RKKY interaction in mixed valence system and heavy fermion superconductivity
International Nuclear Information System (INIS)
Fusui Liu; Gao Lin; Lin Zonghan
1985-11-01
The 1-D RKKY interaction of mixed valence system is given by using the thermodynamic perturbation theory. The numerical comparisons of 1-D and 3-D RKKY interaction between systems with localized magnetic moments of mixed valence and non-mixed valence show that the former is much stronger than the latter. From some analyses we propose that the heavy Fermion superconductivity comes from the RKKY interaction between two local f electrons which hop off the impurity site to become two continuum electrons. The source of the two impurity electrons hopping is the Coulomb interaction. It is also emphasized that the RKKY interaction does not disappear for the Kondo lattice, when the temperature is less than the Kondo temperature. (author)
Pressure-induced valence change and moderate heavy fermion state in Eu-compounds
Honda, Fuminori; Okauchi, Keigo; Sato, Yoshiki; Nakamura, Ai; Akamine, Hiromu; Ashitomi, Yosuke; Hedo, Masato; Nakama, Takao; Takeuchi, Tetsuya; Valenta, Jaroslav; Prchal, Jiri; Sechovský, Vladimir; Aoki, Dai; Ōnuki, Yoshichika
2018-05-01
A pressure-induced valence transition has attracted much attention in Eu-compounds. Among them, EuRh2Si2, EuNi2Ge2, and EuCo2Ge2 reveal the valence transition around 1, 2, and 3 GPa, respectively. We have succeeded in growing single crystals of EuT2X2 (T: transition metal, X: Si, Ge) and studied electronic properties under pressure. EuRh2Si2 indicates a first-order valence transition between 1 and 2 GPa, with a large and prominent hysteresis in the electrical resistivity. At higher pressures, the first-order valence transition changes to a cross-over regime with an intermediate valence state. Tuning of the valence state with pressure is reflected in a drastic change of the temperature dependence of the electrical resistivity in EuRh2Si2 single crystals. Effect of pressure on the valence states on EuRh2Si2, EuIr2Si2, EuNi2Ge2, and EuCo2Ge2, as well as an isostructural related compound EuGa4, are reviewed.
International Nuclear Information System (INIS)
Smith, J.L.; Cooke, D.W.
1986-01-01
The heavy-fermion ground state occurs in a few select metallic compounds as a result of interactions between f-electron and conduction-electron spins. A characteristically large electronic heat capacity at low temperature indicates that the effective electron mass of these materials is more than two orders of magnitude greater than that expected for a free-electron metal. This heavy-fermion ground state can become superconducting or antiferromagnetic, exhibiting very unusual properties. These materials and the role of muon spin rotation in their study are briefly discussed
Superconducting gap anomaly in heavy fermion systems
Indian Academy of Sciences (India)
of a pseudo-gap due to superconductivity and the signature of a hybridization gap at the. Fermi level. For the choice of the model parameters, the DOS shows that the HFS is a metal and undergoes a transition to the gap-less superconducting state. Keywords. Heavy fermion superconductor; Narrow band system; Valence ...
Heavy fermion and actinide materials
International Nuclear Information System (INIS)
1993-01-01
During this period, 1/N expansions have been systematically applied to the calculation of the properties of highly correlated electron systems. These studies include examinations of (a) the class of materials known as heavy fermion semi-conductors, (b) the high energy spectra of heavy fermion systems, and (c) the doped oxide superconductors
Energy Technology Data Exchange (ETDEWEB)
Kumar, Ravhi S.; Svane, Axel; Vaitheeswaran; #8741; , Ganapathy; Kanchana, Venkatakrishnan; Antonio, Daniel; Cornelius, Andrew L.; Bauer, Eric D.; Xiao, Yuming; Chow, Paul (Aarhus); (CIW); (Hyderabad - India); (IIT-India); (LANL); (UNLV)
2016-06-03
The crystal structure and the Yb valence of the YbFe_{2}Ge_{2} heavy fermion compound was measured at room temperature and under high pressures using high-pressure powder X-ray diffraction and X-ray absorption spectroscopy via both partial fluorescence yield and resonant inelastic X-ray emission techniques. Furthermore, the measurements are complemented by first-principles density functional theoretical calculations using the self-interaction corrected local spin density approximation investigating in particular the magnetic structure and the Yb valence. While the ThCr_{2}Si_{2}-type tetragonal (I4/mmm) structure is stable up to 53 GPa, the X-ray emission results show an increase of the Yb valence from v = 2.72(2) at ambient pressure to v = 2.93(3) at ~9 GPa, where at low temperature a pressure-induced quantum critical state was reported.
International Nuclear Information System (INIS)
Smith, J.L.; Fisk, Z.; Ott, H.R.
1987-01-01
The actinide series of elements begins with f-shell electrons forming energy bands, contributing to the bonding, and possessing no magnetic moments. At americium the series switches over to localized f electrons with magnetic moments. In metallic compounds this crossover of behavior can be modified and studied. In this continuum of behavior a few compounds on the very edge of localized f-electron behavior exhibit enormous electronic heat capacities at low temperatures. This is associated with an enhanced thermal mass of the conduction electrons, which is well over a hundred times the free electron mass, and is what led to the label heavy fermion for such compounds. A few of these become superconducting at even lower temperatures. The excitement in this field comes from attempting to understand how this heaviness arises and from the likelihood that the superconductivity is different from that of previously known superconductors. The effects of thorium impurities in UBe 13 were studied as a representative system for studying the nature of the superconductivity
Continuum-limit scaling of overlap fermions as valence quarks
International Nuclear Information System (INIS)
Cichy, Krzysztof; Herdoiza, Gregorio; Jansen, Karl
2009-10-01
We present the results of a mixed action approach, employing dynamical twisted mass fermions in the sea sector and overlap valence fermions, with the aim of testing the continuum limit scaling behaviour of physical quantities, taking the pion decay constant as an example. To render the computations practical, we impose for this purpose a fixed finite volume with lattice size L∼1.3 fm. We also briefly review the techniques we have used to deal with overlap fermions. (orig.)
Physics of heavy fermions heavy fermions and strongly correlated electrons systems
Onuki, Yoshichika
2018-01-01
A large variety of materials prove to be fascinating in solid state and condensed matter physics. New materials create new physics, which is spearheaded by the international experimental expert, Prof Yoshichika Onuki. Among them, the f electrons of rare earth and actinide compounds typically exhibit a variety of characteristic properties, including spin and charge orderings, spin and valence fluctuations, heavy fermions, and anisotropic superconductivity. These are mainly manifestations of better competitive phenomena between the RKKY interaction and the Kondo effect. The present text is written so as to understand these phenomena and the research they prompt. For example, superconductivity was once regarded as one of the more well-understood many-body problems. However, it is, in fact, still an exciting phenomenon in new materials. Additionally, magnetism and superconductivity interplay strongly in heavy fermion superconductors. The understanding of anisotropic superconductivity and magnetism is a challengin...
Actinides: from heavy fermions to plutonium metallurgy
International Nuclear Information System (INIS)
Smith, J.L.; Fisk, Z.; Hecker, S.S.
1984-01-01
The actinide elements mark the emergence of 5f electrons. The f electrons possess sufficiently unusual characteristics that their participation in atomic binding often result in dramatic changes in properties. This provides an excellent opportunity to study the question of localization of electrons; a question that is paramount in predicting the physical and chemical properties of d and f electron transition metals. The transition region between localized (magnetic) and itinerant (often superconducting) behavior provides for many interesting phenomena such as structural instabilities (polymorphism), spin fluctuations, mixed valences, charge density waves, exceptional catalytic activity and hydrogen storage. This region offers most interesting behavior such as that exhibited by the actinide compounds UBe 13 and UPt 3 . Both compounds are heavy-fermion superconductors in which both magnetic and superconducting behavior exist in the same electrons. The consequences of f-electron bonding (which appears greatest at Plutonium) show dramatic effects on phase stability, alloying behavior, phase transformations and mechanical behavior
Muon studies of heavy fermions
International Nuclear Information System (INIS)
Heffner, R.H.
1991-01-01
Recent muon spin relaxation (μSR) studies have been particularly effective in revealing important properties of the unusual magnetism and superconductivity found in heavy fermion (HF) systems. In this paper μSR experiments elucidating the symmetry of superconducting order parameter in UPt 3 and UBe 13 doped with thorium and reviewed. Also discussed is the correlation between the enhanced superconducting specific heat jump and the reduced Kondo temperature in B-doped UBe 13 , indicating possible direct experimental evidence for a magnetic pairing mechanism in HF superconductors. 23 refs., 3 figs
Improved lattice fermion action for heavy quarks
International Nuclear Information System (INIS)
Cho, Yong-Gwi; Hashimoto, Shoji; Jüttner, Andreas; Kaneko, Takashi; Marinkovic, Marina; Noaki, Jun-Ichi; Tsang, Justus Tobias
2015-01-01
We develop an improved lattice action for heavy quarks based on Brillouin-type fermions, that have excellent energy-momentum dispersion relation. The leading discretization errors of O(a) and O(a"2) are eliminated at tree-level. We carry out a scaling study of this improved Brillouin fermion action on quenched lattices by calculating the charmonium energy-momentum dispersion relation and hyperfine splitting. We present a comparison to standard Wilson fermions and domain-wall fermions.
Energy Technology Data Exchange (ETDEWEB)
Gamza, Monika [Jeremiah Horrocks Institute, University of Central Lancashire, Preston (United Kingdom); MPI CPfS, Dresden (Germany); Institute of Physics, University of Silesia, Katowice (Poland); Gumeniuk, Roman [Institute of Experimental Physics, Freiberg University of Mining and Technology, Freiberg (Germany); MPI CPfS, Dresden (Germany); Schnelle, Walter; Burkhardt, Ulrich; Rosner, Helge [MPI CPfS, Dresden (Germany); Slebarski, Andrzej [Institute of Physics, University of Silesia, Katowice (Poland)
2016-07-01
While most Ce-based intermetallics contain either trivalent or intermediate-valent Ce ions, only for a few compounds a coexistence of both species has been reported. Here, we present a combined experimental and theoretical study based on thermodynamic measurements and spectroscopic data together with ab-initio electronic structure calculations aiming at exploring magnetic properties of Ce ions in two nonequivalent sites in Ce{sub 2}Rh{sub 3}Sn{sub 5}. Ce L{sub III} XAS spectra give direct evidence for valence fluctuations. Magnetization measurements show an onset of an antiferromagnetic order at T{sub N}∼2.5 K. The electronic structure calculations suggest that the magnetic ordering is related only to one Ce sublattice. This is in-line with a small entropy associated with the magnetic transition S{sub mag}∼0.35 R ln2 per Ce atom as revealed by the specific heat measurement. Furthermore, the temperature dependence of the magnetic susceptibility can be well described assuming that there are fluctuating moments of Ce{sup 3+} ions in one sublattice, whereas Ce atoms from the second sublattice are in a nonmagnetic intermediate valence state.
Two-dimensional confinement of heavy fermions
International Nuclear Information System (INIS)
Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito
2010-01-01
Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)
Superfluid response in heavy fermion superconductors
Zhong, Yin; Zhang, Lan; Shao, Can; Luo, Hong-Gang
2017-10-01
Motivated by a recent London penetration depth measurement [H. Kim, et al., Phys. Rev. Lett. 114, 027003 (2015)] and novel composite pairing scenario [O. Erten, R. Flint, and P. Coleman, Phys. Rev. Lett. 114, 027002 (2015)] of the Yb-doped heavy fermion superconductor CeCoIn5, we revisit the issue of superfluid response in the microscopic heavy fermion lattice model. However, from the literature, an explicit expression for the superfluid response function in heavy fermion superconductors is rare. In this paper, we investigate the superfluid density response function in the celebrated Kondo-Heisenberg model. To be specific, we derive the corresponding formalism from an effective fermionic large- N mean-field pairing Hamiltonian whose pairing interaction is assumed to originate from the effective local antiferromagnetic exchange interaction. Interestingly, we find that the physically correct, temperature-dependent superfluid density formula can only be obtained if the external electromagnetic field is directly coupled to the heavy fermion quasi-particle rather than the bare conduction electron or local moment. Such a unique feature emphasizes the key role of the Kondo-screening-renormalized heavy quasi-particle for low-temperature/energy thermodynamics and transport behaviors. As an important application, the theoretical result is compared to an experimental measurement in heavy fermion superconductors CeCoIn5 and Yb-doped Ce1- x Yb x CoIn5 with fairly good agreement and the transition of the pairing symmetry in the latter material is explained as a simple doping effect. In addition, the requisite formalism for the commonly encountered nonmagnetic impurity and non-local electrodynamic effect are developed. Inspired by the success in explaining classic 115-series heavy fermion superconductors, we expect the present theory will be applied to understand other heavy fermion superconductors such as CeCu2Si2 and more generic multi-band superconductors.
The physics and chemistry of heavy Fermions
International Nuclear Information System (INIS)
Fisk, Z.; Sarrao, J.L.
1994-01-01
The heavy Fermions are a subset of the f-element intermetallics straddling the magnetic/non-magnetic boundary. Their low temperature properties are characterized by an electronic energy scale of order 1--10 K. Among the low temperature ground states observed in heavy Fermion compounds are exotic superconductors and magnets, as well as unusual semiconductors. We review here the current experimental and theoretical understanding of these systems
On the magnetoresistance of heavy fermion compounds
International Nuclear Information System (INIS)
Lee Chengchung; Chen Chung
1992-09-01
Starting from two-conduction-band Anderson lattice model, the magneto-transport properties of heavy fermion systems are studied in the slave boson mean field theory. The residual magnetoresistivity induced by different kinds of impurities is calculated, and the experimentally detected positive maximum structure in the residual magnetoresistance of heavy fermion systems is reproduced. The transition of field-dependent resistivity from nonmonotonic to monotonic behaviour with increasing temperature can be explained naturally by including the charge fluctuation effect. The influence of applied pressure is also investigated. (author). 22 refs, 5 figs
Heavy fermions and other highly correlated electron systems
International Nuclear Information System (INIS)
Schlottmann, P.
1991-01-01
In this paper I given a brief summary of the achievements grouped under three main headings, namely (1) heavy-fermion, mixed-valence and Kondo systems, (2) the n-channel Kondo problem and applications, and (3) one-dimensional conductors and antiferromagnets. The list of published papers and preprints is attached to the report, as well as a list of abstracts submitted to Conferences. All these papers are new in the sense that none of them was listed in the final technical report of grant DE-FG02-87ER45333
Unconventional superconductivity in heavy-fermion compounds
Energy Technology Data Exchange (ETDEWEB)
White, B.D. [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States); Thompson, J.D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maple, M.B., E-mail: mbmaple@ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States)
2015-07-15
Highlights: • Quasiparticles in heavy-fermion compounds are much heavier than free electrons. • Superconductivity involves pairing of these massive quasiparticles. • Quasiparticle pairing mediated by magnetic or quadrupolar fluctuations. • We review the properties of superconductivity in heavy-fermion compounds. - Abstract: Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion compounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. We conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.
Extra Z neutral bosons, families and heavy fermions
International Nuclear Information System (INIS)
Li Tiezhong
1989-08-01
The minimal Grand Unified Theories with three-family should include two extra Z neufral bosons which belong to the different broken scales. Georgi's argument on heavy Dirac fermions has been realized. These fermions should not be bizarre. The extra Z and Dirac fermions are not too heavy. The difficulty of the proton decay may be resolved
Magnetic properties of heavy-fermion superconductors
International Nuclear Information System (INIS)
Rauchschwalbe, U.
1986-01-01
In the present thesis the magnetic properties of heavy-fermion superconductors are investigated. The magnetoresistance and the critical magnetic fields show a variety of anomalous phenomena. The Kondo lattices CeCu 2 Si and CeAl 3 are analysed by magnetoresistance and the field dependence of the resistivitis of UBe 13 , UPt 3 , URu 2 Si 2 and CeRu 3 Si are measured for temperatures < or approx. 1 K. (BHO)
A possible model of heavy fermion superconductivity
International Nuclear Information System (INIS)
Zhang Liyuan.
1986-08-01
We have used the periodic Anderson Hamiltonian to study the behaviour of heavy fermion systems. It has been argued that the properly large mixing between f and the conduction electrons, the strong Coulomb correlation between f electrons and the related renormalization effect are the main causes of the large effective mass of the quasiparticle. Further, we have introduced phenomenologically the BCS attractive interaction between the heavy quasiparticles and explained that the value of ΔC/γT c and T c may be quite different from that of the BCS theory as a result of the interaction between two branches of the quasiparticles. (author)
Heavy fermions and extreme conditions
International Nuclear Information System (INIS)
Cheikine, Ilia
2000-01-01
Three heavy electron systems, CeCu 2 Si 2 , CePd 2 Si 2 and UGe 2 , were investigated by transport, quantum oscillations (CePd 2 Si 2 ) and neutron diffraction (UGe 2 ) measurements. The experiments were performed under extreme conditions of very low temperature, high magnetic field and hydrostatic pressure. In the case of CeCu 2 Si 2 , we followed the evolution of the magnetic A-phase that is found to collapse rapidly under pressure. We found evidence for a relation between the A-phase and the presence of a maximum in the temperature dependence of H c2 . Our analysis showed that at low pressure, the sign of the exchange integral should be negative, thus superconductivity is enhanced by an increase in the paramagnetic susceptibility as in the Jaccarino-Peter effect. The anisotropy of the initial slope of H c2 and therefore that of the effective mass was found to change under pressure. For CePd 2 Si 2 , both the de Haas-van Alphen effect at ambient pressure and the electrical resistivity under pressure were studied. The latter reveals a non-Fermi liquid behavior in the vicinity of the antiferromagnetic quantum critical point, P c ∼ kbar. The analysis of H c2 at P c shows that the superconducting state is well described by a weak coupling, clean limit model with a slightly anisotropic orbital limit and a strongly anisotropic paramagnetic one. UGe 2 is shown to demonstrate the coexistence of ferromagnetism and superconductivity that develops just below the ferromagnetic quantum critical point, P c ∼16 kbar. The measurements of the resistivity under pressure point to a possible existence of another phase boundary and thus another quantum critical point, P x ∼ 12 kbar, within the ferromagnetic state. The P-T phase diagram containing both P c and P x was sketched, and a possible relation between P x and the development of superconductivity was discussed. The temperature dependence of H c2 demonstrates a variety of novel behaviors, which cannot be understood within
Heavy-light fermion mixtures at unitarity
Energy Technology Data Exchange (ETDEWEB)
Gezerlis, Alexandros [Los Alamos National Laboratory; Carlson, Joseph [Los Alamos National Laboratory; Gandol, S [UNIV. ILL; Schmidt, E [ITALY
2009-01-01
We investigate fermion pairing in the unitary regime for a mass ratio corresponding to a {sup 6}Li-{sup 40}K mixture using quantum Monte Carlo methods. The ground-state energy and the average light- and heavy-particle excitation spectrum for the unpolarized superfluid state are nearly independent of the mass ratio. In the majority light system, the polarized superfluid is close to the energy of a phase separated mixture of nearly fully polarized normal and unpolarized superfluid. For a majority of heavy particles, we find an energy minimum for a normal state with a ratio of {approx}3:1 heavy to light particles. A slight increase in attraction to k{sub F}a{approx}2.5 yields a ground state energy of nearly zero for this ratio. A cold unpolarized system in a harmonic trap at unitarity should phase separate into three regions, with a shell of unpolarized superfluid in the middle.
Magnetic fluctuations in heavy-fermion metals
DEFF Research Database (Denmark)
Mason, T.E.; Petersen, T.; Aeppli, G.
1995-01-01
Elastic and inelastic neutron scattering have been used to study the antiferromagnetic ordering and magnetic excitations of the U heavy-fermion superconductors UPd2Al3 and URu2Si2 above and below T-N. While both materials exhibit the coexistence of superconductivity and antiferromagnetic order......, the nature of the antiferromagnetic order and magnetic fluctuations is qualitatively quite different. UPd2Al3 resembles a rare earth magnetic system with coupling of the 4f electrons to the conduction electrons manifested in a broadening of otherwise conventional spin wave excitations. This is in marked...
Magnetic fluctuations in heavy fermion systems
International Nuclear Information System (INIS)
Broholm, C.L.
1989-06-01
Magnetic order and fluctuations in the heavy Fermion systems UPt 3 , U 2 Zn 17 and URu 2 Si 2 have been studied by neutron scattering. Single crystalline samples and triple-axis neutron-scattering techniques with energy transfers between 0 and 40 meV and energy resolutions between 0.1 meV and 4 meV have been employed. UPt 3 develops an antiferromagnetically ordered moment of (0.02±0.005) μ B below T N = 5 K which doubles the unit cell in the basal plane and coexists with superconductivity below T c = 0.5 K. The magnetic fluctuations are relaxational, and enhanced at the antiferromagnetic zone center in a low-energy regime. The characteristic zone-center relaxation energy is 0.3 meV. The temperature- and field-dependence of the antiferromagnetic order in the superconducting phase suggest a close relation between these two properties in UPt 3 . U 2 Zn 17 has a broad spectrum of magnetic fluctuations, even below T N = 9.7 K, of which the transverse part below 10 meV is strongly enhanced at the antiferromagnetic zone center. The system has an anomalously extended critical region and the antiferromagnetic phase transition seems to be driven by the temperature-dependence of an effective RKKY interaction, as anticipated theoretically. URu 2 Si 2 , a strongly anisotropic heavy Fermion system, has a high-energy regime of antiferromagnetically-correlated overdamped magnetic fluctuations. Below T N = 17.5 K weak antiferromagnetic order, μ = (0.04±0.01)μ B , with finite correlations along the tetragonal c axis, develops along with a low-energy regime of strongly dispersive singlet-singlet excitations. Below T c = 1 K antiferromagnetism coexists with superconductivity. A phenomenological model describing the exchange-enhanced overdamped magnetic fluctuations of heavy Fermion systems is proposed. Our experimental results are compared to the anomalous bulk properties of heavy Fermion systems, and to magnetic fluctuations in other metallic magnets. (orig.)
Heavy-fermion quasiparticles in UPt3
International Nuclear Information System (INIS)
Taillefer, L.; Lonzarich, G.G.
1988-01-01
The quasiparticle band structure of the heavy-fermion superconductor UPt 3 has been investigated by means of angle-resolved measurements of the de Haas--van Alphen effect. Most of the results are consistent with a model of five quasiparticle bands at the Fermi level corresponding to Fermi surfaces similar to those calculated by band theory. However, as inferred from the extremely high cyclotron masses, the quasiparticle bands are much flatter than the calculated ones. The nature of the observed quasiparticles and their relationship to thermodynamic properties are briefly considered
Scaling behavior of heavy fermion metals
Energy Technology Data Exchange (ETDEWEB)
Shaginyan, V.R., E-mail: vrshag@thd.pnpi.spb.r [Petersburg Nuclear Physics Institute, RAS, Gatchina, 188300 (Russian Federation); CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Ioffe Physical Technical Institute, RAS, St. Petersburg 194021 (Russian Federation); Msezane, A.Z. [CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Popov, K.G. [Komi Science Center, Ural Division, RAS, 3a, Chernova str. Syktyvkar, 167982 (Russian Federation)
2010-07-15
Strongly correlated Fermi systems are fundamental systems in physics that are best studied experimentally, which until very recently have lacked theoretical explanations. This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as heavy-fermion (HF) metals and two-dimensional (2D) Fermi systems. It is shown that the basic properties and the scaling behavior of HF metals can be described within the framework of a fermion condensation quantum phase transition (FCQPT) and an extended quasiparticle paradigm that allow us to explain the non-Fermi liquid behavior observed in strongly correlated Fermi systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Having analyzed the collected facts on strongly correlated Fermi systems with quite a different microscopic nature, we find these to exhibit the same non-Fermi liquid behavior at FCQPT. We show both analytically and using arguments based entirely on the experimental grounds that the data collected on very different strongly correlated Fermi systems have a universal scaling behavior, and materials with strongly correlated fermions can unexpectedly be uniform in their diversity. Our analysis of strongly correlated systems such as HF metals and 2D Fermi systems is in the context of salient experimental results. Our calculations of the non-Fermi liquid behavior, the scales and thermodynamic, relaxation and transport properties are in good agreement with experimental facts.
UPt3, heavy fermions and superconductivity
International Nuclear Information System (INIS)
Visser, A. de.
1986-01-01
In this thesis an experimental study is presented of one of the heavy-fermion superconductors: UPt 3 (T c =0.5 K). The normal-state properties of this material are governed by pronounced spin-fluctuation effects. The unusual coexistence of spin-fluctuations and superconductivity is strongly suggestive for an unconventional type of superconductivity, mediated by spin-fluctuations instead of phonons, with the condensate formed out of odd-parity electron states. In the first chapter a general introduction is given to the field of the heavy-fermions. In the second chapter a theoretical background for the properties of UPt 3 is presented. Chapter 3 deals with the sample preparation and measuring techniques. In chapter 4 a series of experiments is presented on the normal-phase of UPt 3 , among which are studies of the specific heat, thermal expansion, sound velocity, magnetization, electrical resistivity, magnetoresistivity and magnetostriction. Also the influence of high-magnetic fields (35 T) and high-pressures (5 kbar) has been studied. The superconducting phase of UPt 3 has been discussed in chapter 5. In chapter 6 a series of pseudobinary U(Pt 1-x Pd x ) 3 compounds (x≤0.30) are studied. In the last chapter some final remarks and conclusions are presented. (Auth.)
International Nuclear Information System (INIS)
Schlottmann, P.
1988-01-01
This paper discusses Ce-impurities in LaB 6 and LaAL 2 , critical behavior of ferromagnetic Heisenberg chains; integrable SU(2)---invariant model; soluble narrow-band model with possible relevance to heavy-fermions and resonating valence bonds, soluble variant of the two-impurity Anderson model; De Haas-van Alphen effect in the Anderson lattice for large orbital degeneracy; interactions mediated by spin-fluctuations in He 3 ; mixed-valence and heavy-fermion systems and high-temperature superconductivity
Resonating-valence-bond superconductors with fermionic projected entangled pair states
Poilblanc, D.; Corboz, P.; Schuch, N.; Cirac, J.I.
2014-01-01
We construct a family of simple fermionic projected entangled pair states (fPEPS) on the square lattice with bond dimension D=3 which are exactly hole-doped resonating valence bond (RVB) wave functions with short-range singlet bonds. Under doping the insulating RVB spin liquid evolves immediately
Electron spectroscopy studies in heavy fermions
International Nuclear Information System (INIS)
Arko, A.J.
1986-02-01
Photoemission experiments (whereby an electron absorbs a packet of light energy and is able to escape from the host material due to its increased energy) can measure directly the energy distribution of electrons in various materials. Our measurements on a recently-discovered class of metallic materials called ''heavy fermions'' show that the electrons that actually carry the electric current in these metals exist only within an extremely narrow range of energies. This range, which we will call the bandwidth, is narrower than that found in ordinary metals like copper by at least a factor of 10. Indeed it is surprising that they can carry electric current at all since such narrow energy ranges (or band widths) are characteristic of electrons confined to their host atoms, as in a non-metal, rather than of electrons that are free to wander through a metal. 8 refs
Superconducting gap anomaly in heavy fermion systems
International Nuclear Information System (INIS)
Rout, G.C.; Ojha, M.S.; Behera, S.N.
2008-01-01
The heavy fermion system (HFS) is described by the periodic Anderson model (PAM), treating the Coulomb correlation between the f-electrons in the mean-field Hartree-Fock approximation. Superconductivity is introduced by a BCS-type pairing term among the conduction electrons. Within this approximation the equation for the superconducting gap is derived, which depends on the effective position of the energy level of the f-electrons relative to the Fermi level. The latter in turn depends on the occupation probability n f of the f-electrons. The gap equation is solved self-consistently with the equation for n f ; and their temperature dependences are studied for different positions of the bare f-electron energy level, with respect to the Fermi level. The dependence of the superconducting gap on the hybridization leads to a re-entrant behaviour with increasing strength. The induced pairing between the f-electrons and the pairing of mixed conduction and f-electrons due to hybridization are also determined. The temperature dependence of the hybridization parameter, which characterizes the number of electrons with mixed character and represents the number of heavy electrons is studied. This number is shown to be small. The quasi-particle density of states (DOS) shows the existence of a pseudo-gap due to superconductivity and the signature of a hybridization gap at the Fermi level. For the choice of the model parameters, the DOS shows that the HFS is a metal and undergoes a transition to the gap-less superconducting state. (author)
Mixed meson masses with domain-wall valence and staggered sea fermions
International Nuclear Information System (INIS)
Orginos, Kostas; Walker-Loud, Andre
2008-01-01
Mixed action lattice calculations allow for an additive lattice-spacing-dependent mass renormalization of mesons composed of one sea and one valence quark, regardless of the type of fermion discretization methods used in the valence and sea sectors. The value of the mass renormalization depends upon the lattice actions used. This mixed meson mass shift is an important lattice artifact to determine for mixed action calculations; because it modifies the pion mass, it plays a central role in the low-energy dynamics of all hadronic correlation functions. We determine the leading order, O(a 2 ), and next-to-leading order, O(a 2 m π 2 ), additive mass shift of valence-sea mesons for a mixed lattice action with domain-wall valence fermions and rooted staggered sea fermions, relevant to the majority of current large scale mixed action lattice efforts. We find that, on the asqtad-improved coarse MILC lattices, this additive mass shift is well parametrized in lattice units by Δ(am) 2 =0.034(2)-0.06(2)(am π ) 2 , which in physical units, using a=0.125 fm, corresponds to Δ(m) 2 =(291±8 MeV) 2 -0.06(2)m π 2 . In terms of the mixed action effective field theory parameters, the corresponding mass shift is given by a 2 Δ Mix =(316±4 MeV) 2 at leading order plus next-to-leading order corrections including the necessary chiral logarithms for this mixed action calculation, determined in this work. Within the precision of our calculation, one cannot distinguish between the full next-to-leading order effective field theory analysis of this additive mixed meson mass shift and the parametrization given above.
Neutron scattering studies of the heavy Fermion superconductors
International Nuclear Information System (INIS)
Goldman, A.I.
1985-01-01
Recent neutron scattering measurements of the heavy Fermion superconductors are described. Those materials offer an exciting opportunity for neutron scattering since the f-electrons, which couple directly to magnetic scattering measurements, seem to be the same electrons which form the superconducting state below T/sub c/. In addition, studies of the magnetic fluctuations in these, and other heavy Fermion systems, by inelastic magnetic neutron scattering can provide information about the nature of the low temperature Fermi liquid character of these novel compounds
Unconventional superconductivity in heavy fermionic and high-Tc superconductors
International Nuclear Information System (INIS)
Volovik, G.E.
1989-01-01
Splitting of the superconducting transition and glass spectrum in heavy fermion companies and oxide superconductors are discussed. The multicomponent order parameter leads to splitting of transition due to magnetic field, impurities, orthorhombic distortion, etc... Linear specific heat in oxide superconductors may be explained in terms of the Fermi-surface arising in superconducting state if interband is pairing strong enough
Heavy Fermion Materials and Quantum Phase Transitions Workshop on Frontiers of the Kondo Effect
2016-02-12
SECURITY CLASSIFICATION OF: The contemporary studies of the Kondo effect and heavy -fermion materials occur at the intersection of some of the most...magnetism. Electronic systems in this intermediate regime are particularly tunable. Correspondingly, heavy fermions have emerged as a promising setting...materials. Second, heavy -fermion materials typically contain heavy elements, and there is an increasing 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND
Impurities in the heavy-fermion superconductor UBe13 (invited)
International Nuclear Information System (INIS)
Smith, J.L.; Fisk, Z.; Willis, J.O.; Batlogg, B.; Ott, H.R.
1984-01-01
Small amounts of Sc, Lu, Gd, Np, Ce, Th, La, and Ba have been substituted for uranium in UBe 13 to observe their effects on the superconducting and normal state properties. The thorium, which was the most complete study, resulted in an extremely unusual nonmonotonic depression of the transition temperature for a nonmagnetic impurity. This comes from an interplay that exists between the lowest temperature resistivity peak and the transition temperature, as the peak is depressed. These results suggest that heavy Fermion superconductivity is only one of the possible ground states for heavy mass electron systems. All of the impurities tested resulted in a transition temperature depression
First-principle Simulations of Heavy Fermion Materials
Dong, Ruanchen
Heavy fermion materials, one of the most challenging topics in condensed matter physics, pose a variety of interesting properties and have attracted extensive studies for decades. Although there has been great success in explaining many ground- state properties of solids, the well-known theoretical calculations based on density functional theory (DFT) in its popular local density approximation (LDA) fail to describe heavy fermion materials due to improper treatment of many-body correlation effects. Here with the implementations of dynamical mean-field theory (DMFT) and the Gutzwiller variational method, the computational simulation of the heavy fermion materials is explored further and better compared with experimental data. In this dissertation, first, the theoretical background of DMFT and LDA+G methods is described in detail. The rest is the application of these techniques and is basically divided into two parts. First, the continuous-time quantum Monte Carlo (CT-QMC) method combined with DMFT is used to calculate and compare both the periodic Anderson model (PAM) and the Kondo lattice model (KLM). Different parameter sets of both models are connected by the Schrieffer-Wolff transformation. For spin and orbital degeneracy N = 2 case, a special particle-hole symmetric case of PAM at half-filling which always fixes one electron per impurity site is compared with the results of the KLM. We find a good mapping between PAM and KLM in the limit of large on-site Hubbard interaction U for different properties like self-energy, quasiparticle residue and susceptibility. This allows us to extract quasiparticle mass renormalizations for the f-electrons directly from KLM. The method is further applied to higher degenerate cases and to the realistic heavy fermion system CeRhIn5 in which the estimate of the Sommerfeld coefficient is proven to be close to the experimental value. Second, a series of Cerium based heavy fermion materials is studied using a combination of local
Heavy fermions and superconductivity in doped cuprates
Energy Technology Data Exchange (ETDEWEB)
Tornow, S. [Max-Planck-Inst. fur Phys. Komplexer Syst., Stuttgart (Germany). Aussenstelle Stuttgart; Zevin, V. [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics; Zwicknagl, G. [Max-Planck-Inst. fur Phys. Komplexer Syst., Stuttgart (Germany). Aussenstelle Stuttgart
1996-10-01
We present a Fermi liquid description for the low-energy excitations in rare Earth cuprates Nd{sub 2-x}Ce{sub x}CuO{sub 4}. The strongly renormalized heavy quasiparticles which appear in the doped samples originate from the coherent decoupling of rare earth spins and correlated conduction electrons. The correlations among the conduction electrons are simulated by assuming a spin density wave ground state. We discuss results for the thermodynamic properties in the insulating, normal metallic and superconducting phases which are in fair agreement with experimental data. In addition, the model predicts interesting behaviour for the superconducting state of samples with low transition temperature T{sub c} which may help to assess the validity of the underlying assumptions. (orig.)
Heavy fermions and superconductivity in doped cuprates
International Nuclear Information System (INIS)
Tornow, S.; Zevin, V.; Zwicknagl, G.
1996-01-01
We present a Fermi liquid description for the low-energy excitations in rare Earth cuprates Nd 2-x Ce x CuO 4 . The strongly renormalized heavy quasiparticles which appear in the doped samples originate from the coherent decoupling of rare earth spins and correlated conduction electrons. The correlations among the conduction electrons are simulated by assuming a spin density wave ground state. We discuss results for the thermodynamic properties in the insulating, normal metallic and superconducting phases which are in fair agreement with experimental data. In addition, the model predicts interesting behaviour for the superconducting state of samples with low transition temperature T c which may help to assess the validity of the underlying assumptions. (orig.)
Correlation effects in high-Tc superconductors and heavy fermion compounds
International Nuclear Information System (INIS)
Kuzemsky, A.L.
1993-10-01
This paper describes certain aspects of Highly Correlated Systems (HCS) such as high Tc superconductors (HTSC) and some new class of Heavy Fermion (HF) systems which have been studied recently. The problem is discussed on how the charge and spin degrees of freedom participate in the specific character of superconductivity in the copper oxides and competition of the magnetism and Kondo screening in heavy fermions. The electronic structure and possible superconducting mechanisms of HTSC compounds are discussed. The similarity and dissimilarity with HF compounds is pointed out. It is shown that the spins and carriers in the copper oxides are coupled in a very nontrivial way in order to introduce the discussion and the comparison of the Emery model, the t - J-model and the Kondo-Heisenberg model. It concerns attempts to derive from fundamental multi-band Hamiltonian the reduced effective Hamiltonians to extract and separate the relevant low-energy physics. A short review of the arguments which seem to support the spin-polaron pairing mechanism in HTSC are presented. Many other topics like the idea of mixed valence states in oxides, the role of charge transfer (CT) excitations, phase separation, self-consistent nonperturbative technique, etc. are also discussed. (author). 161 refs
Is YbAs a heavy Fermion system?
International Nuclear Information System (INIS)
Monnier, R.; Degiorgi, L.; Delley, B.; Koelling, D.D.
1989-08-01
Using parameters extracted from a tight binding fit to an ab initio band structure, the specific heat anomaly observed in YbAs around 5 K is computed within the infinite U limit of the degenerate Anderson impurity model. Applying the renormalization procedure derived in variational treatments of the periodic Anderson model, a quasiparticle Fermi surface with strong nesting features and small mass enhancements is obtained. The results suggest that YbAs is not a ''classical'' heavy Fermion system. 28 refs., 3 figs., 1 tab
Muon spin relaxation studies of heavy fermion superconductors
International Nuclear Information System (INIS)
Heffner, R.H.
1993-01-01
This talk will focus recent developments in our understanding of heavy fermion (HF) superconductors and the role that positive muon spin relaxation (μSR) studies have played in helping to elucidate their properties. As illustrations two systems will be discussed: (1) UPd 2 Al 3 , one of the most recently discovered HF superconductors, which also displays coexisting magnetic order and (2) UBe 3 doped with small quantities Of Th substituted for U, which displays an interplay between its superconducting and magnetic ground states, leading to multiple superconducting states
Theory of temperature dependent photoemission spectrum of heavy fermion semiconductors
International Nuclear Information System (INIS)
Riseborough, P.S.
1998-01-01
The heavy fermion semiconductors are a class of strongly correlated materials, that at high temperatures show properties similar to those of heavy fermion materials, but at low temperatures show a cross-over into a semi-conducting state. The low temperature insulating state is characterized by an anomalously small energy gap, varying between 10 and 100 K. The smallness of the gap is attributed to the result of a many-body renormalization, and is temperature dependent. The temperature dependence of the electronic spectral density of states is calculated, using the Anderson lattice model at half filling. The spectrum is calculated to second order in 1/N, where N is the degeneracy of the 'f' orbitals, using a slave boson technique. The system is an indirect gap semi-conductor, with an extremely temperature dependent electronic spectral density A(k, ω). The indirect gap is subject to a temperature dependent many-body renormalization, and leads to a sharp temperature dependent structure in the angle resolved photo-emission spectrum at the indirect threshold. The theoretical predictions are compared with experimental observations on FeSi. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)
Quasiparticle scattering spectroscopy (QPS) of Kondo lattice heavy fermions
Greene, L. H.; Narasiwodeyar, S. M.; Banerjee, P.; Park, W. K.; Bauer, E. D.; Tobash, P. H.; Baumbach, R. E.; Ronning, F.; Sarrao, J. L.; Thompson, J. D.
2013-03-01
Point-contact spectroscopy (PCS) is a powerful technique to study electronic properties via measurements of non-linear current-voltage characteristic across a ballistic junction. It has been frequently adopted to investigate novel and/or unconventional superconductors by detecting the energy-dependent Andreev scattering. PCS of non-superconducting materials has been much rarely reported. From our recent studies on heavy fermions, we have frequently observed strongly bias-dependent and asymmetric conductance behaviors. Based on a Fano resonance model in a Kondo lattice, we attribute them to energy-dependent quasiparticle scattering off hybridized renormalized electronic states, dubbing it QPS. We will present our QPS results on several heavy-fermion systems and discuss QPS as a novel technique to probe the bulk spectroscopic properties of the electronic structure. For instance, it reveals that the hybridization gap in URu2Si2 opens well above the hidden order transition. The work at UIUC is supported by the U.S. DOE under Award No. DE-FG02-07ER46453 and the NSF DMR 12-06766, and the work at LANL is carried out under the auspices of the U.S. DOE, Office of Science.
High-temperature superconductors learn from heavy fermions
International Nuclear Information System (INIS)
Varma, C.
1998-01-01
Physicists have been intrigued by the nature of high-temperature superconductors since they were discovered 12 years ago. Superconducting materials lose their electrical resistance below a transition temperature, T c , and certain copper-oxide compounds remain superconducting at temperatures up to 160 K. Research into these materials has been driven by fundamental, yet intractable, questions about the basic concepts of condensed-matter physics and the mechanisms of superconductivity. A key question is how the electrons come together to form the Cooper pairs responsible for superconductivity. Physicists at Cambridge University have now studied two heavy-fermion compounds experimentally, and have found that the electron pairing is caused by magnetic effects (N Mathur et al. 1998 Nature 394 39). In this article the author describes their research. (UK)
Phonon response of some heavy Fermion systems in dynamic limit
Sahoo, Jitendra; Shadangi, Namita; Nayak, Pratibindhya
2017-05-01
The phonon excitation spectrum of some Heavy Fermion (HF) systems in the presence of electron-phonon interaction is studied in the dynamic limit (ω≠0). The renormalized excitation phonon frequencies (ω˜ = ω/ω0) are evaluated through Periodic Anderson Model (PAM) in the presence of electron-phonon interaction using Zubarev-type double time temperature-dependent Green function. The calculated renormalized phonon energy is analyzed through the plots of (ω˜ = ω/ω0) against temperature for different system parameters like effective coupling strength ‘g’ and the position of f-level ‘d’. The observed behavior is analyzed and found to agree with the general features of HF systems found in experiments. Further, it is observed that in finite but small q-values the propagating phonons harden and change to localized peaks.
Studies of heavy fermion systems: Progress report, July 1, 1986-December 31, 1987
International Nuclear Information System (INIS)
Stewart, G.R.
1987-08-01
Studies of the resistivity, susceptibility, and specific heat of the new heavy fermion system UPt/sub 5-x/Au/sub x/ have shown: (1) the high effective mass, m*, can be varied by almost an order of magnitude by varying x near x = 1; and (2) the occurrence of high m* in this system and (presumably) in heavy fermion systems in general is typified by a nearness to magnetic instability. High field (24 T) specific heat studies of CeCu 6 show a total suppression of the low temperature heavy fermion ground state by magnetic field, in direct contradiction of present non-interacting ''Kondo lattice'' theory
On the validity of the Migdal's theorem in heavy fermion systems
International Nuclear Information System (INIS)
Wojciechowski, R.J.
1996-09-01
The interaction between phonons and electrons in strongly correlated electron systems is investigated in the context of the electron-phonon vertex correction. We preserve characteristic features of heavy fermion systems assuming a high density of states near the Fermi level and a very large effective mass m * . We have calculated the lowest-order vertex correction to the quasi particle-phonon interaction and shown that there is no Migdal's theorem for heavy fermion systems. (author). 12 refs, 1 fig
Energy Technology Data Exchange (ETDEWEB)
Ernst, Stefan
2011-06-24
in the framework of this thesis different heavy-fermion systems were studied by means of scanning tunneling microscopy and spectroscopy. In the experiment two main topics existed. On the one hand the heavy-fermion superconductivity in the compounds CeCu{sub 2}Si{sub 2}, CeCoIn{sub 5}, and on the other hand the Kondo effect in the Kondo-lattice system YbRh{sub 2}Si{sub 2}.
Studies of heavy fermion systems: Progress report, July 1, 1986-December 31, 1988
International Nuclear Information System (INIS)
Stewart, G.R.
1988-01-01
Major projects put forward in the original proposal were: radiation damage studies of the heavy fermion superconductors UBe 13 and UPt 3 ; chemical substitution experiments, including CeCu/sub 6-x/M/sub x/; high magnetic field specific heat measurements; search for new heavy fermion systems (HFS). A summary of results on these projects will be discussed first, followed by additional work done during the contract period - some of which is still in progress
Photoemission and the electronic properties of heavy fermions -- limitations of the Kondo model
International Nuclear Information System (INIS)
Joyce, J.J.; Arko, A.J.; Andrews, A.B.
1993-01-01
The electronic properties of Yb-based heavy fermions have been investigated by means of high resolution synchrotron radiation photoemission and compared with predictions of the Kondo model. The Yb heavy fermion photoemission spectra show massive disagreement with the Kondo model predictions (as calculated within the Gunnarsson-Schonhammer computational method). Moreover, the Yb heavy fermion photoemission spectra give very strong indications of core-like characteristics and compare favorable to purely divalent Yb metal and core-like Lu 4f levels. The heavy fermions YbCu 2 Si 2 , YbAgCu 4 and YbAl 3 were measured and shown to have lineshapes much broader and deeper in binding energy than predicted by the Kondo model. The lineshape of the bulk component of the 4f emission for these three heavy fermion materials was compared with that from Yb metal and the Lu 4f levels in LuAl 3 , the heavy fermion materials show no substantive spectroscopic differences from simple 4f levels observed in Yb metal and LuAl 3 . Also, the variation with temperature of the 4f fineshape was measured for Yb metal and clearly demonstrates that phonon broadening plays a major role in 4f level lineshape analysis and must be accounted for before considerations of correlated electron resonance effects are presumed to be at work
A modified BCS theory of heavy fermion superconductivity
International Nuclear Information System (INIS)
Baral, P.C.; Rout, G.C.
2012-01-01
In this paper we derive an expression for the superconducting gap equation for U and Ce based heavy fermion (HF) systems within a modified weak coupling theory of superconductivity. The calculated gap equation presents a mixture of pairing amplitudes of two different quasi-particle bands α and β. These two gap equations are solved numerically and self-consistently within the cut-off energy which arises due to the Kondo energy. It is found that the energy dependence of the enhanced density of states for the HF systems clearly manifests itself in the theory and the Kondo energy naturally takes the role of cut-off energy (ω c ), as long as the effective cut-off energy is large in comparison with the Kondo energy. The numerical analysis confirms this result and shows that superconducting transition temperature is independent of effective cut-off energy employed within this approach. The temperature dependence of gap equations are studied by varying the model parameters like positions of f-level, hybridization and coupling constants of the HF systems. (author)
Spin gap in heavy fermion compound UBe13
Storchak, V. G.; Brewer, J. H.; Eshchenko, D. G.; Mengyan, P. W.; Parfenov, O. E.; Tokmachev, A. M.; Dosanjh, P.; Fisk, Z.; Smith, J. L.
2016-08-01
Heavy fermion (HF) compounds are well known for their unique properties, such as narrow bandwidths, loss of coherence in a metal, non-Fermi-liquid behaviour, unconventional superconductivity, huge magnetoresistance etc. While these materials have been known since the 1970s, there is still considerable uncertainty regarding the fundamental mechanisms responsible for some of these features. Here we report transverse-field muon spin rotation (μ +SR) experiments on the canonical HF compound UBe13 in the temperature range from 0.025 to 300 K and in magnetic fields up to 7 T. The μ +SR spectra exhibit a sharp anomaly at 180 K. We present a simple explanation of the experimental findings identifying this anomaly with a gap in the spin excitation spectrum of f-electrons opening near 180 K. It is consistent with anomalies discovered in heat capacity, NMR and optical conductivity measurements of UBe13, as well as with the new resistivity data presented here. The proposed physical picture may explain several long-standing mysteries of UBe13 (as well as other HF systems).
Competition between heavy fermion and Kondo interaction in isoelectronic A-site-ordered perovskites
Energy Technology Data Exchange (ETDEWEB)
Meyers, D.; Middey, S.; Cheng, J. -G.; Mukherjee, Swarnakamal; Gray, B. A.; Cao, Yanwei; Zhou, J. -S.; Goodenough, J. B.; Choi, Yongseong; Haskel, D.; Freeland, J. W.; Saha-Dasgupta, T.; Chakhalian, J.
2014-12-17
With current research efforts shifting towards the 4d and 5d transition metal oxides, understanding the evolution of the electronic and magnetic structure as one moves away from 3d materials is of critical importance. Here we perform X-ray spectroscopy and electronic structure calculations on A-site-ordered perovskites with Cu in the A-site and the B-sites descending along the ninth group of the periodic table to elucidate the emerging properties as d-orbitals change from partially filled 3d to 4d to 5d. The results show that when descending from Co to Ir, the charge transfers from the cuprate-like Zhang-Rice state on Cu to the t2g orbital of the B site. As the Cu d-orbital occupation approaches the Cu2þ limit, a mixed valence state in CaCu3Rh4O12 and heavy fermion state in CaCu3Ir4O12 are obtained. The investigated d-electron compounds are mapped onto the Doniach phase diagram of the competing RKKY and Kondo interactions developed for the f-electron systems.
International Nuclear Information System (INIS)
Dordevic, S.V.
2012-01-01
Inverse Fourier Transform of optical conductivity is used for studies of quasiparticle relaxation in Heavy Fermions in time domain. We demonstrate the usefulness of the procedure on model spectra and then use it to study quasiparticle relaxation in two Heavy Fermions YbFe 4 Sb 12 and CeRu 4 Sb 12 . Optical conductivity in time domain reveals details of quasiparticle relaxation close to the Fermi level, not readily accessible from the spectra in the frequency domain. In particular, we find that the relaxation of heavy quasiparticles does not start instantaneously, but typically after a few hundred femto-seconds.
Directory of Open Access Journals (Sweden)
Boyle Peter
2018-01-01
Full Text Available We present results for the QED and strong isospin breaking corrections to the hadronic vacuum polarization using Nf = 2 + 1 Domain Wall fermions. QED is included in an electro-quenched setup using two different methods, a stochastic and a perturbative approach. Results and statistical errors from both methods are directly compared with each other.
Photoemission of heavy fermion superconductor PrOs4Sb12 and other Pr compounds
International Nuclear Information System (INIS)
Imada, S.; Yamasaki, A.; Sekiyama, A.; Settai, R.; Onuki, Y.; Suga, S.; Sugawara, H.; Sato, H.; Ochiai, A.
2004-01-01
Full text: Strongly correlated electronic states due to Pr 4f electrons found in several Pr compounds have recently been attracting much attention. The Pr 4f electrons are much more localized than in Ce due to the lanthanoid contraction. Therefore, the number of the Pr systems that show strong electron correlation is much smaller than Ce systems. We will present a comparative study of Pr 4f electronic states in such systems as the heavy fermion superconductor PrOs 4 Sb 12 , the Kondo system PrSn 3 and the localized 4f systems Pr 4 X 3 (X = Sb and Bi). The Pr 4f electronic state was probed by means of the Pr 3d → 4f resonant photoemission (RPES). Because the kinetic energy (E K ) of the photoelectrons is as high as ∼ 900 eV, this method is much more bulk sensitive than the 4d → 4f RPES with E K ∼ 100 eV. The energy resolution could be set to about 100 meV by utilizing the soft X-rays from BL25SU in SPring-8 and the SCIENTA SES-200 analyzer. The Pr 4f excitation spectrum of PrSn 3 was found to show a very strong intensity at the Fermi level (E F ). This can be interpreted as the Kondo resonance which has been observed in the Kondo Ce and Yb compounds. In the Pr 4f spectrum of the heavy fermion superconductor PrOs 4 Sb 12 , the intensity at E F was smaller than in PrSn 3 . This clearly shows that the Kondo temperature (T K ) is much lower in PrOs 4 Sb 12 than in PrSn 3 . We have further found a strong excitation energy dependence in the RPES line shape. In the case of Pr 4 X 3 (X = Sb and Bi), the intensity at E B was much smaller than PrSn 3 and PrOs 4 Sb 12 , which is consistent with the localized character of Pr 4f electrons in Pr 4 X 3 . The Pr 4f spectra of these localized systems are qualitatively well reproduced by a cluster model calculation that takes into account the hybridization between the Pr 4f orbital and the conduction and valence bands made up by the X p and Pr 5d states
Heavy fermion stabilization of solitons in 1+1 dimensions
International Nuclear Information System (INIS)
Farhi, E.; Graham, N.; Jaffe, R.L.; Weigel, H.
2000-01-01
We find static solitons stabilized by quantum corrections in a (1+1) -dimensional model with a scalar field chirally coupled to fermions. This model does not support classical solitons. We compute the renormalized energy functional including one-loop quantum corrections. We carry out a variational search for a configuration that minimizes the energy functional. We find a nontrivial configuration with fermion number whose energy is lower than the same number of free fermions quantized about the translationally invariant vacuum. In order to compute the quantum corrections for a given background field we use a phase-shift parameterization of the Casimir energy. We identify orders of the Born series for the phase shift with perturbative Feynman diagrams in order to renormalize the Casimir energy using perturbatively determined counterterms. Generalizing dimensional regularization, we demonstrate that this procedure yields a finite and unambiguous energy functional
Quasiparticles and order parameter near quantum phase transition in heavy fermion metals
Energy Technology Data Exchange (ETDEWEB)
Shaginyan, V.R. [Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina 188300 (Russian Federation) and CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States)]. E-mail: vrshag@thd.pnpi.spb.ru; Msezane, A.Z. [CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); A.F. Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation)
2005-05-02
It is shown that the Landau paradigm based upon both the quasiparticle concept and the notion of the order parameter is valid and can be used to explain the anomalous behavior of the heavy fermion metals near quantum critical points. The understanding of this phenomenon has been problematic largely because of the absence of theoretical guidance. Exploiting this paradigm and the fermion condensation quantum phase transition, we investigate the anomalous behavior of the heavy electron liquid near its critical point at different temperatures and applied magnetic fields. We show that this anomalous behavior is universal and can be used to capture the essential aspects of recent experiments on heavy-fermion metals at low temperatures.
International Nuclear Information System (INIS)
Schlottmann, P.
