0929-2268 Institutional research plan: CEZ:AV0Z10300504 Keywords : process model s * PID control * second order dynamics Subject RIV: JB - Sensors, Measurment, Regulation

  2. Statistical Validation of Engineering and Scientific Models: Background

    International Nuclear Information System (INIS)

    Hills, Richard G.; Trucano, Timothy G.

    1999-01-01

    A tutorial is presented discussing the basic issues associated with propagation of uncertainty analysis and statistical validation of engineering and scientific models. The propagation of uncertainty tutorial illustrates the use of the sensitivity method and the Monte Carlo method to evaluate the uncertainty in predictions for linear and nonlinear models. Four example applications are presented; a linear model, a model for the behavior of a damped spring-mass system, a transient thermal conduction model, and a nonlinear transient convective-diffusive model based on Burger's equation. Correlated and uncorrelated model input parameters are considered. The model validation tutorial builds on the material presented in the propagation of uncertainty tutoriaI and uses the damp spring-mass system as the example application. The validation tutorial illustrates several concepts associated with the application of statistical inference to test model predictions against experimental observations. Several validation methods are presented including error band based, multivariate, sum of squares of residuals, and optimization methods. After completion of the tutorial, a survey of statistical model validation literature is presented and recommendations for future work are made

  3. Validity of microgravity simulation models on earth

    DEFF Research Database (Denmark)

    Regnard, J; Heer, M; Drummer, C

    2001-01-01

    Many studies have used water immersion and head-down bed rest as experimental models to simulate responses to microgravity. However, some data collected during space missions are at variance or in contrast with observations collected from experimental models. These discrepancies could reflect...... incomplete knowledge of the characteristics inherent to each model. During water immersion, the hydrostatic pressure lowers the peripheral vascular capacity and causes increased thoracic blood volume and high vascular perfusion. In turn, these changes lead to high urinary flow, low vasomotor tone, and a high...

  4. Numerical modeling and experimental validation of thermoplastic composites induction welding

    Science.gov (United States)

    Palmieri, Barbara; Nele, Luigi; Galise, Francesco

    2018-05-01

    In this work, a numerical simulation and experimental test of the induction welding of continuous fibre-reinforced thermoplastic composites (CFRTPCs) was provided. The thermoplastic Polyamide 66 (PA66) with carbon fiber fabric was used. Using a dedicated software (JMag Designer), the influence of the fundamental process parameters such as temperature, current and holding time was investigated. In order to validate the results of the simulations, and therefore the numerical model used, experimental tests were carried out, and the temperature values measured during the tests were compared with the aid of an optical pyrometer, with those provided by the numerical simulation. The mechanical properties of the welded joints were evaluated by single lap shear tests.

  5. Sewer solids separation by sedimentation--the problem of modeling, validation and transferability.

    Science.gov (United States)

    Kutzner, R; Brombach, H; Geiger, W F

    2007-01-01

    Sedimentation of sewer solids in tanks, ponds and similar devices is the most relevant process for the treatment of stormwater and combined sewer overflows in urban collecting systems. In the past a lot of research work was done to develop deterministic models for the description of this separation process. But these modern models are not commonly accepted in Germany until today. Water Authorities are sceptical with regard to model validation and transferability. Within this paper it is checked whether this scepticism is reasonable. A framework-proposal for the validation of mathematical models with zero or one dimensional spatial resolution for particle separation processes for stormwater and combined sewer overflow treatment is presented. This proposal was applied to publications of repute on sewer solids separation by sedimentation. The result was that none of the investigated models described in literature passed the validation entirely. There is an urgent need for future research in sewer solids sedimentation and remobilization!

  6. Verification and Validation in a Rapid Software Development Process

    Science.gov (United States)

    Callahan, John R.; Easterbrook, Steve M.

    1997-01-01

    The high cost of software production is driving development organizations to adopt more automated design and analysis methods such as rapid prototyping, computer-aided software engineering (CASE) tools, and high-level code generators. Even developers of safety-critical software system have adopted many of these new methods while striving to achieve high levels Of quality and reliability. While these new methods may enhance productivity and quality in many cases, we examine some of the risks involved in the use of new methods in safety-critical contexts. We examine a case study involving the use of a CASE tool that automatically generates code from high-level system designs. We show that while high-level testing on the system structure is highly desirable, significant risks exist in the automatically generated code and in re-validating releases of the generated code after subsequent design changes. We identify these risks and suggest process improvements that retain the advantages of rapid, automated development methods within the quality and reliability contexts of safety-critical projects.

  7. Base Flow Model Validation, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The program focuses on turbulence modeling enhancements for predicting high-speed rocket base flows. A key component of the effort is the collection of high-fidelity...

  8. Verification and validation process for the safety software in KNICS

    International Nuclear Information System (INIS)

    Kwon, Kee-Choon; Lee, Jang-Soo; Kim, Jang-Yeol

    2004-01-01

    This paper describes the Verification and Validation (V and V ) process for safety software of Programmable Logic Controller (PLC), Digital Reactor Protection System (DRPS), and Engineered Safety Feature-Component Control System (ESF-CCS) that are being developed in Korea Nuclear Instrumentation and Control System (KNICS) projects. Specifically, it presents DRPS V and V experience according to the software development life cycle. The main activities of DRPS V and V process are preparation of software planning documentation, verification of Software Requirement Specification (SRS), Software Design Specification (SDS) and codes, and testing of the integrated software and the integrated system. In addition, they include software safety analysis and software configuration management. SRS V and V of DRPS are technical evaluation, licensing suitability evaluation, inspection and traceability analysis, formal verification, preparing integrated system test plan, software safety analysis, and software configuration management. Also, SDS V and V of RPS are technical evaluation, licensing suitability evaluation, inspection and traceability analysis, formal verification, preparing integrated software test plan, software safety analysis, and software configuration management. The code V and V of DRPS are traceability analysis, source code inspection, test case and test procedure generation, software safety analysis, and software configuration management. Testing is the major V and V activity of software integration and system integration phase. Software safety analysis at SRS phase uses Hazard Operability (HAZOP) method, at SDS phase it uses HAZOP and Fault Tree Analysis (FTA), and at implementation phase it uses FTA. Finally, software configuration management is performed using Nu-SCM (Nuclear Software Configuration Management) tool developed by KNICS project. Through these activities, we believe we can achieve the functionality, performance, reliability and safety that are V

  9. Validating predictions from climate envelope models.

    Directory of Open Access Journals (Sweden)

    James I Watling

    Full Text Available Climate envelope models are a potentially important conservation tool, but their ability to accurately forecast species' distributional shifts using independent survey data has not been fully evaluated. We created climate envelope models for 12 species of North American breeding birds previously shown to have experienced poleward range shifts. For each species, we evaluated three different approaches to climate envelope modeling that differed in the way they treated climate-induced range expansion and contraction, using random forests and maximum entropy modeling algorithms. All models were calibrated using occurrence data from 1967-1971 (t1 and evaluated using occurrence data from 1998-2002 (t2. Model sensitivity (the ability to correctly classify species presences was greater using the maximum entropy algorithm than the random forest algorithm. Although sensitivity did not differ significantly among approaches, for many species, sensitivity was maximized using a hybrid approach that assumed range expansion, but not contraction, in t2. Species for which the hybrid approach resulted in the greatest improvement in sensitivity have been reported from more land cover types than species for which there was little difference in sensitivity between hybrid and dynamic approaches, suggesting that habitat generalists may be buffered somewhat against climate-induced range contractions. Specificity (the ability to correctly classify species absences was maximized using the random forest algorithm and was lowest using the hybrid approach. Overall, our results suggest cautious optimism for the use of climate envelope models to forecast range shifts, but also underscore the importance of considering non-climate drivers of species range limits. The use of alternative climate envelope models that make different assumptions about range expansion and contraction is a new and potentially useful way to help inform our understanding of climate change effects on

  10. Validating predictions from climate envelope models

    Science.gov (United States)

    Watling, J.; Bucklin, D.; Speroterra, C.; Brandt, L.; Cabal, C.; Romañach, Stephanie S.; Mazzotti, Frank J.

    2013-01-01

    Climate envelope models are a potentially important conservation tool, but their ability to accurately forecast species’ distributional shifts using independent survey data has not been fully evaluated. We created climate envelope models for 12 species of North American breeding birds previously shown to have experienced poleward range shifts. For each species, we evaluated three different approaches to climate envelope modeling that differed in the way they treated climate-induced range expansion and contraction, using random forests and maximum entropy modeling algorithms. All models were calibrated using occurrence data from 1967–1971 (t1) and evaluated using occurrence data from 1998–2002 (t2). Model sensitivity (the ability to correctly classify species presences) was greater using the maximum entropy algorithm than the random forest algorithm. Although sensitivity did not differ significantly among approaches, for many species, sensitivity was maximized using a hybrid approach that assumed range expansion, but not contraction, in t2. Species for which the hybrid approach resulted in the greatest improvement in sensitivity have been reported from more land cover types than species for which there was little difference in sensitivity between hybrid and dynamic approaches, suggesting that habitat generalists may be buffered somewhat against climate-induced range contractions. Specificity (the ability to correctly classify species absences) was maximized using the random forest algorithm and was lowest using the hybrid approach. Overall, our results suggest cautious optimism for the use of climate envelope models to forecast range shifts, but also underscore the importance of considering non-climate drivers of species range limits. The use of alternative climate envelope models that make different assumptions about range expansion and contraction is a new and potentially useful way to help inform our understanding of climate change effects on species.

  11. Model feedstock supply processing plants

    Directory of Open Access Journals (Sweden)

    V. M. Bautin

    2013-01-01

    Full Text Available The model of raw providing the processing enterprises entering into vertically integrated structure on production and processing of dairy raw materials, differing by an orientation on achievement of cumulative effect by the integrated structure acting as criterion function which maximizing is reached by optimization of capacities, volumes of deliveries of raw materials and its qualitative characteristics, costs of industrial processing of raw materials and demand for dairy production is developed.

  12. Validation of Hydrodynamic Numerical Model of a Pitching Wave Energy Converter

    DEFF Research Database (Denmark)

    López, Maria del Pilar Heras; Thomas, Sarah; Kramer, Morten Mejlhede

    2017-01-01

    Validation of numerical model is essential in the development of new technologies. Commercial software and codes available simulating wave energy converters (WECs) have not been proved to work for all the available and upcoming technologies yet. The present paper presents the first stages...... of the validation process of a hydrodynamic numerical model for a pitching wave energy converter. The development of dry tests, wave flume and wave basin experiments are going to be explained, lessons learned shared and results presented....

  13. Funding for the 2ND IAEA technical meeting on fusion data processing, validation and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Greenwald, Martin

    2017-06-02

    The International Atomic Energy Agency (IAEA) will organize the second Technical Meeting on Fusion Da Processing, Validation and Analysis from 30 May to 02 June, 2017, in Cambridge, MA USA. The meeting w be hosted by the MIT Plasma Science and Fusion Center (PSFC). The objective of the meeting is to provide a platform where a set of topics relevant to fusion data processing, validation and analysis are discussed with the view of extrapolation needs to next step fusion devices such as ITER. The validation and analysis of experimental data obtained from diagnostics used to characterize fusion plasmas are crucial for a knowledge based understanding of the physical processes governing the dynamics of these plasmas. The meeting will aim at fostering, in particular, discussions of research and development results that set out or underline trends observed in the current major fusion confinement devices. General information on the IAEA, including its mission and organization, can be found at the IAEA websit Uncertainty quantification (UQ) Model selection, validation, and verification (V&V) Probability theory and statistical analysis Inverse problems & equilibrium reconstru ction Integrated data analysis Real time data analysis Machine learning Signal/image proc essing & pattern recognition Experimental design and synthetic diagnostics Data management

  14. Validation and calibration of structural models that combine information from multiple sources.

    Science.gov (United States)

    Dahabreh, Issa J; Wong, John B; Trikalinos, Thomas A

    2017-02-01

    Mathematical models that attempt to capture structural relationships between their components and combine information from multiple sources are increasingly used in medicine. Areas covered: We provide an overview of methods for model validation and calibration and survey studies comparing alternative approaches. Expert commentary: Model validation entails a confrontation of models with data, background knowledge, and other models, and can inform judgments about model credibility. Calibration involves selecting parameter values to improve the agreement of model outputs with data. When the goal of modeling is quantitative inference on the effects of interventions or forecasting, calibration can be viewed as estimation. This view clarifies issues related to parameter identifiability and facilitates formal model validation and the examination of consistency among different sources of information. In contrast, when the goal of modeling is the generation of qualitative insights about the modeled phenomenon, calibration is a rather informal process for selecting inputs that result in model behavior that roughly reproduces select aspects of the modeled phenomenon and cannot be equated to an estimation procedure. Current empirical research on validation and calibration methods consists primarily of methodological appraisals or case-studies of alternative techniques and cannot address the numerous complex and multifaceted methodological decisions that modelers must make. Further research is needed on different approaches for developing and validating complex models that combine evidence from multiple sources.

  15. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    Science.gov (United States)

    Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing

    2013-10-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests

  16. Validating neural-network refinements of nuclear mass models

    Science.gov (United States)

    Utama, R.; Piekarewicz, J.

    2018-01-01

    Background: Nuclear astrophysics centers on the role of nuclear physics in the cosmos. In particular, nuclear masses at the limits of stability are critical in the development of stellar structure and the origin of the elements. Purpose: We aim to test and validate the predictions of recently refined nuclear mass models against the newly published AME2016 compilation. Methods: The basic paradigm underlining the recently refined nuclear mass models is based on existing state-of-the-art models that are subsequently refined through the training of an artificial neural network. Bayesian inference is used to determine the parameters of the neural network so that statistical uncertainties are provided for all model predictions. Results: We observe a significant improvement in the Bayesian neural network (BNN) predictions relative to the corresponding "bare" models when compared to the nearly 50 new masses reported in the AME2016 compilation. Further, AME2016 estimates for the handful of impactful isotopes in the determination of r -process abundances are found to be in fairly good agreement with our theoretical predictions. Indeed, the BNN-improved Duflo-Zuker model predicts a root-mean-square deviation relative to experiment of σrms≃400 keV. Conclusions: Given the excellent performance of the BNN refinement in confronting the recently published AME2016 compilation, we are confident of its critical role in our quest for mass models of the highest quality. Moreover, as uncertainty quantification is at the core of the BNN approach, the improved mass models are in a unique position to identify those nuclei that will have the strongest impact in resolving some of the outstanding questions in nuclear astrophysics.

  17. Validation Analysis of the Shoal Groundwater Flow and Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    A. Hassan; J. Chapman

    2008-11-01

    Environmental restoration at the Shoal underground nuclear test is following a process prescribed by a Federal Facility Agreement and Consent Order (FFACO) between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Characterization of the site included two stages of well drilling and testing in 1996 and 1999, and development and revision of numerical models of groundwater flow and radionuclide transport. Agreement on a contaminant boundary for the site and a corrective action plan was reached in 2006. Later that same year, three wells were installed for the purposes of model validation and site monitoring. The FFACO prescribes a five-year proof-of-concept period for demonstrating that the site groundwater model is capable of producing meaningful results with an acceptable level of uncertainty. The corrective action plan specifies a rigorous seven step validation process. The accepted groundwater model is evaluated using that process in light of the newly acquired data. The conceptual model of ground water flow for the Project Shoal Area considers groundwater flow through the fractured granite aquifer comprising the Sand Springs Range. Water enters the system by the infiltration of precipitation directly on the surface of the mountain range. Groundwater leaves the granite aquifer by flowing into alluvial deposits in the adjacent basins of Fourmile Flat and Fairview Valley. A groundwater divide is interpreted as coinciding with the western portion of the Sand Springs Range, west of the underground nuclear test, preventing flow from the test into Fourmile Flat. A very low conductivity shear zone east of the nuclear test roughly parallels the divide. The presence of these lateral boundaries, coupled with a regional discharge area to the northeast, is interpreted in the model as causing groundwater from the site to flow in a northeastward direction into Fairview Valley. Steady-state flow conditions are assumed given the absence of

  18. Preliminary validation of a Monte Carlo model for IMRT fields

    International Nuclear Information System (INIS)

    Wright, Tracy; Lye, Jessica; Mohammadi, Mohammad

    2011-01-01

    Full text: A Monte Carlo model of an Elekta linac, validated for medium to large (10-30 cm) symmetric fields, has been investigated for small, irregular and asymmetric fields suitable for IMRT treatments. The model has been validated with field segments using radiochromic film in solid water. The modelled positions of the multileaf collimator (MLC) leaves have been validated using EBT film, In the model, electrons with a narrow energy spectrum are incident on the target and all components of the linac head are included. The MLC is modelled using the EGSnrc MLCE component module. For the validation, a number of single complex IMRT segments with dimensions approximately 1-8 cm were delivered to film in solid water (see Fig, I), The same segments were modelled using EGSnrc by adjusting the MLC leaf positions in the model validated for 10 cm symmetric fields. Dose distributions along the centre of each MLC leaf as determined by both methods were compared. A picket fence test was also performed to confirm the MLC leaf positions. 95% of the points in the modelled dose distribution along the leaf axis agree with the film measurement to within 1%/1 mm for dose difference and distance to agreement. Areas of most deviation occur in the penumbra region. A system has been developed to calculate the MLC leaf positions in the model for any planned field size.

  19. TALYS/TENDL verification and validation processes: Outcomes and recommendations

    Science.gov (United States)

    Fleming, Michael; Sublet, Jean-Christophe; Gilbert, Mark R.; Koning, Arjan; Rochman, Dimitri

    2017-09-01

    The TALYS-generated Evaluated Nuclear Data Libraries (TENDL) provide truly general-purpose nuclear data files assembled from the outputs of the T6 nuclear model codes system for direct use in both basic physics and engineering applications. The most recent TENDL-2015 version is based on both default and adjusted parameters of the most recent TALYS, TAFIS, TANES, TARES, TEFAL, TASMAN codes wrapped into a Total Monte Carlo loop for uncertainty quantification. TENDL-2015 contains complete neutron-incident evaluations for all target nuclides with Z ≤116 with half-life longer than 1 second (2809 isotopes with 544 isomeric states), up to 200 MeV, with covariances and all reaction daughter products including isomers of half-life greater than 100 milliseconds. With the added High Fidelity Resonance (HFR) approach, all resonances are unique, following statistical rules. The validation of the TENDL-2014/2015 libraries against standard, evaluated, microscopic and integral cross sections has been performed against a newly compiled UKAEA database of thermal, resonance integral, Maxwellian averages, 14 MeV and various accelerator-driven neutron source spectra. This has been assembled using the most up-to-date, internationally-recognised data sources including the Atlas of Resonances, CRC, evaluated EXFOR, activation databases, fusion, fission and MACS. Excellent agreement was found with a small set of errors within the reference databases and TENDL-2014 predictions.

  20. TALYS/TENDL verification and validation processes: Outcomes and recommendations

    Directory of Open Access Journals (Sweden)

    Fleming Michael

    2017-01-01

    Full Text Available The TALYS-generated Evaluated Nuclear Data Libraries (TENDL provide truly general-purpose nuclear data files assembled from the outputs of the T6 nuclear model codes system for direct use in both basic physics and engineering applications. The most recent TENDL-2015 version is based on both default and adjusted parameters of the most recent TALYS, TAFIS, TANES, TARES, TEFAL, TASMAN codes wrapped into a Total Monte Carlo loop for uncertainty quantification. TENDL-2015 contains complete neutron-incident evaluations for all target nuclides with Z ≤116 with half-life longer than 1 second (2809 isotopes with 544 isomeric states, up to 200 MeV, with covariances and all reaction daughter products including isomers of half-life greater than 100 milliseconds. With the added High Fidelity Resonance (HFR approach, all resonances are unique, following statistical rules. The validation of the TENDL-2014/2015 libraries against standard, evaluated, microscopic and integral cross sections has been performed against a newly compiled UKAEA database of thermal, resonance integral, Maxwellian averages, 14 MeV and various accelerator-driven neutron source spectra. This has been assembled using the most up-to-date, internationally-recognised data sources including the Atlas of Resonances, CRC, evaluated EXFOR, activation databases, fusion, fission and MACS. Excellent agreement was found with a small set of errors within the reference databases and TENDL-2014 predictions.

  1. Sato Processes in Default Modeling

    DEFF Research Database (Denmark)

    Kokholm, Thomas; Nicolato, Elisa

    2010-01-01

    In reduced form default models, the instantaneous default intensity is the classical modeling object. Survival probabilities are then given by the Laplace transform of the cumulative hazard defined as the integrated intensity process. Instead, recent literature tends to specify the cumulative haz...

  2. Sato Processes in Default Modeling

    DEFF Research Database (Denmark)

    Kokholm, Thomas; Nicolato, Elisa

    In reduced form default models, the instantaneous default intensity is classically the modeling object. Survival probabilities are then given by the Laplace transform of the cumulative hazard defined as the integrated intensity process. Instead, recent literature has shown a tendency towards...

  3. Metrics for Business Process Models

    Science.gov (United States)

    Mendling, Jan

    Up until now, there has been little research on why people introduce errors in real-world business process models. In a more general context, Simon [404] points to the limitations of cognitive capabilities and concludes that humans act rationally only to a certain extent. Concerning modeling errors, this argument would imply that human modelers lose track of the interrelations of large and complex models due to their limited cognitive capabilities and introduce errors that they would not insert in a small model. A recent study by Mendling et al. [275] explores in how far certain complexity metrics of business process models have the potential to serve as error determinants. The authors conclude that complexity indeed appears to have an impact on error probability. Before we can test such a hypothesis in a more general setting, we have to establish an understanding of how we can define determinants that drive error probability and how we can measure them.

  4. Validation of the simulator neutronics model

    International Nuclear Information System (INIS)

    Gregory, M.V.

    1984-01-01

    The neutronics model in the SRP reactor training simulator computes the variation with time of the neutron population in the reactor core. The power output of a reactor is directly proportional to the neutron population, thus in a very real sense the neutronics model determines the response of the simulator. The geometrical complexity of the reactor control system in SRP reactors requires the neutronics model to provide a detailed, 3D representation of the reactor core. Existing simulator technology does not allow such a detailed representation to run in real-time in a minicomputer environment, thus an entirely different approach to the problem was required. A prompt jump method has been developed in answer to this need

  5. Context discovery using attenuated Bloom codes: model description and validation

    NARCIS (Netherlands)

    Liu, F.; Heijenk, Geert

    A novel approach to performing context discovery in ad-hoc networks based on the use of attenuated Bloom filters is proposed in this report. In order to investigate the performance of this approach, a model has been developed. This document describes the model and its validation. The model has been

  6. Traffic modelling validation of advanced driver assistance systems

    NARCIS (Netherlands)

    Tongeren, R. van; Gietelink, O.J.; Schutter, B. de; Verhaegen, M.

    2007-01-01

    This paper presents a microscopic traffic model for the validation of advanced driver assistance systems. This model describes single-lane traffic and is calibrated with data from a field operational test. To illustrate the use of the model, a Monte Carlo simulation of single-lane traffic scenarios

  7. Application of parameters space analysis tools for empirical model validation

    Energy Technology Data Exchange (ETDEWEB)

    Paloma del Barrio, E. [LEPT-ENSAM UMR 8508, Talence (France); Guyon, G. [Electricite de France, Moret-sur-Loing (France)

    2004-01-01

    A new methodology for empirical model validation has been proposed in the framework of the Task 22 (Building Energy Analysis Tools) of the International Energy Agency. It involves two main steps: checking model validity and diagnosis. Both steps, as well as the underlying methods, have been presented in the first part of the paper. In this part, they are applied for testing modelling hypothesis in the framework of the thermal analysis of an actual building. Sensitivity analysis tools have been first used to identify the parts of the model that can be really tested on the available data. A preliminary diagnosis is then supplied by principal components analysis. Useful information for model behaviour improvement has been finally obtained by optimisation techniques. This example of application shows how model parameters space analysis is a powerful tool for empirical validation. In particular, diagnosis possibilities are largely increased in comparison with residuals analysis techniques. (author)

  8. Computer Modelling of Dynamic Processes

    Directory of Open Access Journals (Sweden)

    B. Rybakin

    2000-10-01

    Full Text Available Results of numerical modeling of dynamic problems are summed in the article up. These problems are characteristic for various areas of human activity, in particular for problem solving in ecology. The following problems are considered in the present work: computer modeling of dynamic effects on elastic-plastic bodies, calculation and determination of performances of gas streams in gas cleaning equipment, modeling of biogas formation processes.

  9. Modelling Hospital Materials Management Processes

    Directory of Open Access Journals (Sweden)

    Raffaele Iannone

    2013-06-01

    integrated and detailed analysis and description model for hospital materials management data and tasks, which is able to tackle information from patient requirements to usage, from replenishment requests to supplying and handling activities. The model takes account of medical risk reduction, traceability and streamlined processes perspectives. Second, the paper translates this information into a business process model and mathematical formalization.The study provides a useful guide to the various relevant technology‐related, management and business issues, laying the foundations of an efficient reengineering of the supply chain to reduce healthcare costs and improve the quality of care.