1998-01-01
Properties of highly correlated electrons, such as heavy fermion compounds, metal-insulator transitions, one-dimensional conductors and systems of restricted dimensionality are studied theoretically. The main focus is on Kondo insulators and impurity bands due to Kondo holes, the low-temperature magnetoresistivity of heavy fermion alloys, the n-channel Kondo problem, mesoscopic systems and one-dimensional conductors
International Nuclear Information System (INIS)
Li, A.; Alexandru, A.; Lee, F. X.; Chen, Y.; Doi, T.; Dong, S. J.; Draper, T.; Gong, M.; Horvath, I.; Liu, K. F.; Hasenfratz, A.; Mathur, N.; Streuer, T.; Zhang, J. B.
2010-01-01
The overlap fermion propagator is calculated on 2+1 flavor domain-wall fermion gauge configurations on 16 3 x32, 24 3 x64 and 32 3 x64 lattices. With hyper-cubic (HYP) smearing and low eigenmode deflation, it is shown that the inversion of the overlap operator can be expedited by ∼20 times for the 16 3 x32 lattice and ∼80 times for the 32 3 x64 lattice. The overhead cost for calculating eigenmodes ranges from 4.5 to 7.9 propagators for the above lattices. Through the study of hyperfine splitting, we found that the O(m 2 a 2 ) error is small and these dynamical fermion lattices can adequately accommodate quark mass up to the charm quark. A preliminary calculation of the low-energy constant Δ mix which characterizes the discretization error of the pion made up of a pair of sea and valence quarks in this mixed-action approach is carried out via the scalar correlator with periodic and antiperiodic boundary conditions. It is found to be small which shifts a 300 MeV pion mass by ∼10 to 19 MeV on these sets of lattices. We have studied the signal-to-noise issue of the noise source for the meson and baryon. We introduce a new algorithm with Z 3 grid source and low eigenmode substitution to study the many-to-all meson and baryon correlators. It is found to be efficient in reducing errors for the correlators of both mesons and baryons. With 64-point Z 3 grid source and low-mode substitution, it can reduce the statistical errors of the light quark (m π ∼200-300 MeV) meson and nucleon correlators by a factor of ∼3-4 as compared to the point source. The Z 3 grid source itself can reduce the errors of the charmonium correlators by a factor of ∼3.
Theory of heavy-fermion compounds theory of strongly correlated Fermi-systems
Amusia, Miron Ya; Shaginyan, Vasily R; Stephanovich, Vladimir A
2015-01-01
This book explains modern and interesting physics in heavy-fermion (HF) compounds to graduate students and researchers in condensed matter physics. It presents a theory of heavy-fermion (HF) compounds such as HF metals, quantum spin liquids, quasicrystals and two-dimensional Fermi systems. The basic low-temperature properties and the scaling behavior of the compounds are described within the framework of the theory of fermion condensation quantum phase transition (FCQPT). Upon reading the book, the reader finds that HF compounds with quite different microscopic nature exhibit the same non-Fermi liquid behavior, while the data collected on very different HF systems have a universal scaling behavior, and these compounds are unexpectedly uniform despite their diversity. For the reader's convenience, the analysis of compounds is carried out in the context of salient experimental results. The numerous calculations of the non-Fermi liquid behavior, thermodynamic, relaxation and transport properties, being in good...
Thermal expansion of the heavy-fermion compound CeInCu2 at high pressure
International Nuclear Information System (INIS)
Kagayama, Tomoko; Oomi, Gendo; Onuki, Yoshichika; Komatsubara, Takemi
1994-01-01
The thermal expansion coefficient α of the heavy-fermion compound CeInCu 2 has been measured at high pressure up to 2 GPa in the temperature range from 6 to 300 K. It is found that the linear term in α(T) at low temperature decreases by the application of pressure. ((orig.))
Neutron diffraction from the vortex lattice in the heavy-fermion superconductor UPt3
DEFF Research Database (Denmark)
Kleiman, R.N.; Broholm, C.; Aeppli, G.
1992-01-01
We have used neutron diffraction to observe the vortex lattice of UPt3. This is the first such measurement in a heavy-fermion system, a superconductor below 1 K, or in a system with such a long magnetic penetration depth (6000 +/- 75 angstrom). It also provides the first value for the pair...
Magnetic excitations in the heavy-Fermion superconductor URu2Si2
DEFF Research Database (Denmark)
Broholm, C.; Lin, H.; Matthews, P.T.
1991-01-01
Antiferromagnetic order and fluctuations in the heavy-fermion superconductor URu2Si2 have been studied by magnetic neutron scattering. Below T(N) = 17.5 K, URu2Si2 is a type-I antiferromagnet with an anomalously small ordered moment of (0.04 +/- 0.01)mu-B polarized along the tetragonal c axis...
Magnetic fluctuations and the superconducting transition in the heavy-fermion material UPd2Al3
DEFF Research Database (Denmark)
Petersen, T.; Mason, T.E.; Aeppli, G.
1994-01-01
Inelastic neutron scattering has been performed on single crystals of the heavy-fermion superconductor UPd2Al3. The antiferromagnetically ordered state is characterized by an acoustic spin wave mode with no gap. The low-frequency magnitude excitations are unaffected by the transition to a superco...... to a superconducting state despite coupling to the conduction electrons as evidenced by the significant damping....
Multiple quantum phase transitions and superconductivity in Ce-based heavy fermions.
Weng, Z F; Smidman, M; Jiao, L; Lu, Xin; Yuan, H Q
2016-09-01
Heavy fermions have served as prototype examples of strongly-correlated electron systems. The occurrence of unconventional superconductivity in close proximity to the electronic instabilities associated with various degrees of freedom points to an intricate relationship between superconductivity and other electronic states, which is unique but also shares some common features with high temperature superconductivity. The magnetic order in heavy fermion compounds can be continuously suppressed by tuning external parameters to a quantum critical point, and the role of quantum criticality in determining the properties of heavy fermion systems is an important unresolved issue. Here we review the recent progress of studies on Ce based heavy fermion superconductors, with an emphasis on the superconductivity emerging on the edge of magnetic and charge instabilities as well as the quantum phase transitions which occur by tuning different parameters, such as pressure, magnetic field and doping. We discuss systems where multiple quantum critical points occur and whether they can be classified in a unified manner, in particular in terms of the evolution of the Fermi surface topology.
Test of s-wave pairing in heavy-fermion systems due to Kondo volume collapse
International Nuclear Information System (INIS)
Svozil, K.
1987-01-01
It is proposed to utilize resonant Raman scattering on heavy-fermion superconductors as a test for Cooper pairing via an effective phonon-mediated attraction due to the Kondo volume collapse. The suggested experiment might help to discriminate between singlet and triplet pairing
Virtual hadronic and heavy-fermion O({alpha}{sup 2}) corrections to Bhabha scattering
Energy Technology Data Exchange (ETDEWEB)
Actis, Stefano [Inst. fuer Theoretische Physik E, RWTH Aachen (Germany); Czakon, Michal [Wuerzburg Univ. (Germany). Inst. fuer Theoretische Physik und Astrophysik]|[Uniwersytet Slaski, Katowice (Poland). Inst. of Physics and Chemistry of Metals; Gluza, Janusz [Uniwersytet Slaski, Katowice (Poland). Inst. of Physics and Chemistry of Metals; Riemann, Tord [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2008-07-15
Effects of vacuum polarization by hadronic and heavy-fermion insertions were the last unknown two-loop QED corrections to high-energy Bhabha scattering. Here we describe the corrections in detail and explore their numerical influence. The hadronic contributions to the virtual O({alpha}{sup 2}) QED corrections to the Bhabha-scattering cross-section are evaluated using dispersion relations and computing the convolution of hadronic data with perturbatively calculated kernel functions. The technique of dispersion integrals is also employed to derive the virtual O({alpha}{sup 2}) corrections generated by muon-, tau- and top-quark loops in the small electron-mass limit for arbitrary values of the internal-fermion masses. At a meson factory with 1 GeV center-of-mass energy the complete effect of hadronic and heavy-fermion corrections amounts to less than 0.5 per mille and reaches, at 10 GeV, up to about 2 per mille. At the Z resonance it amounts to 2.3 per mille at 3 degrees; overall, hadronic corrections are less than 4 per mille. For ILC energies (500 GeV or above), the combined effect of hadrons and heavy fermions becomes 6 per mille at 3 degrees; hadrons contribute less than 20 per mille in the whole angular region. (orig.)
Electronic structure of heavy fermion system CePt2In7 from angle-resolved photoemission spectroscopy
International Nuclear Information System (INIS)
Shen Bing; Yu Li; Lyu Shou-Peng; Jia Xiao-Wen; Zhang Yan; Wang Chen-Lu; Hu Cheng; Ding Ying; Sun Xuan; Hu Yong; Liu Jing; Gao Qiang; Zhao Lin; Liu Guo-Dong; Liu Kai; Lu Zhong-Yi; Bauer, E D; Thompson, J D; Xu Zu-Yan; Chen Chuang-Tian
2017-01-01
We have carried out high-resolution angle-resolved photoemission measurements on the Ce-based heavy fermion compound CePt 2 In 7 that exhibits stronger two-dimensional character than the prototypical heavy fermion system CeCoIn 5 . Multiple Fermi surface sheets and a complex band structure are clearly resolved. We have also performed detailed band structure calculations on CePt 2 In 7 . The good agreement found between our measurements and the calculations suggests that the band renormalization effect is rather weak in CePt 2 In 7 . A comparison of the common features of the electronic structure of CePt 2 In 7 and CeCoIn 5 indicates that CeCoIn 5 shows a much stronger band renormalization effect than CePt 2 In 7 . These results provide new information for understanding the heavy fermion behaviors and unconventional superconductivity in Ce-based heavy fermion systems. (paper)
The evidence of unconventional pairing in heavy fermion superconductors and high-Tc superconductors
International Nuclear Information System (INIS)
Tien, C.; Wur, C.S.; Jiang, I.M.
1989-01-01
Recently there has been a great deal of interest in two classes of superconductors, heavy fermion superconductors and high T c copper oxide superconductors. The behavior and nature of superconductivity in these two classes of materials are very similar. The temperature dependences of spin-lattice relaxation time (T 1 ) and spin-spin relaxation time (T 2 ) of 9 Be in UBe 13 are quite similar to those of 63 Cu and 89 Y in YBa 2 Cu 3 O 7-δ . The Knight shift of UBe 13 is unchanged during the superconducting phase transition. The Knight shift of YBa 2 Cu 3 O 7-δ changes from the value in the normal state K n /K s = 1 at T ≥ T c to K n /K s = 0.5 at T = 6 K. Both do not approach zero as expected in BCS theory. The acoustic attenuation is enhanced just below T c instead of rapid drop near T c for these two superconducting system. Neither the enhancement, the temperature variation, nor any other anomalous behaviors appear to be mirrored in EPR data for heavy Fermion superconductors and high T c superconductors. This strongly suggests that the unconventional pairing mechanism which induces superconductivity in heavy fermion materials might also involve in high T c superconductors
Polar Kerr effect studies of time reversal symmetry breaking states in heavy fermion superconductors
Energy Technology Data Exchange (ETDEWEB)
Schemm, E.R., E-mail: eschemm@alumni.stanford.edu [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Levenson-Falk, E.M. [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Department of Physics, Stanford University, Stanford, CA 94305 (United States); Kapitulnik, A. [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Department of Physics, Stanford University, Stanford, CA 94305 (United States); Department of Applied Physics, Stanford University, Stanford, CA 94305 (United States); Stanford Institute of Energy and Materials Science, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)
2017-04-15
Highlights: • Polar Kerr effect (PKE) probes broken time-reversal symmetry (TRS) in superconductors. • Absence of PKE below Tc in CeCoIn{sub 5} is consistent with dx2-y2 order parameter symmetry. • PKE in the B phase of the multiphase superconductor UPt3 agrees with an E2u model. • Data on URu2Si2 show broken TRS and additional structure in the superconducting state. - Abstract: The connection between chiral superconductivity and topological order has emerged as an active direction in research as more instances of both have been identified in condensed matter systems. With the notable exception of {sup 3}He-B, all of the known or suspected chiral – that is to say time-reversal symmetry-breaking (TRSB) – superfluids arise in heavy fermion superconductors, although the vast majority of heavy fermion superconductors preserve time-reversal symmetry. Here we review recent experimental efforts to identify TRSB states in heavy fermion systems via measurement of polar Kerr effect, which is a direct consequence of TRSB.
Dehybridization of f and d states in the heavy-fermion system YbRh2Si2
Leuenberger, D.; Sobota, J. A.; Yang, S.-L.; Pfau, H.; Kim, D.-J.; Mo, S.-K.; Fisk, Z.; Kirchmann, P. S.; Shen, Z.-X.
2018-04-01
We report an optically induced reduction of the f -d hybridization in the prototypical heavy-fermion compound YbRh2Si2 . We use femtosecond time- and angle-resolved photoemission spectroscopy to monitor changes of spectral weight and binding energies of the Yb 4 f and Rh 4 d states before the lattice temperature increases after pumping. Overall, the f -d hybridization decreases smoothly with increasing electronic temperature up to ˜250 K but changes slope at ˜100 K . This temperature scale coincides with the onset of coherent Kondo scattering and with thermally populating the first excited crystal electrical field level. Extending previous photoemission studies, we observe a persistent f -d hybridization up to at least ˜250 K , which is far larger than the coherence temperature defined by transport but in agreement with the temperature dependence of the noninteger Yb valence. Our data underlines the distinction of probes accessing spin and charge degrees of freedom in strongly correlated systems.
Charm physics with physical light and strange quarks using domain wall fermions
Boyle, Peter A; Garron, Nicolas; Khamseh, Ava; Marinkovic, Marina; Sanfilippo, Francesco; Tsang, Justus Tobias; Boyle, Peter A.
2015-01-01
We present a study of charm physics using RBC/UKQCD 2+1 flavour physical point domain wall fermion ensembles for the light quarks as well as for the valence charm quark. After a brief motivation of domain wall fermions as a suitable heavy quark discretisation we will show first results for masses and matrix elements.
Search for Heavy Higgs Bosons in Fermionic Decay Channels with CMS
Chen, Ye
2017-01-01
Latest results of searches for heavy Higgs bosons in fermionic final states are presented using the CMS detector at the LHC. Results are based on pp collision data collected at centre-of-mass energies of 8 and 13 TeV which have been interpreted according to different extensions of the Standard Model such as MSSM, 2HDM, and NMSSM. These searches look for evidence of other scalar or pseudoscalar bosons, in addition to the observed SM-like 125 GeV Higgs boson, and set 95\\% confidence level upper limits in fermionic final states and benchmark models explored. The talk reviews briefly the major results obtained by the CMS Collaboration during Run I, and presents the most recent searches performed during Run II.
Pressure dependence of the specific heat of heavy-fermion YbCu4.5
International Nuclear Information System (INIS)
Amato, A.; Fisher, R.A.; Phillips, N.E.; Jaccard, D.; Walker, E.
1990-03-01
The specific heat of a polycrystalline sample of YbCu 4.5 has been measured between 0.3 and 20K at pressures to 8.2 kbar. Unlike cerium-based heavy-fermion compounds, an increase of C/T is observed with increasing pressure, with the linear term enhanced by about 16% at 8.2 kbar. Above 7K, (∂C/∂P) T is negative. The nuclear contribution observed at P = 0 is increased by roughly a factor of two at 8.2 kbar. 7 refs., 3 figs
Anomalous magnetic torque in the heavy-fermion superconductor UBe13
International Nuclear Information System (INIS)
Schmiedeshoff, G.M.; Fisk, Z.; Smith, J.L.
1994-01-01
Measurements of the magnetic torque acting upon a single crystal of the heavy-fermion superconductor UBe 13 have been made at temperatures from 0.5 K to 30.0 K and in magnetic fields to 23 T using a capacitive magnetometer. We find that a large, anomalous contribution to the magnetic torque appears in at low temperatures and in high fields. The anomalous torque coexists with the superconducting state at low temperature. We propose that the anomalous torque reflects the existence of a field-induced magnetic phase transition. (orig.)
The path integral model of D-pairing for HTSC, heavy fermion superconductors, and superfluids
International Nuclear Information System (INIS)
Brusov, P.N.; Brusova, N.P.
1996-01-01
A model of d-pairing for superconducting and superfluid Fermi-systems has been formulated within the path integration technique. By path integration over open-quote fastclose quotes and open-quotes slowclose quotes Fermi-fields, the action functional (which determines all properties of model system) has been obtained. This functional could be used for the determination of different superconducting (superfluid) states, for calculation of the transition temperatures for these states, and for the calculation of the collective mode spectrum for HTSC, as well as for heavy fermion superconductors
Single crystal study of the heavy-fermion antiferromagnet CePt2In7
International Nuclear Information System (INIS)
Tobash, Paul H; Ronning, F; Thompson, J D; Scott, B L; Bauer, E D; Moll, P J W; Batlogg, B
2012-01-01
We report the synthesis, structure, and physical properties of single crystals of CePt 2 In 7 . Single crystal x-ray diffraction analysis confirms the tetragonal I4/mmm structure of CePt 2 In 7 with unit cell parameters a = 4.5886(6) Å, c = 21.530(6) Å and V = 453.32(14) Å 3 . The magnetic susceptibility, heat capacity, Hall effect and electrical resistivity measurements are all consistent with CePt 2 In 7 undergoing an antiferromagnetic order transition at T N = 5.5 K, which is field independent up to 9 T. Above T N , the Sommerfeld coefficient of specific heat is γ ≈ 300 mJ mol -1 K -2 , which is characteristic of an enhanced effective mass of itinerant charge carriers. The electrical resistivity is typical of heavy-fermion behavior and gives a residual resistivity ρ 0 ∼ 0.2 µΩ cm, indicating good crystal quality. CePt 2 In 7 also shows moderate anisotropy of the physical properties that is comparable to structurally related CeMIn 5 (M = Co, Rh, Ir) heavy-fermion superconductors. (paper)
Quantum criticality in He3 bi-layers and heavy fermion compounds
International Nuclear Information System (INIS)
Benlagra, A.
2009-11-01
Despite intense experimental as well as theoretical efforts the understanding of physical phenomena peculiar to heavy fermion compounds remains one of the major problems in condensed matter physics; this research thesis considers the recently proposed theoretical approaches to describe the critical regime properties. This approach is based on the following idea: critical modes which are responsible for this regime are non-magnetic and are associated to the destruction of the Kondo effect between localized magnetic impurities and travelling conduction electrons at the quantum critical point. The author derives an analytic expression for the free energy within this model by using the Luttinger-Ward functional approach within the frame of the Eliashberg theory. The obtained expressions are transparently including the effect of critical fluctuations, integrated in a self-coherent way. The behaviour of different thermodynamic quantities is then deduced from these expressions. The result is compared with recent experiments on heavy fermion compounds as well as on a Helium-3 bilayer system adsorbed on graphite substrate in order to test the validity of such a model. Strengths and drawbacks of the model are outlined
Structural aspects of the new quasi-2-D heavy fermion materials CeIrIns and CeRhIns
International Nuclear Information System (INIS)
Moshopoulou, E.G.; Moshopoulou, E.G.; Fisk, Z.; Sarrao, J.L.; Thompson, J.D.; Fisk, Z.
2002-01-01
The title compounds are new heavy fermion materials. They adopt a quasi two-dimensional crystal structure and exhibit unusual (for a heavy fermion system) low temperature properties. Although the study of their physical and structural behaviour at low temperatures and/or high pressures is still in progress, we present here some results concerning their average crystal structure, and we discuss very briefly their similarities and differences with the compounds CeIn3 and UTGa 5 (T: Co, Ni, Ir, Pd, Cu, Ru). (authors)
An exploratory study of heavy domain wall fermions on the lattice
Boyle, Peter; Marinkovic, Marina Krstic; Sanfilippo, Francesco; Spraggs, Matthew; Tsang, Justus Tobias
2016-01-01
We report on an exploratory study of domain wall fermions (DWF) as a lattice regularisation for heavy quarks. Within the framework of quenched QCD with the tree-level improved Symanzik gauge action we identify the DWF parameters which minimise discretisation effects. We find the corresponding effective 4$d$ overlap operator to be exponentially local, independent of the quark mass. We determine a maximum bare heavy quark mass of $am_h\\approx 0.4$, below which the approximate chiral symmetry and O(a)-improvement of DWF are sustained. This threshold appears to be largely independent of the lattice spacing. Based on these findings, we carried out a detailed scaling study for the heavy-strange meson dispersion relation and decay constant on four ensembles with lattice spacings in the range $2.0-5.7\\,\\mathrm{GeV}$. We observe very mild $a^2$ scaling towards the continuum limit. Our findings establish a sound basis for heavy DWF in dynamical simulations of lattice QCD with relevance to Standard Model phenomenology.
Microscopic theoretical study of frequency dependent dielectric constant of heavy fermion systems
Shadangi, Keshab Chandra; Rout, G. C.
2017-05-01
The dielectric polarization and the dielectric constant plays a vital role in the deciding the properties of the Heavy Fermion Systems. In the present communication we consider the periodic Anderson's Model which consists of conduction electron kinetic energy, localized f-electron kinetic energy and the hybridization between the conduction and localized electrons, besides the Coulomb correlation energy. We calculate dielectric polarization which involves two particle Green's functions which are calculated by using Zubarev's Green's function technique. Using the equations of motion of the fermion electron operators. Finally, the temperature and frequency dependent dielectric constant is calculated from the dielectric polarization function. The charge susceptibility and dielectric constant are computed numerically for different physical parameters like the position (Ef) of the f-electron level with respect to fermi level, the strength of the hybridization (V) between the conduction and localized f-electrons, Coulomb correlation potential temperature and optical phonon wave vector (q). The results will be discussed in a reference to the experimental observations of the dielectric constants.
International Nuclear Information System (INIS)
Kupka, M.; Farkasovsky, P.C.
1992-01-01
Point-contact spectra have been calculated for normal metal -heavy-fermion metal system (described by means of a simplified model Hamiltonian). Two approaches are used: one of them states that the differential conductance reflects an energy-dependent quasi-particle density of states, and 2. one drives the differential conductance are compared
Magnetism and unconventional superconductivity in CenMmIn3n+2m heavy-fermion crystals
International Nuclear Information System (INIS)
Thompson, J.D.; Nicklas, M.; Bianchi, A.; Movshovich, R.; Llobet, A.; Bao, W.; Malinowski, A.; Hundley, M.F.; Moreno, N.O.; Pagliuso, P.G.; Sarrao, J.L.; Nakatsuji, S.; Fisk, Z.; Borth, R.; Lengyel, E.; Oeschler, N.; Sparn, G.; Steglich, F.
2003-01-01
We review magnetic, superconducting and non-Fermi-liquid properties of the structurally layered heavy-fermion compounds Ce n M m In 3n+2m (M=Co,Rh,Ir). These properties suggest d-wave superconductivity and proximity to an antiferromagetic quantum-critical point
Antiferromagnetic spin fluctuations in the heavy-fermion superconductor Ce2PdIn8
Tran, V. H.; Hillier, A. D.; Adroja, D. T.; Kaczorowski, D.
2012-09-01
Inelastic neutron scattering and muon spin relaxation/rotation (μSR) measurements were performed on the heavy-fermion superconductor Ce2PdIn8. The observed scaling of the imaginary part of the dynamical susceptibility χ''Tα∝f(ℏω/kBT) with α=3/2 revealed a non-Fermi liquid character of the normal state, being due to critical antiferromagnetic fluctuations near a T=0 quantum phase transition. The longitudinal-field μSR measurements indicated that superconductivity and antiferromagnetic spin fluctuations coexist in Ce2PdIn8 on a microscopic scale. The observed power-law temperature dependence of the magnetic penetration depth λ∝T3/2, deduced from the transverse-field μSR data, strongly confirms an unconventional superconductivity in this compound.
Quasiparticle interference in the heavy-fermion superconductor CeCoIn5
Akbari, Alireza; Thalmeier, Peter; Eremin, Ilya
2011-10-01
We investigate the quasiparticle interference in the heavy fermion superconductor CeCoIn5 as a direct method to confirm the d-wave gap symmetry. The ambiguity between dxy and dx2-y2 symmetry remaining from earlier specific heat and thermal transport investigations has been resolved in favor of the latter by the observation of a spin resonance that can occur only in dx2-y2 symmetry. However, these methods are all indirect and depend considerably on theoretical interpretation. Here we propose that quasiparticle interference (QPI) spectroscopy by scanning tunneling microscopy (STM) can give a direct fingerprint of the superconducting gap in real space that may lead to a definite conclusion on its symmetry for CeCoIn5 and related 115 compounds. The QPI pattern for both magnetic and nonmagnetic impurities is calculated for the possible d-wave symmetries and characteristic differences are found that may be identified by use of the STM method.
Magnetism and superconductivity driven by identical 4f states in a heavy-fermion metal
Energy Technology Data Exchange (ETDEWEB)
Thompson, Joe E [Los Alamos National Laboratory; Nair, S [MAX PLANCK INST.; Stockert, O [MAX PLANCK INST.; Witte, U [INST. FUR FESTKORPERPHYSIK; Nicklas, M [MAX PLANCK INST.; Schedler, R [HELMHOLTZ - ZENTRUM; Bianchi, A [UC, IRVINE; Fisk, Z [UC, IRVINE; Wirth, S [MAX PLANCK INST.; Steglich, K [HELMHOLTZ - ZENTRUM
2009-01-01
The apparently inimical relationship between magnetism and superconductivity has come under increasing scrutiny in a wide range of material classes, where the free energy landscape conspires to bring them in close proximity to each other. Particularly enigmatic is the case when these phases microscopically interpenetrate, though the manner in which this can be accomplished remains to be fully comprehended. Here, we present combined measurements of elastic neutron scattering, magnetotransport, and heat capacity on a prototypical heavy fermion system, in which antiferromagnetism and superconductivity are observed. Monitoring the response of these states to the presence of the other, as well as to external thermal and magnetic perturbations, points to the possibility that they emerge from different parts of the Fermi surface. Therefore, a single 4f state could be both localized and itinerant, thus accounting for the coexistence of magnetism and superconductivity.
Quasiparticle interference in heavy fermion superconductors. Role of the slab geometry
Energy Technology Data Exchange (ETDEWEB)
Lambert, Fabian [Institute fuer Theoretische Physik III, Ruhr-Universitaet Bochum, D-44801 Bochum (Germany); Akbari, Alireza [Asia Pacific Center for Theoretical Physics (APCTP) (Korea, Republic of); Department of Physics, and Max Planck POSTECH Center for Complex Phase Materials, POSTECH, Pohang 790-784 (Korea, Republic of); Thalmeier, Peter [Max Planck Institute for the Chemical Physics of Solids, D-01187 Dresden (Germany); Eremin, Ilya [Institute fuer Theoretische Physik III, Ruhr-Universitaet Bochum, D-44801 Bochum (Germany); Institute of Physics, Kazan (Volga Region) Federal University, 420008 Kazan (Russian Federation)
2016-07-01
We analyze theoretically the quasiparticle interference in the heavy fermion superconductors CeCoIn{sub 5} and UPt{sub 3} as a direct method to investigate the gap symmetry. In contrast to the prior attempts that computed QPI patterns for some effective two-dimensional models or by performing calculations for various k{sub z} cuts and then averaging the final result, we perfom the calculations for the three-dimensional models in the slab geometry and investigate possible effects of the finite sample size, topology, and surface termination. Comparing with the results of prior analysis of the bulk system we can conclude on the importance of the possible surface states for determining the QPI pattern.
Progress in heavy-fermion superconductivity. Ce115 and related materials
International Nuclear Information System (INIS)
Thompson, Joe D.; Fisk, Zachary
2012-01-01
Ce115 and related Ce compounds are particularly suited to detailed studies of the interplay of antiferromagnetic order, unconventional superconductivity and quantum criticality due to their availability as high quality single crystals and their tunability by chemistry, pressure and magnetic field. Neutron-scattering, NMR and angle-resolved thermodynamic measurements have deepened the understanding of this interplay. Very low temperature experiments in pure and lightly doped CeCoIn 5 have elaborated the FFLO-like magnetic state near the field-induced quantum-critical point. New, related superconducting materials have broadened the phase space for discovering underlying principles of heavy-fermion superconductivity and its relationship to nearby states. (author)
Magnetism and superconductivity in a heavy-fermion superconductor, CePt3Si
International Nuclear Information System (INIS)
Takeuchi, T; Hashimoto, S; Yasuda, T; Shishido, H; Ueda, T; Yamada, M; Obiraki, Y; Shiimoto, M; Kohara, H; Yamamoto, T; Sugiyama, K; Kindo, K; Matsuda, T D; Haga, Y; Aoki, Y; Sato, H; Settai, R; Onuki, Y
2004-01-01
We have studied the magnetic and thermal properties of a single crystal of CePt 3 Si, which is a recently reported heavy-fermion superconductor with a superconducting transition temperature T c = 0.75 K and a Neel temperature T N = 2.2 K. The overall experimental data are principally explained on the basis of the crystalline electric field (CEF) scheme. Even in the antiferromagnetic state, the CEF model applies well to the characteristic features in the magnetization curve. These results indicate the existence of a localized magnetic moment at the Ce site, with a considerably reduced ordered moment of 0.16 μ B /Ce, and the strongly correlated conduction electrons are condensed into the superconducting state. We have also constructed the magnetic phase diagram including the superconducting phase for H parallel [110] and [001]. (letter to the editor)
Dynamical Electroweak Symmetry Breaking with a Heavy Fermion in Light of Recent LHC Results
Directory of Open Access Journals (Sweden)
Pham Q. Hung
2013-01-01
Full Text Available The recent announcement of a discovery of a possible Higgs-like particle—its spin and parity are yet to be determined—at the LHC with a mass of 126 GeV necessitates a fresh look at the nature of the electroweak symmetry breaking, in particular if this newly-discovered particle will turn out to have the quantum numbers of a Standard Model Higgs boson. Even if it were a 0+ scalar with the properties expected for a SM Higgs boson, there is still the quintessential hierarchy problem that one has to deal with and which, by itself, suggests a new physics energy scale around 1 TeV. This paper presents a minireview of one possible scenario: the formation of a fermion-antifermion condensate coming from a very heavy fourth generation, carrying the quantum number of the SM Higgs field, and thus breaking the electroweak symmetry.
Fermi-surface topology of the heavy-fermion system Ce2PtIn8
Klotz, J.; Götze, K.; Green, E. L.; Demuer, A.; Shishido, H.; Ishida, T.; Harima, H.; Wosnitza, J.; Sheikin, I.
2018-04-01
Ce2PtIn8 is a recently discovered heavy-fermion system structurally related to the well-studied superconductor CeCoIn5. Here we report on low-temperature de Haas-van Alphen-effect measurements in high magnetic fields in Ce2PtIn8 and Pr2PtIn8 . In addition, we performed band-structure calculations for localized and itinerant Ce-4 f electrons in Ce2PtIn8 . Comparison with the experimental data of Ce2PtIn8 and of the 4 f -localized Pr2PtIn8 suggests the itinerant character of the Ce-4 f electrons. This conclusion is further supported by the observation of effective masses in Ce2PtIn8 , which are strongly enhanced with up to 26 bare electron masses.
Magnetic properties of nearly stoichiometric CeAuBi2 heavy fermion compound
International Nuclear Information System (INIS)
Adriano, C.; Jesus, C. B. R.; Pagliuso, P. G.; Rosa, P. F. S.; Grant, T.; Fisk, Z.; Garcia, D. J.
2015-01-01
Motivated by the interesting magnetic anisotropy found in the heavy fermion family CeTX 2 (T = transition metal and X = pnictogen), here, we study the novel parent compound CeAu 1−x Bi 2−y by combining magnetization, pressure dependent electrical resistivity, and heat-capacity measurements. The magnetic properties of our nearly stoichiometric single crystal sample of CeAu 1−x Bi 2−y (x = 0.92 and y = 1.6) revealed an antiferromagnetic ordering at T N = 12 K with an easy axis along the c-direction. The field dependent magnetization data at low temperatures reveal the existence of a spin-flop transition when the field is applied along the c-axis (H c ∼ 7.5 T and T = 5 K). The heat capacity and pressure dependent resistivity data suggest that CeAu 0.92 Bi 1.6 exhibits a weak heavy fermion behavior with strongly localized Ce 3+ 4f electrons. Furthermore, the systematic analysis using a mean field model including anisotropic nearest-neighbors interactions and the tetragonal crystalline electric field (CEF) Hamiltonian allows us to extract a CEF scheme and two different values for the anisotropic J RKKY exchange parameters between the Ce 3+ ions in this compound. Thus, we discuss a scenario, considering both the anisotropic magnetic interactions and the tetragonal CEF effects, in the CeAu 1−x Bi 2−y compounds, and we compare our results with the isostructural compound CeCuBi 2
Heavy fermion Ce3Co4Sn13 compound under pressure
International Nuclear Information System (INIS)
Collave, J. R.; Borges, H. A.; Ramos, S. M.; Hering, E. N.; Fontes, M. B.; Baggio-Saitovitch, E.; Bittar, E. M.; Mendonça-Ferreira, L.; Pagliuso, P. G.
2015-01-01
The non-magnetic heavy fermion compound Ce 3 Co 4 Sn 13 was studied under pressure. We report single crystalline measurements of electrical resistivity as a function of temperature ρ(T) under pressure. Some characteristic features related to a structural transition (T S ), crystalline field effects (T CEF ), and a low temperature maximum (T max ), possibly connected simultaneously to the onset of Kondo lattice coherence and short range magnetic correlations, were identified in the ρ(T) data. A pressure-temperature phase diagram with T S and T max was constructed by mapping these features. Like for most Ce-based heavy fermion compounds, T max moves to higher temperatures with pressure, indicating that it is related to the Kondo energy scale, due to the increase of hybridization induced by pressure. On the other hand, T S , associated to a superlattice distortion and probably combined with a charge density wave transition, decreases as a function of pressure. However, differently from the Sr 3−x Ca x Ir 4 Sn 13 system, where a superlattice quantum phase transition is observed [L. E. Klintberg et al., Phys. Rev. Lett. 109, 237 008 (2012)], in Ce 3 Co 4 Sn 13 T S ∼ 154 K, at ambient pressure (P = 0), seems to stabilize at around 143 K for P ≥ 19 kilobars. We also investigated ρ(T) in external magnetic fields, at P = 0. Negative magnetoresistance and increase of T max are observed, suggesting suppression of low temperature short range magnetic correlations
Quasi-particle interference of heavy fermions in resonant x-ray scattering.
Gyenis, András; da Silva Neto, Eduardo H; Sutarto, Ronny; Schierle, Enrico; He, Feizhou; Weschke, Eugen; Kavai, Mariam; Baumbach, Ryan E; Thompson, Joe D; Bauer, Eric D; Fisk, Zachary; Damascelli, Andrea; Yazdani, Ali; Aynajian, Pegor
2016-10-01
Resonant x-ray scattering (RXS) has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of RXS experiments remains theoretically challenging because of the complexity of the RXS cross section. Central to this debate is the recent proposal that impurity-induced Friedel oscillations, akin to quasi-particle interference signals observed with a scanning tunneling microscope (STM), can lead to scattering peaks in RXS experiments. The possibility that quasi-particle properties can be probed in RXS measurements opens up a new avenue to study the bulk band structure of materials with the orbital and element selectivity provided by RXS. We test these ideas by combining RXS and STM measurements of the heavy fermion compound Ce M In 5 ( M = Co, Rh). Temperature- and doping-dependent RXS measurements at the Ce- M 4 edge show a broad scattering enhancement that correlates with the appearance of heavy f -electron bands in these compounds. The scattering enhancement is consistent with the measured quasi-particle interference signal in the STM measurements, indicating that the quasi-particle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS technique.
Search for heavy fermions with the ATLAS experiment at the LHC collider
AUTHOR|(INSPIRE)INSPIRE-00359999; Santiago, José; Onofre, António
In the present thesis a search for new heavy fermions using LHC data collected in 2012 by the ATLAS experiment is presented. In particular, a search for pair and single production of vector-like quarks with electric charge 2/3 ($T$) and -1/3 ($B$) decaying to a $Z$ boson is discussed. For this search the analysis was divided in two channels, depending on the lepton multiplicity, and both channels were combined at the end for the final results. Since no evidence for signal was found, limits on the mass of the vector-like quarks were evaluated. The observed (expected) limit on the mass of an $SU(2)$ singlet $T$ quark is 655~GeV (625~GeV), while the observed (expected) limit on the mass of a $T$ quark in a $(T,B)$ doublet is 735~GeV (720~GeV). The observed (expected) limit on the mass of an $SU(2)$ singlet $B$ quark is 685~GeV (670~GeV), while the observed (expected) limit on the mass of a $B$ quark in a $(B,Y)$ doublet is 755~GeV (755~GeV). The impact of a heavy gluon in the searches for pair production of vect...
LiV2O4: A heavy fermion transition metal oxide
International Nuclear Information System (INIS)
Shinichiro, Kondo
1999-01-01
The format of this dissertation is as follows. In the remainder of Chapter 1, brief introductions and reviews are given to the topics of frustration, heavy fermions and spinels including the precedent work of LiV 2 O 4 . In Chapter 2, as a general overview of this work the important publication in Physical Review Letters by the author of this dissertation and collaborators regarding the discovery of the heavy fermion behavior in LiV 2 O 4 is introduced [removed for separate processing]. The preparation methods employed by the author for nine LiV 2 O 4 and two Li 1+x Ti 2-x O 4 (x = 0 and 1/3) polycrystalline samples are introduced in Chapter 3. The subsequent structural characterization of the LiV 2 O 4 and Li 1+x Ti 2-x O 4 samples was done by the author using thermogravimetric analysis (TGA), x-ray diffraction measurements and their structural refinements by the Rietveld analysis. The results of the characterization are detailed in Chapter 3. In Chapter 4 magnetization measurements carried out by the author are detailed. In Chapter 5, after briefly discussing the resistivity measurement results including the single-crystal work by Rogers et al., for the purpose of clear characterization of LiV 2 O 4 it is of great importance to introduce in the following chapters the experiments and subsequent data analyses done by his collaborators. Heat capacity measurements (Chapter 6) were carried out and analyzed by Dr. C.A. Swenson, and modeled theoretically by Dr. D.C. Johnston. In Chapter 7 a thermal expansion study using neutron diffraction by Dr. O. Chmaissem et al. and capacitance dilatometry measurements by Dr. C.A. Swenson are introduced. The data analyses for the thermal expansion study were mainly done by Dr. O. Chmaissem (for neutron diffraction) and Dr. C.A. Swendon (for dilatometry), with assistances by Dr. J.D. Jorgensen, Dr. D.C. Johnston, and S. Kondo the author of this dissertation. Chapter 8 describes nuclear magnetic resonance (NMR) measurements and
Role of zero modes in the canonical quantization of heavy-fermion QED in light-cone coordinates
International Nuclear Information System (INIS)
Brown, R.W.; Jun, J.W.; Shvartsman, S.M.; Taylor, C.C.
1993-01-01
Four-dimensional heavy-fermion QED is studied in light-cone coordinates with (anti)periodic field boundary conditions. We carry out a consistent light-cone canonical quantization of this model using the Dirac algorithm for a system with first- and second-class constraints. To examine the role of the zero modes, we consider the quantization procedure in the zero-mode and the nonzero-mode sectors separately. In both sectors we obtain the physical variables and their canonical commutation relations. The physical Hamiltonian is constructed via a step-by-step exclusion of the unphysical degrees of freedom. An example using this Hamiltonian in which the zero modes play a role is the verification of the correct Coulomb potential between two heavy fermions
Effect of c-f hybridization on electric and magnetic properties of some Heavy Fermion (HF) systems
Energy Technology Data Exchange (ETDEWEB)
Sahoo, J., E-mail: jitendrasahoo2008@gmail.com [Regional Office of Vocational Education, Sambalpur, Odisha -768 004 (India); Nayak, P. [School of Physics, Sambalpur University, Sambalpur, Odisha - 768 019 (India)
2017-02-01
Representing the heavy fermion systems by the Periodic Anderson Model (PAM), we have used Zubarev technique to see the effect of c-f hybridization on the temperature dependence of resistivity and magnetic susceptibility. The calculated resistivity and magnetic susceptibility show the general features observed in these materials experimentally. Further, we have shown how the strength of hybridization as well as the position of the f-level affects both the properties and the Kondo temperature of these systems.
Uniaxial Pressure Effect on the SdH Oscillations in Heavy-Fermion Semimetal CeRu4Sb12
International Nuclear Information System (INIS)
Saha, S. R.; Kobayashi, M.; Sugawara, H.; Namiki, T.; Abe, K.; Aoki, Y.; Sato, H.
2003-01-01
We report the first successful Shubnikov-de Haas (SdH) experiment under uniaxial pressure in the anomalous heavy-fermion semimetal CeRu 4 Sb 12 . The nature of the quantum oscillations in the magnetoresistance is found to be significantly sensitive to uniaxial pressure. The results reveal that the nearly spherical Fermi surface elongates along the direction of the uniaxial pressure. (author)
Enaldiev, V. V.; Volkov, V. A.
2018-03-01
Recent high-resolution angle-resolved photoemission spectroscopy experiments have given a reason to believe that pure bismuth is a topologically nontrivial semimetal. We derive an analytic theory of surface and size-quantized states of Dirac fermions in Bi(111) films taking into account the new data. The theory relies on a new phenomenological momentum-dependent boundary condition for the effective Dirac equation. The boundary condition is described by two real parameters that are expressed by a linear combination of the Dresselhaus and Rashba interface spin-orbit interaction parameters. In semi-infinite Bi(111), near the M ¯ point the surface states possess anisotropical parabolic dispersion with very heavy effective mass in the Γ ¯-M ¯ direction order of ten free electron masses and light effective mass in the M ¯-K ¯ direction order of one hundredth of free electron mass. In Bi(111) films with equivalent surfaces, the surface states from top and bottom surfaces are not split. In such a symmetric film with arbitrary thickness, the bottom of the lowest quantum confinement subband in the conduction band coincides with the bottom of the bulk conduction band in the M ¯ point.
Heavy fermion behaviour in the high pressure structure of CeSb{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Fedoseev, Vitaly; Feng, Zhuo; Zou, Yang; Grosche, F. Malte [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Giles, Terence; Niklowitz, Philipp [Department of Physics, Royal Holloway, University of London, Egham TW20 0EX (United Kingdom); Wilhelm, Heribert [Beamline I15, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Lampronti, Giulio [Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ (United Kingdom)
2015-07-01
The Kondo lattice system CeSb{sub 2} crystallises in the orthorhombic SmSb{sub 2} structure and exhibits a series of magnetic phase transitions at low temperature. It has been reported to become ferromagnetic below 15 K, with the ordered moment oriented within the basal plane, and to undergo two further transitions at 9K and 12K. These transition are suppressed above a hydrostatic pressure p{sub c} ≅ 16 kbar. We present high pressure transport and x-ray diffraction results, which examine the high pressure state of CeSb{sub 2}. Our findings suggest that CeSb{sub 2} undergoes a drastic structural change at p{sub c} into a new and now fully resolved crystal structure. Whereas in the low pressure structure, CeSb{sub 2} is a local moment magnet, in the high pressure structure it exhibits transport properties characteristic of a heavy fermion material with a low Kondo temperature scale of the order of 10 K.
Hybridization in Kondo lattice heavy fermions via quasiparticle scattering spectroscopy (QPS)
Narasiwodeyar, Sanjay; Dwyer, Matt; Greene, Laura; Park, Wan Kyu; Bauer, Eric; Tobash, Paul; Baumbach, Ryan; Ronning, Filip; Sarrao, John; Thompson, Joe; Canfield, Paul
2014-03-01
Band renormalization in a Kondo lattice via hybridization of the conduction band with localized states has been a hot topic over the last several years. In part, this has to do with recently reignited interest in the hidden order problem in URu2Si2. Despite recent developments regarding the electronic structure in this compound, it remains to be resolved whether the hidden order phase transition is related to the opening of a hybridization gap. Our quasiparticle scattering spectroscopy (QPS) has shown they are not related directly. This can be understood naturally since in principle band renormalization does not involve symmetry breaking. To deepen our understanding, we extend to other Kondo lattice compounds. For instance, when applied to YbAl3, a vegetable heavy-fermion system, QPS reveals conductance signatures for hybridization in a Kondo lattice such as asymmetric Fano background along with characteristic energy scales. Presenting new results on these materials, we will discuss a broader picture. The work at UIUC is supported by the NSF DMR 12-06766, the work at LANL is carried out under the auspices of the U.S. DOE, Office of Science, and the work done at Ames Lab. was supported under Contract No. DE-AC02-07CH11358.
Energy Technology Data Exchange (ETDEWEB)
Friemel, Gerd
2014-05-26
This thesis contains a comprehensive study of the spin excitations by inelastic neutron scattering (INS) in two different correlated electron systems: the alkali-metal iron selenide superconductors (FeSe122) A{sub x}Fe{sub 2-y}Se{sub 2} (A=K, Rb, Cs) and the heavy-fermion antiferromagnet CeB6. Both systems exhibit intense modes in their spin-fluctuation spectrum below their respective transition temperatures that can be derived from the spin dynamics of the itinerant quasiparticles. However, the implications of these observations, presented here, are different for each particular compound. The A{sub x}Fe{sub 2-y}Se{sub 2} superconductors, with a uniform T{sub c} of 32 K, belong to a qualitative new family of superconductors. They possess a distinctly different Fermi surface compared to the iron-arsenide-based analogues XFe{sub 2}As{sub 2} (X=Ca, Sr, Ba). Instead of the central hole pockets at Γ and the electron pockets at X((1)/(2) 0), which are nested by the Q{sub AFM} = ((1)/(2) 0) vector, there exist only large electron pockets at the X point. Therefore, the magnetic instability along Q{sub AFM} that presumably provides the pairing glue for the superconductivity in the shape of spin fluctuations is absent in the FeSe122. The search for spin fluctuations by INS was motivated by a theoretical analysis that predicted their presence at an incommensurate wave vector near Q = (0.5 δ), δ = 0.3125 which results from a quasinesting by Q between the flat parts of the electron pockets. Two samples, namely Rb{sub 0.8}Fe{sub 1.6}Se{sub 2} and K{sub 0.77}Fe{sub 1.85}Se{sub 2}, were prepared and both showed a sizable anisotropic magnetic response at Q{sub sf} = ((1)/(2) (1)/(4)) in the normal state. Furthermore, upon entering the superconducting (SC) state a strong excitation appears at ℎω{sub res} = 14 meV in the spectrum at Q{sub sf}, which is referred to as magnetic resonant mode. This mode is interpreted as a bound spin-1 exciton below the SC charge gap. Its presence
Dynamics of impurity modes and electron–phonon interaction in Heavy Fermion (HF) systems
International Nuclear Information System (INIS)
Shadangi, N.; Sahoo, J.; Mohanty, S.; Nayak, P.
2014-01-01
A theoretical explanation is provided to understand the effect of small concentration of impurities characterized by change in mass and nearest neighbor force constants on the phonon spectrum as well as on the electron–phonon interaction in some Heavy Fermion (HF) systems in the normal state within theoretical framework of the Periodic Anderson Model (PAM). Three different mechanisms of the electron–phonon interactions, namely, the usual interaction between the phonons with the electrons in the f-bands, electrons arising from that of hybridization term of PAM and the local electron–phonon coupling at the impurity sites are considered. Coherent Potential Approximation (CPA) is used to evaluate the configuration averaged self–energy and the total Green function. For simplicity of calculation the CPA self–energy is evaluated in Average t -matrix Approximation (ATA). The analytical analysis is carried out for finite T in the long wavelength limit. The influence of impurity mass parameter λ and other system parameters such as d, the position of f-level, the effective coupling strength g on the calculated re-normalized phonon frequency and the excitation spectrum through the spectral function is studied. The numerical analysis of the results does show the influence of impurities as evident from different plots in this paper.
Specific heat of heavy-fermion CePd2Si2 in high magnetic fields
International Nuclear Information System (INIS)
Sheikin, I.; Wang, Y.; Bouquet, F.; Junod, A.; Lejay, P.
2002-01-01
We report specific heat measurements on the heavy-fermion compound CePd 2 Si 2 in magnetic fields up to 16 T and in the temperature range 1.4-16 K. A sharp peak in the specific heat signals the antiferromagnetic transition at T N ∼ 9.3 K in zero field. The transition is found to shift to lower temperatures when a magnetic field is applied along the crystallographic a-axis, while a field applied parallel to the tetragonal c-axis does not affect the transition. The magnetic contribution to the specific heat below T N is well described by a sum of a linear electronic term and an antiferromagnetic spin-wave contribution. Just below T N , an additional positive curvature, especially at high fields, arises most probably due to thermal fluctuations. The field dependence of the coefficient of the low-temperature linear term, γ 0 , extracted from the fits shows a maximum at about 6 T, at the point where an anomaly was detected in susceptibility measurements. The relative field dependences of both T N and the magnetic entropy at T N scale as [1-(B/B 0 ) 2 ] for B parallel a, suggesting the disappearance of antiferromagnetism at B 0 ∼42 T. The expected suppression of the antiferromagnetic transition temperature to zero makes the existence of a magnetic quantum critical point possible. (author). Letter-to-the-editor
International Nuclear Information System (INIS)
Friemel, Gerd
2014-01-01
This thesis contains a comprehensive study of the spin excitations by inelastic neutron scattering (INS) in two different correlated electron systems: the alkali-metal iron selenide superconductors (FeSe122) A x Fe 2-y Se 2 (A=K, Rb, Cs) and the heavy-fermion antiferromagnet CeB6. Both systems exhibit intense modes in their spin-fluctuation spectrum below their respective transition temperatures that can be derived from the spin dynamics of the itinerant quasiparticles. However, the implications of these observations, presented here, are different for each particular compound. The A x Fe 2-y Se 2 superconductors, with a uniform T c of 32 K, belong to a qualitative new family of superconductors. They possess a distinctly different Fermi surface compared to the iron-arsenide-based analogues XFe 2 As 2 (X=Ca, Sr, Ba). Instead of the central hole pockets at Γ and the electron pockets at X((1)/(2) 0), which are nested by the Q AFM = ((1)/(2) 0) vector, there exist only large electron pockets at the X point. Therefore, the magnetic instability along Q AFM that presumably provides the pairing glue for the superconductivity in the shape of spin fluctuations is absent in the FeSe122. The search for spin fluctuations by INS was motivated by a theoretical analysis that predicted their presence at an incommensurate wave vector near Q = (0.5 δ), δ = 0.3125 which results from a quasinesting by Q between the flat parts of the electron pockets. Two samples, namely Rb 0.8 Fe 1.6 Se 2 and K 0.77 Fe 1.85 Se 2 , were prepared and both showed a sizable anisotropic magnetic response at Q sf = ((1)/(2) (1)/(4)) in the normal state. Furthermore, upon entering the superconducting (SC) state a strong excitation appears at ℎω res = 14 meV in the spectrum at Q sf , which is referred to as magnetic resonant mode. This mode is interpreted as a bound spin-1 exciton below the SC charge gap. Its presence implies an unconventional order parameter, which changes the sign between the electron
[Mixed valent and heavy ferimons and related systems
International Nuclear Information System (INIS)
Schlottmann, P.
1991-01-01
The main objective of the project is to gain a better understanding of highly correlated fermion systems. High correlations appear in a variety of solid state phenomena: mixed-valence and heavy-fermions or Kondo systems, superfluid and normal He 3 , high-temperature superconductors, magnetism in low dimensions, quantum Hall effect, spin-fluctuations in transition metals, giant magnetic moments, tunneling of an atom interacting with a degenerate electron gas, quantum dissipative systems, organic superconductors, etc. The primary focus of the work is on valence mixing and heavy fermions, but elated highly correlated systems are also studied. In this paper a brief summary of the achievements grouped under four headings, namely (1) heavy fermions-mixed valence-Kondo, (2) magnetism in low dimensions, (3) narrow band phenomena/Hubbard model and (4) collaborations with experimentalists
Energy Technology Data Exchange (ETDEWEB)
Geselbracht, Philipp
2016-12-05
In Ce based heavy fermion systems the hybridization of the 4f orbital of the Ce ion and the conduction band lead to unconventional phenomena such as quantum critical points or superconductivity. The aim of this thesis is to investigate and compare the magnetism on a microscopic scale within the heavy fermion families CeT{sub 2}X{sub 2} (X=Si,Ge) and CeTIn{sub 5}. To do so neutron scattering was used as the experimental method. For CeCu{sub 2}Ge{sub 2}, the antiferromagnetic order AF1 (vector τ=(0.285 0.285 0.544)) is well described as a spin density wave with reduced ordered moments in [1 anti 10] direction. The phase diagram with magnetic field applied along [1 anti 10] direction was investigated. Two new phases were observed: the elliptical helix phase AF2 with modified propagation vector vector τ=(0.34 0.27 0.55) and the C-phase with a yet unknown magnetic order. Above T{sub N}, in zero field, short range order was observed, hinting competition of AF1 and AF2. It is assumed that both structures are due to different nesting properties of the Fermi surface. The RKKY character of the electronic system leads to effective Lande factors in the AF1 (g{sup eff}=0.36) and AF2 (g{sup eff}=0.525) phases. From the zero field dispersion the strength of the next nearest neighbor RKKY interactions was extracted, yielding 2SJ{sub 1}=(-0.042±0.007) meV (basal plane) and 2SJ{sub 2}=(-0.18±0.01) meV (body diagonal). Comparing the RKKY interaction to CeCu{sub 2}Si{sub 2} and CeNi{sub 2}Ge{sub 2} reveals a strong enhancement of the interaction in the basal plane going from antiferromagnetism (CeCu{sub 2}Ge{sub 2}) to superconductivity (CeCu{sub 2}Si{sub 2}) and finally paramagnetism (CeNi{sub 2}Ge{sub 2}). This new finding appears to be an important puzzle piece for the understanding of the CeT{sub 2}X{sub 2} family as it suggests a dependence of the anisotropy of the RKKY interaction from the hybridization strength of the 4f orbital and the conduction band. The obtained phase
Heavy-fermion behaviour and superconductivity of UPt3-based compounds
International Nuclear Information System (INIS)
Sprang, M. van.