  10. Declarative modeling for process supervision

    International Nuclear Information System (INIS)

    Leyval, L.

    1989-01-01

    Our work is a contribution to computer aided supervision of continuous processes. It is inspired by an area of Artificial Intelligence: qualitative physics. Here, supervision is based on a model which continuously provides operators with a synthetic view of the process; but this model is founded on general principles of control theory rather than on physics. It involves concepts such as high gain or small time response. It helps in linking temporally the evolution of various variables. Moreover, the model provides predictions of the future behaviour of the process, which allows action advice and alarm filtering. This should greatly reduce the famous cognitive overload associated to any complex and dangerous evolution of the process

  11. Quantitative system validation in model driven design

    DEFF Research Database (Denmark)

    Hermanns, Hilger; Larsen, Kim Guldstrand; Raskin, Jean-Francois

    2010-01-01

    The European STREP project Quasimodo1 develops theory, techniques and tool components for handling quantitative constraints in model-driven development of real-time embedded systems, covering in particular real-time, hybrid and stochastic aspects. This tutorial highlights the advances made, focus...

  12. EXPERIMENTAL VALIDATION OF CUMULATIVE SURFACE LOCATION ERROR FOR TURNING PROCESSES

    Directory of Open Access Journals (Sweden)

    Adam K. Kiss

    2016-02-01

    Full Text Available The aim of this study is to create a mechanical model which is suitable to investigate the surface quality in turning processes, based on the Cumulative Surface Location Error (CSLE, which describes the series of the consecutive Surface Location Errors (SLE in roughing operations. In the established model, the investigated CSLE depends on the currently and the previously resulted SLE by means of the variation of the width of cut. The phenomenon of the system can be described as an implicit discrete map. The stationary Surface Location Error and its bifurcations were analysed and flip-type bifurcation was observed for CSLE. Experimental verification of the theoretical results was carried out.

  13. Spectroscopic validation of the supersonic plasma jet model

    International Nuclear Information System (INIS)

    Selezneva, S.E.; Sember, V.; Gravelle, D.V.; Boulos, M.I.

    2002-01-01

    Optical emission spectroscopy is applied to validate numerical simulations of supersonic plasma flow generated by induction torch with a convergent-divergent nozzle. The plasmas exhausting from the discharge tube with the pressure 0.4-1.4 atm. through two nozzle configurations (the outlet Mach number equals 1.5 and 3) into low-pressure (1.8 kPa) chamber are compared. Both modelling and experiments show that the effect of the nozzle geometry on physical properties of plasma jet is significant. The profiles of electron number density obtained from modeling and spectroscopy agree well and show the deviations from local thermodynamic equilibrium. Analysis of intercoupling between different sorts of nonequilibrium processes is performed. The results reveal that the ion recombination is more essential in the nozzle with the higher outlet number than in the nozzle with the lower outlet number. It is demonstrated that in the jets the axial electron temperature is quite low (3000-8000 K). For spectroscopic data interpretation we propose a method based on the definition of two excitation temperatures. We suppose that in mildly under expanded argon jets with frozen ion recombination the electron temperature can be defined by the electronic transitions from level 5p (the energy E=14.5 eV) to level 4p (E=13.116 eV). The obtained results are useful for the optimization of plasma reactors for plasma chemistry and plasma processing applications. (author)

  14. Calibration and validation of earthquake catastrophe models. Case study: Impact Forecasting Earthquake Model for Algeria

    Science.gov (United States)

    Trendafiloski, G.; Gaspa Rebull, O.; Ewing, C.; Podlaha, A.; Magee, B.

    2012-04-01

    Calibration and validation are crucial steps in the production of the catastrophe models for the insurance industry in order to assure the model's reliability and to quantify its uncertainty. Calibration is needed in all components of model development including hazard and vulnerability. Validation is required to ensure that the losses calculated by the model match those observed in past events and which could happen in future. Impact Forecasting, the catastrophe modelling development centre of excellence within Aon Benfield, has recently launched its earthquake model for Algeria as a part of the earthquake model for the Maghreb region. The earthquake model went through a detailed calibration process including: (1) the seismic intensity attenuation model by use of macroseismic observations and maps from past earthquakes in Algeria; (2) calculation of the country-specific vulnerability modifiers by use of past damage observations in the country. The use of Benouar, 1994 ground motion prediction relationship was proven as the most appropriate for our model. Calculation of the regional vulnerability modifiers for the country led to 10% to 40% larger vulnerability indexes for different building types compared to average European indexes. The country specific damage models also included aggregate damage models for residential, commercial and industrial properties considering the description of the buildings stock given by World Housing Encyclopaedia and the local rebuilding cost factors equal to 10% for damage grade 1, 20% for damage grade 2, 35% for damage grade 3, 75% for damage grade 4 and 100% for damage grade 5. The damage grades comply with the European Macroseismic Scale (EMS-1998). The model was validated by use of "as-if" historical scenario simulations of three past earthquake events in Algeria M6.8 2003 Boumerdes, M7.3 1980 El-Asnam and M7.3 1856 Djidjelli earthquake. The calculated return periods of the losses for client market portfolio align with the

  15. Calibration and validation of a model describing complete autotrophic nitrogen removal in a granular SBR system

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mutlu, Ayten Gizem; Gernaey, Krist

    2013-01-01

    BACKGROUND: A validated model describing the nitritation-anammox process in a granular sequencing batch reactor (SBR) system is an important tool for: a) design of future experiments and b) prediction of process performance during optimization, while applying process control, or during system scale......-up. RESULTS: A model was calibrated using a step-wise procedure customized for the specific needs of the system. The important steps in the procedure were initialization, steady-state and dynamic calibration, and validation. A fast and effective initialization approach was developed to approximate pseudo...... screening of the parameter space proposed by Sin et al. (2008) - to find the best fit of the model to dynamic data. Finally, the calibrated model was validated with an independent data set. CONCLUSION: The presented calibration procedure is the first customized procedure for this type of system...

  16. Statistical Analysis Methods for Physics Models Verification and Validation

    CERN Document Server

    De Luca, Silvia

    2017-01-01

    The validation and verification process is a fundamental step for any software like Geant4 and GeantV, which aim to perform data simulation using physics models and Monte Carlo techniques. As experimental physicists, we have to face the problem to compare the results obtained using simulations with what the experiments actually observed. One way to solve the problem is to perform a consistency test. Within the Geant group, we developed a C++ compact library which will be added to the automated validation process on the Geant Validation Portal

  17. Ensuring the Validity of the Micro Foundation in DSGE Models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller

    & Primiceri (American Economic Review, forth- coming) and Fernández-Villaverde & Rubio-Ramírez (Review of Economic Studies, 2007) do not satisfy these sufficient conditions, or any other known set of conditions ensuring finite values for the objective functions. Thus, the validity of the micro foundation......The presence of i) stochastic trends, ii) deterministic trends, and/or iii) stochastic volatil- ity in DSGE models may imply that the agents' objective functions attain infinite values. We say that such models do not have a valid micro foundation. The paper derives sufficient condi- tions which...... ensure that the objective functions of the households and the firms are finite even when various trends and stochastic volatility are included in a standard DSGE model. Based on these conditions we test the validity of the micro foundation in six DSGE models from the literature. The models of Justiniano...

  18. Modeling of biopharmaceutical processes. Part 2: Process chromatography unit operation

    DEFF Research Database (Denmark)

    Kaltenbrunner, Oliver; McCue, Justin; Engel, Philip

    2008-01-01

    Process modeling can be a useful tool to aid in process development, process optimization, and process scale-up. When modeling a chromatography process, one must first select the appropriate models that describe the mass transfer and adsorption that occurs within the porous adsorbent. The theoret......Process modeling can be a useful tool to aid in process development, process optimization, and process scale-up. When modeling a chromatography process, one must first select the appropriate models that describe the mass transfer and adsorption that occurs within the porous adsorbent...

  19. Development and demonstration of a validation methodology for vehicle lateral dynamics simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Kutluay, Emir

    2013-02-01

    increased model confidence by enhancing the traceability of the validation process.

  20. Tyre tread-block friction: modelling, simulation and experimental validation

    Science.gov (United States)

    Wallaschek, Jörg; Wies, Burkard

    2013-07-01

    Pneumatic tyres are used in vehicles since the beginning of the last century. They generate braking and steering forces for bicycles, motor cycles, cars, busses, trucks, agricultural vehicles and aircraft. These forces are generated in the usually very small contact area between tyre and road and their performance characteristics are of eminent importance for safety and comfort. Much research has been addressed to optimise tyre design with respect to footprint pressure and friction. In this context, the development of virtual tyre prototypes, that is, simulation models for the tyre, has grown to a science in its own. While the modelling of the structural dynamics of the tyre has reached a very advanced level, which allows to take into account effects like the rate-independent inelasticity of filled elastomers or the transient 3D deformations of the ply-reinforced tread, shoulder and sidewalls, little is known about the friction between tread-block elements and road. This is particularly obvious in the case when snow, ice, water or a third-body layer are present in the tyre-road contact. In the present paper, we give a survey on the present state of knowledge in the modelling, simulation and experimental validation of tyre tread-block friction processes. We concentrate on experimental techniques.

  1. Functional Validation of Heteromeric Kainate Receptor Models.

    Science.gov (United States)

    Paramo, Teresa; Brown, Patricia M G E; Musgaard, Maria; Bowie, Derek; Biggin, Philip C

    2017-11-21

    Kainate receptors require the presence of external ions for gating. Most work thus far has been performed on homomeric GluK2 but, in vivo, kainate receptors are likely heterotetramers. Agonists bind to the ligand-binding domain (LBD) which is arranged as a dimer of dimers as exemplified in homomeric structures, but no high-resolution structure currently exists of heteromeric kainate receptors. In a full-length heterotetramer, the LBDs could potentially be arranged either as a GluK2 homomer alongside a GluK5 homomer or as two GluK2/K5 heterodimers. We have constructed models of the LBD dimers based on the GluK2 LBD crystal structures and investigated their stability with molecular dynamics simulations. We have then used the models to make predictions about the functional behavior of the full-length GluK2/K5 receptor, which we confirmed via electrophysiological recordings. A key prediction and observation is that lithium ions bind to the dimer interface of GluK2/K5 heteromers and slow their desensitization. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Neuroscientific Model of Motivational Process

    Science.gov (United States)

    Kim, Sung-il

    2013-01-01

    Considering the neuroscientific findings on reward, learning, value, decision-making, and cognitive control, motivation can be parsed into three sub processes, a process of generating motivation, a process of maintaining motivation, and a process of regulating motivation. I propose a tentative neuroscientific model of motivational processes which consists of three distinct but continuous sub processes, namely reward-driven approach, value-based decision-making, and goal-directed control. Reward-driven approach is the process in which motivation is generated by reward anticipation and selective approach behaviors toward reward. This process recruits the ventral striatum (reward area) in which basic stimulus-action association is formed, and is classified as an automatic motivation to which relatively less attention is assigned. By contrast, value-based decision-making is the process of evaluating various outcomes of actions, learning through positive prediction error, and calculating the value continuously. The striatum and the orbitofrontal cortex (valuation area) play crucial roles in sustaining motivation. Lastly, the goal-directed control is the process of regulating motivation through cognitive control to achieve goals. This consciously controlled motivation is associated with higher-level cognitive functions such as planning, retaining the goal, monitoring the performance, and regulating action. The anterior cingulate cortex (attention area) and the dorsolateral prefrontal cortex (cognitive control area) are the main neural circuits related to regulation of motivation. These three sub processes interact with each other by sending reward prediction error signals through dopaminergic pathway from the striatum and to the prefrontal cortex. The neuroscientific model of motivational process suggests several educational implications with regard to the generation, maintenance, and regulation of motivation to learn in the learning environment. PMID:23459598

  3. Neuroscientific model of motivational process.

    Science.gov (United States)

    Kim, Sung-Il

    2013-01-01

    Considering the neuroscientific findings on reward, learning, value, decision-making, and cognitive control, motivation can be parsed into three sub processes, a process of generating motivation, a process of maintaining motivation, and a process of regulating motivation. I propose a tentative neuroscientific model of motivational processes which consists of three distinct but continuous sub processes, namely reward-driven approach, value-based decision-making, and goal-directed control. Reward-driven approach is the process in which motivation is generated by reward anticipation and selective approach behaviors toward reward. This process recruits the ventral striatum (reward area) in which basic stimulus-action association is formed, and is classified as an automatic motivation to which relatively less attention is assigned. By contrast, value-based decision-making is the process of evaluating various outcomes of actions, learning through positive prediction error, and calculating the value continuously. The striatum and the orbitofrontal cortex (valuation area) play crucial roles in sustaining motivation. Lastly, the goal-directed control is the process of regulating motivation through cognitive control to achieve goals. This consciously controlled motivation is associated with higher-level cognitive functions such as planning, retaining the goal, monitoring the performance, and regulating action. The anterior cingulate cortex (attention area) and the dorsolateral prefrontal cortex (cognitive control area) are the main neural circuits related to regulation of motivation. These three sub processes interact with each other by sending reward prediction error signals through dopaminergic pathway from the striatum and to the prefrontal cortex. The neuroscientific model of motivational process suggests several educational implications with regard to the generation, maintenance, and regulation of motivation to learn in the learning environment.

  4. Validation of limited sampling models (LSM) for estimating AUC in therapeutic drug monitoring - is a separate validation group required?

    NARCIS (Netherlands)

    Proost, J. H.

    Objective: Limited sampling models (LSM) for estimating AUC in therapeutic drug monitoring are usually validated in a separate group of patients, according to published guidelines. The aim of this study is to evaluate the validation of LSM by comparing independent validation with cross-validation

  5. Comprehension of Multiple Documents with Conflicting Information: A Two-Step Model of Validation

    Science.gov (United States)

    Richter, Tobias; Maier, Johanna

    2017-01-01

    In this article, we examine the cognitive processes that are involved when readers comprehend conflicting information in multiple texts. Starting from the notion of routine validation during comprehension, we argue that readers' prior beliefs may lead to a biased processing of conflicting information and a one-sided mental model of controversial…

  6. Path modeling and process control

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar; Rodionova, O.; Pomerantsev, A.

    2007-01-01

    and having three or more stages. The methods are applied to a process control of a multi-stage production process having 25 variables and one output variable. When moving along the process, variables change their roles. It is shown how the methods of path modeling can be applied to estimate variables...... be performed regarding the foreseeable output property y, and with respect to an admissible range of correcting actions for the parameters of the next stage. In this paper the basic principles of path modeling is presented. The mathematics is presented for processes having only one stage, having two stages...... of the next stage with the purpose of obtaining optimal or almost optimal quality of the output variable. An important aspect of the methods presented is the possibility of extensive graphic analysis of data that can provide the engineer with a detailed view of the multi-variate variation in data....

  7. Precooking as a Control for Histamine Formation during the Processing of Tuna: An Industrial Process Validation.

    Science.gov (United States)

    Adams, Farzana; Nolte, Fred; Colton, James; De Beer, John; Weddig, Lisa

    2018-02-23

    An experiment to validate the precooking of tuna as a control for histamine formation was carried out at a commercial tuna factory in Fiji. Albacore tuna ( Thunnus alalunga) were brought on board long-line catcher vessels alive, immediately chilled but never frozen, and delivered to an on-shore facility within 3 to 13 days. These fish were then allowed to spoil at 25 to 30°C for 21 to 25 h to induce high levels of histamine (>50 ppm), as a simulation of "worst-case" postharvest conditions, and subsequently frozen. These spoiled fish later were thawed normally and then precooked at a commercial tuna processing facility to a target maximum core temperature of 60°C. These tuna were then held at ambient temperatures of 19 to 37°C for up to 30 h, and samples were collected every 6 h for histamine analysis. After precooking, no further histamine formation was observed for 12 to 18 h, indicating that a conservative minimum core temperature of 60°C pauses subsequent histamine formation for 12 to 18 h. Using the maximum core temperature of 60°C provided a challenge study to validate a recommended minimum core temperature of 60°C, and 12 to 18 h was sufficient to convert precooked tuna into frozen loins or canned tuna. This industrial-scale process validation study provides support at a high confidence level for the preventive histamine control associated with precooking. This study was conducted with tuna deliberately allowed to spoil to induce high concentrations of histamine and histamine-forming capacity and to fail standard organoleptic evaluations, and the critical limits for precooking were validated. Thus, these limits can be used in a hazard analysis critical control point plan in which precooking is identified as a critical control point.

  8. Risk perception and information processing: the development and validation of a questionnaire to assess self-reported information processing.

    Science.gov (United States)

    Smerecnik, Chris M R; Mesters, Ilse; Candel, Math J J M; De Vries, Hein; De Vries, Nanne K

    2012-01-01

    The role of information processing in understanding people's responses to risk information has recently received substantial attention. One limitation of this research concerns the unavailability of a validated questionnaire of information processing. This article presents two studies in which we describe the development and validation of the Information-Processing Questionnaire to meet that need. Study 1 describes the development and initial validation of the questionnaire. Participants were randomized to either a systematic processing or a heuristic processing condition after which they completed a manipulation check and the initial 15-item questionnaire and again two weeks later. The questionnaire was subjected to factor reliability and validity analyses on both measurement times for purposes of cross-validation of the results. A two-factor solution was observed representing a systematic processing and a heuristic processing subscale. The resulting scale showed good reliability and validity, with the systematic condition scoring significantly higher on the systematic subscale and the heuristic processing condition significantly higher on the heuristic subscale. Study 2 sought to further validate the questionnaire in a field study. Results of the second study corresponded with those of Study 1 and provided further evidence of the validity of the Information-Processing Questionnaire. The availability of this information-processing scale will be a valuable asset for future research and may provide researchers with new research opportunities. © 2011 Society for Risk Analysis.

  9. Validation of nuclear models used in space radiation shielding applications

    International Nuclear Information System (INIS)

    Norman, Ryan B.; Blattnig, Steve R.

    2013-01-01

    A program of verification and validation has been undertaken to assess the applicability of models to space radiation shielding applications and to track progress as these models are developed over time. In this work, simple validation metrics applicable to testing both model accuracy and consistency with experimental data are developed. The developed metrics treat experimental measurement uncertainty as an interval and are therefore applicable to cases in which epistemic uncertainty dominates the experimental data. To demonstrate the applicability of the metrics, nuclear physics models used by NASA for space radiation shielding applications are compared to an experimental database consisting of over 3600 experimental cross sections. A cumulative uncertainty metric is applied to the question of overall model accuracy, while a metric based on the median uncertainty is used to analyze the models from the perspective of model development by examining subsets of the model parameter space.

  10. Composing, Analyzing and Validating Software Models

    Science.gov (United States)

    Sheldon, Frederick T.

    1998-10-01

    This research has been conducted at the Computational Sciences Division of the Information Sciences Directorate at Ames Research Center (Automated Software Engineering Grp). The principle work this summer has been to review and refine the agenda that were carried forward from last summer. Formal specifications provide good support for designing a functionally correct system, however they are weak at incorporating non-functional performance requirements (like reliability). Techniques which utilize stochastic Petri nets (SPNs) are good for evaluating the performance and reliability for a system, but they may be too abstract and cumbersome from the stand point of specifying and evaluating functional behavior. Therefore, one major objective of this research is to provide an integrated approach to assist the user in specifying both functionality (qualitative: mutual exclusion and synchronization) and performance requirements (quantitative: reliability and execution deadlines). In this way, the merits of a powerful modeling technique for performability analysis (using SPNs) can be combined with a well-defined formal specification language. In doing so, we can come closer to providing a formal approach to designing a functionally correct system that meets reliability and performance goals.

  11. Process Models for Security Architectures

    Directory of Open Access Journals (Sweden)

    Floarea NASTASE

    2006-01-01

    Full Text Available This paper presents a model for an integrated security system, which can be implemented in any organization. It is based on security-specific standards and taxonomies as ISO 7498-2 and Common Criteria. The functionalities are derived from the classes proposed in the Common Criteria document. In the paper we present the process model for each functionality and also we focus on the specific components.

  12. Calibration and validation of the SWAT model for a forested watershed in coastal South Carolina

    Science.gov (United States)

    Devendra M. Amatya; Elizabeth B. Haley; Norman S. Levine; Timothy J. Callahan; Artur Radecki-Pawlik; Manoj K. Jha

    2008-01-01

    Modeling the hydrology of low-gradient coastal watersheds on shallow, poorly drained soils is a challenging task due to the complexities in watershed delineation, runoff generation processes and pathways, flooding, and submergence caused by tropical storms. The objective of the study is to calibrate and validate a GIS-based spatially-distributed hydrologic model, SWAT...

  13. Predicting the ungauged basin: Model validation and realism assessment

    Directory of Open Access Journals (Sweden)

    Tim evan Emmerik

    2015-10-01

    Full Text Available The hydrological decade on Predictions in Ungauged Basins (PUB led to many new insights in model development, calibration strategies, data acquisition and uncertainty analysis. Due to a limited amount of published studies on genuinely ungauged basins, model validation and realism assessment of model outcome has not been discussed to a great extent. With this paper we aim to contribute to the discussion on how one can determine the value and validity of a hydrological model developed for an ungauged basin. As in many cases no local, or even regional, data are available, alternative methods should be applied. Using a PUB case study in a genuinely ungauged basin in southern Cambodia, we give several examples of how one can use different types of soft data to improve model design, calibrate and validate the model, and assess the realism of the model output. A rainfall-runoff model was coupled to an irrigation reservoir, allowing the use of additional and unconventional data. The model was mainly forced with remote sensing data, and local knowledge was used to constrain the parameters. Model realism assessment was done using data from surveys. This resulted in a successful reconstruction of the reservoir dynamics, and revealed the different hydrological characteristics of the two topographical classes. This paper does not present a generic approach that can be transferred to other ungauged catchments, but it aims to show how clever model design and alternative data acquisition can result in a valuable hydrological model for an ungauged catchment.

  14. Making Validated Educational Models Central in Preschool Standards.

    Science.gov (United States)

    Schweinhart, Lawrence J.

    This paper presents some ideas to preschool educators and policy makers about how to make validated educational models central in standards for preschool education and care programs that are available to all 3- and 4-year-olds. Defining an educational model as a coherent body of program practices, curriculum content, program and child, and teacher…

  15. Validation of ASTEC core degradation and containment models

    International Nuclear Information System (INIS)

    Kruse, Philipp; Brähler, Thimo; Koch, Marco K.

    2014-01-01

    Ruhr-Universitaet Bochum performed in a German funded project validation of in-vessel and containment models of the integral code ASTEC V2, jointly developed by IRSN (France) and GRS (Germany). In this paper selected results of this validation are presented. In the in-vessel part, the main point of interest was the validation of the code capability concerning cladding oxidation and hydrogen generation. The ASTEC calculations of QUENCH experiments QUENCH-03 and QUENCH-11 show satisfactory results, despite of some necessary adjustments in the input deck. Furthermore, the oxidation models based on the Cathcart–Pawel and Urbanic–Heidrick correlations are not suitable for higher temperatures while the ASTEC model BEST-FIT based on the Prater–Courtright approach at high temperature gives reliable enough results. One part of the containment model validation was the assessment of three hydrogen combustion models of ASTEC against the experiment BMC Ix9. The simulation results of these models differ from each other and therefore the quality of the simulations depends on the characteristic of each model. Accordingly, the CPA FRONT model, corresponding to the simplest necessary input parameters, provides the best agreement to the experimental data

  16. Validation of a multi-objective, predictive urban traffic model

    NARCIS (Netherlands)

    Wilmink, I.R.; Haak, P. van den; Woldeab, Z.; Vreeswijk, J.

    2013-01-01

    This paper describes the results of the verification and validation of the ecoStrategic Model, which was developed, implemented and tested in the eCoMove project. The model uses real-time and historical traffic information to determine the current, predicted and desired state of traffic in a

  17. Predicting the ungauged basin : Model validation and realism assessment

    NARCIS (Netherlands)

    Van Emmerik, T.H.M.; Mulder, G.; Eilander, D.; Piet, M.; Savenije, H.H.G.

    2015-01-01

    The hydrological decade on Predictions in Ungauged Basins (PUB) led to many new insights in model development, calibration strategies, data acquisition and uncertainty analysis. Due to a limited amount of published studies on genuinely ungauged basins, model validation and realism assessment of

  18. Validating a Technology Enhanced Student-Centered Learning Model

    Science.gov (United States)

    Kang, Myunghee; Hahn, Jungsun; Chung, Warren

    2015-01-01

    The Technology Enhanced Student Centered Learning (TESCL) Model in this study presents the core factors that ensure the quality of learning in a technology-supported environment. Although the model was conceptually constructed using a student-centered learning framework and drawing upon previous studies, it should be validated through real-world…

  19. Validation of Power Requirement Model for Active Loudspeakers

    DEFF Research Database (Denmark)

    Schneider, Henrik; Madsen, Anders Normann; Bjerregaard, Ruben

    2015-01-01

    . There are however many advantages that could be harvested from such knowledge like size, cost and efficiency improvements. In this paper a recently proposed power requirement model for active loudspeakers is experimentally validated and the model is expanded to include the closed and vented type enclosures...

  20. Predicting the ungauged basin: model validation and realism assessment

    NARCIS (Netherlands)

    van Emmerik, Tim; Mulder, Gert; Eilander, Dirk; Piet, Marijn; Savenije, Hubert

    2015-01-01

    The hydrological decade on Predictions in Ungauged Basins (PUB) led to many new insights in model development, calibration strategies, data acquisition and uncertainty analysis. Due to a limited amount of published studies on genuinely ungauged basins, model validation and realism assessment of

  1. Model Validation and Verification of Data Mining from the ...

    African Journals Online (AJOL)

    Michael Horsfall

    In this paper, we seek to present a hybrid method for Model Validation and Verification of Data Mining from the ... This model generally states the numerical value of knowledge .... procedures found in the field of software engineering should be ...

  2. The method validation step of biological dosimetry accreditation process

    International Nuclear Information System (INIS)

    Roy, L.; Voisin, P.A.; Guillou, A.C.; Busset, A.; Gregoire, E.; Buard, V.; Delbos, M.; Voisin, Ph.

    2006-01-01

    One of the missions of the Laboratory of Biological Dosimetry (L.D.B.) of the Institute for Radiation and Nuclear Safety (I.R.S.N.) is to assess the radiological dose after an accidental overexposure suspicion to ionising radiation, by using radio-induced changes of some biological parameters. The 'gold standard' is the yield of dicentrics observed in patients lymphocytes, and this yield is converted in dose using dose effect relationships. This method is complementary to clinical and physical dosimetry, for medical team in charge of the patients. To obtain a formal recognition of its operational activity, the laboratory decided three years ago, to require an accreditation, by following the recommendations of both 17025 General Requirements for the Competence of Testing and Calibration Laboratories and 19238 Performance criteria for service laboratories performing biological dosimetry by cyto-genetics. Diagnostics, risks analysis were realized to control the whole analysis process leading to documents writing. Purchases, personnel department, vocational training were also included in the quality system. Audits were very helpful to improve the quality system. One specificity of this technique is that it is not normalized therefore apart from quality management aspects, several technical points needed some validations. An inventory of potentially influent factors was carried out. To estimate their real effect on the yield of dicentrics, a Placket-Burman experimental design was conducted. The effect of seven parameters was tested: the BUdr (bromodeoxyuridine), PHA (phytohemagglutinin) and colcemid concentration, the culture duration, the incubator temperature, the blood volume and the medium volume. The chosen values were calculated according to the uncertainties on the way they were measured i.e. pipettes, thermometers, test tubes. None of the factors has a significant impact on the yield of dicentrics. Therefore the uncertainty linked to their use was considered as

  3. The method validation step of biological dosimetry accreditation process

    Energy Technology Data Exchange (ETDEWEB)

    Roy, L.; Voisin, P.A.; Guillou, A.C.; Busset, A.; Gregoire, E.; Buard, V.; Delbos, M.; Voisin, Ph. [Institut de Radioprotection et de Surete Nucleaire, LDB, 92 - Fontenay aux Roses (France)

    2006-07-01

    One of the missions of the Laboratory of Biological Dosimetry (L.D.B.) of the Institute for Radiation and Nuclear Safety (I.R.S.N.) is to assess the radiological dose after an accidental overexposure suspicion to ionising radiation, by using radio-induced changes of some biological parameters. The 'gold standard' is the yield of dicentrics observed in patients lymphocytes, and this yield is converted in dose using dose effect relationships. This method is complementary to clinical and physical dosimetry, for medical team in charge of the patients. To obtain a formal recognition of its operational activity, the laboratory decided three years ago, to require an accreditation, by following the recommendations of both 17025 General Requirements for the Competence of Testing and Calibration Laboratories and 19238 Performance criteria for service laboratories performing biological dosimetry by cyto-genetics. Diagnostics, risks analysis were realized to control the whole analysis process leading to documents writing. Purchases, personnel department, vocational training were also included in the quality system. Audits were very helpful to improve the quality system. One specificity of this technique is that it is not normalized therefore apart from quality management aspects, several technical points needed some validations. An inventory of potentially influent factors was carried out. To estimate their real effect on the yield of dicentrics, a Placket-Burman experimental design was conducted. The effect of seven parameters was tested: the BUdr (bromodeoxyuridine), PHA (phytohemagglutinin) and colcemid concentration, the culture duration, the incubator temperature, the blood volume and the medium volume. The chosen values were calculated according to the uncertainties on the way they were measured i.e. pipettes, thermometers, test tubes. None of the factors has a significant impact on the yield of dicentrics. Therefore the uncertainty linked to their use was

  4. Empirical validation of the triple-code model of numerical processing for complex math operations using functional MRI and group Independent Component Analysis of the mental addition and subtraction of fractions.

    Science.gov (United States)

    Schmithorst, Vincent J; Brown, Rhonda Douglas

    2004-07-01

    The suitability of a previously hypothesized triple-code model of numerical processing, involving analog magnitude, auditory verbal, and visual Arabic codes of representation, was investigated for the complex mathematical task of the mental addition and subtraction of fractions. Functional magnetic resonance imaging (fMRI) data from 15 normal adult subjects were processed using exploratory group Independent Component Analysis (ICA). Separate task-related components were found with activation in bilateral inferior parietal, left perisylvian, and ventral occipitotemporal areas. These results support the hypothesized triple-code model corresponding to the activated regions found in the individual components and indicate that the triple-code model may be a suitable framework for analyzing the neuropsychological bases of the performance of complex mathematical tasks. Copyright 2004 Elsevier Inc.

  5. A Process Analytical Technology (PAT) approach to control a new API manufacturing process: development, validation and implementation.

    Science.gov (United States)

    Schaefer, Cédric; Clicq, David; Lecomte, Clémence; Merschaert, Alain; Norrant, Edith; Fotiadu, Frédéric

    2014-03-01

    Pharmaceutical companies are progressively adopting and introducing Process Analytical Technology (PAT) and Quality-by-Design (QbD) concepts promoted by the regulatory agencies, aiming the building of the quality directly into the product by combining thorough scientific understanding and quality risk management. An analytical method based on near infrared (NIR) spectroscopy was developed as a PAT tool to control on-line an API (active pharmaceutical ingredient) manufacturing crystallization step during which the API and residual solvent contents need to be precisely determined to reach the predefined seeding point. An original methodology based on the QbD principles was designed to conduct the development and validation of the NIR method and to ensure that it is fitted for its intended use. On this basis, Partial least squares (PLS) models were developed and optimized using chemometrics methods. The method was fully validated according to the ICH Q2(R1) guideline and using the accuracy profile approach. The dosing ranges were evaluated to 9.0-12.0% w/w for the API and 0.18-1.50% w/w for the residual methanol. As by nature the variability of the sampling method and the reference method are included in the variability obtained for the NIR method during the validation phase, a real-time process monitoring exercise was performed to prove its fit for purpose. The implementation of this in-process control (IPC) method on the industrial plant from the launch of the new API synthesis process will enable automatic control of the final crystallization step in order to ensure a predefined quality level of the API. In addition, several valuable benefits are expected including reduction of the process time, suppression of a rather difficult sampling and tedious off-line analyses. © 2013 Published by Elsevier B.V.

  6. Implementation and automated validation of the minimal Z' model in FeynRules

    International Nuclear Information System (INIS)

    Basso, L.; Christensen, N.D.; Duhr, C.; Fuks, B.; Speckner, C.

    2012-01-01

    We describe the implementation of a well-known class of U(1) gauge models, the 'minimal' Z' models, in FeynRules. We also describe a new automated validation tool for FeynRules models which is controlled by a web interface and allows the user to run a complete set of 2 → 2 processes on different matrix element generators, different gauges, and compare between them all. If existing, the comparison with independent implementations is also possible. This tool has been used to validate our implementation of the 'minimal' Z' models. (authors)

  7. Validity of High School Physic Module With Character Values Using Process Skill Approach In STKIP PGRI West Sumatera

    Science.gov (United States)

    Anaperta, M.; Helendra, H.; Zulva, R.

    2018-04-01

    This study aims to describe the validity of physics module with Character Oriented Values Using Process Approach Skills at Dynamic Electrical Material in high school physics / MA and SMK. The type of research is development research. The module development model uses the development model proposed by Plomp which consists of (1) preliminary research phase, (2) the prototyping phase, and (3) assessment phase. In this research is done is initial investigation phase and designing. Data collecting technique to know validation is observation and questionnaire. In the initial investigative phase, curriculum analysis, student analysis, and concept analysis were conducted. In the design phase and the realization of module design for SMA / MA and SMK subjects in dynamic electrical materials. After that, the formative evaluation which include self evaluation, prototyping (expert reviews, one-to-one, and small group. At this stage validity is performed. This research data is obtained through the module validation sheet, which then generates a valid module.

  8. Mathematical modelling in economic processes.

    Directory of Open Access Journals (Sweden)

    L.V. Kravtsova

    2008-06-01

    Full Text Available In article are considered a number of methods of mathematical modelling of economic processes and opportunities of use of spreadsheets Excel for reception of the optimum decision of tasks or calculation of financial operations with the help of the built-in functions.

  9. Visualizing the process of process modeling with PPMCharts

    NARCIS (Netherlands)

    Claes, J.; Vanderfeesten, I.T.P.; Pinggera, J.; Reijers, H.A.; Weber, B.; Poels, G.; La Rosa, M.; Soffer, P.

    2013-01-01

    In the quest for knowledge about how to make good process models, recent research focus is shifting from studying the quality of process models to studying the process of process modeling (often abbreviated as PPM) itself. This paper reports on our efforts to visualize this specific process in such

  10. Neuroscientific Model of Motivational Process

    Directory of Open Access Journals (Sweden)

    Sung-Il eKim

    2013-03-01

    Full Text Available Considering the neuroscientific findings on reward, learning, value, decision-making, and cognitive control, motivation can be parsed into three subprocesses, a process of generating motivation, a process of maintaining motivation, and a process of regulating motivation. I propose a tentative neuroscientific model of motivational processes which consists of three distinct but continuous subprocesses, namely reward-driven approach, value-based decision making, and goal-directed control. Reward-driven approach is the process in which motivation is generated by reward anticipation and selective approach behaviors toward reward. This process recruits the ventral striatum (reward area in which basic stimulus-action association is formed, and is classified as an automatic motivation to which relatively less attention is assigned. By contrast, value-based decision making is the process of evaluating various outcomes of actions, learning through positive prediction error, and calculating the value continuously. The striatum and the orbitofrontal cortex (valuation area play crucial roles in sustaining motivation. Lastly, the goal-directed control is the process of regulating motivation through cognitive control to achieve goals. This consciously controlled motivation is associated with higher-level cognitive functions such as planning, retaining the goal, monitoring the performance, and regulating action. The anterior cingulate cortex (attention area and the dorsolateral prefrontal cortex (cognitive control area are the main neural circuits related to regulation of motivation. These three subprocesses interact with each other by sending reward prediction error signals through dopaminergic pathway from the striatum and to the prefrontal cortex. The neuroscientific model of motivational process suggests several educational implications with regard to the generation, maintenance, and regulation of motivation to learn in the learning environment.

  11. Models and Modelling Tools for Chemical Product and Process Design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    2016-01-01

    The design, development and reliability of a chemical product and the process to manufacture it, need to be consistent with the end-use characteristics of the desired product. One of the common ways to match the desired product-process characteristics is through trial and error based experiments......-based framework is that in the design, development and/or manufacturing of a chemical product-process, the knowledge of the applied phenomena together with the product-process design details can be provided with diverse degrees of abstractions and details. This would allow the experimental resources...... to be employed for validation and fine-tuning of the solutions from the model-based framework, thereby, removing the need for trial and error experimental steps. Also, questions related to economic feasibility, operability and sustainability, among others, can be considered in the early stages of design. However...

  12. Pre-engineering Spaceflight Validation of Environmental Models and the 2005 HZETRN Simulation Code

    Science.gov (United States)

    Nealy, John E.; Cucinotta, Francis A.; Wilson, John W.; Badavi, Francis F.; Dachev, Ts. P.; Tomov, B. T.; Walker, Steven A.; DeAngelis, Giovanni; Blattnig, Steve R.; Atwell, William

    2006-01-01

    The HZETRN code has been identified by NASA for engineering design in the next phase of space exploration highlighting a return to the Moon in preparation for a Mars mission. In response, a new series of algorithms beginning with 2005 HZETRN, will be issued by correcting some prior limitations and improving control of propagated errors along with established code verification processes. Code validation processes will use new/improved low Earth orbit (LEO) environmental models with a recently improved International Space Station (ISS) shield model to validate computational models and procedures using measured data aboard ISS. These validated models will provide a basis for flight-testing the designs of future space vehicles and systems of the Constellation program in the LEO environment.

  13. Integrated Site Model Process Model Report

    International Nuclear Information System (INIS)

    Booth, T.

    2000-01-01

    The Integrated Site Model (ISM) provides a framework for discussing the geologic features and properties of Yucca Mountain, which is being evaluated as a potential site for a geologic repository for the disposal of nuclear waste. The ISM is important to the evaluation of the site because it provides 3-D portrayals of site geologic, rock property, and mineralogic characteristics and their spatial variabilities. The ISM is not a single discrete model; rather, it is a set of static representations that provide three-dimensional (3-D), computer representations of site geology, selected hydrologic and rock properties, and mineralogic-characteristics data. These representations are manifested in three separate model components of the ISM: the Geologic Framework Model (GFM), the Rock Properties Model (RPM), and the Mineralogic Model (MM). The GFM provides a representation of the 3-D stratigraphy and geologic structure. Based on the framework provided by the GFM, the RPM and MM provide spatial simulations of the rock and hydrologic properties, and mineralogy, respectively. Functional summaries of the component models and their respective output are provided in Section 1.4. Each of the component models of the ISM considers different specific aspects of the site geologic setting. Each model was developed using unique methodologies and inputs, and the determination of the modeled units for each of the components is dependent on the requirements of that component. Therefore, while the ISM represents the integration of the rock properties and mineralogy into a geologic framework, the discussion of ISM construction and results is most appropriately presented in terms of the three separate components. This Process Model Report (PMR) summarizes the individual component models of the ISM (the GFM, RPM, and MM) and describes how the three components are constructed and combined to form the ISM

  14. Validation of the dermal exposure model in ECETOC TRA.

    Science.gov (United States)

    Marquart, Hans; Franken, Remy; Goede, Henk; Fransman, Wouter; Schinkel, Jody

    2017-08-01

    The ECETOC TRA model (presently version 3.1) is often used to estimate worker inhalation and dermal exposure in regulatory risk assessment. The dermal model in ECETOC TRA has not yet been validated by comparison with independent measured exposure levels. This was the goal of the present study. Measured exposure levels and relevant contextual information were gathered via literature search, websites of relevant occupational health institutes and direct requests for data to industry. Exposure data were clustered in so-called exposure cases, which are sets of data from one data source that are expected to have the same values for input parameters in the ECETOC TRA dermal exposure model. For each exposure case, the 75th percentile of measured values was calculated, because the model intends to estimate these values. The input values for the parameters in ECETOC TRA were assigned by an expert elicitation and consensus building process, based on descriptions of relevant contextual information.From more than 35 data sources, 106 useful exposure cases were derived, that were used for direct comparison with the model estimates. The exposure cases covered a large part of the ECETOC TRA dermal exposure model. The model explained 37% of the variance in the 75th percentiles of measured values. In around 80% of the exposure cases, the model estimate was higher than the 75th percentile of measured values. In the remaining exposure cases, the model estimate may not be sufficiently conservative.The model was shown to have a clear bias towards (severe) overestimation of dermal exposure at low measured exposure values, while all cases of apparent underestimation by the ECETOC TRA dermal exposure model occurred at high measured exposure values. This can be partly explained by a built-in bias in the effect of concentration of substance in product used, duration of exposure and the use of protective gloves in the model. The effect of protective gloves was calculated to be on average a

  15. Recommendations for elaboration, transcultural adaptation and validation process of tests in Speech, Hearing and Language Pathology.

    Science.gov (United States)

    Pernambuco, Leandro; Espelt, Albert; Magalhães, Hipólito Virgílio; Lima, Kenio Costa de

    2017-06-08

    to present a guide with recommendations for translation, adaptation, elaboration and process of validation of tests in Speech and Language Pathology. the recommendations were based on international guidelines with a focus on the elaboration, translation, cross-cultural adaptation and validation process of tests. the recommendations were grouped into two Charts, one of them with procedures for translation and transcultural adaptation and the other for obtaining evidence of validity, reliability and measures of accuracy of the tests. a guide with norms for the organization and systematization of the process of elaboration, translation, cross-cultural adaptation and validation process of tests in Speech and Language Pathology was created.

  16. Production process validation of 2-[18F]-fluoro-2-deoxy-D-glucose

    International Nuclear Information System (INIS)

    Cantero, Miguel; Iglesias, Rocio; Aguilar, Juan; Sau, Pablo; Tardio, Evaristo; Narrillos, Marcos

    2003-01-01

    The main of validation of production process of 2-[18F]-fluoro-2-deoxi-D-glucose (FDG) was to check: A) equipment's and services implicated in the production process were correctly installed, well documented, and worked properly, and B) production of FDG was done in a repetitive way according to predefined parameters. The main document was the Validation Master Plan, and steps were: installation qualification, operation qualification, process qualification and validation report. After finalization of all tests established in qualification steps without deviations, we concluded that the production process was validated because is done in a repetitive way according predefined parameters (Au)

  17. Developing rural palliative care: validating a conceptual model.

    Science.gov (United States)

    Kelley, Mary Lou; Williams, Allison; DeMiglio, Lily; Mettam, Hilary

    2011-01-01

    The purpose of this research was to validate a conceptual model for developing palliative care in rural communities. This model articulates how local rural healthcare providers develop palliative care services according to four sequential phases. The model has roots in concepts of community capacity development, evolves from collaborative, generalist rural practice, and utilizes existing health services infrastructure. It addresses how rural providers manage challenges, specifically those related to: lack of resources, minimal community understanding of palliative care, health professionals' resistance, the bureaucracy of the health system, and the obstacles of providing services in rural environments. Seven semi-structured focus groups were conducted with interdisciplinary health providers in 7 rural communities in two Canadian provinces. Using a constant comparative analysis approach, focus group data were analyzed by examining participants' statements in relation to the model and comparing emerging themes in the development of rural palliative care to the elements of the model. The data validated the conceptual model as the model was able to theoretically predict and explain the experiences of the 7 rural communities that participated in the study. New emerging themes from the data elaborated existing elements in the model and informed the requirement for minor revisions. The model was validated and slightly revised, as suggested by the data. The model was confirmed as being a useful theoretical tool for conceptualizing the development of rural palliative care that is applicable in diverse rural communities.

  18. Investigating the Process of Process Modeling with Eye Movement Analysis

    OpenAIRE

    Pinggera, Jakob; Furtner, Marco; Martini, Markus; Sachse, Pierre; Reiter, Katharina; Zugal, Stefan; Weber, Barbara

    2015-01-01

    Research on quality issues of business process models has recently begun to explore the process of creating process models by analyzing the modeler's interactions with the modeling environment. In this paper we aim to complement previous insights on the modeler's modeling behavior with data gathered by tracking the modeler's eye movements when engaged in the act of modeling. We present preliminary results and outline directions for future research to triangulate toward a more comprehensive un...

  19. Welding process modelling and control

    Science.gov (United States)

    Romine, Peter L.; Adenwala, Jinen A.

    1993-01-01

    The research and analysis performed, and software developed, and hardware/software recommendations made during 1992 in development of the PC-based data acquisition system for support of Welding Process Modeling and Control is reported. A need was identified by the Metals Processing Branch of NASA Marshall Space Flight Center, for a mobile data aquisition and analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC-based system was chosen. The Welding Measurement System (WMS) is a dedicated instrument, strictly for the use of data aquisition and analysis. Although the WMS supports many of the functions associated with the process control, it is not the intention for this system to be used for welding process control.

  20. The turbulent viscosity models and their experimental validation; Les modeles de viscosite turbulente et leur validation experimentale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This workshop on turbulent viscosity models and on their experimental validation was organized by the `convection` section of the French society of thermal engineers. From the 9 papers presented during this workshop, 8 deal with the modeling of turbulent flows inside combustion chambers, turbo-machineries or in other energy-related applications, and have been selected for ETDE. (J.S.)

  1. An Overview of Pharmaceutical Validation and Process Controls in ...

    African Journals Online (AJOL)

    It has always been known that the processes involved in pharmaceutical production impact significantly on the quality of the products The processes include raw material and equipment inspections as well as in-process controls. Process controls are mandatory in good manufacturing practice (GMP). The purpose is to ...

  2. Validity and Reliability of Revised Inventory of Learning Processes.

    Science.gov (United States)

    Gadzella, B. M.; And Others

    The Inventory of Learning Processes (ILP) was developed by Schmeck, Ribich, and Ramanaiah in 1977 as a self-report inventory to assess learning style through a behavioral-oriented approach. The ILP was revised by Schmeck in 1983. The Revised ILP contains six scales: (1) Deep Processing; (2) Elaborative Processing; (3) Shallow Processing; (4)…

  3. Results from the Savannah River Laboratory model validation workshop

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1981-01-01

    To evaluate existing and newly developed air pollution models used in DOE-funded laboratories, the Savannah River Laboratory sponsored a model validation workshop. The workshop used Kr-85 measurements and meteorology data obtained at SRL during 1975 to 1977. Individual laboratories used models to calculate daily, weekly, monthly or annual test periods. Cumulative integrated air concentrations were reported at each grid point and at each of the eight sampler locations

  4. Contact Modelling in Resistance Welding, Part II: Experimental Validation

    DEFF Research Database (Denmark)

    Song, Quanfeng; Zhang, Wenqi; Bay, Niels

    2006-01-01

    Contact algorithms in resistance welding presented in the previous paper are experimentally validated in the present paper. In order to verify the mechanical contact algorithm, two types of experiments, i.e. sandwich upsetting of circular, cylindrical specimens and compression tests of discs...... with a solid ring projection towards a flat ring, are carried out at room temperature. The complete algorithm, involving not only the mechanical model but also the thermal and electrical models, is validated by projection welding experiments. The experimental results are in satisfactory agreement...

  5. Validation of the FEA of a deep drawing process with additional force transmission

    Science.gov (United States)

    Behrens, B.-A.; Bouguecha, A.; Bonk, C.; Grbic, N.; Vucetic, M.

    2017-10-01

    In order to meet requirements by automotive industry like decreasing the CO2 emissions, which reflects in reducing vehicles mass in the car body, the chassis and the powertrain, the continuous innovation and further development of existing production processes are required. In sheet metal forming processes the process limits and components characteristics are defined through the process specific loads. While exceeding the load limits, a failure in the material occurs, which can be avoided by additional force transmission activated in the deep drawing process before the process limit is achieved. This contribution deals with experimental investigations of a forming process with additional force transmission regarding the extension of the process limits. Based on FEA a tool system is designed and developed by IFUM. For this purpose, the steel material HCT600 is analyzed numerically. Within the experimental investigations, the deep drawing processes, with and without the additional force transmission are carried out. Here, a comparison of the produced rectangle cups is done. Subsequently, the identical deep drawing processes are investigated numerically. Thereby, the values of the punch reaction force and displacement are estimated and compared with experimental results. Thus, the validation of material model is successfully carried out on process scale. For further quantitative verification of the FEA results the experimental determined geometry of the rectangular cup is measured optically with ATOS system of the company GOM mbH and digitally compared with external software Geomagic®QualifyTM. The goal of this paper is the verification of the transferability of the FEA model for a conventional deep drawing process to a deep drawing process with additional force transmission with a counter punch.