1989-01-01
This thesis presents an experimental study of the low-temperature properties of the heavy-fermion superconductor UPt 3 and some related compounds, by measuring new properties or extending the variation of external parameters. In ch. 1 detailed information on the crystallographic structure of UPt 3 is presented. In ch. 2 the theory of the single-impurity Kondo effect is described, including the predictions for the physical properties and the parameters involved with it. The theoretical implications are extended to the case where the amount of magnetic impurities is so large that one cannot speak anymore of single-impurity (non-interacting) systems. The interactions lead to a state with quite different properties and can eventually lead to a coherent state when the magnetic moment distribution has the lattice periodicity. This is believed to be the case for UPt 3 , since the magnetic moments are present in very unit cell. Ch. 3 offers basic information on the experiments: sample preparation, characterization and measuring techniques are discussed. Ch. 4 deals with the thermal properties. The results of specific heat and thermal expansion experiments on UPt 3 , U(Pt 1-x Pd x ) 3 and UPt 3 B x are presented. With the use of the results the Grueneisen analysis is applied. The consequences for the interpretation in terms of the Kondo model are discussed. Ch. 5 discusses the transport and magnetic properties of the normal state. Results for UPt 3 as well as for the alloyed systems are presented and are, if possible, compared with the results obtained in the Kondo model. Ch. 6 deals with the superconducting state. Resistivity experiments are used to obtain the superconducting transition temperature; the influence of added impurities is investigated. Pd atoms (replacing Pt) are used as impurity, but also boron and carbon are interstitially alloyed. (author). 136 refs.; 105 figs.; 15 tabs
Yb-based heavy fermion compounds and field tuned quantum chemistry
Energy Technology Data Exchange (ETDEWEB)
Mun, Eundeok [Iowa State Univ., Ames, IA (United States)
2010-01-01
The motivation of this dissertation was to advance the study of Yb-based heavy fermion (HF) compounds especially ones related to quantum phase transitions. One of the topics of this work was the investigation of the interaction between the Kondo and crystalline electric field (CEF) energy scales in Yb-based HF systems by means of thermoelectric power (TEP) measurements. In these systems, the Kondo interaction and CEF excitations generally give rise to large anomalies such as maxima in ρ(T) and as minima in S(T). The TEP data were use to determine the evolution of Kondo and CEF energy scales upon varying transition metals for YbT_{2}Zn_{20} (T = Fe, Ru, Os, Ir, Rh, and Co) compounds and applying magnetic fields for YbAgGe and YbPtBi. For YbT_{2}Zn_{20} and YbPtBi, the Kondo and CEF energy scales could not be well separated in S(T), presumably because of small CEF level splittings. A similar effect was observed for the magnetic contribution to the resistivity. For YbAgGe, S(T) has been successfully applied to determine the Kondo and CEF energy scales due to the clear separation between the ground state and thermally excited CEF states. The Kondo temperature, T_{K}, inferred from the local maximum in S(T), remains finite as magnetic field increases up to 140 kOe. In this dissertation we have examined the heavy quasi-particle behavior, found near the field tuned AFM quantum critical point (QCP), with YbAgGe and YbPtBi. Although the observed nFL behaviors in the vicinity of the QCP are different between YbAgGe and YbPtBi, the constructed H-T phase diagram including the two crossovers are similar. For both YbAgGe and YbPtBi, the details of the quantum criticality turn out to be complicated. We expect that YbPtBi will provide an additional example of field tuned quantum criticality, but clearly there are further experimental investigations left and more ideas needed to understand the basic physics of field-induced quantum
Nakatani, Y.; Aratani, H.; Fujiwara, H.; Mori, T.; Tsuruta, A.; Tachibana, S.; Yamaguchi, T.; Kiss, T.; Yamasaki, A.; Yasui, A.; Yamagami, H.; Miyawaki, J.; Ebihara, T.; Saitoh, Y.; Sekiyama, A.
2018-03-01
We present clear experimental evidence for the momentum-dependent heavy fermionic electronic structures of the 4 f -based strongly correlated system CeNi2Ge2 by soft x-ray angle-resolved photoemission spectroscopy. A comparison between the experimental three-dimensional quasiparticle dispersion of LaNi2Ge2 and CeNi2Ge2 has revealed that heavy fermionic electronic structures are seen in the region surrounding a specific momentum. Furthermore, the wave vectors between the observed "heavy spots" are consistent with a result of neutron scattering reflecting magnetic correlations, which could be a trigger for the superconductivity in CeNi2Ge2 .
Thin film fabrication and transport properties of the heavy Fermion oxide LiV{sub 2}O{sub 4}
Energy Technology Data Exchange (ETDEWEB)
Niemann, Ulrike [Max Planck Institute for Solid State Research, Stuttgart (Germany); Hirai, Daigorou [University of Tokyo, Tokyo (Japan); Takagi, Hidenori [Max Planck Institute for Solid State Research, Stuttgart (Germany); University of Tokyo, Tokyo (Japan); Institute for Functional Matter and Quantum Technologies, University of Stuttgart, Stuttgart (Germany)
2016-07-01
The spinel compound LiV{sub 2}O{sub 4} is well-known for its heavy fermion behaviour, although it contains no f-electron bands. This unexpected behaviour has been a subject of several studies, but the origin of it is still not fully understood. In this study, we successfully fabricated single crystalline epitaxial thin film of LiV{sub 2}O{sub 4} on SrTiO{sub 3}, LSAT and MgO substrates, using a pulsed laser deposition technique. By changing film thickness and substrate materials, dimensionality and epitaxial strain was controlled. The formation of an epitaxially grown LiV{sub 2}O{sub 4} phase has been confirmed by X-ray diffraction measurements. LiV{sub 2}O{sub 4} films on MgO were found to be strained, due to the small lattice mismatch, in contrast to fully relaxed films on SrTiO{sub 3}.The heavy fermion behaviour of bulk LiV{sub 2}O{sub 4} at low temperatures is well reproduced in thick enough (∼ 7 nm) films on SrTiO{sub 3} substrates. In contrast, an insulating phase was found in strained LiV{sub 2}O{sub 4} thin films on MgO substrates, revealing the key role of the lattice in stabilising the metallic ground state. In this presentation, we discuss the thin film fabrication and the effect of epitaxial strain on heavy fermion behaviour in LiV{sub 2}O{sub 4}.
International Nuclear Information System (INIS)
Regnault, L.P.; Rossat-Mignod, J.; Jacoud, J.L.; Erkelens, W.A.C.; Rijksuniversiteit Leiden
1988-01-01
Inelastic neutron scattering experiments have been performed on the heavy fermion compound CeCu 6 at very low temperatures (T > 20 mK) and under magnetic fields up to 50 kOe. The analysis of the data shows that the magnetic scattering is the superposition of a single site contribution of Lorentzian type and of a broadened inelastic contribution associated with AF correlations. These correlations saturate below 1.5 - 2 K and are completely destroyed above 40 kOe
The Role of Zero-Modes in the Canonical Quantization of Heavy-Fermion QED in Light-Cone Coordinates
Brown, Robert W.; Jun, Jin Woo; Shvartsman, Shmaryu M.; Taylor, Cyrus C.
1993-01-01
Four-dimensional heavy-fermion QED is studied in light-cone coordinates with (anti-)periodic field boundary conditions. We carry out a consistent light-cone canonical quantization of this model using the Dirac algorithm for a system with first- and second-class constraints. To examine the role of the zero modes, we consider the quantization procedure in {the }zero-mode {and the non-zero-mode} sectors separately. In both sectors we obtain the physical variables and their canonical commutation ...
Unconventional superconductivity of the heavy fermion compound UNi2Al3
International Nuclear Information System (INIS)
Zakharov, Andrey
2008-01-01
The heavy fermion compound UNi 2 Al 3 exhibits the coexistence of superconductivity and magnetic order at low temperatures, stimulating speculations about possible exotic Cooper-pairing interaction in this superconductor. However, the preparation of good quality bulk single crystals of UNi 2 Al 3 has proven to be a non-trivial task due to metallurgical problems, which result in the formation of an UAl 2 impurity phase and hence a strongly reduced sample purity. The present work concentrates on the preparation, characterization and electronic properties investigation of UNi 2 Al 3 single crystalline thin film samples. The preparation of thin films was accomplished in a molecular beam epitaxy (MBE) system. (100)-oriented epitaxial thin films of UNi 2 Al 3 were grown on single crystalline YAlO 3 substrates cut in (010)- or (112)-direction. The high crystallographic quality of the samples was proved by several characterisation methods, such as X-ray analysis, RHEED and TEM. To study the magnetic structure of epitaxial thin films resonant magnetic X-ray scattering was employed. The magnetic order of thin the film samples, the formation of magnetic domains with different moment directions, and the magnetic correlation length were discussed. The electronic properties of the UNi 2 Al 3 thin films in the normal and superconducting states were investigated by means of transport measurements. A pronounced anisotropy of the temperature dependent resistivity ρ(T) was observed. Moreover, it was found that the temperature of the resistive superconducting transition depends on the current direction, providing evidence for multiband superconductivity in UNi 2 Al 3 . The initial slope of the upper critical field H' c2 (T) of the thin film samples suggests an unconventional spin-singlet superconducting state, as opposed to bulk single crystal data. To probe the superconducting gap of UNi 2 Al 3 directly by means of tunnelling spectroscopy many planar junctions of different design
Numerical simulations of heavy fermion systems. From He-3 bilayers to topological Kondo insulators
International Nuclear Information System (INIS)
Werner, Jan
2015-01-01
In this thesis the results of model calculations based on an extended Periodic Anderson Model are presented. The three particle ring exchange, which is the dominant magnetic exchange process in layered He-3, is included in the model. In addition, the model incorporates the constraint of no double occupancy by taking the limit of large local Coulomb repulsion. By means of Cellular DMFT, the model is investigated for a range of values of the chemical potential μ and inverse temperature β=1/T. The method is a cluster extension to the Dynamical Mean-Field Theory (DMFT), and allows to systematically include non-local correlations beyond the DMFT. The auxiliary cluster model is solved by a hybridization expansion CTQMC cluster solver, which provides unbiased, numerically exact results for the Green's function and other observables of interest. As a first step, the onset of Fermi liquid coherence is studied. At low enough temperature, the self-energy is found to exhibit a linear dependence on Matsubara frequency. Meanwhile, the spin susceptibility crossed over from a Curie-Weiss law to a Pauli law. The heavy fermion state appears at a characteristic coherence scale T coh . While the density is rather high for small filling, for larger filling T coh is increasingly suppressed. This involves a decreasing quasiparticle residue Z∝T coh and an enhanced mass renormalization m * /m∝T coh -1 . Extrapolation leads to a critical filling, where the coherence scale is expected to vanish at a quantum critical point. At the same time, the effective mass diverges. This corresponds to a breakdown of the Kondo effect, which is responsible for the formation of quasiparticles, due to a vanishing of the effective hybridization between the layers. Cellular DMFT simulations are conducted for small clusters of size N c =2 and 3. Furthermore a simple two-band model for two-dimensional topological Kondo insulators is devised, which is based on a single Kramer's doublet coupled to
Lai, Hsin-Hua; Nica, Emilian; Si, Qimiao
Motivated by the properties of the heavy-fermion Ce3Pd20Si6 compound which exhibits both antiferro-magnetic (AFM) and antiferro-quadrupolar (AFQ) orders, we study a simplified quantum non-linear sigma model for spin-1 systems, with generalized multi-pole Kondo couplings to conduction electrons. We first consider the case when an SU(3) symmetry relates the spin and quadrupolar channels. We then analyze the effect of breaking the SU(3) symmetry, so that the interaction parameters in the spin and quadrupolar sectors are no longer equivalent, and different stages of Kondo screenings are allowed. A renormalization group analysis is used to analyze the interplay between the Kondo effect and the AFM/AFQ orders. Our work paves the way for understanding the global phase diagram in settings beyond the prototypical spin-1/2 cases. We also discuss similar considerations in the non-Kramers systems such as the heavy fermion compound PrV2Al20
3-loop heavy flavor corrections to DIS with two massive fermion lines
International Nuclear Information System (INIS)
Ablinger, J.; Schneider, C.; Klein, S.
2011-06-01
We report on recent results obtained for the massive operator matrix elements which contribute to the massive Wilson coefficients in deep-inelastic scattering for Q 2 >> m i 2 in case of sub-processes with two fermion lines and different mass assignment. (orig.)
Loop effects of heavy new scalars and fermions in b→sμ{sup +}μ{sup −}
Energy Technology Data Exchange (ETDEWEB)
Arnan, Pere [Departament de Física Quàntica i Astrofísica (FQA),Institut de Ciències del Cosmos - ICCUB, Universitat de Barcelona (UB), Barcelona (Spain); Crivellin, Andreas [Paul Scherrer Institut,CH-5232 Villigen PSI (Switzerland); Hofer, Lars; Mescia, Federico [Departament de Física Quàntica i Astrofísica (FQA),Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona - UB, Barcelona (Spain)
2017-04-10
Recent measurements of b→sμ{sup +}μ{sup −} processes at LHCb and BELLE have revealed tensions at the 2−3 σ level between the Standard Model (SM) prediction and the experimental results in the channels B→K{sup ∗}μ{sup +}μ{sup −} and B{sub s}→ϕμ{sup +}μ{sup −}, as well as in the lepton-flavor universality violating observable R{sub K}=Br(B→Kμ{sup +}μ{sup −})/Br(B→Ke{sup +}e{sup −}). Combined global fits to the available b→sμ{sup +}μ{sup −} data suggest that these tensions might have their common origin in New Physics (NP) beyond the SM because some NP scenarios turn out to be preferred over the SM by 4−5 σ. The fact that all these anomalies are related to muons further suggests a connection (and a common NP explanation) with the long-standing anomaly in the anomalous magnetic moment of the muon, a{sub μ}. In this article, we study the impact of a generic class of NP models featuring new heavy scalars and fermions that couple to the SM fermions via Yukawa-like interactions. We consider two different scenarios, introducing either one additional fermion and two scalars or two additional fermions and one scalar, and examine all possible representations of the new particles under the SM gauge group with dimension up to the adjoint one. The models induce one-loop contributions to b→sμ{sup +}μ{sup −} and a{sub μ} which are capable of solving the respective anomalies at the 2σ level, albeit a relatively large coupling of the new particles to muons is required. In the case of b→sμ{sup +}μ{sup −}, stringent constraints from B{sub s}−B̄{sub s} mixing arise which can be relaxed if the new fermion is a Majorana particle.
Quantum electrodynamic corrections for the valence shell in heavy many-electron atoms
International Nuclear Information System (INIS)
Thierfelder, C.; Schwerdtfeger, P.
2010-01-01
We present quantum electrodynamic (QED) calculations within the picture of bound-state QED for the frequency-dependent Breit interaction between electrons, the vacuum polarization, and the electron self-energy correction starting from the Dirac-Coulomb Hamiltonian for the ionization potentials of the group 1, 2, 11, 12, 13, and 18 elements of the periodic table, and down to the superheavy elements up to nuclear charge Z=120. The results for the s-block elements are in very good agreement with earlier studies by Labzowsky et al. [Phys. Rev. A 59, 2707 (1999)]. We discuss the influence of the variational versus perturbative treatment of the Breit interaction for valence-space ionization potentials. We argue that the lowest-order QED contributions become as important as the Breit interaction for ionization potentials out of the valence s shell.
Numerical simulations of heavy fermion systems. From He-3 bilayers to topological Kondo insulators
Energy Technology Data Exchange (ETDEWEB)
Werner, Jan
2015-03-27
In this thesis the results of model calculations based on an extended Periodic Anderson Model are presented. The three particle ring exchange, which is the dominant magnetic exchange process in layered He-3, is included in the model. In addition, the model incorporates the constraint of no double occupancy by taking the limit of large local Coulomb repulsion. By means of Cellular DMFT, the model is investigated for a range of values of the chemical potential μ and inverse temperature β=1/T. The method is a cluster extension to the Dynamical Mean-Field Theory (DMFT), and allows to systematically include non-local correlations beyond the DMFT. The auxiliary cluster model is solved by a hybridization expansion CTQMC cluster solver, which provides unbiased, numerically exact results for the Green's function and other observables of interest. As a first step, the onset of Fermi liquid coherence is studied. At low enough temperature, the self-energy is found to exhibit a linear dependence on Matsubara frequency. Meanwhile, the spin susceptibility crossed over from a Curie-Weiss law to a Pauli law. The heavy fermion state appears at a characteristic coherence scale T{sub coh}. While the density is rather high for small filling, for larger filling T{sub coh} is increasingly suppressed. This involves a decreasing quasiparticle residue Z∝T{sub coh} and an enhanced mass renormalization m{sup *}/m∝T{sub coh}{sup -1}. Extrapolation leads to a critical filling, where the coherence scale is expected to vanish at a quantum critical point. At the same time, the effective mass diverges. This corresponds to a breakdown of the Kondo effect, which is responsible for the formation of quasiparticles, due to a vanishing of the effective hybridization between the layers. Cellular DMFT simulations are conducted for small clusters of size N{sub c}=2 and 3. Furthermore a simple two-band model for two-dimensional topological Kondo insulators is devised, which is based on a single
Unconventional superconductivity of the heavy fermion compound UNi{sub 2}Al{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Zakharov, Andrey
2008-07-01
The heavy fermion compound UNi{sub 2}Al{sub 3} exhibits the coexistence of superconductivity and magnetic order at low temperatures, stimulating speculations about possible exotic Cooper-pairing interaction in this superconductor. However, the preparation of good quality bulk single crystals of UNi{sub 2}Al{sub 3} has proven to be a non-trivial task due to metallurgical problems, which result in the formation of an UAl{sub 2} impurity phase and hence a strongly reduced sample purity. The present work concentrates on the preparation, characterization and electronic properties investigation of UNi{sub 2}Al{sub 3} single crystalline thin film samples. The preparation of thin films was accomplished in a molecular beam epitaxy (MBE) system. (100)-oriented epitaxial thin films of UNi{sub 2}Al{sub 3} were grown on single crystalline YAlO{sub 3} substrates cut in (010)- or (112)-direction. The high crystallographic quality of the samples was proved by several characterisation methods, such as X-ray analysis, RHEED and TEM. To study the magnetic structure of epitaxial thin films resonant magnetic X-ray scattering was employed. The magnetic order of thin the film samples, the formation of magnetic domains with different moment directions, and the magnetic correlation length were discussed. The electronic properties of the UNi{sub 2}Al{sub 3} thin films in the normal and superconducting states were investigated by means of transport measurements. A pronounced anisotropy of the temperature dependent resistivity {rho}(T) was observed. Moreover, it was found that the temperature of the resistive superconducting transition depends on the current direction, providing evidence for multiband superconductivity in UNi{sub 2}Al{sub 3}. The initial slope of the upper critical field H'{sub c2}(T) of the thin film samples suggests an unconventional spin-singlet superconducting state, as opposed to bulk single crystal data. To probe the superconducting gap of UNi{sub 2}Al{sub 3
Czech Academy of Sciences Publication Activity Database
Kratochvílová, M.; Prokleška, J.; Uhlířová, K.; Tkáč, V.; Dušek, Michal; Sechovský, V.; Custers, J.
2015-01-01
Roč. 5, Oct (2015), s. 15904 ISSN 2045-2322 R&D Projects: GA ČR(CZ) GAP204/11/0809 Institutional support: RVO:68378271 Keywords : crystal structure * magnetic transition * heavy fermion compounds * antiferromagnetism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.228, year: 2015
Ultrasonic dispersion and off-center rattling in heavy fermion superconductor PrOs4Sb12
International Nuclear Information System (INIS)
Nemoto, Yuichi; Ueno, Takafumi; Takeda, Naoya; Yamaguchi, Takashi; Yanagisawa, Tatsuya; Goto, Terutaka; Sugawara, Hitoshi; Sato, Hideyuki
2006-01-01
Ultrasonic attenuation measurements have been firstly performed for a large single crystal of PrOs 4 Sb 12 with the dimensions of 5.97x0.6x0.6mm 3 . Remarkable frequency dependence around 20-40K has been observed in the elastic constant and attenuation coefficient of the longitudinal C 11 mode associated with E g symmetry strain in part, which results from a thermally activated off-center rattling with E g symmetry of a Pr ion inside a Sb icosahedron cage. Parameters of a characteristic time τ 0 =3.1x10 -11 s and an activation energy E=225K were obtained. This E g rattling involving a local charge fluctuation inside a Sb cage periodically arranged may couple to the conduction electrons. As a result, the electron-phonon coupling would lead to heavy fermion and its superconductivity in PrOs 4 Sb 12
Fermi surface instability at 0.4K in a heavy-fermion YbBiPt: SDW?
International Nuclear Information System (INIS)
Movshovich, R.; Lacerda, A.; Canfield, P.C.; Thompson, J.D.; Fisk, Z.
1994-01-01
The authors report results of resistivity measurements of heavy-fermion compound YbBiPt at ambient and hydrostatic pressures of up to ∼ 6kbars and in magnetic field up to 1 Tesla. They interpret the rise of resistivity below 0.4K as partial gaping of the Fermi surface. From the temperature dependence of resistivity they obtain the value of the weak coupling energy gap of Δ 0 /k B T c = 1.65 ± 0.15. Magnetic field -- transition temperature phase diagram follows the weak coupling BCS expression remarkably well from T c to T c /4. These results support identification of 0.4K transition as a Spin Density Wave formation
The novel heavy-fermion system Nd{sub 2-x}Ce{sub x}CuO{sub 4}
Energy Technology Data Exchange (ETDEWEB)
Pyka, N [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Loewenhaupt, M [Technische Univ., Dresden (Germany); Metz, A [Forschungszentrum Juelich GmbH (Germany)
1997-04-01
Inelastic neutron scattering experiments are reported in the heavy fermion state of Nd{sub 2-x}Ce{sub x}CuO{sub 4}. A complex magnetic response has been observed in zero field that can be divided into contributions from correlated Nd spins (inelastic, q-dependent; reminiscent of the spin waves in Nd{sub 2}CuO{sub 4}) and from independent, slowly relaxing Nd spins (quasi-elastic, q-independent). An applied magnetic field of H > 3 Tesla gives rise to different correlations in Q - {omega} space than in zero field. Field dependent specific heat and {mu}SR experiments can be better understood in the light of these INS results. The experiments were performed on a single crystal at T {<=} 0.1 K with applied magnetic fields of H = 0 - 6 Tesla at the IN14 spectrometer. (author). 6 refs.
International Nuclear Information System (INIS)
Colombier, E; Braithwaite, D; Lapertot, G; Salce, B; Knebel, G; Flouquet, J
2008-01-01
We present ac microcalorimetry and resistivity measurements under high pressure on new very pure single crystals of YbCu 2 Si 2 having residual resistivity ratios of up to 130 and residual resistivities of less than 1 μΩcm. The onset of magnetic order at high pressure has been detected by ac micro-calorimetry in a diamond anvil cell, and the phase diagram has been established showing magnetic order appearing at 7.6 GPa and 0.95K, and suggesting a possible quantum critical point at a pressure of about 6.5 GPa. The resistivity has been measured under pressure in hydrostatic conditions, but no sign of superconductivity is found close to the expected critical pressure down to T=0.05 K. We discuss these results in comparison with results on cerium based heavy fermion systems
Heavy fermion Ce{sub 3}Co{sub 4}Sn{sub 13} compound under pressure
Energy Technology Data Exchange (ETDEWEB)
Collave, J. R.; Borges, H. A. [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22453-900, Rio de Janeiro, RJ (Brazil); Ramos, S. M.; Hering, E. N. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil); SPSMS, UMR-E CEA/UJF-Grenoble 1, INAC, 38054, Grenoble (France); Fontes, M. B.; Baggio-Saitovitch, E.; Bittar, E. M., E-mail: bittar@cbpf.br [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil); Mendonça-Ferreira, L. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170, Santo André, SP (Brazil); Pagliuso, P. G. [Instituto de Física “Gleb Wataghin,” UNICAMP, Campinas, SP 13083-859 (Brazil)
2015-05-07
The non-magnetic heavy fermion compound Ce{sub 3}Co{sub 4}Sn{sub 13} was studied under pressure. We report single crystalline measurements of electrical resistivity as a function of temperature ρ(T) under pressure. Some characteristic features related to a structural transition (T{sub S}), crystalline field effects (T{sub CEF}), and a low temperature maximum (T{sub max}), possibly connected simultaneously to the onset of Kondo lattice coherence and short range magnetic correlations, were identified in the ρ(T) data. A pressure-temperature phase diagram with T{sub S} and T{sub max} was constructed by mapping these features. Like for most Ce-based heavy fermion compounds, T{sub max} moves to higher temperatures with pressure, indicating that it is related to the Kondo energy scale, due to the increase of hybridization induced by pressure. On the other hand, T{sub S}, associated to a superlattice distortion and probably combined with a charge density wave transition, decreases as a function of pressure. However, differently from the Sr{sub 3−x}Ca{sub x}Ir{sub 4}Sn{sub 13} system, where a superlattice quantum phase transition is observed [L. E. Klintberg et al., Phys. Rev. Lett. 109, 237 008 (2012)], in Ce{sub 3}Co{sub 4}Sn{sub 13} T{sub S} ∼ 154 K, at ambient pressure (P = 0), seems to stabilize at around 143 K for P ≥ 19 kilobars. We also investigated ρ(T) in external magnetic fields, at P = 0. Negative magnetoresistance and increase of T{sub max} are observed, suggesting suppression of low temperature short range magnetic correlations.
Nuclear magnetic resonance investigation of the heavy fermion system Ce2CoAl7Ge4
Dioguardi, A. P.; Guzman, P.; Rosa, P. F. S.; Ghimire, N. J.; Eley, S.; Brown, S. E.; Thompson, J. D.; Bauer, E. D.; Ronning, F.
2017-12-01
We present nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements performed on single crystalline Ce2CoAl7Ge4 , a member of a recently discovered family of heavy fermion materials Ce2M Al7Ge4 (M =Co , Ir, Ni, or Pd). Previous measurements indicated a strong Kondo interaction as well as magnetic order below TM=1.8 K . Our NMR spectral measurements show that the Knight shift K is proportional to the bulk magnetic susceptibility χ at high temperatures. A clear Knight shift anomaly (K ¬∝χ ) is observed at coherence temperatures T*˜17.5 K for H0∥c ̂ and 10 K for H0∥a ̂ at the 59Co site, and T*˜12.5 K at the 27Al(3) site for H0∥a ̂ characteristic of the heavy fermion nature of this compound. At high temperatures, the 59Co NMR spin-lattice relaxation rate T1-1 is dominated by spin fluctuations of the 4 f local moments with a weak metallic background. The spin fluctuations probed by 59Co NMR are anisotropic and larger in the basal plane than in the c direction. Furthermore, we find (T1T K ) -1∝T-1 /2 at the 59Co site as expected for a Kondo system for T >T* and T >TK . 59Co NQR T1-1 measurements at low temperatures indicate slowing down of spin fluctuations above the magnetic ordering temperature TM˜1.8 K . A weak ferromagnetic character of fluctuations around q =0 is evidenced by an increase of χ T versus T above the magnetic ordering temperature. We also find good agreement between the observed and calculated electric field gradients at all observed sites.
Chemical equilibrium model for high- Tc and heavy fermion superconductors: the density of states
International Nuclear Information System (INIS)
Kallio, A.; Hissa, J.; Hayrynen, T.; Braysy, V.; Sakkinen, T.
1998-01-01
The chemical equilibrium model is based on the idea of correlated electron pairs, which in singlet state can exist as quasimolecules in the superfluid and normal states of a superconductor. These preformed pairs are bosons which can undergo a Bose-Einstein condensation in analogy with the superfluidity of 4 He+ 3 He-mixture. The bosons (B ++ ) and the fermions (h + ) are in chemical equilibrium with respect to the reaction B ++ ↔ 2h + , at any temperature. The mean densities of bosons and fermions (quasiholes) n B (T) and n h (T) are determined from the thermodynamics of the equilibrium reaction in terms of a single function f(T). By thermodynamics the function f(T) is connected to equilibrium constant φ(T) by 1-f(T) = [1 + φ(T)] -1/2 . Using a simple power law, known to be valid near T = 0, for the chemical constant φ(T) α/t 2γ , t = T/T*, the mean density of quasiholes is given in closed form. This enables one to calculate the corresponding density of states (DOS) D(E) N s /N(0), by solving an integral equation. The NIS- tunneling conductivity near T = 0, given by D(E) compares well with the most recent experiments: D(E) ∼ E γ , for small E and a finite maximum of right size, corresponding to 'finite quasiparticle lifetime'. The corresponding SIS-tunneling conductivity is obtained from a simple convolution and is also in agreement with recent break junction experiments of Hancotte et al. The position of the maximum can be used to obtain the scaling temperature T*, which comes close to the one measured by Hall coefficient in the normal state. A simple explanation for the spingap effect in NMR is given. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)
LiV_{2}O_{4}: A heavy fermion transition metal oxide
Energy Technology Data Exchange (ETDEWEB)
Kondo, Shinichiro [Iowa State Univ., Ames, IA (United States)
1999-02-12
The format of this dissertation is as follows. In the remainder of Chapter 1, brief introductions and reviews are given to the topics of frustration, heavy fermions and spinels including the precedent work of LiV_{2}O_{4}. In Chapter 2, as a general overview of this work the important publication in Physical Review Letters by the author of this dissertation and collaborators regarding the discovery of the heavy fermion behavior in LiV_{2}O_{4} is introduced [removed for separate processing]. The preparation methods employed by the author for nine LiV_{2}O_{4} and two Li_{1+x}Ti_{2-x}O_{4} (x = 0 and 1/3) polycrystalline samples are introduced in Chapter 3. The subsequent structural characterization of the LiV_{2}O_{4} and Li_{1+x}T_{2-x}O_{4} samples was done by the author using thermogravimetric analysis (TGA), x-ray diffraction measurements and their structural refinements by the Rietveld analysis. The results of the characterization are detailed in Chapter 3. In Chapter 4 magnetization measurements carried out by the author are detailed. In Chapter 5, after briefly discussing the resistivity measurement results including the single-crystal work by Rogers et al., for the purpose of clear characterization of LiV_{2}O_{4} it is of great importance to introduce in the following chapters the experiments and subsequent data analyses done by his collaborators. Heat capacity measurements (Chapter 6) were carried out and analyzed by Dr. C.A. Swenson, and modeled theoretically by Dr. D.C. Johnston. In Chapter 7 a thermal expansion study using neutron diffraction by Dr. O. Chmaissem et al. and capacitance dilatometry measurements by Dr. C.A. Swenson are introduced. The data analyses for the thermal expansion study were mainly done by Dr. O. Chmaissem (for neutron diffraction) and Dr. C.A. Swendon (for dilatometry), with assistances by Dr. J
Two types of the effective mass divergence and the Grueneisen ratio in heavy-fermion metals
International Nuclear Information System (INIS)
Amusia, M.Ya.; Msezane, A.Z.; Shaginyan, V.R.
2004-01-01
The behavior of the specific heat c p , effective mass M*, and the thermal expansion coefficient α of a Fermi system located near the fermion condensation quantum phase transition (FCQPT) is considered. We observe the first type behavior if the system is close to FCQPT: the specific heat c p ∝√T, M*∝1/√T, while the thermal expansion coefficient α∝√T. Thus, the Grueneisen ratio Γ(T)=α/c p does not diverges. At the transition region, where the system passes over from the non-Fermi liquid to the Landau Fermi liquid, the ratio diverges as Γ(T)∝1/√T. In the system becomes the Landau Fermi liquid, Γ(T,r)∝1/r, with r being a distance from the quantum critical point. Provided the system has undergone FCQPT, the second type takes place: the specific heat behaves as c p ∝√T, M * ∝1/T, and α=a+bT with a,b being constants. Again, the Grueneisen ratio diverges as Γ(T)∝1/√T
Nonperturbative studies on the Higgs and heavy-fermion sectors in the Standard Model
International Nuclear Information System (INIS)
Lin Lee.
1989-01-01
The author carried out large-scale Monte Carlo simulations on the O(4) model in four dimension as an approximation to the SU(2)-Higgs sector in the minimal Standard Model. He finds that the O(4) model is defined at a trivial Gaussian fixed point at λ R = 0.0, and is weakly interacting in the scaling regions in both phases. The infrared singularity in the broken phase and the finite size effects of renormalized quantities in both phases are shown to be under control. He gets a Higgs mass upper bound m H ≅ 640 GeV at a dimensionless correlation length ξ = 2 on the lattice. He tried to set a similar bound on the top quark mass by studying the 1-component model with the Yukawa coupling as the first step. He first maps out the phase diagram of the model, and finds that the fermion loop has significant effects on the phase structure. He then says that the quenched approximation is not good to this system. The preliminary Monte Carlo data show that everything is consistent with a second order phase transition line. However, the possibility of having a first order phase transition at strong Yukawa coupling is still not ruled out. No evidence of triviality of the Yukawa coupling has been found yet
Two types of the effective mass divergence and the Grueneisen ratio in heavy-fermion metals
Energy Technology Data Exchange (ETDEWEB)
Amusia, M.Ya.; Msezane, A.Z.; Shaginyan, V.R
2004-01-12
The behavior of the specific heat c{sub p}, effective mass M*, and the thermal expansion coefficient {alpha} of a Fermi system located near the fermion condensation quantum phase transition (FCQPT) is considered. We observe the first type behavior if the system is close to FCQPT: the specific heat c{sub p}{proportional_to}{radical}T, M*{proportional_to}1/{radical}T, while the thermal expansion coefficient {alpha}{proportional_to}{radical}T. Thus, the Grueneisen ratio {gamma}(T)={alpha}/c{sub p} does not diverges. At the transition region, where the system passes over from the non-Fermi liquid to the Landau Fermi liquid, the ratio diverges as {gamma}(T){proportional_to}1/{radical}T. In the system becomes the Landau Fermi liquid, {gamma}(T,r){proportional_to}1/r, with r being a distance from the quantum critical point. Provided the system has undergone FCQPT, the second type takes place: the specific heat behaves as c{sub p}{proportional_to}{radical}T, M{sup *}{proportional_to}1/T, and {alpha}=a+bT with a,b being constants. Again, the Grueneisen ratio diverges as {gamma}(T){proportional_to}1/{radical}T.
Pressure and magnetic field effects in heavy-fermion UCu.sub.3.5./sub.Al.sub.1.5./sub..
Czech Academy of Sciences Publication Activity Database
Nasreen, F.; Kothapalli, K.; Nakotte, H.; Alsmadi, A.M.; Zapf, V.; Fabris, F.; Lacerda, A.; Kamarád, Jiří
2009-01-01
Roč. 105, č. 7 (2009), 07E112/1-07E112/3 ISSN 0021-8979 R&D Projects: GA ČR GA202/09/1027 Institutional research plan: CEZ:AV0Z10100521 Keywords : aluminium alloys * copper alloys * crystallisation * heavy fermion systems * high-pressure effects * long-range order * magnetic field effects * magnetoresis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.072, year: 2009
Energy Technology Data Exchange (ETDEWEB)
Doenni, A.; Fischer, P.; Zolliker, M. [Laboratory for Neutron Scattering, ETH Zuerich and Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ehlers, G.; Maletta, H. [Hahn Meitner Institute Berlin, Glienicker Strasse 100, D-14092 Berlin (Germany); Kitazawa, H. [National Research Institute for Metals, Tsukuba, Ibaraki 305 (Japan)
1996-12-09
The heavy-fermion compound CePdAl with ZrNiAl-type crystal structure (hexagonal space group P6-bar2m) was investigated by powder neutron diffraction. The triangular coordination symmetry of magnetic Ce atoms on site 3f gives rise to geometrical frustration. CePdAl orders below T{sub N} = 2.7 K with an incommensurate antiferromagnetic propagation vector k=[1/2, 0, {tau}], {tau} approx. 0.35, and a longitudinal sine-wave (LSW) modulated spin arrangement. Magnetically ordered moments at Ce(1) and Ce(3) coexist with frustrated disordered moments at Ce(2). The experimentally determined magnetic structure is in agreement with group theoretical symmetry analysis considerations, calculated by the program MODY, which confirm that for Ce(2) an ordered magnetic moment parallel to the magnetically easy c-axis is forbidden by symmetry. Further low-temperature experiments give evidence for a second magnetic phase transition in CePdAl between 0.6 and 1.3 K. Magnetic structures of CePdAl are compared with those of the isostructural compound TbNiAl, where a non-zero ordered magnetic moment for the geometrically frustrated Tb(2) atoms is allowed by symmetry. (author)
Unconventional superconductivity in the strong-coupling limit for the heavy fermion system CeCoIn5
Fasano, Y.; Szabó, P.; Kačmarčík, J.; Pribulová, Z.; Pedrazzini, P.; Samuely, P.; Correa, V. F.
2018-05-01
We present scanning tunneling spectroscopy measurements of the local quasiparticles' excitation spectra of the heavy fermion CeCoIn5 between 440 mK and 3 K in samples with a bulk Tc = 2.25 K . The spectral shape of our low-temperature tunneling data, quite textbook nodal- Δ conductance, allow us to confidently fit the spectra with a d-wave density of states considering also a shortening of quasiparticles' lifetime term Γ. The Δ (0) value obtained from the fits yields a BCS ratio 2 Δ /kTc = 7.73 suggesting that CeCoIn5 is an unconventional superconductor in the strong coupling limit. The fits also reveal that the height of coherence peaks in CeCoIn5 is reduced with respect to a pure BCS spectra and therefore the coupling of quasiparticles with spin excitations should play a relevant role. The tunneling conductance shows a depletion at energies smaller than Δ for temperatures larger than the bulk Tc, giving further support to the existence of a pseudogap phase that in our samples span up to T* ∼ 1.2Tc . The phenomenological scaling of the pseudogap temperature observed in various families of cuprates, 2 Δ /kT* ∼ 4.3 , is not fulfilled in our measurements. This suggests that in CeCoIn5 the strong magnetic fluctuations might conspire to close the local superconducting gap at a smaller pesudogap temperature-scale than in cuprates.
Transport and magnetic properties of new heavy-fermion antiferromagnet YbNi{sub 3}Al{sub 9}
Energy Technology Data Exchange (ETDEWEB)
Ohara, S; Yamashita, T; Mori, Y; Sakamoto, I, E-mail: ohara.shigeo@nitech.ac.jp [Department of Engineering Physics, Electronics and Mechanics, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan)
2011-01-01
We have synthesized a new Yb-based Kondo-lattice compound YbNi{sub 3}Al{sub 9}. This compound crystallizes in a trigonal ErNi{sub 3}Al{sub 9}-type structure (space group R32), in which the Yb-ion is arranged in a two-dimensional honey-comb lattice perpendicular to the c-axis. We report the first measurements of electrical resistivity and magnetization for single-crystalline samples of YbNi{sub 3}Al{sub 9}. The electrical resistivity of YbNi{sub 3}Al{sub 9} is characteristic of the typical properties of heavy-fermion antiferromagnets with a Neel temperature of T{sub N} = 3.4 K. The transport and magnetic properties exhibit large anisotropy in the low-temperature region owing to an interplay among the crystalline-electric-field effect, the Ruderman-Kittel-Kasuya-Yoshida interaction, and the Kondo effect. Below T{sub N}, the metamagnetic transition is observed at a very low magnetic field of around 1 kOe with the field applied along the a-axis. The magnetic structure of YbNi{sub 3}Al{sub 9} is highly sensitive to the applied magnetic field.
Truncik, C J S; Huttema, W A; Turner, P J; Ozcan, S; Murphy, N C; Carrière, P R; Thewalt, E; Morse, K J; Koenig, A J; Sarrao, J L; Broun, D M
2013-01-01
CeCoIn₅ is a heavy fermion superconductor with strong similarities to the high-Tc cuprates, including quasi-two-dimensionality, proximity to antiferromagnetism and probable d-wave pairing arising from a non-Fermi-liquid normal state. Experiments allowing detailed comparisons of their electronic properties are of particular interest, but in most cases are difficult to realize, due to their very different transition temperatures. Here we use low-temperature microwave spectroscopy to study the charge dynamics of the CeCoIn₅ superconducting state. The similarities to cuprates, in particular to ultra-clean YBa₂Cu₃O(y), are striking: the frequency and temperature dependence of the quasiparticle conductivity are instantly recognizable, a consequence of rapid suppression of quasiparticle scattering below T(c); and penetration-depth data, when properly treated, reveal a clean, linear temperature dependence of the quasiparticle contribution to superfluid density. The measurements also expose key differences, including prominent multiband effects and a temperature-dependent renormalization of the quasiparticle mass.
High-resolution x-ray diffraction study of the heavy-fermion compound YbBiPt
Ueland, B. G.; Saunders, S. M.; Bud'Ko, S. L.; Schmiedeshoff, G. M.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.
YbBiPt is a heavy-fermion compound possessing significant short-range antiferromagnetic correlations below T* = 0 . 7 K, fragile antiferromagnetic order below TN = 0 . 4 K, a Kondo temperature of TK ~ 1 K, and crystalline-electric-field splitting (CEF) on the order of E /kB = 1 - 10 K. Its lattice is face-centered cubic at ambient temperature, but certain data, particularly those from studies aimed at determining the CEF level scheme, suggest that the lattice distorts at lower temperature. Here, we present results from high-energy x-ray diffraction experiments which show that, within our experimental resolution of ~ 6 - 10 ×10-5 Å, no structural phase transition occurs between 1 . 5 and 50 K. Despite this result, we demonstrate that the compound's thermal expansion may be modeled using CEF level schemes appropriate for Yb3+ residing on a site with either cubic or less than cubic point symmetry. Work at the Ames Laboratory was supported by the US DOE, BES, DMSE, under Contract No. DE-AC02-07CH11358. Work at Occidental College was supported by the NSF under DMR-1408598. This research used resources at the Advanced Photon Source a US DOE, Office of Science, User Facility.
Spin re-orientation in heavy fermion system α - YbAl1 - x FexB4
Wu, Shan; Broholm, C.; Kuga, K.; Suzuki, Shintaro; Nakatsuji, S.; Mourigal, M.; Stone, M.; Tian, Wei; Qiu, Y.; Rodriguez-Rivera, Jose
Non centro-symmetric α - YbAlB4 has a heavy Fermi liquid ground state and shares many characteristics with centro-symmetric β - YbAlB4 . Both isomorphs display intermediate valence, associated with a fluctuation scale of T0 = 200 K and a Kondo lattice scale of T* = 8 K. Unlike β - YbAlB4 , α - YbAlB4 is at the boundary of a transition from a Fermi liquid metallic state to an antiferromagnetic (AFM) insulating state, driven by Fe substitution of Al. Magnetization and specific heat measurements reveal two different antiferromagnetic phases with TN = 9 K and TN = 2 K for Fe concentration above and below x =0.07. We report single crystal neutron scattering experiments on Fe doped YbAlB4 with x =0.035 and x =0.125. While the ordering wave vector is identical, k -> = (1 , 0 , 0) , the spin orientation switches from c to a with increasing Fe concentration. This suggests different anisotropic hybridization between 4f and conduction electrons that we confirmed by determining the crystal field levels. Supported by DOE, BES through DE-FG02-08ER46544.
Directory of Open Access Journals (Sweden)
Das Tanmoy
2012-03-01
Full Text Available We show that, by using the unit-cell transformation between 1 Fe per unit cell to 2 Fe per unit cell, one can qualitatively understand the pairing symmetry of several families of iron-based superconductors. In iron-pnictides and iron-chalcogenides, the nodeless s±-pairing and the resulting magnetic resonance mode transform nicely between the two unit cells, while retaining all physical properties unchanged. However, when the electron-pocket disappears from the Fermi surface with complete doping in KFe2As2, we find that the unit-cell invariant requirement prohibits the occurrence of s±-pairing symmetry (caused by inter-hole-pocket nesting. However, the intra-pocket nesting is compatible here, which leads to a nodal d-wave pairing. The corresponding Fermi surface topology and the pairing symmetry are similar to Ce-based heavy-fermion superconductors. Furthermore, when the Fermi surface hosts only electron-pockets in KyFe2-xSe2, the inter-electron-pocket nesting induces a nodeless and isotropic d-wave pairing. This situation is analogous to the electron-doped cuprates, where the strong antiferromagnetic order creates similar disconnected electron-pocket Fermi surface, and hence nodeless d-wave pairing appears. The unit-cell transformation in KyFe2-xSe2 exhibits that the d-wave pairing breaks the translational symmetry of the 2 Fe unit cell, and thus cannot be realized unless a vacancy ordering forms to compensate for it. These results are consistent with the coexistence picture of a competing order and nodeless d-wave superconductivity in both cuprates and KyFe1.6Se2.
Specific heat of heavy-fermion CePd{sub 2}Si{sub 2} in high magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Sheikin, I. [University of Geneva, DPMC, Geneva (Switzerland)]. E-mail: Ilya.Sheikin@physics.unige.ch; Wang, Y.; Bouquet, F.; Junod, A. [University of Geneva, DPMC, Geneva (Switzerland); Lejay, P. [CRTBT, CNRS, Grenoble (France)
2002-07-22
We report specific heat measurements on the heavy-fermion compound CePd{sub 2}Si{sub 2} in magnetic fields up to 16 T and in the temperature range 1.4-16 K. A sharp peak in the specific heat signals the antiferromagnetic transition at T{sub N} {approx} 9.3 K in zero field. The transition is found to shift to lower temperatures when a magnetic field is applied along the crystallographic a-axis, while a field applied parallel to the tetragonal c-axis does not affect the transition. The magnetic contribution to the specific heat below T{sub N} is well described by a sum of a linear electronic term and an antiferromagnetic spin-wave contribution. Just below T{sub N}, an additional positive curvature, especially at high fields, arises most probably due to thermal fluctuations. The field dependence of the coefficient of the low-temperature linear term, {gamma}{sub 0}, extracted from the fits shows a maximum at about 6 T, at the point where an anomaly was detected in susceptibility measurements. The relative field dependences of both T{sub N} and the magnetic entropy at T{sub N} scale as [1-(B/B{sub 0}){sup 2}] for B parallel a, suggesting the disappearance of antiferromagnetism at B{sub 0}{approx}42 T. The expected suppression of the antiferromagnetic transition temperature to zero makes the existence of a magnetic quantum critical point possible. (author). Letter-to-the-editor.
International Nuclear Information System (INIS)
Kitaoka, Y; Kawasaki, S; Kawasaki, Y; Mito, T; Zheng, G-q
2007-01-01
We report on the discovery of exotic superconductivity (SC) and novel magnetism in heavy-fermion (HF) compounds, CeCu 2 Si 2 , CeRhIn 5 and CeIn 3 , on the verge of antiferromagnetism (AFM) through nuclear-quadrupole-resonance (NQR) measurements under pressure (P). The exotic SC in a homogeneous CeCu 2 Si 2 (T c = 0.7 K) revealed antiferromagnetic critical fluctuations at the border to AFM or a marginal AFM. Remarkably, it has been found that the application of magnetic field induces a spin-density-wave (SDW) transition by suppressing the SC near the upper critical field. Furthermore, the uniform mixed phase of SC and AFM in CeCu 2 (Si 1-x Ge x ) 2 emerges on a microscopic level, once a tiny amount of 1% Ge (x = 0.01) is substituted for Si to expand its lattice. The application of minute pressure (P∼0.19 GPa) suppresses the sudden emergence of the AFM caused by doping Ge. The persistence of the low-lying magnetic excitations at temperatures lower than T c and T N is ascribed to the uniform mixed phase of SC and AFM. Likewise, the P-induced HF superconductor CeRhIn 5 coexists with AFM on a microscopic level in P = 1.5-1.9 GPa. It is demonstrated that SC does not yield any trace of gap opening in low-lying excitations below the onset temperature, presumably associated with an amplitude fluctuation of superconducting order parameter. The unconventional gapless nature of SC in the low-lying excitation spectrum emerges due to the uniform mixed phase of AFM and SC. By contrast, in CeIn 3 , the P-induced phase separation of AFM and paramagnetism (PM) takes place without any trace for a quantum phase transition. The outstanding finding is that SC sets in at both the phases magnetically separated into AFM and PM in P = 2.28-2.5 GPa. A new type of SC forms the uniform mixed phase with AFM and the HF SC occurs in PM. We propose that the magnetic excitations such as spin-density fluctuations induced by the first-order phase transition from AFM to PM might mediate attractive
International Nuclear Information System (INIS)
Sahoo, J.; Shadangi, N.; Nayak, P.
2015-01-01
Here an attempt is made to explore the variation of magnetic susceptibility with temperature for different values of the position of f-level (d) and electron–phonon interaction (EPI) strength (r) in some U and Ce based heavy Fermion (HF) systems within Periodic Anderson Model (PAM) in the presence of a static magnetic field B and interaction of phonons with electrons of hybridization band. Since magnetic susceptibility χ is related to the f-electron occupation n ±σ f , the expression for the latter is analytically derived through f–f correlation function following the Green function technique of Zubarev. The numerical analysis of χ as a function of temperature ‘T’ is done for different values of d and r. The results show a good agreement with the experiments for some U and Ce based HFs. An explanation for the existence of a critical value of d w.r.t. E F for switching of nature of χ∼T from U to Ce based HF systems is provided. Our calculated value of the temperature T χmax corresponding to the peak position of χ for small values of hybridization constant γ=0.002 and 0.0036 coincides with the experimental value of 19 K for UPt 3 and 35 K for UPd 2 Al 3 reported by Frings et al. and Geibel et al. respectively. - Highlights: • Variation of magnetic susceptibility χ with temperature T is studied for some HF systems. • Periodic Anderson Model in presence of magnetic field and electron–phonon interaction is used for numerical evaluation. • The existence of a critical value of the position of f-level(d) is proposed for distinction between χ∼T behavior of U and Ce based HF systems. • Results obtained are in good agreement with the experimental observations for some Ce and U based HF systems. • Theoretically evaluated temperature corresponding to the peak value of χ matches with the experimental results of UPt 3 and UPd 2 Al 3
International Nuclear Information System (INIS)
Jackiw, R.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge
1984-01-01
The theory of fermion fractionization due to topologically generated fermion ground states is presented. Applications to one-dimensional conductors, to the MIT bag, and to the Hall effect are reviewed. (author)
Song, Yu; Van Dyke, John; Lum, I. K.; White, B. D.; Jang, Sooyoung; Yazici, Duygu; Shu, L.; Schneidewind, A.; Čermák, Petr; Qiu, Y.; Maple, M. B.; Morr, Dirk K.; Dai, Pengcheng
2016-01-01
The neutron spin resonance is a collective magnetic excitation that appears in the unconventional copper oxide, iron pnictide and heavy fermion superconductors. Although the resonance is commonly associated with a spin-exciton due to the d(s±)-wave symmetry of the superconducting order parameter, it has also been proposed to be a magnon-like excitation appearing in the superconducting state. Here we use inelastic neutron scattering to demonstrate that the resonance in the heavy fermion superconductor Ce1−xYbxCoIn5 with x=0, 0.05 and 0.3 has a ring-like upward dispersion that is robust against Yb-doping. By comparing our experimental data with a random phase approximation calculation using the electronic structure and the momentum dependence of the -wave superconducting gap determined from scanning tunnelling microscopy (STM) for CeCoIn5, we conclude that the robust upward-dispersing resonance mode in Ce1−xYbxCoIn5 is inconsistent with the downward dispersion predicted within the spin-exciton scenario. PMID:27677397
Theoretical studies of strongly correlated fermions
Energy Technology Data Exchange (ETDEWEB)
Logan, D [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Strongly correlated fermions are investigated. An understanding of strongly correlated fermions underpins a diverse range of phenomena such as metal-insulator transitions, high-temperature superconductivity, magnetic impurity problems and the properties of heavy-fermion systems, in all of which local moments play an important role. (author).
International Nuclear Information System (INIS)
Metoki, Naoto; Haga, Yoshinori; Koike, Yoshihiro; Aso, Naofumi; Onuki, Yoshichika
1997-01-01
Neutron scattering experiments have been carried out in order to study the interplay between magnetism and superconductivity in a heavy fermion superconductor, UPd 2 Al 3 . We have observed 1% suppression of the (0 0 0.5) magnetic peak intensity below the superconducting transition temperature T c . This is direct evidence for the coupling of the magnetic order parameter with the superconducting one. Furthermore, we have observed a spin excitation gap associated with superconductivity. The gap energy ΔE g increases continuously from ΔE g =0 to 0.4 meV with decreasing temperature from T c to 0.4 K. This gap energy corresponds to 2k B T c , which is smaller than the superconducting gap expected from the BCS theory (3.5k B T c ). These results are indicative of the strong interplay between magnetism and superconductivity. (author)
International Nuclear Information System (INIS)
Senatore, Leonardo
2005-01-01
In recently introduced split supersymmetry (SUSY) theories, in which the scale of SUSY breaking is very high, the requirement that the relic abundance of the lightest superpartner (LSP) provides the dark matter of the Universe leads to the prediction of fermionic superpartners around the weak scale. This is no longer obviously the case if the LSP is a hidden sector field, such as a gravitino or another hidden sector fermion, so it is interesting to study this scenario. We consider the case in which the next-lightest superpartner (NLSP) freezes out with its thermal relic abundance, and then it decays to the LSP. We use the constraints from big bang nucleosynthesis and cosmic microwave background, together with the requirement of attaining gauge coupling unification and that the LSP abundance provides the dark matter of the Universe, to infer the allowed superpartner spectrum. As very good news for detection of split SUSY at LHC, we find that if the gravitino is the LSP, then the only allowed NLSP has to be very purely photinolike. In this case, a photino from 700 GeV to 5 TeV is allowed, which is difficult to test at LHC. We also study the case where the LSP is given by a light fermion in the hidden sector which is naturally present in SUSY breaking in extra dimensions. We find that, in this case, a generic NLSP is allowed to be in the range 1-20 TeV, while a bino NLSP can be as light as tens of GeV
Search for heavy fermionic top partners decaying to same-sign dileptons at 13 TeV
AUTHOR|(CDS)2086516
2016-01-01
With the discovery of the Higgs Boson during Run 1 of the Large Hadron Collider, one of the most important questions to answer during Run 2 is the naturalness problem. Composite Higgs theories answer the naturalness problem by regulating the quadratic divergences to the mass of the Higgs boson via fermionic top partners. Often predicted in such models is a top partner with charge 5e/3 which can decay to the extremely clean same-sign dilepton final state. Further, such a particle is typically the lightest of the top partners predicted and hence represents a very well motivated search. Results using 2.2 /fb of data from the CMS experiment at 13 TeV will be presented.
International Nuclear Information System (INIS)
Chimento, L P; Forte, M; Devecchi, F P; Kremer, G M; Ribas, M O; Samojeden, L L
2011-01-01
In this work we review if fermionic sources could be responsible for accelerated periods during the evolution of a FRW universe. In a first attempt, besides the fermionic source, a matter constituent would answer for the decelerated periods. The coupled differential equations that emerge from the field equations are integrated numerically. The self-interaction potential of the fermionic field is considered as a function of the scalar and pseudo-scalar invariants. It is shown that the fermionic field could behave like an inflaton field in the early universe, giving place to a transition to a matter dominated (decelerated) period. In a second formulation we turn our attention to analytical results, specifically using the idea of form-invariance transformations. These transformations can be used for obtaining accelerated cosmologies starting with conventional cosmological models. Here we reconsider the scalar field case and extend the discussion to fermionic fields. Finally we investigate the role of a Dirac field in a Brans-Dicke (BD) context. The results show that this source, in combination with the BD scalar, promote a final eternal accelerated era, after a matter dominated period.
Pressure induced valence transitions in the Anderson lattice model
International Nuclear Information System (INIS)
Bernhard, B.H.; Coqblin, B.
2009-01-01
We apply the equation of motion method to the Anderson lattice model, which describes the physical properties of heavy fermion compounds. In particular, we focus here on the variation of the number of f electrons with pressure, associated to the crossover from the Kondo regime to the intermediate valence regime. We treat here the non-magnetic case and introduce an improved approximation, which consists of an alloy analogy based decoupling for the Anderson lattice model. It is implemented by partial incorporation of the spatial correlations contained in higher-order Green's functions involved in the problem that have been formerly neglected. As it has been verified in the framework of the Hubbard model, the alloy analogy avoids the breakdown of sum rules and is more appropriate to explore the asymmetric case of the periodic Anderson Hamiltonian. The densities of states for a simple cubic lattice are calculated for various values of the model parameters V, t, E f , and U.
International Nuclear Information System (INIS)
Hattori, Kazumasa
2010-01-01
We investigate a two-orbital Anderson lattice model with Ising orbital intersite exchange interactions on the basis of a dynamical mean field theory combined with the static mean field approximation of intersite orbital interactions. Focusing on Ce-based heavy-fermion compounds, we examine the orbital crossover between two orbital states, when the total f-electron number per site n f is ∼1. We show that a 'meta-orbital' transition, at which the occupancy of two orbitals changes steeply, occurs when the hybridization between the ground-state f-electron orbital and conduction electrons is smaller than that between the excited f-electron orbital and conduction electrons at low pressures. Near the meta-orbital critical end point, orbital fluctuations are enhanced and couple with charge fluctuations. A critical theory of meta-orbital fluctuations is also developed by applying the self-consistent renormalization theory of itinerant electron magnetism to orbital fluctuations. The critical end point, first-order transition, and crossover are described within Gaussian approximations of orbital fluctuations. We discuss the relevance of our results to CeAl 2 , CeCu 2 Si 2 , CeCu 2 Ge 2 , and related compounds, which all have low-lying crystalline-electric-field excited states. (author)
Ozkendir, Osman Murat
2017-11-01
The influence of heavy fermion Ytterbium substitution was investigated on the crystal, electronic, and magnetic properties of CuFeO2 with the general formula Yb x Cu1- x FeO2. The results of the crystal structure study revealed polycrystalline formations in the sample. The electronic and magnetic properties of the samples were studied using X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) techniques. Both XAS and XMCD revealed that the substituted Yb atoms govern the entire phenomena with their narrow 4 f levels by forming broader molecular bonds with the 3 d levels of the transition metals. Owing to the prominent changes caused by the activity of the 4 f electrons in the crystal structures, Yb atoms were determined to be the main "role player" in the phase transitions. XMCD measurements were performed at room temperature 300 K (27 °C) to determine the magnetic properties of the samples and, except for CuFeO2 ( x = 0.0), the samples were observed to be ordered magnetically (mainly ferrimagnetic) in the bulk.
CMS Collaboration
2016-01-01
A search for type-III seesaw signal in events with three or more electrons or muons is presented. The data sample corresponds to $2.3\\,\\textrm{fb}^{-1}$ of integrated luminosity in $pp$ collisions at $\\sqrt{s} = 13\\,$TeV collected by the CMS experiment at the LHC. Since the signal populates channels with at least three leptons and diverse kinematic properties, the data is binned in exclusive channels. The primary selection is based on the number of leptons and the invariant mass of opposite-sign dilepton systems which helps discriminate the signal against the Standard Model background. The final optimization for the type-III seesaw signal is based on the sum of leptonic transerve momenta and missing transverse energy. Control samples in data are used to check the robustness of background evaluation techniques and to minimize the reliance on simulation. The observations are consistent with expectations from Standard Model processes. The results are used to exclude heavy fermions of the type-III seesaw model wi...
ACRT technique for the single crystal growth of the heavy fermion compound YbRh{sub 2}Si{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Witt, Sebastian; Kliemt, Kristin; Butzke, Constantin; Krellner, Cornelius [Goethe University Frankfurt, 60438 Frankfurt am Main (Germany)
2016-07-01
In the heavy fermion compound YbRh{sub 2}Si{sub 2} the antiferromagnetic ordering below 70 mK close to a quantum critical point is well-studied. Beneath the magnetic ordering a new phase transition was found recently at 2 mK. It is necessary to prepare large and high-quality single crystals for studying the nature of this new phase transition. Besides the optimization of the single crystal growth it is important to investigate single crystals with different isotopes at this phase transition. Here, we report the crystal growth of YbRh{sub 2}Si{sub 2} with the accelerated crucible rotation technique (ACRT). ACRT shows for other compounds, e.g. YAG (yttrium aluminum garnet, Y{sub 3}Al{sub 5}O{sub 12}), that this technique can reduce flux impurities and enhance the yield of larger crystals. We also report the attempt to receive metallic isotopes of ytterbium with metallothermic reduction. Crystals with different isotopes of silicon and ytterbium can be used for NMR measurements to investigate the underlying phenomena of quantum criticality in more detail.
Directory of Open Access Journals (Sweden)
J. K. Dong
2011-09-01
Full Text Available The in-plane resistivity ρ and thermal conductivity κ of the heavy-fermion superconductor Ce_{2}PdIn_{8} single crystals were measured down to 50 mK. A field-induced quantum critical point, occurring at the upper critical field H_{c2}, is demonstrated from the ρ(T∼T near H_{c2} and ρ(T∼T^{2} when further increasing the field. The large residual linear term κ_{0}/T at zero field and the rapid increase of κ(H/T at low field give evidence for nodal superconductivity in Ce_{2}PdIn_{8}. The jump of κ(H/T near H_{c2} suggests a first-order-like phase transition at low temperature. These results mimic the features of the famous CeCoIn_{5} superconductor, implying that Ce_{2}PdIn_{8} may be another interesting compound to investigate for the interplay between magnetism and superconductivity.
He, Danqi; Mu, Xin; Zhou, Hongyu; Li, Cuncheng; Ma, Shifang; Ji, Pengxia; Hou, Weikang; Wei, Ping; Zhu, Wanting; Nie, Xiaolei; Zhao, Wenyu
2018-06-01
The magnetic nanocomposite thermoelectric materials xFe3O4/YbAl3 ( x = 0%, 0.3%, 0.6%, 1.0%, and 1.5%) have been prepared by the combination of ultrasonic dispersion and spark plasma sintering process. The nanocomposites retain good chemical stability in the presence of the second-phase Fe3O4. The second-phase Fe3O4 magnetic nanoparticles are distributed on the interfaces and boundaries of the matrix. The x dependences of thermoelectric properties indicate that Fe3O4 magnetic nanoparticles can significantly decrease the thermal conductivity and electrical conductivity. The magnetic nanoparticles embedded in YbAl3 matrix are not only the phonon scattering centers of nanostructures, but also the electron scattering centers due to the Kondo-like effect between the magnetic moment of Fe3O4 nanoparticles and the spin of electrons. The ZT values of the composites are first increased in the x range 0%-1.0% and then decreased when x > 1.0%. The highest ZT value reaches 0.3 at 300 K for the nanocomposite with x = 1.0%. Our work demonstrates that the Fe3O4 magnetic nanoparticles can greatly increase the thermoelectric performance of heavy-fermion YbAl3 thermoelectric materials through simultaneously scattering electrons and phonons.
International Nuclear Information System (INIS)
Boudjema, F.; Djouadi, A.; Kneur, J.L.
1992-01-01
The production of excited fermions with mass above 100 GeV is considered. f→Vf (1) decay widths are calculated where V=γ, Z or W. Excited fermion pair production in e + e - annihilation and in γγ collisions, and single production in e + e - annihilation, eγ and γγ collisions is also discussed. Cross sections are calculated for all these cases. The discovery potential of the NLC at 500 GeV is compared with that of other colliders. (K.A.) 15 refs., 5 figs., 2 tabs
Superconducting symmetries and magnetic responses of uranium heavy-fermion systems UBe13 and UPd2Al3
Shimizu, Yusei; Kittaka, Shunichiro; Sakakibara, Toshiro; Aoki, Dai
2018-05-01
Low-temperature thermodynamic investigation for UBe13 and UPd2Al3 were performed in order to gain insight into their unusual ground states of 5 f electrons. Our heat-capacity data for the cubic UBe13 strongly suggest that nodal quasiparticles are absent and its superconducting (SC) gap is fully open over the Fermi surface. Moreover, two unusual thermodynamic anomalies are also observed in UBe13 at ∼ 3 T and ∼ 9 T; the lower-field anomaly is seen only in the SC mixed state by dc magnetization M (H) as well as heat-capacity C (H) , while the higher-field anomaly appears for C (H) in the normal phase above the upper critical field. On the other hand, field-orientation dependence of the heat capacity in the hexagonal UPd2Al3 shows a significantly anisotropic behavior of C (H) ∝H 1 / 2 , reflecting the nodal gap structure of this system. Our result strongly suggests the presence of a horizontal line node on the Fermi surface with heavy effective mass in UPd2Al3.
Gauthier, Nicolas; Wermeille, Didier; Casati, Nicola; Sakai, Hironori; Baumbach, Ryan E.; Bauer, Eric D.; White, Jonathan S.
2017-08-01
We investigated the magnetic structure of the heavy-fermion compound CePt2In7 below TN=5.34 (2 ) K using magnetic resonant x-ray diffraction at ambient pressure. The magnetic order is characterized by a commensurate propagation vector k1 /2=(1/2 ,1/2 ,1/2 ) with spins lying in the basal plane. Our measurements did not reveal the presence of an incommensurate order propagating along the high-symmetry directions in reciprocal space but cannot exclude other incommensurate modulations or weak scattering intensities. The observed commensurate order can be described equivalently by either a single-k structure or by a multi-k structure. Furthermore we explain how a commensurate-only ordering may explain the broad distribution of internal fields observed in nuclear quadrupolar resonance experiments [Sakai et al., Phys. Rev. B 83, 140408 (2011), 10.1103/PhysRevB.83.140408] that was previously attributed to an incommensurate order. We also report powder x-ray diffraction showing that the crystallographic structure of CePt2In7 changes monotonically with pressure up to P =7.3 GPa at room temperature. The determined bulk modulus B0=81.1 (3 ) GPa is similar to those of the Ce-115 family. Broad diffraction peaks confirm the presence of pronounced strain in polycrystalline samples of CePt2In7 . We discuss how strain effects can lead to different electronic and magnetic properties between polycrystalline and single crystal samples.
International Nuclear Information System (INIS)
Mukuda, Hidekazu; Nishide, Sachihiro; Harada, Atsushi
2009-01-01
We report on novel superconducting characteristics of the heavy fermion (HF) superconductor CePt 3 Si without inversion symmetry through 195 Pt-NMR study on a single crystal with T c =0.46 K that is lower than T c - 0.75 K for polycrystals. We show that the intrinsic superconducting characteristics inherent to CePt 3 Si can be understood in terms of the unconventional strong-coupling state with a line-node gap below T c =0.46 K. The mystery about the sample dependence of T c is explained by the fact that more or less polycrystals and single crystals inevitably contain some disordered domains, which exhibit a conventional BCS s-wave superconductivity (SC) below 0.8 K. In contrast, the Neel temperature T N - 2.2 K is present regardless of the quality of samples, revealing that the Fermi surface responsible for SC differ from that for the antiferromagnetic order. These unusual characteristics of CePt 3 Si can be also described by a multiband model; in the homogeneous domains, the coherent HF bands are responsible for the unconventional SC, whereas in the disordered domains the conduction bands existing commonly in LaPt 3 Si may be responsible for the conventional s-wave SC. We remark that some impurity scatterings in the disordered domains break up the 4f-electrons-derived coherent bands but not others. In this context, the small peak in 1/T 1 just below T c reported before [Yogi et al. (2004)] is not due to a two-component order parameter composed of spin-singlet and spin-triplet Cooper pairing states, but due to the contamination of the disorder domains which are in the s-wave SC state. (author)
Renormalization of fermion mixing
International Nuclear Information System (INIS)
Schiopu, R.
2007-01-01
hermiticity. After analysing the complete renormalized Lagrangian in a general theory including vector and scalar bosons with arbitrary renormalizable interactions, we consider two specific models: quark mixing in the electroweak Standard Model and mixing of Majorana neutrinos in the seesaw mechanism. A counter term for fermion mixing matrices can not be fixed by only taking into account self-energy corrections or fermion field renormalization constants. The presence of unstable particles in the theory can lead to a non-unitary renormalized mixing matrix or to a gauge parameter dependence in its counter term. Therefore, we propose to determine the mixing matrix counter term by fixing the complete correction terms for a physical process to experimental measurements. As an example, we calculate the decay rate of a top quark and of a heavy neutrino. We provide in each of the chosen models sample calculations that can be easily extended to other theories. (orig.)
Renormalization of fermion mixing
Energy Technology Data Exchange (ETDEWEB)
Schiopu, R.
2007-05-11
hermiticity. After analysing the complete renormalized Lagrangian in a general theory including vector and scalar bosons with arbitrary renormalizable interactions, we consider two specific models: quark mixing in the electroweak Standard Model and mixing of Majorana neutrinos in the seesaw mechanism. A counter term for fermion mixing matrices can not be fixed by only taking into account self-energy corrections or fermion field renormalization constants. The presence of unstable particles in the theory can lead to a non-unitary renormalized mixing matrix or to a gauge parameter dependence in its counter term. Therefore, we propose to determine the mixing matrix counter term by fixing the complete correction terms for a physical process to experimental measurements. As an example, we calculate the decay rate of a top quark and of a heavy neutrino. We provide in each of the chosen models sample calculations that can be easily extended to other theories. (orig.)
International Nuclear Information System (INIS)
Randjbar-Daemi, S.
1995-12-01
The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if Γ/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs
Energy Technology Data Exchange (ETDEWEB)
Randjbar-Daemi, S
1995-12-01
The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if {Gamma}/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs.
Fermion masses through four-fermion condensates
Energy Technology Data Exchange (ETDEWEB)
Ayyar, Venkitesh [Department of Physics, Duke University,Science Drive, Durham, NC 27708 (United States); Chandrasekharan, Shailesh [Department of Physics, Duke University,Science Drive, Durham, NC 27708 (United States); Center for High Energy Physics, Indian Institute of Science,C.V. Raman Avenue, Bangalore, 560012 (India)
2016-10-12
Fermion masses can be generated through four-fermion condensates when symmetries prevent fermion bilinear condensates from forming. This less explored mechanism of fermion mass generation is responsible for making four reduced staggered lattice fermions massive at strong couplings in a lattice model with a local four-fermion coupling. The model has a massless fermion phase at weak couplings and a massive fermion phase at strong couplings. In particular there is no spontaneous symmetry breaking of any lattice symmetries in both these phases. Recently it was discovered that in three space-time dimensions there is a direct second order phase transition between the two phases. Here we study the same model in four space-time dimensions and find results consistent with the existence of a narrow intermediate phase with fermion bilinear condensates, that separates the two asymptotic phases by continuous phase transitions.
Heavy-heavy-light quark potential in SU(3) lattice QCD
International Nuclear Information System (INIS)
Yamamoto, Arata; Suganuma, Hideo; Iida, Hideaki
2008-01-01
We perform the first study for the heavy-heavy-light quark (QQq) potential in SU(3) quenched lattice QCD with the Coulomb gauge. The calculations are done with the standard gauge and O(a)-improved Wilson fermion action on the 16 4 lattice at β=6.0. We calculate the energy of QQq systems as the function of the distance R between the two heavy quarks, and find that the QQq potential is well described with a Coulomb plus linear potential form up to the intermediate distance R≤0.8 fm. Compared to the static three-quark case, the effective string tension between the heavy quarks is significantly reduced by the finite-mass valence quark effect. This reduction is considered to be a general property for baryons
Wilson Fermions with Four Fermion Interactions
DEFF Research Database (Denmark)
Rantaharju, Jarno; Drach, Vincent; Hietanen, Ari
2015-01-01
We present a lattice study of a four fermion theory, known as Nambu Jona-Lasinio (NJL) theory, via Wilson fermions. Four fermion interactions naturally occur in several extensions of the Standard Model as a low energy parameterisation of a more fundamental theory. In models of dynamical electroweak...
Minenkov, Yury
2017-03-07
In this work, we tested canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) for a set of 32 ligand exchange and association/dissociation reaction enthalpies involving ionic complexes of Li, Be, Na, Mg, Ca, Sr, Ba and Pb(ii). Two strategies were investigated: in the former, only valence electrons were included in the correlation treatment, giving rise to the computationally very efficient FC (frozen core) approach; in the latter, all non-ECP electrons were included in the correlation treatment, giving rise to the AE (all electron) approach. Apart from reactions involving Li and Be, the FC approach resulted in non-homogeneous performance. The FC approach leads to very small errors (<2 kcal mol-1) for some reactions of Na, Mg, Ca, Sr, Ba and Pb, while for a few reactions of Ca and Ba deviations up to 40 kcal mol-1 have been obtained. Large errors are both due to artificial mixing of the core (sub-valence) orbitals of metals and the valence orbitals of oxygen and halogens in the molecular orbitals treated as core, and due to neglecting core-core and core-valence correlation effects. These large errors are reduced to a few kcal mol-1 if the AE approach is used or the sub-valence orbitals of metals are included in the correlation treatment. On the technical side, the CCSD(T) and DLPNO-CCSD(T) results differ by a fraction of kcal mol-1, indicating the latter method as the perfect choice when the CPU efficiency is essential. For completely black-box applications, as requested in catalysis or thermochemical calculations, we recommend the DLPNO-CCSD(T) method with all electrons that are not covered by effective core potentials included in the correlation treatment and correlation-consistent polarized core valence basis sets of cc-pwCVQZ(-PP) quality.
Energy Technology Data Exchange (ETDEWEB)
Stasyuk, I.V.; Krasnov, V.O., E-mail: krasnoff@icmp.lviv.ua
2017-04-15
Phase transitions at non-zero temperatures in ultracold Bose- and Fermi-particles mixture in optical lattices using the Bose-Fermi-Hubbard model in the mean field and hard-core boson approximations are investigated. The case of infinitely small fermion transfer and the repulsive on-site boson-fermion interaction is considered. The possibility of change of order (from the 2nd to the 1st one) of the phase transition to the superfluid phase in the regime of fixed values of the chemical potentials of Bose- and Fermi-particles is established. The relevant phase diagrams determining the conditions at which such a change takes place, are built.
Fermionic NNLO contributions to Bhabha scattering
International Nuclear Information System (INIS)
Actis, S.; Riemann, T.; Czakon, M.; Uniwersytet Slaski, Katowice; Gluza, J.
2007-10-01
We derive the two-loop corrections to Bhabha scattering from heavy fermions using dispersion relations. The double-box contributions are expressed by three kernel functions. Convoluting the perturbative kernels with fermionic threshold functions or with hadronic data allows to determine numerical results for small electron mass m e , combined with arbitrary values of the fermion mass m f in the loop, m 2 e 2 f , or with hadronic insertions. We present numerical results for m f =m μ , m τ ,m top at typical small- and large-angle kinematics ranging from 1 GeV to 500 GeV. (orig.)
Fermion-induced quantum critical points.
Li, Zi-Xiang; Jiang, Yi-Fan; Jian, Shao-Kai; Yao, Hong
2017-08-22
A unified theory of quantum critical points beyond the conventional Landau-Ginzburg-Wilson paradigm remains unknown. According to Landau cubic criterion, phase transitions should be first-order when cubic terms of order parameters are allowed by symmetry in the Landau-Ginzburg free energy. Here, from renormalization group analysis, we show that second-order quantum phase transitions can occur at such putatively first-order transitions in interacting two-dimensional Dirac semimetals. As such type of Landau-forbidden quantum critical points are induced by gapless fermions, we call them fermion-induced quantum critical points. We further introduce a microscopic model of SU(N) fermions on the honeycomb lattice featuring a transition between Dirac semimetals and Kekule valence bond solids. Remarkably, our large-scale sign-problem-free Majorana quantum Monte Carlo simulations show convincing evidences of a fermion-induced quantum critical points for N = 2, 3, 4, 5 and 6, consistent with the renormalization group analysis. We finally discuss possible experimental realizations of the fermion-induced quantum critical points in graphene and graphene-like materials.Quantum phase transitions are governed by Landau-Ginzburg theory and the exceptions are rare. Here, Li et al. propose a type of Landau-forbidden quantum critical points induced by gapless fermions in two-dimensional Dirac semimetals.
Searches for Fourth Generation Fermions
Energy Technology Data Exchange (ETDEWEB)
Ivanov, A.; /Fermilab
2011-09-01
We present the results from searches for fourth generation fermions performed using data samples collected by the CDF II and D0 Detectors at the Fermilab Tevatron p{bar p} collider. Many of these results represent the most stringent 95% C. L. limits on masses of new fermions to-date. A fourth chiral generation of massive fermions with the same quantum numbers as the known fermions is one of the simplest extensions of the SM with three generations. The fourth generation is predicted in a number of theories, and although historically have been considered disfavored, stands in agreement with electroweak precision data. To avoid Z {yields} {nu}{bar {nu}} constraint from LEP I a fourth generation neutrino {nu}{sub 4} must be heavy: m({nu}{sub 4}) > m{sub Z}/2, where m{sub Z} is the mass of Z boson, and to avoid LEP II bounds a fourth generation charged lepton {ell}{sub 4} must have m({ell}{sub 4}) > 101 GeV/c{sup 2}. At the same time due to sizeable radiative corrections masses of fourth generation fermions cannot be much higher the current lower bounds and masses of new heavy quarks t' and b' should be in the range of a few hundred GeV/c{sup 2}. In the four-generation model the present bounds on the Higgs are relaxed: the Higgs mass could be as large as 1 TeV/c{sup 2}. Furthermore, the CP violation is significantly enhanced to the magnitude that might account for the baryon asymmetry in the Universe. Additional chiral fermion families can also be accommodated in supersymmetric two-Higgs-doublet extensions of the SM with equivalent effect on the precision fit to the Higgs mass. Another possibility is heavy exotic quarks with vector couplings to the W boson Contributions to radiative corrections from such quarks with mass M decouple as 1/M{sup 2} and easily evade all experimental constraints. At the Tevatron p{bar p} collider 4-th generation chiral or vector-like quarks can be either produced strongly in pairs or singly via electroweak production, where the
Minenkov, Yury; Bistoni, Giovanni; Riplinger, Christoph; Auer, Alexander A; Neese, Frank; Cavallo, Luigi
2017-04-05
In this work, we tested canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) for a set of 32 ligand exchange and association/dissociation reaction enthalpies involving ionic complexes of Li, Be, Na, Mg, Ca, Sr, Ba and Pb(ii). Two strategies were investigated: in the former, only valence electrons were included in the correlation treatment, giving rise to the computationally very efficient FC (frozen core) approach; in the latter, all non-ECP electrons were included in the correlation treatment, giving rise to the AE (all electron) approach. Apart from reactions involving Li and Be, the FC approach resulted in non-homogeneous performance. The FC approach leads to very small errors (correlation effects. These large errors are reduced to a few kcal mol -1 if the AE approach is used or the sub-valence orbitals of metals are included in the correlation treatment. On the technical side, the CCSD(T) and DLPNO-CCSD(T) results differ by a fraction of kcal mol -1 , indicating the latter method as the perfect choice when the CPU efficiency is essential. For completely black-box applications, as requested in catalysis or thermochemical calculations, we recommend the DLPNO-CCSD(T) method with all electrons that are not covered by effective core potentials included in the correlation treatment and correlation-consistent polarized core valence basis sets of cc-pwCVQZ(-PP) quality.
Dynamical symmetries for fermions
International Nuclear Information System (INIS)
Guidry, M.
1989-01-01
An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E 2 ) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and ''exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs
FCNC Effects in a Minimal Theory of Fermion Masses
Buras, Andrzej J; Pokorski, Stefan; Ziegler, Robert
2011-01-01
As a minimal theory of fermion masses we extend the SM by heavy vectorlike fermions, with flavor-anarchical Yukawa couplings, that mix with chiral fermions such that small SM Yukawa couplings arise from small mixing angles. This model can be regarded as an effective description of the fermionic sector of a large class of existing flavor models and thus might serve as a useful reference frame for a further understanding of flavor hierarchies in the SM. Already such a minimal framework gives rise to FCNC effects through exchange of massive SM bosons whose couplings to the light fermions get modified by the mixing. We derive general formulae for these corrections and discuss the bounds on the heavy fermion masses. Particularly stringent bounds, in a few TeV range, come from the corrections to the Z couplings.
2-fermion and 4-fermion production at LEP2
van Vulpen, Ivo B
2000-01-01
We present the measurements on 2-fermion and 4-fermion production in e + e - collisions at centre-of-mass energies ranging from 192 to 202 Ge V as collected by the 4 LEP experiments in 1999. For processes with 2-fermions in the final state we present both production cross sections and asymmetries for event samples at low and high effective centre-of-mass energies, where the latter process is sensitive to possible contributions from various non-SM physics, like contact interactions or Z' exchange, and can therefore be used to set limits on parameters in those models. We also report on the measured cross sections for a subset of processes leading to 4 fermions in the final state: pair production of heavy vector bosons w+w- (NC03) and ZZ (NC02) followed by single-W production. A measurement of the leptonic branching ratio of the W-boson is used to extract information on IV c• I
Squeezed fermions and back-to-back correlations
International Nuclear Information System (INIS)
Panda, P.K.; Krein, G.; Padula, S.S.; Csoergoe, T.; Hama, Y.
2001-01-01
Back-to-back correlations of asymptotic fermion pairs appear if in-medium interactions lead to mass modifications of fermion states in a thermalized medium. The back-to-back correlations of protons and anti-protons will be experimentally observable in ultrarelativistic heavy ion collisions. The strength of back-to-back correlations of fermions can be unlimitedly large, diverging as the momentum of the pair increases and the net baryon density decreases. (author)
Squeezed fermions and back-to-back correlations
Energy Technology Data Exchange (ETDEWEB)
Panda, P.K.; Krein, G.; Padula, S.S. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Csoergoe, T. [Hungarian Academy of Sciences, Budapest (Hungary). Research Institute for Particle and Nuclear Physics (RMKI, KFKI); Hama, Y. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica
2001-07-01
Back-to-back correlations of asymptotic fermion pairs appear if in-medium interactions lead to mass modifications of fermion states in a thermalized medium. The back-to-back correlations of protons and anti-protons will be experimentally observable in ultrarelativistic heavy ion collisions. The strength of back-to-back correlations of fermions can be unlimitedly large, diverging as the momentum of the pair increases and the net baryon density decreases. (author)
Directory of Open Access Journals (Sweden)
Vera eShuman
2013-05-01
Full Text Available The distinction between the positive and the negative is fundamental in our emotional life. In appraisal theories, in particular in the component process model of emotion (Scherer, 1984, 2010, qualitatively different types of valence are proposed based on appraisals of (unpleasantness, goal obstructiveness/conduciveness, low or high power, self- (incongruence, and moral badness/goodness. This multifaceted conceptualization of valence is highly compatible with the frequent observation of mixed feelings in real life. However, it seems to contradict the one-dimensional conceptualization of valence often encountered in psychological theories, and the notion of valence as a common currency used to explain choice behavior. Here, we propose a framework to integrate the seemingly disparate conceptualizations of multifaceted valence and one-dimensional valence by suggesting that valence should be conceived at different levels, micro and macro. Micro-valences correspond to qualitatively different types of evaluations, potentially resulting in mixed feelings, whereas one-dimensional macro-valence corresponds to an integrative common currency to compare alternatives for choices. We propose that conceptualizing levels of valence may focus research attention on the mechanisms that relate valence at one level (micro to valence at another level (macro, leading to new hypotheses and addressing various concerns that have been raised about the valence concept, such as the valence-emotion relation.
Shuman, Vera; Sander, David; Scherer, Klaus R.
2013-01-01
The distinction between the positive and the negative is fundamental in our emotional life. In appraisal theories, in particular in the component process model of emotion (Scherer, 1984, 2010), qualitatively different types of valence are proposed based on appraisals of (un)pleasantness, goal obstructiveness/conduciveness, low or high power, self-(in)congruence, and moral badness/goodness. This multifaceted conceptualization of valence is highly compatible with the frequent observation of mixed feelings in real life. However, it seems to contradict the one-dimensional conceptualization of valence often encountered in psychological theories, and the notion of valence as a common currency used to explain choice behavior. Here, we propose a framework to integrate the seemingly disparate conceptualizations of multifaceted valence and one-dimensional valence by suggesting that valence should be conceived at different levels, micro and macro. Micro-valences correspond to qualitatively different types of evaluations, potentially resulting in mixed feelings, whereas one-dimensional macro-valence corresponds to an integrative “common currency” to compare alternatives for choices. We propose that conceptualizing levels of valence may focus research attention on the mechanisms that relate valence at one level (micro) to valence at another level (macro), leading to new hypotheses, and addressing various concerns that have been raised about the valence concept, such as the valence-emotion relation. PMID:23717292
International Nuclear Information System (INIS)
Langner, A.; Sahu, D.; George, T.F.
1988-01-01
In the heavy-fermion superconductor U/sub 1-//sub x/Th/sub x/Be/sub 13/, superconducting states coexist for thorium concentrations 0 ≤ x ≤ 0.06. Assuming s-wave and d-wave symmetries for these states, we derive a Ginzburg-Landau free-energy expression which couples s- and d-wave states and is rotationally invariant, in contrast to the free-energy expression proposed by P. Kumar and P. Woelfle [Phys. Rev. Lett. 59, 1954 (1987)]. We discuss in detail the consequences that follow from our free-energy relation. In particular, we predict that in the above system there are two eigenfrequencies associated with the dynamics of phase oscillations (internal Josephson effect) which are characteristic of the s-wave and d-wave states
International Nuclear Information System (INIS)
Sieck, M.
1996-01-01
Single crystal samples of heavy fermion systems UPt 3 and CeCu 6-x Au x have been investigated under hydrostatic and uniaxial pressure, respectively, at low temperatures and in magnetic fields up to 3 T using measurements of the specific heat and the magnetocaloric effect. A light-weigth hydrostatic pressure cell made of CuBe was designed and built up. For CeCu 6-x Au x the interrelation between magnetic order and the non-magnetic ground state was studied as function of Au concentration. For the UPt 3 system the phase diagrams in the superconducting state has been constructed. In the magnetocaloric effect irreversibilities due to flux pinning in the flux line lattice were observed
International Nuclear Information System (INIS)
Senjanovic, G.; Virginia Polytechnic Inst. and State Univ., Blacksburg
1984-07-01
Extended supersymmetry, Kaluza-Klein theory and family unification all suggest the existence of mirror fermions, with same quantum numbers but opposite helicities from ordinary fermions. The laboratory and especially cosmological implications of such particles are reviewed and summarized. (author)
Johnson, David A.; Nelson, Peter G.
2018-01-01
The valencies of the lanthanides vary more than was once thought. In addition to valencies associated with a half-full shell, there are valencies associated with a quarter- and three-quarter-full shell. This can be explained on the basis of Slater’s theory of many-electron atoms. The same theory explains the variation in complexing constants in the trivalent state (the “tetrad effect”). Valency in metallic and organometallic compounds is also discussed.
Fermion production despite fermion number conservation
International Nuclear Information System (INIS)
Bock, W.; Hetrick, J.E.; Smit, J.
1995-01-01
Lattice proposals for a nonperturbative formulation of the Standard Model easily lead to a global U(1) symmetry corresponding to exactly conserved fermion number. The absence of an anomaly in the fermion current would then appear to inhibit anomalous processes, such as electroweak baryogenesis in the early universe. One way to circumvent this problem is to formulate the theory such that this U(1) symmetry is explicitly broken. However we argue that in the framework of spectral flow, fermion creation and annihilation still in fact occurs, despite the exact fermion number conservation. The crucial observation is that fermions are excitations relative to the vacuum, at the surface of the Dirac sea. The exact global U(1) symmetry prohibits a state from changing its fermion number during time evolution, however nothing prevents the fermionic ground state from doing so. We illustrate our reasoning with a model in two dimensions which has axial-vector couplings, first using a sharp momentum cutoff, then using the lattice regulator with staggered fermions. The difference in fermion number between the time evolved state and the ground state is indeed in agreement with the anomaly. Both the sharp momentum cutoff and the lattice regulator break gauge invariance. In the case of the lattice model a mass counterterm for the gauge field is sufficient to restore gauge invariance in the perturbative regime. A study of the vacuum energy shows however that the perturbative counterterm is insufficient in a nonperturbative setting and that further quartic counterterms are needed. For reference we also study a closely related model with vector couplings, the Schwinger model, and we examine the emergence of the θ-vacuum structure of both theories. ((orig.))
International Nuclear Information System (INIS)
Bravyi, Sergey; Terhal, Barbara M; Leemhuis, Bernhard
2010-01-01
We initiate the study of Majorana fermion codes (MFCs). These codes can be viewed as extensions of Kitaev's one-dimensional (1D) model of unpaired Majorana fermions in quantum wires to higher spatial dimensions and interacting fermions. The purpose of MFCs is to protect quantum information against low-weight fermionic errors, that is, operators acting on sufficiently small subsets of fermionic modes. We examine to what extent MFCs can surpass qubit stabilizer codes in terms of their stability properties. A general construction of 2D MFCs is proposed that combines topological protection based on a macroscopic code distance with protection based on fermionic parity conservation. Finally, we use MFCs to show how to transform any qubit stabilizer code to a weakly self-dual CSS code.
International Nuclear Information System (INIS)
Chandrasekharan, Shailesh
2000-01-01
Cluster algorithms have been recently used to eliminate sign problems that plague Monte-Carlo methods in a variety of systems. In particular such algorithms can also be used to solve sign problems associated with the permutation of fermion world lines. This solution leads to the possibility of designing fermion cluster algorithms in certain cases. Using the example of free non-relativistic fermions we discuss the ideas underlying the algorithm
Lattice degeneracies of fermions
International Nuclear Information System (INIS)
Raszillier, H.
1983-10-01
We present a detailed description of the minimal degeneracies of geometric (Kaehler) fermions on all the lattices of maximal symmetries in n = 1, ..., 4 dimensions. We also determine the isolated orbits of the maximal symmetry groups, which are related to the minimal numbers of ''naive'' fermions on the reciprocals of these lattices. It turns out that on the self-reciprocal lattices the minimal numbers of naive fermions are equal to the minimal numbers of degrees of freedom of geometric fermions. The description we give relies on the close connection of the maximal lattice symmetry groups with (affine) Weyl groups of root systems of (semi-) simple Lie algebras. (orig.)
Nonequilibrium fermion production in quantum field theory
International Nuclear Information System (INIS)
Pruschke, Jens
2010-01-01
The creation of matter in the early universe or in relativistic heavy-ion collisions is inevitable connected to nonequilibrium physics. One of the key challenges is the explanation of the corresponding thermalization process following nonequilibrium instabilities. The role of fermionic quantum fields in such scenarios is discussed in the literature by using approximations of field theories which neglect important quantum corrections. This thesis goes beyond such approximations. A quantum field theory where scalar bosons interact with Dirac fermions via a Yukawa coupling is analyzed in the 2PI effective action formalism. The chosen approximation allows for a correct description of the dynamics including nonequilibrium instabilities. In particular, fermion-boson loop corrections allow to study the interaction of fermions with large boson fluctuations. The applied initial conditions generate nonequilibrium instabilities like parametric resonance or spinodal instabilities. The equations of motion for correlation functions are solved numerically and major characteristics of the fermion dynamics are described by analytical solutions. New mechanisms for the production of fermions are found. Simulations in the case of spinodal instability show that unstable boson fluctuations induce exponentially growing fermion modes with approximately the same growth rate. If the unstable regime lasts long enough a thermalization of the infrared part of the fermion occupation number occurs on time scales much shorter than the time scale on which bosonic quantum fields thermalize. Fermions acquire an excess of occupation in the ultraviolet regime compared to a Fermi-Dirac statistic characterized by a power-law with exponent two. The fermion production mechanism via parametric resonance is found to be most efficient after the instability ends. Quantum corrections then provide a very efficient particle creation mechanism which is interpreted as an amplification of decay processes. The ratio
Nonequilibrium fermion production in quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Pruschke, Jens
2010-06-16
The creation of matter in the early universe or in relativistic heavy-ion collisions is inevitable connected to nonequilibrium physics. One of the key challenges is the explanation of the corresponding thermalization process following nonequilibrium instabilities. The role of fermionic quantum fields in such scenarios is discussed in the literature by using approximations of field theories which neglect important quantum corrections. This thesis goes beyond such approximations. A quantum field theory where scalar bosons interact with Dirac fermions via a Yukawa coupling is analyzed in the 2PI effective action formalism. The chosen approximation allows for a correct description of the dynamics including nonequilibrium instabilities. In particular, fermion-boson loop corrections allow to study the interaction of fermions with large boson fluctuations. The applied initial conditions generate nonequilibrium instabilities like parametric resonance or spinodal instabilities. The equations of motion for correlation functions are solved numerically and major characteristics of the fermion dynamics are described by analytical solutions. New mechanisms for the production of fermions are found. Simulations in the case of spinodal instability show that unstable boson fluctuations induce exponentially growing fermion modes with approximately the same growth rate. If the unstable regime lasts long enough a thermalization of the infrared part of the fermion occupation number occurs on time scales much shorter than the time scale on which bosonic quantum fields thermalize. Fermions acquire an excess of occupation in the ultraviolet regime compared to a Fermi-Dirac statistic characterized by a power-law with exponent two. The fermion production mechanism via parametric resonance is found to be most efficient after the instability ends. Quantum corrections then provide a very efficient particle creation mechanism which is interpreted as an amplification of decay processes. The ratio
Phantom cosmologies and fermions
International Nuclear Information System (INIS)
Chimento, Luis P; Forte, Monica; Devecchi, Fernando P; Kremer, Gilberto M
2008-01-01
Form invariance transformations can be used for constructing phantom cosmologies starting with conventional cosmological models. In this work we reconsider the scalar field case and extend the discussion to fermionic fields, where the 'phantomization' process exhibits a new class of possible accelerated regimes. As an application we analyze the cosmological constant group for a fermionic seed fluid
Dynamical triangulated fermionic surfaces
International Nuclear Information System (INIS)
Ambjoern, J.; Varsted, S.
1990-12-01
We perform Monte Carlo simulations of randomly triangulated random surfaces which have fermionic world-sheet scalars θ i associated with each vertex i in addition to the usual bosonic world-sheet scalar χ i μ . The fermionic degrees of freedom force the internal metrics of the string to be less singular than the internal metric of the pure bosonic string. (orig.)
International Nuclear Information System (INIS)
Nishiyama, Shinya; Matsuura, Hiroyasu; Miyake, Kazumasa
2011-01-01
In f 2 -based heavy fermion systems with a tetragonal symmetry, we investigate the magnetic field dependence of a non-fermi liquid (NFL) which arises related to the quantum critical point (QCP) due to the competition between the crystalline-electric field (CEF) singlet and the Kondo-Yosida singlet states. On the basis of the Wilson numerical renormalization group method, we find that the magnetic field less than a characteristic magnetic field H z * does not affect the characteristic temperature T F * at which the specific heat takes a maximum value. Since such H z * increases as the deviation from the QCP increases, slightly off the QCP, there are parameter regions where NFL behaviors are robust at an observable temperature range T > T F *against a magnetic field of up to H z * which is far larger than T F *. Our result suggests that such robust NFL behaviors can arise also in systems with other CEF symmetries; e.g., magnetically robust NFL behaviors observed in UBe 13 may be understood on this basis.
Svanidze, E.; Amon, A.; Prots, Yu.; Leithe-Jasper, A.; Grin, Yu.
2018-03-01
In the antiferromagnetic heavy-fermion compound U2Zn17 , the Sommerfeld coefficient γ can be enhanced if all Zn atoms are replaced by a combination of Cu and Al or Cu and Ga. In the former ternary phase, glassy behavior was observed, while for the latter, conflicting ground-state reports suggest material quality issues. In this work, we investigate the U2Cu17 -xGax substitutional series for 4.5 ≤x ≤9.5 . In the homogeneity range of the phase with the Th2Zn17 -type of crystal structure, all samples exhibit glassy behavior with 0.6 K ≤Tf≤1.8 K . The value of the electronic specific heat coefficient γ in this system exceeds 900 mJ/molUK2. Such a drastic effective-mass enhancement can possibly be attributed to the effects of structural disorder, since the role of electron concentration and lattice compression is likely minimal. Crystallographic disorder is also responsible for the emergence of non-Fermi-liquid behavior in these spin-glass materials, as evidenced by logarithmic divergence of magnetic susceptibility, specific heat, and electrical resistivity.
Radiative corrections to fermion matter and nontopological solitons
International Nuclear Information System (INIS)
Perry, R.J.
1984-01-01
This thesis addresses the effects of one loop radiative corrections to fermion matter and nontopological solitons. The effective action formalism is employed to explore the effects of these corrections on the ground state energy and scalar field expectation value of a system containing valence fermions, which are introduced using a chemical potential. This formalism is discussed extensively, and detailed calculations are presented for the Friedberg-Lee model. The techniques illustrated can be used in any renormalizable field theory and can be extended to include higher order quantum corrections
Fermion masses and multiplicity
International Nuclear Information System (INIS)
Ramond, P.
1986-01-01
A general survey and analysis of fermion masses is presented in terms of both the known low energy gauge structure and of the simplest GUT structure. The replication of fermion families is discussed in the context of possible family group structures. Sample family gauge groups are presented in the cases of three and four chiral families, using ABJ and Witten anomalies to restrict the maximal gauged family group. The possible relevance of the family group to the fermion mass hierarchy is discussed in the context of various models. (author)
Energy Technology Data Exchange (ETDEWEB)
Iliesiu, Luca [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Kos, Filip; Poland, David [Department of Physics, Yale University, New Haven, CT 06520 (United States); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Simmons-Duffin, David [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States); Yacoby, Ran [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States)
2016-03-17
We study the conformal bootstrap for a 4-point function of fermions 〈ψψψψ〉 in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ×ψ OPE, and also on the central charge C{sub T}. We observe features in our bounds that coincide with scaling dimensions in the Gross-Neveu models at large N. We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.
Fermion number in supersymmetric models
International Nuclear Information System (INIS)
Mainland, G.B.; Tanaka, K.
1975-01-01
The two known methods for introducing a conserved fermion number into supersymmetric models are discussed. While the introduction of a conserved fermion number often requires that the Lagrangian be massless or that bosons carry fermion number, a model is discussed in which masses can be introduced via spontaneous symmetry breaking and fermion number is conserved at all stages without assigning fermion number to bosons. (U.S.)
Fermions from classical statistics
International Nuclear Information System (INIS)
Wetterich, C.
2010-01-01
We describe fermions in terms of a classical statistical ensemble. The states τ of this ensemble are characterized by a sequence of values one or zero or a corresponding set of two-level observables. Every classical probability distribution can be associated to a quantum state for fermions. If the time evolution of the classical probabilities p τ amounts to a rotation of the wave function q τ (t)=±√(p τ (t)), we infer the unitary time evolution of a quantum system of fermions according to a Schroedinger equation. We establish how such classical statistical ensembles can be mapped to Grassmann functional integrals. Quantum field theories for fermions arise for a suitable time evolution of classical probabilities for generalized Ising models.
Superstrings fermionic solutions
International Nuclear Information System (INIS)
Rausch de Traubenberg, M.
1990-06-01
The solutions proposed by the superstring theory are classified and compared. In order to obtain some of the equivalences, the demonstration is based on the coincidence of the excitation spectrum and the quantum numbers from different states. The fermionic representation of the heterotical strings is discussed. The conformal invariance and the supersymmetric results extended to two dimensions are investigated. Concerning the fermionic strings, the formalism and a phenomenological solution involving three families of quarks, chiral leptons and leptons from the E 6 gauge group are presented. The equivalence between real and complex fermions is discussed. The similarity between some of the solutions of the Wess-Zumino-Witten model and the orbifolds is considered. The formal calculation program developed for reproducing the theory's low energy spectra, in the fermionic string formalism is given [fr
International Nuclear Information System (INIS)
Kamleh, W.; Leinweber, D.B.; Williams, A.G.
2004-01-01
The use of APE smearing or other blocking techniques in fermion actions can provide many advantages. There are many variants of these fat link actions in lattice QCD currently, such as FLIC fermions. The FLIC fermion formalism makes use of the APE blocking technique in combination with a projection of the blocked links back into the special unitary group. This reunitarisation is often performed using an iterative maximisation of a gauge invariant measure. This technique is not differentiable with respect to the gauge field and thus prevents the use of standard. Hybrid Monte Carlo simulation algorithms. The use of an alternative projection technique circumvents this difficulty and allows the simulation of dynamical fat link fermions with standard HMC and its variants
Constraints on fermion mixing with exotics
International Nuclear Information System (INIS)
Nardi, E.; Tommasini, D.
1991-11-01
We analyze the constraints on the mixing angles of the standard fermions with new heavy particles with exotic SU(2) x U(1) quantum number assignments (left-handed singlets or right-handed doublets), that appear in many extensions of the electroweak theory. The updated Charged Current and Neutral Current experimental data, including also the recent Z-peak measurements, are considered. The results of the global analysis of all these data are then presented
Fannes, Mark; Wouters, Jeroen
2012-01-01
We study a quantum process that can be considered as a quantum analogue for the classical Markov process. We specifically construct a version of these processes for free Fermions. For such free Fermionic processes we calculate the entropy density. This can be done either directly using Szeg\\"o's theorem for asymptotic densities of functions of Toeplitz matrices, or through an extension of said theorem to rates of functions, which we present in this article.
Energy Technology Data Exchange (ETDEWEB)
Baenitz, M.; Sarkar, R.; Khuntia, P.; Krellner, C.; Geibel, C.; Steglich, F. [Max - Planck Institute of Chemical Physics of Solids, 01187 Dresden, Germany (Germany)
2012-07-01
Intersite correlations in Ce-based heavy fermion systems close to the quantum critical point separating the magnetic ordered state from the paramagnetic Kondo lattice are in almost all cases predominantly antiferromagnetic (AFM) in nature. The NMR relaxation of these systems show an evolution from localized fluctuations with 1/T{sub 1} nearly constant above the Kondo temperature T{sub K}, to a linear in T Korringa- like behavior with a constant and enhanced (1/T{sub 1}T)- value below T{sub K}. We report on {sup 31}P-NMR results on the ferromagnetic (FM) quantum critical system YbNi{sub 4}P{sub 2} over a wide range in temperature (2-300 K) and field (0.2 - 9 T). Here, {sup 31}(1/T{sub 1}T)(T) does not show such a signature at T{sub K}, instead a continuous increase of (1/T{sub 1}T) down to lowest T is observed. A similar behavior has been reported for YbRh{sub 2}Si{sub 2}, which also exhibits strong FM correlations evidenced by {sup 29}Si - NMR and an enhanced Wilson ratio. Furthermore, in CeFePO, which is likely unique among Ce-based quantum critical system because of its strong FM correlations, (1/T{sub 1}T) also diverges continuously for T {yields}0. This suggests that the difference in the relaxation between most of the Ce systems and the Yb systems is predominantly related to a change from AFM to FM intersite correlations. NMR-results (shift, line width, T{sub 1}) are analyzed and discussed in different models (Korringa, Moriya).
Itinerant quantum multicriticality of two-dimensional Dirac fermions
Roy, Bitan; Goswami, Pallab; Juričić, Vladimir
2018-05-01
We analyze emergent quantum multicriticality for strongly interacting, massless Dirac fermions in two spatial dimensions (d =2 ) within the framework of Gross-Neveu-Yukawa models, by considering the competing order parameters that give rise to fully gapped (insulating or superconducting) ground states. We focus only on those competing orders which can be rotated into each other by generators of an exact or emergent chiral symmetry of massless Dirac fermions, and break O(S1) and O(S2) symmetries in the ordered phase. Performing a renormalization-group analysis by using the ɛ =(3 -d ) expansion scheme, we show that all the coupling constants in the critical hyperplane flow toward a new attractive fixed point, supporting an enlarged O(S1+S2) chiral symmetry. Such a fixed point acts as an exotic quantum multicritical point (MCP), governing the continuous semimetal-insulator as well as insulator-insulator (for example, antiferromagnet to valence bond solid) quantum phase transitions. In comparison with the lower symmetric semimetal-insulator quantum critical points, possessing either O(S1) or O(S2) chiral symmetry, the MCP displays enhanced correlation length exponents, and anomalous scaling dimensions for both fermionic and bosonic fields. We discuss the scaling properties of the ratio of bosonic and fermionic masses, and the increased dc resistivity at the MCP. By computing the scaling dimensions of different local fermion bilinears in the particle-hole channel, we establish that most of the four fermion operators or generalized density-density correlation functions display faster power-law decays at the MCP compared to the free fermion and lower symmetric itinerant quantum critical points. Possible generalization of this scenario to higher-dimensional Dirac fermions is also outlined.
Thermal recombination: Beyond the valence quark approximation
Energy Technology Data Exchange (ETDEWEB)
Mueller, B. [Department of Physics, Duke University, Durham, NC 27708 (United States); Fries, R.J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: fries@physics.umn.edu; Bass, S.A. [Department of Physics, Duke University, Durham, NC 27708 (United States); RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States)
2005-07-07
Quark counting rules derived from recombination models agree well with data on hadron production at intermediate transverse momenta in relativistic heavy-ion collisions. They convey a simple picture of hadrons consisting only of valence quarks. We discuss the inclusion of higher Fock states that add sea quarks and gluons to the hadron structure. We show that, when recombination occurs from a thermal medium, hadron spectra remain unaffected by the inclusion of higher Fock states. However, the quark number scaling for elliptic flow is somewhat affected. We discuss the implications for our understanding of data from the Relativistic Heavy Ion Collider.
Valency and molecular structure
Cartmell, E
1977-01-01
Valency and Molecular Structure, Fourth Edition provides a comprehensive historical background and experimental foundations of theories and methods relating to valency and molecular structures. In this edition, the chapter on Bohr theory has been removed while some sections, such as structures of crystalline solids, have been expanded. Details of structures have also been revised and extended using the best available values for bond lengths and bond angles. Recent developments are mostly noted in the chapter on complex compounds, while a new chapter has been added to serve as an introduction t
Fermion masses from dimensional reduction
International Nuclear Information System (INIS)
Kapetanakis, D.; Zoupanos, G.
1990-01-01
We consider the fermion masses in gauge theories obtained from ten dimensions through dimensional reduction on coset spaces. We calculate the general fermion mass matrix and we apply the mass formula in illustrative examples. (orig.)
Fermion masses from dimensional reduction
Energy Technology Data Exchange (ETDEWEB)
Kapetanakis, D. (National Research Centre for the Physical Sciences Democritos, Athens (Greece)); Zoupanos, G. (European Organization for Nuclear Research, Geneva (Switzerland))
1990-10-11
We consider the fermion masses in gauge theories obtained from ten dimensions through dimensional reduction on coset spaces. We calculate the general fermion mass matrix and we apply the mass formula in illustrative examples. (orig.).
Moessner, Roderich
Condensed matter systems provide emergent mini-universes in which quasiparticles may exist which do not correspond to any experimentally detected elementary particle. Topological quantum materials have been particularly productive in this regard, with the present search focussing on Majorana fermions, known theoretically already for decades. Here, we discuss manifestations of magnetic Majorana fermions in the Kitaev model. We place particular emphasis on their fate when perturbations, such as Heisenberg terms, are added to the ideal model system, and address experimental signatures of their vestiges in phases adjacent to the spin liquid.
Plutonium valence state distributions
International Nuclear Information System (INIS)
Silver, G.L.