  6. NAIRAS aircraft radiation model development, dose climatology, and initial validation.

    Science.gov (United States)

    Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing

    2013-10-01

    [1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis

  7. Validation of CFD models for hydrogen safety application

    International Nuclear Information System (INIS)

    Nikolaeva, Anna; Skibin, Alexander; Krutikov, Alexey; Golibrodo, Luka; Volkov, Vasiliy; Nechaev, Artem; Nadinskiy, Yuriy

    2015-01-01

    Most accidents involving hydrogen begin with its leakage and spreading in the air and spontaneous detonation, which is accompanied by fire or deflagration of hydrogen mixture with heat and /or shocks, which may cause harm to life and equipment. Outflow of hydrogen in a confined volume and its propagation in the volume is the worst option because of the impact of the insularity on the process of detonation. According to the safety requirements for handling hydrogen specialized systems (ventilation, sprinklers, burners etc.) are required for maintaining the hydrogen concentration less than the critical value, to eliminate the possibility of detonation and flame propagation. In this study, a simulation of helium propagation in a confined space with different methods of injection and ventilation of helium is presented, which is used as a safe replacement of hydrogen in experimental studies. Five experiments were simulated in the range from laminar to developed turbulent with different Froude numbers, which determine the regime of the helium outflow in the air. The processes of stratification and erosion of helium stratified layer were investigated. The study includes some results of OECD/NEA-PSI PANDA benchmark and some results of Gamelan project. An analysis of applicability of various turbulence models, which are used to close the system of equations of momentum transport, implemented in the commercial codes STAR CD, STAR CCM+, ANSYS CFX, was conducted for different mesh types (polyhedral and hexahedral). A comparison of computational studies results with experimental data showed a good agreement. In particular, for transition and turbulent regimes the error of the numerical results lies in the range from 5 to 15% for all turbulence models considered. This indicates applicability of the methods considered for some hydrogen safety problems. However, it should be noted that more validation research should be made to use CFD in Hydrogen safety applications with a wide

  8. Validation techniques of agent based modelling for geospatial simulations

    Directory of Open Access Journals (Sweden)

    M. Darvishi

    2014-10-01

    Full Text Available One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent-based modelling and simulation (ABMS is a new modelling method comprising of multiple interacting agent. They have been used in the different areas; for instance, geographic information system (GIS, biology, economics, social science and computer science. The emergence of ABM toolkits in GIS software libraries (e.g. ESRI’s ArcGIS, OpenMap, GeoTools, etc for geospatial modelling is an indication of the growing interest of users to use of special capabilities of ABMS. Since ABMS is inherently similar to human cognition, therefore it could be built easily and applicable to wide range applications than a traditional simulation. But a key challenge about ABMS is difficulty in their validation and verification. Because of frequent emergence patterns, strong dynamics in the system and the complex nature of ABMS, it is hard to validate and verify ABMS by conventional validation methods. Therefore, attempt to find appropriate validation techniques for ABM seems to be necessary. In this paper, after reviewing on Principles and Concepts of ABM for and its applications, the validation techniques and challenges of ABM validation are discussed.

  9. Validation techniques of agent based modelling for geospatial simulations

    Science.gov (United States)

    Darvishi, M.; Ahmadi, G.

    2014-10-01

    One of the most interesting aspects of modelling and simulation study is to describe the real world phenomena that have specific properties; especially those that are in large scales and have dynamic and complex behaviours. Studying these phenomena in the laboratory is costly and in most cases it is impossible. Therefore, Miniaturization of world phenomena in the framework of a model in order to simulate the real phenomena is a reasonable and scientific approach to understand the world. Agent-based modelling and simulation (ABMS) is a new modelling method comprising of multiple interacting agent. They have been used in the different areas; for instance, geographic information system (GIS), biology, economics, social science and computer science. The emergence of ABM toolkits in GIS software libraries (e.g. ESRI's ArcGIS, OpenMap, GeoTools, etc) for geospatial modelling is an indication of the growing interest of users to use of special capabilities of ABMS. Since ABMS is inherently similar to human cognition, therefore it could be built easily and applicable to wide range applications than a traditional simulation. But a key challenge about ABMS is difficulty in their validation and verification. Because of frequent emergence patterns, strong dynamics in the system and the complex nature of ABMS, it is hard to validate and verify ABMS by conventional validation methods. Therefore, attempt to find appropriate validation techniques for ABM seems to be necessary. In this paper, after reviewing on Principles and Concepts of ABM for and its applications, the validation techniques and challenges of ABM validation are discussed.

  10. Advanced oxidation processes: overall models

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M. [Univ. de los Andes, Escuela Basica de Ingenieria, La Hechicera, Merida (Venezuela); Curco, D.; Addardak, A.; Gimenez, J.; Esplugas, S. [Dept. de Ingenieria Quimica. Univ. de Barcelona, Barcelona (Spain)

    2003-07-01

    Modelling AOPs implies to consider all the steps included in the process, that means, mass transfer, kinetic (reaction) and luminic steps. In this way, recent works develop models which relate the global reaction rate to catalyst concentration and radiation absorption. However, the application of such models requires to know what is the controlling step for the overall process. In this paper, a simple method is explained which allows to determine the controlling step. Thus, it is assumed that reactor is divided in two hypothetical zones (dark and illuminated), and according to the experimental results, obtained by varying only the reaction volume, it can be decided if reaction occurs only in the illuminated zone or in the all reactor, including dark zone. The photocatalytic degradation of phenol, by using titania degussa P-25 as catalyst, is studied as reaction model. The preliminary results obtained are presented here, showing that it seems that, in this case, reaction only occurs in the illuminated zone of photoreactor. A model is developed to explain this behaviour. (orig.)

  11. Model for amorphous aggregation processes

    Science.gov (United States)

    Stranks, Samuel D.; Ecroyd, Heath; van Sluyter, Steven; Waters, Elizabeth J.; Carver, John A.; von Smekal, Lorenz

    2009-11-01

    The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and α -lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants, can also be extracted.

  12. Thermal hydraulic model validation for HOR mixed core fuel management

    International Nuclear Information System (INIS)

    Gibcus, H.P.M.; Vries, J.W. de; Leege, P.F.A. de

    1997-01-01

    A thermal-hydraulic core management model has been developed for the Hoger Onderwijsreactor (HOR), a 2 MW pool-type university research reactor. The model was adopted for safety analysis purposes in the framework of HEU/LEU core conversion studies. It is applied in the thermal-hydraulic computer code SHORT (Steady-state HOR Thermal-hydraulics) which is presently in use in designing core configurations and for in-core fuel management. An elaborate measurement program was performed for establishing the core hydraulic characteristics for a variety of conditions. The hydraulic data were obtained with a dummy fuel element with special equipment allowing a.o. direct measurement of the true core flow rate. Using these data the thermal-hydraulic model was validated experimentally. The model, experimental tests, and model validation are discussed. (author)

  13. Validation of the newborn larynx modeling with aerodynamical experimental data.

    Science.gov (United States)

    Nicollas, R; Giordano, J; Garrel, R; Medale, M; Caminat, P; Giovanni, A; Ouaknine, M; Triglia, J M

    2009-06-01

    Many authors have studied adult's larynx modelization, but the mechanisms of newborn's voice production have very rarely been investigated. After validating a numerical model with acoustic data, studies were performed on larynges of human fetuses in order to validate this model with aerodynamical experiments. Anatomical measurements were performed and a simplified numerical model was built using Fluent((R)) with the vocal folds in phonatory position. The results obtained are in good agreement with those obtained by laser Doppler velocimetry (LDV) and high-frame rate particle image velocimetry (HFR-PIV), on an experimental bench with excised human fetus larynges. It appears that computing with first cry physiological parameters leads to a model which is close to those obtained in experiments with real organs.

  14. Validation of SPARC, a suppression pool aerosol capture model

    International Nuclear Information System (INIS)

    Owczarski, P.C.; Winegardner, W.K.

    1985-09-01

    A study of the potential for atmospheric release in hypothetical severe core melt accidents in BWRs with suppression pools was recently completed using a prototype of the SPARC code. The process of validating SPARC using an experimental data base is the concern of this paper

  15. Signal validation with control-room information-processing computers

    International Nuclear Information System (INIS)

    Belblidia, L.A.; Carlson, R.W.; Russell, J.L. Jr.

    1985-01-01

    One of the 'lessons learned' from the Three Mile Island accident focuses upon the need for a validated source of plant-status information in the control room. The utilization of computer-generated graphics to display the readings of the major plant instrumentation has introduced the capability of validating signals prior to their presentation to the reactor operations staff. The current operations philosophies allow the operator a quick look at the gauges to form an impression of the fraction of full scale as the basis for knowledge of the current plant conditions. After the introduction of a computer-based information-display system such as the Safety Parameter Display System (SPDS), operational decisions can be based upon precise knowledge of the parameters that define the operation of the reactor and auxiliary systems. The principal impact of this system on the operator will be to remove the continuing concern for the validity of the instruments which provide the information that governs the operator's decisions. (author)

  16. Development and validation of models for bubble coalescence and breakup

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yiaxiang

    2013-10-08

    A generalized model for bubble coalescence and breakup has been developed, which is based on a comprehensive survey of existing theories and models. One important feature of the model is that all important mechanisms leading to bubble coalescence and breakup in a turbulent gas-liquid flow are considered. The new model is tested extensively in a 1D Test Solver and a 3D CFD code ANSYS CFX for the case of vertical gas-liquid pipe flow under adiabatic conditions, respectively. Two kinds of extensions of the standard multi-fluid model, i.e. the discrete population model and the inhomogeneous MUSIG (multiple-size group) model, are available in the two solvers, respectively. These extensions with suitable closure models such as those for coalescence and breakup are able to predict the evolution of bubble size distribution in dispersed flows and to overcome the mono-dispersed flow limitation of the standard multi-fluid model. For the validation of the model the high quality database of the TOPFLOW L12 experiments for air-water flow in a vertical pipe was employed. A wide range of test points, which cover the bubbly flow, turbulent-churn flow as well as the transition regime, is involved in the simulations. The comparison between the simulated results such as bubble size distribution, gas velocity and volume fraction and the measured ones indicates a generally good agreement for all selected test points. As the superficial gas velocity increases, bubble size distribution evolves via coalescence dominant regimes first, then breakup-dominant regimes and finally turns into a bimodal distribution. The tendency of the evolution is well reproduced by the model. However, the tendency is almost always overestimated, i.e. too much coalescence in the coalescence dominant case while too much breakup in breakup dominant ones. The reason of this problem is discussed by studying the contribution of each coalescence and breakup mechanism at different test points. The redistribution of the

  17. Development and validation of models for bubble coalescence and breakup

    International Nuclear Information System (INIS)

    Liao, Yiaxiang

    2013-01-01

    A generalized model for bubble coalescence and breakup has been developed, which is based on a comprehensive survey of existing theories and models. One important feature of the model is that all important mechanisms leading to bubble coalescence and breakup in a turbulent gas-liquid flow are considered. The new model is tested extensively in a 1D Test Solver and a 3D CFD code ANSYS CFX for the case of vertical gas-liquid pipe flow under adiabatic conditions, respectively. Two kinds of extensions of the standard multi-fluid model, i.e. the discrete population model and the inhomogeneous MUSIG (multiple-size group) model, are available in the two solvers, respectively. These extensions with suitable closure models such as those for coalescence and breakup are able to predict the evolution of bubble size distribution in dispersed flows and to overcome the mono-dispersed flow limitation of the standard multi-fluid model. For the validation of the model the high quality database of the TOPFLOW L12 experiments for air-water flow in a vertical pipe was employed. A wide range of test points, which cover the bubbly flow, turbulent-churn flow as well as the transition regime, is involved in the simulations. The comparison between the simulated results such as bubble size distribution, gas velocity and volume fraction and the measured ones indicates a generally good agreement for all selected test points. As the superficial gas velocity increases, bubble size distribution evolves via coalescence dominant regimes first, then breakup-dominant regimes and finally turns into a bimodal distribution. The tendency of the evolution is well reproduced by the model. However, the tendency is almost always overestimated, i.e. too much coalescence in the coalescence dominant case while too much breakup in breakup dominant ones. The reason of this problem is discussed by studying the contribution of each coalescence and breakup mechanism at different test points. The redistribution of the

  18. Validation of the dynamic model for a pressurized water reactor

    International Nuclear Information System (INIS)

    Zwingelstein, Gilles.

    1979-01-01

    Dynamic model validation is a necessary procedure to assure that the developed empirical or physical models are satisfactorily representing the dynamic behavior of the actual plant during normal or abnormal transients. For small transients, physical models which represent isolated core, isolated steam generator and the overall pressurized water reactor are described. Using data collected during the step power changes that occured during the startup procedures, comparisons of experimental and actual transients are given at 30% and 100% of full power. The agreement between the transients derived from the model and those recorded on the plant indicates that the developed models are well suited for use for functional or control studies

  19. A comprehensive validation toolbox for regional ocean models - Outline, implementation and application to the Baltic Sea

    Science.gov (United States)

    Jandt, Simon; Laagemaa, Priidik; Janssen, Frank

    2014-05-01

    The systematic and objective comparison between output from a numerical ocean model and a set of observations, called validation in the context of this presentation, is a beneficial activity at several stages, starting from early steps in model development and ending at the quality control of model based products delivered to customers. Even though the importance of this kind of validation work is widely acknowledged it is often not among the most popular tasks in ocean modelling. In order to ease the validation work a comprehensive toolbox has been developed in the framework of the MyOcean-2 project. The objective of this toolbox is to carry out validation integrating different data sources, e.g. time-series at stations, vertical profiles, surface fields or along track satellite data, with one single program call. The validation toolbox, implemented in MATLAB, features all parts of the validation process - ranging from read-in procedures of datasets to the graphical and numerical output of statistical metrics of the comparison. The basic idea is to have only one well-defined validation schedule for all applications, in which all parts of the validation process are executed. Each part, e.g. read-in procedures, forms a module in which all available functions of this particular part are collected. The interface between the functions, the module and the validation schedule is highly standardized. Functions of a module are set up for certain validation tasks, new functions can be implemented into the appropriate module without affecting the functionality of the toolbox. The functions are assigned for each validation task in user specific settings, which are externally stored in so-called namelists and gather all information of the used datasets as well as paths and metadata. In the framework of the MyOcean-2 project the toolbox is frequently used to validate the forecast products of the Baltic Sea Marine Forecasting Centre. Hereby the performance of any new product

  20. Validation of precision powder injection molding process simulations using a spiral test geometry

    DEFF Research Database (Denmark)

    Marhöfer, Maximilian; Müller, Tobias; Tosello, Guido

    2015-01-01

    Like in many other areas of engineering, process simulations find application in precision injection molding to assist and optimize the quality and design of precise products and the molding process. Injection molding comprises mainly the manufacturing of plastic components. However, the variant ....... The necessary data and the implementation procedure of the new material models are outlined. In order to validate the simulation studies and evaluate their accuracy, the simulation results are compared with experiments performed using a spiral test geometry...... for powder injection molding. This characterization includes measurements of rheological, thermal, and pvT behavior of the powder-binder-mixes. The acquired material data was used to generate new material models for the database of the commercially available Autodesk Moldflow® simulation software...

  1. Verification and Validation of FAARR Model and Data Envelopment Analysis Models for United States Army Recruiting

    National Research Council Canada - National Science Library

    Piskator, Gene

    1998-01-01

    ...) model and to develop a Data Envelopment Analysis (DEA) modeling strategy. First, the FAARR model was verified using a simulation of a known production function and validated using sensitivity analysis and ex-post forecasts...

  2. Validation od computational model ALDERSON/EGSnrc for chest radiography

    International Nuclear Information System (INIS)

    Muniz, Bianca C.; Santos, André L. dos; Menezes, Claudio J.M.

    2017-01-01

    To perform dose studies in situations of exposure to radiation, without exposing individuals, the numerical dosimetry uses Computational Exposure Models (ECM). Composed essentially by a radioactive source simulator algorithm, a voxel phantom representing the human anatomy and a Monte Carlo code, the ECMs must be validated to determine the reliability of the physical array representation. The objective of this work is to validate the ALDERSON / EGSnrc MCE by through comparisons between the experimental measurements obtained with the ionization chamber and virtual simulations using Monte Carlo Method to determine the ratio of the input and output radiation dose. Preliminary results of these comparisons showed that the ECM reproduced the results of the experimental measurements performed with the physical phantom with a relative error of less than 10%, validating the use of this model for simulations of chest radiographs and estimates of radiation doses in tissues in the irradiated structures

  3. Progress in Geant4 Electromagnetic Physics Modelling and Validation

    International Nuclear Information System (INIS)

    Apostolakis, J; Burkhardt, H; Ivanchenko, V N; Asai, M; Bagulya, A; Grichine, V; Brown, J M C; Chikuma, N; Cortes-Giraldo, M A; Elles, S; Jacquemier, J; Guatelli, S; Incerti, S; Kadri, O; Maire, M; Urban, L; Pandola, L; Sawkey, D; Toshito, T; Yamashita, T

    2015-01-01

    In this work we report on recent improvements in the electromagnetic (EM) physics models of Geant4 and new validations of EM physics. Improvements have been made in models of the photoelectric effect, Compton scattering, gamma conversion to electron and muon pairs, fluctuations of energy loss, multiple scattering, synchrotron radiation, and high energy positron annihilation. The results of these developments are included in the new Geant4 version 10.1 and in patches to previous versions 9.6 and 10.0 that are planned to be used for production for run-2 at LHC. The Geant4 validation suite for EM physics has been extended and new validation results are shown in this work. In particular, the effect of gamma-nuclear interactions on EM shower shape at LHC energies is discussed. (paper)

  4. Validation of X1 motorcycle model in industrial plant layout by using WITNESSTM simulation software

    Science.gov (United States)

    Hamzas, M. F. M. A.; Bareduan, S. A.; Zakaria, M. Z.; Tan, W. J.; Zairi, S.

    2017-09-01

    This paper demonstrates a case study on simulation, modelling and analysis for X1 Motorcycles Model. In this research, a motorcycle assembly plant has been selected as a main place of research study. Simulation techniques by using Witness software were applied to evaluate the performance of the existing manufacturing system. The main objective is to validate the data and find out the significant impact on the overall performance of the system for future improvement. The process of validation starts when the layout of the assembly line was identified. All components are evaluated to validate whether the data is significance for future improvement. Machine and labor statistics are among the parameters that were evaluated for process improvement. Average total cycle time for given workstations is used as criterion for comparison of possible variants. From the simulation process, the data used are appropriate and meet the criteria for two-sided assembly line problems.

  5. Validation of statistical models for creep rupture by parametric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J., E-mail: john.bolton@uwclub.net [65, Fisher Ave., Rugby, Warks CV22 5HW (United Kingdom)

    2012-01-15

    Statistical analysis is an efficient method for the optimisation of any candidate mathematical model of creep rupture data, and for the comparative ranking of competing models. However, when a series of candidate models has been examined and the best of the series has been identified, there is no statistical criterion to determine whether a yet more accurate model might be devised. Hence there remains some uncertainty that the best of any series examined is sufficiently accurate to be considered reliable as a basis for extrapolation. This paper proposes that models should be validated primarily by parametric graphical comparison to rupture data and rupture gradient data. It proposes that no mathematical model should be considered reliable for extrapolation unless the visible divergence between model and data is so small as to leave no apparent scope for further reduction. This study is based on the data for a 12% Cr alloy steel used in BS PD6605:1998 to exemplify its recommended statistical analysis procedure. The models considered in this paper include a) a relatively simple model, b) the PD6605 recommended model and c) a more accurate model of somewhat greater complexity. - Highlights: Black-Right-Pointing-Pointer The paper discusses the validation of creep rupture models derived from statistical analysis. Black-Right-Pointing-Pointer It demonstrates that models can be satisfactorily validated by a visual-graphic comparison of models to data. Black-Right-Pointing-Pointer The method proposed utilises test data both as conventional rupture stress and as rupture stress gradient. Black-Right-Pointing-Pointer The approach is shown to be more reliable than a well-established and widely used method (BS PD6605).

  6. Model Checking Verification and Validation at JPL and the NASA Fairmont IV and V Facility

    Science.gov (United States)

    Schneider, Frank; Easterbrook, Steve; Callahan, Jack; Montgomery, Todd

    1999-01-01

    We show how a technology transfer effort was carried out. The successful use of model checking on a pilot JPL flight project demonstrates the usefulness and the efficacy of the approach. The pilot project was used to model a complex spacecraft controller. Software design and implementation validation were carried out successfully. To suggest future applications we also show how the implementation validation step can be automated. The effort was followed by the formal introduction of the modeling technique as a part of the JPL Quality Assurance process.

  7. Modeling of Multicomponent Mixture Separation Processes Using Hollow fiber Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sin-Ah; Kim, Jin-Kuk; Lee, Young Moo; Yeo, Yeong-Koo [Hanyang University, Seoul (Korea, Republic of)

    2015-02-15

    So far, most of research activities on modeling of membrane separation processes have been focused on binary feed mixture. But, in actual separation operations, binary feed is hard to find and most separation processes involve multicomponent feed mixture. In this work models for membrane separation processes treating multicomponent feed mixture are developed. Various model types are investigated and validity of proposed models are analysed based on experimental data obtained using hollowfiber membranes. The proposed separation models show quick convergence and exhibit good tracking performance.

  8. Modeling and knowledge acquisition processes using case-based inference

    Directory of Open Access Journals (Sweden)

    Ameneh Khadivar

    2017-03-01

    Full Text Available The method of acquisition and presentation of the organizational Process Knowledge has considered by many KM researches. In this research a model for process knowledge acquisition and presentation has been presented by using the approach of Case Base Reasoning. The validation of the presented model was evaluated by conducting an expert panel. Then a software has been developed based on the presented model and implemented in Eghtesad Novin Bank of Iran. In this company, based on the stages of the presented model, first the knowledge intensive processes has been identified, then the Process Knowledge was stored in a knowledge base in the format of problem/solution/consequent .The retrieval of the knowledge was done based on the similarity of the nearest neighbor algorithm. For validating of the implemented system, results of the system has compared by the results of the decision making of the expert of the process.

  9. Multiphysics modelling and experimental validation of high concentration photovoltaic modules

    International Nuclear Information System (INIS)

    Theristis, Marios; Fernández, Eduardo F.; Sumner, Mike; O'Donovan, Tadhg S.

    2017-01-01

    Highlights: • A multiphysics modelling approach for concentrating photovoltaics was developed. • An experimental campaign was conducted to validate the models. • The experimental results were in good agreement with the models. • The multiphysics modelling allows the concentrator’s optimisation. - Abstract: High concentration photovoltaics, equipped with high efficiency multijunction solar cells, have great potential in achieving cost-effective and clean electricity generation at utility scale. Such systems are more complex compared to conventional photovoltaics because of the multiphysics effect that is present. Modelling the power output of such systems is therefore crucial for their further market penetration. Following this line, a multiphysics modelling procedure for high concentration photovoltaics is presented in this work. It combines an open source spectral model, a single diode electrical model and a three-dimensional finite element thermal model. In order to validate the models and the multiphysics modelling procedure against actual data, an outdoor experimental campaign was conducted in Albuquerque, New Mexico using a high concentration photovoltaic monomodule that is thoroughly described in terms of its geometry and materials. The experimental results were in good agreement (within 2.7%) with the predicted maximum power point. This multiphysics approach is relatively more complex when compared to empirical models, but besides the overall performance prediction it can also provide better understanding of the physics involved in the conversion of solar irradiance into electricity. It can therefore be used for the design and optimisation of high concentration photovoltaic modules.

  10. Production process validation of 2-[18F]-fluoro-2-deoxy-D-glucose

    International Nuclear Information System (INIS)

    Cantero, Miguel; Iglesias, Rocio; Aguilar, Juan; Sau, Pablo; Tardio, Evaristo; Narrillos, Marcos

    2003-01-01

    The aim of production process validation of 2-[18F]-fluoro-2-deoxi-D-glucose (FDG) was to check: A) equipments and services implicated in the production process were correctly installed, well documented, and worked properly, and B) production of FDG was done in a repetitive way according to predefined parameters. The main document was the Validation Master Plan, and steps were: installation qualification, operational qualification, performance qualification and validation final report. After finalization of all tests established in qualification steps without deviations, we concluded that the production process was validated because consistently produced FDG meeting its pre-determined specifications and quality characteristics (Au)

  11. Formulation and validation of applied engineering equations for heat transfer processes in the food industry

    DEFF Research Database (Denmark)

    Christensen, Martin Gram

    The study is focused on convective heat transfer in the processing of solid foods, specifically with the scope to develop simple analytical calculation tools that can be incorporated into spreadsheet solutions. In areas of food engineering such as equipment manufacture the use of predictive...... calculations, modelling activities and simulations for improved design is employed to a high degree. In food manufacture the use process calculations are seldom applied. Even though, the calculation of thermal processes is not a challenging task in academia; this is not the case for food manufacture. However......; the calculations need fundamental validation and a generality that ensures a wide application, thus also the development of simplified approximations and engineering equations have to be conducted in academia. The focus group for the utilization of the presented work is; food manufacture, authorities ensuring food...

  12. CFD Modeling and Experimental Validation of a Solar Still

    Directory of Open Access Journals (Sweden)

    Mahmood Tahir

    2017-01-01

    Full Text Available Earth is the densest planet of the solar system with total area of 510.072 million square Km. Over 71.68% of this area is covered with water leaving a scant area of 28.32% for human to inhabit. The fresh water accounts for only 2.5% of the total volume and the rest is the brackish water. Presently, the world is facing chief problem of lack of potable water. This issue can be addressed by converting brackish water into potable through a solar distillation process and solar still is specially assigned for this purpose. Efficiency of a solar still explicitly depends on its design parameters, such as wall material, chamber depth, width and slope of the zcondensing surface. This study was aimed at investigating the solar still parameters using CFD modeling and experimental validation. The simulation data of ANSYS-FLUENT was compared with actual experimental data. A close agreement among the simulated and experimental results was seen in the presented work. It reveals that ANSYS-FLUENT is a potent tool to analyse the efficiency of the new designs of the solar distillation systems.