1974-01-01
A calculational method for ascertaining equilibrium valence state distributions of plutonium in acid solutions as a function of the plutonium oxidation number and the solution acidity is illustrated with an example. The method may be more practical for manual use than methods based upon polynomial equations. (T.G.)
Topologically distinct classes of valence-bond solid states with their parent Hamiltonians
International Nuclear Information System (INIS)
Tu Honghao; Zhang Guangming; Xiang Tao; Liu Zhengxin; Ng Taikai
2009-01-01
We present a general method to construct one-dimensional translationally invariant valence-bond solid states with a built-in Lie group G and derive their matrix product representations. The general strategies to find their parent Hamiltonians are provided so that the valence-bond solid states are their unique ground states. For quantum integer-spin-S chains, we discuss two topologically distinct classes of valence-bond solid states: one consists of two virtual SU(2) spin-J variables in each site and another is formed by using two SO(2S+1) spinors. Among them, a spin-1 fermionic valence-bond solid state, its parent Hamiltonian, and its properties are discussed in detail. Moreover, two types of valence-bond solid states with SO(5) symmetries are further generalized and their respective properties are analyzed as well.
Molecular dynamics for fermions
International Nuclear Information System (INIS)
Feldmeier, H.; Schnack, J.
2000-02-01
The time-dependent variational principle for many-body trial states is used to discuss the relation between the approaches of different molecular dynamics models to describe indistinguishable fermions. Early attempts to include effects of the Pauli principle by means of nonlocal potentials as well as more recent models which work with antisymmetrized many-body states are reviewed under these premises. (orig.)
Radiative seesaw-type mechanism of fermion masses and non-trivial quark mixing
Energy Technology Data Exchange (ETDEWEB)
Arbelaez, Carolina; Hernandez, A.E.C.; Kovalenko, Sergey; Schmidt, Ivan [Universidad Tecnica Federico Santa Maria, Centro Cientifico-Tecnologico de Valparaiso-CCTVal, Valparaiso (Chile)
2017-06-15
We propose a predictive inert two-Higgs doublet model, where the standard model (SM) symmetry is extended by S{sub 3} x Z{sub 2} x Z{sub 12} and the field content is enlarged by extra scalar fields, charged exotic fermions and two heavy right-handed Majorana neutrinos. The charged exotic fermions generate a non-trivial quark mixing and provide one-loop-level masses for the first- and second-generation charged fermions. The masses of the light active neutrinos are generated from a one-loop-level radiative seesaw mechanism. Our model successfully explains the observed SM fermion mass and mixing pattern. (orig.)
Superconducting classes in heavy fermions systems
International Nuclear Information System (INIS)
Volovik, G.E.; Gor'kov, L.P.
1985-01-01
A mathematical method for constructing of the superconductivity classes for nontrivial superconductors is described. All superconducting phases which can arise directly on transition from the normal state for cubic, hexagonal and tetragonal symmetries are enumerated. It is shown that in the triplet case the types of zeros in the energy gap always correspond to points on the Fermi surface, whereas for signlet pairing the whole zero lines are possible. For the phases with zeros on the lines or points, the low-temperature specific heat varies as T 2 on T 3 respectivelty. The superconducting phases which arise from the multydimensional representations may possess a magnetic moment which induces currents on the surface of a monodomain sample even in the absence of an external magnetic field. The specific case of a domain wall is considered and it is shown that large magnetic currents of magnetization are present in the wall
Lattice calculation of heavy-light decay constants with two flavors of dynamical quarks
International Nuclear Information System (INIS)
Bernard, C.; Datta, S.; DeGrand, T.; DeTar, C.; Gottlieb, Steven; Heller, Urs M.; McNeile, C.; Orginos, K.; Sugar, R.; Toussaint, D.
2002-01-01
We present results for f B , f B s , f D , f D s and their ratios in the presence of two flavors of light sea quarks (N f =2). We use Wilson light valence quarks and Wilson and static heavy valence quarks; the sea quarks are simulated with staggered fermions. Additional quenched simulations with nonperturbatively improved clover fermions allow us to improve our control of the continuum extrapolation. For our central values the masses of the sea quarks are not extrapolated to the physical u, d masses; that is, the central values are ''partially quenched.'' A calculation using 'fat-link clover' valence fermions is also discussed but is not included in our final results. We find, for example, f B =190(7)( -17 +24 )( -2 +11 )( -0 +8 ) MeV, f B s /f B =1.16(1)(2)(2)( -0 +4 ), f D s =241(5)( -26 +27 )( -4 +9 )( -0 +5 ) MeV, and f B /f D s =0.79(2)( -4 +5 )(3)( -0 +5 ), where in each case the first error is statistical and the remaining three are systematic: the error within the partially quenched N f =2 approximation, the error due to the missing strange sea quark and to partial quenching, and an estimate of the effects of chiral logarithms at small quark mass. The last error, though quite significant in decay constant ratios, appears to be smaller than has been recently suggested by Kronfeld and Ryan, and Yamada. We emphasize, however, that as in other lattice computations to date, the lattice u,d quark masses are not very light and chiral log effects may not be fully under control
Vacuum expectation values for four-fermion operators. Model estimates
International Nuclear Information System (INIS)
Zhitnitskij, A.R.
1985-01-01
Some simple models (a system with a heavy quark, the rarefied insatanton gas) are used to investigate the problem of factorizability. Characteristics of vacuum fluctuations responsible for saturation of four-fermion vacuum expectation values which are known phenomenologically are discussed. A qualitative agreement between the model and phenomenologic;l estimates has been noted
Vacuum expectation values of four-fermion operators. Model estimates
International Nuclear Information System (INIS)
Zhitnitskii, A.R.
1985-01-01
Simple models (a system with a heavy quark, a rarefied instanton gas) are used to study problems of factorizability. A discussion is given of the characteristics of the vacuum fluctuations responsible for saturation of the phenomenologically known four-fermion vacuum expectation values. Qualitative agreement between the model and phenomenological estimates is observed
International Nuclear Information System (INIS)
Kauffman, L.; Saleur, H.
1991-01-01
Various aspects of knot theory are discussed when fermionic degrees of freedom are taken into account in the braid group representations and in the state models. It is discussed how the R matrix for the Alexander polynomial arises from the Fox differential calculus, and how it is related to the quantum group U q gl(1,1). New families of solutions of the Yang Baxter equation obtained from ''linear'' representations of the braid group and exterior algebra are investigated. State models associated with U q sl(n,m), and in the case n=m=1 a state model for the multivariable Alexander polynomial are studied. Invariants of links in solid handlebodies are considered and it is shown how the non trivial topology lifts the boson fermion degeneracy is present in S 3 . (author) 36 refs
International Nuclear Information System (INIS)
Grensing, G.
2002-01-01
The path integral for ghost fermions, which is heuristically made use of in the Batalin-Fradkin-Vilkovisky approach to quantization of constrained systems, is derived from first principles. The derivation turns out to be rather different from that of physical fermions since the definition of Dirac states for ghost fermions is subtle. With these results at hand, it is then shown that the nonminimal extension of the Becchi-Rouet-Stora-Tyutin operator must be chosen differently from the notorious choice made in the literature in order to avoid the boundary terms that have always plagued earlier treatments. Furthermore it is pointed out that the elimination of states with nonzero ghost number requires the introduction of a thermodynamic potential for ghosts; the reason is that Schwarz's Lefschetz formula for the partition function of the time-evolution operator is not capable, despite claims to the contrary, to get rid of nonzero ghost number states on its own. Finally, we comment on the problems of global topological nature that one faces in the attempt to obtain the solutions of the Dirac condition for physical states in a configuration space of nontrivial geometry; such complications give rise to anomalies that do not obey the Wess-Zumino consistency conditions. (orig.)
Interacting composite fermions
DEFF Research Database (Denmark)
nrc762, nrc762
2016-01-01
Numerical studies by Wójs, Yi, and Quinn have suggested that an unconventional fractional quantum Hall effect is plausible at filling factors ν=1/3 and 1/5, provided the interparticle interaction has an unusual form for which the energy of two fermions in the relative angular momentum three channel...... as fractional quantum Hall effect of electrons at ν=4/11, 4/13, 5/13, and 5/17. I investigate in this article the nature of the fractional quantum Hall states at ν=4/5, 5/7, 6/17, and 6/7, which correspond to composite fermions at ν∗=4/3, 5/3, and 6/5, and find that all these fractional quantum Hall states...... are conventional. The underlying reason is that the interaction between composite fermions depends substantially on both the number and the direction of the vortices attached to the electrons. I also study in detail the states with different spin polarizations at 6/17 and 6/7 and predict the critical Zeeman...
Micro-Valences: Affective valence in neutral everyday objects
Directory of Open Access Journals (Sweden)
Sophie eLebrecht
2012-04-01
Full Text Available Affective valence influences both our cognition and our perception of the world. Indeed, the speed and quality with which we recognize objects in a visual scene can vary dramatically depending on its affective content. However, affective processing of visual objects has been typically studied using only stimuli with strong affective valences (e.g., guns or roses. Here we explore whether affective valence must be strong or obvious to exert an effect on our perception. We conclude that the majority of objects carry some affective valence (micro-valences and, thus, nominally neutral objects are not really neutral. Functionally, the perception of valence in everyday objects facilitates perceptually-driven choice behavior, decision-making, and affective responses.
Kondo and mixed-valence regimes in multilevel quantum dots
International Nuclear Information System (INIS)
Chudnovskiy, A. L.; Ulloa, S. E.
2001-01-01
We investigate the dependence of the ground state of a multilevel quantum dot on the coupling to an external fermionic system and on the interactions in the dot. As the coupling to the external system increases, the rearrangement of the effective energy levels in the dot signals the transition from the Kondo regime to a mixed-valence (MV) regime. The MV regime in a two-level dot is characterized by an intrinsic mixing of the levels in the dot, resulting in nonperturbative subtunneling and supertunneling phenomena that strongly influence the Kondo effect
Micro-Valences: Affective valence in neutral everyday objects
Sophie eLebrecht; Moshe eBar; Lisa F Barrett; Michael J Tarr
2012-01-01
Affective valence influences both our cognition and our perception of the world. Indeed, the speed and quality with which we recognize objects in a visual scene can vary dramatically depending on its affective content. However, affective processing of visual objects has been typically studied using only stimuli with strong affective valences (e.g., guns or roses). Here we explore whether affective valence must be strong or obvious to exert an effect on our perception. We conclude that the maj...
Fermion dynamical symmetry and the nuclear shell model
International Nuclear Information System (INIS)
Ginocchio, J.N.
1985-01-01
The interacting boson model (IBM) has been very successful in giving a unified and simple description of the spectroscopic properties of a wide range of nuclei, from vibrational through rotational nuclei. The three basic assumptions of the model are that: (1) the valence nucleons move about a doubly closed core, (2) the collective low-lying states are composed primarily of coherent pairs of neutrons and pairs of protons coupled to angular momentum zero and two, and (3) these coherent pairs are approximated as bosons. In this review we shall show how it is possible to have fermion Hamiltonians which have a class of collective eigenstates composed entirely of monopole and quadrupole pairs of fermions. Hence these models satisfy the assumptions (1) and (2) above but no boson approximation need be made. Thus the Pauli principle is kept in tact. Furthermore the fermion shell model states excluded in the IBM can be classified by the number of fermion pairs which are not coherent monopole or quadrupole pairs. Hence the mixing of these states into the low-lying spectrum can be calculated in a systematic and tractable manner. Thus we can introduce features which are outside the IBM. 11 refs
Optical verification of the valence band structure of cadmium arsenide
Gelten, M.J.; Es, van C.M.; Blom, F.A.P.; Jongeneelen, J.W.F.
1980-01-01
Optical absorption measurements were performed on thin single crystalline samples of Cd3As2 at temperatures of 300 K and 10 K. At low temperature the interband absorption coefficient shows clearly two steps due to direct transitions from the heavy hole and light hole valence bands to the conduction
Application of the interacting boson model to collective states in medium heavy nuclei
International Nuclear Information System (INIS)
Kaup, U.
1983-01-01
In the framework of the interacting boson model a systematic description of even-even isotopes of the medium heavy elements selenium, krypton, and strontium is given. The number of the free parameters could be kept very small by the determination of the physically relevant terms of the general model Hamiltonian. The variation of the collectivity from spherical to deformed, γ-soft nuclei could be mainly derived from the influence of the number of valence nucleons. All model parameters vary smoothly as function of the valence particle number and in qualitative agreement with predictions of a simplified microscopical model. Odd nuclei were studied in the framework of the interacting boson-fermion model. Beside the phenomenological description of odd-even rubidium, technetium, and silver isotope this part of the thesis is occupied mainly by the microscopical theory of the boson-fermion model. The effect of the antisymmetrization of the last, odd particle with the core nucleons is discussed. The microscopic theory is supplemented by the derivation of the so called Pauli term from the interaction of identical nucleons. (orig./HSI) [de
Overlap valence quarks on a twisted mass sea. A case study for mixed action lattice QCD
International Nuclear Information System (INIS)
Cichy, Krzysztof; Herdoiza, Gregorio; UAM/CSIC Univ. Autonoma de Madrid
2012-11-01
We discuss a Lattice QCD mixed action investigation employing Wilson maximally twisted mass sea and overlap valence fermions. Using four values of the lattice spacing, we demonstrate that the overlap Dirac operator assumes a point-like locality in the continuum limit. We also show that by adopting suitable matching conditions for the sea and valence theories a consistent continuum limit for the pion decay constant and light baryon masses can be obtained. Finally, we confront results for sea-valence mixed meson masses and the valence scalar correlator with corresponding expressions of chiral perturbation theory. This allows us to extract low energy constants of mixed action chiral perturbation which characterize the strength of unitarity violations in our mixed action setup.
Overlap valence quarks on a twisted mass sea. A case study for mixed action lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Drach, Vincent; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Garcia-Ramos, Elena [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Herdoiza, Gregorio [UAM/CSIC Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica; UAM/CSIC Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica; Collaboration: European Twisted Mass Collaboration
2012-11-15
We discuss a Lattice QCD mixed action investigation employing Wilson maximally twisted mass sea and overlap valence fermions. Using four values of the lattice spacing, we demonstrate that the overlap Dirac operator assumes a point-like locality in the continuum limit. We also show that by adopting suitable matching conditions for the sea and valence theories a consistent continuum limit for the pion decay constant and light baryon masses can be obtained. Finally, we confront results for sea-valence mixed meson masses and the valence scalar correlator with corresponding expressions of chiral perturbation theory. This allows us to extract low energy constants of mixed action chiral perturbation which characterize the strength of unitarity violations in our mixed action setup.
Fermion masses from superstrings
International Nuclear Information System (INIS)
Tanaka, K.
1986-01-01
It is assumed that the E 8 gauge group of the E 8 x E 8 heterotic superstring can be broken into SO(10) x SU(4). The mass relations among fermions m/sub u//m/sub d/ = m/sub c//m/sub s/ = m/sub t//m/sub b/ and m/sub ν e//m/sub e/ = m/sub ν mu//m/sub μ/ = m/sub ν tau//m/sub tau/ are discussed. 18 refs
Intermediate valence spectroscopy
International Nuclear Information System (INIS)
Gunnarsson, O.; Schoenhammer, K.
1987-01-01
Spectroscopic properties of intermediate valence compounds are studied using the Anderson model. Due to the large orbital and spin degeneracy N/sub f/ of the 4f-level, 1/N/sub f/ can be treated as a small parameter. This approach provides exact T = 0 results for the Anderson impurity model in the limit N/sub f/ → ∞, and by adding 1/N/sub f/ corrections some properties can be calculated accurately even for N/sub f/ = 1 or 2. In particular valence photoemission and resonance photoemission spectroscopies are studied. A comparison of theoretical and experimental spectra provides an estimate of the parameters in the model. Core level photoemission spectra provide estimates of the coupling between the f-level and the conduction states and of the f-level occupancy. With these parameters the model gives a fair description of other electron spectroscopies. For typical parameters the model predicts two structures in the f-spectrum, namely one structure at the f-level and one at the Fermi energy. The resonance photoemission calculation gives a photon energy dependence for these two peaks in fair agreement with experiment. The peak at the Fermi energy is partly due to a narrow Kondo resonance, resulting from many-body effects and the presence of a continuous, partly filled conduction band. This resonance is related to a large density of low-lying excitations, which explains the large susceptibility and specific heat observed for these systems at low temperatures. 38 references, 11 figures, 2 tables
Fermion fractionization and index theorem
International Nuclear Information System (INIS)
Hirayama, Minoru; Torii, Tatsuo
1982-01-01
The relation between the fermion fractionization and the Callias-Bott-Seeley index theorem for the Dirac operator in the open space of odd dimension is clarified. Only the case of one spatial dimension is discussed in detail. Sum rules for the expectation values of various quantities in fermion-fractionized configurations are derived. (author)
Phenomenology of colour exotic fermions
International Nuclear Information System (INIS)
Luest, D.
1986-01-01
The authors discuss the phenomenological consequences of a dynamical scenario according to which the electroweak symmetry breaking and generation of fermion masses is due to fermions that transform under high colour representations. Particular emphasis is given to the predictions for rare processes and to the spectrum of high colour boundstates. (Auth.)
Three-dimensional Majorana fermions in chiral superconductors.
Kozii, Vladyslav; Venderbos, Jörn W F; Fu, Liang
2016-12-01
Using a systematic symmetry and topology analysis, we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-nondegenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the nonunitary nature of chiral pairing in spin-orbit-coupled superconductors. We address experimental signatures of Majorana fermions and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface, which form arcs in momentum space. We conclude by proposing the heavy fermion superconductor PrOs 4 Sb 12 and related materials as promising candidates for nonunitary chiral superconductors hosting three-dimensional Majorana fermions.
International Nuclear Information System (INIS)
Hulet, R.
1999-01-01
At the quantum level, particles behave very differently depending on whether their spin angular momentum is an integer or a half-integer. Half-integer spin particles are known as fermions, and include all the constituents of atoms: electrons, protons and neutrons. Bosons, on the other hand, are particles with integer spin, such as photons. Atoms are fermions if they are composed of an odd number of particles, like helium-3 or lithium-6. If they have an even number of constituents, like hydrogen, helium-4 or lithium-7, they are known as bosons. Fermions and bosons behave in profoundly different ways under certain conditions, especially at low temperatures. Four years ago, physicists created a Bose condensate, a quantum degenerate gas of bosons. Now the race is on to do the same with fermions. Deborah Jin's group at the US National Institute of Standards and Technology (NIST) and the University of Colorado has cooled a fermion gas to the lowest temperature yet (B DeMarco 1999 Phys. Rev. Lett. 82 4208). And John Thomas and co-workers at Duke University have set a new record for the length of time that fermions can be trapped using lasers (K O'Hara 1999 Phys. Rev. Lett. 82 4204). In this article the author describes the latest advances in the race to create a quantum degenerate gas of fermions. (UK)
Fermions and non-Abelian vortex
International Nuclear Information System (INIS)
Mello, E.R.B. de.
1986-01-01
Some aspectos of the fermion-non-Abelian vortex system are discussed. It is shown that this system presents properties analogous to the fermion-non-Abelian magnetic monopole one. But, differrently from the fermion-monopole case, this system does not present fermion condensate V = 0. (Author) [pt
Low energy fermion number violation
International Nuclear Information System (INIS)
Peccei, R.D.
1989-01-01
After a brief aside on charge quantization in the standard electroweak theory, I concentrate on various aspects of anomaly induced fermion number violation in the standard model. A critical analysis of the role of sphalerons for the universe's baryon asymmetry is presented and the importance of calculating directly fermion number violating Green's functions is stressed. A physical interpretation of the recent observation of Ringwald, that coherent effects in the electroweak theory lead to catastrophic fermion number violation at 100 TeV, is discussed. Possible quantum effects which might spoil this semi-classical picture are examined
Lattice degeneracies of geometric fermions
International Nuclear Information System (INIS)
Raszillier, H.
1983-05-01
We give the minimal numbers of degrees of freedom carried by geometric fermions on all lattices of maximal symmetries in d = 2, 3, and 4 dimensions. These numbers are lattice dependent, but in the (free) continuum limit, part of the degrees of freedom have to escape to infinity by a Wilson mechanism built in, and 2sup(d) survive for any lattice. On self-reciprocal lattices we compare the minimal numbers of degrees of freedom of geometric fermions with the minimal numbers of naive fermions on these lattices and argue that these numbers are equal. (orig.)
Hierarchy spectrum of SM fermions: from top quark to electron neutrino
International Nuclear Information System (INIS)
Xue, She-Sheng
2016-01-01
In the SM gauge symmetries and fermion content of neutrinos, charged leptons and quarks, we study the effective four-fermion operators of Einstein-Cartan type and their contributions to the Schwinger-Dyson equations of fermion self-energy functions. The study is motivated by the speculation that these four-fermion operators are probably originated due to the quantum gravity, which provides the natural regularization for chiral-symmetric gauge field theories. In the chiral-gauge symmetry breaking phase, as to achieve the energetically favorable ground state, only the top-quark mass is generated via the spontaneous symmetry breaking, and other fermion masses are generated via the explicit symmetry breaking induced by the top-quark mass, four-fermion interactions and fermion-flavor mixing matrices. A phase transition from the symmetry breaking phase to the chiral-gauge symmetric phase at TeV scale occurs and the drastically fine-tuning problem can be resolved. In the infrared fixed-point domain of the four-fermion coupling for the SM at low energies, we qualitatively obtain the hierarchy patterns of the SM fermion Dirac masses, Yukawa couplings and family-flavor mixing matrices with three additional right-handed neutrinos ν_R"f. Large Majorana masses and lepton-number symmetry breaking are originated by the four-fermion interactions among ν_R"f and their left-handed conjugated fields ν_R"f"c. Light masses of gauged Majorana neutrinos in the normal hierarchy (10"−"5−10"−"2 eV) are obtained consistently with neutrino oscillations. We present some discussions on the composite Higgs phenomenology and forward-backward asymmetry of tt̄-production, as well as remarks on the candidates of light and heavy dark matter particles (fermions, scalar and pseudoscalar bosons).
Hierarchy spectrum of SM fermions: from top quark to electron neutrino
Energy Technology Data Exchange (ETDEWEB)
Xue, She-Sheng [ICRANet,Piazza della Repubblica 10, 65122 Pescara (Italy); Physics Department, Sapienza University of Rome,Piazzale Aldo Moro 5, 00185 Roma (Italy)
2016-11-10
In the SM gauge symmetries and fermion content of neutrinos, charged leptons and quarks, we study the effective four-fermion operators of Einstein-Cartan type and their contributions to the Schwinger-Dyson equations of fermion self-energy functions. The study is motivated by the speculation that these four-fermion operators are probably originated due to the quantum gravity, which provides the natural regularization for chiral-symmetric gauge field theories. In the chiral-gauge symmetry breaking phase, as to achieve the energetically favorable ground state, only the top-quark mass is generated via the spontaneous symmetry breaking, and other fermion masses are generated via the explicit symmetry breaking induced by the top-quark mass, four-fermion interactions and fermion-flavor mixing matrices. A phase transition from the symmetry breaking phase to the chiral-gauge symmetric phase at TeV scale occurs and the drastically fine-tuning problem can be resolved. In the infrared fixed-point domain of the four-fermion coupling for the SM at low energies, we qualitatively obtain the hierarchy patterns of the SM fermion Dirac masses, Yukawa couplings and family-flavor mixing matrices with three additional right-handed neutrinos ν{sub R}{sup f}. Large Majorana masses and lepton-number symmetry breaking are originated by the four-fermion interactions among ν{sub R}{sup f} and their left-handed conjugated fields ν{sub R}{sup fc}. Light masses of gauged Majorana neutrinos in the normal hierarchy (10{sup −5}−10{sup −2} eV) are obtained consistently with neutrino oscillations. We present some discussions on the composite Higgs phenomenology and forward-backward asymmetry of tt̄-production, as well as remarks on the candidates of light and heavy dark matter particles (fermions, scalar and pseudoscalar bosons).
Model space dimensionalities for multiparticle fermion systems
International Nuclear Information System (INIS)
Draayer, J.P.; Valdes, H.T.
1985-01-01
A menu driven program for determining the dimensionalities of fixed-(J) [or (J,T)] model spaces built by distributing identical fermions (electrons, neutrons, protons) or two distinguihable fermion types (neutron-proton and isospin formalisms) among any mixture of positive and negative parity spherical orbitals is presented. The algorithm, built around the elementary difference formula d(J)=d(M=J)-d(M=J+1), takes full advantage of M->-M and particle-hole symmetries. A 96 K version of the program suffices for as compilated a case as d[(+1/2, +3/2, + 5/2, + 7/2-11/2)sup(n-26)J=2 + ,T=7]=210,442,716,722 found in the 0hω valence space of 56 126 Ba 70 . The program calculates the total fixed-(Jsup(π)) or fixed-(Jsup(π),T) dimensionality of a model space generated by distributing a specified number of fermions among a set of input positive and negative parity (π) spherical (j) orbitals. The user is queried at each step to select among various options: 1. formalism - identical particle, neutron-proton, isospin; 2. orbits -bumber, +/-2*J of all orbits; 3. limits -minimum/maximum number of particles of each parity; 4. specifics - number of particles, +/-2*J (total), 2*T; 5. continue - same orbit structure, new case quit. Though designed for nuclear applications (jj-coupling), the program can be used in the atomic case (LS-coupling) so long as half integer spin values (j=l+-1/2) are input for the valnce orbitals. Mutiple occurrences of a given j value are properly taken into account. A minor extension provides labelling information for a generalized seniority classification scheme. The program logic is an adaption of methods used in statistical spectroscopy to evaluate configuration averages. Indeed, the need for fixed symmetry leve densities in spectral distribution theory motivated this work. The methods extend to other group structures where there are M-like additive quantum labels. (orig.)
Probabilistic simulation of fermion paths
International Nuclear Information System (INIS)
Zhirov, O.V.
1989-01-01
Permutation symmetry of fermion path integral allows (while spin degrees of freedom are ignored) to use in its simulation any probabilistic algorithm, like Metropolis one, heat bath, etc. 6 refs., 2 tabs
Super boson-fermion correspondence
International Nuclear Information System (INIS)
Kac, V.G.; Leur van de, J.W.
1987-01-01
Since the pioneering work of Skyrme, the boson-fermion correspondence has been playing an increasingly important role in 2-dimensional quantum field theory. More recently, it has become an important ingredient in the work of the Kyoto school on the KP hierarchy of soliton equations. In the present paper we establish a super boson-fermion correspondence, having in mind its applications to super KP hierarchies
Fermion-scalar conformal blocks
Energy Technology Data Exchange (ETDEWEB)
Iliesiu, Luca [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States); Kos, Filip [Department of Physics, Yale University,217 Prospect Street, New Haven, CT 06520 (United States); Poland, David [Department of Physics, Yale University,217 Prospect Street, New Haven, CT 06520 (United States); School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, New Jersey 08540 (United States); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States); Simmons-Duffin, David [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, New Jersey 08540 (United States); Yacoby, Ran [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States)
2016-04-13
We compute the conformal blocks associated with scalar-scalar-fermion-fermion 4-point functions in 3D CFTs. Together with the known scalar conformal blocks, our result completes the task of determining the so-called ‘seed blocks’ in three dimensions. Conformal blocks associated with 4-point functions of operators with arbitrary spins can now be determined from these seed blocks by using known differential operators.
Highly imbalanced fermion-fermion mixtures in one dimension
International Nuclear Information System (INIS)
Recher, Christian
2013-01-01
In the framework of exactly solvable quantum many-body systems we study models of interacting spin one-half Fermions in one dimension. The first part deals with systems of spin one-half Fermions which interact via repulsive contact interaction. A reformulation of the Bethe-Ansatz solvable many-body wave function is presented. This simplifies considerably the calculations for the highly imbalanced case, where very few particles of one species (minority Fermions) are present. For the other particle species (majority Fermions) the thermodynamic limit is taken. We assume the majority Fermions to be in the ground state such that their non-interacting momentum distribution is a Fermi-sea. Upon this we consider excitations where the particles of the minority species may occupy an arbitrary state within the Fermi-sea. In the case of only a single minority Fermion, the many-body wave function can be expressed as a determinant. This allows us to derive exact thermodynamic expressions for several expectation values as well as for the density-density correlation function. Moreover it is possible to find closed expressions for the single particle Green's function. All of the above mentioned quantities show a non-trivial dependence on the minority particle's momentum. In particular the Green's function in the Tonks-Girardeau regime of hardcore interaction is shown to undergo a transition from the one of impenetrable Bosons to that of free Fermions as the extra particle's momentum varies from the core to the edge of the Fermi-sea. This transition becomes manifest in an algebraic asymptotic decay of the Green's function. If two minority Fermions are present, the many-body wave function turns out to be more complicated. Nevertheless it is possible to derive exact expressions for the two and the three particle density-density correlation functions. Furthermore we calculate the system's total energy and based on that, identify terms which have a natural
Fermion bag approach to the sign problem in strongly coupled lattice QED with Wilson fermions
Chandrasekharan, Shailesh; Li, Anyi
2010-01-01
We explore the sign problem in strongly coupled lattice QED with one flavor of Wilson fermions in four dimensions using the fermion bag formulation. We construct rules to compute the weight of a fermion bag and show that even though the fermions are confined into bosons, fermion bags with negative weights do exist. By classifying fermion bags as either simple or complex, we find numerical evidence that complex bags with positive and negative weights come with almost equal probabilities and th...
Energy Technology Data Exchange (ETDEWEB)
Lippoldt, Stefan
2016-01-21
In this thesis we study a formulation of Dirac fermions in curved spacetime that respects general coordinate invariance as well as invariance under local spin base transformations. We emphasize the advantages of the spin base invariant formalism both from a conceptual as well as from a practical viewpoint. This suggests that local spin base invariance should be added to the list of (effective) properties of (quantum) gravity theories. We find support for this viewpoint by the explicit construction of a global realization of the Clifford algebra on a 2-sphere which is impossible in the spin-base non-invariant vielbein formalism. The natural variables for this formulation are spacetime-dependent Dirac matrices subject to the Clifford-algebra constraint. In particular, a coframe, i.e. vielbein field is not required. We disclose the hidden spin base invariance of the vielbein formalism. Explicit formulas for the spin connection as a function of the Dirac matrices are found. This connection consists of a canonical part that is completely fixed in terms of the Dirac matrices and a free part that can be interpreted as spin torsion. The common Lorentz symmetric gauge for the vielbein is constructed for the Dirac matrices, even for metrics which are not linearly connected. Under certain criteria, it constitutes the simplest possible gauge, demonstrating why this gauge is so useful. Using the spin base formulation for building a field theory of quantized gravity and matter fields, we show that it suffices to quantize the metric and the matter fields. This observation is of particular relevance for field theory approaches to quantum gravity, as it can serve for a purely metric-based quantization scheme for gravity even in the presence of fermions. Hence, in the second part of this thesis we critically examine the gauge, and the field-parametrization dependence of renormalization group flows in the vicinity of non-Gaussian fixed points in quantum gravity. While physical
Instantons, fermions and Chern-Simons terms
International Nuclear Information System (INIS)
Collie, Benjamin; Tong, David
2008-01-01
In five spacetime dimensions, instantons are finite energy, solitonic particles. We describe the dynamics of these objects in the presence of a Chern-Simons interaction. For U(N) instantons, we show that the 5d Chern-Simons term induces a corresponding Chern-Simons term in the ADHM quantum mechanics. For SU(N) instantons, we provide a description in terms of geodesic motion on the instanton moduli space, modified by the presence of a magnetic field. We show that this magnetic field is equal to the first Chern character of an index bundle. All of these results are derived by a simple method which follows the fate of zero modes as fermions are introduced, made heavy, and subsequently integrated out.
Valence effects of sorption: laboratory control of valence state
International Nuclear Information System (INIS)
Meyer, R.E.; Arnold, W.D.; Case, F.I.
1984-01-01
Estimation of the rates of migration of nuclides from nuclear waste repositories required knowledge of the interaction of these nuclides with the components of the geological formations in the path of the migration. These interactions will be dependent upon the valence state and speciation of the nuclide. If the valence state is not known, then there can be little confidence in use of the data for safety analysis. An electrochemical method of valence state control was developed which makes use of a porous electrode in a flow system containing a column of the adsorbent. By use of this method and solvent extraction analyses of the valence states, a number of reactions of interest to HLW repositories were investigated. These include the reduction of Np(V) and Tc(VII) by crushed basalt and other minerals. For the reduction of Np(V) by basalt, the experiments indicate that sorption on basalt increases with pH and that most of the Np is reduced to Np(IV). The adsorbed Np(IV) is very difficult to remove from the basalt. For the experiments with Tc(VII), the results are considerably more complicated. The results of these experiments are used to assess some of the techniques and methods currently used in safety analyses of proposed HLW repositories. Perhaps the most important consideration is that predictive modeling of valence change reactions, such as the reduction of Np(V) and Tc(VII), must be used with considerable caution, and the occurrence of such reactions should be verified as best as possible with experiments using valence state control and analyses. 13 references, 3 figures, 1 table
MSW-resonant fermion mixing during reheating
Kanai, Tsuneto; Tsujikawa, Shinji
2003-10-01
We study the dynamics of reheating in which an inflaton field couples two flavor fermions through Yukawa-couplings. When two fermions have a mixing term with a constant coupling, we show that the Mikheyev-Smirnov-Wolfenstein (MSW)-type resonance emerges due to a time-dependent background in addition to the standard fermion creation via parametric resonance. This MSW resonance not only alters the number densities of fermions generated by a preheating process but also can lead to the larger energy transfer from the inflaton to fermions. Our mechanism can provide additional source terms for the creation of superheavy fermions which may be relevant for the leptogenesis scenario.
MSW-resonant fermion mixing during reheating
International Nuclear Information System (INIS)
Kanai, Tsuneto; Tsujikawa, Shinji
2003-01-01
We study the dynamics of reheating in which an inflaton field couples two flavor fermions through Yukawa-couplings. When two fermions have a mixing term with a constant coupling, we show that the Mikheyev-Smirnov-Wolfenstein (MSW)-type resonance emerges due to a time-dependent background in addition to the standard fermion creation via parametric resonance. This MSW resonance not only alters the number densities of fermions generated by a preheating process but also can lead to the larger energy transfer from the inflaton to fermions. Our mechanism can provide additional source terms for the creation of superheavy fermions which may be relevant for the leptogenesis scenario
Fermions on the electroweak string
Moreno, J M; Quirós, Mariano; Moreno, J M; Oaknin, D H; Quiros, M
1995-01-01
We construct a simple class of exact solutions of the electroweak theory including the naked Z--string and fermion fields. It consists in the Z--string configuration (\\phi,Z_\\theta), the {\\it time} and z components of the neutral gauge bosons (Z_{0,3},A_{0,3}) and a fermion condensate (lepton or quark) zero mode. The Z--string is not altered (no feed back from the rest of fields on the Z--string) while fermion condensates are zero modes of the Dirac equation in the presence of the Z--string background (no feed back from the {\\it time} and z components of the neutral gauge bosons on the fermion fields). For the case of the n--vortex Z--string the number of zero modes found for charged leptons and quarks is (according to previous results by Jackiw and Rossi) equal to |n|, while for (massless) neutrinos is |n|-1. The presence of fermion fields in its core make the obtained configuration a superconducting string, but their presence (as well as that of Z_{0,3},A_{0,3}) does not enhance the stability of the Z--stri...
How real are composite fermions?
International Nuclear Information System (INIS)
Kang, W.; Stormer, H.L.; Pfeiffer, L.N.; Baldwin, K.W.; West, K.W.
1995-01-01
A new picture of fractional quantum Hall effect (FQHE) in terms of a novel particle called composite fermion has emerged recently. A composite fermion is a composite of two flux quanta which are effectively bound to an electron as a result of electron-electron interaction. A system of electrons at half-filled Landau level can be transformed to an equivalent system of composite fermions at zero effective magnetic field with a distinct Fermi surface. The FQHE is then viewed as the integral quantum Hall effect of composite fermions away from half-filling. In order to test for these new particles, we have studied transport of anti-dot superlattices in a two-dimensional electron gas. At low magnetic fields electron transport exhibits well-known resonances at fields where the classical cyclotron orbit becomes commensurate with the anti-dot lattice. At half-filling we observe the same dimensional resonances. This establishes the ''semi-classical'' behavior of composite fermions. (orig.)
Localized description of valence fluctuations
International Nuclear Information System (INIS)
Alascio, B.; Allub, R.; Aligia, A.
1979-07-01
The authors set up a model for intermediate valence equivalent to the ''atomic'' limit of the Anderson Hamiltonian. Detailed analysis of this model shows that most of the essential characteristics of valence fluctuators are already present in this crudely simplified Hamiltonian. The spin-spin and the 4f charge-charge correlation functions are studied and it is shown that it is possible to define a spin fluctuation frequency ωsub(s.f.) and a charge fluctuation frequency ωsub(ch.f.).ωsub(s.f.) and ωsub(ch.f.) can differ considerably for some values of the parameters of the model. The magnetic susceptibility and the specific heat are calculated as functions of temperature and it is shown how the results simulate the behaviour found in valence fluctuators. (author)
Finite boson mappings of fermion systems
International Nuclear Information System (INIS)
Johnson, C.W.; Ginocchio, J.N.
1994-01-01
We discuss a general mapping of fermion pairs to bosons that preserves Hermitian conjugation, with an eye towards producing finite and usable boson Hamiltonians that approximate well the low-energy dynamics of a fermion Hamiltonian
Fermionic One-Way Quantum Computation
International Nuclear Information System (INIS)
Cao Xin; Shang Yun
2014-01-01
Fermions, as another major class of quantum particles, could be taken as carriers for quantum information processing beyond spins or bosons. In this work, we consider the fermionic generalization of the one-way quantum computation model and find that one-way quantum computation can also be simulated with fermions. In detail, using the n → 2n encoding scheme from a spin system to a fermion system, we introduce the fermionic cluster state, then the universal computing power with a fermionic cluster state is demonstrated explicitly. Furthermore, we show that the fermionic cluster state can be created only by measurements on at most four modes with |+〉 f (fermionic Bell state) being free
Null-plane quantization of fermions
International Nuclear Information System (INIS)
Mustaki, D.
1990-01-01
Massive Dirac fermions are canonically quantized on the null plane using the Dirac-Bergmann algorithm. The procedure is carried out in the framework of quantum electrodynamics as an illustration of a rigorous treatment of interacting fermion fields
Three mirror pairs of fermion families
International Nuclear Information System (INIS)
Montvay, I.
1988-01-01
A simple model with three mirror pairs of fermion families is considered which allows for a substantial mixing between the mirror fermion partners without conflicting with known phenomenology. (orig.)
Bosonic behavior of entangled fermions
DEFF Research Database (Denmark)
C. Tichy, Malte; Alexander Bouvrie, Peter; Mølmer, Klaus
2012-01-01
Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle does not affect the behavior of many such composite bosons. The departure of ideal bosonic behavior is quantified by the normalization ratio of multi-composite-boson st......Two bound, entangled fermions form a composite boson, which can be treated as an elementary boson as long as the Pauli principle does not affect the behavior of many such composite bosons. The departure of ideal bosonic behavior is quantified by the normalization ratio of multi...
On the disordered fermion couplings
International Nuclear Information System (INIS)
Bernaschi, M.; Cabasino, S.; Marinari, E.; Rome-2 Univ.; Sarno, R.; Rome-1 Univ.
1989-01-01
We study the possibility of avoiding the fermion doubling problem by using a random coupling. We use numerical simulations in order to study the theory in the strong disorder region. We find a sharp crossover as a function of the strength of the disorder. For weak quenched disorder we find that the species doubling survives, while for strong quenched disorder only with a particular choice of the random term (antihermitian) it is possible to get a theory that seems to avoid fermion doubling. (orig.)
Fermions as generalized Ising models
Directory of Open Access Journals (Sweden)
C. Wetterich
2017-04-01
Full Text Available We establish a general map between Grassmann functionals for fermions and probability or weight distributions for Ising spins. The equivalence between the two formulations is based on identical transfer matrices and expectation values of products of observables. The map preserves locality properties and can be realized for arbitrary dimensions. We present a simple example where a quantum field theory for free massless Dirac fermions in two-dimensional Minkowski space is represented by an asymmetric Ising model on a euclidean square lattice.
Dynamical fermions in lattice quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Szabo, Kalman
2007-07-01
The thesis presentS results in Quantum Chromo Dynamics (QCD) with dynamical lattice fermions. The topological susceptibilty in QCD is determined, the calculations are carried out with dynamical overlap fermions. The most important properties of the quark-gluon plasma phase of QCD are studied, for which dynamical staggered fermions are used. (orig.)
Dynamical fermions in lattice quantum chromodynamics
International Nuclear Information System (INIS)
Szabo, Kalman
2007-01-01
The thesis presentS results in Quantum Chromo Dynamics (QCD) with dynamical lattice fermions. The topological susceptibilty in QCD is determined, the calculations are carried out with dynamical overlap fermions. The most important properties of the quark-gluon plasma phase of QCD are studied, for which dynamical staggered fermions are used. (orig.)
Gauge invariance and fermion mass dimensions
International Nuclear Information System (INIS)
Elias, V.
1979-05-01
Renormalization-group equation fermion mass dimensions are shown to be gauge dependent in gauge theories possessing non-vector couplings of gauge bosons to fermions. However, the ratios of running fermion masses are explicitly shown to be gauge invariant in the SU(5) and SU(2) x U(1) examples of such theories. (author)
Fermions and bosons : a 'spinless' approach
International Nuclear Information System (INIS)
Oliveira, P.M.C. de; Ribeiro, S.C.
1980-07-01
The fundamental difference between fermions and bosons is presented. The treatment used is based only on indistinguishability and its related implications on interference, with no mention to spin. Comparison between indistinguishable (fermions or bosons) and distinguishable identical particles are also made, yielding the enhancement (bosons) or inhibition (fermions) factors which determine the quantum distribution equations. (Author) [pt
Fermionic molecular dynamics for ground states and collisions of nuclei
International Nuclear Information System (INIS)
Feldmeier, H.; Bieler, K.; Schnack, J.
1994-08-01
The antisymmetric many-body trial state which describes a system of interacting fermions is parametrized in terms of localized wave packets. The equations of motion are derived from the time-dependent quantum variational principle. The resulting Fermionic Molecular Dynamics (FMD) equations include a wide range of semi-quantal to classical physics extending from deformed Hartree-Fock theory to Newtonian molecular dynamics. Conservation laws are discussed in connection with the choice of the trial state. The model is applied to heavy-ion collisions with which its basic features are illustrated. The results show a great variety of phenomena including deeply inelastic collisions, fusion, incomplete fusion, fragmentation, neck emission, promptly emitted nucleons and evaporation. (orig.)
International Nuclear Information System (INIS)
Grady, M.
1986-01-01
I describe a fast fermion algorithm which utilizes pseudofermion fields but appears to have little or no systematic error. Test simulations on two-dimensional gauge theories are described. A possible justification for the algorithm being exact is discussed. 8 refs
The fermion stochastic calculus I
International Nuclear Information System (INIS)
Streater, R.F.
1984-01-01
The author describes the stochastic calculus of quantum processes with fermions. After a description of the Clifford algebra as the csup(*)-algebra generated by spinor fields the damped harmonic oscillator with quantum noise is considered as example. Then the Clifford process is described. Finally the Ito-Clifford integral and the Ito-Clifford isometry are presented. (HSI)
Lattices, supersymmetry and Kaehler fermions
International Nuclear Information System (INIS)
Scott, D.M.
1984-01-01
It is shown that a graded extension of the space group of a (generalised) simple cubic lattice exists in any space dimension, D. The fermionic variables which arise admit a Kaehlerian interpretation. Each graded space group is a subgroup of a graded extension of the appropriate Euclidean group, E(D). The relevance of this to the construction of lattice theories is discussed. (author)
Sextet Model with Wilson Fermions
DEFF Research Database (Denmark)
Hansen, Martin; Pica, Claudio
2017-01-01
We present new results from our ongoing study of the SU(3) sextet model with two flavors in the two-index symmetric representation of the gauge group. In the simulations use unimproved Wilson fermions to investigate the infrared properties of the model. We have previously presented results...
Singlets of fermionic gauge symmetries
Bergshoeff, E.A.; Kallosh, R.E.; Rahmanov, M.A.
1989-01-01
We investigate under which conditions singlets of fermionic gauge symmetries which are "square roots of gravity" can exist. Their existence is non-trivial because there are no fields neutral in gravity. We tabulate several examples of singlets of global and local supersymmetry and Îº-symmetry and
Alternative to domain wall fermions
International Nuclear Information System (INIS)
Neuberger, H.
2002-01-01
An alternative to commonly used domain wall fermions is presented. Some rigorous bounds on the condition number of the associated linear problem are derived. On the basis of these bounds and some experimentation it is argued that domain wall fermions will in general be associated with a condition number that is of the same order of magnitude as the product of the condition number of the linear problem in the physical dimensions by the inverse bare quark mass. Thus, the computational cost of implementing true domain wall fermions using a single conjugate gradient algorithm is of the same order of magnitude as that of implementing the overlap Dirac operator directly using two nested conjugate gradient algorithms. At a cost of about a factor of two in operation count it is possible to make the memory usage of direct implementations of the overlap Dirac operator independent of the accuracy of the approximation to the sign function and of the same order as that of standard Wilson fermions
Wilson fermions at finite temperature
International Nuclear Information System (INIS)
Creutz, M.
1996-01-01
The author conjectures on the phase structure expected for lattice gauge theory with two flavors of Wilson fermions, concentrating on large values of the hopping parameter. Numerous phases are expected, including the conventional confinement and deconfinement phases, as well as an Aoki phase with spontaneous breaking of flavor and parity and a large hopping phase corresponding to negative quark masses
Fermion condensation: a strange idea successfully explaining behaviour of numerous objects in nature
International Nuclear Information System (INIS)
Shaginyan, V.R.; Amusia, M.Ya.; Popov, K.G.
2010-01-01
A theory of fermion condensation quantum phase transition, preserving the extended quasiparticles paradigm and intimately related to the unlimited growth of the effective mass as a function of the temperature, magnetic field, etc., is capable to resolve the problem. We discuss the construction of the theory and show that it delivers theoretical explanations of the vast majority of experimental results in strongly correlated systems such as heavy-fermion metals and quasi-two dimensional Fermi systems. Our analysis is placed in the context of recent salient experimental results. Our calculations of the non-Fermi liquid behavior, the scales, and thermodynamic and transport properties are in good agreement with the heat capacity, magnetization, longitudinal magnetoresistance, and magnetic entropy obtained in remarkable measurements on the heavy-fermion metal YbRh 2 Si 2 .
International Nuclear Information System (INIS)
Azcoiti, V.; Cruz, A.; Di Carlo, G.; Grillo, A.F.; Vladikas, A.
1991-01-01
We attempt to increase the efficiency of simulations of dynamical fermions on the lattice by calculating the fermionic determinant just once for all the values of the theory's gauge coupling and flavor number. Our proposal is based on the determination of an effective fermionic action by the calculation of the fermionic determinant averaged over configurations at fixed gauge energy. The feasibility of our method is justified by the observed volume dependence of the fluctuations of the logarithm of the determinant. The algorithm we have used in order to calculate the fermionic determinant, based on the determination of all the eigenvalues of the fermionic matrix at zero mass, also enables us to obtain results at any fermion mass, with a single fermionic simulation. We test the method by simulating compact lattice QED, finding good agreement with other standard calculations. New results on the phase transition of compact QED with massless fermions on 6 4 and 8 4 lattices are also presented
Transport properties of chiral fermions
Energy Technology Data Exchange (ETDEWEB)
Puhr, Matthias
2017-04-26
Anomalous transport phenomena have their origin in the chiral anomaly, the anomalous non-conservation of the axial charge, and can arise in systems with chiral fermions. The anomalous transport properties of free fermions are well understood, but little is known about possible corrections to the anomalous transport coefficients that can occur if the fermions are strongly interacting. The main goal of this thesis is to study anomalous transport effects in media with strongly interacting fermions. In particular, we investigate the Chiral Magnetic Effect (CME) in a Weyl Semimetal (WSM) and the Chiral Separation Effect (CSE) in finite-density Quantum Chromodynamics (QCD). The recently discovered WSMs are solid state crystals with low-energy excitations that behave like Weyl fermions. The inter-electron interaction in WSMs is typically very strong and non-perturbative calculations are needed to connect theory and experiment. To realistically model an interacting, parity-breaking WSM we use a tight-binding lattice Hamiltonian with Wilson-Dirac fermions. This model features a non-trivial phase diagram and has a phase (Aoki phase/axionic insulator phase) with spontaneously broken CP symmetry, corresponding to the phase with spontaneously broken chiral symmetry for interacting continuum Dirac fermions. We use a mean-field ansatz to study the CME in spatially modulated magnetic fields and find that it vanishes in the Aoki phase. Moreover, our calculations show that outside of the Aoki phase the electron interaction has only a minor influence on the CME. We observe no enhancement of the magnitude of the CME current. For our non-perturbative study of the CSE in QCD we use the framework of lattice QCD with overlap fermions. We work in the quenched approximation to avoid the sign problem that comes with introducing a finite chemical potential on the lattice. The overlap operator calls for the evaluation of the sign function of a matrix with a dimension proportional to the volume
Molecular invariants: atomic group valence
International Nuclear Information System (INIS)
Mundim, K.C.; Giambiagi, M.; Giambiagi, M.S. de.
1988-01-01
Molecular invariants may be deduced in a very compact way through Grassman algebra. In this work, a generalized valence is defined for an atomic group; it reduces to the Known expressions for the case of an atom in a molecule. It is the same of the correlations between the fluctions of the atomic charges qc and qd (C belongs to the group and D does not) around their average values. Numerical results agree with chemical expectation. (author) [pt
THE VALENCE OF CORPUSCULAR PROTEINS.
Gorin, M H; Mover, L S
1942-07-20
BY THE USE OF TWO EXTREME MODELS: a hydrated sphere and an unhydrated rod the valence (net charge) of corpuscular proteins can be successfully calculated from electric mobility data by the Debye-Hückel theory (modified to include the effect of the ions in the ion atmosphere) in conjunction with the electrophoretic theory of Henry. As pointed out by Abramson, this permits a comparison with values for the valence from titration data. Electrometric titration measurements of serum albumin B (Kekwick) have been determined at several ionic strengths. These results, together with the available data in the literature for serum albumin B, egg albumin, and beta-lactoglobulin have been used to compare values for the valence calculated from measurements of titration, electrophoresis, and membrane potentials. The results indicate that the usual interpretation of titration curves is open to serious question. By extrapolation of the titration data to zero ionic strength and protein concentration, there results an "intrinsic" net charge curve describing the binding of H(+) (OH(-)) ion alone. This curve agrees closely, in each case, with values of the valence calculated from mobility data (which in turn are in close accord with those estimated from membrane potential measurements). The experimental titration curves in the presence of appreciable quantities of ions and protein deviate widely from the ideal curve. It is suggested that, under these conditions, binding of undissociated acid (base) leads to erroneous values for the net charge. This binding would not affect the electrophoretic mobility. Values of the net charge obtained by the two extreme models from electrophoretic data are in agreement within 15 to 20 per cent. The agreement between the cylindrical model and the titration data is somewhat better in each case than with the sphere; i.e., this comparison enables a choice to be made between asymmetry and hydration in the interpretation of results from sedimentation and
Origin of fermion masses and quark mixing without of fundamental scalars
International Nuclear Information System (INIS)
Dyatlov, I.T.
1991-01-01
Hierarchy of masses of fermion generation and the properties of the weak mixing matrix give evidence for the mechanism in which the fourth generation condensate and new vector boson are necessary elements. Rather large value of neutral transitions between heavy flavours could serve as a main experimental manifestation of the suggested mechanism
First results of ETMC simulations with Nf=2+1+1 maximally twisted mass fermions
Baron, R.; Blossier, B.; Boucaud, P.; Deuzeman, A.; Drach, V.; Farchioni, F.; Gimenez, V.; Herdoiza, G.; Jansen, K.; Michael, C.; Montvay, I.; Palao, D.; Pallante, E.; Pène, O.; Reker, S.; Urbach, C.; Wagner, M.; Wenger, U.; Collaboration, for the ETM
2009-01-01
We present first results from runs performed with Nf=2+1+1 flavours of dynamical twisted mass fermions at maximal twist: a degenerate light doublet and a mass split heavy doublet. An overview of the input parameters and tuning status of our ensembles is given, together with a comparison with results
Chiral fermions on the lattice
International Nuclear Information System (INIS)
Randjbar Daemi, S.; Strathdee, J.
1995-01-01
The overlap approach to chiral gauge theories on arbitrary D-dimensional lattices is studied. The doubling problem and its relation to chiral anomalies for D = 2 and 4 is examined. In each case it is shown that the doublers can be eliminated and the well known perturbative results for chiral anomalies can be recovered. We also consider the multi-flavour case and give the general criteria for the construction of anomaly free chiral gauge theories on arbitrary lattices. We calculate the second order terms in a continuum approximation to the overlap formula in D dimensions and show that they coincide with the bilinear part of the effective action of D-dimensional Weyl fermions coupled to a background gauge field. Finally, using the same formalism we reproduce the correct Lorentz, diffeomorphism and gauge anomalies in the coupling of a Weyl fermion to 2-dimensional gravitation and Maxwell fields. (author). 15 refs
The comparison of bosonic and fermionic descriptions of collective nuclear structure
International Nuclear Information System (INIS)
Baktybaev, K.