  13. Improving Perovskite Solar Cells: Insights From a Validated Device Model

    NARCIS (Netherlands)

    Sherkar, Tejas S.; Momblona, Cristina; Gil-Escrig, Lidon; Bolink, Henk J.; Koster, L. Jan Anton

    2017-01-01

    To improve the efficiency of existing perovskite solar cells (PSCs), a detailed understanding of the underlying device physics during their operation is essential. Here, a device model has been developed and validated that describes the operation of PSCs and quantitatively explains the role of

  14. Model validation studies of solar systems, Phase III. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, L.J.; Winn, C.B.

    1978-12-01

    Results obtained from a validation study of the TRNSYS, SIMSHAC, and SOLCOST solar system simulation and design are presented. Also included are comparisons between the FCHART and SOLCOST solar system design programs and some changes that were made to the SOLCOST program. Finally, results obtained from the analysis of several solar radiation models are presented. Separate abstracts were prepared for ten papers.

  15. Validation of a tuber blight (Phytophthora infestans) prediction model

    Science.gov (United States)

    Potato tuber blight caused by Phytophthora infestans accounts for significant losses in storage. There is limited published quantitative data on predicting tuber blight. We validated a tuber blight prediction model developed in New York with cultivars Allegany, NY 101, and Katahdin using independent...

  16. Validating soil phosphorus routines in the SWAT model

    Science.gov (United States)

    Phosphorus transfer from agricultural soils to surface waters is an important environmental issue. Commonly used models like SWAT have not always been updated to reflect improved understanding of soil P transformations and transfer to runoff. Our objective was to validate the ability of the P routin...

  17. Temporal validation for landsat-based volume estimation model

    Science.gov (United States)

    Renaldo J. Arroyo; Emily B. Schultz; Thomas G. Matney; David L. Evans; Zhaofei Fan

    2015-01-01

    Satellite imagery can potentially reduce the costs and time associated with ground-based forest inventories; however, for satellite imagery to provide reliable forest inventory data, it must produce consistent results from one time period to the next. The objective of this study was to temporally validate a Landsat-based volume estimation model in a four county study...

  18. Multiphysics software and the challenge to validating physical models

    International Nuclear Information System (INIS)

    Luxat, J.C.

    2008-01-01

    This paper discusses multi physics software and validation of physical models in the nuclear industry. The major challenge is to convert the general purpose software package to a robust application-specific solution. This requires greater knowledge of the underlying solution techniques and the limitations of the packages. Good user interfaces and neat graphics do not compensate for any deficiencies

  19. Technical Note: Calibration and validation of geophysical observation models

    NARCIS (Netherlands)

    Salama, M.S.; van der Velde, R.; van der Woerd, H.J.; Kromkamp, J.C.; Philippart, C.J.M.; Joseph, A.T.; O'Neill, P.E.; Lang, R.H.; Gish, T.; Werdell, P.J.; Su, Z.

    2012-01-01

    We present a method to calibrate and validate observational models that interrelate remotely sensed energy fluxes to geophysical variables of land and water surfaces. Coincident sets of remote sensing observation of visible and microwave radiations and geophysical data are assembled and subdivided

  20. Probabilistic evaluation of process model matching techniques

    NARCIS (Netherlands)

    Kuss, Elena; Leopold, Henrik; van der Aa, Han; Stuckenschmidt, Heiner; Reijers, Hajo A.

    2016-01-01

    Process model matching refers to the automatic identification of corresponding activities between two process models. It represents the basis for many advanced process model analysis techniques such as the identification of similar process parts or process model search. A central problem is how to

  1. Validation of a pulsed electric field process to pasteurize strawberry puree

    Science.gov (United States)

    An inexpensive data acquisition method was developed to validate the exact number and shape of the pulses applied during pulsed electric fields (PEF) processing. The novel validation method was evaluated in conjunction with developing a pasteurization PEF process for strawberry puree. Both buffered...

  2. An approach to model validation and model-based prediction -- polyurethane foam case study.

    Energy Technology Data Exchange (ETDEWEB)

    Dowding, Kevin J.; Rutherford, Brian Milne

    2003-07-01

    Enhanced software methodology and improved computing hardware have advanced the state of simulation technology to a point where large physics-based codes can be a major contributor in many systems analyses. This shift toward the use of computational methods has brought with it new research challenges in a number of areas including characterization of uncertainty, model validation, and the analysis of computer output. It is these challenges that have motivated the work described in this report. Approaches to and methods for model validation and (model-based) prediction have been developed recently in the engineering, mathematics and statistical literatures. In this report we have provided a fairly detailed account of one approach to model validation and prediction applied to an analysis investigating thermal decomposition of polyurethane foam. A model simulates the evolution of the foam in a high temperature environment as it transforms from a solid to a gas phase. The available modeling and experimental results serve as data for a case study focusing our model validation and prediction developmental efforts on this specific thermal application. We discuss several elements of the ''philosophy'' behind the validation and prediction approach: (1) We view the validation process as an activity applying to the use of a specific computational model for a specific application. We do acknowledge, however, that an important part of the overall development of a computational simulation initiative is the feedback provided to model developers and analysts associated with the application. (2) We utilize information obtained for the calibration of model parameters to estimate the parameters and quantify uncertainty in the estimates. We rely, however, on validation data (or data from similar analyses) to measure the variability that contributes to the uncertainty in predictions for specific systems or units (unit-to-unit variability). (3) We perform statistical

  3. Statistical methods for mechanistic model validation: Salt Repository Project

    International Nuclear Information System (INIS)

    Eggett, D.L.

    1988-07-01

    As part of the Department of Energy's Salt Repository Program, Pacific Northwest Laboratory (PNL) is studying the emplacement of nuclear waste containers in a salt repository. One objective of the SRP program is to develop an overall waste package component model which adequately describes such phenomena as container corrosion, waste form leaching, spent fuel degradation, etc., which are possible in the salt repository environment. The form of this model will be proposed, based on scientific principles and relevant salt repository conditions with supporting data. The model will be used to predict the future characteristics of the near field environment. This involves several different submodels such as the amount of time it takes a brine solution to contact a canister in the repository, how long it takes a canister to corrode and expose its contents to the brine, the leach rate of the contents of the canister, etc. These submodels are often tested in a laboratory and should be statistically validated (in this context, validate means to demonstrate that the model adequately describes the data) before they can be incorporated into the waste package component model. This report describes statistical methods for validating these models. 13 refs., 1 fig., 3 tabs

  4. NASA Construction of Facilities Validation Processes - Total Building Commissioning (TBCx)

    Science.gov (United States)

    Hoover, Jay C.

    2004-01-01

    Key Atributes include: Total Quality Management (TQM) System that looks at all phases of a project. A team process that spans boundaries. A Commissioning Authority to lead the process. Commissioning requirements in contracts. Independent design review to verify compliance with Facility Project Requirements (FPR). Formal written Commissioning Plan with Documented Results. Functional performance testing (FPT) against the requirements document.

  5. Definition and validation of process mining use cases

    NARCIS (Netherlands)

    Ailenei, I.; Rozinat, A.; Eckert, A.; Aalst, van der W.M.P.; Daniel, F.; Barkaoui, K.; Dustdar, S.

    2012-01-01

    Process mining is an emerging topic in the BPM marketplace. Recently, several (commercial) software solutions have become available. Due to the lack of an evaluation framework, it is very difficult for potential users to assess the strengths and weaknesses of these process mining tools. As the first

  6. Simple process capability analysis and quality validation of ...

    African Journals Online (AJOL)

    Many ways can be applied to improve the process and one of them is by choosing the correct six sigma's design of experiment (DOE). In this study, Taguchi's experimental design was applied to achieve high percentage of cell viability in the fermentation experiment. The process capability of this study was later analyzed by ...

  7. Using process elicitation and validation to understand and improve chemotherapy ordering and delivery.

    Science.gov (United States)

    Mertens, Wilson C; Christov, Stefan C; Avrunin, George S; Clarke, Lori A; Osterweil, Leon J; Cassells, Lucinda J; Marquard, Jenna L

    2012-11-01

    Chemotherapy ordering and administration, in which errors have potentially severe consequences, was quantitatively and qualitatively evaluated by employing process formalism (or formal process definition), a technique derived from software engineering, to elicit and rigorously describe the process, after which validation techniques were applied to confirm the accuracy of the described process. The chemotherapy ordering and administration process, including exceptional situations and individuals' recognition of and responses to those situations, was elicited through informal, unstructured interviews with members of an interdisciplinary team. The process description (or process definition), written in a notation developed for software quality assessment purposes, guided process validation (which consisted of direct observations and semistructured interviews to confirm the elicited details for the treatment plan portion of the process). The overall process definition yielded 467 steps; 207 steps (44%) were dedicated to handling 59 exceptional situations. Validation yielded 82 unique process events (35 new expected but not yet described steps, 16 new exceptional situations, and 31 new steps in response to exceptional situations). Process participants actively altered the process as ambiguities and conflicts were discovered by the elicitation and validation components of the study. Chemotherapy error rates declined significantly during and after the project, which was conducted from October 2007 through August 2008. Each elicitation method and the subsequent validation discussions contributed uniquely to understanding the chemotherapy treatment plan review process, supporting rapid adoption of changes, improved communication regarding the process, and ensuing error reduction.

  8. Verification and Validation of Heat Transfer Model of AGREE Code

    Energy Technology Data Exchange (ETDEWEB)

    Tak, N. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Seker, V.; Drzewiecki, T. J.; Downar, T. J. [Department of Nuclear Engineering and Radiological Sciences, Univ. of Michigan, Michigan (United States); Kelly, J. M. [US Nuclear Regulatory Commission, Washington (United States)

    2013-05-15

    The AGREE code was originally developed as a multi physics simulation code to perform design and safety analysis of Pebble Bed Reactors (PBR). Currently, additional capability for the analysis of Prismatic Modular Reactor (PMR) core is in progress. Newly implemented fluid model for a PMR core is based on a subchannel approach which has been widely used in the analyses of light water reactor (LWR) cores. A hexagonal fuel (or graphite block) is discretized into triangular prism nodes having effective conductivities. Then, a meso-scale heat transfer model is applied to the unit cell geometry of a prismatic fuel block. Both unit cell geometries of multi-hole and pin-in-hole types of prismatic fuel blocks are considered in AGREE. The main objective of this work is to verify and validate the heat transfer model newly implemented for a PMR core in the AGREE code. The measured data in the HENDEL experiment were used for the validation of the heat transfer model for a pin-in-hole fuel block. However, the HENDEL tests were limited to only steady-state conditions of pin-in-hole fuel blocks. There exist no available experimental data regarding a heat transfer in multi-hole fuel blocks. Therefore, numerical benchmarks using conceptual problems are considered to verify the heat transfer model of AGREE for multi-hole fuel blocks as well as transient conditions. The CORONA and GAMMA+ codes were used to compare the numerical results. In this work, the verification and validation study were performed for the heat transfer model of the AGREE code using the HENDEL experiment and the numerical benchmarks of selected conceptual problems. The results of the present work show that the heat transfer model of AGREE is accurate and reliable for prismatic fuel blocks. Further validation of AGREE is in progress for a whole reactor problem using the HTTR safety test data such as control rod withdrawal tests and loss-of-forced convection tests.

  9. Validation of the Colorado Retinopathy of Prematurity Screening Model.

    Science.gov (United States)

    McCourt, Emily A; Ying, Gui-Shuang; Lynch, Anne M; Palestine, Alan G; Wagner, Brandie D; Wymore, Erica; Tomlinson, Lauren A; Binenbaum, Gil

    2018-04-01

    The Colorado Retinopathy of Prematurity (CO-ROP) model uses birth weight, gestational age, and weight gain at the first month of life (WG-28) to predict risk of severe retinopathy of prematurity (ROP). In previous validation studies, the model performed very well, predicting virtually all cases of severe ROP and potentially reducing the number of infants who need ROP examinations, warranting validation in a larger, more diverse population. To validate the performance of the CO-ROP model in a large multicenter cohort. This study is a secondary analysis of data from the Postnatal Growth and Retinopathy of Prematurity (G-ROP) Study, a retrospective multicenter cohort study conducted in 29 hospitals in the United States and Canada between January 2006 and June 2012 of 6351 premature infants who received ROP examinations. Sensitivity and specificity for severe (early treatment of ROP [ETROP] type 1 or 2) ROP, and reduction in infants receiving examinations. The CO-ROP model was applied to the infants in the G-ROP data set with all 3 data points (infants would have received examinations if they met all 3 criteria: birth weight, large validation cohort. The model requires all 3 criteria to be met to signal a need for examinations, but some infants with a birth weight or gestational age above the thresholds developed severe ROP. Most of these infants who were not detected by the CO-ROP model had obvious deviation in expected weight trajectories or nonphysiologic weight gain. These findings suggest that the CO-ROP model needs to be revised before considering implementation into clinical practice.

  10. Application of environmental isotopes to validate a model of regional groundwater flow and transport (Carrizo Aquifer)

    International Nuclear Information System (INIS)

    Pearson, F.J.

    1999-01-01

    It is asserted that models cannot be validated. This seems obvious if one identifies validation as the process of testing a model against absolute truth, and accepts that absolute truth is less a scientific than a philosophic or religious concept. What is here called model validation has a more modest goal - to develop confidence in the conceptual and mathematical models used to describe a groundwater system by illustrating that measured radiochemical properties of the groundwater match those predicted by the model. The system described is the Carrizo sand in the Gulf Coastal Plain of south Texas. Each element of the modelling chain describing the movement of 14 C is confirmed independently and, thus, can be said to be validated. The groundwater ages, and the 14 C measurements and carbonate geochemical model underlying them, are confirmed by the noble gas measurements, while the flow and transport model is confirmed by the 14 C results. Agreement between the modelled and measured 234 U/ 238 U ratios supports the description of U transport used in the modelling, while the need to use an unexpectedly low K D value for U raises questions about the applicability of laboratory K D data to the Carrizo groundwater system. (author)

  11. A study on the validity of strategic classification processes

    International Nuclear Information System (INIS)

    Tae, Jae Woong; Shin, Dong Hun

    2013-01-01

    The commodity classification is to identify strategic commodity. The export license is to verify that exports have met the conditions required by the international export control system. NSSC (Nuclear Safety and Security Commission) operates the NEPS (Nuclear Export Promotion Service) for export control of nuclear items. NEPS contributed to reduce process time related to submission of documents, issuing certificates and licenses, etc. Nonetheless, it became necessary to enhance capacity to implement export control precisely and efficiently as development of Korean nuclear industry led to sharp increase of export. To provide more efficient ways, development of the advanced export control system, IXCS (Intelligent eXport Control System) was suggested. To build IXCS successfully, export control experts have analyzed Korean export control system. Two classification processes of items and technology were derived as a result of the research. However, it may reflect real cases insufficiently because it is derived by experts' discussion. This study evaluated how well the process explains real cases. Although the derived processes explained real cases well, some recommendations for improvement were found through this study. These evaluation results will help to make classification flow charts more compatible to the current export system. Most classification reports on equipment and material deliberated specification and functions while related systems were not considered. If a 'specification review' stage is added to the current process and delete unnecessary stages, this will improve accuracy of the flow chart. In the classification of nuclear technology, detailed process to identify specific information and data need to be specified to decrease subjectivity. Whether they are imitations or not is an unnecessary factor in both processes. The successful development of IXCS needs accurate export control processes as well as IT technology. If these classification processes are

  12. Mathematical modeling of biological processes

    CERN Document Server

    Friedman, Avner

    2014-01-01

    This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.

  13. Challenges of forest landscape modeling - simulating large landscapes and validating results

    Science.gov (United States)

    Hong S. He; Jian Yang; Stephen R. Shifley; Frank R. Thompson

    2011-01-01

    Over the last 20 years, we have seen a rapid development in the field of forest landscape modeling, fueled by both technological and theoretical advances. Two fundamental challenges have persisted since the inception of FLMs: (1) balancing realistic simulation of ecological processes at broad spatial and temporal scales with computing capacity, and (2) validating...

  14. Flexible Programmes in Higher Professional Education: Expert Validation of a Flexible Educational Model

    Science.gov (United States)

    Schellekens, Ad; Paas, Fred; Verbraeck, Alexander; van Merrienboer, Jeroen J. G.

    2010-01-01

    In a preceding case study, a process-focused demand-driven approach for organising flexible educational programmes in higher professional education (HPE) was developed. Operations management and instructional design contributed to designing a flexible educational model by means of discrete-event simulation. Educational experts validated the model…

  15. Dynamic radar cross section measurements of a full-scale aircraft for RCS modelling validation

    CSIR Research Space (South Africa)

    Van Schalkwyk, Richard F

    2017-10-01

    Full Text Available In this paper the process followed in generating a high fidelity reference data set for radar cross section (RCS) modelling validation for a full-scale aircraft, is presented. An overview of two dynamic RCS measurement campaigns, involving both...

  16. Measurement and data analysis methods for field-scale wind erosion studies and model validation

    NARCIS (Netherlands)

    Zobeck, T.M.; Sterk, G.; Funk, R.F.; Rajot, J.L.; Stout, J.E.; Scott Van Pelt, R.

    2003-01-01

    Accurate and reliable methods of measuring windblown sediment are needed to confirm, validate, and improve erosion models, assess the intensity of aeolian processes and related damage, determine the source of pollutants, and for other applications. This paper outlines important principles to

  17. Modeling pellet impact drilling process

    Science.gov (United States)

    Kovalyov, A. V.; Ryabchikov, S. Ya; Isaev, Ye D.; Ulyanova, O. S.

    2016-03-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling the process of pellet impact drilling, which creates the scientific and methodological basis for engineering design of drilling operations under different geo-technical conditions.

  18. Water loss in table grapes: model development and validation under dynamic storage conditions

    Directory of Open Access Journals (Sweden)

    Ericsem PEREIRA

    2017-09-01

    Full Text Available Abstract Water loss is a critical problem affecting the quality of table grapes. Temperature and relative humidity (RH are essential in this process. Although mathematical modelling can be applied to measure constant temperature and RH impacts, it is proved that variations in storage conditions are normally encountered in the cold chain. This study proposed a methodology to develop a weight loss model for table grapes and validate its predictions in non-constant conditions of a domestic refrigerator. Grapes were maintained under controlled conditions and the weight loss was measured to calibrate the model. The model described the water loss process adequately and the validation tests confirmed its predictive ability. Delayed cooling tests showed that estimated transpiration rates in subsequent continuous temperature treatment was not significantly influenced by prior exposure conditions, suggesting that this model may be useful to estimate the weight loss consequences of interruptions in the cold chain.

  19. Querying Business Process Models with VMQL

    DEFF Research Database (Denmark)

    Störrle, Harald; Acretoaie, Vlad

    2013-01-01

    The Visual Model Query Language (VMQL) has been invented with the objectives (1) to make it easier for modelers to query models effectively, and (2) to be universally applicable to all modeling languages. In previous work, we have applied VMQL to UML, and validated the first of these two claims. ...

  20. Process chain validation in micro and nano replication

    DEFF Research Database (Denmark)

    Calaon, Matteo

    to quantification of replication quality over large areas of surface topography based on areal detection technique and angular diffraction measurements were developed. A series of injection molding and compression molding experiments aimed at process analysis and optimization showed the possibility to control...... features dimensional accuracy variation through the identification of relevant process parameters. Statistical design of experiment results, showed the influence of both process parameters (mold temperature, packing time, packing pressure) and design parameters (channel width and direction with respect......Innovations in nanotechnology propose applications integrating micro and nanometer structures fabricated as master geometries for final replication on polymer substrates. The possibility for polymer materials of being processed with technologies enabling large volume production introduces solutions...

  1. Simple process capability analysis and quality validation of ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... University Malaysia, Gombak, P.O. Box 10, 50728 Kuala Lumpur, Malaysia. Accepted 7 .... used in the manufacturing industry as a process perform- ance indicator. ... Six Sigma for Electronics design and manufacturing.

  2. PolyNano M.6.1.1 Process validation state-of-the-art

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Calaon, Matteo

    2012-01-01

    Nano project. Methods for replication process validation are presented and will be further investigated in WP6 “Process Chain Validation” and applied to PolyNano study cases. Based on the available information, effective best practice standard process validation will be defined and implemented...... assessment methods, and presents measuring procedures/techniques suitable for replication fidelity studies. The report reviews state‐of‐the‐art research results regarding replication obtained at different scales, tooling technologies based on surface replication, process validation trough design...

  3. Comparative calculations and validation studies with atmospheric dispersion models

    International Nuclear Information System (INIS)

    Paesler-Sauer, J.

    1986-11-01

    This report presents the results of an intercomparison of different mesoscale dispersion models and measured data of tracer experiments. The types of models taking part in the intercomparison are Gaussian-type, numerical Eulerian, and Lagrangian dispersion models. They are suited for the calculation of the atmospherical transport of radionuclides released from a nuclear installation. For the model intercomparison artificial meteorological situations were defined and corresponding arithmetical problems were formulated. For the purpose of model validation real dispersion situations of tracer experiments were used as input data for model calculations; in these cases calculated and measured time-integrated concentrations close to the ground are compared. Finally a valuation of the models concerning their efficiency in solving the problems is carried out by the aid of objective methods. (orig./HP) [de

  4. Integral Reactor Containment Condensation Model and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiao [Oregon State Univ., Corvallis, OR (United States); Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States)

    2016-05-02

    This NEUP funded project, NEUP 12-3630, is for experimental, numerical and analytical studies on high-pressure steam condensation phenomena in a steel containment vessel connected to a water cooling tank, carried out at Oregon State University (OrSU) and the University of Wisconsin at Madison (UW-Madison). In the three years of investigation duration, following the original proposal, the planned tasks have been completed: (1) Performed a scaling study for the full pressure test facility applicable to the reference design for the condensation heat transfer process during design basis accidents (DBAs), modified the existing test facility to route the steady-state secondary steam flow into the high pressure containment for controllable condensation tests, and extended the operations at negative gage pressure conditions (OrSU). (2) Conducted a series of DBA and quasi-steady experiments using the full pressure test facility to provide a reliable high pressure condensation database (OrSU). (3) Analyzed experimental data and evaluated condensation model for the experimental conditions, and predicted the prototypic containment performance under accidental conditions (UW-Madison). A film flow model was developed for the scaling analysis, and the results suggest that the 1/3 scaled test facility covers large portion of laminar film flow, leading to a lower average heat transfer coefficient comparing to the prototypic value. Although it is conservative in reactor safety analysis, the significant reduction of heat transfer coefficient (50%) could under estimate the prototypic condensation heat transfer rate, resulting in inaccurate prediction of the decay heat removal capability. Further investigation is thus needed to quantify the scaling distortion for safety analysis code validation. Experimental investigations were performed in the existing MASLWR test facility at OrST with minor modifications. A total of 13 containment condensation tests were conducted for pressure

  5. Real-time process signal validation based on neuro-fuzzy and possibilistic approach

    International Nuclear Information System (INIS)

    Figedy, S.; Fantoni, P.F.; Hoffmann, M.

    2001-01-01

    Real-time process signal validation is an application field where the use of fuzzy logic and Artificial Neural Networks can improve the diagnostics of faulty sensors and the identification of outliers in a robust and reliable way. This study implements a fuzzy and possibilistic clustering algorithm to classify the operating region where the validation process is to be performed. The possibilistic approach allows a fast detection of unforeseen plant conditions. Specialized Artificial Neural Networks are used, one for each fuzzy cluster. This offers two main advantages: the accuracy and generalization capability is increased compared to the case of a single network working in the entire operating region, and the ability to identify abnormal conditions, where the system is not capable to operate with a satisfactory accuracy, is improved. This system analyzes the signals, which are e.g. the readings of process monitoring sensors, computes their expected values and alerts if real values are deviated from the expected ones more than limits allow. The reliability level of the current analysis is also produced. This model has been tested on a simulated data from the PWR type of a nuclear power plant, to monitor safety-related reactor variables over the entire power-flow operating map and were installed in real conditions of BWR nuclear reactor. (Authors)

  6. Understanding Dynamic Model Validation of a Wind Turbine Generator and a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Zhang, Ying Chen; Gevorgian, Vahan; Kosterev, Dmitry

    2016-09-01

    Regional reliability organizations require power plants to validate the dynamic models that represent them to ensure that power systems studies are performed to the best representation of the components installed. In the process of validating a wind power plant (WPP), one must be cognizant of the parameter settings of the wind turbine generators (WTGs) and the operational settings of the WPP. Validating the dynamic model of a WPP is required to be performed periodically. This is because the control parameters of the WTGs and the other supporting components within a WPP may be modified to comply with new grid codes or upgrades to the WTG controller with new capabilities developed by the turbine manufacturers or requested by the plant owners or operators. The diversity within a WPP affects the way we represent it in a model. Diversity within a WPP may be found in the way the WTGs are controlled, the wind resource, the layout of the WPP (electrical diversity), and the type of WTGs used. Each group of WTGs constitutes a significant portion of the output power of the WPP, and their unique and salient behaviors should be represented individually. The objective of this paper is to illustrate the process of dynamic model validations of WTGs and WPPs, the available data recorded that must be screened before it is used for the dynamic validations, and the assumptions made in the dynamic models of the WTG and WPP that must be understood. Without understanding the correct process, the validations may lead to the wrong representations of the WTG and WPP modeled.