2004-01-01
Full text: Bosonic and fermionic descriptions for the nuclear many body system are complementary. The archetypical bosonic algebra is the original interacting boson model [1]. Without distinguishing between proton and neutron bosons, it gave rise to successful phenomenology for medium and heavy nuclei, and is built from the concept of dynamical symmetry whose genesis is a group chain. The fermionic algebra on the other hand, such as the fermion dynamical symmetry model (FDSM) [2], is necessarily more complex because it originates from the shell structure and uses protons and neutrons as building blocks. We have presented two complementary pictures of bosons and fermions to describe the normal and the exotic states. We find that the bosonic concepts of symmetry and mixed- symmetry can subtly be interpreted within the fermion picture as well. However, there is one important dichotomy. In the fermion description, the n-p quadrupole interaction is responsible for splitting these two type of states and produces strong M1 transitions. This phenomenon is in close analogy to the L-S splitting of orbital and spin spaces. The examples given in the paper show that many 2 + normal and exotic states are in fact 'partners' for n-p quadrupole coupling and there fore must split in its presence. We would like to emphasize that the proper placement of the positions of the exotic states and the prediction of their respective transitions must be another stringent constraint on the effective interactions of the Hamiltonian
Fermion to boson mappings revisited
International Nuclear Information System (INIS)
Ginocchio, J.N.; Johnson, C.W.
1996-01-01
We briefly review various mappings of fermion pairs to bosons, including those based on mapping operators, such as Belyaev-Zelevinskii, and those on mapping states, such as Marumori; in particular we consider the work of Otsuka-Arima-Iachello, aimed at deriving the Interacting Boson Model. We then give a rigorous and unified description of state-mapping procedures which allows one to systematically go beyond Otsuka-Arima-Iachello and related approaches, along with several exact results. (orig.)
Fermion determinants in lattice QCD
International Nuclear Information System (INIS)
Johnson, Christopher Andrew
2001-01-01
The main topic of this thesis concerns efficient algorithms for the calculation of determinants of the kind of matrix typically encountered in lattice QCD. In particular an efficient method for calculating the fermion determinant is described. Such a calculation is useful to illustrate the effects of light dynamical (virtual) quarks. The methods employed in this thesis are stochastic methods, based on the Lanczos algorithm, which is used for the solution of large, sparse matrix problems via a partial tridiagonalisation of the matrix. Here an implementation is explored which requires less exhaustive treatment of the matrix than previous Lanczos methods. This technique exploits the analogy between the Lanczos tridiagonalisation algorithm and Gaussian quadrature in order to calculate the fermion determinant. A technique for determining a number of the eigenvalues of the matrix is also presented. A demonstration is then given of how one can improve upon this estimate considerably using variance reduction techniques, reducing the variance by a factor of order 100 with a further, equal amount of work. The variance reduction method is a two-stage process, involving a Chebyshev approximation to the quantity in question and then the subtraction of traceless operators. The method is applied to the fermion determinant for non-perturbatively improved Wilson fermions on a 16 3 x 32 lattice. It is also applicable to a wider class of matrix operators. Finally we discuss how dynamical quark effects may be simulated in a Monte Carlo process with an effective partitioning of low and high eigenmodes. This may be done via selective updating of a trial configuration which highlights the physically relevant effects of light quark modes. (author)
Superdeformations and fermion dynamical symmetries
International Nuclear Information System (INIS)
Wu, Cheng-Li
1990-01-01
In this talk, I will present a link between nuclear collective motions and their underlying fermion dynamical symmetries. In particular, I will focus on the microscopic understanding of deformations. It is shown that the SU 3 of the one major shell fermion dynamical symmetry model (FDSM) is responsible for the physics of low and high spins in normal deformation. For the recently observed phenomena of superdeformation, the physics of the problem dictates a generalization to a supershell structure (SFDSM), which also has an SU 3 fermion dynamical symmetry. Many recently discovered feature of superdeformation are found to be inherent in such an SU 3 symmetry. In both cases the dynamical Pauli effect plays a vital role. A particularly noteworthy discovery from this model is that the superdeformed ground band is not the usual unaligned band but the D-pair aligned (DPA) band, which sharply crosses the excited bands. The existence of such DPA band is a key point to understand many properties of superdeformation. Our studies also poses new experimental challenge. This is particularly interesting since there are now plans to build new and exciting γ-ray detecting systems, like the GAMMASPHERE, which could provide answers to some of these challenges. 34 refs., 11 figs., 5 tabs
Light fermions in quantum gravity
International Nuclear Information System (INIS)
Eichhorn, Astrid; Gies, Holger
2011-01-01
We study the impact of quantum gravity, formulated as a quantum field theory of the metric, on chiral symmetry in a fermionic matter sector. Specifically we address the question of whether metric fluctuations can induce chiral symmetry breaking and bound state formation. Our results based on the functional renormalization group indicate that chiral symmetry is left intact even at strong gravitational coupling. In particular, we found that asymptotically safe quantum gravity where the gravitational couplings approach a non-Gaußian fixed point generically admits universes with light fermions. Our results thus further support quantum gravity theories built on fluctuations of the metric field such as the asymptotic-safety scenario. A study of chiral symmetry breaking through gravitational quantum effects may also serve as a significant benchmark test for other quantum gravity scenarios, since a completely broken chiral symmetry at the Planck scale would not be in accordance with the observation of light fermions in our universe. We demonstrate that this elementary observation already imposes constraints on a generic UV completion of gravity. (paper)
Axial anomalies of Lifshitz fermions
Bakas, Ioannis
2011-01-01
We compute the axial anomaly of a Lifshitz fermion theory with anisotropic scaling z=3 which is minimally coupled to geometry in 3+1 space-time dimensions. We find that the result is identical to the relativistic case using path integral methods. An independent verification is provided by showing with spectral methods that the eta-invariant of the Dirac and Lifshitz fermion operators in three dimensions are equal. Thus, by the integrated form of the anomaly, the index of the Dirac operator still accounts for the possible breakdown of chiral symmetry in non-relativistic theories of gravity. We apply this framework to the recently constructed gravitational instanton backgrounds of Horava-Lifshitz theory and find that the index is non-zero provided that the space-time foliation admits leaves with harmonic spinors. Using Hitchin's construction of harmonic spinors on Berger spheres, we obtain explicit results for the index of the fermion operator on all such gravitational instanton backgrounds with SU(2)xU(1) isom...
Symmetry between bosons and fermions
International Nuclear Information System (INIS)
Ohnuki, Y.; Kamefuchi, S.
1986-01-01
By definition Bosons and Fermions behave quite differently as regards statistics. It is equally true, however, that in some other respects they do behave similarly or even symmetrically. In the present paper they would like to show that such similarity or symmetry can be exhibited most fully when the theory is formulated in a specific manner, i.e. in terms of annihilation and creation operators a/sub j/ and a/sub j//sup dagger/ or what they term g-numbers. The difference between Bosons and Fermions can, of course, be traced back to the difference in the signatures (jj) = +,- attached to the brackets in the basic commutation relations: [a/sub j/,a/sub j//sup dagger/]-(jj) = 1, [a/sub j/,a/sub j/]-(jj) = 0. However, the substantial part of the theory can in fact be formulated without specifying the individual signatures (jj). This is why it is possible to treat Bosons and Fermions in a unified manner, and to thereby consider, among the two, super- or more general, g-symmetry transformations. 6 references, 1 table
FLIC-overlap fermions and topology
International Nuclear Information System (INIS)
Kamleh, W.; Kusterer, D.J.; Leinweber, D.B.; Williams, A.G.
2003-01-01
APE smearing the links in the irrelevant operators of clover fermions (Fat-Link Irrelevant Clover (FLIC) fermions) provides significant improvement in the condition number of the Hermitian-Dirac operator and gives rise to a factor of two savings in computing the overlap operator. This report investigates the effects of using a highly-improved definition of the lattice field-strength tensor F μν in the fermion action, made possible through the use of APE-smeared fat links in the construction of the irrelevant operators. Spurious double-zero crossings in the spectral flow of the Hermitian-Wilson Dirac operator associated with lattice artifacts at the scale of the lattice spacing are removed with FLIC fermions composed with an O(α 4 )-improved lattice field strength tensor. Hence, FLIC-Overlap fermions provide an additional benefit to the overlap formalism: a correct realization of topology in the fermion sector on the lattice
Fermions in noncommutative emergent gravity
International Nuclear Information System (INIS)
Klammer, D.
2010-01-01
Noncommutative emergent gravity is a novel framework disclosing how gravity is contained naturally in noncommutative gauge theory formulated as a matrix model. It describes a dynamical space-time which itself is a four-dimensional brane embedded in a higher-dimensional space. In noncommutative emergent gravity, the metric is not a fundamental object of the model; rather it is determined by the Poisson structure and by the induced metric of the embedding. In this work the coupling of fermions to these matrix models is studied from the point of view of noncommutative emergent gravity. The matrix Dirac operator as given by the IKKT matrix model defines an appropriate coupling for fermions to an effective gravitational metric of noncommutative four-dimensional spaces that are embedded into a ten-dimensional ambient space. As it turns out this coupling is non-standard due to a spin connection that vanishes in the preferred but unobservable coordinates defined by the model. The purpose of this work is to study the one-loop effective action of this approach. Standard results of the literature cannot be applied due to this special coupling of the fermions. However, integrating out these fields in a nontrivial geometrical background induces indeed the Einstein-Hilbert action of the effective metric, as well as additional terms which couple the noncommutative structure to the Riemann tensor, and a dilaton-like term. It remains to be understood what the effects of these terms are and whether they can be avoided. In a second step, the existence of a duality between noncommutative gauge theory and gravity which explains the phenomenon of UV/IR mixing as a gravitational effect is discussed. We show how the gravitational coupling of fermions can be interpreted as a coupling of fermions to gauge fields, which suffers then from UV/IR mixing. This explanation does not render the model finite but it reveals why some UV/IR mixing remains even in supersymmetric models, except in the N
Superconductivity in mixed boson-fermion systems
International Nuclear Information System (INIS)
Ioffe, L.; Larkin, A.I.; Ovchinnikov, Yu.N.; Yu, L.
1989-12-01
The superconductivity of mixed boson-fermion systems is studied using a simple boson-fermion transformation model. The critical temperature of the superconducting transition is calculated over a wide range of the narrow boson band position relative to the Fermi level. The BCS scenario and boson condensation picture are recovered in two limiting cases of high and low positions of boson band, respectively, with modifications due to boson-fermion interaction. (author). 11 refs
Lattice quantum chromodynamics with approximately chiral fermions
Energy Technology Data Exchange (ETDEWEB)
Hierl, Dieter
2008-05-15
In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the {theta}{sup +} pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)
Lattice quantum chromodynamics with approximately chiral fermions
International Nuclear Information System (INIS)
Hierl, Dieter
2008-05-01
In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the Θ + pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)
Fermion systems in discrete space-time
International Nuclear Information System (INIS)
Finster, Felix
2007-01-01
Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure
Fermion systems in discrete space-time
Energy Technology Data Exchange (ETDEWEB)
Finster, Felix [NWF I - Mathematik, Universitaet Regensburg, 93040 Regensburg (Germany)
2007-05-15
Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.
Fermion Systems in Discrete Space-Time
Finster, Felix
2006-01-01
Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.
Fermion systems in discrete space-time
Finster, Felix
2007-05-01
Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.
International Nuclear Information System (INIS)
Nguyen Toan Thang; Nguyen Ai Viet; Nguyen Hong Quang
1987-06-01
Decay probabilities of light and heavy excitons interacting with acoustic phonons in cubic semiconductors with a degenerate valence band are calculated. The numerical results for GaAs showed that the decay probability of the light exciton is much greater than that of the heavy one. (author). 10 refs, 1 fig
More on random-lattice fermions
International Nuclear Information System (INIS)
Kieu, T.D.; Institute for Advanced Study, Princeton, NJ; Markham, J.F.; Paranavitane, C.B.
1995-01-01
The lattice fermion determinants, in a given background gauge field, are evaluated for two different kinds of random lattices and compared to those of naive and wilson fermions in the continuum limit. While the fermion doubling is confirmed on one kind of lattices, there is positive evidence that it may be absent for the other, at least for vector interactions in two dimensions. Combined with previous studies, arbitrary randomness by itself is shown to be not a sufficient condition to remove the fermion doublers. 8 refs., 3 figs
Results form 2+1 flavours of SLiNC fermions
International Nuclear Information System (INIS)
Bietenholz, W.; Cundy, N.
2009-10-01
QCD results are presented for a 2+1 flavour fermion clover action (which we call the SLiNC action). A method of tuning the quark masses to their physical values is discussed. In this method the singlet quark mass is kept fixed, which solves the problem of different renormalisations (for singlet and non-singlet quark masses) occuring for non-chirally invariant lattice fermions. This procedure enables a wide range of quark masses to be probed, including the case with a heavy up-down quark mass and light strange quark mass. Preliminary results show the correct splittings for the baryon (octet and) decuplet spectrum. (orig.)
Valence configurations in 214Rn
International Nuclear Information System (INIS)
Dracoulis, G.D.; Byrne, A.P.; Stuchbery, A.E.; Bark, R.A.; Poletti, A.R.
1987-01-01
Excited states of 214 Rn, up to spins of ≅ 24 ℎ have been studied using γ-ray and electron spectroscopy following the 208 Pb( 9 Be,3n) 214 Rn reaction. The level scheme (which differs substantially from earlier work) is compared with the results of a semi-empirical shell model calculation. The availability of high-spin orbitals for the four valence protons and two valence neutrons, and the effect of the attractive proton-neutron interaction, leads to the prediction of high-spin states at an unusually low excitation energy. Experimentally, the high level density leads to difficulties in the level scheme assignments at high spin. Nevertheless, configuration assignments, supported by transition strengths deduced from the measured lifetimes (in the nanosecond region) are suggested for the main yrast states. The decay properties also suggest that configuration mixing is important. The possibility of a gradual transition to octupole deformation, implied by the decay properties of the 11 - and 10 + yrast states is also discussed. (orig.)
Möbius domain-wall fermions on gradient-flowed dynamical HISQ ensembles
Berkowitz, Evan; Bouchard, Chris; Chang, Chia Cheng; Clark, M. A.; Joó, Bálint; Kurth, Thorsten; Monahan, Christopher; Nicholson, Amy; Orginos, Kostas; Rinaldi, Enrico; Vranas, Pavlos; Walker-Loud, André
2017-09-01
We report on salient features of a mixed lattice QCD action using valence Möbius domain-wall fermions solved on the dynamical Nf=2 +1 +1 highly improved staggered quark sea-quark ensembles generated by the MILC Collaboration. The approximate chiral symmetry properties of the valence fermions are shown to be significantly improved by utilizing the gradient-flow scheme to first smear the highly improved staggered quark configurations. The greater numerical cost of the Möbius domain-wall inversions is mitigated by the highly efficient QUDA library optimized for NVIDIA GPU accelerated compute nodes. We have created an interface to this optimized QUDA solver in Chroma. We provide tuned parameters of the action and performance of QUDA using ensembles with the lattice spacings a ≃{0.15 ,0.12 ,0.09 } fm and pion masses mπ≃{310 ,220 ,130 } MeV . We have additionally generated two new ensembles with a ˜0.12 fm and mπ˜{400 ,350 } MeV . With a fixed flow time of tg f=1 in lattice units, the residual chiral symmetry breaking of the valence fermions is kept below 10% of the light quark mass on all ensembles, mres≲0.1 ×ml , with moderate values of the fifth dimension L5 and a domain-wall height M5≤1.3 . As a benchmark calculation, we perform a continuum, infinite volume, physical pion and kaon mass extrapolation of FK±/Fπ± and demonstrate our results are independent of flow time and consistent with the FLAG determination of this quantity at the level of less than one standard deviation.
Feynman rules for fermion-number-violating interactions
International Nuclear Information System (INIS)
Denner, A.; Eck, H.; Hahn, O.; Kueblbeck, J.
1992-01-01
We present simple algorithmic Feynman rules for fermion-number-violating interactions. They do not involve explicit charge-conjugation matrices and resemble closely the familiar rules for Dirac fermions. We insist on a fermion flow through the graphs along fermion lines and get the correct relative signs between different interfering Feynman graphs as in the case of Dirac fermions. We only need the familiar Dirac propagator and fewer vertices than in the usual treatment of fermion-number-violating interactions. (orig.)
Gauge coupling unification in realistic free-fermionic string models
International Nuclear Information System (INIS)
Dienes, K.R.; Faraggi, A.E.
1995-01-01
We discuss the unification of gauge couplings within the framework of a wide class of realistic free-fermionic string models which have appeared in the literature, including the flipped SU(5), SO(6)xSO(4), and various SU(3)xSU(2)xU(1) models. If the matter spectrum below the string scale is that of the Minimal Supersymmetric Standard Model (MSSM), then string unification is in disagreement with experiment. We therefore examine several effects that may modify the minimal string predictions. First, we develop a systematic procedure for evaluating the one-loop heavy string threshold corrections in free-fermionic string models, and we explicitly evaluate these corrections for each of the realistic models. We find that these string threshold corrections are small, and we provide general arguments explaining why such threshold corrections are suppressed in string theory. Thus heavy thresholds cannot resolve the disagreement with experiment. We also study the effect of non-standard hypercharge normalizations, light SUSY thresholds, and intermediate-scale gauge structure, and similarly conclude that these effects cannot resolve the disagreement with low-energy data. Finally, we examine the effects of additional color triplets and electroweak doublets beyond the MSSM. Although not required in ordinary grand unification scenarios, such states generically appear within the context of certain realistic free-fermionic string models. We show that if these states exist at the appropriate thresholds, then the gauge couplings will indeed unify at the string scale. Thus, within these string models, string unification can be in agreement with low-energy data. (orig.)
Fermionic models with superconducting circuits
Energy Technology Data Exchange (ETDEWEB)
Las Heras, Urtzi; Garcia-Alvarez, Laura; Mezzacapo, Antonio; Lamata, Lucas [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Solano, Enrique [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain)
2015-12-01
We propose a method for the efficient quantum simulation of fermionic systems with superconducting circuits. It consists in the suitable use of Jordan-Wigner mapping, Trotter decomposition, and multiqubit gates, be with the use of a quantum bus or direct capacitive couplings. We apply our method to the paradigmatic cases of 1D and 2D Fermi-Hubbard models, involving couplings with nearest and next-nearest neighbours. Furthermore, we propose an optimal architecture for this model and discuss the benchmarking of the simulations in realistic circuit quantum electrodynamics setups. (orig.)
Probing kink interactions with fermions
International Nuclear Information System (INIS)
Carlitz, R.; Chakrabarti, R.
1985-01-01
A dilute gas of kinks exhibits strong but short-ranged intrinsic interactions. When these intrinsic interactions are supplemented by other ''extrinsic'' interactions, a phase transition can occur in which kinks and antikinks bind to form a gas of bounces. The extrinsic interactions arise from the coupling of kinks to an additional degree of freedom, which we take to be a fermion field. The class of quantum-mechanical models which we study includes examples of supersymmetry. The way in which kinks and antikinks bind depends in detail on aspects of the intrinsic interactions. This structure is probably shared by field-theoretic models
Fermionic quantum mechanics and superfields
International Nuclear Information System (INIS)
Marnelius, R.
1990-01-01
The explicit forms of consistent eigenstate representations for finite dimensional fermionic quantum theories are considered in detail. In particular are the possible Grassmann characters of the eigenstates determined. A straightforward Schrodinger representation is shown to exist if they are even or odd. For an odd number of real eigenvalues, the eigenstates cannot be even or odd. Still a consistent Schrodinger picture is shown to exist provided the basic canonical operators are antilinearly represented. Since the wave functions within the Schrodinger picture are super-fields, the class of superfields which also are first quantized wave functions is determined
Energy Technology Data Exchange (ETDEWEB)
Ceccaldi, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1964-07-01
After, a description of the technique used, a qualitative examination is made of the influence of the temperature on the {nu}{sub OH}(3,400 cm{sup -1}) and {nu}{sub OD} (2,500 cm{sup -1}) valence bands of HDO in the liquid state and then during the passage to the solid state. Quantitative examination with two cells of different thickness makes it possible to define the influence of temperature on the residual absorption of the pure liquid (D{sub 2}O or H{sub 2}O and on the valency bands ({nu}{sub OH} and {nu}{sub OD} respectively). It is found that a similar change occurs in the two bands but that the changes in the background are very different. During the passage from the liquid to the solid state the shape of the bands varies considerably but little change occurs in the total intensity. It has been possible to express these results in a simple form which is directly applicable to analytical problems. (authors) [French] Apres un rappel de la technique utilisee, on examine qualitativement l'influence de la temperature sur les bandes de valence {nu}{sub OH} (3400 cm{sup -1}) et {nu}{sub OD} (2500 cm{sup -1}) de HDO a l'etat liquide puis le passage a l'etat solide. L'examen quantitatif, avec deux cuves d'epaisseurs differentes, permet de preciser l'influence de la temperature sur l'absorption residuelle du liquide pur (D{sub 2}O ou H{sub 2}O) et sur les bandes de valence ( {nu}{sub OH} et {nu}{sub OD} respectivement). On constate une evolution parallele de ces bandes mais un comportement tres different du fond continu. Lors du passage de l'etat liquide a l'etat solide, la forme des bandes varie considerablement mais non l'intensite totale. On a pu formuler ces resultats sous une forme simple applicable directement aux problemes analytiques. (auteurs)
S-wave scattering of fermion revisited
International Nuclear Information System (INIS)
Rahaman, Anisur
2011-01-01
A model where a Dirac fermion is coupled to background dilaton field is considered to study s-wave scattering of fermion by a back ground dilaton black hole. It is found that an uncomfortable situation towards information loss scenario arises when one loop correction gets involved during bosonization.
Spectral intensity distribution of trapped fermions
Indian Academy of Sciences (India)
Trapped fermions; local density approximation; spectral intensity distribution function. ... Thus, cold atomic systems allow us to study interesting ... In fermions, synthetic non-Abelian gauge ... energy eigenstates of the isotropic harmonic oscillator [26–28]. ... d i=1. (ni + 1. 2. )ω0. In calculating the SIDF exactly these eigenfunc-.
Coherent states in the fermionic Fock space
International Nuclear Information System (INIS)
Oeckl, Robert
2015-01-01
We construct the coherent states in the sense of Gilmore and Perelomov for the fermionic Fock space. Our treatment is from the outset adapted to the infinite-dimensional case. The fermionic Fock space becomes in this way a reproducing kernel Hilbert space of continuous holomorphic functions. (paper)
Effects of a potential fourth fermion generation on the upper and lower Higgs boson mass bounds
International Nuclear Information System (INIS)
Gerhold, Philipp; Kallarackal, Jim; Jansen, Karl
2010-12-01
We study the effect of a potential fourth fermion generation on the upper and lower Higgs boson mass bounds. This investigation is based on the numerical evaluation of a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. In particular, the considered model obeys a Ginsparg-Wilson version of the underlying SU(2) L x U(1) Y symmetry, being a global symmetry here due to the neglection of gauge fields in this model. We present our results on the modification of the upper and lower Higgs boson mass bounds induced by the presence of a hypothetical very heavy fourth quark doublet. Finally, we compare these findings to the standard scenario of three fermion generations. (orig.)
Effects of a potential fourth fermion generation on the Higgs boson mass bounds
International Nuclear Information System (INIS)
Gerhold, Philipp; Kallarackal, Jim; Jansen, Karl
2010-12-01
We study the effect of a potential fourth fermion generation on the upper and lower Higgs boson mass bounds. This investigation is based on the numerical evaluation of a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. In particular, the considered model obeys a Ginsparg-Wilson version of the underlying SU(2) L x U(1) Y symmetry, being a global symmetry here due to the neglection of gauge fields in this model. We present our results on the modification of the upper and lower Higgs boson mass bounds induced by the presence of a hypothetical very heavy fourth quark doublet. Finally, we compare these findings to the standard scenario of three fermion generations. (orig.)
Dynamic origins of fermionic D -terms
Hudson, Jonathan; Schweitzer, Peter
2018-03-01
The D -term is defined through matrix elements of the energy-momentum tensor, similarly to mass and spin, yet this important particle property is experimentally not known any fermion. In this work we show that the D -term of a spin 1/2 fermion is of dynamical origin: it vanishes for a free fermion. This is in pronounced contrast to the bosonic case where already a free spin-0 boson has a non-zero intrinsic D -term. We illustrate in two simple models how interactions generate the D -term of a fermion with an internal structure, the nucleon. All known matter is composed of elementary fermions. This indicates the importance to study this interesting particle property in more detail, which will provide novel insights especially on the structure of the nucleon.
Flavor symmetries and fermion masses
International Nuclear Information System (INIS)
Rasin, A.
1994-04-01
We introduce several ways in which approximate flavor symmetries act on fermions and which are consistent with observed fermion masses and mixings. Flavor changing interactions mediated by new scalars appear as a consequence of approximate flavor symmetries. We discuss the experimental limits on masses of the new scalars, and show that the masses can easily be of the order of weak scale. Some implications for neutrino physics are also discussed. Such flavor changing interactions would easily erase any primordial baryon asymmetry. We show that this situation can be saved by simply adding a new charged particle with its own asymmetry. The neutrality of the Universe, together with sphaleron processes, then ensures a survival of baryon asymmetry. Several topics on flavor structure of the supersymmetric grand unified theories are discussed. First, we show that the successful predictions for the Kobayashi-Maskawa mixing matrix elements, V ub /V cb = √m u /m c and V td /V ts = √m d /m s , are a consequence of a large class of models, rather than specific properties of a few models. Second, we discuss how the recent observation of the decay β → sγ constrains the parameter space when the ratio of the vacuum expectation values of the two Higgs doublets, tanΒ, is large. Finally, we discuss the flavor structure of proton decay. We observe a surprising enhancement of the branching ratio for the muon mode in SO(10) models compared to the same mode in the SU(5) model
Fermion hierarchy from sfermion anarchy
International Nuclear Information System (INIS)
Altmannshofer, Wolfgang; Frugiuele, Claudia; Harnik, Roni
2014-01-01
We present a framework to generate the hierarchical flavor structure of Standard Model quarks and leptons from loops of superpartners. The simplest model consists of the minimal supersymmetric standard model with tree level Yukawa couplings for the third generation only and anarchic squark and slepton mass matrices. Agreement with constraints from low energy flavor observables, in particular Kaon mixing, is obtained for supersymmetric particles with masses at the PeV scale or above. In our framework both the second and the first generation fermion masses are generated at 1-loop. Despite this, a novel mechanism generates a hierarchy among the first and second generations without imposing a symmetry or small parameters. A second-to-first generation mass ratio of order 100 is typical. The minimal supersymmetric standard model thus includes all the necessary ingredients to realize a fermion spectrum that is qualitatively similar to observation, with hierarchical masses and mixing. The minimal framework produces only a few quantitative discrepancies with observation, most notably the muon mass is too low. Furthermore, we discuss simple modifications which resolve this and also investigate the compatibility of our model with gauge and Yukawa coupling Unification
Bosonization of free Weyl fermions
Marino, E. C.
2017-03-01
We generalize the method of bosonization, in its complete form, to a spacetime with 3 + 1 dimensions, and apply it to free Weyl fermion fields, which thereby, can be expressed in terms of a boson field, namely the Kalb-Ramond anti-symmetric tensor gauge field. The result may have interesting consequences both in condensed matter and in particle physics. In the former, the bosonized form of the Weyl chiral currents provides a simple explanation for the angle-dependent magneto-conductance recently observed in materials known as Weyl semimetals. In the latter, conversely, since electrons can be thought of as a combination of left and right Weyl fermions, our result suggests the possibility of a unified description of the elementary particles, which undergo the fundamental interactions, with the mediators of such interactions, namely, the gauge fields. This would fulfill the pioneering attempt of Skyrme, to unify the particles with their interaction mediators (Skyrme 1962 Nucl. Phys. 31 556).
Fermion condensation and gapped domain walls in topological orders
Energy Technology Data Exchange (ETDEWEB)
Wan, Yidun [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,Shanghai 200433 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University,Nanjing 210093 (China); Perimeter Institute for Theoretical Physics,Waterloo N2L 2Y5, Ontario (Canada); Wang, Chenjie [Perimeter Institute for Theoretical Physics,Waterloo N2L 2Y5, Ontario (Canada)
2017-03-31
We study fermion condensation in bosonic topological orders in two spatial dimensions. Fermion condensation may be realized as gapped domain walls between bosonic and fermionic topological orders, which may be thought of as real-space phase transitions from bosonic to fermionic topological orders. This picture generalizes the previous idea of understanding boson condensation as gapped domain walls between bosonic topological orders. While simple-current fermion condensation was considered before, we systematically study general fermion condensation and show that it obeys a Hierarchy Principle: a general fermion condensation can always be decomposed into a boson condensation followed by a minimal fermion condensation. The latter involves only a single self-fermion that is its own anti-particle and that has unit quantum dimension. We develop the rules of minimal fermion condensation, which together with the known rules of boson condensation, provides a full set of rules for general fermion condensation.
On the chirality of the SM and the fermion content of GUTs
Directory of Open Access Journals (Sweden)
Renato M. Fonseca
2015-08-01
Full Text Available The Standard Model (SM is a chiral theory, where right- and left-handed fermion fields transform differently under the gauge group. Extra fermions, if they do exist, need to be heavy otherwise they would have already been observed. With no complex mechanisms at work, such as confining interactions or extra-dimensions, this can only be achieved if every extra right-handed fermion comes paired with a left-handed one transforming in the same way under the Standard Model gauge group, otherwise the new states would only get a mass after electroweak symmetry breaking, which would necessarily be small (∼100 GeV. Such a simple requirement severely constrains the fermion content of Grand Unified Theories (GUTs. It is known for example that three copies of the representations 5¯+10 of SU(5 or three copies of the 16 of SO(10 can reproduce the Standard Model's chirality, but how unique are these arrangements? In a systematic way, this paper looks at the possibility of having non-standard mixtures of fermion GUT representations yielding the correct Standard Model chirality. Family unification is possible with large special unitary groups — for example, the 171 representation of SU(19 may decompose as 3(16+120+3(1 under SO(10.
Fermionic Spinon Theory of Square Lattice Spin Liquids near the Néel State
Directory of Open Access Journals (Sweden)
Alex Thomson
2018-01-01
Full Text Available Quantum fluctuations of the Néel state of the square lattice antiferromagnet are usually described by a CP^{1} theory of bosonic spinons coupled to a U(1 gauge field, and with a global SU(2 spin rotation symmetry. Such a theory also has a confining phase with valence bond solid (VBS order, and upon including spin-singlet charge-2 Higgs fields, deconfined phases with Z_{2} topological order possibly intertwined with discrete broken global symmetries. We present dual theories of the same phases starting from a mean-field theory of fermionic spinons moving in π flux in each square lattice plaquette. Fluctuations about this π-flux state are described by (2+1-dimensional quantum chromodynamics (QCD_{3} with a SU(2 gauge group and N_{f}=2 flavors of massless Dirac fermions. It has recently been argued by Wang et al. [Deconfined Quantum Critical Points: Symmetries and Dualities, Phys. Rev. X 7, 031051 (2017.PRXHAE2160-330810.1103/PhysRevX.7.031051] that this QCD_{3} theory describes the Néel-VBS quantum phase transition. We introduce adjoint Higgs fields in QCD_{3} and obtain fermionic dual descriptions of the phases with Z_{2} topological order obtained earlier using the bosonic CP^{1} theory. We also present a fermionic spinon derivation of the monopole Berry phases in the U(1 gauge theory of the VBS state. The global phase diagram of these phases contains multicritical points, and our results imply new boson-fermion dualities between critical gauge theories of these points.
Composite fermions in the quantum Hall effect
International Nuclear Information System (INIS)
Johnson, B.L.; Kirczenow, G.
1997-01-01
The quantum Hall effect and associated quantum transport phenomena in low-dimensional systems have been the focus of much attention for more than a decade. Recent theoretical development of interesting quasiparticles - 'composite fermions' - has led to significant advances in understanding and predicting the behaviour of two-dimensional electron systems under high transverse magnetic fields. Composite fermions may be viewed as fermions carrying attached (fictitious) magnetic flux. Here we review models of the integer and fractional quantum Hall effects, including the development of a unified picture of the integer and fractional effects based upon composite fermions. The composite fermion picture predicts remarkable new physics: the formation of a Fermi surface at high magnetic fields, and anomalous ballistic transport, thermopower, and surface acoustic wave behaviour. The specific theoretical predictions of the model, as well as the body of experimental evidence for these phenomena are reviewed. We also review recent edge-state models for magnetotransport in low-dimensional devices based on the composite fermion picture. These models explain the fractional quantum Hall effect and transport phenomena in nanoscale devices in a unified framework that also includes edge state models of the integer quantum Hall effect. The features of the composite fermion edge-state model are compared and contrasted with those of other recent edge-state models of the fractional quantum Hall effect. (author)
Phase space methods for Majorana fermions
Rushin Joseph, Ria; Rosales-Zárate, Laura E. C.; Drummond, Peter D.
2018-06-01
Fermionic phase space representations are a promising method for studying correlated fermion systems. The fermionic Q-function and P-function have been defined using Gaussian operators of fermion annihilation and creation operators. The resulting phase-space of covariance matrices belongs to the symmetry class D, one of the non-standard symmetry classes. This was originally proposed to study mesoscopic normal-metal-superconducting hybrid structures, which is the type of structure that has led to recent experimental observations of Majorana fermions. Under a unitary transformation, it is possible to express these Gaussian operators using real anti-symmetric matrices and Majorana operators, which are much simpler mathematical objects. We derive differential identities involving Majorana fermion operators and an antisymmetric matrix which are relevant to the derivation of the corresponding Fokker–Planck equations on symmetric space. These enable stochastic simulations either in real or imaginary time. This formalism has direct relevance to the study of fermionic systems in which there are Majorana type excitations, and is an alternative to using expansions involving conventional Fermi operators. The approach is illustrated by showing how a linear coupled Hamiltonian as used to study topological excitations can be transformed to Fokker–Planck and stochastic equation form, including dissipation through particle losses.
Tool kit for staggered fermions
International Nuclear Information System (INIS)
Kilcup, G.W.; Sharpe, S.R.
1986-01-01
The symmetries of staggered fermions are analyzed both discrete and continuous. Tools are presented that allow a simple decomposition of representations of the continuum symmetries into representations of the discrete lattice symmetries, both at zero and non-zero spatial momenta. These tools are used to find the lattice transcriptions of the operators that appear in the weak interaction Hamiltonian. The lattice Ward Identities are derived that follow from the single partially conserved axial symmetry. Using these identities, the lattice equivalents of the continuum PCAC relations are found. Combining all these tools, Ward Identities are obtained, for the matrix elements of the weak interaction Hamiltonian, from which the behavior of the matrix elements as the pion and kaon masses vanish are derived. The same behavior as in the continuum is found
International Nuclear Information System (INIS)
Spinrath, Martin
2014-01-01
We present a series of recent works related to group theoretical factors from GUT symmetry breaking which lead to predictions for the ratios of quark and lepton Yukawa couplings at the unification scale. New predictions for the GUT scale ratios y μ /y s , y τ /y b and y t /y b in particular are shown and compared to experimental data. For this comparison it is important to include possibly large supersymmetric threshold corrections. Due to this reason the structure of the fermion masses at the GUT scale depends on TeV scale physics and makes GUT scale physics testable at the LHC. We also discuss how this new predictions might lead to predictions for mixing angles by discussing the example of the recently measured last missing leptonic mixing angle θ 13 making this new class of GUT models also testable in neutrino experiments
Thermalization of fermionic quantum fields
International Nuclear Information System (INIS)
Berges, Juergen; Borsanyi, Szabolcs; Serreau, Julien
2003-01-01
We solve the nonequilibrium dynamics of a (3+1)-dimensional theory with Dirac fermions coupled to scalars via a chirally invariant Yukawa interaction. The results are obtained from a systematic coupling expansion of the 2PI effective action to lowest nontrivial order, which includes scattering as well as memory and off-shell effects. The dynamics is solved numerically without further approximation, for different far-from-equilibrium initial conditions. The late-time behavior is demonstrated to be insensitive to the details of the initial conditions and to be uniquely determined by the initial energy density. Moreover, we show that at late time the system is very well characterized by a thermal ensemble. In particular, we are able to observe the emergence of Fermi-Dirac and Bose-Einstein distributions from the nonequilibrium dynamics
Multigrid for Staggered Lattice Fermions
Energy Technology Data Exchange (ETDEWEB)
Brower, Richard C. [Boston U.; Clark, M. A. [Unlisted, US; Strelchenko, Alexei [Fermilab; Weinberg, Evan [Boston U.
2018-01-23
Critical slowing down in Krylov methods for the Dirac operator presents a major obstacle to further advances in lattice field theory as it approaches the continuum solution. Here we formulate a multi-grid algorithm for the Kogut-Susskind (or staggered) fermion discretization which has proven difficult relative to Wilson multigrid due to its first-order anti-Hermitian structure. The solution is to introduce a novel spectral transformation by the K\\"ahler-Dirac spin structure prior to the Galerkin projection. We present numerical results for the two-dimensional, two-flavor Schwinger model, however, the general formalism is agnostic to dimension and is directly applicable to four-dimensional lattice QCD.
Issues related to the Fermion mass problem
Murakowski, Janusz Adam
1998-09-01
This thesis is divided into three parts. Each illustrates a different aspect of the fermion mass issue in elementary particle physics. In the first part, the possibility of chiral symmetry breaking in the presence of uniform magnetic and electric fields is investigated. The system is studied nonperturbatively with the use of basis functions compatible with the external field configuration, the parabolic cylinder functions. It is found that chiral symmetry, broken by a uniform magnetic field, is restored by electric field. Obtained result is nonperturbative in nature: even the tiniest deviation of the electric field from zero restores chiral symmetry. In the second part, heavy quarkonium systems are investigated. To study these systems, a phenomenological nonrelativistic model is built. Approximate solutions to this model are found with the use of a specially designed Pade approximation and by direct numerical integration of Schrodinger equation. The results are compared with experimental measurements of respective meson masses. Good agreement between theoretical calculations and experimental results is found. Advantages and shortcommings of the new approximation method are analysed. In the third part, an extension of the standard model of elementary particles is studied. The extension, called the aspon model, was originally introduced to cure the so called strong CP problem. In addition to fulfilling its original purpose, the aspon model modifies the couplings of the standard model quarks to the Z boson. As a result, the decay rates of the Z boson to quarks are altered. By using the recent precise measurements of the decay rates Z → bb and Z /to [/it c/=c], new constraints on the aspon model parameters are found.
Algebraic fermion models and nuclear structure physics
International Nuclear Information System (INIS)
Troltenier, Dirk; Blokhin, Andrey; Draayer, Jerry P.; Rompf, Dirk; Hirsch, Jorge G.
1996-01-01
Recent experimental and theoretical developments are generating renewed interest in the nuclear SU(3) shell model, and this extends to the symplectic model, with its Sp(6,R) symmetry, which is a natural multi-(ℎ/2π)ω extension of the SU(3) theory. First and foremost, an understanding of how the dynamics of a quantum rotor is embedded in the shell model has established it as the model of choice for describing strongly deformed systems. Second, the symplectic model extension of the 0-(ℎ/2π)ω theory can be used to probe additional degrees of freedom, like core polarization and vorticity modes that play a key role in providing a full description of quadrupole collectivity. Third, the discovery and understanding of pseudo-spin has allowed for an extension of the theory from light (A≤40) to heavy (A≥100) nuclei. Fourth, a user-friendly computer code for calculating reduced matrix elements of operators that couple SU(3) representations is now available. And finally, since the theory is designed to cope with deformation in a natural way, microscopic features of deformed systems can be probed; for example, the theory is now being employed to study double beta decay and thereby serves to probe the validity of the standard model of particles and their interactions. A subset of these topics will be considered in this course--examples cited include: a consideration of the origin of pseudo-spin symmetry; a SU(3)-based interpretation of the coupled-rotor model, early results of double beta decay studies; and some recent developments on the pseudo-SU(3) theory. Nothing will be said about other fermion-based theories; students are referred to reviews in the literature for reports on developments in these related areas
Chiral composite fermions without U(1)'s
International Nuclear Information System (INIS)
Nelson, A.E.
1986-01-01
Some models are discussed which seem likely to produce composite fermions with masses protected only by nonabelian global symmetries. A subgroup of the original global symmetries can be weakly gauged to produce small masses for the fermions. A new feature of these models is that the original global symmetries contain no abelian factors and below the confinement scale there are neither exactly massless fermions nor Goldstone bosons. A candidate is given for a potentially realistic model with up to six families of quarks and leptons. (orig.)
Instantons and Massless Fermions in Two Dimensions
Callan, C. G. Jr.; Dashen, R.; Gross, D. J.
1977-05-01
The role of instantons in the breakdown of chiral U(N) symmetry is studied in a two dimensional model. Chiral U(1) is always destroyed by the axial vector anomaly. For N = 2 chiral SU(N) is also spontaneously broken yielding massive fermions and three (decoupled) Goldstone bosons. For N greater than or equal to 3 the fermions remain massless. Realistic four dimensional theories are believed to behave in a similar way but the critical N above which the fermions cease to be massive is not known in four dimensions.
Baby Skyrme model and fermionic zero modes
Queiruga, J. M.
2016-09-01
In this work we investigate some features of the fermionic sector of the supersymmetric version of the baby Skyrme model. We find that, in the background of Bogomol'nyi-Prasad-Sommerfield compact baby Skyrmions, fermionic zero modes are confined to the defect core. Further, we show that, while three Supersymmetry (SUSY) generators are broken in the defect core, SUSY is completely restored outside. We study also the effect of a D-term deformation of the model. Such a deformation allows for the existence of fermionic zero modes and broken SUSY outside the compact defect.
Ladder physics in the spin fermion model
Tsvelik, A. M.
2017-05-01
A link is established between the spin fermion (SF) model of the cuprates and the approach based on the analogy between the physics of doped Mott insulators in two dimensions and the physics of fermionic ladders. This enables one to use nonperturbative results derived for fermionic ladders to move beyond the large-N approximation in the SF model. It is shown that the paramagnon exchange postulated in the SF model has exactly the right form to facilitate the emergence of the fully gapped d -Mott state in the region of the Brillouin zone at the hot spots of the Fermi surface. Hence, the SF model provides an adequate description of the pseudogap.
Fermionic bound states in distinct kinklike backgrounds
Energy Technology Data Exchange (ETDEWEB)
Bazeia, D. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil); Mohammadi, A. [Universidade Federal de Campina Grande, Departamento de Fisica, Caixa Postal 10071, Campina Grande, Paraiba (Brazil)
2017-04-15
This work deals with fermions in the background of distinct localized structures in the two-dimensional spacetime. Although the structures have a similar topological character, which is responsible for the appearance of fractionally charged excitations, we want to investigate how the geometric deformations that appear in the localized structures contribute to the change in the physical properties of the fermionic bound states. We investigate the two-kink and compact kinklike backgrounds, and we consider two distinct boson-fermion interactions, one motivated by supersymmetry and the other described by the standard Yukawa coupling. (orig.)
Quantum geometry of the Dirac fermions
International Nuclear Information System (INIS)
Korchemskij, G.P.
1989-01-01
The bosonic path integral formalism is developed for Dirac fermions interacting with a nonabelian gauge field in the D-dimensional Euclidean space-time. The representation for the effective action and correlation functions of interacting fermions as sums over all bosonic paths on the complex projective space CP 2d-1 , (2d=2 [ D 2] is derived where all the spinor structure is absorbed by the one-dimensional Wess-Zumino term. It is the Wess-Zumino term that ensures all necessary properties of Dirac fermions under quantization. i.e., quantized values of the spin, Dirac equation, Fermi statistics. 19 refs
Grassmann phase space theory for fermions
Energy Technology Data Exchange (ETDEWEB)
Dalton, Bryan J. [Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne, Victoria, 3122 (Australia); Jeffers, John [Department of Physics, University of Strathclyde, Glasgow, G4 ONG (United Kingdom); Barnett, Stephen M. [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)
2017-06-15
A phase space theory for fermions has been developed using Grassmann phase space variables which can be used in numerical calculations for cold Fermi gases and for large fermion numbers. Numerical calculations are feasible because Grassmann stochastic variables at later times are related linearly to such variables at earlier times via c-number stochastic quantities. A Grassmann field version has been developed making large fermion number applications possible. Applications are shown for few mode and field theory cases. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Fermionic quantum critical point of spinless fermions on a honeycomb lattice
International Nuclear Information System (INIS)
Wang, Lei; Corboz, Philippe; Troyer, Matthias
2014-01-01
Spinless fermions on a honeycomb lattice provide a minimal realization of lattice Dirac fermions. Repulsive interactions between nearest neighbors drive a quantum phase transition from a Dirac semimetal to a charge-density-wave state through a fermionic quantum critical point, where the coupling of the Ising order parameter to the Dirac fermions at low energy drastically affects the quantum critical behavior. Encouraged by a recent discovery (Huffman and Chandrasekharan 2014 Phys. Rev. B 89 111101) of the absence of the fermion sign problem in this model, we study the fermionic quantum critical point using the continuous-time quantum Monte Carlo method with a worm-sampling technique. We estimate the transition point V/t=1.356(1) with the critical exponents ν=0.80(3) and η=0.302(7). Compatible results for the transition point are also obtained with infinite projected entangled-pair states. (paper)
Simultaneous conditioning of valence and arousal.
Gawronski, Bertram; Mitchell, Derek G V
2014-01-01
Evaluative conditioning (EC) refers to the change in the valence of a conditioned stimulus (CS) due to its pairing with a positive or negative unconditioned stimulus (US). To the extent that core affect can be characterised by the two dimensions of valence and arousal, EC has important implications for the origin of affective responses. However, the distinction between valence and arousal is rarely considered in research on EC or conditioned responses more generally. Measuring the subjective feelings elicited by a CS, the results from two experiments showed that (1) repeated pairings of a CS with a positive or negative US of either high or low arousal led to corresponding changes in both CS valence and CS arousal, (2) changes in CS arousal, but not changes in CS valence, were significantly related to recollective memory for CS-US pairings, (3) subsequent presentations of the CS without the US reduced the conditioned valence of the CS, with conditioned arousal being less susceptible to extinction and (4) EC effects were stronger for high arousal than low arousal USs. The results indicate that the conditioning of affective responses can occur simultaneously along two independent dimensions, supporting evidence in related areas that calls for a consideration of both valence and arousal. Implications for research on EC and the acquisition of emotional dispositions are discussed.
Valence instabilities in cerium intermetallics
International Nuclear Information System (INIS)
Dijkman, W.H.
1982-01-01
The primary purpose of this investigation was to study the magnetic behaviour of cerium in intermetallic compounds, that show an IV behaviour, e.g. CeSn 3 . In the progress of the investigations, it became of interest to study the effect of changes in the lattice of the IV compound by substituting La or Y for Ce, thus constituting the Cesub(1-x)Lasub(x)Sn 3 and Cesub(1-x)Ysub(x)Sn 3 quasibinary systems. A second purpose was to examine the possibility of introducing instabilities in the valency of a trivalent intermetallic cerium compound: CeIn 3 , also by La and Y-substitutions in the lattice. Measurements on the resulting Cesub(1-x)Lasub(x)In 3 and Cesub(1-x)Ysub(x)In 3 quasibinaries are described. A third purpose was to study the (gradual) transition from a trivalent cerium compound into an IV cerium compound. This was done by examining the magnetic properties of the CeInsub(x)Snsub(3-x) and CePbsub(x)Snsub(3-x) systems. Finally a new possibility was investigated: that of the occurrence of IV behaviour in CeSi 2 , CeSi, and in CeGa 2 . (Auth.)
Kondo effect and heavy fermions in Yb compounds
International Nuclear Information System (INIS)
Bonville, P.
1987-01-01
The Kondo properties of Yb dilute alloys and intermetallics have been investigated using Moessbauer spectroscopy on 170 Yb. In the dilute alloys AuYb and LaBe 13 Yb, the Kondo logarithmic anomaly of the impurity relaxation rate has been detected, and in the concentrated Yb compounds YbBe 13 , YbP and YbAs, and YbCuAl, the manifestations of the interplay between the Kondo effect and the magnetic ordering due to the RKKY interaction have been characterized
The critical magnetic fields of heavy fermions superconductors ...
African Journals Online (AJOL)
It can easily be seen that sharp change of HC2 between the two solutions exists in all orders of perturbation because there is no finite matrix element between the two states (ƞ, ƞ3) = (|0>, 0) and (ƞ, ƞ3) = (0, |0>) in any higher order of perturbation in the coupling term. This is different if the Magnetic field is pointing along ...
Some observations on heavy fermion superconductivity in UBe13
International Nuclear Information System (INIS)
Stewart, G.R.; Giorgi, A.L.
1984-01-01
Recently it has been discovered that very slight substitution of Cu for Be in UBe 13 depresses superconductivity below 0.050 K. We have measured the low-temperature specific heat of UBe/sub 12.94/ Cu/sub 0.06/ (T/sub c/ 13 appears unaltered in the copper-substituted material. Therefore, the presence of high-mass electrons is not directly correlated superconductivity in UBe 13
An SU(2) x SU(2) symmetric Higgs-Fermion model with staggered fermions
International Nuclear Information System (INIS)
Berlin, J.; Heller, U.M.
1991-01-01
We have simulated on SU(2)xSU(2) symmetric Higgs-Fermion model with a four component scalar field coupled with a Yukawa type coupling to two flavours of staggered fermions. The results show two qualitatively different behaviours in the broken phase. One for weak coupling where the fermion masses obey the perturbative tree level relation M F =y , and one for strong coupling where the behaviour agrees with a 1/d expansion. (orig.)
Fermion bag solutions to some sign problems in four-fermion field theories
International Nuclear Information System (INIS)
Li, Anyi
2013-01-01
Lattice four-fermion models containing N flavors of staggered fermions, that are invariant under Z 2 and U(1) chiral symmetries, are known to suffer from sign problems when formulated using the auxiliary field approach. Although these problems have been ignored in previous studies, they can be severe. In this talk, we show that the sign problems disappear when the models are formulated in the fermion bag approach, allowing us to solve them rigorously for the first time.
Fermion bag solutions to some sign problems in four-fermion field theories
Li, Anyi
2013-04-01
Lattice four-fermion models containing N flavors of staggered fermions, that are invariant under Z2 and U(1) chiral symmetries, are known to suffer from sign problems when formulated using the auxiliary field approach. Although these problems have been ignored in previous studies, they can be severe. In this talk, we show that the sign problems disappear when the models are formulated in the fermion bag approach, allowing us to solve them rigorously for the first time.
Wang, Yan Mei; Li, Ting; Li, Lin
2017-07-19
The valence-arousal conflict theory assumes that both valence and arousal will trigger approaching or withdrawing tendencies. It also predicts that the speed of processing emotional stimuli will depend on whether valence and arousal trigger conflicting or congruent motivational tendencies. However, most previous studies have provided evidence of the interaction between valence and arousal only, and have not provided direct proof of the interactive links between valence, arousal and motivational tendencies. The present study provides direct evidence for the relationship between approach-withdrawal tendencies and the valence-arousal conflict. In an empirical test, participants were instructed to judge the valence of emotional words after visual-spatial cues that appeared to be either approaching or withdrawing from participants. A three-way interaction (valence, arousal, and approach-withdrawal tendency) was observed such that the response time was shorter if participants responded to a negative high-arousal stimulus after a withdrawing cue, or to a positive low-arousal stimulus after an approaching cue. These findings suggest that the approach-withdrawal tendency indeed plays a crucial role in valence-arousal conflict, and that the effect depends on the congruency of valence, arousal and tendency at an early stage of processing.
Ab initio valence calculations in chemistry
Cook, D B
1974-01-01
Ab Initio Valence Calculations in Chemistry describes the theory and practice of ab initio valence calculations in chemistry and applies the ideas to a specific example, linear BeH2. Topics covered include the Schrödinger equation and the orbital approximation to atomic orbitals; molecular orbital and valence bond methods; practical molecular wave functions; and molecular integrals. Open shell systems, molecular symmetry, and localized descriptions of electronic structure are also discussed. This book is comprised of 13 chapters and begins by introducing the reader to the use of the Schrödinge
On triangle meshes with valence dominant vertices
Morvan, Jean-Marie
2018-01-01
We study triangulations $\\cal T$ defined on a closed disc $X$ satisfying the following condition: In the interior of $X$, the valence of all vertices of $\\cal T$ except one of them (the irregular vertex) is $6$. By using a flat singular Riemannian metric adapted to $\\cal T$, we prove a uniqueness theorem when the valence of the irregular vertex is not a multiple of $6$. Moreover, for a given integer $k >1$, we exhibit non isomorphic triangulations on $X$ with the same boundary, and with a unique irregular vertex whose valence is $6k$.
On triangle meshes with valence dominant vertices
Morvan, Jean-Marie
2018-02-16
We study triangulations $\\\\cal T$ defined on a closed disc $X$ satisfying the following condition: In the interior of $X$, the valence of all vertices of $\\\\cal T$ except one of them (the irregular vertex) is $6$. By using a flat singular Riemannian metric adapted to $\\\\cal T$, we prove a uniqueness theorem when the valence of the irregular vertex is not a multiple of $6$. Moreover, for a given integer $k >1$, we exhibit non isomorphic triangulations on $X$ with the same boundary, and with a unique irregular vertex whose valence is $6k$.
Light-front Ward-Takahashi identity for two-fermion systems
International Nuclear Information System (INIS)
Marinho, J. A. O.; Frederico, T.; Pace, E.; Salme, G.; Sauer, P. U.
2008-01-01
We propose a three-dimensional electromagnetic current operator within light-front dynamics that satisfies a light-front Ward-Takahashi identity for two-fermion systems. The light-front current operator is obtained by a quasipotential reduction of the four-dimensional current operator and acts on the light-front valence component of bound or scattering states. A relation between the light-front valence wave function and the four-dimensional Bethe-Salpeter amplitude both for bound or scattering states is also derived, such that the matrix elements of the four-dimensional current operator can be fully recovered from the corresponding light-front ones. The light-front current operator can be perturbatively calculated through a quasipotential expansion, and the divergence of the proposed current satisfies a Ward-Takahashi identity at any given order of the expansion. In the quasipotential expansion the instantaneous terms of the fermion propagator are accounted for by the effective interaction and two-body currents. We exemplify our theoretical construction in the Yukawa model in the ladder approximation, investigating in detail the current operator at the lowest nontrivial order of the quasipotential expansion of the Bethe-Salpeter equation. The explicit realization of the light-front form of the Ward-Takahashi identity is verified. We also show the relevance of instantaneous terms and of the pair contribution to the two-body current and the Ward-Takahashi identity
Fermion number non-conservation and cold neutral fermionic matter in (V-A) gauge theories
International Nuclear Information System (INIS)
Matveev, V.A.; Rubakov, V.A.; Tavkhelidze, A.N.; Tokarev, V.F.
1987-01-01
It is shown that in four-dimensional abelian (V-A) theories, the ground state of cold neutral fermionic matter is an anomalous state containing domains of abnormal phase surrounded by the normal vacuum. Inside these domains, there exists a gauge field condensate which makes real fermions disappear both inside and outside the domains. In non-abelian theories, the abnormal matter is unstable in its turn, and the system rolls back down into the normal state with a small number of fermions above the topologically non-trivial vacuum. Thus, in several non-abelian gauge theories, the fermion number density of cold neutral matter cannot exceed some critical value. (orig.)
Chiral fermions in asymptotically safe quantum gravity.
Meibohm, J; Pawlowski, J M
2016-01-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
The principle of the Fermionic projector
Finster, Felix
2006-01-01
The "principle of the fermionic projector" provides a new mathematical framework for the formulation of physical theories and is a promising approach for physics beyond the standard model. This book begins with a brief review of relativity, relativistic quantum mechanics, and classical gauge theories, emphasizing the basic physical concepts and mathematical foundations. The external field problem and Klein's paradox are discussed and then resolved by introducing the fermionic projector, a global object in space-time that generalizes the notion of the Dirac sea. At the mathematical core of the book is a precise definition of the fermionic projector and the use of methods of hyperbolic differential equations for detailed analysis. The fermionic projector makes it possible to formulate a new type of variational principle in space-time. The mathematical tools are developed for the analysis of the corresponding Euler-Lagrange equations. A particular variational principle is proposed that gives rise to an effective...
Pseudoclassical fermionic model and classical solutions
International Nuclear Information System (INIS)
Smailagic, A.
1981-08-01
We study classical limit of fermionic fields seen as Grassmann variables and deduce the proper quantization prescription using Dirac's method for constrained systems and investigate quantum meaning of classical solutions for the Thirring model. (author)
Microcanonical and hybrid simulations of lattice quantum chromodynamics with dynamical fermions
International Nuclear Information System (INIS)
Sinclair, D.K.
1986-10-01
Lattice QCD is simulated using Microcanonical and Hybrid (Micro-canonical/Langevin) methods to facilitate the inclusion of dynamical fermions (quarks). We report on simulations with 4 flavors of light dynamical quarks on a 10 3 x 6 lattice to study the finite temperature deconfinement/chiral transition which should be observable in relativistic heavy ion collisions, as a function of quark mass. A first order transition is observed at large mass, weakens at intermediate mass and strengthens for very small quark mass
Fermions in Brans-Dicke cosmology
International Nuclear Information System (INIS)
Samojeden, L. L.; Devecchi, F. P.; Kremer, G. M.
2010-01-01
Using the Brans-Dicke theory of gravitation we put under investigation a hypothetical universe filled with a fermionic field (with a self-interaction potential) and a matter constituent ruled by a barotropic equation of state. It is shown that the fermionic field [in combination with the Brans-Dicke scalar field φ(t)] could be responsible for a final accelerated era, after an initial matter dominated period.
Fermion mass hierarchies in theories of technicolor
International Nuclear Information System (INIS)
Peskin, M.E.
1981-01-01
Models in which light fermion masses result from dynamical symmetry breaking often produce these masses in a hierarchial pattern. The author exhibits two scenarios for obtaining such hierarchies and illustrates each with a simple model of mass generation. In the first scenario, the light fermion masses are separated by powers of a weak coupling constant; in the second scenario, they are separated by a ratio of large mass scales
Anomalous diffusion of fermions in superlattices
International Nuclear Information System (INIS)
Drozdz, S.; Okolowicz, J.; Srokowski, T.; Ploszajczak, M.
1996-03-01
Diffusion of fermions in the periodic two-dimensional lattice of fermions is studied. It is shown that effects connected with antisymmetrization of the wave function increase chaoticness of motion. Various types of anomalous diffusion, characterized by a power spectral analysis are found. The nonlocality of the Pauli potential destroys cantori in the phase space. Consequently, the diffusion process is dominated by long free paths and the power spectrum is logarithmic at small frequency limit. (author)
Singlet fermionic dark matter with Veltman conditions
Kim, Yeong Gyun; Lee, Kang Young; Nam, Soo-hyeon
2018-01-01
We reexamine a renormalizable model of a fermionic dark matter with a gauge singlet Dirac fermion and a real singlet scalar which can ameliorate the scalar mass hierarchy problem of the Standard Model (SM). Our model setup is the minimal extension of the SM for which a realistic dark matter (DM) candidate is provided and the cancellation of one-loop quadratic divergence to the scalar masses can be achieved by the Veltman condition (VC) simultaneously. This model extension, although renormaliz...
The Continuum Limit of Causal Fermion Systems
Finster, Felix
2016-01-01
This monograph introduces the basic concepts of the theory of causal fermion systems, a recent approach to the description of fundamental physics. The theory yields quantum mechanics, general relativity and quantum field theory as limiting cases and is therefore a candidate for a unified physical theory. From the mathematical perspective, causal fermion systems provide a general framework for describing and analyzing non-smooth geometries and "quantum geometries." The dynamics is described by...
The effective action for chiral fermions
International Nuclear Information System (INIS)
Alvarez-Gaume, L.
1985-01-01
This paper reports on recent work which given an exact characterization of the imaginary part of the effective action for chiral fermions in 2n dimensions in terms of the spectral asymmetry of a suitable (2n+1)-dimensional operator. In order to keep the discussion as simple as possible, the author concentrates on four dimensional fermions with arbitrary external gauge fields. This approach can be extended without difficulty to higher dimensions and also to include external gravitational fields
Fermionic topological quantum states as tensor networks
Wille, C.; Buerschaper, O.; Eisert, J.
2017-06-01
Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.
Interacting fermions on a random lattice
International Nuclear Information System (INIS)
Perantonis, S.J.; Wheater, J.F.
1988-01-01
We extend previous work on the properties of the Dirac lagrangian on two-dimensional random lattices to the case where interaction terms are included. Although for free fermions the chiral symmetry of the doubles is spontaneously broken by their interaction with the lattice and tehy decouple from long-distance physics, our results in this paper show that all is undone by quantum corrections in an interacting field theory and taht the end result is very similar to what is found with Wilson fermions. Two field-theoretical models with interacting fermions are studied by perturbation expansion in the field theory coupling constant. These are a model with one fermion and one boson species interacting via a scalar Yukawa coupling and the massive Thirring model. It is shown that on the random lattice ultraviolet finite diagrams and finite parts of ultraviolet divergent diagrams have the correct continuum limit. Ultraviolet divergent parts can be removed by the same renormalisation procedure as in the continuum, but do not exhibit the same dependence on the lagrangian mass. In the case of the massive Thirring model this causes a fermion mass correction of order the cut-off scale, which breaks the chiral symmetry of the remaining light fermion; there is consequently a fine-tuning problem. In the context of the same model we discuss the effect of the Goldstone boson associated with the spontaneous breakdown of the chiral symmetry of the doubles on two-dimensional models with vector couplings. (orig.)
Searches for excited fermions in ep collisions at HERA
International Nuclear Information System (INIS)
Chekanov, S.; Derrick, M.; Krakauer, D.
2002-01-01
Searches in ep collisions for heavy excited fermions have been performed with the ZEUS detector at HERA. Excited states of electrons and quarks have been searched for in e + p collisions at a centre-of-mass energy of 300 GeV using an integrated luminosity of 47.7 pb -1 . Excited electrons have been sought via the decays e*→eγ, e*→eZ and e*→νW. Excited quarks have been sought via the decays q*→qγ and q*→qW. A search for excited neutrinos decaying via ν*→νγ, ν*→νZ and ν*→eW is presented using e - p collisions at 318 GeV centre-of-mass energy, corresponding to an integrated luminosity of 16.7 pb -1 . No evidence for any excited fermion is found, and limits on the characteristic couplings are derived for masses ≤250 GeV
Fermion condensation quantum phase transition versus conventional quantum phase transitions
International Nuclear Information System (INIS)
Shaginyan, V.R.; Han, J.G.; Lee, J.
2004-01-01
The main features of fermion condensation quantum phase transition (FCQPT), which are distinctive in several aspects from that of conventional quantum phase transition (CQPT), are considered. We show that in contrast to CQPT, whose physics in quantum critical region is dominated by thermal and quantum fluctuations and characterized by the absence of quasiparticles, the physics of a Fermi system near FCQPT or undergone FCQPT is controlled by the system of quasiparticles resembling the Landau quasiparticles. Contrary to the Landau quasiparticles, the effective mass of these quasiparticles strongly depends on the temperature, magnetic fields, density, etc. This system of quasiparticles having general properties determines the universal behavior of the Fermi system in question. As a result, the universal behavior persists up to relatively high temperatures comparatively to the case when such a behavior is determined by CQPT. We analyze striking recent measurements of specific heat, charge and heat transport used to study the nature of magnetic field-induced QCP in heavy-fermion metal CeCoIn 5 and show that the observed facts are in good agreement with our scenario based on FCQPT and certainly seem to rule out the critical fluctuations related with CQPT. Our general consideration suggests that FCQPT and the emergence of novel quasiparticles near and behind FCQPT and resembling the Landau quasiparticles are distinctive features intrinsic to strongly correlated substances
An introduction to the interacting boson-fermion model
International Nuclear Information System (INIS)
Iachello, F.
1985-01-01
Spectra of odd-even medium mass and heavy nuclei are rather complex since they arise from the interplay between collective and single particle degrees of freedom. Their properties can be discussed in terms of simple models only in a limited number of cases, as, for example, in spherical nuclei (where the shell model can be applied in a straight forward way), or in nuclei with a rigid axially symmetric deformation (where the deformed shell model, or Nilsson model, can be used). Neither of these models, can, however, be applied to the large majority of nuclei, those forming the transitional classes. In the last few years, a model for odd-even nuclei has been introduced which is, on one side relatively simple, but which, on the other side, is able to describe the large variety of observed spectra. In this model, the collective degrees of freedom are described by bosons, while the single particle degrees of freedom are described by fermions, hence the name interacting boson-fermion model given to it. The authors describes the basic features of the model concentrating my attention to those cases that can be solved analytically, without resorting to numerical calculations. These analytical results are obtained by making use of group theory
Valence nucleons in self-consistent fields
International Nuclear Information System (INIS)
Di Toro, M.; Lomnitz-Adler, J.
1978-01-01
An iterative approach to determine directly the best Hartree-Fock one-body density rho is extended by expressing rho in terms of a core and a valence part and allowing for general crossings of occupied and unoccupied levels in the valence part. Results are shown for 152 Sm and a microscopic analysis of the core structure of deformed light nuclei is carried out. (author)
Theory for the mixed-valence state
International Nuclear Information System (INIS)
Varma, C.M.
1979-01-01
A theory is presented which explains why mixed-valence compounds behave as two component Fermi liquids, and why TmSe orders magnetically while the other known mixed-valence compounds do not. The variation of Tsub(N) and the field Hsub(T) to obtain ferromagnetic alignment with changing Tm 2+ /Tm 3+ ratio is quantitatively explained. For Tm 2+ concentration > = 0.3, TmSe is predicted to order ferromagnetically
Heavy flavor production from photons and hadrons
International Nuclear Information System (INIS)
Heusch, C.A.
1982-01-01
The present state of the production and observation of hadrons containing heavy quarks or antiquarks as valence constituents, in reactions initiated by real and (space-like) virtual photon or by hadron beams is discussed. Heavy flavor production in e + e - annihilation, which is well covered in a number of recent review papers is not discussed, and similarly, neutrino production is omitted due to the different (flavor-changing) mechanisms that are involved in those reactions. Heavy flavors from spacelike photons, heavy flavors from real photons, and heavy flavors from hadron-hadron collisions are discussed
Hierarchical fermions and detectable Z' from effective two-Higgs-triplet 3-3-1 model
Barreto, E. R.; Dias, A. G.; Leite, J.; Nishi, C. C.; Oliveira, R. L. N.; Vieira, W. C.
2018-03-01
We develop a SU (3 )C⊗SU (3 )L⊗U (1 )X model where the number of fermion generations is fixed by cancellation of gauge anomalies, being a type of 3-3-1 model with new charged leptons. Similarly to the economical 3-3-1 models, symmetry breaking is achieved effectively with two scalar triplets so that the spectrum of scalar particles at the TeV scale contains just two C P even scalars, one of which is the recently discovered Higgs boson, plus a charged scalar. Such a scalar sector is simpler than the one in the Two Higgs Doublet Model, hence more attractive for phenomenological studies, and has no flavor changing neutral currents (FCNC) mediated by scalars except for the ones induced by the mixing of Standard Model (SM) fermions with heavy fermions. We identify a global residual symmetry of the model which guarantees mass degeneracies and some massless fermions whose masses need to be generated by the introduction of effective operators. The fermion masses so generated require less fine-tuning for most of the SM fermions and FCNC are naturally suppressed by the small mixing between the third family of quarks and the rest. The effective setting is justified by an ultraviolet completion of the model from which the effective operators emerge naturally. A detailed particle mass spectrum is presented, and an analysis of the Z' production at the LHC run II is performed to show that it could be easily detected by considering the invariant mass and transverse momentum distributions in the dimuon channel.
Iterants, Fermions and Majorana Operators
Kauffman, Louis H.
Beginning with an elementary, oscillatory discrete dynamical system associated with the square root of minus one, we study both the foundations of mathematics and physics. Position and momentum do not commute in our discrete physics. Their commutator is related to the diffusion constant for a Brownian process and to the Heisenberg commutator in quantum mechanics. We take John Wheeler's idea of It from Bit as an essential clue and we rework the structure of that bit to a logical particle that is its own anti-particle, a logical Marjorana particle. This is our key example of the amphibian nature of mathematics and the external world. We show how the dynamical system for the square root of minus one is essentially the dynamics of a distinction whose self-reference leads to both the fusion algebra and the operator algebra for the Majorana Fermion. In the course of this, we develop an iterant algebra that supports all of matrix algebra and we end the essay with a discussion of the Dirac equation based on these principles.
Fermionic pentagons and NMHV hexagon
Directory of Open Access Journals (Sweden)
A.V. Belitsky
2015-05-01
Full Text Available We analyze the near-collinear limit of the null polygonal hexagon super Wilson loop in the planar N=4 super-Yang–Mills theory. We focus on its Grassmann components which are dual to next-to-maximal helicity-violating (NMHV scattering amplitudes. The kinematics in question is studied within a framework of the operator product expansion that encodes propagation of excitations on the background of the color flux tube stretched between the sides of Wilson loop contour. While their dispersion relation is known to all orders in 't Hooft coupling from previous studies, we find their form factor couplings to the Wilson loop. This is done making use of a particular tessellation of the loop where pentagon transitions play a fundamental role. Being interested in NMHV amplitudes, the corresponding building blocks carry a nontrivial charge under the SU(4 R-symmetry group. Restricting the current consideration to twist-two accuracy, we analyze two-particle contributions with a fermion as one of the constituents in the pair. We demonstrate that these nonsinglet pentagons obey bootstrap equations that possess consistent solutions for any value of the coupling constant. To confirm the correctness of these predictions, we calculate their contribution to the super Wilson loop demonstrating agreement with recent results to four-loop order in 't Hooft coupling.
Fermion bag solutions to some unsolved sign problems
Li, Anyi; Chandrasekharan, Shailesh
2012-03-01
Some interesting lattice four-fermion models containing N flavors of staggered fermions with Z2 and U(1) chiral symmetries suffer from sign problems in the auxiliary field approach. Earlier calculations have either ignored these sign problems or have circumvented them by adding conjugate fermion fields which changes the model. In this talk we show that the recently proposed fermion bag approach solves these sign problems. The basic idea of the new approach is to collect unpaired fermionic degrees of freedom inside a fermion bag. A resummation of all fermion world lines inside the bag is then sufficient to solve the sign problems. The fermion bag approach provides new opportunities to solve in these ``unsolved'' four-fermion models in the chiral limit efficiently.
Structure of transition nuclei states in fermion dynamic-symmetry model
International Nuclear Information System (INIS)
Baktybaev, K.; Kojlyk, N.O.; Romankulov, K.
2007-01-01
In the paper collective structures of osmium heavy isotopes nucleons are studied. Results of diagonalization of SO(6) symmetric Hamiltonian of fermion-dynamical symmetry-model are comparing with results of other phenomenological methods such as Bohr-Mottelson model and interacting bosons model. For heavy osmium isotopes not only collective excitations spectral bands but also for probability of E2-electromagnet transition are which are compared with existing experimental data. It is revealed, that complexity of state structure for examined nuclei is related with competition and interweaving of rotation and vibration states and also more complicated states of γ instable nature
Energy Technology Data Exchange (ETDEWEB)
Streuer, T.
2005-07-15
In this thesis QCD on the lattice was simulated with overlap fermions in the valence-quark approximation. We haver studied the spectrum of the light hadrons, spectral properties of the Dirac operator as well as hadronic matrix elements. The dependence of the masses of the light hadrons on the quark mass agrees with the prediction of the chiral perturbation theory. especially the artefacts of the valence-quark approximation at small quark masses are clearly recognizable. The values of the hadron masses determined by us exhibit deviations from the experimental values, which lie in the order of magnitude of ten percent. This we interpret as effect of the valence-quark approximation. The spectral properties of the Dirac operator are far reachingly fixed by the chiral symmetry. In order to study this property on the lattice, it is therefore indispensable to work with a lattice discretization, which respects the chiral symmetry, so that between the topology of the gauge field and the zero modes of the Dirac operator the same connection exists as in the continuum - the Atiyah-Singer index theorem. We have used this connection in order to determine the topological susceptibility, which enters the Witten-Veneziano formula for the mass of the {eta}' particle. The spectral density of the Dirac operator, which we have determined, follows the shape predicted by the chiral perturbation theory; from this we could determine the parameters {sigma} and {delta} of the effective Lagangian density. The distribution of the smallest eigenvalues of the Dirac operator agrees with the prediction of the random matrix theory. The value for the axial charge of the nucleon calculated by us deviates by about ten percent from the experimentally determined value g{sub A}=1.26. The order of magnitude of this deviation is typical for the valence-quark approximation. The matrix element v{sub 2b}, which enters the operator-product expansion of the first moment of the unpolarized nucleon structure
[Emotional valence of words in schizophrenia].
Jalenques, I; Enjolras, J; Izaute, M
2013-06-01
Emotion recognition is a domain in which deﬁcits have been reported in schizophrenia. A number of emotion classiﬁcation studies have indicated that emotion processing deﬁcits in schizophrenia are more pronounced for negative affects. Given the difﬁculty of developing material suitable for the study of these emotional deﬁcits, it would be interesting to examine whether patients suffering from schizophrenia are responsive to positively and negatively charged emotion-related words that could be used within the context of remediation strategies. The emotional perception of words was examined in a clinical experiment involving schizophrenia patients. This emotional perception was expressed by the patients in terms of the valence associated with the words. In the present study, we investigated whether schizophrenia patients would assign the same negative and positive valences to words as healthy individuals. Twenty volunteer, clinically stable, outpatients from the Psychiatric Service of the University Hospital of Clermont-Ferrand were recruited. Diagnoses were based on DSM-IV criteria. Global psychiatric symptoms were assessed using the Positive and Negative Symptoms Scale (PANSS). The patients had to evaluate the emotional valence of a set of 300 words on a 5-point scale ranging from "very unpleasant" to "very pleasant". . The collected results were compared with those obtained by Bonin et al. (2003) [13] from 97 University students. Correlational analyses of the two studies revealed that the emotional valences were highly correlated, i.e. the schizophrenia patients estimated very similar emotional valences. More precisely, it was possible to examine three separate sets of 100 words each (positive words, neutral words and negative words). The positive words that were evaluated were the more positive words from the norms collected by Bonin et al. (2003) [13], and the negative words were the more negative examples taken from these norms. The neutral words
Liouville equation of relativistic charged fermion
International Nuclear Information System (INIS)
Wang Renchuan; Zhu Dongpei; Huang Zhuoran; Ko Che-ming
1991-01-01
As a form of density martrix, the Wigner function is the distribution in quantum phase space. It is a 2 X 2 matrix function when one uses it to describe the non-relativistic fermion. While describing the relativistic fermion, it is usually represented by 4 x 4 matrix function. In this paper authors obtain a Wigner function for the relativistic fermion in the form of 2 x 2 matrix, and the Liouville equation satisfied by the Wigner function. this equivalent to the Dirac equation of changed fermion in QED. The equation is also equivalent to the Dirac equation in the Walecka model applied to the intermediate energy nuclear collision while the nucleon is coupled to the vector meson only (or taking mean field approximation for the scalar meson). Authors prove that the 2 x 2 Wigner function completely describes the quantum system just the same as the relativistic fermion wave function. All the information about the observables can be obtained with above Wigner function
The hidden fermions in Z(2) theories
International Nuclear Information System (INIS)
Srednicki, M.
1983-01-01
Low dimensional Z(2) gauge theories have been rewritten in terms of locally coupled fermionic degrees of freedom by means of the Jordan-Wigner transformation. In this paper it is shown that higher dimensional Z(2) gauge theories are also fermionic theories in disguise. The SML solution to the 1+1 dimension Ising model is reviewed. Psi operators are represented pictorially as arrows, psi 1 points to the left, psi 2 to the right, each site of H a multiple of two operators. The 2+1 dimension Ising model is then considered. A fermion plaquette operator is introduced as the generator of a gauge symmetry for the fermionic H. Findings in 1+1 and 2+1 are then applied to 3+1 dimensional Z(2) gauge theory. A construction of this lattice is undertaken. Psi formalism replaces sigma formalism, as it permits extremely simple duality transformations to be made on any Z(2) Hamiltonian. It is shown that the fermionic formalism will lead to new ideas in Z(2) theories
Decoding emotional valence from electroencephalographic rhythmic activity.
Celikkanat, Hande; Moriya, Hiroki; Ogawa, Takeshi; Kauppi, Jukka-Pekka; Kawanabe, Motoaki; Hyvarinen, Aapo
2017-07-01
We attempt to decode emotional valence from electroencephalographic rhythmic activity in a naturalistic setting. We employ a data-driven method developed in a previous study, Spectral Linear Discriminant Analysis, to discover the relationships between the classification task and independent neuronal sources, optimally utilizing multiple frequency bands. A detailed investigation of the classifier provides insight into the neuronal sources related with emotional valence, and the individual differences of the subjects in processing emotions. Our findings show: (1) sources whose locations are similar across subjects are consistently involved in emotional responses, with the involvement of parietal sources being especially significant, and (2) even though the locations of the involved neuronal sources are consistent, subjects can display highly varying degrees of valence-related EEG activity in the sources.
Adding gauge fields to Kaplan's fermions
International Nuclear Information System (INIS)
Blum, T.; Kaerkkaeinen, L.
1994-01-01
We experiment with adding dynamical gauge field to Kaplan (defect) fermions. In the case of U(1) gauge theory we use an inhomogeneous Higgs mechanism to restrict the 3d gauge dynamics to a planar 2d defect. In our simulations the 3d theory produce the correct 2d gauge dynamics. We measure fermion propagators with dynamical gauge fields. They posses the correct chiral structure. The fermions at the boundary of the support of the gauge field (waveguide) are non-chiral, and have a mass two times heavier than the chiral modes. Moreover, these modes cannot be excited by a source at the defect; implying that they are dynamically decoupled. We have also checked that the anomaly relation is fullfilled for the case of a smooth external gauge field. (orig.)
Ladder physics in the spin fermion model
International Nuclear Information System (INIS)
Tsvelik, A. M.
2017-01-01
A link is established between the spin fermion (SF) model of the cuprates and the approach based on the analogy between the physics of doped Mott insulators in two dimensions and the physics of fermionic ladders. This enables one to use nonperturbative results derived for fermionic ladders to move beyond the large-N approximation in the SF model. Here, it is shown that the paramagnon exchange postulated in the SF model has exactly the right form to facilitate the emergence of the fully gapped d-Mott state in the region of the Brillouin zone at the hot spots of the Fermi surface. Hence, the SF model provides an adequate description of the pseudogap.
Entanglement negativity bounds for fermionic Gaussian states
Eisert, Jens; Eisler, Viktor; Zimborás, Zoltán
2018-04-01
The entanglement negativity is a versatile measure of entanglement that has numerous applications in quantum information and in condensed matter theory. It can not only efficiently be computed in the Hilbert space dimension, but for noninteracting bosonic systems, one can compute the negativity efficiently in the number of modes. However, such an efficient computation does not carry over to the fermionic realm, the ultimate reason for this being that the partial transpose of a fermionic Gaussian state is no longer Gaussian. To provide a remedy for this state of affairs, in this work, we introduce efficiently computable and rigorous upper and lower bounds to the negativity, making use of techniques of semidefinite programming, building upon the Lagrangian formulation of fermionic linear optics, and exploiting suitable products of Gaussian operators. We discuss examples in quantum many-body theory and hint at applications in the study of topological properties at finite temperature.
Exotic fermions and electric dipole moments
International Nuclear Information System (INIS)
Joshipura, A.S.
1991-01-01
The contributions of mirror fermions to the electric dipole moments (EDM's) of leptons and neutrons are studied using the available limits on the mixing of the relevant fermions to their mirror partners. These limits imply EDM's several orders of magnitude larger than the current experimental bounds in the case of the electron and the neutron if the relevant CP-violating phases are not unnaturally small. If these phases are large, then the bounds on the EDM's can be used to improve upon the limits on mixing between the ordinary (f) and the mirror (F) fermions. In the specific case of the latter mixing angle being given by (m f /M F ) 1/2 , one can obtain the electron and the neutron EDM's close to experimental bounds
Improved formulation of GNO fermionization theorem
International Nuclear Information System (INIS)
Fre, P.; Gliozzi, F.; Piras, A.
1989-01-01
It is pointed out that in the Kac-Moody algebras fulfilling the fermionization criterion of Goddard, Nahm and Olive and having a non-minimal value of the central charge κ, only a proper subset of the allowed unitary highest weight representations can actually be encoded in a free fermion theory. These truly fermionizable representations are selected by a very specific non-regular embedding of the fermionizable Kac-Moody algebra into the lowest level SO(N F ) Kac-Moody algebra, N F being both the number of fermions and the dimension of the GNO symmetric space. This embedding is a particular case of the embeddings considered by Bais and Bouwknegt and by Schellekens and Warner, for which the Virasoro central charge of the subgroup is equal to that of the group. Furthermore, these fermionizable representations span an orbit of the modular group always leading to a non-trivial modular invariant partition function
Vacuum polarization and chiral lattice fermions
International Nuclear Information System (INIS)
Randjbar Daemi, S.; Strathdee, J.
1995-09-01
The vacuum polarization due to chiral fermions on a 4-dimensional Euclidean lattice is calculated according to the overlap prescription. The fermions are coupled to weak and slowly varying background gauge and Higgs fields, and the polarization tensor is given by second order perturbation theory. In this order the overlap constitutes a gauge invariant regularization of the fermion vacuum amplitude. Its low energy - long wavelength behaviour can be computed explicitly and we verify that it coincides with the Feynman graph result obtainable, for example, by dimensional regularization of continuum gauge theory. In particular, the Standard Model Callan-Symanzik, RG functions are recovered. Moreover, there are no residual lattice artefacts such as a dependence on Wilson-type mass parameters. (author). 16 refs
Thermofield dynamics and Casimir effect for fermions
International Nuclear Information System (INIS)
Queiroz, H.; Silva, J.C. da; Khanna, F.C.; Malbouisson, J.M.C.; Revzen, M.; Santana, A.E.
2005-01-01
A generalization of the Bogoliubov transformation is developed to describe a space compactified fermionic field. The method is the fermionic counterpart of the formalism introduced earlier for bosons [Phys. Rev. A 66 (2002) 052101], and is based on the thermofield dynamics approach. We analyze the energy-momentum tensor for the Casimir effect of a free massless fermion field in a d-dimensional box at finite temperature. As a particular case the Casimir energy and pressure for the field confined in a three-dimensional parallelepiped box are calculated. It is found that the attractive or repulsive nature of the Casimir pressure on opposite faces changes depending on the relative magnitude of the edges. We also determine the temperature at which the Casimir pressure in a cubic box changes sign and estimate its value when the edge of the cube is of the order of the confining lengths for baryons
Thermal radiation of fermions by an accelerated wall
International Nuclear Information System (INIS)
Horibe, Minoru
1979-01-01
The theory of particle production by an accelerated wall is extended to the massless Dirac particle. It is shown that the mean occupation number of fermions (anti-fermions) is given by the Fermi distribution function. (author)
Four fermion interaction near four dimensions
International Nuclear Information System (INIS)
Zinn-Justin, J.
1991-01-01
It is known that field theories with attractive four-point fermion interactions can produce scalar bound states: Fermion mass generation by spontaneous chiral symmetry breaking associated with such fermion bound states provides an attractive mechanism for building models of composite Higgs bosons. The ratio of fermion and boson masses can then be predicted while it seems to be a free parameter in similar models where a boson field explicitly appears in the action. The main problem is that the corresponding models are renormalizable only in two dimensions, in contrast with models with explicit bosons. Many fermion models with four-point interaction are asymptotically free in two dimensions and then behave also like renormalizable models in higher dimensions, at least within the framework of some 1/N expansion. On the other hand mass ratio predictions also follow in the models with explicit bosons, when they have an IR fixed point, from the additional natural assumption that coupling constants have generic values at the cut-off scale. To the model with a four fermion interaction one can associate an effective model containing an additional scalar field, renormalizable in four dimensions, which has the same large distance, small momentum physics, at least to all orders in some 1/N expansion. Even the leading corrections corresponding to irrelevant or marginal operators are identical. This property is important in four dimensions where the IR fixed point coupling constants vanish: The correction amplitudes can be varied by changing the coupling constants in the renormalizable model and the cut-off function in the perturbatively non-renormalizable model. We shall consider here for definiteness only the Gross-Neveu model but it will be clear that the arguments are more general
Fermion boson metamorphosis in field theory
International Nuclear Information System (INIS)
Ha, Y.K.
1982-01-01
In two-dimensional field theories many features are especially transparent if the Fermi fields are represented by non-local expressions of the Bose fields. Such a procedure is known as boson representation. Bilinear quantities appear in the Lagrangian of a fermion theory transform, however, as simple local expressions of the bosons so that the resulting theory may be written as a theory of bosons. Conversely, a theory of bosons may be transformed into an equivalent theory of fermions. Together they provide a basis for generating many interesting equivalences between theories of different types. In the present work a consistent scheme for constructing a canonical Fermi field in terms of a real scalar field is developed and such a procedure is valid and consistent with the tenets of quantum field theory is verified. A boson formulation offers a unifying theme in understanding the structure of many theories. This is illustrated by the boson formulation of a multifermion theory with chiral and internal symmetries. The nature of dynamical generation of mass when the theory undergoes boson transmutation and the preservation of continuous chiral symmetry in the massive case are examined. The dynamics of the system depends to a great extent on the specific number of fermions and different models of the same system can have very different properties. Many unusual symmetries of the fermion theory, such as hidden symmetry, duality and triality symmetries, are only manifest in the boson formulation. The underlying connections between some models with U(N) internal symmetry and another class of fermion models built with Majorana fermions which have O(2N) internal symmetry are uncovered
Emotions and false memories: valence or arousal?
Corson, Yves; Verrier, Nadège
2007-03-01
The effects of mood on false memories have not been studied systematically until recently. Some results seem to indicate that negative mood may reduce false recall and thus suggest an influence of emotional valence on false memory. The present research tested the effects of both valence and arousal on recall and recognition and indicates that the effect is actually due to arousal. In fact, whether participants' mood is positive, negative, or neutral, false memories are significantly more frequent under conditions of high arousal than under conditions of low arousal.
Valence electronic properties of porphyrin derivatives.
Stenuit, G; Castellarin-Cudia, C; Plekan, O; Feyer, V; Prince, K C; Goldoni, A; Umari, P
2010-09-28
We present a combined experimental and theoretical investigation of the valence electronic structure of porphyrin-derived molecules. The valence photoemission spectra of the free-base tetraphenylporphyrin and of the octaethylporphyrin molecule were measured using synchrotron radiation and compared with theoretical spectra calculated using the GW method and the density-functional method within the generalized gradient approximation. Only the GW results could reproduce the experimental data. We found that the contribution to the orbital energies due to electronic correlations has the same linear behavior in both molecules, with larger deviations in the vicinity of the HOMO level. This shows the importance of adequate treatment of electronic correlations in these organic systems.
Fermion-fermion scattering in quantum field theory with superconducting circuits.
García-Álvarez, L; Casanova, J; Mezzacapo, A; Egusquiza, I L; Lamata, L; Romero, G; Solano, E
2015-02-20
We propose an analog-digital quantum simulation of fermion-fermion scattering mediated by a continuum of bosonic modes within a circuit quantum electrodynamics scenario. This quantum technology naturally provides strong coupling of superconducting qubits with a continuum of electromagnetic modes in an open transmission line. In this way, we propose qubits to efficiently simulate fermionic modes via digital techniques, while we consider the continuum complexity of an open transmission line to simulate the continuum complexity of bosonic modes in quantum field theories. Therefore, we believe that the complexity-simulating-complexity concept should become a leading paradigm in any effort towards scalable quantum simulations.
Cosmic expansion from boson and fermion fields
International Nuclear Information System (INIS)
De Souza, Rudinei C; Kremer, Gilberto M
2011-01-01
This paper consists in analyzing an action that describes boson and fermion fields minimally coupled to the gravity and a common matter field. The self-interaction potentials of the fields are not chosen a priori but from the Noether symmetry approach. The Noether forms of the potentials allow the boson field to play the role of dark energy and matter and the fermion field to behave as standard matter. The constant of motion and the cyclic variable associated with the Noether symmetry allow the complete integration of the field equations, whose solution produces a universe with alternated periods of accelerated and decelerated expansion.
Parametrization relating the fermionic mass spectra
International Nuclear Information System (INIS)
Kleppe, A.
1993-01-01
When parametrizing the fermionic mass spectra in terms of the unit matrix and a recursive matrix scrR 0 , which corresponds to an underlying scaling pattern in the mass spectra, each fermionic sector is characterized by three parameters: k, α, and R. Using the set of relations displayed by the parameters of the different sectors, it is possible to formulate a ''family Lagrangian'' which for each sector encompasses all the families. Relations between quark masses are furthermore deduced from these ''family Lagrangians.'' Using the relations between the parameters of the different charge sectors, it is also possible to ''derive'' the quark mass spectra from the (charged) leptonic mass spectrum
A Search for Excited Fermions at HERA
Adloff, C.; Andrieu, B.; Arkadov, V.; Astvatsatourov, A.; Ayyaz, I.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Bate, P.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Benisch, T.; Berger, Christoph; Bernardi, G.; Berndt, T.; Bizot, J.C.; Borras, K.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruel, P.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burkhardt, H.; Burrage, A.; Buschhorn, G.; Campbell, A.J.; Cao, Jun; Carli, T.; Caron, S.; Chabert, E.; Clarke, D.; Clerbaux, B.; Collard, C.; Contreras, J.G.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodwin, C.; Grab, C.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Hoprich, W.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C .; Jacquet, M.; Jaffre, M.; Janauschek, L.; Jansen, D.M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kastli, H.K.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Kaufmann, O.; Kausch, M.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Krasny, M.W.; Krehbiel, H.; Kroseberg, J.; Kruger, K.; Kupper, A.; Kuhr, T.; Kurca, T.; Kutuev, R.; Lachnit, W.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; Lobodzinska, E.; Lobodzinski, B.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchyan, T.; Mohr, R.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, Th.; Negri, I.; Nellen, G.; Newman, Paul R.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Nunnemann, T.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Perez, E.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rabbertz, K.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Sedlak, K.; Sefkow, F.; Chekelian, V.; Sheviakov, I.; Shtarkov, L.N.; Siegmon, G.; Sievers, P.; Sirois, Y.; Sloan, T.; Smirnov, P.; Solochenko, V.; Solovev, Y.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Swart, M.; Tasevsky, M.; Tchernyshov, V.; Tchetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; von Dombrowski, S.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Wollatz, H.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zsembery, J.; zur Nedden, M.
2000-01-01
A search for excited fermions f^* of the first generation in e^+p scattering at the collider HERA is presented using H1 data with an integrated luminosity of 37 pb^(-1). All electroweak decays of excited fermions, f^* -> f gamma, f W, f Z are considered and all possible final states resulting from the Z or W hadronic decays or decays into leptons of the first two generations are taken into account. No evidence for f^* production is found. Mass dependent exclusion limits on cross-sections and on the ratio of coupling constants to the compositeness scale are derived.
On the origin of fermion masses
International Nuclear Information System (INIS)
Shrock, R.E.
1992-01-01
We review some recent work on nonperturbative properties of fermions and connections with chiral gauge theories. In particular, we consider one of the ultimate goals of this program: The understanding of the actual fermion mass spectrum. It is pointed out that if quarks and leptons are composite, their masses may be set by the physics of the preons and their interactions in such a manner as to differ considerably from the Yukawa form m f ∝v (where v is the electroweak symmetry breaking scale) or analogous forms involving v. Some ideas of how this might work are given, and some implications are discussed. (orig.)
Fermionic formula for double Kostka polynomials
Liu, Shiyuan
2016-01-01
The $X=M$ conjecture asserts that the $1D$ sum and the fermionic formula coincide up to some constant power. In the case of type $A,$ both the $1D$ sum and the fermionic formula are closely related to Kostka polynomials. Double Kostka polynomials $K_{\\Bla,\\Bmu}(t),$ indexed by two double partitions $\\Bla,\\Bmu,$ are polynomials in $t$ introduced as a generalization of Kostka polynomials. In the present paper, we consider $K_{\\Bla,\\Bmu}(t)$ in the special case where $\\Bmu=(-,\\mu'').$ We formula...
Fermionic determinant in two and four dimensions
International Nuclear Information System (INIS)
Mignaco, J.A.; Rego Monteiro, M.A. do.
1985-01-01
The fermionic determinant of the two-dimensional Schwinger model and QCD and a four-dimensional model with a pseudo-vectorial coupling are discussed. It is observed that in both cases the Dirac operator can be expressed as a path-ordered product of the gauge field and the fermionic determinant is computed exactly without reference to a particular gauge. The two point Green's function is obtained in all cases as a free particle two point function times a model dependent term. (Author) [pt
Fermion fields in η-ξ spacetime
International Nuclear Information System (INIS)
Gui, Y.
1992-01-01
Fermion fields in η-ζ spacetime are discussed. By the path-integral formulation of quantum field theory, we show that the (zero-temperature) Green's functions for Dirac fields on the Euclidean section in η-ζ spacetime are equal to the imaginary-time thermal Green's functions in Minkowski spacetime, and that the (zero-temperature) Green's functions on the Lorentzian section in η-ζ spacetime correspond to the real-time thermal Green's functions in Minkowski spacetime. The antiperiodicity of fermion fields in η-ζ spacetime originates from Lorentz transformation properties of the fields
Noether symmetry for non-minimally coupled fermion fields
International Nuclear Information System (INIS)
Souza, Rudinei C de; Kremer, Gilberto M
2008-01-01
A cosmological model where a fermion field is non-minimally coupled with the gravitational field is studied. By applying Noether symmetry the possible functions for the potential density of the fermion field and for the coupling are determined. Cosmological solutions are found showing that the non-minimally coupled fermion field behaves as an inflaton describing an inflationary scenario, whereas the minimally coupled fermion field describes a decelerated period, behaving as a standard matter field
The bosonic mother of fermionic D-branes
Chattaraputi, Auttakit; Englert, Francois; Houart, Laurent; Taormina, Anne
2002-01-01
We extend the search for fermionic subspaces of the bosonic string compactified on E8 X SO(16) lattices to include all fermionic D-branes. This extension constraints the truncation procedure previously proposed and relates the fermionic strings, supersymmetric or not, to the global structure of the SO(16) group. The specific properties of all the fermionic D-branes are found to be encoded in its universal covering, whose maximal toroid defines the configuration space torus of their mother bos...
q-deformed charged fermion coherent states and SU(3) charged, Hyper-charged fermion coherent states
International Nuclear Information System (INIS)
Hao Sanru; Li Guanghua; Long Junyan
1994-01-01
By virtue of the algebra of the q-deformed fermion oscillators, the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are discussed. The explicit forms of the two kinds of coherent states mentioned above are obtained by making use of the completeness of base vectors in the q-fermion Fock space. By comparing the q-deformed results with the ordinary results, it is found that the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are automatically reduced to the ordinary charged fermion coherent states and SU(3) charged hyper-charged fermion coherent states if the deformed parameter q→1
Zero-energy modes, charge conjugation, and fermion number
International Nuclear Information System (INIS)
Sudarshan, E.C.G.; Yajnik, U.A.
1986-01-01
States with a half-integer fermion number occur when a fermionic field coupled to a soliton possesses a zero mode. This paper spells out the circumstances under which one can retain an integer fermion number as also a charge-conjugation-invariant ground state. It is necessary to make the representation reducible but it is kept irreducible by introducing an additional operator
Simulating an arbitrary number of flavors of dynamical overlap fermions
International Nuclear Information System (INIS)
DeGrand, T.; Schaefer, S.
2006-05-01
We present a set of related Hybrid Monte Carlo methods to simulate an arbitrary number of dynamical overlap fermions. Each fermion is represented by a chiral pseudo-fermion field. The new algorithm reduces critical slowing down in the chiral limit and for sectors of nontrivial topology. (Orig.)
Double-valence-fluctuating molecules and superconductivity
International Nuclear Information System (INIS)
Hirsch, J.E.; Scalapino, D.J.
1985-01-01
We discuss the possibility of ''double-valence-fluctuating'' molecules, having two ground-state configurations differing by two electrons. We propose a possible realization of such a molecule, and experimental ways to look for it. We argue that a weakly coupled array of such molecules should give rise to a strong-coupling Shafroth-Blatt-Butler superconductor, with a high transition temperature
NEVER forget: negative emotional valence enhances recapitulation.
Bowen, Holly J; Kark, Sarah M; Kensinger, Elizabeth A
2017-07-10
A hallmark feature of episodic memory is that of "mental time travel," whereby an individual feels they have returned to a prior moment in time. Cognitive and behavioral neuroscience methods have revealed a neurobiological counterpart: Successful retrieval often is associated with reactivation of a prior brain state. We review the emerging literature on memory reactivation and recapitulation, and we describe evidence for the effects of emotion on these processes. Based on this review, we propose a new model: Negative Emotional Valence Enhances Recapitulation (NEVER). This model diverges from existing models of emotional memory in three key ways. First, it underscores the effects of emotion during retrieval. Second, it stresses the importance of sensory processing to emotional memory. Third, it emphasizes how emotional valence - whether an event is negative or positive - affects the way that information is remembered. The model specifically proposes that, as compared to positive events, negative events both trigger increased encoding of sensory detail and elicit a closer resemblance between the sensory encoding signature and the sensory retrieval signature. The model also proposes that negative valence enhances the reactivation and storage of sensory details over offline periods, leading to a greater divergence between the sensory recapitulation of negative and positive memories over time. Importantly, the model proposes that these valence-based differences occur even when events are equated for arousal, thus rendering an exclusively arousal-based theory of emotional memory insufficient. We conclude by discussing implications of the model and suggesting directions for future research to test the tenets of the model.
Non-perturbative renormalization of static-light four-fermion operators in quenched lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Palombi, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Papinutto, M.; Pena, C. [CERN, Geneva (Switzerland). Physics Dept., Theory Div.; Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik
2007-06-15
We perform a non-perturbative study of the scale-dependent renormalization factors of a multiplicatively renormalizable basis of {delta}B=2 parity-odd four-fermion operators in quenched lattice QCD. Heavy quarks are treated in the static approximation with various lattice discretizations of the static action. Light quarks are described by nonperturbatively O(a) improved Wilson-type fermions. The renormalization group running is computed for a family of Schroedinger functional (SF) schemes through finite volume techniques in the continuum limit. We compute non-perturbatively the relation between the renormalization group invariant operators and their counterparts renormalized in the SF at a low energy scale. Furthermore, we provide non-perturbative estimates for the matching between the lattice regularized theory and all the SF schemes considered. (orig.)
Non-perturbative renormalisation of left-left four-fermion operators with Neuberger fermions
International Nuclear Information System (INIS)
Dimopoulos, P.; Giusti, L.; Hernandez, P.; Palombi, F.; Pena, C.; Vladikas, A.; Wennekers, J.; Wittig, H.
2006-01-01
We outline a general strategy for the non-perturbative renormalisation of composite operators in discretisations based on Neuberger fermions, via a matching to results obtained with Wilson-type fermions. As an application, we consider the renormalisation of the four-quark operators entering the ΔS=1 and ΔS=2 effective Hamiltonians. Our results are an essential ingredient for the determination of the low-energy constants governing non-leptonic kaon decays
Axial gravity, massless fermions and trace anomalies
Energy Technology Data Exchange (ETDEWEB)
Bonora, L. [International School for Advanced Studies (SISSA), Trieste (Italy); KEK, Tsukuba (Japan). KEK Theory Center; INFN, Sezione di Trieste (Italy); Cvitan, M.; Giaccari, S.; Stemberga, T. [Zagreb Univ. (Croatia). Dept. of Physics; Prester, P.D. [Rijeka Univ. (Croatia). Dept. of Physics; Pereira, A.D. [UERJ-Univ. Estadual do Rio de Janeiro (Brazil). Dept. de Fisica Teorica; UFF-Univ. Federal Fluminense, Niteroi (Brazil). Inst. de Fisica
2017-08-15
This article deals with two main topics. One is odd parity trace anomalies in Weyl fermion theories in a 4d curved background, the second is the introduction of axial gravity. The motivation for reconsidering the former is to clarify the theoretical background underlying the approach and complete the calculation of the anomaly. The reference is in particular to the difference between Weyl and massless Majorana fermions and to the possible contributions from tadpole and seagull terms in the Feynman diagram approach. A first, basic, result of this paper is that a more thorough treatment, taking account of such additional terms and using dimensional regularization, confirms the earlier result. The introduction of an axial symmetric tensor besides the usual gravitational metric is instrumental to a different derivation of the same result using Dirac fermions, which are coupled not only to the usual metric but also to the additional axial tensor. The action of Majorana and Weyl fermions can be obtained in two different limits of such a general configuration. The results obtained in this way confirm the previously obtained ones. (orig.)
Stable simulations of many fermion systems
International Nuclear Information System (INIS)
Loh, E.Y. Jr.; Gubernatis, J.E.; Scalapino, D.J.; Sugar, R.L.; White, S.R.; Scalettar, R.T.; Los Alamos National Lab., NM; California Univ., Santa Barbara, CA; Illinois Univ., Urbana, IL
1989-01-01
As the inverse temperature β becomes large, the diverse numerical scales present in exp(-βH) plague simulations of many-fermion systems on finite-precision computers. Representation of matrices in factorized form stabilizes these calculations, allowing efficient, low-temperature studies of condensed-matter models
Bragg diffraction of fermions at optical potentials
International Nuclear Information System (INIS)
Deh, Benjamin
2008-01-01
This thesis describes the Bragg diffraction of ultracold fermions at an optical potential. A moving optical lattice was created, by overlaying two slightly detuned lasers. Atoms can be diffracted at this lattice if the detuning fulfills the Bragg condition for resting atoms. This Bragg diffraction is analyzed systematically in this thesis. To this end Rabi oscillations between the diffraction states were driven, as well in the weakly interacting Bragg regime, as in the strongly interacting Kapitza-Dirac regime. Simulations, based on a driven two-, respectively multilevel-system describe the observed effects rather well. Furthermore, the temporal evolution of the diffracted states in the magnetic trapping potential was studied. The anharmonicity of the trap in use and the scattering cross section for p-wave collisions in a 6 Li system was determined from the movement of these states. Moreover the momentum distribution of the fermions was measured with Bragg spectroscopy and first signs of Fermi degeneracy were found. Finally an interferometer with fermions was build, exhibiting a coherence time of more than 100 μs. With this, the possibility for measurement and manipulation of ultracold fermions with Bragg diffraction could bee shown. (orig.)
Compact lattice QED with Wilson fermions
International Nuclear Information System (INIS)
Hoferichter, A.
1994-08-01
We study the phase structure and the chiral limit of 4d compact lattice QED with Wilson fermions (both dynamical and quenched). We use the standard Wilson gauge action and also a modified one suppressing lattice artifacts. Different techniques and observables to locate the chiral limit are discussed. (orig.)
Probabilistic representation of fermionic lattice systems
International Nuclear Information System (INIS)
Beccaria, Matteo; Presilla, Carlo; De Angelis, Gian Fabrizio; Jona-Lasinio, Giovanni
2000-01-01
We describe an exact Feynman-Kac type formula to represent the dynamics of fermionic lattice systems. In this approach the real time or Euclidean time dynamics is expressed in terms of the stochastic evolution of a collection of Poisson processes. From this formula we derive a family of algorithms for Monte Carlo simulations, parametrized by the jump rates of the Poisson processes
Axial gravity, massless fermions and trace anomalies
International Nuclear Information System (INIS)
Bonora, L.; Cvitan, M.; Giaccari, S.; Stemberga, T.; Prester, P.D.; Pereira, A.D.; UFF-Univ. Federal Fluminense, Niteroi
2017-01-01
This article deals with two main topics. One is odd parity trace anomalies in Weyl fermion theories in a 4d curved background, the second is the introduction of axial gravity. The motivation for reconsidering the former is to clarify the theoretical background underlying the approach and complete the calculation of the anomaly. The reference is in particular to the difference between Weyl and massless Majorana fermions and to the possible contributions from tadpole and seagull terms in the Feynman diagram approach. A first, basic, result of this paper is that a more thorough treatment, taking account of such additional terms and using dimensional regularization, confirms the earlier result. The introduction of an axial symmetric tensor besides the usual gravitational metric is instrumental to a different derivation of the same result using Dirac fermions, which are coupled not only to the usual metric but also to the additional axial tensor. The action of Majorana and Weyl fermions can be obtained in two different limits of such a general configuration. The results obtained in this way confirm the previously obtained ones. (orig.)
Fermion-boson scattering in ladder approximation
International Nuclear Information System (INIS)
Jafarov, R.G.; Hadjiev, S.A.
1992-10-01
A method of calculation of forward scattering amplitude for fermions and scalar bosons with exchanging of scalar particle is suggested. The Bethe-Salpeter ladder equation for the imaginary part of the amplitude is constructed and a solution in Regge asymptotical form is found and the corrections to the amplitude due to the exit from mass shell are calculated. (author). 8 refs
Singlet fermionic dark matter with Veltman conditions
Kim, Yeong Gyun; Lee, Kang Young; Nam, Soo-hyeon
2018-07-01
We reexamine a renormalizable model of a fermionic dark matter with a gauge singlet Dirac fermion and a real singlet scalar which can ameliorate the scalar mass hierarchy problem of the Standard Model (SM). Our model setup is the minimal extension of the SM for which a realistic dark matter (DM) candidate is provided and the cancellation of one-loop quadratic divergence to the scalar masses can be achieved by the Veltman condition (VC) simultaneously. This model extension, although renormalizable, can be considered as an effective low-energy theory valid up to cut-off energies about 10 TeV. We calculate the one-loop quadratic divergence contributions of the new scalar and fermionic DM singlets, and constrain the model parameters using the VC and the perturbative unitarity conditions. Taking into account the invisible Higgs decay measurement, we show the allowed region of new physics parameters satisfying the recent measurement of relic abundance. With the obtained parameter set, we predict the elastic scattering cross section of the new singlet fermion into target nuclei for a direct detection of the dark matter. We also perform the full analysis with arbitrary set of parameters without the VC as a comparison, and discuss the implication of the constraints by the VC in detail.
Strong correlations in few-fermion systems
Energy Technology Data Exchange (ETDEWEB)
Bergschneider, Andrea
2017-07-26
In this thesis, I report on the deterministic preparation and the observation of strongly correlated few-fermion systems in single and double-well potentials. In a first experiment, we studied a system of one impurity interacting with a number of majority atoms which we prepared in a single potential well in the one-dimensional limit. With increasing number of majority particles, we observed a decrease in the quasi-particle residue which is in agreement with expectations from the Anderson orthogonality catastrophe. In a second experiment, we prepared two fermions in a double-well potential which represents the fundamental building block of the Fermi-Hubbard model. By increasing the repulsion between the two fermions, we observed the crossover into the antiferromagnetic Mott-insulator regime. Furthermore, I describe a new imaging technique, which allows spin-resolved single-atom detection both in in-situ and in time-of-flight. We use this technique to investigate the emergence of momentum correlations of two repulsive fermions in the ground state of the double well. With the methods developed in this thesis, we have established a framework for quantum simulation of strongly correlated many-body systems in tunable potentials.
Dual of QCD with One Adjoint Fermion
DEFF Research Database (Denmark)
Mojaza, Matin; Nardecchia, Marco; Pica, Claudio
2011-01-01
We construct the magnetic dual of QCD with one adjoint Weyl fermion. The dual is a consistent solution of the 't Hooft anomaly matching conditions, allows for flavor decoupling and remarkably constitutes the first nonsupersymmetric dual valid for any number of colors. The dual allows to bound...