  7. Mold-filling experiments for validation of modeling encapsulation. Part 1, "wine glass" mold.

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda, Jaime N.; Grillet, Anne Mary; Altobelli, Stephen A. (New Mexico Resonance, Albuquerque, NM); Cote, Raymond O.; Mondy, Lisa Ann

    2005-06-01

    The C6 project 'Encapsulation Processes' has been designed to obtain experimental measurements for discovery of phenomena critical to improving these processes, as well as data required in the verification and validation plan (Rao et al. 2001) for model validation of flow in progressively complex geometries. We have observed and recorded the flow of clear, Newtonian liquids and opaque, rheologically complex suspensions in two mold geometries. The first geometry is a simple wineglass geometry in a cylinder and is reported here in Part 1. The results in a more realistic encapsulation geometry are reported in Part 2.

  8. Integrated modelling in materials and process technology

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri

    2008-01-01

    Integrated modelling of entire process sequences and the subsequent in-service conditions, and multiphysics modelling of the single process steps are areas that increasingly support optimisation of manufactured parts. In the present paper, three different examples of modelling manufacturing...... processes from the viewpoint of combined materials and process modelling are presented: solidification of thin walled ductile cast iron, integrated modelling of spray forming and multiphysics modelling of friction stir welding. The fourth example describes integrated modelling applied to a failure analysis...

  9. Improvement and Validation of Weld Residual Stress Modelling Procedure

    International Nuclear Information System (INIS)

    Zang, Weilin; Gunnars, Jens; Dong, Pingsha; Hong, Jeong K.

    2009-06-01

    The objective of this work is to identify and evaluate improvements for the residual stress modelling procedure currently used in Sweden. There is a growing demand to eliminate any unnecessary conservatism involved in residual stress assumptions. The study was focused on the development and validation of an improved weld residual stress modelling procedure, by taking advantage of the recent advances in residual stress modelling and stress measurement techniques. The major changes applied in the new weld residual stress modelling procedure are: - Improved procedure for heat source calibration based on use of analytical solutions. - Use of an isotropic hardening model where mixed hardening data is not available. - Use of an annealing model for improved simulation of strain relaxation in re-heated material. The new modelling procedure is demonstrated to capture the main characteristics of the through thickness stress distributions by validation to experimental measurements. Three austenitic stainless steel butt-welds cases are analysed, covering a large range of pipe geometries. From the cases it is evident that there can be large differences between the residual stresses predicted using the new procedure, and the earlier procedure or handbook recommendations. Previously recommended profiles could give misleading fracture assessment results. The stress profiles according to the new procedure agree well with the measured data. If data is available then a mixed hardening model should be used

  10. Validated TRNSYS Model for Solar Assisted Space Heating System

    International Nuclear Information System (INIS)

    Abdalla, Nedal

    2014-01-01

    The present study involves a validated TRNSYS model for solar assisted space heating system as applied to a residential building in Jordan using new detailed radiation models of the TRNSYS 17.1 and geometric building model Trnsys3d for the Google SketchUp 3D drawing program. The annual heating load for a building (Solar House) which is located at the Royal ScientiFIc Society (RS5) in Jordan is estimated under climatological conditions of Amman. The aim of this Paper is to compare measured thermal performance of the Solar House with that modeled using TRNSYS. The results showed that the annual measured space heating load for the building was 6,188 kWh while the heati.ng load for the modeled building was 6,391 kWh. Moreover, the measured solar fraction for the solar system was 50% while the modeled solar fraction was 55%. A comparison of modeled and measured data resulted in percentage mean absolute errors for solar energy for space heating, auxiliary heating and solar fraction of 13%, 7% and 10%, respectively. The validated model will be useful for long-term performance simulation under different weather and operating conditions.(author)

  11. Improvement and Validation of Weld Residual Stress Modelling Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Zang, Weilin; Gunnars, Jens (Inspecta Technology AB, Stockholm (Sweden)); Dong, Pingsha; Hong, Jeong K. (Center for Welded Structures Research, Battelle, Columbus, OH (United States))

    2009-06-15

    The objective of this work is to identify and evaluate improvements for the residual stress modelling procedure currently used in Sweden. There is a growing demand to eliminate any unnecessary conservatism involved in residual stress assumptions. The study was focused on the development and validation of an improved weld residual stress modelling procedure, by taking advantage of the recent advances in residual stress modelling and stress measurement techniques. The major changes applied in the new weld residual stress modelling procedure are: - Improved procedure for heat source calibration based on use of analytical solutions. - Use of an isotropic hardening model where mixed hardening data is not available. - Use of an annealing model for improved simulation of strain relaxation in re-heated material. The new modelling procedure is demonstrated to capture the main characteristics of the through thickness stress distributions by validation to experimental measurements. Three austenitic stainless steel butt-welds cases are analysed, covering a large range of pipe geometries. From the cases it is evident that there can be large differences between the residual stresses predicted using the new procedure, and the earlier procedure or handbook recommendations. Previously recommended profiles could give misleading fracture assessment results. The stress profiles according to the new procedure agree well with the measured data. If data is available then a mixed hardening model should be used

  12. Systematic validation of non-equilibrium thermochemical models using Bayesian inference

    KAUST Repository

    Miki, Kenji

    2015-10-01

    © 2015 Elsevier Inc. The validation process proposed by Babuška et al. [1] is applied to thermochemical models describing post-shock flow conditions. In this validation approach, experimental data is involved only in the calibration of the models, and the decision process is based on quantities of interest (QoIs) predicted on scenarios that are not necessarily amenable experimentally. Moreover, uncertainties present in the experimental data, as well as those resulting from an incomplete physical model description, are propagated to the QoIs. We investigate four commonly used thermochemical models: a one-temperature model (which assumes thermal equilibrium among all inner modes), and two-temperature models developed by Macheret et al. [2], Marrone and Treanor [3], and Park [4]. Up to 16 uncertain parameters are estimated using Bayesian updating based on the latest absolute volumetric radiance data collected at the Electric Arc Shock Tube (EAST) installed inside the NASA Ames Research Center. Following the solution of the inverse problems, the forward problems are solved in order to predict the radiative heat flux, QoI, and examine the validity of these models. Our results show that all four models are invalid, but for different reasons: the one-temperature model simply fails to reproduce the data while the two-temperature models exhibit unacceptably large uncertainties in the QoI predictions.

  13. Geographic and temporal validity of prediction models: Different approaches were useful to examine model performance

    NARCIS (Netherlands)

    P.C. Austin (Peter); D. van Klaveren (David); Y. Vergouwe (Yvonne); D. Nieboer (Daan); D.S. Lee (Douglas); E.W. Steyerberg (Ewout)

    2016-01-01

    textabstractObjective: Validation of clinical prediction models traditionally refers to the assessment of model performance in new patients. We studied different approaches to geographic and temporal validation in the setting of multicenter data from two time periods. Study Design and Setting: We

  14. Validation of an O-18 leaf water enrichment model

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggi, M.; Saurer, M.; Siegwolf, R.

    2002-03-01

    The seasonal trend in {delta}{sup 18}O{sub ol} in leaf organic matter of spruce needles of mature trees could be modelled for two years. The seasonality was mainly explained by the {delta}{sup 18}O of top-soil water, whereas between years differences were due to variation in air humidity. Application of a third year's data set improved the correlation between modelled and measured {delta}{sup 18}O{sub ol} and thus validated our extended Dongmann model. (author)

  15. Validation study of safety assessment model for radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Munakata, Masahiro; Takeda, Seiji; Kimura, Hideo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    The JAERI-AECL collaboration research program has been conducted to validate a groundwater flow and radionuclide transport models for safety assessment. JAERI have developed a geostatistical model for radionuclide transport through a heterogeneous geological media and verify using experimental results of field tracer tests. The simulated tracer plumes explain favorably the experimental tracer plumes. A regional groundwater flow and transport model using site-scale parameter obtained from tracer tests have been verified by comparing simulation results with observation ones of natural environmental tracer. (author)

  16. Validation of Slosh Modeling Approach Using STAR-CCM+

    Science.gov (United States)

    Benson, David J.; Ng, Wanyi

    2018-01-01

    Without an adequate understanding of propellant slosh, the spacecraft attitude control system may be inadequate to control the spacecraft or there may be an unexpected loss of science observation time due to higher slosh settling times. Computational fluid dynamics (CFD) is used to model propellant slosh. STAR-CCM+ is a commercially available CFD code. This paper seeks to validate the CFD modeling approach via a comparison between STAR-CCM+ liquid slosh modeling results and experimental, empirically, and analytically derived results. The geometries examined are a bare right cylinder tank and a right cylinder with a single ring baffle.

  17. Collapse models and perceptual processes

    International Nuclear Information System (INIS)

    Ghirardi, Gian Carlo; Romano, Raffaele

    2014-01-01

    Theories including a collapse mechanism have been presented various years ago. They are based on a modification of standard quantum mechanics in which nonlinear and stochastic terms are added to the evolution equation. Their principal merits derive from the fact that they are mathematically precise schemes accounting, on the basis of a unique universal dynamical principle, both for the quantum behavior of microscopic systems as well as for the reduction associated to measurement processes and for the classical behavior of macroscopic objects. Since such theories qualify themselves not as new interpretations but as modifications of the standard theory they can be, in principle, tested against quantum mechanics. Recently, various investigations identifying possible crucial test have been discussed. In spite of the extreme difficulty to perform such tests it seems that recent technological developments allow at least to put precise limits on the parameters characterizing the modifications of the evolution equation. Here we will simply mention some of the recent investigations in this direction, while we will mainly concentrate our attention to the way in which collapse theories account for definite perceptual process. The differences between the case of reductions induced by perceptions and those related to measurement procedures by means of standard macroscopic devices will be discussed. On this basis, we suggest a precise experimental test of collapse theories involving conscious observers. We make plausible, by discussing in detail a toy model, that the modified dynamics can give rise to quite small but systematic errors in the visual perceptual process.

  18. Assessment model validity document - HYDRASTAR. A stochastic continuum program for groundwater flow

    Energy Technology Data Exchange (ETDEWEB)

    Gylling, B. [Kemakta Konsult AB, Stockholm (Sweden); Eriksson, Lars [Equa Simulation AB, Sundbyberg (Sweden)

    2001-12-01

    The prevailing document addresses validation of the stochastic continuum model HYDRASTAR designed for Monte Carlo simulations of groundwater flow in fractured rocks. Here, validation is defined as a process to demonstrate that a model concept is fit for its purpose. Preferably, the validation is carried out by comparison of model predictions with independent field observations and experimental measurements. In addition, other sources can also be used to confirm that the model concept gives acceptable results. One method is to compare results with the ones achieved using other model concepts for the same set of input data. Another method is to compare model results with analytical solutions. The model concept HYDRASTAR has been used in several studies including performance assessments of hypothetical repositories for spent nuclear fuel. In the performance assessments, the main tasks for HYDRASTAR have been to calculate groundwater travel time distributions, repository flux distributions, path lines and their exit locations. The results have then been used by other model concepts to calculate the near field release and far field transport. The aim and framework for the validation process includes describing the applicability of the model concept for its purpose in order to build confidence in the concept. Preferably, this is made by comparisons of simulation results with the corresponding field experiments or field measurements. Here, two comparisons with experimental results are reported. In both cases the agreement was reasonably fair. In the broader and more general context of the validation process, HYDRASTAR results have been compared with other models and analytical solutions. Commonly, the approximation calculations agree well with the medians of model ensemble results. Additional indications that HYDRASTAR is suitable for its purpose were obtained from the comparisons with results from other model concepts. Several verification studies have been made for

  19. Hillslope runoff processes and models

    Science.gov (United States)

    Kirkby, Mike

    1988-07-01

    Hillslope hydrology is concerned with the partition of precipitation as it passes through the vegetation and soil between overland flow and subsurface flow. Flow follows routes which attenuate and delay the flow to different extents, so that a knowledge of the relevant mechanisms is important. In the 1960s and 1970s, hillslope hydrology developed as a distinct topic through the application of new field observations to develop a generation of physically based forecasting models. In its short history, theory has continually been overturned by field observation. Thus the current tendency, particularly among temperate zone hydrologists, to dismiss all Hortonian overland flow as a myth, is now being corrected by a number of significant field studies which reveal the great range in both climatic and hillslope conditions. Some recent models have generally attempted to simplify the processes acting, for example including only vertical unsaturated flow and lateral saturated flows. Others explicitly forecast partial or contributing areas. With hindsight, the most complete and distributed models have generally shown little forecasting advantage over simpler approaches, perhaps trending towards reliable models which can run on desk top microcomputers. The variety now being recognised in hillslope hydrological responses should also lead to models which take account of more complex interactions, even if initially with a less secure physical and mathematical basis than the Richards equation. In particular, there is a need to respond to the variety of climatic responses, and to spatial variability on and beneath the surface, including the role of seepage macropores and pipes which call into question whether the hillside can be treated as a Darcian flow system.

  20. Business Process Modelling for Measuring Quality

    NARCIS (Netherlands)

    Heidari, F.; Loucopoulos, P.; Brazier, F.M.

    2013-01-01

    Business process modelling languages facilitate presentation, communication and analysis of business processes with different stakeholders. This paper proposes an approach that drives specification and measurement of quality requirements and in doing so relies on business process models as

  1. Modeling and validating HL7 FHIR profiles using semantic web Shape Expressions (ShEx).

    Science.gov (United States)

    Solbrig, Harold R; Prud'hommeaux, Eric; Grieve, Grahame; McKenzie, Lloyd; Mandel, Joshua C; Sharma, Deepak K; Jiang, Guoqian

    2017-03-01

    HL7 Fast Healthcare Interoperability Resources (FHIR) is an emerging open standard for the exchange of electronic healthcare information. FHIR resources are defined in a specialized modeling language. FHIR instances can currently be represented in either XML or JSON. The FHIR and Semantic Web communities are developing a third FHIR instance representation format in Resource Description Framework (RDF). Shape Expressions (ShEx), a formal RDF data constraint language, is a candidate for describing and validating the FHIR RDF representation. Create a FHIR to ShEx model transformation and assess its ability to describe and validate FHIR RDF data. We created the methods and tools that generate the ShEx schemas modeling the FHIR to RDF specification being developed by HL7 ITS/W3C RDF Task Force, and evaluated the applicability of ShEx in the description and validation of FHIR to RDF transformations. The ShEx models contributed significantly to workgroup consensus. Algorithmic transformations from the FHIR model to ShEx schemas and FHIR example data to RDF transformations were incorporated into the FHIR build process. ShEx schemas representing 109 FHIR resources were used to validate 511 FHIR RDF data examples from the Standards for Trial Use (STU 3) Ballot version. We were able to uncover unresolved issues in the FHIR to RDF specification and detect 10 types of errors and root causes in the actual implementation. The FHIR ShEx representations have been included in the official FHIR web pages for the STU 3 Ballot version since September 2016. ShEx can be used to define and validate the syntax of a FHIR resource, which is complementary to the use of RDF Schema (RDFS) and Web Ontology Language (OWL) for semantic validation. ShEx proved useful for describing a standard model of FHIR RDF data. The combination of a formal model and a succinct format enabled comprehensive review and automated validation. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Validation of the process control system of an automated large scale manufacturing plant.

    Science.gov (United States)

    Neuhaus, H; Kremers, H; Karrer, T; Traut, R H

    1998-02-01

    The validation procedure for the process control system of a plant for the large scale production of human albumin from plasma fractions is described. A validation master plan is developed, defining the system and elements to be validated, the interfaces with other systems with the validation limits, a general validation concept and supporting documentation. Based on this master plan, the validation protocols are developed. For the validation, the system is subdivided into a field level, which is the equipment part, and an automation level. The automation level is further subdivided into sections according to the different software modules. Based on a risk categorization of the modules, the qualification activities are defined. The test scripts for the different qualification levels (installation, operational and performance qualification) are developed according to a previously performed risk analysis.

  3. Cross validation for the classical model of structured expert judgment

    International Nuclear Information System (INIS)

    Colson, Abigail R.; Cooke, Roger M.

    2017-01-01

    We update the 2008 TU Delft structured expert judgment database with data from 33 professionally contracted Classical Model studies conducted between 2006 and March 2015 to evaluate its performance relative to other expert aggregation models. We briefly review alternative mathematical aggregation schemes, including harmonic weighting, before focusing on linear pooling of expert judgments with equal weights and performance-based weights. Performance weighting outperforms equal weighting in all but 1 of the 33 studies in-sample. True out-of-sample validation is rarely possible for Classical Model studies, and cross validation techniques that split calibration questions into a training and test set are used instead. Performance weighting incurs an “out-of-sample penalty” and its statistical accuracy out-of-sample is lower than that of equal weighting. However, as a function of training set size, the statistical accuracy of performance-based combinations reaches 75% of the equal weight value when the training set includes 80% of calibration variables. At this point the training set is sufficiently powerful to resolve differences in individual expert performance. The information of performance-based combinations is double that of equal weighting when the training set is at least 50% of the set of calibration variables. Previous out-of-sample validation work used a Total Out-of-Sample Validity Index based on all splits of the calibration questions into training and test subsets, which is expensive to compute and includes small training sets of dubious value. As an alternative, we propose an Out-of-Sample Validity Index based on averaging the product of statistical accuracy and information over all training sets sized at 80% of the calibration set. Performance weighting outperforms equal weighting on this Out-of-Sample Validity Index in 26 of the 33 post-2006 studies; the probability of 26 or more successes on 33 trials if there were no difference between performance

  4. ADMS-AIRPORT: MODEL INTER-COMPARISIONS AND MODEL VALIDATION

    OpenAIRE

    Carruthers, David; McHugh, Christine; Church, Stephanie; Jackson, Mark; Williams, Matt; Price, Catheryn; Lad, Chetan

    2008-01-01

    Abstract: The functionality of ADMS-Airport and details of its use in the Model Inter-comparison Study of the Project for the Sustainable Development of Heathrow Airport (PSDH) have previously been presented, Carruthers et al (2007). A distinguishing feature is the treatment of jet engine emissions as moving jet sources rather than averaging these emissions into volume sources as is the case in some other models. In this presentation two further studies are presented which each contribu...

  5. Isotopes as validation tools for global climate models

    International Nuclear Information System (INIS)

    Henderson-Sellers, A.

    2001-01-01

    Global Climate Models (GCMs) are the predominant tool with which we predict the future climate. In order that people can have confidence in such predictions, GCMs require validation. As almost every available item of meteorological data has been exploited in the construction and tuning of GCMs to date, independent validation is very difficult. This paper explores the use of isotopes as a novel and fully independent means of evaluating GCMs. The focus is the Amazon Basin which has a long history of isotope collection and analysis and also of climate modelling: both having been reported for over thirty years. Careful consideration of the results of GCM simulations of Amazonian deforestation and climate change suggests that the recent stable isotope record is more consistent with the predicted effects of greenhouse warming, possibly combined with forest removal, than with GCM predictions of the effects of deforestation alone

  6. Modeling and Simulation Behavior Validation Methodology and Extension Model Validation for the Individual Soldier

    Science.gov (United States)

    2015-03-01

    domains. Major model functions include: • Ground combat: Light and heavy forces. • Air mobile forces. • Future forces. • Fixed-wing and rotary-wing...Constraints: • Study must be completed no later than 31 December 2014. • Entity behavior limited to select COMBATXXI Mobility , Unmanned Aerial System...and SQL backend , as well as any open application programming interface API. • Allows data transparency and data driven navigation through the model

  7. Acceptance Probability (P a) Analysis for Process Validation Lifecycle Stages.

    Science.gov (United States)

    Alsmeyer, Daniel; Pazhayattil, Ajay; Chen, Shu; Munaretto, Francesco; Hye, Maksuda; Sanghvi, Pradeep

    2016-04-01

    This paper introduces an innovative statistical approach towards understanding how variation impacts the acceptance criteria of quality attributes. Because of more complex stage-wise acceptance criteria, traditional process capability measures are inadequate for general application in the pharmaceutical industry. The probability of acceptance concept provides a clear measure, derived from specific acceptance criteria for each quality attribute. In line with the 2011 FDA Guidance, this approach systematically evaluates data and scientifically establishes evidence that a process is capable of consistently delivering quality product. The probability of acceptance provides a direct and readily understandable indication of product risk. As with traditional capability indices, the acceptance probability approach assumes that underlying data distributions are normal. The computational solutions for dosage uniformity and dissolution acceptance criteria are readily applicable. For dosage uniformity, the expected AV range may be determined using the s lo and s hi values along with the worst case estimates of the mean. This approach permits a risk-based assessment of future batch performance of the critical quality attributes. The concept is also readily applicable to sterile/non sterile liquid dose products. Quality attributes such as deliverable volume and assay per spray have stage-wise acceptance that can be converted into an acceptance probability. Accepted statistical guidelines indicate processes with C pk > 1.33 as performing well within statistical control and those with C pk  1.33 is associated with a centered process that will statistically produce less than 63 defective units per million. This is equivalent to an acceptance probability of >99.99%.

  8. Multifunctional multiscale composites: Processing, modeling and characterization

    Science.gov (United States)

    Qiu, Jingjing

    Carbon nanotubes (CNTs) demonstrate extraordinary properties and show great promise in enhancing out-of-plane properties of traditional polymer/fiber composites and enabling functionality. However, current manufacturing challenges hinder the realization of their potential. In the dissertation research, both experimental and computational efforts have been conducted to investigate effective manufacturing techniques of CNT integrated multiscale composites. The fabricated composites demonstrated significant improvements in physical properties, such as tensile strength, tensile modulus, inter-laminar shear strength, thermal dimension stability and electrical conductivity. Such multiscale composites were truly multifunctional with the addition of CNTs. Furthermore, a novel hierarchical multiscale modeling method was developed in this research. Molecular dynamic (MD) simulation offered reasonable explanation of CNTs dispersion and their motion in polymer solution. Bi-mode finite-extensible-nonlinear-elastic (FENE) dumbbell simulation was used to analyze the influence of CNT length distribution on the stress tensor and shear-rate-dependent viscosity. Based on the simulated viscosity profile and empirical equations from experiments, a macroscale flow simulation model on the finite element method (FEM) method was developed and validated to predict resin flow behavior in the processing of CNT-enhanced multiscale composites. The proposed multiscale modeling method provided a comprehensive understanding of micro/nano flow in both atomistic details and mesoscale. The simulation model can be used to optimize process design and control of the mold-filling process in multiscale composite manufacturing. This research provided systematic investigations into the CNT-based multiscale composites. The results from this study may be used to leverage the benefits of CNTs and open up new application opportunities for high-performance multifunctional multiscale composites. Keywords. Carbon

  9. Pharmacokinetic modeling of gentamicin in treatment of infective endocarditis: Model development and validation of existing models

    Science.gov (United States)

    van der Wijk, Lars; Proost, Johannes H.; Sinha, Bhanu; Touw, Daan J.

    2017-01-01

    Gentamicin shows large variations in half-life and volume of distribution (Vd) within and between individuals. Thus, monitoring and accurately predicting serum levels are required to optimize effectiveness and minimize toxicity. Currently, two population pharmacokinetic models are applied for predicting gentamicin doses in adults. For endocarditis patients the optimal model is unknown. We aimed at: 1) creating an optimal model for endocarditis patients; and 2) assessing whether the endocarditis and existing models can accurately predict serum levels. We performed a retrospective observational two-cohort study: one cohort to parameterize the endocarditis model by iterative two-stage Bayesian analysis, and a second cohort to validate and compare all three models. The Akaike Information Criterion and the weighted sum of squares of the residuals divided by the degrees of freedom were used to select the endocarditis model. Median Prediction Error (MDPE) and Median Absolute Prediction Error (MDAPE) were used to test all models with the validation dataset. We built the endocarditis model based on data from the modeling cohort (65 patients) with a fixed 0.277 L/h/70kg metabolic clearance, 0.698 (±0.358) renal clearance as fraction of creatinine clearance, and Vd 0.312 (±0.076) L/kg corrected lean body mass. External validation with data from 14 validation cohort patients showed a similar predictive power of the endocarditis model (MDPE -1.77%, MDAPE 4.68%) as compared to the intensive-care (MDPE -1.33%, MDAPE 4.37%) and standard (MDPE -0.90%, MDAPE 4.82%) models. All models acceptably predicted pharmacokinetic parameters for gentamicin in endocarditis patients. However, these patients appear to have an increased Vd, similar to intensive care patients. Vd mainly determines the height of peak serum levels, which in turn correlate with bactericidal activity. In order to maintain simplicity, we advise to use the existing intensive-care model in clinical practice to avoid

  10. Pharmacokinetic modeling of gentamicin in treatment of infective endocarditis: Model development and validation of existing models.

    Directory of Open Access Journals (Sweden)

    Anna Gomes

    Full Text Available Gentamicin shows large variations in half-life and volume of distribution (Vd within and between individuals. Thus, monitoring and accurately predicting serum levels are required to optimize effectiveness and minimize toxicity. Currently, two population pharmacokinetic models are applied for predicting gentamicin doses in adults. For endocarditis patients the optimal model is unknown. We aimed at: 1 creating an optimal model for endocarditis patients; and 2 assessing whether the endocarditis and existing models can accurately predict serum levels. We performed a retrospective observational two-cohort study: one cohort to parameterize the endocarditis model by iterative two-stage Bayesian analysis, and a second cohort to validate and compare all three models. The Akaike Information Criterion and the weighted sum of squares of the residuals divided by the degrees of freedom were used to select the endocarditis model. Median Prediction Error (MDPE and Median Absolute Prediction Error (MDAPE were used to test all models with the validation dataset. We built the endocarditis model based on data from the modeling cohort (65 patients with a fixed 0.277 L/h/70kg metabolic clearance, 0.698 (±0.358 renal clearance as fraction of creatinine clearance, and Vd 0.312 (±0.076 L/kg corrected lean body mass. External validation with data from 14 validation cohort patients showed a similar predictive power of the endocarditis model (MDPE -1.77%, MDAPE 4.68% as compared to the intensive-care (MDPE -1.33%, MDAPE 4.37% and standard (MDPE -0.90%, MDAPE 4.82% models. All models acceptably predicted pharmacokinetic parameters for gentamicin in endocarditis patients. However, these patients appear to have an increased Vd, similar to intensive care patients. Vd mainly determines the height of peak serum levels, which in turn correlate with bactericidal activity. In order to maintain simplicity, we advise to use the existing intensive-care model in clinical practice to

  11. Monte Carlo Modelling of Mammograms : Development and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Spyrou, G; Panayiotakis, G [Univercity of Patras, School of Medicine, Medical Physics Department, 265 00 Patras (Greece); Bakas, A [Technological Educational Institution of Athens, Department of Radiography, 122 10 Athens (Greece); Tzanakos, G [University of Athens, Department of Physics, Divission of Nuclear and Particle Physics, 157 71 Athens (Greece)

    1999-12-31

    A software package using Monte Carlo methods has been developed for the simulation of x-ray mammography. A simplified geometry of the mammographic apparatus has been considered along with the software phantom of compressed breast. This phantom may contain inhomogeneities of various compositions and sizes at any point. Using this model one can produce simulated mammograms. Results that demonstrate the validity of this simulation are presented. (authors) 16 refs, 4 figs

  12. Towards Model Validation and Verification with SAT Techniques

    OpenAIRE

    Gogolla, Martin

    2010-01-01

    After sketching how system development and the UML (Unified Modeling Language) and the OCL (Object Constraint Language) are related, validation and verification with the tool USE (UML-based Specification Environment) is demonstrated. As a more efficient alternative for verification tasks, two approaches using SAT-based techniques are put forward: First, a direct encoding of UML and OCL with Boolean variables and propositional formulas, and second, an encoding employing an...

  13. Trailing Edge Noise Model Validation and Application to Airfoil Optimization

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Bak, Christian

    2010-01-01

    The aim of this article is twofold. First, an existing trailing edge noise model is validated by comparing with airfoil surface pressure fluctuations and far field sound pressure levels measured in three different experiments. The agreement is satisfactory in one case but poor in two other cases...... across the boundary layer near the trailing edge and to a lesser extent by a smaller boundary layer displacement thickness. ©2010 American Society of Mechanical Engineers...

  14. Requirements Validation: Execution of UML Models with CPN Tools

    DEFF Research Database (Denmark)

    Machado, Ricardo J.; Lassen, Kristian Bisgaard; Oliveira, Sérgio

    2007-01-01

    Requirements validation is a critical task in any engineering project. The confrontation of stakeholders with static requirements models is not enough, since stakeholders with non-computer science education are not able to discover all the inter-dependencies between the elicited requirements. Eve...... requirements, where the system to be built must explicitly support the interaction between people within a pervasive cooperative workflow execution. A case study from a real project is used to illustrate the proposed approach....

  15. Monte Carlo Modelling of Mammograms : Development and Validation

    International Nuclear Information System (INIS)

    Spyrou, G.; Panayiotakis, G.; Bakas, A.; Tzanakos, G.

    1998-01-01

    A software package using Monte Carlo methods has been developed for the simulation of x-ray mammography. A simplified geometry of the mammographic apparatus has been considered along with the software phantom of compressed breast. This phantom may contain inhomogeneities of various compositions and sizes at any point. Using this model one can produce simulated mammograms. Results that demonstrate the validity of this simulation are presented. (authors)

  16. NEURO-FUZZY MODELLING OF BLENDING PROCESS IN CEMENT PLANT

    Directory of Open Access Journals (Sweden)

    Dauda Olarotimi Araromi

    2015-11-01

    Full Text Available The profitability of a cement plant depends largely on the efficient operation of the blending stage, therefore, there is a need to control the process at the blending stage in order to maintain the chemical composition of the raw mix near or at the desired value with minimum variance despite variation in the raw material composition. In this work, neuro-fuzzy model is developed for a dynamic behaviour of the system to predict the total carbonate content in the raw mix at different clay feed rates. The data used for parameter estimation and model validation was obtained from one of the cement plants in Nigeria. The data was pre-processed to remove outliers and filtered using smoothening technique in order to reveal its dynamic nature. Autoregressive exogenous (ARX model was developed for comparison purpose. ARX model gave high root mean square error (RMSE of 5.408 and 4.0199 for training and validation respectively. Poor fit resulting from ARX model is an indication of nonlinear nature of the process. However, both visual and statistical analyses on neuro-fuzzy (ANFIS model gave a far better result. RMSE of training and validation are 0.28167 and 0.7436 respectively, and the sum of square error (SSE and R-square are 39.6692 and 0.9969 respectively. All these are an indication of good performance of ANFIS model. This model can be used for control design of the process.

  17. Geometrical Comparison of Numerical Models Used in the Design and Validation of Mechanically Rolled Tube-Tubesheet Joints

    DEFF Research Database (Denmark)

    Madsen, Søren Bøgelund; Ibsen, Claus Hessler; Gervang, Bo

    2015-01-01

    The focus of this paper is the validation and comparison of simplified numerical models of the mechanical rolling process used in tube to tubesheet joints. The investigated models is an axisymmetric model and planar models with plane strain and stress. There are different pros and cons...

  18. Validation of King's transaction process for healthcare provider-patient communication in pharmaceutical context: One cross-sectional study.

    Science.gov (United States)

    Wang, Dan; Liu, Chenxi; Zhang, Zinan; Ye, Liping; Zhang, Xinping

    2018-03-27

    With the impressive advantages of patient-pharmacist communication being advocated and poor pharmacist-patient communication in different settings, it is of great significance and urgency to explore the mechanism of the pharmacist-patient communicative relationship. The King's theory of goal attainment is proposed as one of the most promising models to be applied, because it takes into consideration both improving the patient-pharmacist relationship and attaining patients' health outcomes. This study aimed to validate the King's transaction process and build the linkage between the transaction process and patient satisfaction in a pharmaceutical context. A cross-sectional study was conducted in four tertiary hospitals in two provincial cities (Wuhan and Shanghai) in central and east China in July 2017. Patients over 18 were investigated in the pharmacies of the hospitals. The instrument for the transaction process was revised and tested. Path analysis was conducted for the King's transaction process and its relationship with patient satisfaction. Five hundred eighty-nine participants were investigated for main study. Prior to the addition of covariates, the hypothesised model of the King's transaction process was validated, in which all paths of the transaction process were statistically significant (p process had direct effects on patient satisfaction (p process was established as one valid theoretical framework of healthcare provider-patient communication in a pharmaceutical context. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Calibration and validation of coarse-grained models of atomic systems: application to semiconductor manufacturing

    Science.gov (United States)

    Farrell, Kathryn; Oden, J. Tinsley

    2014-07-01

    Coarse-grained models of atomic systems, created by aggregating groups of atoms into molecules to reduce the number of degrees of freedom, have been used for decades in important scientific and technological applications. In recent years, interest in developing a more rigorous theory for coarse graining and in assessing the predictivity of coarse-grained models has arisen. In this work, Bayesian methods for the calibration and validation of coarse-grained models of atomistic systems in thermodynamic equilibrium are developed. For specificity, only configurational models of systems in canonical ensembles are considered. Among major challenges in validating coarse-grained models are (1) the development of validation processes that lead to information essential in establishing confidence in the model's ability predict key quantities of interest and (2), above all, the determination of the coarse-grained model itself; that is, the characterization of the molecular architecture, the choice of interaction potentials and thus parameters, which best fit available data. The all-atom model is treated as the "ground truth," and it provides the basis with respect to which properties of the coarse-grained model are compared. This base all-atom model is characterized by an appropriate statistical mechanics framework in this work by canonical ensembles involving only configurational energies. The all-atom model thus supplies data for Bayesian calibration and validation methods for the molecular model. To address the first challenge, we develop priors based on the maximum entropy principle and likelihood functions based on Gaussian approximations of the uncertainties in the parameter-to-observation error. To address challenge (2), we introduce the notion of model plausibilities as a means for model selection. This methodology provides a powerful approach toward constructing coarse-grained models which are most plausible for given all-atom data. We demonstrate the theory and

  20. Cross-Validation of Aerobic Capacity Prediction Models in Adolescents.

    Science.gov (United States)

    Burns, Ryan Donald; Hannon, James C; Brusseau, Timothy A; Eisenman, Patricia A; Saint-Maurice, Pedro F; Welk, Greg J; Mahar, Matthew T

    2015-08-01

    Cardiorespiratory endurance is a component of health-related fitness. FITNESSGRAM recommends the Progressive Aerobic Cardiovascular Endurance Run (PACER) or One mile Run/Walk (1MRW) to assess cardiorespiratory endurance by estimating VO2 Peak. No research has cross-validated prediction models from both PACER and 1MRW, including the New PACER Model and PACER-Mile Equivalent (PACER-MEQ) using current standards. The purpose of this study was to cross-validate prediction models from PACER and 1MRW against measured VO2 Peak in adolescents. Cardiorespiratory endurance data were collected on 90 adolescents aged 13-16 years (Mean = 14.7 ± 1.3 years; 32 girls, 52 boys) who completed the PACER and 1MRW in addition to a laboratory maximal treadmill test to measure VO2 Peak. Multiple correlations among various models with measured VO2 Peak were considered moderately strong (R = .74-0.78), and prediction error (RMSE) ranged from 5.95 ml·kg⁻¹,min⁻¹ to 8.27 ml·kg⁻¹.min⁻¹. Criterion-referenced agreement into FITNESSGRAM's Healthy Fitness Zones was considered fair-to-good among models (Kappa = 0.31-0.62; Agreement = 75.5-89.9%; F = 0.08-0.65). In conclusion, prediction models demonstrated moderately strong linear relationships with measured VO2 Peak, fair prediction error, and fair-to-good criterion referenced agreement with measured VO2 Peak into FITNESSGRAM's Healthy Fitness Zones.

  1. Recent validation studies for two NRPB environmental transfer models

    International Nuclear Information System (INIS)

    Brown, J.; Simmonds, J.R.

    1991-01-01

    The National Radiological Protection Board (NRPB) developed a dynamic model for the transfer of radionuclides through terrestrial food chains some years ago. This model, now called FARMLAND, predicts both instantaneous and time integrals of concentration of radionuclides in a variety of foods. The model can be used to assess the consequences of both accidental and routine releases of radioactivity to the environment; and results can be obtained as a function of time. A number of validation studies have been carried out on FARMLAND. In these the model predictions have been compared with a variety of sets of environmental measurement data. Some of these studies will be outlined in the paper. A model to predict external radiation exposure from radioactivity deposited on different surfaces in the environment has also been developed at NRPB. This model, called EXPURT (EXPosure from Urban Radionuclide Transfer), can be used to predict radiation doses as a function of time following deposition in a variety of environments, ranging from rural to inner-city areas. This paper outlines validation studies and future extensions to be carried out on EXPURT. (12 refs., 4 figs.)

  2. Methods for Geometric Data Validation of 3d City Models

    Science.gov (United States)

    Wagner, D.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.

    2015-12-01

    Geometric quality of 3D city models is crucial for data analysis and simulation tasks, which are part of modern applications of the data (e.g. potential heating energy consumption of city quarters, solar potential, etc.). Geometric quality in these contexts is however a different concept as it is for 2D maps. In the latter case, aspects such as positional or temporal accuracy and correctness represent typical quality metrics of the data. They are defined in ISO 19157 and should be mentioned as part of the metadata. 3D data has a far wider range of aspects which influence their quality, plus the idea of quality itself is application dependent. Thus, concepts for definition of quality are needed, including methods to validate these definitions. Quality on this sense means internal validation and detection of inconsistent or wrong geometry according to a predefined set of rules. A useful starting point would be to have correct geometry in accordance with ISO 19107. A valid solid should consist of planar faces which touch their neighbours exclusively in defined corner points and edges. No gaps between them are allowed, and the whole feature must be 2-manifold. In this paper, we present methods to validate common geometric requirements for building geometry. Different checks based on several algorithms have been implemented to validate a set of rules derived from the solid definition mentioned above (e.g. water tightness of the solid or planarity of its polygons), as they were developed for the software tool CityDoctor. The method of each check is specified, with a special focus on the discussion of tolerance values where they are necessary. The checks include polygon level checks to validate the correctness of each polygon, i.e. closeness of the bounding linear ring and planarity. On the solid level, which is only validated if the polygons have passed validation, correct polygon orientation is checked, after self-intersections outside of defined corner points and edges

  3. Empiric validation of a process for behavior change.

    Science.gov (United States)

    Elliot, Diane L; Goldberg, Linn; MacKinnon, David P; Ranby, Krista W; Kuehl, Kerry S; Moe, Esther L

    2016-09-01

    Most behavior change trials focus on outcomes rather than deconstructing how those outcomes related to programmatic theoretical underpinnings and intervention components. In this report, the process of change is compared for three evidence-based programs' that shared theories, intervention elements and potential mediating variables. Each investigation was a randomized trial that assessed pre- and post- intervention variables using survey constructs with established reliability. Each also used mediation analyses to define relationships. The findings were combined using a pattern matching approach. Surprisingly, knowledge was a significant mediator in each program (a and b path effects [pbehavior change.

  4. Validation of the WATEQ4 geochemical model for uranium

    International Nuclear Information System (INIS)

    Krupka, K.M.; Jenne, E.A.; Deutsch, W.J.

    1983-09-01

    As part of the Geochemical Modeling and Nuclide/Rock/Groundwater Interactions Studies Program, a study was conducted to partially validate the WATEQ4 aqueous speciation-solubility geochemical model for uranium. The solubility controls determined with the WATEQ4 geochemical model were in excellent agreement with those laboratory studies in which the solids schoepite [UO 2 (OH) 2 . H 2 O], UO 2 (OH) 2 , and rutherfordine ((UO 2 CO 3 ) were identified as actual solubility controls for uranium. The results of modeling solution analyses from laboratory studies of uranyl phosphate solids, however, identified possible errors in the characterization of solids in the original solubility experiments. As part of this study, significant deficiencies in the WATEQ4 thermodynamic data base for uranium solutes and solids were corrected. Revisions included recalculation of selected uranium reactions. Additionally, thermodynamic data for the hydroxyl complexes of U(VI), including anionic (VI) species, were evaluated (to the extent permitted by the available data). Vanadium reactions were also added to the thermodynamic data base because uranium-vanadium solids can exist in natural ground-water systems. This study is only a partial validation of the WATEQ4 geochemical model because the available laboratory solubility studies do not cover the range of solid phases, alkaline pH values, and concentrations of inorganic complexing ligands needed to evaluate the potential solubility of uranium in ground waters associated with various proposed nuclear waste repositories. Further validation of this or other geochemical models for uranium will require careful determinations of uraninite solubility over the pH range of 7 to 10 under highly reducing conditions and of uranyl hydroxide and phosphate solubilities over the pH range of 7 to 10 under oxygenated conditions

  5. Validation of fracture flow models in the Stripa project

    International Nuclear Information System (INIS)

    Herbert, A.; Dershowitz, W.; Long, J.; Hodgkinson, D.

    1991-01-01

    One of the objectives of Phase III of the Stripa Project is to develop and evaluate approaches for the prediction of groundwater flow and nuclide transport in a specific unexplored volume of the Stripa granite and make a comparison with data from field measurements. During the first stage of the project, a prediction of inflow to the D-holes, an array of six parallel closely spaced 100m boreholes, was made based on data from six other boreholes. This data included fracture geometry, stress, single borehole geophysical logging, crosshole and reflection radar and seismic tomogram, head monitoring and single hole packer test measurements. Maps of fracture traces on the drift walls have also been made. The D-holes are located along a future Validation Drift which will be excavated. The water inflow to the D-holes has been measured in an experiment called the Simulated Drift Experiment. The paper reviews the Simulated Drift Experiment validation exercise. Following a discussion of the approach to validation, the characterization data and its preliminary interpretation are summarised and commented upon. That work has proved feasible to carry through all the complex and interconnected tasks associated with the gathering and interpretation of characterization data, the development and application of complex models, and the comparison with measured inflows. This exercise has provided detailed feed-back to the experimental and theoretical work required for measurements and predictions of flow into the Validation Drift. Computer codes used: CHANGE, FRACMAN, MAFIC, NAPSAC and TRINET. 2 figs., 2 tabs., 19 refs

  6. Workflow for Criticality Assessment Applied in Biopharmaceutical Process Validation Stage 1

    Directory of Open Access Journals (Sweden)

    Thomas Zahel

    2017-10-01

    Full Text Available Identification of critical process parameters that impact product quality is a central task during regulatory requested process validation. Commonly, this is done via design of experiments and identification of parameters significantly impacting product quality (rejection of the null hypothesis that the effect equals 0. However, parameters which show a large uncertainty and might result in an undesirable product quality limit critical to the product, may be missed. This might occur during the evaluation of experiments since residual/un-modelled variance in the experiments is larger than expected a priori. Estimation of such a risk is the task of the presented novel retrospective power analysis permutation test. This is evaluated using a data set for two unit operations established during characterization of a biopharmaceutical process in industry. The results show that, for one unit operation, the observed variance in the experiments is much larger than expected a priori, resulting in low power levels for all non-significant parameters. Moreover, we present a workflow of how to mitigate the risk associated with overlooked parameter effects. This enables a statistically sound identification of critical process parameters. The developed workflow will substantially support industry in delivering constant product quality, reduce process variance and increase patient safety.

  7. Session 3, Measurement systems and signal validation/processing: Rapporteur's report

    International Nuclear Information System (INIS)

    Shepard, R.L.

    1991-01-01

    Eight papers scheduled for presentation dealt with in-core flux and temperature detectors and the interpretation of their signals. Our theme discussed was how core models could be used to validate in-core detector signals, and conversely, how the detector signals could validate the core models. Methods were proposed for distinguishing between detector malfunction (invalid signals) and actual changes in core conditions. It it necessary to reconcile these conflicting possibilities so that accurate and timely assessments of the present and future state of the core may be made during reactor operation, particularly during upset conditions. A second theme addressed the advantages and disadvantages of fixed vs movable in-core detectors -- their characteristics, employment, and signal interpretation. The economic and operating tradeoffs of fixed and movable detectors were addressed. A third theme was the use of signal processing to distinguish between gamma noise and neutron flux signals and how to improve the response times of in-core detectors. The discussion in this session relates to a broader discussion of the relative merits of self-powered neutron detectors and gamma thermometers for in-core flux monitoring which took place at the Cadarache meeting in 1988, and which was continued in Session 1 of this meeting

  8. Experimental Validation for Hot Stamping Process by Using Taguchi Method

    Science.gov (United States)

    Fawzi Zamri, Mohd; Lim, Syh Kai; Razlan Yusoff, Ahmad

    2016-02-01

    Due to the demand for reduction in gas emissions, energy saving and producing safer vehicles has driven the development of Ultra High Strength Steel (UHSS) material. To strengthen UHSS material such as boron steel, it needed to undergo a process of hot stamping for heating at certain temperature and time. In this paper, Taguchi method is applied to determine the appropriate parameter of thickness, heating temperature and heating time to achieve optimum strength of boron steel. The experiment is conducted by using flat square shape of hot stamping tool with tensile dog bone as a blank product. Then, the value of tensile strength and hardness is measured as response. The results showed that the lower thickness, higher heating temperature and heating time give the higher strength and hardness for the final product. In conclusion, boron steel blank are able to achieve up to 1200 MPa tensile strength and 650 HV of hardness.

  9. Defense Waste Processing Facility Canister Closure Weld Current Validation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Maxwell, D. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2018-01-29

    Two closure welds on filled Defense Waste Processing Facility (DWPF) canisters failed to be within the acceptance criteria in the DWPF operating procedure SW4-15.80-2.3 (1). In one case, the weld heat setting was inadvertently provided to the canister at the value used for test welds (i.e., 72%) and this oversight produced a weld at a current of nominally 210 kA compared to the operating procedure range (i.e., 82%) of 240 kA to 263 kA. The second weld appeared to experience an instrumentation and data acquisition upset. The current for this weld was reported as 191 kA. Review of the data from the Data Acquisition System (DAS) indicated that three of the four current legs were reading the expected values, approximately 62 kA each, and the fourth leg read zero current. Since there is no feasible way by further examination of the process data to ascertain if this weld was actually welded at either the target current or the lower current, a test plan was executed to provide assurance that these Nonconforming Welds (NCWs) meet the requirements for strength and leak tightness. Acceptance of the welds is based on evaluation of Test Nozzle Welds (TNW) made specifically for comparison. The TNW were nondestructively and destructively evaluated for plug height, heat tint, ultrasonic testing (UT) for bond length and ultrasonic volumetric examination for weld defects, burst pressure, fractography, and metallography. The testing was conducted in agreement with a Task Technical and Quality Assurance Plan (TTQAP) (2) and applicable procedures.

  10. Properties of spatial Cox process models

    DEFF Research Database (Denmark)

    Møller, Jesper

    Probabilistic properties of Cox processes of relevance for statistical modelling and inference are studied. Particularly, we study the most important classes of Cox processes, including log Gaussian Cox processes, shot noise Cox processes, and permanent Cox processes. We consider moment properties...... and point process operations such as thinning, displacements, and superpositioning. We also discuss how to simulate specific Cox processes....

  11. QA/QC Reflected in ISO 11137; The Role of Dosimetry in the Validation Process

    International Nuclear Information System (INIS)

    Kovacs, A.

    2007-01-01

    Standardized dosimetry (ISO/ASTM standards) - as a tool of QC - has got key role for the validation of the sterilization and ford irradiation processes, as well as to control the radiation processing of polymer products. In radiation processing, validation and process control (e.g. sterilization, food irradiation) depend on the measurement of absorbed dose. These measurements shall be performed using a dosimetric system or systems having a known level of accuracy and precision (European standard EN552:1994). In presented lecture different aspects of the operational qualification during the radiation processing of polymer products are described

  12. Developing engineering processes through integrated modelling of product and process

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Bjerrum; Hvam, Lars

    2012-01-01

    This article aims at developing an operational tool for integrated modelling of product assortments and engineering processes in companies making customer specific products. Integrating a product model in the design of engineering processes will provide a deeper understanding of the engineering...... activities as well as insight into how product features affect the engineering processes. The article suggests possible ways of integrating models of products with models of engineering processes. The models have been tested and further developed in an action research study carried out in collaboration...... with a major international engineering company....

  13. Automatic extraction of process categories from process model collections

    NARCIS (Netherlands)

    Malinova, M.; Dijkman, R.M.; Mendling, J.; Lohmann, N.; Song, M.; Wohed, P.

    2014-01-01

    Many organizations build up their business process management activities in an incremental way. As a result, there is no overarching structure defined at the beginning. However, as business process modeling initiatives often yield hundreds to thousands of process models, there is a growing need for

  14. Image decomposition as a tool for validating stress analysis models

    Directory of Open Access Journals (Sweden)

    Mottershead J.

    2010-06-01

    Full Text Available It is good practice to validate analytical and numerical models used in stress analysis for engineering design by comparison with measurements obtained from real components either in-service or in the laboratory. In reality, this critical step is often neglected or reduced to placing a single strain gage at the predicted hot-spot of stress. Modern techniques of optical analysis allow full-field maps of displacement, strain and, or stress to be obtained from real components with relative ease and at modest cost. However, validations continued to be performed only at predicted and, or observed hot-spots and most of the wealth of data is ignored. It is proposed that image decomposition methods, commonly employed in techniques such as fingerprinting and iris recognition, can be employed to validate stress analysis models by comparing all of the key features in the data from the experiment and the model. Image decomposition techniques such as Zernike moments and Fourier transforms have been used to decompose full-field distributions for strain generated from optical techniques such as digital image correlation and thermoelastic stress analysis as well as from analytical and numerical models by treating the strain distributions as images. The result of the decomposition is 101 to 102 image descriptors instead of the 105 or 106 pixels in the original data. As a consequence, it is relatively easy to make a statistical comparison of the image descriptors from the experiment and from the analytical/numerical model and to provide a quantitative assessment of the stress analysis.