Fermions Living in a Flat World
International Nuclear Information System (INIS)
Jesus Anguiano-Galicia, Ma. de; Bashir, A.
2006-01-01
In a plane, parity transformation, which changes the sign of only one spatial coordinate, swaps the fermion fields living in two inequivalent representations. A parity invariant Lagrangian thus contains fields corresponding to both the representations. For such a Lagrangian, we show that we can also define a chiral symmetry
Fermionic dimensions and Kaluza-Klein theory
International Nuclear Information System (INIS)
Delbourgo, R.; Zhang, R.B.
1988-01-01
Instead of appending extra bosonic dimensions to spacetime and needing to exorcise the higher modes, it is possible to construct Kaluza-Klein models in which the additional coordinates are fermionic and the higher modes do not arise. We erect a unified gravity/Yang-Mills theory on such a grassmannian framework and then discuss possible generalisations to other internal groups. (orig.)
Mirror fermions in chiral gauge theories
International Nuclear Information System (INIS)
Montvay, I.
1992-06-01
Mirror fermions appear naturally in lattice formulations of the standard model. The phenomenological limits on their existence and discovery limits at future colliders are discussed. After an introduction of lattice actions for chiral Yukawa-models, a recent numerical simulation is presented. In particular, the emerging phase structures and features of the allowed region in renormalized couplings are discussed. (orig.)
Unorthodox lattice fermion derivatives and their shortcomings
International Nuclear Information System (INIS)
Bodwin, G.T.; Kovacs, E.V.
1987-01-01
We discuss the DWY (Lagrangian), Quinn-Weinstein, and Rebbi proposals for incorporating fermions into lattice gauge theory and analyze them in the context of weak coupling perturbation theory. We find that none of these proposals leads to a completely satisfactory lattice transcription of fully-interacting gauge theory
SU(3) sextet model with Wilson fermions
DEFF Research Database (Denmark)
Hansen, Martin; Drach, Vincent; Pica, Claudio
2017-01-01
to be inside or very close to the lower boundary of the conformal window. We use the Wilson discretization for the fermions and map the phase structure of the lattice model. We study several spectral and gradient flow observables both in the bulk and the weak coupling phases. While in the bulk phase we find...
Nonperturbative treatment of reduced model with fermions
International Nuclear Information System (INIS)
Gutierrez, W.R.
1983-01-01
A nonperturbative method is presented to show that the reduced model produces the correct leading large-N contribution to the fermion Green's functions. A new form of the reduced model is introduced, which avoids the quenching procedure. Also the equation for the meson bound states is discussed. The method is illustrated in the case of two-dimensional QCD
Superconductivity in Correlated Fermions System | Babalola ...
African Journals Online (AJOL)
We have studied the Hubbard model which is a model that is used to describe the physics of strongly correlated Fermions systems. Using the Hubbard model, we worked on some systems in one dimension (1-D) at half fillings. We employed the numerical exact diagonalization technique and found out that there was a ...
Hidden supersymmetry and Fermion number fractionalization
International Nuclear Information System (INIS)
Akhoury, R.
1985-01-01
This paper discusses how a hidden supersymmetry of the underlying field theories can be used to interpret and to calculate fermion number fractionalization in different dimensions. This is made possible by relating it to a corresponding Witten index of the hidden supersymmetry. The closely related anomalies in odd dimensions are also discussed
Hidden symmetry of a free fermion model
International Nuclear Information System (INIS)
Bazhanov, V.V.; Stroganov, Yu.G.
1984-01-01
A well-known eight-vertex free fermion model on a plane lattice is considered. Solving triangle equations and using the symmetry properties of the model, an elliptic parametrization for Boltzmann vertex weights is constructed. In the parametrization the weights are meromorphic functions of three complex variables
Geometry of non-degenerate Susskind fermions
International Nuclear Information System (INIS)
Mitra, P.
1983-01-01
The Dirac-Kaehler equation on the lattice is known to describe the degenerate ''flavours'' appering in Susskind's approach to lattice fermions. We study the modification that has to be made in this equation in order to lift the degeneracy and give the flavours arbitrary different masses. (orig.)
Kaon decay amplitudes using staggered fermions
International Nuclear Information System (INIS)
Sharpe, S.R.
1986-12-01
A status report is given of an attempt, using staggered fermions to calculate the real and imaginary parts of the amplitudes for K → ππ,. Semi-quantitative results are found for the imaginary parts, and these suggest that ε' might be smaller than previously expected in the standard model
International Nuclear Information System (INIS)
Georgios, Anagnostou
2004-01-01
Combined measurements of the 4 LEP collaborations for the fermion pair processes e + e - →f anti f are presented. The results show no significant deviations when compared with the Standard Model predictions and are used to set limits on contact interactions, Z' gauge bosons and low scale gravity models with large extra dimensions. (orig.)
Evaluating the fermionic determinant of dynamical configurations
International Nuclear Information System (INIS)
Hasenfratz, Anna; Alexandru, Andrei
2002-01-01
We propose and study an improved method to calculate the fermionic determinant of dynamical configurations. The evaluation or at least stochastic estimation of the ratios of fermionic determinants is essential for a recently proposed updating method of smeared link dynamical fermions. This update creates a sequence of configurations by changing a subset of the gauge links by a pure gauge heat bath or over-relaxation step. The acceptance of the proposed configuration depends on the ratio of the fermionic determinants on the new and original configurations. We study this ratio as a function of the number of links that are changed in the heat bath update. We find that even when every link of a given direction and parity of a 10 fm 4 configuration is updated, the average of the determinant ratio is still close to one and with the improved stochastic estimator the proposed change is accepted with about 20% probability. This improvement suggests that the new updating technique can be efficient even on large lattices and could provide an updating method for dynamical overlap actions
Asymptotically Safe Standard Model via Vectorlike Fermions
Mann, R. B.; Meffe, J. R.; Sannino, F.; Steele, T. G.; Wang, Z. W.; Zhang, C.
2017-12-01
We construct asymptotically safe extensions of the standard model by adding gauged vectorlike fermions. Using large number-of-flavor techniques we argue that all gauge couplings, including the hypercharge and, under certain conditions, the Higgs coupling, can achieve an interacting ultraviolet fixed point.
Born-Kothari Condensation for Fermions
Directory of Open Access Journals (Sweden)
Arnab Ghosh
2017-09-01
Full Text Available In the spirit of Bose–Einstein condensation, we present a detailed account of the statistical description of the condensation phenomena for a Fermi–Dirac gas following the works of Born and Kothari. For bosons, while the condensed phase below a certain critical temperature, permits macroscopic occupation at the lowest energy single particle state, for fermions, due to Pauli exclusion principle, the condensed phase occurs only in the form of a single occupancy dense modes at the highest energy state. In spite of these rudimentary differences, our recent findings [Ghosh and Ray, 2017] identify the foregoing phenomenon as condensation-like coherence among fermions in an analogous way to Bose–Einstein condensate which is collectively described by a coherent matter wave. To reach the above conclusion, we employ the close relationship between the statistical methods of bosonic and fermionic fields pioneered by Cahill and Glauber. In addition to our previous results, we described in this mini-review that the highest momentum (energy for individual fermions, prerequisite for the condensation process, can be specified in terms of the natural length and energy scales of the problem. The existence of such condensed phases, which are of obvious significance in the context of elementary particles, have also been scrutinized.
Large cutoff effects of dynamical Wilson fermions
International Nuclear Information System (INIS)
Sommer, R.; Hoffmann, R.; Knechtli, F.; Rolf, J.; Wolff, U.; Wetzorke, I.
2003-09-01
We present and discuss results for cutoff effects in the PCAC masses and the mass dependence of r 0 for full QCD and various fermion actions. Our discussion of how one computes mass dependences - here of r 0 - is also relevant for comparisons with chiral perturbation theory. (orig.)
Tadmor, Avia; McNally, Richard J; Engelhard, Iris M
2016-01-01
BACKGROUND AND OBJECTIVES: People who perform a cognitively demanding secondary task while recalling a distressing memory often experience the memory as less emotional, vivid, or accurate during subsequent recollections. In this experiment, we tested whether the emotional valence (positive versus
Many-body formalism for fermions: The partition function
Watson, D. K.
2017-09-01
The partition function, a fundamental tenet in statistical thermodynamics, contains in principle all thermodynamic information about a system. It encapsulates both microscopic information through the quantum energy levels and statistical information from the partitioning of the particles among the available energy levels. For identical particles, this statistical accounting is complicated by the symmetry requirements of the allowed quantum states. In particular, for Fermi systems, the enforcement of the Pauli principle is typically a numerically demanding task, responsible for much of the cost of the calculations. The interplay of these three elements—the structure of the many-body spectrum, the statistical partitioning of the N particles among the available levels, and the enforcement of the Pauli principle—drives the behavior of mesoscopic and macroscopic Fermi systems. In this paper, we develop an approach for the determination of the partition function, a numerically difficult task, for systems of strongly interacting identical fermions and apply it to a model system of harmonically confined, harmonically interacting fermions. This approach uses a recently introduced many-body method that is an extension of the symmetry-invariant perturbation method (SPT) originally developed for bosons. It uses group theory and graphical techniques to avoid the heavy computational demands of conventional many-body methods which typically scale exponentially with the number of particles. The SPT application of the Pauli principle is trivial to implement since it is done "on paper" by imposing restrictions on the normal-mode quantum numbers at first order in the perturbation. The method is applied through first order and represents an extension of the SPT method to excited states. Our method of determining the partition function and various thermodynamic quantities is accurate and efficient and has the potential to yield interesting insight into the role played by the Pauli
Valence-Dependent Belief Updating: Computational Validation
Directory of Open Access Journals (Sweden)
Bojana Kuzmanovic
2017-06-01
Full Text Available People tend to update beliefs about their future outcomes in a valence-dependent way: they are likely to incorporate good news and to neglect bad news. However, belief formation is a complex process which depends not only on motivational factors such as the desire for favorable conclusions, but also on multiple cognitive variables such as prior beliefs, knowledge about personal vulnerabilities and resources, and the size of the probabilities and estimation errors. Thus, we applied computational modeling in order to test for valence-induced biases in updating while formally controlling for relevant cognitive factors. We compared biased and unbiased Bayesian models of belief updating, and specified alternative models based on reinforcement learning. The experiment consisted of 80 trials with 80 different adverse future life events. In each trial, participants estimated the base rate of one of these events and estimated their own risk of experiencing the event before and after being confronted with the actual base rate. Belief updates corresponded to the difference between the two self-risk estimates. Valence-dependent updating was assessed by comparing trials with good news (better-than-expected base rates with trials with bad news (worse-than-expected base rates. After receiving bad relative to good news, participants' updates were smaller and deviated more strongly from rational Bayesian predictions, indicating a valence-induced bias. Model comparison revealed that the biased (i.e., optimistic Bayesian model of belief updating better accounted for data than the unbiased (i.e., rational Bayesian model, confirming that the valence of the new information influenced the amount of updating. Moreover, alternative computational modeling based on reinforcement learning demonstrated higher learning rates for good than for bad news, as well as a moderating role of personal knowledge. Finally, in this specific experimental context, the approach based on
International Nuclear Information System (INIS)
Smith, C.H.L.
1977-01-01
The possibility that a new lepton may exist is discussed under the headings; theoretical reasons for the introduction of heavy leptons, classification of heavy leptons (ortho and paraleptons), discrimination between different types of lepton, decays of charged heavy leptons, production of charged heavy leptons (in e + e - storage rings, neutrino production, photoproduction, and hadroproduction), neutral heavy leptons, and hadroleptons. (U.K.)
Evaluative conditioning induces changes in sound valence
Directory of Open Access Journals (Sweden)
Anna C. Bolders
2012-04-01
Full Text Available Evaluative Conditioning (EC has hardly been tested in the auditory domain, but it is a potentially valuable research tool. In Experiment 1 we investigated whether the affective evaluation of short environmental sounds can be changed using affective words as unconditioned stimuli (US. Congruence effects on an affective priming task (APT for conditioned sounds demonstrated successful EC. Subjective ratings for sounds paired with negative words changed accordingly. In Experiment 2 we investigated whether the acquired valence remains stable after repeated presentation of the conditioned sound without the US or whether extinction occurs. The acquired affective value remained present, albeit weaker, even after 40 extinction trials. These results warrant the use of EC to study processing of short environmental sounds with acquired valence, even if this requires repeated stimulus presentations. This paves the way for studying processing of affective environmental sounds while effectively controlling low level-stimulus properties.
International Nuclear Information System (INIS)
Lehmann, M.
1981-01-01
A15 compounds were studied using heavy ion Rutherford scattering, measurements of the transition temperature, electric conductivity and critical magnetic field. Radiation defects produced below 20 K by heavy ions are discussed, including anti-site-disorder effects. Annealing experiments were performed between 290 K and the transition temperature. The data are discussed in correlation with band structure effects and the theory of J. Appel (1976). (TW)
Human Amygdala Represents the Complete Spectrum of Subjective Valence
Jin, Jingwen; Zelano, Christina; Gottfried, Jay A.
2015-01-01
Although the amygdala is a major locus for hedonic processing, how it encodes valence information is poorly understood. Given the hedonic potency of odor stimuli and the amygdala's anatomical proximity to the peripheral olfactory system, we combined high-resolution fMRI with pattern-based multivariate techniques to examine how valence information is encoded in the amygdala. Ten human subjects underwent fMRI scanning while smelling 9 odorants that systematically varied in perceived valence. Representational similarity analyses showed that amygdala codes the entire dimension of valence, ranging from pleasantness to unpleasantness. This unidimensional representation significantly correlated with self-reported valence ratings but not with intensity ratings. Furthermore, within-trial valence representations evolved over time, prioritizing earlier differentiation of unpleasant stimuli. Together, these findings underscore the idea that both spatial and temporal features uniquely encode pleasant and unpleasant odor valence in the amygdala. The availability of a unidimensional valence code in the amygdala, distributed in both space and time, would create greater flexibility in determining the pleasantness or unpleasantness of stimuli, providing a mechanism by which expectation, context, attention, and learning could influence affective boundaries for guiding behavior. SIGNIFICANCE STATEMENT Our findings elucidate the mechanisms of affective processing in the amygdala by demonstrating that this brain region represents the entire valence dimension from pleasant to unpleasant. An important implication of this unidimensional valence code is that pleasant and unpleasant valence cannot coexist in the amygdale because overlap of fMRI ensemble patterns for these two valence extremes obscures their unique content. This functional architecture, whereby subjective valence maps onto a pattern continuum between pleasant and unpleasant poles, offers a robust mechanism by which context
5th International Conference on Valence Fluctuations
Malik, S
1987-01-01
During the Koln meeting (August 28-31, 1984), Irdia was chosen as the venue for the next International Conference on Valence Fluctuations. lhis was in recognition ard appreciation of the work done, both experimental ard theoretical, by the Irdian scientists in this area during the last decade. We decided to hold this Conference in the month of January, 1987 at Bangalore. lhe subject of Valence Fluctuations has kept itself alive ard active as it has provided many shocks ard suprises particularly among the Ce- ard U-based intermetallies. lhe richness of many interesting physical phenomena occurring in mixed valent materials, the flexibility of modifying their physical properties (by alloying, for example) ard the possibility of synthesizing a wide variety of new such materials seem to be the key factors in this regard. Barely six months before this Conference, an International Conference on Anomalous Rare Earths and Actinides (ICAREA) had been held at Grenoble (July, 1986) which also focussed on mixed valence a...
Valence fluctuations between two magnetic configurations
International Nuclear Information System (INIS)
Mazzaferro, J.O.
1982-01-01
The subject of this work is the study of a microscopic model which describes TmSe through its most important feature, i.e.: the valence fluctuations between two magnetic configurations. Chapter I is a general review of the most important physical properties of rare-earth systems with intermediate valence (I.V.) and a general description of experimental results and theoretical models on Tm compounds. In Chapter II the Hamiltonian model is discussed and the loss of rotational invariance is also analyzed. Chapter III is devoted to the study of non-stoichiometric Tsub(x)Se compounds. It is shown that these compounds can be considered as a mixture of TmSe (I.V. system) and Tm 3+ 0.87Se. Chapter IV is devoted to the calculation of spin-and charge susceptibilities. The results obtained permit to explain the essential features of the neutron scattering spectrum in TmSe. In Chapter V, an exactly solvable periodic Hamiltonian is presented. From the experimental results, some fundamental features are deduced to describe TmSe as an intermediate valence system whose two accessible ionic configurations are magnetic (degenerated fundamental state). (M.E.L) [es
Dual fermion approach to disordered correlated systems
International Nuclear Information System (INIS)
Haase, Patrick
2015-01-01
Disorder is ubiquitous in real materials and influences the physical properties like the conductivity to varying degrees. If electron-electron interactions are strong, theoretical and numerical treatment of these systems becomes challenging. In this thesis a numerical approach is developed to address these systems, treating both interactions and disorder on equal footing. The approach is based on the dual fermion approach for interacting systems developed by Rubtsov et al. Terletska et al. applied the ideas of the dual fermion approach to disordered non-interacting systems. In this approach, the replica trick is used to integrate out the disorder in favor of an effective electron-electron interaction. We extended the approach from Terletska et al. to treat disordered interacting systems. Dual Fermions allow to take into account non-local fluctuations by means of a perturbative expansion around an impurity problem. The impurity reference system is determined self-consistently, analogously to the dynamical mean-field theory. The perturbative expansion is expected to yield good results for small and large values of interaction strength and disorder. A priori, it is not clear what to expect for intermediate values, but experience shows that oftentimes good results are obtained for this region. An advantage of the dual fermion approach is that there is no sign-problem for a single orbital model if quantum Monte Carlo is used to solve the interacting reference system. Additionally, perturbation theory is usually numerically much cheaper than fully solving an interacting lattice or cluster problem. Thus, the dual fermion approach allows to address regions of parameter space that are not accessible to lattice quantum Monte Carlo calculations or cluster extension of dynamical mean-field theory. Cluster extensions of the dynamical mean-field theory are for example the dynamical cluster approximation or the cellular dynamical mean-field theory. The new approach is benchmarked
Multi-boson block factorization of fermions
Giusti, Leonardo; Cè, Marco; Schaefer, Stefan
2018-03-01
The numerical computations of many quantities of theoretical and phenomenological interest are plagued by statistical errors which increase exponentially with the distance of the sources in the relevant correlators. Notable examples are baryon masses and matrix elements, the hadronic vacuum polarization and the light-by-light scattering contributions to the muon g - 2, and the form factors of semileptonic B decays. Reliable and precise determinations of these quantities are very difficult if not impractical with state-of-the-art standard Monte Carlo integration schemes. I will review a recent proposal for factorizing the fermion determinant in lattice QCD that leads to a local action in the gauge field and in the auxiliary boson fields. Once combined with the corresponding factorization of the quark propagator, it paves the way for multi-level Monte Carlo integration in the presence of fermions opening new perspectives in lattice QCD. Exploratory results on the impact on the above mentioned observables will be presented.
Excitation spectrum of correlated Dirac fermions
Jalali, Z.; Jafari, S. A.
2015-04-01
Motivated by the puzzling optical conductivity measurements in graphene, we speculate on the possible role of strong electronic correlations on the two-dimensional Dirac fermions. In this work we employ the slave-particle method to study the excitations of the Hubbard model on honeycomb lattice, away from half-filling. Since the ratio U/t ≈ 3.3 in graphene is not infinite, double occupancy is not entirely prohibited and hence a finite density of doublonscan be generated. We therefore extend the Ioff-Larkin composition rule to include a finite density of doublons. We then investigate the role played by each of these auxiliary particles in the optical absorption of strongly correlated Dirac fermions.
Perturbative analysis for Kaplan's lattice chiral fermions
International Nuclear Information System (INIS)
Aoki, S.; Hirose, H.
1994-01-01
Perturbation theory for lattice fermions with domain wall mass terms is developed and is applied to investigate the chiral Schwinger model formulated on the lattice by Kaplan's method. We calculate the effective action for gauge fields to one loop, and find that it contains a longitudinal component even for anomaly-free cases. From the effective action we obtain gauge anomalies and Chern-Simons currents without ambiguity. We also show that the current corresponding to the fermion number has a nonzero divergence and it flows off the wall into the extra dimension. Similar results are obtained for a proposal by Shamir, who used a constant mass term with free boundaries instead of domain walls
A nonperturbative fermion-boson vertex
International Nuclear Information System (INIS)
Bashir, A.; Raya, A.
2002-01-01
We calculate the massive fermion propagator at one-loop order in QED3. The Ward-Takahashi identity (WTI) relates the propagator to the vertex. This allows us to split the vertex into its longitudinal and transverse parts. The former is fixed by the WTI. Following the scheme of Ball and Chiu later modified by Kizilersue et. al., we calculate the full vertex at one-loop order. A mere subtraction of the longitudinal part of the vertex gives us the transverse part. The α dependence in the transverse vertex can be eliminated by making use of the perturbative expressions for the wavefunction renormalization function and the mass function of complicated arguments of the incoming and outgoing fermion momenta. This leads us to a vertex which is nonperturbative in nature. We also calculate an effective vertex for which the arguments of the unknown functions have no angular dependence, making it particularly suitable for numerical studies of dynamical symmetry breaking
4d fermionic superstrings with arbitrary twists
International Nuclear Information System (INIS)
Antoniadis, I.; Bachas, C.
1988-01-01
We present the rules for systematically constructing all consistent four-dimensional string theories, using free world-sheet fermions which pick up arbitrary phases when parallel transported around the string. These rules are necessary and sufficient for multi-loop modular invariance. They lead to theories with general Z N (GSO-type) projections, whose merits for model-building we discuss. We classify all boundary conditions yielding massless space-time spinors. We show that, in contrast to the case of only real 2d fermions, all possible realizations of world-sheet supersymmetry are now allowed. This opens the way for the construction of a new class of supersymmetric string models. (orig.)
SU(2) with fundamental fermions and scalars
Hansen, Martin; Janowski, Tadeusz; Pica, Claudio; Toniato, Arianna
2018-03-01
We present preliminary results on the lattice simulation of an SU(2) gauge theory with two fermion flavors and one strongly interacting scalar field, all in the fundamental representation of SU(2). The motivation for this study comes from the recent proposal of "fundamental" partial compositeness models featuring strongly interacting scalar fields in addition to fermions. Here we describe the lattice setup for our study of this class of models and a first exploration of the lattice phase diagram. In particular we then investigate how the presence of a strongly coupled scalar field affects the properties of light meson resonances previously obtained for the SU(2) model. Preprint: CP3-Origins-2017-047 DNRF90
Arbitrary spin fermions on the lattice
International Nuclear Information System (INIS)
Bullinaria, J.A.
1985-01-01
Lattice actions are constructed for free Dirac and Majorana fermions of arbitrary (half-integer) spin various extensions of the spin 1/2 Kogut-Susskind, Kaehler and Wilson formalisms. In each case, the spectrum degeneracy and preservation of gauge invariance is analysed, and the equivalence or non-equivalence to previously constructed actions is determined. The Kogut-Susskind and lattice Kaehler actions are then written explicitly in terms of spinors to demonstrate how the degenerate fermions couple on the lattice and how the original spinorial actions are recovered (or to recovered) in the continuum limit. Both degenerate and non-degenerate mass terms are dealt with and the various U(1) invariances of the lattice actions are pointed out
On charged fermions in two dimensions
International Nuclear Information System (INIS)
Randjbar-Daemi, S.; Salam, A.; Strathdee, J.
1990-09-01
The integer quantum Hall effect and associated magnetic phenomena are reconsidered in a 2-dimensional system with a flat boundary. The electromagnetic properties of this system are governed by an effective Lagrangian which includes an induced Chern-Simons term. The effective lagrangian is relevant for the description of fields which are slowly varying about a uniform magnetic background associated with a fermionic ground state in which a whole number of Landau levels is filled. It is singular for field values that correspond to partially filled levels. The underlying assumption of translation invariance of the fermionic ground state fails in the vicinity of boundaries where the effective field theory is essentially non-local. The width of the boundary layer and the current flowing in it are estimated. (author). 12 refs, 5 figs
Bosonic and fermionic dipoles on a ring
DEFF Research Database (Denmark)
Zöllner, Sascha; Pethick, C. J.; Bruun, Georg Morten
2011-01-01
We show that dipolar bosons and fermions confined in a quasi-one-dimensional ring trap exhibit a rich variety of states because their interaction is inhomogeneous. For purely repulsive interactions, with increasing strength of the dipolar coupling there is a crossover from a gaslike state...... to an inhomogeneous crystal-like one. For small enough angles between the dipoles and the plane of the ring, there are regions with attractive interactions, and clustered states can form....
Semiclassical expansions for confined N fermion systems
International Nuclear Information System (INIS)
Krivine, H.; Martorell, J.; Casas, M.
1989-01-01
A new derivation of the Wigner Kirkwood expansion for N-fermion systems is presented, showing explicitly the connection to the WKB approximation for a single level. This allows to study separately the two ansatz required to obtain the semiclassical expansions: the asymptotic expansions in powers of ℎ and the smoothing of quantal effects. We discuss the one dimensional and three dimensional, with spherical symmetry, cases. Applications for standard potentials used in nuclear physics are described in detail
SU (2) with fundamental fermions and scalars
DEFF Research Database (Denmark)
Hansen, Martin; Janowski, Tadeusz; Pica, Claudio
2018-01-01
We present preliminary results on the lattice simulation of an SU(2) gauge theory with two fermion flavors and one strongly interacting scalar field, all in the fundamental representation of SU(2). The motivation for this study comes from the recent proposal of "fundamental" partial compositeness...... the properties of light meson resonances previously obtained for the SU(2) model. Preprint: CP3-Origins-2017-047 DNRF90...
Extended nonabelian symmetries for free fermionic model
International Nuclear Information System (INIS)
Zaikov, R.P.
1993-08-01
The higher spin symmetry for both Dirac and Majorana massless free fermionic field models are considered. An infinite Lie algebra which is a linear realization of the higher spin extension of the cross products of the Virasoro and affine Kac-Moody algebras is obtained. The corresponding current algebra is closed which is not the case of analogous current algebra in the WZNW model. The gauging procedure for the higher spin symmetry is also given. (author). 12 refs
Numerical properties of staggered overlap fermions
de Forcrand, Philippe; Panero, Marco
2010-01-01
We report the results of a numerical study of staggered overlap fermions, following the construction of Adams which reduces the number of tastes from 4 to 2 without fine-tuning. We study the sensitivity of the operator to the topology of the gauge field, its locality and its robustness to fluctuations of the gauge field. We make a first estimate of the computing cost of a quark propagator calculation, and compare with Neuberger's overlap.
Supersymmetric Extension of Technicolor & Fermion Mass Generation
DEFF Research Database (Denmark)
Antola, Matti; Di Chiara, Stefano; Sannino, Francesco
2012-01-01
We provide a complete extension of Minimal Walking Technicolor able to account for the standard model fermion masses. The model is supersymmetric at energies greater or equal to the technicolor compositeness scale. We integrate out, at the supersymmetry breaking scale, the elementary Higgses. We...... tests and experimental bounds on the mass spectrum. We then turn to the composite Higgs phenomenology at the LHC and show that current data are already constraining the parameter space of the model....
Nucleon electromagnetic form factors with Wilson fermions
International Nuclear Information System (INIS)
Goeckeler, M.; Haegler, P.; Horsley, R.
2007-10-01
The nucleon electromagnetic form factors continue to be of major interest for experimentalists and phenomenologists alike. They provide important insights into the structure of nuclear matter. For a range of interesting momenta they can be calculated on the lattice. The limiting factor continues to be the value of the pion mass. We present the latest results of the QCDSF collaboration using gauge configurations with two dynamical, non-perturbatively improved Wilson fermions at pion masses as low as 350 MeV. (orig.)
Nucleon electromagnetic form factors with Wilson fermions
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)
2007-10-15
The nucleon electromagnetic form factors continue to be of major interest for experimentalists and phenomenologists alike. They provide important insights into the structure of nuclear matter. For a range of interesting momenta they can be calculated on the lattice. The limiting factor continues to be the value of the pion mass. We present the latest results of the QCDSF collaboration using gauge configurations with two dynamical, non-perturbatively improved Wilson fermions at pion masses as low as 350 MeV. (orig.)
Fermion dynamical symmetry and identical bands
International Nuclear Information System (INIS)
Guidry, M.
1994-01-01
Recent general attention has been directed to the phenomenon of identical bands in both normally deformed and superdeformed nuclei. This paper discusses the possibility that such behavior results from a dynamical symmetry of the nuclear many-body system. Phenomenology and the basic principles of Lie algebras are used to place conditions on the acceptable properties of a candidate symmetry. We find that quite general arguments require that such a symmetry have a minimum of 21 generators with a microscopic fermion interpretation
Optical Lattice Gases of Interacting Fermions
2015-12-02
interacting Fermi gases has topological properties similar to the conventional chiral p- wave state. These include a non-zero Chern number and the...interacting cold gases with broad impacts on the interfaces with condensed matter and particle physics . Applications and experiments of some of the physics ...AFRL-AFOSR-VA-TR-2016-0016 Optical Lattice Gases of Interacting Fermions Wensheng Vincent Liu UNIVERSITY OF PITTSBURGH Final Report 12/02/2015
Chiral Schwinger model and lattice fermionic regularizations
International Nuclear Information System (INIS)
Kieu, T.D.; Sen, D.; Xue, S.
1988-01-01
The chiral Schwinger model is studied on the lattice with use of Wilson fermions. The arbitrary mass term for the gauge boson is shown to originate from the arbitrariness of the Wilson parameter, which is required to avoid the doubling phenomenon on the lattice. The necessity for such a term is thus demonstrated in contrast to the mere admissibility as indicated by previous continuum calculations
The significance of the heavy top quark
International Nuclear Information System (INIS)
Simmons, Elizabeth H.
1997-01-01
Experiment shows that the top quark is far heavier than the other elementary fermions. This finding has stimulated research on theories of electroweak and flavor symmetry breaking that include physics beyond the standard model. Efforts to accommodate a heavy top quark within existing frameworks have revealed constraints on model-building. Other investigations have started from the premise that a large top quark mass could signal a qualitative difference between the top quark and other fermions, perhaps in the form of new interactions peculiar to the top quark. Such new dynamics may also help answer existing questions about electroweak and flavor physics. This talk explores the implications of the heavy top quark in the context of weakly-coupled (e.g., SUSY) and strongly-coupled (e.g., technicolor) theories of electroweak symmetry breaking
Four-fermion interaction near four dimensions
International Nuclear Information System (INIS)
Zinn-Justin, J.
1991-01-01
A large class of models with four-fermion interactions is known to be renormalizable and asymptotically free in two dimensions. It has been noticed very early, in the example of the U(N)-invariant Gross-Neveu model and within the framework of the 1/N expansion, that then these models behave also like renormalizable models in higher dimensions. Some of them are thus natural candidates for composite models of scalar particles like for example the Higgs boson. An important question, however, has to be answered: Are these models more predictive, in four dimensions, than the effective models containing the bosons explicitly? We shall show here that, like for the non-linear σ-model which has been investigated earlier, the answer, at least in some perturbative sense, is negative for a large class of models. The reason can be easily understood: These models are more short-distance sensitive than normal renormalizable models. The new parameters are hidden in the cut-off procedure. In particular in some models the fermions receive masses by spontaneous chiral symmetry breaking. The property that ratio of fermion and boson masses can be predicted is simply a consequence of the IR freedom of both type of models and the natural assumption that coupling constants have generic values at the cut-off scale. We shall consider in this article for definiteness the Gross-Neveu model but it will be clear that the arguments are rather general. (orig.)
Quantum computing with Majorana fermion codes
Litinski, Daniel; von Oppen, Felix
2018-05-01
We establish a unified framework for Majorana-based fault-tolerant quantum computation with Majorana surface codes and Majorana color codes. All logical Clifford gates are implemented with zero-time overhead. This is done by introducing a protocol for Pauli product measurements with tetrons and hexons which only requires local 4-Majorana parity measurements. An analogous protocol is used in the fault-tolerant setting, where tetrons and hexons are replaced by Majorana surface code patches, and parity measurements are replaced by lattice surgery, still only requiring local few-Majorana parity measurements. To this end, we discuss twist defects in Majorana fermion surface codes and adapt the technique of twist-based lattice surgery to fermionic codes. Moreover, we propose a family of codes that we refer to as Majorana color codes, which are obtained by concatenating Majorana surface codes with small Majorana fermion codes. Majorana surface and color codes can be used to decrease the space overhead and stabilizer weight compared to their bosonic counterparts.
The Bethe-Salpeter equation with fermions
International Nuclear Information System (INIS)
Efimov, G.V.
2007-01-01
The Bethe-Salpeter (BS) equation in the ladder approximation is studied within a fermion theory: two fermion fields (constituents) with mass m interacting via an exchange of a scalar field with mass μ. The BS equation can be written in the form of an integral equation in the configuration Euclidean x-space with the symmetric kernel K for which Tr K 2 = ∞ due to the singular character of the fermion propagator. This kernel is represented in the form K = K 0 + K I . The operator K 0 with Tr K 0 2 ∞ is of the 'fall at the center' potential type and describes a continuous spectrum only. Besides the presence of this operator leads to a restriction on the value of the coupling constant. The kernel K I with Tr K I 2 2 c 2 and the variational procedure of calculations of eigenvalues and eigenfunctions can be applied. The quantum pseudoscalar and scalar mesodynamics is considered. The binding energy of the state 1 + (deuteron) as a function of the coupling constant is calculated in the framework of the procedure formulated above. It is shown that this bound state is absent in the pseudoscalar mesodynamics and does exist in the scalar mesodynamics. A comparison with the non-relativistic Schroedinger picture is made. (author)
Symmetries of Ginsparg-Wilson chiral fermions
International Nuclear Information System (INIS)
Mandula, Jeffrey E.
2009-01-01
The group structure of the variant chiral symmetry discovered by Luescher in the Ginsparg-Wilson description of lattice chiral fermions is analyzed. It is shown that the group contains an infinite number of linearly independent symmetry generators, and the Lie algebra is given explicitly. CP is an automorphism of this extended chiral group, and the CP transformation properties of the symmetry generators are found. The group has an infinite-parameter invariant subgroup, and the factor group, whose elements are its cosets, is isomorphic to the continuum chiral symmetry group. Features of the currents associated with these symmetries are discussed, including the fact that some different, noncommuting symmetry generators lead to the same Noether current. These are universal features of lattice chiral fermions based on the Ginsparg-Wilson relation; they occur in the overlap, domain-wall, and perfect-action formulations. In a solvable example, free overlap fermions, these noncanonical elements of lattice chiral symmetry are related to complex energy singularities that violate reflection positivity and impede continuation to Minkowski space.
Effect of quintessence on holographic fermionic spectrum
Energy Technology Data Exchange (ETDEWEB)
Kuang, Xiao-Mei [Yangzhou University, Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou (China); Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Wu, Jian-Pin [Bohai University, Institute of Gravitation and Cosmology, Department of Physics, School of Mathematics and Physics, Jinzhou (China)
2017-10-15
In this letter, we investigate the holographic fermionic spectrum without/with dipole coupling dual to the Reissner-Nordstroem anti-de Sitter (RN-AdS) black brane surrounded by quintessence. We find that the low energy excitation of this fermionic system without dipole coupling behaves as a non-Fermi liquid. In particular, the introduction of quintessence aggravates the degree of deviation from a Fermi liquid. For the system with dipole coupling, the phase transition from (non-)Fermi liquid to Mott phase can be observed. The ratio between the width of gap and the critical temperature, beyond which the gap closes, is also worked out. We find that this ratio is larger than that of the holographic fermionic system dual to the RN-AdS black brane and even the material of V O{sub 2}. It means that our holographic system with quintessence can model new phenomena of the condensed matter system and provide some new insights in their regard. (orig.)
Kinetic theory of fermions in curved spacetime
Energy Technology Data Exchange (ETDEWEB)
Fidler, Christian [Catholic University of Louvain, Center for Cosmology, Particle Physics and Phenomenology (CP3), 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Pitrou, Cyril, E-mail: christian.fidler@uclouvain.be, E-mail: pitrou@iap.fr [Institut d' Astrophysique de Paris, CNRS-UMR 7095, UPMC—Paris VI, Sorbonne Universités, 98 bis Bd Arago, 75014 Paris (France)
2017-06-01
We build a statistical description of fermions, taking into account the spin degree of freedom in addition to the momentum of particles, and we detail its use in the context of the kinetic theory of gases of fermions particles. We show that the one-particle distribution function needed to write a Liouville equation is a spinor valued operator. The degrees of freedom of this function are covariantly described by an intensity function and by a polarisation vector which are parallel transported by free streaming. Collisions are described on the microscopic level and lead to a Boltzmann equation for this operator. We apply our formalism to the case of weak interactions, which at low energies can be considered as a contact interaction between fermions, allowing us to discuss the structure of the collision term for a few typical weak-interaction mediated reactions. In particular we find for massive particles that a dipolar distribution of velocities in the interacting species is necessary to generate linear polarisation, as opposed to the case of photons for which linear polarisation is generated from the quadrupolar distribution of velocities.
Mode entanglement of Gaussian fermionic states
Spee, C.; Schwaiger, K.; Giedke, G.; Kraus, B.
2018-04-01
We investigate the entanglement of n -mode n -partite Gaussian fermionic states (GFS). First, we identify a reasonable definition of separability for GFS and derive a standard form for mixed states, to which any state can be mapped via Gaussian local unitaries (GLU). As the standard form is unique, two GFS are equivalent under GLU if and only if their standard forms coincide. Then, we investigate the important class of local operations assisted by classical communication (LOCC). These are central in entanglement theory as they allow one to partially order the entanglement contained in states. We show, however, that there are no nontrivial Gaussian LOCC (GLOCC) among pure n -partite (fully entangled) states. That is, any such GLOCC transformation can also be accomplished via GLU. To obtain further insight into the entanglement properties of such GFS, we investigate the richer class of Gaussian stochastic local operations assisted by classical communication (SLOCC). We characterize Gaussian SLOCC classes of pure n -mode n -partite states and derive them explicitly for few-mode states. Furthermore, we consider certain fermionic LOCC and show how to identify the maximally entangled set of pure n -mode n -partite GFS, i.e., the minimal set of states having the property that any other state can be obtained from one state inside this set via fermionic LOCC. We generalize these findings also to the pure m -mode n -partite (for m >n ) case.
Fidelity Witnesses for Fermionic Quantum Simulations
Gluza, M.; Kliesch, M.; Eisert, J.; Aolita, L.
2018-05-01
The experimental interest and developments in quantum spin-1 /2 chains has increased uninterruptedly over the past decade. In many instances, the target quantum simulation belongs to the broader class of noninteracting fermionic models, constituting an important benchmark. In spite of this class being analytically efficiently tractable, no direct certification tool has yet been reported for it. In fact, in experiments, certification has almost exclusively relied on notions of quantum state tomography scaling very unfavorably with the system size. Here, we develop experimentally friendly fidelity witnesses for all pure fermionic Gaussian target states. Their expectation value yields a tight lower bound to the fidelity and can be measured efficiently. We derive witnesses in full generality in the Majorana-fermion representation and apply them to experimentally relevant spin-1 /2 chains. Among others, we show how to efficiently certify strongly out-of-equilibrium dynamics in critical Ising chains. At the heart of the measurement scheme is a variant of importance sampling specially tailored to overlaps between covariance matrices. The method is shown to be robust against finite experimental-state infidelities.
Strong CP, flavor, and twisted split fermions
International Nuclear Information System (INIS)
Harnik, Roni; Perez, Gilad; Schwartz, Matthew D.; Shirman, Yuri
2005-01-01
We present a natural solution to the strong CP problem in the context of split fermions. By assuming CP is spontaneously broken in the bulk, a weak CKM phase is created in the standard model due to a twisting in flavor space of the bulk fermion wavefunctions. But the strong CP phase remains zero, being essentially protected by parity in the bulk and CP on the branes. As always in models of spontaneous CP breaking, radiative corrections to theta bar from the standard model are tiny, but even higher dimension operators are not that dangerous. The twisting phenomenon was recently shown to be generic, and not to interfere with the way that split fermions naturally weaves small numbers into the standard model. It follows that out approach to strong CP is compatible with flavor, and we sketch a comprehensive model. We also look at deconstructed version of this setup which provides a viable 4D model of spontaneous CP breaking which is not in the Nelson-Barr class. (author)
Dirac Fermions in an Antiferromagnetic Semimetal
Tang, Peizhe; Zhou, Quan; Xu, Gang; Zhang, Shou-Cheng; Shou-Cheng Zhang's Group Team, Prof.
Analogues of the elementary particles have been extensively searched for in condensed matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low energy excitations in materials now known as Dirac semimetals. All the currently known Dirac semimetals are nonmagnetic with both time-reversal symmetry and inversion symmetry "". Here we show that Dirac fermions can exist in one type of antiferromagnetic systems, where both and "" are broken but their combination "" is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyze the robustness of the Dirac points under symmetry protections, and demonstrate its distinctive bulk dispersions as well as the corresponding surface states by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism. We acknowledge the DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515, NSF under Grant No.DMR-1305677 and FAME, one of six centers of STARnet.
Directory of Open Access Journals (Sweden)
D. P. Samajdar
2014-01-01
Full Text Available The valence band anticrossing model has been used to calculate the heavy/light hole and spin-orbit split-off energies in InAs1-xBix and InSb1-xBix alloy systems. It is found that both the heavy/light hole, and spin-orbit split E+ levels move upwards in energy with an increase in Bi content in the alloy, whereas the split E− energy for the holes shows a reverse trend. The model is also used to calculate the reduction of band gap energy with an increase in Bi mole fraction. The calculated values of band gap variation agree well with the available experimental data.
Goldstone fermions in supersymmetric theories at finite temperature
International Nuclear Information System (INIS)
Aoyama, H.; Boyanovsky, D.
1984-01-01
The behavior of supersymmetric theories at finite temperature is examined. It is shown that supersymmetry is broken for any T> or =0 because of the different statistics obeyed by bosons and fermions. This breaking is always associated with a Goldstone mode(s). This phenomenon is shown to take place even in a free massive theory, where the Goldstone modes are created by composite fermion-boson bilinear operators. In the interacting theory with chiral symmetry, the same bilinear operators create the chiral doublet of Goldstone fermions, which is shown to saturate the Ward-Takahashi identities up to one loop. Because of this spontaneous supersymmetry breaking, the fermions and the bosons acquire different effective masses. In theories without chiral symmetry, at the tree level the fermion-boson bilinear operators create Goldstone modes, but at higher orders these modes become massive and the elementary fermion becomes the Goldstone field because of the mixing with these bilinear operators
arXiv Charged Fermions Below 100 GeV
Egana-Ugrinovic, Daniel; Ruderman, Joshua T.
2018-05-03
How light can a fermion be if it has unit electric charge? We revisit the lore that LEP robustly excludes charged fermions lighter than about 100 GeV. We review LEP chargino searches, and find them to exclude charged fermions lighter than 90 GeV, assuming a higgsino-like cross section. However, if the charged fermion couples to a new scalar, destructive interference among production channels can lower the LEP cross section by a factor of 3. In this case, we find that charged fermions as light as 75 GeV can evade LEP bounds, while remaining consistent with constraints from the LHC. As the LHC collects more data, charged fermions in the 75–100 GeV mass range serve as a target for future monojet and disappearing track searches.
An exact fermion-pair to boson mapping
International Nuclear Information System (INIS)
Johnson, C.W.
1993-01-01
I derive in a novel fashion exact formulas for the calculation of general matrix elements, including the overlap (norm) matrix, between states constructed from fermion pairs. Mapping the fermion pairs to bosons, I show how to construct finite and exact (in the sense of preserving matrix elements) boson representations of the norm operator and one- and two-fermion operators. This may lead to a microscopic basis for the Interacting Boson Model, as well as new truncation schemes for the nuclear shell model
Gauge-invariant dressed fermion propagator in massless QED3
International Nuclear Information System (INIS)
Mitra, Indrajit; Ratabole, Raghunath; Sharatchandra, H.S.
2006-01-01
The infrared behaviour of the gauge-invariant dressed fermion propagator in massless QED 3 is discussed for three choices of dressing. It is found that only the propagator with the isotropic (in three Euclidean dimensions) choice of dressing is acceptable as the physical fermion propagator. It is explained that the negative anomalous dimension of this physical fermion does not contradict any field-theoretical requirement
Pole mass, width, and propagators of unstable fermions
International Nuclear Information System (INIS)
Kniehl, B.A.; Sirlin, A.
2008-01-01
The concepts of pole mass and width are extended to unstable fermions in the general framework of parity-nonconserving gauge theories, such as the Standard Model. In contrast with the conventional on-shell definitions, these concepts are gauge independent and avoid severe unphysical singularities, properties of great importance since most fundamental fermions in nature are unstable particles. General expressions for the unrenormalized and renormalized dressed propagators of unstable fermions and their field-renormalization constants are presented. (orig.)
Fermionic covariant prolongation structure theory for supernonlinear evolution equation
International Nuclear Information System (INIS)
Cheng Jipeng; Wang Shikun; Wu Ke; Zhao Weizhong
2010-01-01
We investigate the superprincipal bundle and its associated superbundle. The super(nonlinear)connection on the superfiber bundle is constructed. Then by means of the connection theory, we establish the fermionic covariant prolongation structure theory of the supernonlinear evolution equation. In this geometry theory, the fermionic covariant fundamental equations determining the prolongation structure are presented. As an example, the supernonlinear Schroedinger equation is analyzed in the framework of this fermionic covariant prolongation structure theory. We obtain its Lax pairs and Baecklund transformation.
Spin-excited oscillations in two-component fermion condensates
International Nuclear Information System (INIS)
Maruyama, Tomoyuki; Bertsch, George F.
2006-01-01
We investigate collective spin excitations in two-component fermion condensates with special consideration of unequal populations of the two components. The frequencies of monopole and dipole modes are calculated using Thomas-Fermi theory and the scaling approximation. As the fermion-fermion coupling is varied, the system shows various phases of the spin configuration. We demonstrate that spin oscillations have more sensitivity to the spin phase structures than the density oscillations
Quantum Hall effect of massless Dirac fermions and free fermions in Hofstadter's butterfly
International Nuclear Information System (INIS)
Yoshioka, Nobuyuki; Matsuura, Hiroyasu; Ogata, Masao
2016-01-01
We propose a new physical interpretation of the Diophantine equation of σ xy for the Hofstadter problem. First, we divide the energy spectrum, or Hofstadter's butterfly, into smaller self-similar areas called 'subcells', which were first introduced by Hofstadter to describe the recursive structure. We find that in the energy gaps between subcells, there are two ways to account for the quantization rule of σ xy , that are consistent with the Diophantine equation: Landau quantization of (1) massless Dirac fermions or (2) free fermions in Hofstadter's butterfly. (author)
Fermion structures of state vectors of the Schwinger model with multi-fermions
International Nuclear Information System (INIS)
Nakawaki, Yuji
1983-01-01
Coulomb-gauge Schwinger model with multi-fermions is formulated consistently in a box [-L, L] by introducing true dynamical degrees of freedom of electromagnetic fields, namely zero-mode part A 1 sup((0)) of A 1 and its canonical conjugate momentum π 1 sup((0)). State vectors are constructed of free massless fermion operators and zero-mode operators A 1 sup((0)) and π 1 sup((0)) and it is clarified how and why multifermion condensations become degenerate ground states and chiral invariance is spontaneously broken. It is also examined that physical space of covariant gauge Schwinger model is isomorphic to that of Coulomb-gauge Schwinger model. (author)
On the trace anomaly of a Weyl fermion
Energy Technology Data Exchange (ETDEWEB)
Bastianelli, Fiorenzo; Martelli, Riccardo [Dipartimento di Fisica e Astronomia, Università di Bologna,via Irnerio 46, I-40126 Bologna (Italy); INFN - Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy)
2016-11-29
We calculate the trace anomaly of a Weyl fermion coupled to gravity by using Fujikawa’s method supplemented by a consistent regulator. The latter is constructed out of Pauli-Villars regulating fields. The motivation for presenting such a calculation stems from recent studies that suggest that the trace anomaly of chiral fermions in four dimensions might contain an imaginary part proportional to the Pontryagin density. We find that the trace anomaly of a Weyl fermion is given by half the trace anomaly of a Dirac fermion, so that no imaginary part proportional to the Pontryagin density is seen to arise.
Fermions in nonrelativistic AdS/CFT correspondence
International Nuclear Information System (INIS)
Akhavan, Amin; Alishahiha, Mohsen; Davody, Ali; Vahedi, Ali
2009-01-01
We extend the nonrelativistic AdS/CFT correspondence to the fermionic fields. In particular, we study the two point function of a fermionic operator in nonrelativistic CFTs by making use of a massive fermion propagating in geometries with Schroedinger group isometry. Although the boundary of the geometries with Schroedinger group isometry differ from that in AdS geometries where the dictionary of AdS/CFT is established, using the general procedure of AdS/CFT correspondence, we see that the resultant two point function has the expected form for fermionic operators in nonrelativistic CFTs, though a nontrivial regularization may be needed.
Functional approach without path integrals to finite temperature free fermions
International Nuclear Information System (INIS)
Souza, S.M. de; Santos, O. Rojas; Thomaz, M.T.
1999-01-01
Charret et al applied the properties of Grassmann generators to develop a new method to calculate the coefficients of the high temperature expansion of the grand canonical partition function of self-interacting fermionic models on d-dimensions (d ≥1). The methodology explores the anti-commuting nature of fermionic fields and avoids the calculation of the fermionic path integral. we apply this new method to the relativistic free Dirac fermions and recover the known results in the literature without the β-independent and μindependent infinities that plague the continuum path integral formulation. (author)
Wilson Fermions and Axion Electrodynamics in Optical Lattices
International Nuclear Information System (INIS)
Bermudez, A.; Martin-Delgado, M. A.; Mazza, L.; Rizzi, M.; Goldman, N.; Lewenstein, M.
2010-01-01
We show that ultracold Fermi gases in optical superlattices can be used as quantum simulators of relativistic lattice fermions in 3+1 dimensions. By exploiting laser-assisted tunneling, we find an analogue of the so-called naive Dirac fermions, and thus provide a realization of the fermion doubling problem. Moreover, we show how to implement Wilson fermions, and discuss how their mass can be inverted by tuning the laser intensities. In this regime, our atomic gas corresponds to a phase of matter where Maxwell electrodynamics is replaced by axion electrodynamics: a 3D topological insulator.
Phases of renormalized lattice gauge theories with fermions
International Nuclear Information System (INIS)
Caracciolo, S.; Menotti, P.; and INFN Sezione di Pisa, Italy)
1979-01-01
Starting from the formulation of gauge theories on a lattice we derive renormalization group transformation of the Migdal-Kadanoff type in the presence of fermions. We consider the effect of the fermion vacuum polarization on the gauge Lagrangian but we neglect fermion mass renormalization. We work out the weak coupling and strong coupling expansion in the same framework. Asymptotic freedom is recovered for the non-Abelian case provided the number of fermion multiplets is lower than a critical number. Fixed points are determined both for the U (1) and SU (2) case. We determine the renormalized trajectories and the phases of the theory
Bosonization of fermions coupled to topologically massive gravity
Fradkin, Eduardo; Moreno, Enrique F.; Schaposnik, Fidel A.
2014-03-01
We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space-time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy-momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space-time.
Bosonization of fermions coupled to topologically massive gravity
International Nuclear Information System (INIS)
Fradkin, Eduardo; Moreno, Enrique F.; Schaposnik, Fidel A.
2014-01-01
We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space–time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy–momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space–time.
Bosonization of fermions coupled to topologically massive gravity
Energy Technology Data Exchange (ETDEWEB)
Fradkin, Eduardo [Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801-3080 (United States); Moreno, Enrique F. [Department of Physics, Northeastern University, Boston, MA 02115 (United States); Schaposnik, Fidel A. [Departamento de Física, Universidad Nacional de La Plata, Instituto de Física La Plata, C.C. 67, 1900 La Plata (Argentina)
2014-03-07
We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space–time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy–momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space–time.
Calculation of CWKB envelope in boson and fermion productions
International Nuclear Information System (INIS)
Biswas, S.; Chowdhury, I.
2007-01-01
We present the calculation of envelope of boson and of both low-and high-mass fermion production at the end of inflation when the coherently oscillating inflations decay into bosons and fermions. We consider three different models of inflation and use CWKB technique to calculate the envelope to understand the structure of resonance band formation. We observe that though low-mass fermion production is not effective in preheating because of Pauli blocking, it is quite probable for high-mass fermion to take part in pre heating. (author)
Fermion frontiers in vector lattice gauge theories: Proceedings. Volume 8
International Nuclear Information System (INIS)
1998-01-01
The inclusion of fermions into simulations of lattice gauge theories is very difficult both theoretically and numerically. With the presence of Teraflops-scale computers for lattice gauge theory, the authors wanted a forum to discuss new approaches to lattice fermions. The workshop concentrated on approaches which are ripe for study on such large machines. Although lattice chiral fermions are vitally important to understand, there is not technique at hand which is viable on these Teraflops-scale machines for real-world problems. The discussion was therefore focused on recent developments and future prospects for QCD-like theories. For the well-known fermion formulations, the Aoki phase in Wilson fermions, novelties of U A (1) symmetry and the η' for staggered fermions and new approaches for simulating the determinant for Wilson fermions were discussed. The newer domain-wall fermion formulation was reviewed, with numerical results given by many speakers. The fermion proposal of Friedberg, Lee and Pang was introduced. They also were able to compare and contrast the dependence of QCD and QCD-like SUSY theories on the number of quark flavors. These proceedings consist of several transparencies and a summary page from each speaker. This should serve to outline the major points made in each talk