  15. Validating and Verifying Biomathematical Models of Human Fatigue

    Science.gov (United States)

    Martinez, Siera Brooke; Quintero, Luis Ortiz; Flynn-Evans, Erin

    2015-01-01

    Airline pilots experience acute and chronic sleep deprivation, sleep inertia, and circadian desynchrony due to the need to schedule flight operations around the clock. This sleep loss and circadian desynchrony gives rise to cognitive impairments, reduced vigilance and inconsistent performance. Several biomathematical models, based principally on patterns observed in circadian rhythms and homeostatic drive, have been developed to predict a pilots levels of fatigue or alertness. These models allow for the Federal Aviation Administration (FAA) and commercial airlines to make decisions about pilot capabilities and flight schedules. Although these models have been validated in a laboratory setting, they have not been thoroughly tested in operational environments where uncontrolled factors, such as environmental sleep disrupters, caffeine use and napping, may impact actual pilot alertness and performance. We will compare the predictions of three prominent biomathematical fatigue models (McCauley Model, Harvard Model, and the privately-sold SAFTE-FAST Model) to actual measures of alertness and performance. We collected sleep logs, movement and light recordings, psychomotor vigilance task (PVT), and urinary melatonin (a marker of circadian phase) from 44 pilots in a short-haul commercial airline over one month. We will statistically compare with the model predictions to lapses on the PVT and circadian phase. We will calculate the sensitivity and specificity of each model prediction under different scheduling conditions. Our findings will aid operational decision-makers in determining the reliability of each model under real-world scheduling situations.

  16. A case study on point process modelling in disease mapping

    DEFF Research Database (Denmark)

    Møller, Jesper; Waagepetersen, Rasmus Plenge; Benes, Viktor

    2005-01-01

    of the risk on the covariates. Instead of using the common areal level approaches we base the analysis on a Bayesian approach for a log Gaussian Cox point process with covariates. Posterior characteristics for a discretized version of the log Gaussian Cox process are computed using Markov chain Monte Carlo...... methods. A particular problem which is thoroughly discussed is to determine a model for the background population density. The risk map shows a clear dependency with the population intensity models and the basic model which is adopted for the population intensity determines what covariates influence...... the risk of TBE. Model validation is based on the posterior predictive distribution of various summary statistics....

  17. Calibration and validation of a general infiltration model

    Science.gov (United States)

    Mishra, Surendra Kumar; Ranjan Kumar, Shashi; Singh, Vijay P.

    1999-08-01

    A general infiltration model proposed by Singh and Yu (1990) was calibrated and validated using a split sampling approach for 191 sets of infiltration data observed in the states of Minnesota and Georgia in the USA. Of the five model parameters, fc (the final infiltration rate), So (the available storage space) and exponent n were found to be more predictable than the other two parameters: m (exponent) and a (proportionality factor). A critical examination of the general model revealed that it is related to the Soil Conservation Service (1956) curve number (SCS-CN) method and its parameter So is equivalent to the potential maximum retention of the SCS-CN method and is, in turn, found to be a function of soil sorptivity and hydraulic conductivity. The general model was found to describe infiltration rate with time varying curve number.

  18. Process data validation according VDI 2048 in conventional and nuclear power plants

    International Nuclear Information System (INIS)

    Langenstein, M.; Laipple, B.; Schmid, F.

    2004-01-01

    Process data validation according VDI 2048 in conventional and nuclear power plants is required for acceptance testing, process and component monitoring, and status-oriented maintenance. Once a validation system like VALI III has been certified according to VDI 2048, power plant owners can use the data obtained for efficiency increase. Further, all control variables can be adjusted so as to ensure maximum plant efficiency. (orig.)

  19. Hanford Environmental Restoration data validation process for chemical and radiochemical analyses

    International Nuclear Information System (INIS)

    Adams, M.R.; Bechtold, R.A.; Clark, D.E.; Angelos, K.M.; Winter, S.M.

    1993-10-01

    Detailed procedures for validation of chemical and radiochemical data are used to assure consistent application of validation principles and support a uniform database of quality environmental data. During application of these procedures, it was determined that laboratory data packages were frequently missing certain types of documentation causing subsequent delays in meeting critical milestones in the completion of validation activities. A quality improvement team was assembled to address the problems caused by missing documentation and streamline the entire process. The result was the development of a separate data package verification procedure and revisions to the data validation procedures. This has resulted in a system whereby deficient data packages are immediately identified and corrected prior to validation and revised validation procedures which more closely match the common analytical reporting practices of laboratory service vendors

  20. BICYCLE HELMET DESIGN AND THE VIRTUAL VALIDATION OF THE IMPACT, AERODYNAMICS AND PRODUCTION PROCESS

    Directory of Open Access Journals (Sweden)

    Bojan Boshevski

    2017-12-01

    Full Text Available This paper presents the development process of a bicycle helmet through individual research, creation, presentation and analysis of the results of the most important product development stages. The quality of the development and manufacturing process of the protective equipment for extreme sports is an imperative for a successful product and its flawless function. The design of the bicycle helmet is made following the rules of the design in order to create a well-founded and functional product. After creating design sketches, a virtual prototype was developed in "SolidWorks" using the required ergonomic dimensions. 3D printed model of the human head with adapted ergonomic dimensions and the designed bicycle helmet was developed in order to verify the applied ergonomic measures. The virtual model will be used as an input in the finite element analysis of the helmet impact test based on the EN1078 standard and the aerodynamic simulations executed in "SolidWorks Simulation and Flow Simulation", for verification of the impact and aerodynamic properties. Virtual testing of aerodynamic features and the ability of the bicycle helmet to allow ventilation of the user's head indicate that the helmet performs its function in the desired way. Also, the virtual prototype will be used for the production process simulation in "SolidWorks Plastics" in order to analyze the production of the bicycle helmet. The polycarbonate helmet outer shell is subject to a number of simulations for the sake of analyzing the production process in order to obtain the desired characteristics of the polycarbonate outer shell and to avoid the disadvantages that occur in the manufacturing process. The main goal of this paper is to develop a safety bicycle helmet with improved ergonomic, validation of impact, aerodynamic characteristics and production process in order to produce a high quality product for mass use.

  1. Validation of ASTEC V2 models for the behaviour of corium in the vessel lower head

    International Nuclear Information System (INIS)

    Carénini, L.; Fleurot, J.; Fichot, F.

    2014-01-01

    The paper is devoted to the presentation of validation cases carried out for the models describing the corium behaviour in the “lower plenum” of the reactor vessel implemented in the V2.0 version of the ASTEC integral code, jointly developed by IRSN (France) and GRS (Germany). In the ASTEC architecture, these models are grouped within the single ICARE module and they are all activated in typical accident scenarios. Therefore, it is important to check the validity of each individual model, as long as experiments are available for which a single physical process is involved. The results of ASTEC applications against the following experiments are presented: FARO (corium jet fragmentation), LIVE (heat transfer between a molten pool and the vessel), MASCA (separation and stratification of corium non miscible phases) and OLHF (mechanical failure of the vessel). Compared to the previous ASTEC V1.3 version, the validation matrix is extended. This work allows determining recommended values for some model parameters (e.g. debris particle size in the fragmentation model and criterion for debris bed liquefaction). Almost all the processes governing the corium behaviour, its thermal interaction with the vessel wall and the vessel failure are modelled in ASTEC and these models have been assessed individually with satisfactory results. The main uncertainties appear to be related to the calculation of transient evolutions

  2. Proceedings of the first SRL model validation workshop

    International Nuclear Information System (INIS)

    Buckner, M.R.

    1981-10-01

    The Clean Air Act and its amendments have added importance to knowing the accuracy of mathematical models used to assess transport and diffusion of environmental pollutants. These models are the link between air quality standards and emissions. To test the accuracy of a number of these models, a Model Validation Workshop was held. The meteorological, source-term, and Kr-85 concentration data bases for emissions from the separations areas of the Savannah River Plant during 1975 through 1977 were used to compare calculations from various atmospheric dispersion models. The results of statistical evaluation of the models show a degradation in the ability to predict pollutant concentrations as the time span over which the calculations are made is reduced. Forecasts for annual time periods were reasonably accurate. Weighted-average squared correlation coefficients (R 2 ) were 0.74 for annual, 0.28 for monthly, 0.21 for weekly, and 0.18 for twice-daily predictions. Model performance varied within each of these four categories; however, the results indicate that the more complex, three-dimensional models provide only marginal increases in accuracy. The increased costs of running these codes is not warranted for long-term releases or for conditions of relatively simple terrain and meteorology. The overriding factor in the calculational accuracy is the accurate description of the wind field. Further improvements of the numerical accuracy of the complex models is not nearly as important as accurate calculations of the meteorological transport conditions

  3. Process mining using BPMN: relating event logs and process models

    NARCIS (Netherlands)

    Kalenkova, A.A.; van der Aalst, W.M.P.; Lomazova, I.A.; Rubin, V.A.

    2017-01-01

    Process-aware information systems (PAIS) are systems relying on processes, which involve human and software resources to achieve concrete goals. There is a need to develop approaches for modeling, analysis, improvement and monitoring processes within PAIS. These approaches include process mining

  4. Process mining using BPMN : relating event logs and process models

    NARCIS (Netherlands)

    Kalenkova, A.A.; Aalst, van der W.M.P.; Lomazova, I.A.; Rubin, V.A.

    2015-01-01

    Process-aware information systems (PAIS) are systems relying on processes, which involve human and software resources to achieve concrete goals. There is a need to develop approaches for modeling, analysis, improvement and monitoring processes within PAIS. These approaches include process mining

  5. Physical validation issue of the NEPTUNE two-phase modelling: validation plan to be adopted, experimental programs to be set up and associated instrumentation techniques developed

    International Nuclear Information System (INIS)

    Pierre Peturaud; Eric Hervieu

    2005-01-01

    Full text of publication follows: A long-term joint development program for the next generation of nuclear reactors simulation tools has been launched in 2001 by EDF (Electricite de France) and CEA (Commissariat a l'Energie Atomique). The NEPTUNE Project constitutes the Thermal-Hydraulics part of this comprehensive program. Along with the underway development of this new two-phase flow software platform, the physical validation of the involved modelling is a crucial issue, whatever the modelling scale is, and the present paper deals with this issue. After a brief recall about the NEPTUNE platform, the general validation strategy to be adopted is first of all clarified by means of three major features: (i) physical validation in close connection with the concerned industrial applications, (ii) involving (as far as possible) a two-step process successively focusing on dominant separate models and assessing the whole modelling capability, (iii) thanks to the use of relevant data with respect to the validation aims. Based on this general validation process, a four-step generic work approach has been defined; it includes: (i) a thorough analysis of the concerned industrial applications to identify the key physical phenomena involved and associated dominant basic models, (ii) an assessment of these models against the available validation pieces of information, to specify the additional validation needs and define dedicated validation plans, (iii) an inventory and assessment of existing validation data (with respect to the requirements specified in the previous task) to identify the actual needs for new validation data, (iv) the specification of the new experimental programs to be set up to provide the needed new data. This work approach has been applied to the NEPTUNE software, focusing on 8 high priority industrial applications, and it has resulted in the definition of (i) the validation plan and experimental programs to be set up for the open medium 3D modelling

  6. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The purpose of this Model Report (REV02) is to document the unsaturated zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrological-chemical (THC) processes on UZ flow and transport. This Model Report has been developed in accordance with the ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this Model Report in Section 1.12, Work Package AUZM08, ''Coupled Effects on Flow and Seepage''. The plan for validation of the models documented in this Model Report is given in Attachment I, Model Validation Plans, Section I-3-4, of the TWP. Except for variations in acceptance criteria (Section 4.2), there were no deviations from this TWP. This report was developed in accordance with AP-SIII.10Q, ''Models''. This Model Report documents the THC Seepage Model and the Drift Scale Test (DST) THC Model. The THC Seepage Model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC model is a drift-scale process model relying on the same conceptual model and much of the same input data (i.e., physical, hydrological, thermodynamic, and kinetic) as the THC Seepage Model. The DST THC Model is the primary method for validating the THC Seepage Model. The DST THC Model compares predicted water and gas compositions, as well as mineral alteration patterns, with observed data from the DST. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal-loading conditions, and predict the evolution of mineral alteration and fluid chemistry around potential waste emplacement drifts. The DST THC Model is used solely for the validation of the THC

  7. Multiphysics modelling of manufacturing processes: A review

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Baran, Ismet; Mohanty, Sankhya

    2018-01-01

    Numerical modelling is increasingly supporting the analysis and optimization of manufacturing processes in the production industry. Even if being mostly applied to multistep processes, single process steps may be so complex by nature that the needed models to describe them must include multiphysics...... the diversity in the field of modelling of manufacturing processes as regards process, materials, generic disciplines as well as length scales: (1) modelling of tape casting for thin ceramic layers, (2) modelling the flow of polymers in extrusion, (3) modelling the deformation process of flexible stamps...... for nanoimprint lithography, (4) modelling manufacturing of composite parts and (5) modelling the selective laser melting process. For all five examples, the emphasis is on modelling results as well as describing the models in brief mathematical details. Alongside with relevant references to the original work...

  8. Modeling Suspension and Continuation of a Process

    Directory of Open Access Journals (Sweden)

    Oleg Svatos

    2012-04-01

    Full Text Available This work focuses on difficulties an analyst encounters when modeling suspension and continuation of a process in contemporary process modeling languages. As a basis there is introduced general lifecycle of an activity which is then compared to activity lifecycles supported by individual process modeling languages. The comparison shows that the contemporary process modeling languages cover the defined general lifecycle of an activity only partially. There are picked two popular process modeling languages and there is modeled real example, which reviews how the modeling languages can get along with their lack of native support of suspension and continuation of an activity. Upon the unsatisfying results of the contemporary process modeling languages in the modeled example, there is presented a new process modeling language which, as demonstrated, is capable of capturing suspension and continuation of an activity in much simpler and precise way.

  9. An extended protocol for usability validation of medical devices: Research design and reference model.

    Science.gov (United States)

    Schmettow, Martin; Schnittker, Raphaela; Schraagen, Jan Maarten

    2017-05-01

    This paper proposes and demonstrates an extended protocol for usability validation testing of medical devices. A review of currently used methods for the usability evaluation of medical devices revealed two main shortcomings. Firstly, the lack of methods to closely trace the interaction sequences and derive performance measures. Secondly, a prevailing focus on cross-sectional validation studies, ignoring the issues of learnability and training. The U.S. Federal Drug and Food Administration's recent proposal for a validation testing protocol for medical devices is then extended to address these shortcomings: (1) a novel process measure 'normative path deviations' is introduced that is useful for both quantitative and qualitative usability studies and (2) a longitudinal, completely within-subject study design is presented that assesses learnability, training effects and allows analysis of diversity of users. A reference regression model is introduced to analyze data from this and similar studies, drawing upon generalized linear mixed-effects models and a Bayesian estimation approach. The extended protocol is implemented and demonstrated in a study comparing a novel syringe infusion pump prototype to an existing design with a sample of 25 healthcare professionals. Strong performance differences between designs were observed with a variety of usability measures, as well as varying training-on-the-job effects. We discuss our findings with regard to validation testing guidelines, reflect on the extensions and discuss the perspectives they add to the validation process. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Computer Aided Continuous Time Stochastic Process Modelling

    DEFF Research Database (Denmark)

    Kristensen, N.R.; Madsen, Henrik; Jørgensen, Sten Bay

    2001-01-01

    A grey-box approach to process modelling that combines deterministic and stochastic modelling is advocated for identification of models for model-based control of batch and semi-batch processes. A computer-aided tool designed for supporting decision-making within the corresponding modelling cycle...

  11. Process modeling for Humanities: tracing and analyzing scientific processes

    OpenAIRE

    Hug , Charlotte; Salinesi , Camille; Deneckere , Rebecca; Lamasse , Stéphane

    2011-01-01

    International audience; This paper concerns epistemology and the understanding of research processes in Humanities, such as Archaeology. We believe that to properly understand research processes, it is essential to trace them. The collected traces depend on the process model established, which has to be as accurate as possible to exhaustively record the traces. In this paper, we briefly explain why the existing process models for Humanities are not sufficient to represent traces. We then pres...

  12. Validation of coastal oceanographic models at Forsmark. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Engqvist, Anders (A och I Engqvist Konsult HB, Vaxholm (SE)); Andrejev, Oleg (Finnish Inst. of Marine Research, Helsinki (FI))

    2008-01-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, the Forsmark and the Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterisation work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models employed to simulate the water exchange in the near-shore coastal zone in the Forsmark area, an encompassing measurement program entailing six stations has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR) model of the Forsmark study area at its interfacial boundary to the coarse resolution (CR) model of the entire Baltic was reproduced. In addition to this scrutiny it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain, since this corresponds to the most efficient mode of water exchange. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that several periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Lack of thorough absolute calibration of the salinity meters also necessitates dismissal of measurement data. Relative the assessed data that can be accepted as adequate, the outcome of the validation can be summarized in five points: (i) The surface-most salinity of the CR-model drifts downward a little less than one practical salinity unit (psu) per year, requiring that the ensuing correlation analysis be subdivided into periods of a

  13. Validation of coastal oceanographic models at Forsmark. Site descriptive modelling SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Engqvist, Anders; Andrejev, Oleg

    2008-01-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterisation at two different locations, the Forsmark and the Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The characterisation work is divided into an initial site investigation phase and a complete site investigation phase. In this context, the water exchange of the coastal zone is one link of the chain of possible nuclide transport mechanisms that must be assessed in the site description of potential repository areas. For the purpose of validating the pair of nested 3D-models employed to simulate the water exchange in the near-shore coastal zone in the Forsmark area, an encompassing measurement program entailing six stations has been performed. The design of this program was to first assess to what degree the forcing of the fine resolution (FR) model of the Forsmark study area at its interfacial boundary to the coarse resolution (CR) model of the entire Baltic was reproduced. In addition to this scrutiny it is of particular interest how the time-varying density-determining properties, salinity and temperature, at the borders are propagated into the FR-domain, since this corresponds to the most efficient mode of water exchange. An important part of the validation process has been to carefully evaluate which measurement data that can be considered reliable. The result was that several periods of foremost near-surface salinity data had to be discarded due to growth of algae on the conductivity sensors. Lack of thorough absolute calibration of the salinity meters also necessitates dismissal of measurement data. Relative the assessed data that can be accepted as adequate, the outcome of the validation can be summarized in five points: (i) The surface-most salinity of the CR-model drifts downward a little less than one practical salinity unit (psu) per year, requiring that the ensuing correlation analysis be subdivided into periods of a

  14. Process-Based Modeling of Constructed Wetlands

    Science.gov (United States)

    Baechler, S.; Brovelli, A.; Rossi, L.; Barry, D. A.

    2007-12-01

    Constructed wetlands (CWs) are widespread facilities for wastewater treatment. In subsurface flow wetlands, contaminated wastewater flows through a porous matrix, where oxidation and detoxification phenomena occur. Despite the large number of working CWs, system design and optimization are still mainly based upon empirical equations or simplified first-order kinetics. This results from an incomplete understanding of the system functioning, and may in turn hinder the performance and effectiveness of the treatment process. As a result, CWs are often considered not suitable to meet high water quality-standards, or to treat water contaminated with recalcitrant anthropogenic contaminants. To date, only a limited number of detailed numerical models have been developed and successfully applied to simulate constructed wetland behavior. Among these, one of the most complete and powerful is CW2D, which is based on Hydrus2D. The aim of this work is to develop a comprehensive simulator tailored to model the functioning of horizontal flow constructed wetlands and in turn provide a reliable design and optimization tool. The model is based upon PHWAT, a general reactive transport code for saturated flow. PHWAT couples MODFLOW, MT3DMS and PHREEQC-2 using an operator-splitting approach. The use of PHREEQC to simulate reactions allows great flexibility in simulating biogeochemical processes. The biogeochemical reaction network is similar to that of CW2D, and is based on the Activated Sludge Model (ASM). Kinetic oxidation of carbon sources and nutrient transformations (nitrogen and phosphorous primarily) are modeled via Monod-type kinetic equations. Oxygen dissolution is accounted for via a first-order mass-transfer equation. While the ASM model only includes a limited number of kinetic equations, the new simulator permits incorporation of an unlimited number of both kinetic and equilibrium reactions. Changes in pH, redox potential and surface reactions can be easily incorporated

  15. Contaminant transport model validation: The Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Lee, R.R.; Ketelle, R.H.

    1988-09-01

    In the complex geologic setting on the Oak Ridge Reservation, hydraulic conductivity is anisotropic and flow is strongly influenced by an extensive and largely discontinuous fracture network. Difficulties in describing and modeling the aquifer system prompted a study to obtain aquifer property data to be used in a groundwater flow model validation experiment. Characterization studies included the performance of an extensive suite of aquifer test within a 600-square-meter area to obtain aquifer property values to describe the flow field in detail. Following aquifer test, a groundwater tracer test was performed under ambient conditions to verify the aquifer analysis. Tracer migration data in the near-field were used in model calibration to predict tracer arrival time and concentration in the far-field. Despite the extensive aquifer testing, initial modeling inaccurately predicted tracer migration direction. Initial tracer migration rates were consistent with those predicted by the model; however, changing environmental conditions resulted in an unanticipated decay in tracer movement. Evaluation of the predictive accuracy of groundwater flow and contaminant transport models on the Oak Ridge Reservation depends on defining the resolution required, followed by field testing and model grid definition at compatible scales. The use of tracer tests, both as a characterization method and to verify model results, provides the highest level of resolution of groundwater flow characteristics. 3 refs., 4 figs

  16. Experimental Validation of Various Temperature Modells for Semi-Physical Tyre Model Approaches

    Science.gov (United States)

    Hackl, Andreas; Scherndl, Christoph; Hirschberg, Wolfgang; Lex, Cornelia

    2017-10-01

    With increasing level of complexity and automation in the area of automotive engineering, the simulation of safety relevant Advanced Driver Assistance Systems (ADAS) leads to increasing accuracy demands in the description of tyre contact forces. In recent years, with improvement in tyre simulation, the needs for coping with tyre temperatures and the resulting changes in tyre characteristics are rising significantly. Therefore, experimental validation of three different temperature model approaches is carried out, discussed and compared in the scope of this article. To investigate or rather evaluate the range of application of the presented approaches in combination with respect of further implementation in semi-physical tyre models, the main focus lies on the a physical parameterisation. Aside from good modelling accuracy, focus is held on computational time and complexity of the parameterisation process. To evaluate this process and discuss the results, measurements from a Hoosier racing tyre 6.0 / 18.0 10 LCO C2000 from an industrial flat test bench are used. Finally the simulation results are compared with the measurement data.

  17. Prospective validation of pathologic complete response models in rectal cancer: Transferability and reproducibility.

    Science.gov (United States)

    van Soest, Johan; Meldolesi, Elisa; van Stiphout, Ruud; Gatta, Roberto; Damiani, Andrea; Valentini, Vincenzo; Lambin, Philippe; Dekker, Andre

    2017-09-01

    Multiple models have been developed to predict pathologic complete response (pCR) in locally advanced rectal cancer patients. Unfortunately, validation of these models normally omit the implications of cohort differences on prediction model performance. In this work, we will perform a prospective validation of three pCR models, including information whether this validation will target transferability or reproducibility (cohort differences) of the given models. We applied a novel methodology, the cohort differences model, to predict whether a patient belongs to the training or to the validation cohort. If the cohort differences model performs well, it would suggest a large difference in cohort characteristics meaning we would validate the transferability of the model rather than reproducibility. We tested our method in a prospective validation of three existing models for pCR prediction in 154 patients. Our results showed a large difference between training and validation cohort for one of the three tested models [Area under the Receiver Operating Curve (AUC) cohort differences model: 0.85], signaling the validation leans towards transferability. Two out of three models had a lower AUC for validation (0.66 and 0.58), one model showed a higher AUC in the validation cohort (0.70). We have successfully applied a new methodology in the validation of three prediction models, which allows us to indicate if a validation targeted transferability (large differences between training/validation cohort) or reproducibility (small cohort differences). © 2017 American Association of Physicists in Medicine.

  18. Validation of the replica trick for simple models

    Science.gov (United States)

    Shinzato, Takashi

    2018-04-01

    We discuss the replica analytic continuation using several simple models in order to prove mathematically the validity of the replica analysis, which is used in a wide range of fields related to large-scale complex systems. While replica analysis consists of two analytical techniques—the replica trick (or replica analytic continuation) and the thermodynamical limit (and/or order parameter expansion)—we focus our study on replica analytic continuation, which is the mathematical basis of the replica trick. We apply replica analysis to solve a variety of analytical models, and examine the properties of replica analytic continua